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network quadrotor models

J.J. van Beers * and Dr. ir. C.C. de Visser '
Delft University of Technology, 2629 HS Delft, The Netherlands

Ensuring the reliability and validity of data-driven quadrotor model predictions is essential
for their accepted and practical use. This is especially true for black-box models, such as
artificial neural networks (ANNS), for which the mapping of inputs to predictions is ambiguous
and subsequent reliability notoriously difficult to ascertain. As prediction intervals (PIs)
provide insight into the confidence, and thus reliability, of the models’ predictions, two ANN PI
estimation techniques - the bootstrap method and the quality-driven direct PI estimation method
- are compared with equivalent polynomial PIs and validated numerically for quadrotor models
through an existing high-fidelity quadrotor simulation for the first time. It is shown here that the
bootstrap method generally mirrors the polynomial PI performance and is robust against noise
in the inputs, sporting numerically valid PIs regardless of the noise power. However, it relies
heavily on the assumption of normally distributed prediction errors and fails to produce valid
PIs when this assumption is not satisfied. Conversely, the quality-driven direct PI estimation
method produces valid PIs that are invariant of this assumption but are instead sensitive to

high-noise in the measurements insofar as they sometimes fail to enclose the target predictions.

Nonetheless, future predictions made by the quality-driven ANN always consistently lie within
the interval bounds, regardless of noise, exhibiting a containment of model uncertainty. These
results show promise for the use of the evaluated ANN PI estimation methods and imposes
some requirements on the identification data, dependent on the chosen estimation technique, to
ensure valid estimations.
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I. Introduction
DATA—DRIVEN system identification techniques are often employed to develop models of highly non-linear systems,
such as the quadrotor. These data-driven approaches to quadrotor model identification are convenient and attractive
due to limited knowledge on analytical descriptions of the quadrotor [1-4]. Subsequently, many quadrotor models have
been successfully identified in literature using a plethora of system identification techniques [1, 5-8].

Among these, artificial neural networks (ANNs) are an increasingly popular choice by virtue of their generalizability
[6] and aptitude for capturing unknown non-linearities [9, 10]. Consequently, they are employed to capture dynamics in
unexplored and extreme regions of the flight envelope. Take, for instance, the use of ANNSs to facilitate high-speed (i.e.
up to 18 ms~!) quadrotor model identification by Bauersfeld et al. [8]. As many of the current state-of-the-art quadrotor
models are identified indoors in constrained and controlled environments (e.g. [1, 8]), ANNs offer an attractive technique
to apply to outdoor quadrotor identification where more uncertainties are present and a larger, unknown, region of the
flight envelope may be explored.

However, as a black-box modelling technique, it is ambiguous as to how exactly the ANN inputs interact to produce
the model outputs. As such, evaluating the reliability and validity of the resultant ANN models is challenging and
proves to be a significant barrier to their widespread use in the aerospace industry [11]. Although many ANN quadrotor
models have been identified in literature with desirable performance (see, for example, [6-8]), none specify how reliable
or valid these models are beyond assessing their performance with respect to some, typically unseen (i.e. validation),
flight data sets. Subsequently, an ANN model may produce accurate predictions for both the training and validation data
sets and thus may be considered a good model. However, such performance may be constrained to those data sets alone,
and may deteriorate due to uncertainties in the inputs which ultimately culminate in erroneous predictions [12]. This is
undesirable as it may lead to unpredictable model outputs for similar (e.g. noisy) inputs. Ensuring safety and reliability
are paramount to the accepted use of autonomous quadrotors and thus this lack of model reliability measures for ANNs
needs to be addressed.

One way to describe the reliability of a model’s prediction is through its confidence in that prediction. To this end,
the associated prediction intervals (PIs) - the interval wherein a future observation will lie, with a given probability (i.e.
confidence) - may be used as a proxy for reliability. For some system identification approaches, such as polynomial
regression, there are valid analytical formulations for obtaining these PIs. However, due to the inherent obscurity
behind black-box models, analytical formulations that maintain the validity of any estimated PIs are challenging, if not
impossible, to derive. This is indeed the case for ANNS.

Consequently, some ANN literature [12—15] propose various methods to estimate these prediction intervals,
especially in the face of input uncertainties. One of the more straightforward and convenient approaches is known as the
bootstrap method. In this approach, an additional ANN is employed to estimate the PIs associated with the aggregate
prediction of an existing ensemble of ANNSs [12]. Consequently, it may be applied to an already trained ensemble of
ANNs without needing to retrain or augment the underlying model. In their review of popular ANN PI estimation
techniques, Khosravi et al. [12] found that the bootstrap approach did well to reflect uncertainty in the inputs. However,
the bootstrap method often produces excessively wide PIs, which is undesirable. Alternatively, the prediction intervals
may be estimated directly by the (ensemble of) ANNs primarily through an augmentation of the training cost function.
Accordingly, Pearce et al. [14] propose a quality-driven direct estimation of the PIs. This approach necessitates a custom
cost function - built from PI quality metrics - and training regime for the ANNs which is argued to produce high quality,
and valid, PIs [14]. These ANN PI estimation methods, or indeed any others, provide a clear utility in establishing
model reliability but have yet to be applied to quadrotor ANN models.

Therefore, due to the promising results of both the bootstrap and quality-driven direct estimation methods, they are
applied to quadrotor identification and PI estimation in this paper. However, PIs are only useful if they truly reflect the
specified confidence behind making predictions. Consequently, the validity of the estimated PIs from these two methods
are evaluated numerically for the first time using noisy data derived from an existing high-fidelity quadrotor simulation
platform developed by Sun et al. [16]. This simulation is used to generate mock flight data under controlled conditions
for two numerical validation experiments. While not as definitive as an analytical derivation, numerically corroborated
PIs nonetheless lend support to their reliability and validity. Moreover, the polynomial prediction intervals, which are
known to be reliable given their analytical foundations, are also identified for equivalent polynomial models to act as a
benchmark during this numerical validation.

To facilitate this, a brief introduction to the PI quality metrics and estimation methods for the polynomial, bootstrap,
and direct methods are given in section II. Subsequently, the procedures for the two numerical validation experiments,
including a brief description of the simulation set-up, are provided in section III. The numerical validation results
themselves are then summarized in section I'V.



I1. Model reliability assessment through prediction intervals
Although regression aims to approximate a certain target variable given a set of predictors, measurements of
these targets are, in practical applications, often contaminated with bias and noise. This induces a variation in model
predictions.
For simplicity, it is commonly assumed that the bias is absent® and the measured targets, yp, are only influenced
by some zero-mean error, €, as given by eq. (1). Here, y; denotes the true value of the target [12]. It is often further
assumed that the errors, €, are independent and identically distributed [12].

Ym =Yyt +€ )

Regression models only estimate the measured target which, itself, harbours uncertainties arising from modelling
misspecification and the estimation of model parameters. This uncertainty is typically captured through the confidence
interval (CI), defined for some confidence level 1 — @, and is constructed from the variance of the modelling errors. «
denotes the alpha level and is typically selected as @ = 0.05, resulting in a 95% confidence interval (i.e. 1 —a = 0.95).

However, the uncertainty associated with making predictions encompasses both noise and modelling errors (a’é and
a’§ respectively) as shown in eq. (2). Here, o2 gives the variance associated with the total model predictions and may be
used to construct the prediction intervals (PIs) based on a given confidence level 1 — @. The PIs, by definition, encompass
the CIs since they consider the errors arising from the measurements of the targets in addition to the modelling errors. In
words, the PIs may be interpreted as the "interval in which a future observation will lie, provided that it has previously
been observed, up to a specified confidence level". Therefore, the extent of interval may be used to assess the reliability
of the prediction wherein narrow intervals denote a reliable prediction due to minimal variation.

o’ = 0'§ + 0'% 2)

The PI bounds, for a given target value, y;, and associated variance, o;, can be obtained through eq. (3). In eq. (3),
(l-al? gives two sided test statistic for the chosen confidence level, 1 — @, and n gives the number of observations.

N-2
Typically, n = 1 when making (single) predictions.

—a)2 Ti
- )

The quality of the PIs are usually assessed through two metrics: the Coverage Probability (PICP) and the Mean
Prediction Interval Width (MPIW) [12, 14]. The PICP evaluates the proportion of the (test or validation) target data that
is contained within the estimated PIs and is defined by eq. (4). In eq. (4), N denotes the number of test data points,
and c; describes if the target value is contained within the defined bounds of the PI (where L; = lower bound, U; =
upper bound) for a given confidence level. Therefore, the PICP may be used to verify that the desired confidence
level is achieved. For example, PIs designed to capture the target value 95% of the time are expected to maintain a
PICP > 95%. While the PICP is useful for evaluating the validity of the PIs, it does not itself describe how practical
the PIs are since infinitely large PIs also satisfy the PICP requirement.

Ji+t

rPicP =1L 3N ¢

“4)
o = 1, yielL;,Ui]
! 0, otherwise

Complimentary to the PICP, the MPIW is often used to parameterize the width of the PIs. As the absolute widths of
the MPIW vary depending on the data set, the MPIW is typically normalized with respect to the range of the target
data. The normalized MPIW is defined in eq. (5). Both the PICP and the MPIW should be used in tandem to describe
the overall PI quality, seeing as the deficiencies of one metric are perfectly accommodated by the other. Therefore,
a "high-quality’ PI is one which satisfies the PICP requirement while being as narrow as possible in terms of the
(normalized) MPIW.

1 N
MIPW = ; (U; - L) 5)

*For example, eliminated during pre-processing of the data.



These prediction intervals provide a clear utility for interpreting model predictions and may be used to evaluate the
subsequent reliability of a given prediction through the validity and width of the intervals.

A. Prediction Intervals for Polynomial models

Conveniently, for a model identified through Ordinary Least Squares (e.g. poylnomial models identified through
step-wise regression [1]), o> may calculated through eq. (6) under the assumptions that the measurement error term, €,
is zero-mean, independent and identically distributed. In eq. (6), X¢ denotes the input data for which predictions should
be made (i.e. to predict yo), X represents the regressor matrix used for training the model, I gives the identity matrix
and o2 may be approximated through eq. (7).

-1
52 = o2 (1 +X0 (XTX) xg) (6)

1 N
a2 22
%—Nﬁzgq (M)

In eq. (7), N, represents the number of samples used for training and é; = y; — J; denotes the residual error. Note
the difference between € (error due to noise) and e (residual error) used here. The computed 6y may then be inputted
into eq. (3) to obtain the lower and upper bounds of the PI.

B. Prediction Intervals for ANN models

For ANN models, and indeed many other black box approaches to modelling, obtaining PIs is challenging due to the
obscurity of how the model maps the inputs to its predictions. As such, there is no standard technique to obtain these
PIs and literature on estimating ANN PlIs is varied. Two promising approaches from literature are described in the
following sections.

1. Bootstrap method

The bootstrap method is one of the most straightforward and convenient approaches to ANN PI estimation which
exploits the inherent stochasticity of the ANN training process. One of the main benefits of the bootstrap method is that
it does not require the use of specific network structures or training regimes and can instead be applied to an already
trained ensemble of ANNS.

The spread (i.e. variance) of predictions across an ensemble of ANN models, initialized with distinct weights and
trained on different subsets of the training data set, gives an approximation of the errors which originate from model
uncertainty and misspecification (i.e o-y?) through the variance across the ensemble predictions [12, 14]. Let the average

ensemble prediction for a given target, y;, be given by eq. (8) where B gives the number of ANN models, and )7{ the
prediction of model j.

1S
$i=5 2,5 @®)
j=1
Therefore, the variance in model predictions may be constructed through eq. (9) [12, 17].
B
1 . 2
A2 (A J A
6% = > (31 -%) ©)
B-1 ; !

The variance due to the measurement errors, o, is typically unknown and cannot easily be inferred from the
ensemble of ANN models. Instead, an additional ANN (hereafter known as the o-i_ -predictor ANN) may be used to
(implicitly) estimate this variance using a different "unseen’ data set (i.e. one that is distinct from that used for training
and validating the ANN ensembles [12, 17]).

Using the (trained) ensemble of ANNS, predictions can be made for this unseen data set for which the target values
are known and subsequent squared errors taken through eq. (10). Since the variance due to the model uncertainty has
been approximated through the variance in ANN predictions in the ensemble (i.e. eq. (9)), the remaining variance in the
squared errors, e%, is assumed to be the variance of the measurement noise errors, o-i_ [17]. Therefore, a new data set,



D, = {x;, V,'z}fi |» may be constructed linking the inputs, x;, to the variance residuals, rl.z, defined in eq. (11). Note the
max’ operator is used here since the variance should be greater than zero.

e? = (Ymi—9:)° (10)

r =maX((ym,i —ﬁi)z—frzi) ,0) (11)

The a’é -predictor ANN may then be used to implicitly approximate O'é, by minimizing the cost function defined in
eq. (12) [12]. This cost function is obtained by taking the natural logarithm of the normal distribution of € and thus
ensures that the o-é -predictor ANN produces variances which conform this normal distribution [12]. The practical
implementation of this cost function involves setting rl.2 as the target values (i.e. rl.2 — y;) and o-é as the ANN predicted
values (i.e. o-i_ — $;). The goal is to minimize this cost function.

BN 2 7
J:EZ; In(78) + 5 (12)
i

As with the polynomial PIs, eq. (3) may be used to construct the lower and upper PI bounds using the complete
estimated model prediction variance, &; = 07y, + 0.

Intuitively, more models used in the ensembles leads to more reliable estimates for the model uncertainty.
Consequently, some literature, such as [18, 19], advocate for the use of hundreds to thousands of ANN models. This
rather problematic given that training such an extensive collection of models demands significant computational
resources and casts doubt on the practical application of the bootstrap method for quadrotor modelling. However, both
[12, 14] found that as few as 5-10 ANN models are sufficient for producing reliable prediction intervals. Although, it
should be highlighted that the minimum number of ANNSs in an ensemble is dependent on the modelling task at hand,
and may increase, or decrease, depending on the complexity of employed ANNs and the modelling task itself.

While the bootstrap method may not result in the best quality PIs, often with excessively wide PIs, it is simple
to implement and may be applied directly to existing ANNs without interfering with the training process [12]. For
quadrotor applications, a more conservative estimate (i.e. wider MPIWs) may be argued to be desirable as it promotes
greater caution in predictions. Moreover, the bootstrap method is computationally efficient when making predictions’
compared to other ANN PI estimation methods and it is found to intuitively reflect uncertainties in the inputs (i.e. higher
uncertainties results in wider PIs) [12].

2. Quality-driven direct estimation

Instead of estimating the PIs after-the-fact, another approach is to estimate them directly. Although more involved
than the bootstrap method, direct access to the training phase allows for the consideration of the PI quality metrics (i.e.
PICP and M PIW) during training. Such an approach is outlined in the recent work of Pearce et al. [14] wherein an
ensemble of FNNs are used to directly predict the upper and lower bounds of the PI associated with a prediction. The PI
quality metrics are directly incorporated into the loss function of the ANN training process enabling high-quality PIs to
be estimated. Point predictions may then be extracted from the intervals by taking the mean [14]. Consequently, the
model will implicitly fit the target data, while optimizing for the PI quality metrics by promoting valid and reliable PIs.

The inspiration behind the approach of Pearce et al. [14] is the foundational work of Khosravi et al. [13] who
also previously introduced a PI-based cost function involving the MIPW and PICP in their so called ’Lower Upper
Bound Estimation (LUBE)’ method. Prior to their contribution, the PI quality metrics were seldom used in tandem.
Therefore, Khosravi et al. [13] include both MIPW and PICP in their loss function design and term this function the
coverage width-based criterion (CWC). The CWC is defined in eq. (13) where R denotes the range of the target values
(i.e. to normalize the MPIW) and A is a hyper-parameter that modulates the importance of the PICP requirement. The
motivation behind this function is to encourage narrow PIs so long as the PICP criterion is met, hence the max operator.

MPIW
CWC = n (l 4 pAmax (0,(1—0)—PICP)) (13)

Note that this method is, however, computationally demanding during training. This complexity also scales with the number of necessary model
ensembles for reliable predictions.



While the LUBE method has since been used successfully in several practical applications (see summary by Pearce
et al. [14] and references contained within), Pearce et al. [14] note a few critiques with the original CWC and propose
some modifications to improve usability and performance:

* Multiplicative effect of the MPIW: Due to the multiplicative effect of the M PIW in eq. (13), there is a global
optimum when M PIW = 0, a solution that was found to occasionally appear in practice. This is undesirable as it
effectively eliminates the PI altogether. Therefore, Pearce et al. [14] propose that the M PIW be used only in an
additive fashion. However, this culminates in an asymmetric magnitude between the two metrics. One may argue,
in any case, that the PICP is the more crucial parameter since it establishes the validity of the PIs. Indeed, only
once these are found to be valid should an attempt be made to reduce the M PIW.

* Modification to the MPIW: The M PIW as defined in eq. (5) does not consider if the target values are contained

within the PI. Thus, the M PIW in eq. (13) encourages them to shrink even if the target value lies outside the

PI bounds to minimize the CWC. This is contrary to the desired behaviour since such PIs should be widened

to potentially capture the target value. Instead, the captured MPIW (termed M PIW¢), which only includes the

MPIW of PIs which contain their target value, is proposed by Pearce et al. [14]. However, this has the adverse

effect of requiring more training epochs to converge to a solution since the PIs first need to surround their target

values before optimization can truly occur.

Scaling of A with training data size: Intuitively, a larger sample size instills more confidence in the PICP, and

thus A should be increased to reflect this [13]. This can be problematic for data sets with varying sizes, and indeed,

quadrotor applications where data set sizes may vary across flights. Therefore, the sample size may be included

directly in the cost function to account for this [14].

* Non-linearity of the CWC: The CWC is incompatible with traditional gradient descent training algorithms due
to the non-linear and discontinuous properties of the function (in particular, for the PICP) [13]. Consequently,
other optimization techniques are typically used, such as simulated annealing [13, 14]. However, this proves
to be inconvenient for practical applications since gradient descent methods are the most familiar and popular
optimization routine used to train ANNs. However, Pearce et al. [14] point out that commonly used loss functions
and activation functions (e.g. ReLU) also exhibit these non-linear and/or discontinuous properties, yet are still
compatible with gradient descent methods due to robust software implementations (such as TensorFlow) at the
cost of convergence guarantees. Moreover, replacing step functions in the CWC (eq. (13)) with their sigmoid
counterparts can improve convergence characteristics [14].

These modifications collectively culminate in the ’quality-driven’ PI cost function (QD) [14] and is described in
eq. (14). The ’soft’ PICP, PIC Py, is defined in eq. (15) where o (-) denotes the sigmoid function and s is some softening
factor. Pearce et al. [14] found that s = 160 consistently produces acceptable results across multiple different regression
tasks.

OD = MPIW¢ + NAmax (0, (1 — @) — PICP;)? (14)
1 N
PICP; = = 3 o (s(vi = $1.0)) - o (s = 7)) (15)

i=1

III. Procedures for numerical validation of prediction intervals

To numerically validate the estimated ANN PIs for a quadrotor, a dataset containing multiple, distinct, noisy
realizations of a given flight trajectory performed under the same conditions is needed. To this end, the INDI (Incremental
Non-linear Dynamic Inversion) controller based quadrotor simulation platform developed by Sun et al. [16] may be
employed to generate the mock flight data required under consistent flight conditions. This quadrotor simulation is
programmed in MATLAB and Simulink and is intended to simulate the controlled flight of the Parrot Bebop2 quadrotor
despite the loss of two opposing propellers wherein control is maintained by virtue of the employed INDI controller.
The Parrot Bebop2 quadrotor model employed in the simulation is a rotor-local gray-box polynomial model identified
from the previous work of Sun et al. [1, 5, 16, 20, 21]. As such, the simulation platform is capable of simulating a
nominal quadrotor whose task is to track a, user-specifiable, position reference signal and/or yaw angle reference. While
the simulation itself is programmed in MATLAB, the mock flight data is exported and processed for the numerical
validation in Python.



Table 1 Gaussian white noise parameters and statistics used for the two numerical validation schemes. In
Num-Validation-Sim, the default noise levels (i.e. magnitude of the Power Spectral Density of the white noise) of
the quadrotor simulation platform of Sun et al. [16] are used. Likewise, the noise statistics used to generate the
white noise vectors for Num-Validation-Noise for each sensor are also summarized.

Measurement Variable Num-Validation-Sim Num-Validation-Noise
Height of white noise PSD  Mean  Variance Units
Position 1.00E-08 0 0.1 m
Velocity 1.00E-08 0 0.1 ms™!
Acceleration 1.00E-03 0 0.05 ms~2
Attitude 1.00E-08 0 0.05 rad
Rotational velocity 2.00E-04 0 0.1 rads™
Rotor speeds 0 0 0 RPM

A. Generation of mock-flight data

One way to introduce noise into the simulation measurements is to first obtain a noise-free flight of the quadrotor,
after which random white-noise can be added to the relevant inputs and outputs. This approach evaluates the validity of
the estimated PIs when subject purely to varying noise. Since the noise statistics of the simulation are controllable,
another approach is to instead vary the noise for each flight in the simulation itself. This gives a more realistic
representation of the contamination of noise as it propagates through the system. It should be emphasized, however, that
the INDI controller used in the simulation also relies on these noisy measurements [16]. Consequently, the control
actions produced by the controller will also differ slightly across runs. This contamination will increase the measurement
variance across the runs, but is more representative of a true system. Consequently, it is more practical if the estimated
PIs are capable of accommodating this as well. Therefore, two different numerical validation experiments are conducted
of the quadrotor following the same trajectory.

The first numerical validation experiment - Num-Validation-Noise - evaluates the PI validity by making predictions
on a number of (N = 1000) distinct noisy realizations of the flight for which random white noise is injected to a single,
noise-free, flight from the simulation after-the-fact to remove the variance contamination by the controller. Noise is
injected into the position, body linear and angular velocity, acceleration, and attitude measurements of stemming from
the simulation. The noise statistics used for this are summarized in table 1 and are generated using the normal method
of numpy . random.RandomState in Python. The subsequent power spectral densities (PSDs) of the (virtual) sensor
measurements may be found in section VI.A.

A more realistic representation of the variance in inputs and outputs of the system may be obtained by injecting
noise directly into the system during the simulation. The simulation platform [16] allows for the specification of the
magnitudes of noise for the (virtual) sensor measurements of the quadrotor’s position, body linear and angular velocity,
acceleration, attitude, and rotor speeds. Therefore, the second numerical validation experiment - Num-Validation-Sim -
evaluates the PI validity across a number of (N = 1000) distinct noisy simulation runs. Note that the noise statistics
are not specified directly in the simulation [16], instead the noise is parameterized by the height of its PSD for which
Simulink handles the translation of this noise into the system. As such, the default values are used and are summarized
in table 1. The corresponding PSDs of these input states are located in the appendix section VI.B.

Therefore, two mock data sets are created for the purposes of PI validation. To be considered valid, the estimated
PIs should be wide enough to surround subsequent predictions made by the same models on the noisy data sets up to the
confidence criterion (i.e. PICP > 95%). Moreover, the estimated PIs should also encapsulate the variation in the target
data, again up to this confidence criterion.

B. Simulated input manoeuvres for model identification

Model identification can only occur when adequate excitations are present in the identification data set. Therefore, to
excite the forces and moments along all of the axes, input manoeuvres along the specifiable variables (i.e. the x-, y-, and
z- positions* and the yaw angle) are conducted. These input manoeuvres occur individually at first, then simultaneously

#Note that, the reference frame used by the simulation is North-East-Down (NED) configuration. Thus, z is negative upwards.
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Fig.1 Manoeuvres conducted in the simulation platform of Sun et al. [16] to generate a flight trajectory that
excites all forces and moments. This (mock) data is then used to identify quadrotor models and validate their
associated prediction intervals.

to capture some (potential) interaction effects. The magnitudes of these manoeuvres were tuned manually to push the
(simulated) quadrotor to its limits while maintaining adequate control since high magnitudes, especially along z, were
observed to lead to loss-of-control events. The tuned input manoeuvres are illustrated in fig. 1.

C. Identification of quadrotor models

The procedure for aerodynamic model identification is the same for both Num-Validation-Noise and Num-Validation-
Sim, although separate models are identified for each experiment. An additional flight of the same trajectory (i.e.
separate from the N = 1000 runs, but with the data set specific noise contamination) is used to identify the ANN
models of the aerodynamic forces and moments along with the corresponding PIs using both the bootstrap and
quality-driven direct PI estimation methods. This identification flight is further partitioned randomly (once again
through numpy . rand.RandomState) into training and testing subsets for which 80% of the data is allocated to the
training subset. Models are then identified on the training subset through the system identification pipeline developed in
Part II: On outdoor model identification.

Likewise, the ANN model structures follow exactly from Part II: On outdoor model identification. Briefly, the
identified ANN quadrotor models are composed of an ensemble of 10 feed-forward ANNs with one hidden layer of
50 neurons. The rectified linear unit (ReLU) is chosen as the hidden layer activation function given its simplicity and
success in ANN applications [22]. Furthermore, ADAM is chosen as the optimizer function due to its capabilities. For
the bootstrap method, the mean squared error is used as the loss function while eq. (14) is employed for the direct
PI method. 150 epochs are used for training with data batch sizes of 400. Moreover, the ANN input vector - and
pre-processing of data - is the same as in Part II: On outdoor model identification.

As a reference, polynomial models are also identified using the same training data set as for the ANN models,
and are subject to the same numerical validation of the PIs. The chosen polynomial model candidates and selection
procedure (i.e. step-wise regression) are the same as those defined in Part II: On outdoor model identification.
Note that these polynomial models target the combined aerodynamic effect of the rotor system, and thus do not model
the rotor-local effects as is done in the simulation platform [16]. While the polynomial models primarily serve as a
benchmark, the resultant validity of the polynomial PIs also works to help distinguish between invalid ANN-based PIs
due to the estimation method and invalid ANN-based PIs due to general identification issues.



IV. Results of numerical validation

Following identification, the ANN (and polynomial) models are then tasked with making predictions on each of the
(N = 1000) measurement realizations of the corresponding data sets (i.e. Num-Validation-Noise and Num-Validation-
Sim). The subsequent predictions should lie within the bounds of the originally estimated PIs (i.e. from the identification
set) in accordance with the chosen confidence level for such PIs to be considered valid. Here, a confidence level of 95%
is taken and, thus, at least 95% of the subsequent predictions should fall within the interval bounds. The PICP directly
measures this and is therefore used as an indicator of PI validity. Note, that the PIC P with respect to the numerical
predictions is different than that with respect to the test data set. The PICP(Test) evaluates the performance of the
identified models with respect to a testing subset not seen during training, and therefore relates to the fit of the model
and the ability of the PIs to capture variations in the measurement data. In contrast, PICP(Numerical) verifies the
ability of the PIs in containing the variance in the models’ predictions due to input uncertainty and is therefore related
to the consistency of the model predictions. Since the P/CP does not consider the PI widths, the M PIW given as a
percentage of the range of the target measurement is also computed to verify whether the PIs are practical.

A. Numerical validation through additive noise

The numerical validation results of Num-Validation-Noise are summarized in table 2. As an example, fig. 2 illustrates
these results for snippet of the identified ANN-bootstrap, ANN-direct PI, and polynomial models of F,. Shown in grey
are the model-specific limits of the N = 1000 noisy predictions (i.e. the bounds of all of the noisy predictions) and are
seen to be well-contained within the estimated PIs for all methods. Likewise, the target F is also mostly surrounded by
the estimated PIs.

Indeed, as is evident from table 2, the polynomial model PIs show valid PICP(Numerical) > 95% for all identified
models. Strictly speaking, however, the PICP(Test) ~ 94% are almost all just below the PICP > 95% threshold
and thus do not satisfy the condition. As the PICP(Test) is associated with the containment of test (i.e. unseen)
target measurements, this non-fulfilment may be due to over-fitting the training data or potentially unseen inputs in
the test subset. Nonetheless, the PIC P(Test) for all the polynomial models are close to the PICP > 95% threshold
and may be argued to be valid. The associated M PIW for the force models are suitably narrow, but appear to be
impractically wide for the moment models. This is likely due to the difficulty faced with the identification of moment
models due to the greater prominence of noise and sparsity of excitations. In fact, the power spectral densities of the
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Fig. 2 Comparison of the different ANN PI estimation techniques (i.e. bootstrap and direct PI) as applied
to predictions of the F, model of the simulated quadrotor in [16]. As a reference, the PIs associated with an
identified polynomial model of the simulated quadrotor is also shown. In grey are corresponding the limits of the
N = 1000 noisy predictions from Num-Validation-Noise.
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Table 2 Summary of the prediction interval numerical validation results of Num-Validation-Noise. Here, data
is derived from a simulated quadrotor flight with noise added after the simulation to the states and outputs to
create N=1000 unique noisy realizations. Prediction intervals are estimated on a separate noisy data set using
both the Bootstrap and Direct-PI method for the ANNs. As a benchmark, polynomial model prediction intervals
are also estimated.

Model Bootstrap Direct PI Polynomial
PICP MPIW pPICP PICP MPIW PICP PICP MPIW PICP
(Test) (Numerical) (Test) (Numerical) (Test) (Numerical)
Fy 97.00  6.00 99.80 98.69  7.63 99.96 9422 648 99.03
Fy 96.52  5.87 99.72 98.90 7.79 99.95 9434  6.06 98.62
F, 99.34  3.12 98.87 98.22  5.49 99.98 9420 5.53 99.02
M, 9478  47.80 99.89 87.59  40.63 100.00 9473  49.33 99.67
M, 9522  46.75 99.97 88.14  44.83 100.00 95.03 55.18 99.91
M 9430 51.82 99.99 87.89  40.49 100.00 94.66 49.74 100.00

N

moment measurements - depicted in fig. 3 - reveals that much of the power in the signal belongs to high-frequency
noise. The noise-dominant signal leads to poor moment models and, in practical applications, these should be filtered.
However, it is purposefully left unfiltered here in the interest of evaluating PI capabilities of the estimation methods with
respect to prominent noise. Indeed, despite this noise, the polynomial models nonetheless boast suitable and valid PIs,
demonstrating their robustness. It is desirable that the ANN PI estimation methods also handle such noise-dominant
cases well.

Both the bootstrap and directly estimated PIs satisfy the PICP(Numerical) > 95% condition in table 2 for both the
force and moment models, and thus successfully capture variations in predictions due to modelling errors. Moreover,
both ANN PI estimation methods also satisfy the PICP(Test) > 95% condition for the force models, which supports the
validity and reliability of the estimated PIs through these methods for signals with relatively low noise power. However,
the direct PI method fails to contain the target data within its PIs for the moment models, given the PICP(Test) < 95%.
While this may be an over-fitting issue, it demonstrates the sensitivity of the direct PI method to the noise level in
the signal for containing the variations in the targets due to measurement noise. Indeed, the direct PI method holds
the narrowest moment model PIs and should widen them to accommodate better PIC P (T est) performance. Strictly
speaking, the PIs are only valid when both conditions are satisfied. Thus, the direct-PIs can only be considered valid if
the noise in the signal does not overshadow the signal itself. Conversely, the bootstrap estimated PIs show a better
performance with almost identical PICP(Test) performance as the reference polynomial. As such, the bootstrap
estimated PIs may be considered valid and reliable, even with high-noise data. This robustness against noise is in
accordance with the conclusions of Khosravi et al. [12] regarding the bootstrap method.

The ANN models mirror the M PIW performances of the polynomial models and accentuate the difficulty in
identifying the moment models subject to such high noise contamination. The bootstrap estimated PIs are narrowest for
the force models while the directly estimated PIs are the widest. Conversely, the directly estimated PIs are narrowest for
the moment models with the polynomial model harboring the widest PIs.

Overall, the results of Num-Validation-Noise imply that the ANN PI estimation methods generate PIs which are
valid for containing predictions made on noise contaminated input data by satisfying the PIC P(Numerical) condition.
However, the direct PI method exhibits sensitivity to the power of noise in the data through valid PICP(Test) for
the force models (low noise) but not the moment models (high noise). Therefore, it may be argued that the direct
PI method estimates valid PIs so long as the dynamics of interest hold greater power than noise in the identification
data. In contrast, the bootstrap method produces valid PIs by satisfying both the PICP(Numerical) and PICP(Test)
conditions regardless of the power of noise contamination in the identification data. In fact, the bootstrap method almost
mirrors the performance of the underlying polynomial, showing great promise for this method.

B. Numerical validation through distinct simulation runs
The results of the Num-Vaidation-Sim experiment, where 1000 unique simulation runs are used to numerically
validate the estimated PIs, are summarized in table 3. Furthermore, the PSDs of the force and moment measurements
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Fig.3 Power spectral densities (PSD) of the measured
force and moments used for model identification in
Num-Validation-Noise

Fig.4 Power spectral densities (PSD) of the measured
force and moments used for model identification in
Num-Validation-Sim

obtained from the simulation are depicted in fig. 4. From this figure, it is apparent that the noise should not be a
significant issue during identification unlike for Num-Validation-Noise. Note that a spike at the end of spectra, at 500
Hz, corresponds to the control loop frequency used for the simulation.

The benchmark performance of the polynomial PIs shows valid PICP(Numerical) > 95% for the identified force
models with almost valid PICP(Test) ~ 94% < 95%. This implies that the estimated PIs do well to contain the
variation in model predictions due to noisy inputs, but struggle to accommodate variations in the target measurements.
Again, this may be a consequence of over-fitting or unseen measurements in the test set. Recall that the prediction
interval is only truly descriptive of predictions made on previously seen observations. The associated M PIWs of the
force models are pragmatically narrow and, consistent with the results of the Num-Validation-Noise experiment, the
M PIWs of the moment models are wider. In contrast, the moment models’ PIC P performance has deteriorated. Only
the M, model manages valid PIs with PICP(Test) > 95% and PICP(Numerical) > 95%. The M, model exhibits

Table 3 Summary of the prediction interval numerical validation results of Num-Validation-Sim. Here, noisy
realizations of the flight are obtained from N=1000 unique runs of the simulation with the same noise statistics.
Prediction intervals are estimated on a separate noisy data set using both the Bootstrap and Direct-PI method for
the ANNs. As a benchmark, polynomial model prediction intervals are also estimated.

Model Bootstrap Direct PI Polynomial
PICP MPIW PICP PICP MPIW PICP PICP MPIW PICP
(Test) (Numerical) (Test) (Numerical) (Test) (Numerical)
Fy 99.86  1.58 80.15 98.73  3.99 99.52 9430  5.66 99.51
F, 99.13  7.29 79.12 98.55 3.70 97.30 9592 534 99.09
F, 9993  4.46 81.46 98.13  6.78 98.96 9340 6.72 99.44
M, 99.47  52.63 92.80 99.27 56.92 99.42 70.55  12.20 74.52
M, 98.07  3.67 32.51 96.66 12.74 91.48 95.13  13.77 89.28
M 95.00 17.65 100.00 92.34 1849 99.79 96.67 19.12 99.87

N
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a valid PICP(Test) = 95% but fails with PICP(Numerical) < 95%. This implies that the variation in measured
targets is contained by the PIs, but the variation of predictions is not. This is arguably the worst case scenario since the
models’ PIs appear to contain the measurement data well but the subsequent predictions are unstable. The extension of
the noisy model predictions beyond the PI bounds is evident in fig. 5, which provides a zoomed-in illustrative example
of the range of the noisy predictions (in grey) and the estimated PIs of M, models for each of the estimation techniques.
In contrast, the M, is unable to produce valid PIs with PICP(Test) < 95% and PICP(Numerical) < 95% indicating
that the associated PIs both fail to capture the target measurements and model predictions on noisy data. However, both
the PICP(Test) and PICP(Numerical) are similar (70.55 and 74.52 respectively), perhaps implying a poor model fit.
Similarly, the bootstrap estimated PIs suffer generally poor PICP(Numerical) performance across all models
and thus substantially fail to contain the variation in model predictions. Only the M, model’s PIs enjoy a valid
PICP(Numerical) > 95%. While the PIs of the M, model are close to the numerical condition, they do not satisfy
it (PICP(Test) = 92.90% < 95%). Despite this, they do outperform the PIs of the corresponding polynomial
model, albeit with an increased M PIW (Bootstrap: MPIW = 52.63, Polynomial: MPIW = 12.20). However,
for other models PICP(Numerical) = 80% with a particularly poor performer in the M, ANN bootstrap model
(PICP(Numerical) = 32.51% < 95%). This is unacceptable as accounting for model prediction variances is one
of the fundamental purposes of using the PIs, and indicates that model predictions are unstable and routinely extend
beyond the estimated PI bounds. This is clearly observable in fig. 5 where the noisy prediction bounds (in grey) appear
to surround the estimated PIs, which is exactly contrary to the desired behavior. This suggests that the bootstrap PIs
are invalid. Peculiarly, the bootstrap PIs appear to surround the measurement data well PICP(Test) > 95% for all
identified models, implying a good model fit. Such a result accentuates concerns pertaining to over-fitting and the
reliability of ANN model predictions despite acceptable model accuracy. The associated M PIWs are comparable to, if
not narrower than, the polynomial models with the exception of the aforementioned wide ANN bootstrap M, PIs.
Likewise, the direct PI method manifests similar M PIW as the polynomial model, again with the exception of
the M,. However, in contrast to the bootstrap and polynomial PIs, the directly estimated PIs are found to be mostly
valid. Only the ANN direct PI M, and M, do not meet the conditions of PICP(Test) = 92.34% < 95% and
PICP(Numerical) = 91.48% < 95% respectively. Indeed, from fig. 5, the direct PI ANN visually exhibits the most
successful PIs in containing both the target measurement and the variation in numerical predictions. Aside from the direct
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Fig. 5 Comparison of the different ANN PI estimation techniques (i.e. bootstrap and direct PI) as applied
to predictions of the M, model of the simulated quadrotor in [16]. As a reference, the PIs associated with a
polynomial model of the simulated quadrotor is also shown. In grey are corresponding the limits of the N = 1000
noisy predictions from Num-Validation-Sim. These should lie mostly within the model prediction intervals for
valid PIs.
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PI M, and M, models, all other PICP conditions are met with PICP(Test) > 95% and PICP(Numerical) > 95%.
The valid PIs found for the force models of direct PI method are similar to that of the underlying polynomial with
comparable MPIWs. All models clearly struggle with the identification and estimation of the moment model PIs.
However, the direct PI method sports arguably the most reliable PIs and outperforms the bootstrap method in this regard.

In general, the results of Num-Validation-Sim show that PI performance has deteriorated for the polynomial and
bootstrap estimated PIs in comparison to Num-Validation-Noise. Surprisingly, the direct PI estimation method manages
to improve performance over the previous experiment. A potential explanation for this is that, as aforementioned, the
controller of the simulation utilizes the noisy measurements and therefore outputs different control actions across the
simulation runs. Both the bootstrap ANN and polynomial PI estimation methods assume a normal distribution of
prediction errors. With the additional variations induced by the controller, this assumption no longer holds. Hence, the
decay in performance of these methods is likely a consequence of this. Moreover, for the bootstrap method specifically,
the poor PICP(Numerical) performance may be a byproduct of too few ANNSs in the ensemble since this is directly
related to estimates of model uncertainty and variation. However, note that the direct PI method also harbors the same
amount of ANN ensembles, but does not suffer poor PIC P(Numerical) performance. Moreover, the direct PI method
is more robust to the additional variation induced by the controller since it does not rely heavily on the assumption that
the prediction errors are normally distributed. Instead, the PIs are directly obtained through the optimization of the
PI metrics (i.e. PICP and MPIW) in the ANN training cost function (refer to eq. (14)). This characteristic is more
desirable for practical applications where errors may not only arise from white noise.

For both numerical validation experiments, all estimated PIs (i.e. polynomial, bootstrap, and direct PI) appear to
struggle with containing either the measured targets or the variation in predictions when they struggle to fit the target
data, as seen for the moment models. This may be a consequence of the measurement data itself, which for the moment
models sees sparse excitations and a relatively high noise power. In contrast, when the underlying models are capable of
describing the data well, such as for the force models, the PIs estimated from the bootstrap and direct PI methods are
found to be numerically valid and reliable.

V. Conclusion

Through mock data obtained from a high-fidelity quadrotor simulation, both the bootstrap and quality-driven direct
PI estimation techniques for ANNs are shown to be numerically valid for identified quadrotor models, assuming that a
few constraints are satisfied.

The bootstrap method is found to be robust against noise and closely mirrors the performance of equivalent
polynomial PIs. As with the polynomial PIs, the bootstrap method relies heavily on the assumption that the prediction
errors are normally distributed. When this is not the case, the bootstrap estimated PIs fail to enclose the variation in
model predictions due to uncertainty in the inputs. Indeed, only when the prediction errors are normally distributed are
the bootstrap PIs found to be valid. Future research should therefore investigate the extent of this dependence by varying
the number of ensembles used for identifying the quadrotor model as this is directly related to the approximation of the
modelling uncertainty.

Contrarily, the quality-driven direct PI estimation method is found to be less sensitive to the assumption of normally
distributed errors and is capable of producing numerically valid PIs even when this assumption is not satisfied. However,
the quality-driven direct PI method is shown to be sensitive to the level of noise in the inputs. When the power of noise
is low relative to the interested dynamics, then the quality-driven direct PI estimation method successfully estimates
valid and reliable PIs. However, if the level noise is high, then the PIs fail to encompass the variation in the target data
but manage to encompass the variation in model predictions. Subsequently, the estimated PIs are invalid for high-noise
data. It is recommended that future work investigates the noise sensitivity of the direct PI method to determine clear
requirements for the identification data in order to obtain valid PIs.

Further recommendations include validating other ANN PI estimation techniques, such as the LUBE method, and
running more epochs for numerical validation to improve confidence in the results. Although difficult to do practically,
it is desirable to also validate these PI estimation techniques using real flight data in the future through repeated flights
of a quadrotor in a controlled environment. Nevertheless, the results of this paper show promise for the numerically
validated PI estimation techniques, and defines some rudimentary guidelines for ensuring their reliability.
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VI. Appendix

In this appendix, supplementary plots associated with the numerical validation of the estimated prediction intervals
are shown.

A. Input noise spectra for Num-Validation-Noise

In this subsection, supplementary plots regarding the power spectral densities of the noise contaminated input states
are shown to contextualize the noise level for Num-Validation-Noise. Here, random white noise is added N = 1000
times to a clean data set from the quadrotor simulation of Sun et al. [16].
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B. Input noise spectra for Num-Validation-Sim

In this subsection, supplementary plots regarding the power spectral densities of the noise contaminated input states
are shown to contextualize the noise level for Num-Validation-Sim. Here, N = 1000 noisy simulations of the same flight
trajectory are flown by a quadrotor in simulation of Sun et al. [16].
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Development of a system identification routine suitable for
modelling high-speed and aggressive quadrotor flight outdoors

J.J. van Beers * and Dr. ir. C.C. de Visser '
Delft University of Technology, 2629 HS Delft, The Netherlands

As research endeavours and commercial applications demand more of the quadrotor, it is
only natural to develop models which can facilitate this. Currently, analytical descriptions of
the quadrotor are rudimentary and most data-driven quadrotor models are identified from
flight data collected indoors. Therefore, existing quadrotor models are constrained to a narrow
region of the flight envelope due to the inherent restrictions imposed by these indoor spaces. In
contrast, the flexibility afforded by outdoor spaces facilitates the exploration of the majority of
the quadrotor’s flight envelope. To enable the development of high fidelity quadrotor models, a
modular system identification pipeline that is compatible with outdoor high-speed flight and
aggressive manoeuvring is created in the present work. Drawing inspiration from current
state-of-the-art quadrotor models, polynomial step-wise regression, artificial neural networks
(ANNs), and a hybrid approach fusing the merits of the two techniques are implemented in
the pipeline. Through this pipeline, for the first time, high fidelity quadrotor models which
accurately capture high-speed flight of up to 19 ms~! and aggressive manoeuvres such as punch-
outs, flips, and barrel rolls, are identified from real outdoor flight data despite the contamination
of unknown wind. As a proxy for reliability, the confidence of the identified models’ predictions
are encapsulated through accompanying prediction intervals (PIs). The subsequent validity
of the identified models is evaluated by injecting these models into a quadrotor simulation to
examine their responses to simple attitude step inputs. Indeed, the contamination of wind is
evident in the models’ simulated responses through non-zero constant force biases parallel
to the incident wind. Nonetheless, these simulations show promise for the developed system
identification pipeline given that the simulated models faithfully reproduce the forces and
moments observed in the measurement data when subject to similar attitude inputs. Contrary
to expectations, the simulations demonstrate that the polynomial model consistently produces
the most feasible and useful models. The dense architecture of the employed ANNs, including
those for the hybrid approach, appear to promote and propagate instabilities arising from the
wind contamination. The associated PIs are found to grow in tandem with these instabilities
and increasing uncertainty in the system, accentuating the utility of such PIs.
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I. Introduction
UADROTORS are highly autonomous and versatile yet simple, cheap, and easy to maintain [1, 2]. Accordingly, the
Qquadrotor platform is popular in both the commercial sector and as an outlet for research in the fields of robotics and
aerospace. Such extensive research into this platform has culminated in numerous advancements from demonstrations
of autonomous flight with aggressive manoeuvring [3—-6] to the recent extension of quadrotor models to the high speed
regime [7-11].

Peculiarly, the first principle model of the quadrotor, which sees frequent use in contemporary research, is invalid for
the majority of its operating flight envelope including high-speed flight and aggressive manoeuvring [12]. Research
conducted in these regions of the flight regime are often facilitated by high sensor update rates and the capabilities of the
employed controllers. It comes as no surprise, then, that a considerable body of literature is invested in developing more
compelling controllers and, conversely, research into quadrotor models sees scarce attention. For instance, quadrotors
which autonomously complete aggressive manoeuvres both indoors [3, 5] and outdoors [6] are often explicitly trained
on a specific set of manoeuvres and thus subsequent (learned) policies or controllers are incompatible with different
manoeuvres, even though the underlying dynamics may be the same. To this end, current autonomous aggressive flight
is rather inflexible and restrictive.

Instead, through high fidelity quadrotor aerodynamic models, controllers may exploit knowledge of the dynamics
during aggressive manoeuvring to maintain and even enhance performance across a larger domain of the flight envelope
[11]. In fact, many controllers - including sensor-based controllers such as INDI [13] - depend in some way on accurate
quadrotor models. As observed by Molenkamp et al. [4], significant discrepancies between the quadrotor internal model
and true system often leads to crashes, especially during aggressive manoeuvring. Furthermore, accurate models of the
quadrotor may be deployed in simulation not only to safely prototype new controller schemes, but also as a training
environment for hobbyist or professional pilots. Therefore, high fidelity models of the quadrotor only seek to extend the
capabilities and safety of the quadrotor.

Since existing analytical models are limited in their capacity to describe the complex aerodynamic phenomena
prevalent in much of the quadrotor’s flight envelope, many turn to data-driven system identification techniques to obtain
high fidelity quadrotor models. For instance, Sun et al. [7, 8, 10] have repeatedly demonstrated the success of using
stepwise polynomial regression to identify high-speed *gray-box’ quadrotor models from a set of candidate regressors.
The term ’gray-box’ stems from the fact that the resultant polynomial structures, and the order in which regressors are
selected, provide insight into what (combinations of) states are significant for the underlying dynamics. However, the
candidate regressors themselves may not all necessarily represent anything physically which obscures such physical
interpretations. Moreover, artificial neural networks (ANNs) have also been shown to improve upon quadrotor model
accuracy [11, 14-16] by virtue of their generalizability [14] and aptitude for capturing unknown non-linearities [17, 18].
However, as a black-box modelling technique, it is ambiguous as to how exactly the inputs interact to produce the model
outputs. Indeed, some literature (e.g. [19, 20]) discusses methods for assessing input importance for ANNs in which
parallels to input sensitivity analyses may be drawn. For example, the 'input weight’ method which associates the
relative importance of a given (normalized) input with the corresponding connection weight [19].

Currently, a substantial amount of quadrotor aerodynamic models are developed using data collected indoors (e.g.
[8, 10, 11, 21]), in conditions devoid of external (potentially non-stationary) disturbances, and where accurate external
motion capturing systems are available to aid state estimation. Such luxuries are absent in outdoor applications, where
the majority of commercial quadrotors operate. Even the high-speed models of Sun et al. [8] were identified from flights
conducted in a wind-tunnel, also equipped with an external motion capturing system, and therefore do not consider the
effects of out-of-plane disturbances (e.g. gusts) during high-speed flight. Moreover, indoor spaces impose restrictions
on the achievable speeds and manoeuvres of the quadrotor. For instance, sudden bursts of thrust (known as ’punches’™
or “punch out’ for purely vertical motion) are difficult - if not impossible - to conduct indoors. Consequently, much of
the quadrotor’s flight envelope remains unmodelled.

It is clear that the development of high fidelity quadrotor aerodynamic models may be expediated through the
transition to outdoor flight. However, the challenge with identifying such models in outdoor applications lies in the
determination of the velocity of the quadrotor solely from on-board sensors compounded with modelling non-stationary
effects while rejecting disturbances introduced into the system by the environment. Though airspeed sensors, such as
the Mateksys ASPD-4525", do exist they have yet to be validated on a quadrotor. Currently, velocity information is
most readily accessible from a GPS-module. However, such velocity estimates are infrequent* and only measure the

*For an example, see manoeuvres starting at 15:50 here: https://www.youtube.com/watch?v=Ia2N9fep84w
See: http://www.mateksys.com/?portfolio=aspd-4525
¥Exact update rates vary depending on the module used, but for common sensors such as the TBS M8.2, this is around 1 — 10 Hz.
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ground speed of the quadrotor whereas the dynamics which influence the quadrotor depend on the air speed. Moreover,
non-stationary effects are ideally accounted for by an online, or otherwise adaptive, system identification routine.

However, before a functional online system identification routine may be realized many conceptual and practical
issues first need to be ironed out, including the successful (offline) identification of outdoor quadrotor models which are
suitable for high-speed and aggressive flight. Accordingly, a system identification pipeline is developed in this paper
to facilitate such outdoor model identification. Indeed, it is unknown what system identification techniques are even
suitable for outdoor modelling. Therefore, the computational complexity of the algorithms is of minor importance
at this stage as the main focus is on determining suitable techniques for outdoor model identification. Hence, given
the abundance of potential system identification methods, the developed system identification pipeline is designed
to be modular. To illustrate this functionality, three different system identification methods are deployed for model
identification. Given the modelling successes of both the step-wise regression algorithm [8] and ANNs [11, 16], both
of these techniques are employed here for comparison. The final approach implemented in the pipeline fuses the two
techniques in the so-called hybrid approach, which is novel to this paper.

However, these techniques alone do not provide any insight on the reliability of their subsequent predictions.
Ensuring safety and reliability are paramount to the accepted use of autonomous quadrotors, especially for outdoor
operations. Therefore, the models identified in this paper are accompanied by prediction intervals (PIs) which provide
insight into the associated reliability of a models’ prediction. For the polynomial models, there exist analytical
formulations for obtaining these PIs. While this is not the case for ANN models, recent work has numerically validated
a few ANN PI estimation techniques for ANN quadrotor models (see Part I: On prediction intervals). Among these,
the quality-driven direct PI method is chosen [22] as it does not rely on the assumption that the prediction errors are
normally distributed, which may be the case for outdoor flight (e.g. due to the presence of wind). While this method is
sensitive to noise, the identification data used here is not heavily contaminated with noise.

The models themselves are identified on real flight data gathered both indoors and outdoors, using various quadrotor
platforms. To limit the scope of this paper, only one quadrotor platform - the MetalBeetle - is discussed in depth here
since it is suitable for outdoor flight. In these outdoor flights, the MetalBeetle achieves velocities of up to 19 ms~!.
Indeed, while the models’ performance may be evaluated with respect to their ability to reproduce the aerodynamic
forces and moments, it does not alone illustrate how useful the identified models actually are. Therefore, the identified
models are injected into a quadrotor simulation to evaluate their utility and the feasibility of their responses to common
inputs, such as a step attitude command. Literature on quadrotor model identification often only assess the model
accuracy and neglect this additional step. As will be shown here, the simulation results provide additional insight into
the utility of the identified models.

Therefore, the contributions of this research include (i) the development of a modular system identification pipeline
suitable for the identification of outdoor quadrotor models including high-speed and aggressive flight (ii) a novel hybrid
approach fusing the merits of the polynomial and ANN system identification techniques (iii) a simulation environment
in which the identified models’ utility may be evaluated.

Before any of these contributions are presented, a first principle model of the quadrotor is introduced with subsequent
analytical extensions from literature in section II. These analytical models serve as inspiration for the construction of
model input variables and regressors. A brief overview of the MetalBeetle is also given in this section. Subsequently,
the implemented system identification methods (i.e. polynomial step-wise regression, ANN, and hybrid) and pipeline
itself are summarized in section III. The approaches to data collection and processing are explained in section I'V.
Subsequently, section V presents the results of the model identification of the MetalBeetle while section VI describes
the model structures, potential sensitivities, and presents the simulation results.

I1. Fundamentals of the quadrotor platform
Preliminary first principle and analytical models of the quadrotor, whose structures motivate the subsequent selection
of model input variables, are presented in this section. To facilitate this description, the employed reference frames are
defined first. This section concludes wit the quadrotor platforms used for both indoor and outdoor flight data collection
are also summarized here.

A. Quadrotor reference frames

Before discussion models of the quadrotor itself, two reference frames are first defined in order to describe the
motion of the quadrotor in space. Subsequent models are then derived in the context of these reference frames. The
inertial reference frame, denoted by {E} = {Og, xg, yE, z£}, s fixed to a point on the ground and is oriented using
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the north-east-down (NED) configuration. To describe the orientation of the drone with respect to the inertial frame,
the body reference frame, {B} = {Op,xp,yB, 25}, is defined and is fixed to the quadrotor body with origin, Op, at
its center of gravity, xp pointing forwards, yp to the right, and zp aligned with gravity when the drone is hovering as
illustrated in fig. 1. The superscript B in AZ indicates that the entity A is expressed in the body frame, { B} and a lack of
superscript specifies that A is expressed in the inertial frame, {E}, unless stated otherwise. The body frame can be
related to the inertial frame through the euler angles: ¢ (roll), 8 (pitch), and ¥ (yaw).

Fig. 1 Illustration of the generic quadrotor in the breaststroke configuration, whereby rotor one is rotating
counterclockwise, denoted by w. Depicted is the body reference frame, B, with origin, O p, at the quadrotor’s
center of gravity (c.g.). Also shown are geometric parameters » and ¢, which respectively represent the yz and
xp distances from the rotor centers of rotation to the c.g. of the quadrotor.

B. Simple model of the quadrotor
T T
Let the position of the quadrotor in the inertial frame be given by € = [x y z] and velocity by V = [u v w]
Assuming that the quadrotor is a rigid body, a simple model of the quadrotor can be derived by following Newton’s laws

of motion. The resultant force and moment equations of motion are given by eq. (1) and eq. (2) respectively.

mV = mg + RppF? (D

LO% + 08 x 1,08 = M5 2)

In these equations, m denotes the mass of the quadrotor and I, gives its moment of inertia. The gravity vector
along zf is given by g. The resultant force acting on the quadrotor, F2, is a sum of the control forces exerted by
the rotors and the aerodynamic forces acting on the quadrotor. Since these forces act on the quadrotor itself, they
need to be transformed into the inertial reference frame for which Rg p represents the corresponding rotation matrix.
Consequently, eq. (1) is defined in the inertial frame. Equivalently, the force equation may be expressed in {B} through
eq. (3) where Rgg denotes the rotational matrix from {E} to {B}. The rotational rates of the quadrotor are given by

QB = [ P q r] and are expressed in the body frame. As such, the total moment acting on the quadrotor, M2, is also

defined in the body frame and is comprised of the control moments, aerodynamic moments, and gyroscopic moments
(due to the rotation of the rotors).

m (VB + OB xVB) = Rgemg + FP 3)

Note that V5 (and equivalently V) represents the relative airspeed of the quadrotor, and therefore depends on the
wind speed, Vw. Much of the research into quadrotor dynamics and control is conducted under windless conditions
(see, for instance, [3, 9, 23-25]). While this is perhaps suitable for indoor applications (such as drone racing), ignoring
wind is problematic for outdoor applications where such effects are typically non-negligible (such as off-shore wind
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turbine inspection). Assuming that the instantaneous wind vector is known in {E'}, the airspeed of the quadrotor can be
expressed through eq. (4) [8]. Here, Vg denotes the ground speed of the quadrotor.

V=V¢-Vw “

In a conventional quadrotor, the control forces and moments can be manipulated by controlling the thrust of
individual rotors. A simple model of the total thrust generated by the rotors is given by eq. (5) where w; denotes the
angular velocity of the i rotor” and «q is a constant for the quadrotor which represents properties of the rotor and air
density [7, 26, 27]. kg is typically identified through measurements of the hovering quadrotor in windless conditions
where aerodynamic effects are considered negligible [27]. Note that, per the definition of the body reference frame, the
thrust, 7', acts along the negative zp direction.

T=xo ) o} (5)

The rolling, pitching, and yawing control moments are given by egs. (6) to (8) respectively where Sg = —1, 1 denotes
the rotation direction of rotor 1. A counterclockwise rotation is denoted by —1 and clockwise rotation is represented
by 1. Thus, following the diagram of fig. 1, Sg = —1. Note that the definitions of the control moments vary between
different quadrotor configurations, depending on their rotor numbering and rotation configurations.

Up = (w1 +ws) — (w2 + w3) (6)
Uy = (w1 +w2) — (w3 + w4) @)
Uy = Sg [(w1 +w3) = (w2 + w4)] (®)

The magnitudes of the control moments exerted by the quadrotor depends on its geometry (i.e. arm length to the
quadrotor’s center of gravity), the thrust coefficient, o, (for U, and U,) and the rotor torque coefficient, 7y (for U,.).
Following fig. 1, the arm lengths are b (along the yp axis) and £ (along the xp axis). As with kg, 7o may be identified
during hover under windless conditions. Thus, a simple moment model may be obtained through

bkoUp
M2 = | txoU,
ToU;\

C. Analytical extensions to the quadrotor model

The simple quadrotor model does not desrcibe how the different quadrotor states, and the interactions therein,
influence the aerodynamic forces experienced during flight. As such, analytical extensions to this simple model have
been developed in literature to detail some of the components which constitute the resultant aerodynamic force.

1. Thrust variation

One of the prominent aerodynamic effects ubiquitous at higher velocities is the increased dependence of thrust - and
therefore altitude control - on the relative velocity between the rotor and surrounding air, V (see eq. (4)), and the angle
of attack of the rotor disks, a, [2, 28]. For simplicity, it is often assumed that the rotor disk plane is in line with the
xp — yp plane.

Air gains additional energy, through an increased velocity, as it passes through the rotor. Let this additional velocity
be the induced velocity, v;,. The thrust of the quadrotor, at arbitrary a,, can be found using momentum theory and is
summarized by eq. (9) [27].

T = ZpAvm\/V2 + 2V sin(a; ) vip + v?n 9)

It is assumed that the rotors are perfectly flush with the xg-yp plane. Therefore, the angular rate of the rotor is only about the zg-axis. Note
that this is a simplification and, in reality, imperfections in the manufacturing and assembly will cause slight deviations. However, the majority of the
angular rate will be around the zp-axis for conventional designs and thus the out-of-axis thrust produced is negligible.
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Around hover conditions (i.e. @, ~ 7 and V = 0), eq. (9) may be rearranged to compute the induced velocity during
hover, v, through eq. (10) and can be obtained experimentally.

’ T
Vh = 2p_A (10)

Outside of hover conditions, however, the thrust variance effect comes into play [7] and the additional thrust, T,
generated by the rotors can be defined as the actual thrust subtracted by the thrust during hover, 77, as shown in eq. (11).

T, =T-T, (11)

However, to resolve this additional thrust, the induced velocity, v;,, needs to be known. Blade element theory
may be used to derive another equation for the thrust relating this induced velocity to the total thrust. Equation (12)
represents the thrust derived from blade element theory [27, 29]. It is important to emphasize that eq. (12) is ill-suited
for conditions where the quadrotor is close to horizontal surfaces (e.g. roof or ground) since it neglects the ground effect.

4
_ pabe i wiR? O, V2 cos?(a,)6, .\ Vsin(a,) + vin (12)
2 3 22‘}:1 w?RZ 22;‘.:1 w;R

In eq. (12), a represents the lift curve slope of the rotor, b the number of blades, R denotes the radius of the rotor, ¢
the blade chord, and 6, the pitch of the rotor blade. In the underlying helicopter literature [29], it is assumed that the
chord, c, is constant. This assumption is subsequently carried over into quadrotor literature by Powers et al. [27] who
further simplify the blade geometry by assuming fixed pitch blades, contributing to some of the observed modelling
errors in [27]. Furthermore, due to their roots in helicopter literature, both eq. (9) and eq. (12) fail to consider interaction
effects between rotors and also lead to modelling errors.

In eq. (12), the parameters a, b, ¢, R, and 6, are constant for a quadrotor [7]. Therefore, these terms can be lumped
into constant coeflicients and eq. (12) can be rewritten as:

4 4
T =k Z w? +k2V2 cos? () + k3 (Vsin(a,) + vin) Z wj (13)
=1 =

In near hovering conditions, eq. (13) simplifies to eq. (14).

4 4
Thzklzw§+/<3vh2wj (14)
Jj=1 Jj=1

Substituting eq. (13) and eq. (14) into eq. (11) and rearranging for the additional thrust, 7, yields

4
T, = kaV2 cos?(ay) + k3 [Vsin(ay) + (vin — va)] Z wj (15)
J=1
Therefore, the true induced velocity, v;,, can be computed using eq. (16) [2, 28] which can subsequently be used to
obtain the thrust variance.

2
v
Vin = 2 (16)
\/(V cos ;) + (vin — Vsina,)?

Note, however, the presence of the induced velocity, v;;,, on both sides of eq. (16). Therefore, for an arbitrary o, and
relative velocity, V, eq. (16) is now a fourth order polynomial with respect to the induced velocity, v;j,.

Solving the resultant quadratic expression, for hovering conditions, leads to a solution given by eq. (17) [7, 27].
Note that this solution is analogous to the simplified thrust model extensively used in existing literature and therefore
highlights the limitations of the simplified model. Namely, that it is only valid in near-hover conditions (i.e. V =~ 0 and
a = ).
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4
T = k4 Z w% (17
J=1

While developing their high-speed models, Sun et al. [7] found that the simple pitching moment model (i.e. eq. (7))
is inadequate for describing the pitching moment during forward flight. It is suspected that the thrust variance effect
also induces a moment variance, which is seldom discussed and analyzed in literature.

2. Blade flapping

Another well documented aerodynamic effect, which is significant for the attitude control of the quadrotor, is the
phenomena of blade flapping [2, 28, 30, 31]. During translational flight, the advancing blade (i.e. the blade moving
towards the direction of motion) sees a higher relative velocity than the retreating blade (i.e. the blade moving away
from the direction of motion) [2] stimulating an imbalance in lift across the rotor plane. The net result is the tilting of
the resultant thrust vector away from the direction of motion and an induced moment on the drone if the effective rotor
plane is offset with respect to gravity [2, 28]. Moreover, the thrust imbalance across the rotor blades also provokes an
asymmetry in the induced drag of the rotor (along the xp — yp plane) which is otherwise cancelled out during hover
(assuming windless conditions). Therefore, due to the rigidity and flapping of the blades, there is also a net horizontal
drag force acting on the quadrotor which may be significant for small quadrotors [31]. In addition, as the propellers for
most quadrotors are fixed at the rotor hub, the flapping of the propeller blades causes a moment about the rotor hub. All
of these additional forces and moments have implications for the attitude control of the quadrotor.

Fortunately, a lumped sum model has been formulated from helicopter literature to (approximately) account for
these effects [7, 31]. For general translational motion, a simplified relation describing the flapping angle is given by
eq. (18) where B4, and ﬁ;-'lup are the steady-state flapping angles of the rotor plane to the relative velocity along and
perpendicular to the direction of movement respectively [31].

_ _ HAic

ﬁflap = l—%yz
(18)

L _ _ HAis

Bfrap = ~1+1,

In eq. (18), u denotes the advance ratio which is defined as the ratio of the horizontal velocity of the rotor to the
linear velocity of the rotor tip (see eq. (19); R gives the radius of the rotor) while A;. and A, are positive constants
[31]. Note that eq. (18) is derived using the virtual hinge model, which is described and experimentally verified for a
quadrotor in [2]. A virtual hinge model is necessary since the flapping angle equations used in traditional helicopter
literature assume that the rotor blades are hinged at the rotor hub, which is typically not the case. This assumption results
in an over-prediction of the true flapping angle of the rotor plane [2]. Instead, to more accurately model the flapping
angle, Hoffman et al. [2] propose that an effective (i.e. virtual) hinge point somewhere along the blade’s length be used
instead, enabling the continued use of the hinged model developed in helicopter literature. However, as highlighted by
Mahony et al. [31], this virtual hinge model results in a phase shift between the sine and cosine components, which is
captured in the constants A, and A;s. In any case, these modifications only emphasize the limitations of adapting
models developed in helicopter literature and the lack of (and thus, need for) native models in quadrotor literature.

VB +vE?
wBR

If the stiffness of the rotor is assumed to be similar to a torsional spring, then the induced drag can be modelled as
directly proportional to the flapping angle [31]. This approximation is suitable for describing the first bending mode of
the rotor and the small flapping angles involved [2]. Note that pioneering literature often assumes a linear relationship
between the quadrotor velocity and the induced drag terms. Such a relationship has been shown experimentally to hold
for low-speed conditions [2, 30, 31]. However, it is unclear if this relation holds at higher velocities.

As aforementioned, there are two moments which arise due to the flapping of the rotor blades. The first is a moment,
M¢iap,,,» generated by longitudinal component of the offset thrust, T¢;4p,,,,, due to the tilting of the rotor plane. The
second is the moment generated around the motor hub due to the stiffness, « ;. ,, of the rotor blades. These moments
are given by eq. (20) and eq. (21) respectively [2, 28]. Both of these moments are a function of the blade flapping angle,
Briap- Ineq. (20), [, denotes the offset between the rotor plane and the quadrotor center of gravity (c.g.).

p= (19)
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MfBlaplnn = Tflapl,,,, sin(Bfiap)leg (20)

M = KfiapBfiap 1)

It is typically assumed that the advance ratio for the quadrotor is small [31] and thus the higher order terms associated
with the advance ratio, u, in eq. (18) are often ignored. However, this assumption only holds if the translational (i.e.
body) velocity of the quadrotor is much smaller than the linear velocity at the rotor tips. While this may be suitable for
low-speed indoor flight, it is not the case for high-speed outdoor flight. Much remains unknown regarding the effects of
blade flapping at higher velocities and during aggressive manoeuvring. Nonetheless, it is appears as though (powers of)
the advance ratio and body velocities play an integral role for both the forces and moments experienced by the quadrotor.

D. Employed quadrotor platform: The MetalBeetle

The MetalBeetle, shown in fig. 2, is built in-house and is composed of commercially available parts. This quadrotor
is moderately sized with a distance of about 155 mm between the diagonally opposing rotor hubs. BetaFlight is elected
as the flight controller for the MetalBeetle. The motivation behind using BetaFlight lies in the fact that outdoor flight
data was obtained through manual, piloted, flight and these controllers are open source and well-received by the FPV
community. Manual flight is needed to be able to facilitate the high-speed and aggressive flight desired for outdoor
model identification in a safe manner. Manual flight also allows for more flexibility in permissible flight conditions and
achievable manoeuvres. However, this inherently stimulates variability between flights, challenging the repeatability
of manoeuvres and complicating validation process for the models. With a compatible board, another advantage of
BetaFlight is its on-board data-logging capabilities. This is especially useful for recording the quadrotor’s rotor speeds.

The rotor speeds themselves are measured by the ESC (electronic speed controller). Note that the ESC does not
measure the rotor’s RPM directly, but rather a proxy of this through the revolutions of the magnetic poles of the rotor
hub and is known as the eRPM (electronic RPM). The true RPM may be derived from the e RPM by multiplying the
number of poles by the eRPM value. Hence, the eRPM is essentially a scaled down version of the RPM.

aneracdeerie

Fig.2 Top, front and perspective views of the MetalBeetle quadrotor. In these images, the MetalBeetle is shown
with the OptiTrack IR marker rig (only used for indoor flights, see section VIIL.D) strapped above its battery.
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The IMU of the MetalBeetle is an MPU6000 composed of a 3-axis accelerometer and gyroscope. This sensor
therefore accounts for the estimation of the MetalBeetle’s attitude, body rotational rate, and acceleration. The MPU6000
is commonly used sensor in many FPV quadrotor builds but is now (from 2017 on-wards) been marked NR/ND (i.e. not
recommended for new designs) due to the availability of better sensors. For outdoor flights, the MetalBeetle relies on
a TBS M8.2 GPS module to obtain velocity state information with a rated refresh rate of between 1 — 10 Hz. This
GPS-module also sees frequent use in quadrotor builds®.

The MetalBeetle is powered by a 4S 850 mAh Tattu LiPO battery. The 4S indicates that there are four battery
cells with a capacity of 850 mAh. In general, a higher cell count (i.e. S-count) equips the quadrotor with more power,
and thus allows it to fly more aggressively. While different cell counts may be used with the MetalBeetle, all flights
conducted for the purposes of this thesis involve only the 4S configuration. The moment of inertia and mass of the
MetalBeetle are summarized in table 1. The moment of inertia was obtained through measurements from a Trifilar
Pendulum with the propellers removed.

Table 1 Properties of the MetalBeetle

Quadrotor Model Mass [¢] Moment of Inertia [kg - m?]

Ixx Iyy IZZ
MetalBeetle 393 9,67E-04 1,02E-03 1,60E-03

I11. System identification methods

Following from the analytical models of quadrotor, and additional observations made from flight data, the fundamental
states which compose the quadrotor models are first motivated here. Subsequently, a normalization scheme based on
that of Sun et al. [8] for these states is proposed, with some modifications made to improve identification performance.
Also given in this section is a brief summary of the principles behind the selected system identification techniques:
polynomial stepwise regression and artificial neural networks (ANNs). The novel hybrid approach which combines
the merits of both techniques is also proposed. For each of the chosen system identification techniques, the input
variables (e.g. fixed and candidate regressors for step-wise regression) are also described and motivated to conclude their
respective sections. Each of the system identification methods are also accompanied by prediction intervals following
the procedure outlined in Part I: On prediction intervals. Finally, a concise overview of the system identification
pipeline is presented.

A. Constituent states for model identification

Having outlined some fundamental and analytical models of the quadrotor, a state vector encompassing the essential
modelling states may be derived. From the first principle force model of the quadrotor (i.e. eq. (3)), it is evident
that the body velocities, V = [u, v, w]T, and the body rotational rates, Q = [p, g, r]” are essential for describing the
fundamental dynamics of the quadrotor.

Literature on thrust variation suggests that the induced velocity, v;,, angle of attack of the rotor blades, a,, and
the individual rotor speeds, w, are also integral components which influence quadrotor’s dynamics. While v;;, can
be obtained through eq. (16), the rotor’s angle of attack is not available directly from the sensors available on the
employed quadrotors. Instead, it may be related to the attitude of the quadrotor, [¢, 6, ¥]”, namely, the pitch, 6, and
roll, ¢, of the quadrotor. Therefore, the quadrotor’s attitude should be included in the quadrotor models. Note that,
while the yaw angle does not directly influence the angle of attack of the rotor blades, it may nonetheless be informative
for subsequent models and can be indicative of wind contamination in outdoor flight. Likewise, it may be useful for
capturing non-stationary effects related to - for example - the average direction of wind for online applications. However,
such an endeavour is out of the scope of this paper but is nevertheless a future objective.

To aid the model selection process, the quadrotor attitudes are represented by their trigonometric identities (i.e. sin ()
and cos ()) to accommodate their periodic nature. This also bounds, and effectively normalizes, the attitude. Likewise,

§$Note that indoor flights of the MetalBeetle are also conducted in this research as a comparative model, the results of which may be found in
section VIIL.D. For these indoor flights, an external motion capturing system, OptiTrack, is used to estimate the MetalBeetle’s velocity by monitoring
IR markers attached to the quadrotor (see fig. 2).
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the individual rotor speeds are represented by the total rotor speed (see eq. (22)) seeing as the measured accelerations
are a cumulative effect of the individual rotor speeds. This also simplifies the model structures and mitigates over-fitting.

4
Wiot = ), @i (22)
i=1

However, the differences in thrust between rotors are nonetheless useful and informative for model identification,
especially for the moment models. Therefore, the control moments, [U - Uqg, Ur]T (see egs. (6) to (8)), are included to
represent the thrust differentials between the rotors. While these are especially important for the moment models, they
may also anticipate forces.

Furthermore, the effects of blade flapping reveal the importance of including the advance ratio terms, u =
[,ux, Hy, ,uz] T, in addition to the velocities. The advance ratio may be defined along each axis as described by eq. (23)
[8]. While not explicitly described in the prevailing literature, flight observations and initial modelling revealed
that the advance ratio of the induced velocity, u,,,, given by eq. (24), is also an influential parameter for modelling.
Consequently, it is also included in the model variable candidates.

— u — v — w
M= TeLer 0 WS T er M T IR @)
Vin
How = Tor— (24)
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In summary, the fundamental variables used for the identification of the quadrotor models are given by eq. (25).

X = U, v, W, Vin, P, 4.7, Wror, Sin §, 08 ¢, sin 6, cos 0, sin g, cos ¥, Uy, Ug, Uy, fh, fys Kz, vy, | (25)

B. Normalization of quadrotor states

It is commonplace in aerospace literature to normalize the states of a system for modelling to facilitate a comparison
between different platforms and to ensure that identified models remain valid across different conditions, such as
changing air density. Sun et al. [8] propose a novel non-dimensionalization routine for quadrotors, under the assumption
that the aerodynamic forces and moments are mainly generated by the rotor system. Indeed, it is difficult to quantify the
rotor-local aerodynamic effects since the measured states account for their cumulative effect. Therefore, to represent this
combined effect, the average rotor speed is used as the dimensionalizing velocity and is defined in eq. (26), for a given
data sample.

Z?:l Wi
4

The individual rotor speeds can then be normalized with respect to this averaged rotor speed through eq. (27). Note
that a singularity occurs when all rotors are stopped, which is true when the quadrotors are disarmed. Fortunately,
the “air mode’ of BetaFlight maintains an idle thrust while the quadrotor is armed, thereby preventing this singularity.
However, the magnitude of this normalized force is disproportionally large for the period where the rotors spin-up to
their idle (or hovering) states. Moreover, during some manoeuvres, the rotor speeds occasionally drop below this ’idle’
thrust bound resulting in high magnitude normalized terms. Therefore, a lower-bound, @ > w;prE, is imposed on the
the averaged rotor speed where w;py r corresponds to the idle (or minimum eRPMY) rotor speed.

w =

(26)

- Wi
w; = —
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Since the total rotor speed is used as an aggregate state (recall eq. (25)) of the individual rotor speeds, Sun et al.
[8] propose a normalization of this entity through the average rotor speed, &@. However, this normalization scheme
forfeits information pertaining to the current thrust level. As such, the same value of @, is obtained for minimum and
maximum thrust, and indeed for any case where the thrust level across all rotors is equal. This is undesirable since

Recall that the quadrotor ESCs do not measure the rotor speed directly, but rather a proxy in the form of the electronic RPM (eRPM) which
defines the number of revolutions of the poles of the rotor hub.
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the dynamics between these cases may differ considerably. Instead, here, the total rotor speed is normalized by the
maximum rotor speed, wpsax, as shown in eq. (28).

4
Zi=1 Wi

WMAX

Wror = (28)

In accordance with the normalization scheme of Sun et al. [8], the normalized variants of the rolling, pitching, and
yawing control moments may be computed using the normalized individual rotor speeds through eq. (29), eq. (30), and
eq. (31) respectively.

Up = (&) + @4) — (2 + @3) (29)
Uy = (01 + @) — (@3 + 0y) (30)
Uy = Sg [(@01 + @3) — (@2 + @4) ] (31

The advance ratio is, by definition, scaled by the rotor speed. Hence, the normalized advance ratios along each axis
may be defined as
ﬂx:# > ﬂy:ﬁ > ,uz:% (32)
However, should the body velocities be normalized using the averaged rotor speed, they would effectively mirror the
advance ratios. Therefore, the body velocities are instead normalized by their combined magnitude as shown in eq. (33).
A singularity occurs while the quadrotor is stationary in space, which includes the hovering condition or a change of
direction. To mitigate this, the offending velocities are simply replaced by zero. Practically, this is done through a
lowerbound imposed on the normalizing factor such that max(Vu? +v2 + w2,0.01) is enforced during normalization.
Subsequently, the corresponding values for which Vu?2 + vZ + w2 < 0.01 are replaced by zero.

- u = vV - w
i = —— V= ———= W= — 33
Vi2evZew? ViZevZew? VuZv24w? (33)

The advance ratio of induced velocity and induced velocity itself may likewise be normalized through eq. (34) and
eq. (35) respectively.

Vin

in=—x 34
Hvin = =5 (34)
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Following the procedure of Sun et al. [8], the body angular velocities may be normalized through eq. (36).
- b _ b _
I TR 36

Finally, the normalized forces and moments can be obtained through eq. (37) and eq. (38) respectively, where p
represents the the air density and R the radius of the rotors. Ineq. (37), Cr = [C v, Cy,C z] 4 denotes the normalized forces
and F = [Fx, Fy, FZ]T gives the dimensional forces along the body axes. Likewise, in eq. (38), Cps = [Cy, Cpys C,,]T
denotes the normalized moments, M = [Mx, My, MZ]T gives the dimensional moments about the body axes, and b

relates to the quadrotor’s geometry and size. Given the symmetry of most quadrotors (including those used in this paper),
the moment arm length along the x or yp axes may be used to represent this quantity. Here, the arm along yp is taken.

F
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Cuv = bp(47R2)(R®)? (38)
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C. Polynomial models for quadrotor system identification

One of the merits of using polynomial based models is that they are simple to apply and interpret [8]. Polynomial
models are ‘trained’ through regression, typically in the form of eq. (39) where z € R denotes the target measurement
data of length N. The matrix A represents arbitrary combinations (e.g. power series) of the independent variables (in
this case, the quadrotor states) wherein the first column is a constant vector representing the bias vector. The parameters
of the model (i.e. the polynomial coefficients) are denoted by ®. Therefore, A® represents the predictions of the model.
The residuals between these predictions and the measurement data is denoted by €.

=A@ +¢€ (39)

For systems which are linear in the parameters, the optimal model parameters, ®, which minimize the error residuals
in eq. (39) can be estimated through ordinary least squares (eq. (40)).

6 =(ATA)'AT; (40)

It is clear from eq. (39) that the model performance depends on the choice of the regressor matrix, A. The complexity

of A is a function of the chosen regressors and the number of thereof. Increasing the complexity of A may lead to

lower model residuals at the risk of over-fitting and cost of increased computation load. Conversely, a simple regressor

matrix may fail to adequately capture the more nuanced dynamics. This therefore raises the question of how to choose a
suitable model structure.

1. The stepwise regression algorithm

Prior knowledge can be applied to determine both the (base) structure and set of candidate regressors of the
polynomial, facilitating a so-called ’gray-box’ approach to modelling [8]. Regressors from this candidate set may be
added to the polynomial model based on their fit with the target data. One such frequently employed in aerospace
literature [32, 33] to select these regressors for aircraft models is known as step-wise regression. Sun et al. [7] have
successfully used stepwise regression to derive the polynomial model structures from a given set of candidate regressors
for the quadrotor platform.

The principle behind this approach is to, in the forward step, select a regressor from the candidate pool which leads
to the greatest improvement in model accuracy. Subsequently, in the backward step, the quality of the current selected
regressors is reassessed by evaluating the performance of the model with each of the regressors removed. The goal is to
identify any regressors which may have become superfluous due to (combinations) of the remaining regressors in the
model and remove them. The algorithm terminates once the regressor that was removed in the backward step is the
same as that added in the forward step, otherwise the forward step commences again and the process repeats itself.

The stepwise regression is traditionally initialized with eq. (39) and A = [1,..., 1]7. Note that, if there are *fixed’
regressors (i.e. regressors which will always be included in the polynomial model), these will also form a part of the
initial A matrix in columns succeeding the bias vector. Candidate regressors are then added to the model based on their
correlation with the measured targets, z, after orthogonalizing them with respect to the current model regressors in order
to capture variations in the measurement data which are otherwise absent in the current model (i.e. absent in A) [32].
The adjustment is performed as follows [32]:

1) The candidate regressors in the pool are adjusted to orthogonalize them with respect to the regressors already in

A. This is accomplished through eq. (41) where ¢ represents the current regressor.
2) The measurement data, z, are likewise modified using eq. (42) to account for the adjustments of the candidate
regressors in the previous step. Note that A is the same in both eq. (41) and eq. (42)

€:; =&, -AATA)ATg, (41)

€. =2 - AATA)'ATz; (42)

Following this adjustment, the correlation of the (adjusted) candidate regressors with the (modified) measurement
points can be assessed for each regressor using eq. (43) [32]. The goal is to determine which candidate regressor best
explains the remaining variance in the measurements.
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The (unmodified) regressor corresponding to the highest absolute correlation is selected for addition to the model,
should this regressor result in a significant improvement to the model itself. The significance of a regressor’s contribution
is assessed through a F-statistic and is given by eq. (44) whereby F denotes the test statistic and Fj is the user-defined
cutoff based on a significance level, @, of the test statistic (i.e. F;y = F(a; 1, N — p — 1)) [32]. For aircraft systems,
it is often the case that the number of data points is large (N > 100) and current number of model regressors small
(p < 10), thus, N > p implying that the effect of p on Fjy is negligible. Therefore, Fy is assumed to be constant and
is commonly set to Fyn = 4 [32].

_ SSr(®,.)) — SSr(O)) .
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)

Fin (44)
In eq. (44), (:)p gives the model parameters without the added regressor, £ ;, while (:)p+ ; represents the model
parameters with the addition of £ ;. In both cases, the parameters can be estimated through OLS using eq. (40). SSgr (©))

denotes the regression sum of squares and is defined in eq. (45) where N gives the number of measurement points and Z
the mean measurement value [32].

SSr(0) =0 ATz - NZ (45)

s? denotes the fit error variance and is defined by eq. (46) with p denoting the current number of regressors in the
model and §; the prediction of point i (refer to eq. (47)) [32]. If the condition F > Fyp is satisfied, then the regressor

& is added to the model.

N (. _o)2
2Ls2o 2,':1 (zi = 9i) (46)
N-p-1
§=A0 (47)

Following the addition of a regressor & ;, all model regressors are examined for redundancy [32]. It is important to
note that, during this check, the regressors are not adjusted and therefore remain in their original form. For p model
regressors, the quality of each regressor, &, is evaluated through the test statistic defined in eq. (48) where 0 p—k denotes
the parameters corresponding to a model with all p regressors except &; [32].

_ SSR((:)p) - SSR((:)p—k)

2 (48)
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Should any of the regressors satisfy the condition Fy x < Foyr where Foyr is another user-specified threshold,
then regressor with the lowest Fy x is removed from the model. As with Fjp, typically Foyr = 4 [7, 32]. Should
& = & (i.e. should the removed regressor be the same as the just added regressor) then the algorithm terminates. If
this is not the case, then the algorithm continues adding (and removing redundant) regressors until the termination
condition is met.

However, this termination condition does not consider the over-fitting of the model to the measurement data, z
[7, 32]. Therefore, additional stopping conditions may be implemented to mitigate this effect. For example, Sun et al.
[7] make use of the Predict Square Error (PSE), given by eq. (49), to minimize over-fitting by penalizing the addition of
regressors (i.e. promoting fewer model terms) [7, 32]. In eq. (49), § = A® represents the model predictions and T2y
is the a constant defined by eq. (50). The second term in eq. (49) represents the penalty for a model with p regressor
terms and therefore scales with increasing p.

1
PSE % (=97 (2=3) + 0p0 49)

N
1
T = 5 0, G = 2 (50)
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In addition to this stopping condition, an upper limit may be imposed on the number of candidate regressors that
may be added to the model. For the purposes of the polynomial models identified here, this is capped at ten candidate
regressors (i.e. in addition to any fixed regressors).
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2. Polynomial model candidate and structures

Having defined a method for selecting regressors from a candidate pool, the candidate sets themselves need to be
constructed. The candidate polynomial models described in this section are loosely based on the high-speed models
identified by Sun et al. [8] but are refined through experimentation and observations derived from real flight data.

For brevity, the polynomial structures which house the candidate regressors are expressed in the form P(xy, ..., xx)"
where x1, ..., x; denote the variables and n the degree of the polynomial. Note that, since the bias term (i.e. constant
in the polynomial models) is included by default in the stepwise selection process, it is not included in P(xy, ..., xz)".
Furthermore, these polynomials may be multiplied with various constants, typically other (combinations of) variables,
to represent a polynomial set. To illustrate this notation, consider the expressions of the polynomial candidates in
eq. (51) and their corresponding expanded forms. Here, Cy denotes the (fixed) bias vector, P(x, y)z{l, a, b} the first
polynomial of degree two of variables x, y multiplied with sets: 1 (i.e. one), a, and b with a and b representing some
(arbitrary combination) of the variables and/or states. Likewise, P(x, z)z{l, ¢} denotes a polynomial of degree 2 in x, z
multiplied with 1 and the variable c.

Y= Co+P(x,y)*{l,a,b}

+P (x,2)* {1, ¢}
Y= C0+l'P(x,y)2+a~P(x,y)2+b~P(x,y)2

+1-P(x,2)%+c-P(x,2)? (51)
where:

P(x,y)? =x2+2-xy+y?
P(x,z)2 =x2+2-xz7+7>
The candidate polynomial structure for Cy is given by eq. (52). The first three terms represent the bias, linear
velocity along x g, and the component of the induced velocity along xp respectively. These terms are considered fixed
regressors and thus will always form a part of the polynomial model. The inclusion of the first two terms is inspired by
the corresponding F, model of Sun et al. [8], while the third term was found to be consistently selected by stepwise
regression algorithm. It is suspected that this term is related to the component of the thrust variance effect (in particular,
the last term in eq. (15)) along the x p-axis, hence the coupling with the pitch angle. The associated coefficients Xy, X,
and X, are identified when fitting the polynomial model to the training data.

Cr= Xo+Xiii+Xasin(6) -v?,
+P (i, |v], w, vm) {1 w,o,,sm (8),cos (), sin (), cos (¥), g, |7, U,
+P (s [y |y Hzo ) {1, @ror, sin (6), cos (6), sin (), cos (), § | |
+P(Vin, vy » Dror)* {1,510 (6), cos (), sin (), cos ()}
+P (G [FD* {1, Brors Pins pivi, }
+P(|Up, Uy, 10-1)* {1, @101, sin (6), cos (6) }

101}
Uy. 10,1} .

The first two polynomials (i.e. P (i, |7|, W, 7:»)* and P (Ko Ly |y g, o, )4) in eq. (52) represent the influences of
the body velocities, and interactions therein, on Fy. Note that the modulus of the velocity along the y g-axis, |v| and
|2y, is used since the effect of v on Fy is expected to be independent of the sign of v. Likewise, Fy is suspected to be
independent of the direction of the yaw rate, r, but may be modulated in some way by its magnitude. The extensive
polynomial sets - derived from flight observations - are also provided to capture any (linear-like) interaction effects
between the body velocities and other states. For instance, the analytical derivations of the thrust models suggest an
interaction between the body velocities - particularly w and v;,, - and attitude angles. Given the considerable attitudes
that the quadrotor may operate at, especially for aggressive manoeuvres, the relevant attitude angles are likely integral to
the quadrotor model.

These extreme attitudes also motivate the selection of the third polynomial, P(¥;y, iy, , (Dmt)“, which attempts to
capture the interaction effects between the rotor speeds and vertical velocities of the quadrotor in the context of these
attitude angles. It is expected that the interaction between the pitch angle, 6, and the rotational speed of the rotors, @y,
is especially important. Moreover, as derived in the analytical models of section II.C, the thrust is directly related to the
@;01, the attitude, and the interaction of the two.

Any higher order effects of the body rotational rates on Fy, and in relation to the total rotor speed and vertical
velocities, are to be captured by the forth polynomial in eq. (52). These terms may forecast changes in force as they
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constitute the derivatives of the quadrotor’s attitude. Similarly, the final polynomial is aimed at forecasting the force
based on the differential thrust produced by the rotors, especially since this change in force does not act instantaneously
due to, for example, actuator delays and rate limits.

éy = Yo+YV+Yysin(¢) - V%n
+P (|it], 9, W, Din)* {1, @10, sin (8), cos (), sin (), cos (), p. 7|, Up., |U,|}
+P (1t ys pizs v, ) {1, @rors sin (), cos (@), sin (), cos (@), p, 7], Up, |0, |}
+P (Vi v, @ror)* {1, 8in (¢), cos (¢), sin (), cos (1) }
+P (P, |F|)4 {La_)tot, Vin, /Jv,-,,}
+P(Up, |Ugl. |0 )* {1, @01, sin (¢), cos (¢)}

(53)

Equation (53) represents the chosen candidate polynomial structure for the (normalized) force along the yg-axis,
C,. The motivations for this structure are synonymous to those for C, substituting the axis specific differences where
relevant (e.g. roll angle, ¢, instead of pitch, 6).

Many of the motivations behind the selection of candidate regressors for C;, outlined in eq. (54), are analogous to
those behind the candidates of Cy and Cy. However, there are a few additions and differences made to the candidate
regressors of C,. The first five terms denote the fixed regressors wherein (ﬁ2 + \72) and (¥;, — w)? follow directly from
the analytical models of thrust [8] (recall the thrust variance equations of section II.C). Further note, that the term
(Pin —W)? parallels the role of the fixed regressors associated with v;, for the C, and Cy models (i.e. sin (9)\7?,1 and
sin (¢)17?n respectively). The final fixed regressor, w;.;, directly describes the relation between the total rotor speed and
thrust produced and is equivalent to the simple thrust model (i.e. eq. (5)).

éz = Zo+Ziw+ Zz(lz_lz + 172) +Z3(Vin — W)z + Z4w,20,
+P ([al, [9], 9, 7in)* {1, @10z, sin (4), cos (), sin (8), cos (6), sin (¢), cos (), |51, 141, |71, 1T, 1Tq], 10,1}
4 - . . . Il ol T =
+P (It 1y |y pzs tvg,)” {1 @ror, sin (@), cos (¢), sin (6), cos (6), sin (), cos (%), |51, 1], |71, 1T, |, 1Uq], 10x 1}
+P (Vin, v, » @ror)* {1, sin (), cos (¢), sin (), cos (), sin (), cos ()}
+P (|ﬁ|, |q|7 |f|)4 {1, CDtOt, ‘71'117 ,Uvin}
+P(|Up|5 |U£[|’ |Ur|)4 {1’ a_)t()ts Sin (W)’ Ccos (¢)}
(54)

Furthermore, eq. (54) includes the interaction effects between the velocities (and, equivalently, advance ratios) and
all the attitude angles, rotational rates, and control moments. The motivation for this is that performing an attitude
change typically induces a change in thrust across the rotors. The absolute values of the rates and control moments are
taken since the direction of change is expected to have negligible influence on the produced thrust.

The candidate polynomial structure for the normalized rolling moment, Cy,, is summarized in eq. (55) wherein the
first three terms denote the fixed regressors. Both the roll rate and control rolling moment are elected as fixed regressors
as they follow directly from the analytical models of the quadrotor and are thus considered fundamental components of
the model.

CL: L()+L1p_+L2[_]p
+P ([it], 5,9, in)* {1, @ror. sin (9), cos (), sin (), cos (), p, |7, Up, 10,1}
+P (|t fys tzs tvg, )t {1, @rors sin (8), cos (), sin (), cos (@), p, 7, Up, |0, |}
+P(Vin, fy @ro)* {1, sin (¢), cos (¢), sin (), cos (1) }
+P (511 17" {1, @1t Pins fhv,, }
+P(U,, 0,0, 1)* {1, @0, sin (8), cos (4) }

The first and second polynomials in eq. (55) are directed at capturing any effects that the body velocities (and
equivalently, advance ratios) have on the rolling moment. In particular, due to the effects of blade flapping (recall
section II.C.2), it is expected that the regressors associated with the advance ratios constitute relevant elements of
the moment models. As some of the moments induced by blade flapping are related to the thrust vector, it is natural
to include interaction effects between the velocities and the total rotor speed, w;,;. The other interaction effects are
included to mirror the polynomial sets of the force models, again to capture effects of the thrust on the rolling moment.
It is assumed that the quadrotor’s geometry remains unchanged for the duration of the flight, such that the relevant

(55)
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moment arms are constant. Additionally, the velocities perpendicular to the rotation axis retain their direction in order
to capture moment variations arising from the rotor wakes. Consider, for example, a quadrotor flying with a certain
velocity, v, and roll angle, ¢. Due to the wake of the rotors, the rolling dynamics behind rolling forward (i.e. away from
the wake) are different than those rolling backwards (i.e. into the wake) as the efficiency of the rotors depends on the
local (relative) airspeed. Such effects are observed in the high speed flight experiments of Sun et al. [7, 8, 12].

Indeed these rotor wake effects are important, and often overlooked in quadrotor literature. Hence, the third
polynomial also seeks to capture some of the rotor wake effects through the induced velocity terms. It is hoped that the
inclusion of the induced velocity can anticipate these effects, and any other emergent effects related to these induced
velocities and rotor speeds.

The final two polynomials in eq. (55) relate to any higher order rotational rate and control moment effects, respectively,
which may be present during high speed flight. These polynomials are founded in the simple analytical models of the
quadrotor, but are aimed at capturing more non-linear effects.

Equation (56) presents the candidate polynomial structure for the (normalized) pitching moment, Cys, constructed
with the same underlying motivations as the (normalized) rolling moment model.

CMZ M0+M16}+M20q
+P (i1, [7], W, $in)* {1, @ror, sin (6), cos (8), sin (), cos (¢), , |7], Uy,
+P (ﬂx’lﬂy|»ﬂz’ﬂviy,) {1, @01, sin (6), cos (6), sin (¥), cos (¥), G, |F
+P(Vins oy, Dror)* {1, 5in (6), cos (6), sin (), cos ()}
+P (191 @ [F)* {1, @ror, Pins frvy, }
+P(|Up |, Uq, 10:1)* {1, @y, sin (6), cos () }

101}
0. 10,1} 56

The candidate polynomial structure for the (normalized) yawing moment model is presented in eq. (57). The
motivations behind the selection of the candidate polynomials mirror those of the rolling and pitching moment models,
with the exception of one key difference. Unlike the former moment models, wherein the perpendicular velocities
maintained their direction, here only the velocity along zp (i.e. in-line with the yawing axis) retains its direction. This is
because, as the quadrotor flies up, it moves away from the rotor wake whereas when it flies down, it goes into its wake.
Therefore, the efficiency of the rotors (and thus the control moments) depends on the direction of w. This is not the case
for the interaction between the the other velocities and the yawing moment.

~

Cn= Np + N7+ N,U,

+P ([it], 9], %, $in)* {1, @ror, sin (), cos (¢), sin (8), cos (), sin (), cos (), |l 1. |7, 1T, 1Ty, 10,1}

+P (|t [yl s )t {1, @ror, sin (8), cos (8), sin (8), cos (6), sin (), cos (), |51, 141, 171, 10,1, 10,1, 10,1}
+P(Vins fyy,» @ror)* {1, in (8), cos (¢), sin (6), cos (6), sin (1), cos (1)}

+P (191,131, )* {1, Brot» Vins trv, }

+P(|Upl, 1041, U, )* {1, @101, sin (%), cos ()}
(57)

3. Polynomial model prediction intervals

For polynomial models, the prediction interval associated with a given prediction, y;, may be obtained through
eq. (58) where ! N "2/ gives two sided test statistic for the chosen confidence level, 1 — «, and n gives the number of
observations. Typically, n = 1 when making (single) predictions.

g (58)

In eq. (58), o; denotes the variance associated with making predictions and may be estimated through eq. (59). In

eq. (59), x; denotes the input data for which predictions should be made, A represents the regressor matrix used for
training the model, I gives the identity matrix and o-> may be approximated through eq. (60).

52 = o2 (1 +x; (ATA)_I xT) (59)

L L
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~2 1 N 52
i o (60)
i=1

In eq. (60), N represents the number of samples used for training and é; = y; — §; denotes the residual error.

D. Artificial Neural Networks for quadrotor system identification

The incomplete and irregular knowledge on the quadrotor models limits, to a certain extent, the use of gray-box
models. Therefore, when investigating uncharted regions of the flight envelope, black-box system identification
approaches are often employed. Artificial Neural Networks (ANNs) have emerged in recent decades as a particularly
popular choice for such black-box modelling due to advancements in computational efficiency [34] and improvements to
ANNSs themselves, such as the development of unsupervised trainable deep ANNs (DNNs) [35].

ANNSs are capable of capturing unknown non-linearities [17, 18] in a system and are thought to be universal function
approximators [14]. The latter property is especially powerful since it facilitates the modelling of unobserved states
from the measurement data, making ANNSs particularly attractive as a system identification technique. It is no surprise,
then, that ANNs have successfully been applied to identify models of aircraft [15, 36, 37], rotorcraft [38, 39], and, more
recently, quadrotors [11, 14, 16, 40, 41].

1. Principles behind the Artificial Neural Network

An ANN is a system of interconnected artificial neurons designed to emulate biological neural networks. Let x;
denote an input to the neuron with i € [1,2,..., N] for N inputs. Each input is subsequently scaled by a corresponding
adaptive weight, w;. Included in the model of the neuron is a bias term denoted by wq. The purpose of this bias term is
analogous to the role of a constant in a polynomial function. The sum of these weighted inputs and bias term, z (see
eq. (61)), is subsequently transformed by some activation function, o-(z), culminating in the neuron output, v.

N
zZ= WO+ZW,-x,~ (61)
i=1

The structured organization of neurons, with the same or different activation functions, defines the network. The
most simple NN architecture is perhaps the feed-forward neural network (FNN), illustrated in fig. 3, wherein information
only flows from # inputs to m outputs. A general feed-forward neural network is composed of an input layer, K hidden
layers, and an output layer. It should be noted that the input layer does not contain neurons and instead relays the inputs
to the neurons of the first hidden layer.

Another commonly used NN architecture is the recurrent neural network (RNN), which exploits the temporal
invariance of the system to reduce the number of parameters (namely, weights) in the network. As such, RNNs are
specialized for time invariant systems and are particularly alluring for system identification and control due to the
stationary nature of many systems. Mohajerin et al. [16] successfully applied an RNN in a hybrid configuration with
first principle techniques to identify a model of a quadrotor. However, RNNS are less equipped to handle non-stationary
effects, which may be ubiquitous during outdoor flight. Therefore, to be able to capture (any) non-stationary effects
which occur during high-speed and aggressive outdoor flight while keeping the network structure simple, a FNN
architecture is elected for model identification. However, a FNN may be more prone to over-fitting.

The structure of a FNN is determined by the number hidden layers, K, and the number of neurons in a hidden
layer, ni. These variables considerably impact the resultant performance of the ANN. Adding neurons increases the
susceptibility of the feed-forward ANN to over-fitting. Such 'wide’ ANNs are adept at memorization and begin to
model the noise in the data instead of the dynamics behind the data. More neurons also entails more trainable network
parameters, demanding more computational effort. However, too few neurons may result in under-fitting whereby the
FNN model fails to adequately capture the system dynamics.

An alternative to manipulating the number of neurons is to instead change the number of hidden layers. In general,
increasing the number of hidden layers improves the abstraction capabilities of the ANN. However, even single hidden
layer feed-forward ANNSs are suitable for modelling applications [42]. Unlike increasing the number of neurons, adding
more hidden layers facilitates generalization through feature extraction instead of memorization [34]. This property
of ’deep’ FNNs explains their ever-growing popularity and preference over wide ANNs. This is not to say, however,
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Fig. 3 Network architecture of a single hidden layer feed-forward Artificial Neural Network. Neurons are
indicated through circular blocks while the input pass-through nodes are given by square blocks.

that adding layers resolves the issue of over-fitting. In fact, over-fitting is still a considerable issue for deep FNNGs.
Additionally, as with wide ANNSs, the computational demand of training scales with the number of hidden layers.

For ANN:S, training is accomplished through a learning procedure known as ’backpropagation’ [43—46] which
aims to find a set of network weights that minimize the error between the network outputs and desired outputs, for all
(especially unseen) inputs. Backpropagation exploits the error between the network output(s) and its target value(s) to
update the network weights by traversing the network from outputs to inputs.

8] rk+l
D Yy @

ij I=1
The backpropagation formula for an arbitrary neuron in the network can be found through eq. (62). J represents the

cost function being minimized (typically the mean squared error for regression), wl’.‘j denotes the weight from neuron i

in layer k — 1 to neuron j in layer k. Likewise, wff

! denotes the weight from neuron / in layer k + 1 to neuron J in layer
k. o gives the activation function, zf the weighted sum of inputs into neuron j, and vf’l the output of neuron 7 in

layer k — 1. qf‘” is given by eq. (63) and describes the change in loss function with respect to the weighted sum of the
outputs of the subsequent network layer.

qk+] — aJ
! 6Z;<+1

Since the gradient gives an indication of the direction in which the weights should be changed, eq. (64) may be used
to update the weights proportionally to the gradient through a constant, o [43, 46]. The weights are typically initialized
randomly, ensuring that each weight in a given layer is unique!.

(63)

Woew = Wora — aVJ (Woiq) (64)
Where VJ(w,;4) denotes the gradient (expanded in eq. (65)) of all the weights, w, € [1, R], in the network.

a [ aJ aJ aJ "
OWoi4 OWora 1 OWora2 OWoia R

VJ(Woia) = (65)

I Neurons initialised with the same weight will learn the same feature. Hence, for suitable learning, weights should be distinct.
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For a database of size, N, the gradient may be computed as

1 5 (87 (t, Xn,
Vi(w) = Z (%) (66)

n=1
Taking eq. (66) with the weight update rule (eq. (64)) results in the so-called gradient descent method. For large
N, using the gradient descent may be inefficient. Therefore, the database can be split into batches of size, n << N,
containing data points (i.e. f;;x;) that are independent of each other and identically distributed. This is known as the
stochastic gradient descent, where the gradient may be estimated by eq. (67).

A 1 & BJ(ti,xi,w)
VIiw) =~ ; ( - ) (67)

For some applications, the simple (stochastic) gradient descent may be inefficient (e.g. too slow). In light of this,
some extensions to this method are employed in literature to improve the convergence performance. For instance,
the velocity of the gradient descent may be used to allow the algorithm to take larger update steps if the gradient is
consistently along the same direction. This is known as stochastic gradient descent with momentum, and is defined
in eq. (68) where i denotes current update iteration and y € [0, 1] is a constant representing how influential previous

weight updates are [46].

AWyery [l] = _QVJ(Wold [l]) + yAwnew [l - 1]
Whew [l] = Wold [l] = AWpew [l]

However, too large of a step can result in poor convergence to the minima of the cost function. For instance, the
algorithm may be unable to venture into a valley since the step size is wider than this valley. Hence, other methods, such
as RMSProp [47], aim to reduce the update step size over time to mitigate this. Better yet, the principles of momentum
and decreasing the step size over time can be combined. One such method is ADAM proposed by Kingma and Ba [47].
The choice of the optimizer depends on the requirements imposed on the network (e.g. convergence time and accuracy).

Recall that the goal of the training is to minimize the error between the model predictions and the underlying
dynamics of the process in question. The cost function used in backpropagation actually measures the empirical loss of
the model, which is the error to the training data. Hence, a good empirical loss does not necessarily reflect good overall
model performance, since the ANN may be capturing noise and artefacts in the training data. This is mitigated through
regularization which seeks to improve the performance of an artificial neural network for states outside of the training
data set.

One regularization strategy is to exploit the stochasticity of training process. Due to the random weight initializations,
emergent ANN models are typically different from one initialization to the next, culminating in different predictions
across these ANNs for the same inputs™*. Therefore, multiple ANNs can be trained on the same data set and their
predictions combined, in some way, to give more consistent overall model predictions [48]. This can be achieved by
simply averaging the ensemble outputs. Such an model ensemble approach has seen success in ANN literature (see, for
instance, the improved ensemble performance of Krizhevsky et al. [44]).

Training a single model can be time consuming and resource intensive, thus training model ensembles may not
be practical depending on the application. A more practical implementation of this concept is to use *dropout’ while
training [44]. For every forward pass of the backpropagation algorithm, neurons are randomly ’dropped out’ by setting
their weight to zero with a certain probability. This alters the network architecture for each pass, therefore acting as
a ’different’ model. Since neurons can dropout, the co-dependence of neurons is reduced and they are subsequently
encouraged to learn more general features [44]. Once the training is complete, all neurons are included in the model,
scaled by the probability of dropping out [44].

Both these regularization techniques will be applied to the identified ANN models in this paper to mitigate over-fitting.
Moreover, each ANN in the ensemble will be trained on a different subset of the training data.

(68)

2. Proposed neural network architecture for model identification
To keep network structures simple, the ANN-based force and moment models are composed of a collection (i.e.
ensemble) of ten FNN models, with each FNN composed of an input layer, a single hidden layer containing 50 neurons,

**This is somewhat similar to the variation in polynomial coefficients for the same model structure, but trained on a different subset of the training
data.
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Fig.4 Illustration of the ensembled Feed-forward Neural Network architecture employed for model identification.

and an output layer. To reiterate, an FNN structure was elected over an RNN structure to be able to capture any
non-stationary effects present in the outdoor flight data and to keep the network structures simple. An illustration of this
network architecture is provided in fig. 4.

The inputs for the FNNs are further normalized (i.e. in addition to the normalization discussed in section II1.B) such
that each of the inputs roughly is zero-mean with a standard deviation of one. This is done to improve the learning
characteristics and to ensure that each input state is represented equally in magnitude. This also facilitates a comparison
between the final input weight magnitudes to provide insight into which states the FNNs consider important [19].

The number of neurons in the hidden layer were constrained to be close in magnitude to the input vector (i.e. the state
vector, eq. (25)) to mitigate over-fitting, while numerous enough to capture the model complexities. From preliminary
results, 50 neurons appeared to produce desirable results in terms of model accuracy without apparent over-fitting. The
FNNs are also compiled with a neuron dropout rate of 0.1 to promote regularization.

The rectified linear unit (ReLU) is chosen as the hidden layer activation function given its simplicity and success in
ANN applications [45]. Indeed, while the ReLU function suffers from the dying ReLU problem (i.e. where certain
neurons stop learning due to a zero gradient for negative inputs), the more robust ReLU derivatives (e.g. leaky ReLU)
did not seem to result in significant model improvements during prelimenary testing. Consequently, the ReLU activation
function is retained as the hidden activation function for its simplicity. As the modelling problem is effectively one of
regression, a linear activation function is selected for the output layer. Furthermore, ADAM is chosen as the optimizer
function due to its capabilities [47].

OD = MPIWc + NAmax (0, (1 — @) — PICP;)? (69)

From the results of Part I: On prediction intervals, the quality-driven direct PI method is elected for the ANN
models since the errors involved with predictions may not be normally distributed and the level of noise is not found to
heavily contaminate the dynamics of interest. Subsequently, a custom loss function given by eq. (69) is used. Here, N
denotes the number of samples, A is a hyper-parameter, and (1 — ) represents the chosen confidence level. M PIW¢
denotes the mean width of the estimated prediction intervals (PIs), given that the target sample is contained within the
estimated interval, normalized by the range of the target data as shown in eq. (70). In eq. (70), N¢ describes the total
number of target samples contained within the prediction interval with upper bound U and lower bound L.
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MIPWe = <~ Z (Ui - L) (70)
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PICP =L 3N ¢

N (71)
eood b dielli Uil
! 0, otherwise

The PICP represents the coverage probability of the estimated PIs and counts the proportion of the target data
that is contained within the estimated PIs and is described in eq. (71) where N denotes the total number of samples
and y; the true target value. In eq. (69) the ’soft’ variant of the PICP is used and summarized in eq. (72) to improve
convergence characteristics where o () denotes the sigmoid function and s is some softening factor.

b4

PICP; = 1 Z o(s(yi = Yr.i) - o(s(Piu = yi) (72)
N =

Regarding the training parameters, 150 epochs are used for training with data batch sizes of 400. These hyper-
parameters were tuned in the early, exploratory, stages of model identification and remain fixed across all the FNN
models. Moreover, to encourage variation among the ensemble models, each model is initialized on a different set
of random weights and trained on a different subset of the training data set. All of the FNNs are constructed using
the TensorFlow and keras libraries in Python. Moreover, to be directly comparable with the individual polynomial
models, ensembles of FNNs of the aforesaid structure are created for each of the forces and moments (e.g. one ANN
ensemble of 10 FNNs for Fy alone). The aggregate model prediction is taken as the average of the ensemble predictions.

E. Novel hybrid approach for quadrotor system identification

The principle behind this hybrid approach is to leverage the transparency and interpretability of the polynomial models
with the non-linear approximation power of ANNs. Therefore, the polynomial models are targeted at approximating
the stationary dynamics of the quadrotor while the ANN components accommodate the more complex, or otherwise
non-stationary, effects. Since the ANN model is aimed at reducing the modelling errors of the underlying polynomial
model, it ’compensates’ for the modelling deficiencies of the polynomial model. As such, the ANN compensator is
trained to predict the residual errors between the polynomial model predictions and the target values, for the associated
input (i.e. state) vector. These ANN predicted residual errors are subsequently removed from the polynomial model
predictions to improve estimates of the targets.

This hybrid approach may also be envisioned in an adaptive modelling framework, whereby the polynomial
component acts as a base, fixed, model identified offline while the ANN is trained during flight. This ensures that the
quadrotor is able to fly safely by initially relying solely on the polynomial model, while facilitating the improvement of
the model over time by means of the ANN. Once the ANN model augmentation is reliable enough (for instance, through
acceptable reliability metrics as discussed in Part I: On prediction intervals), it may be introduced into the system.
This delayed transition from polynomial-only to the full hybrid model adds an extra layer of safety, ensuring that the
predictions of the ANN are trustworthy enough before depending on them.

1. Hybrid model structure

Since no modifications are made to the polynomials directly, the polynomial structures are identical to those
described previously in section III.C.2 (i.e. egs. (52) to (57)). In fact, the hybrid models only add an ANN component
to the polynomial models identified through step-wise regression and may therefore be seen as an extension of the
polynomial models.

Likewise, the ANN compensator utilizes the same structure as the ANN-only models with the exception of fewer
ensembles and neurons. The number of ensembles is lowered from ten to five for a reduced computational load during
training to accommodate the envisioned role of the ANN compensator in the hybrid approach; that is, that the ANN
compensator targets the non-stationary effects prevalent during outdoor flight in an online capacity. Moreover, five
ensembles have been shown to be sufficient capturing inter-model variations [22, 49] while mitigating over-fitting.

42



Feed-forward Neural Network
(Compensator)

[ Base model error prediction

5
~ 1 -
—> E= EZES = Etrye = (Yp = Yirue)
i=1

State = -
Inputs 7

=~

L —» —»f/p + Y

Polynomial Hybrid model
\/ prediction prediction

Polynomial (Base) model

Fig. 5 Illustration of the hybrid model structure composed of a polynomial component and a feed-forward
neural network compensator.

Related to the issue of over-fitting, the number of neurons are further reduced from 50 to 30. As the ANN
compensator aimed at predicting the polynomial modelling errors, it is more susceptible to noise and thus prone to
over-fitting. This is especially true if the underlying polynomial already produces a good fit. It was found during the
exploratory phase of model identification, that increasing the number of neurons beyond 30 occasionally lead to obvious
over-fitting. An overview of the hybrid model structure is illustrated in fig. 5.

As the hybrid models described in this paper are unique to this paper, there are no established methods in literature
to construct PIs for the hybrid models. Instead, a composite form of the PI estimation techniques of the polynomial and
ANN approaches may be formulated to derive the hybrid PIs. Perhaps the most straightforward approach is to simply
sum the model prediction error variances obtained from the hybrid model constituents, as shown in eq. (73), for which
the interval bounds can be obtained through eq. (58). This is compatible with the envisioned modularity of the hybrid
approach, wherein the polynomial model provides the predictions, and associated PIs, while the ANN-compensator is
training. However, it is important to highlight that the addition of the two component PIs inherently culminates in wider
and more conservative PI estimates.

O HYBRID = O poLy + CANN (73)

F. Quadrotor model identification pipeline

In order to expedite the model identification process, a modular system identification pipeline is developed in Python
which incorporates the aforementioned identification methods. The modular design of the pipeline allows for the
addition of other system identification techniques. A cohesive Model class is developed to standardize the identification,
predictions, evaluations, and storage of the models.

The desired system identification technique must be specified upon the initialization of the Model object. Models
are then prepared for training through the Model . compile decorator method. Due to the inherent differences between
various system identification techniques, this method is tailored to the chosen technique upon initialization. The
Model . compile method prepares and standardizes the models such that technique-specific terms do not need to be
specified in subsequent methods but are nonetheless configurable by the user, if desired. Models may subsequently be
identified through the Model . train method and predictions made through the Model.predict method. The validity
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of the identified models may be checked through the Model . evaluate method. Furthermore, the status of models at
any stage may be inspected through the Model . summary method.

The pipeline takes a pandas DataFrame object containing the training data as inputs with the samples along the
rows and system states along the columns. Note that the Model class does not handle the pre-processing of the data
directly, to allow for greater flexibility. Therefore, the necessary pre-processing is handled by other scripts elsewhere.
Since the pipeline works directly with the input and output data, it may be extended to identify models of systems
beyond the quadrotor.

IV. Data acquisition and processing

All outdoor flight data™ is obtained through the manual piloted flight of the MetalBeetle, composed of both
line-of-sight (LOS) and first-person-view (FPV) flights. To reiterate, piloted flight allows for more flexibility in the
performed manoeuvres and ensures better safety while pushing the quadrotor to its limits, especially when flying
outdoors.

A summary of the procedures for experimental data collection for the outdoor flights is given in section IV.A. The
raw flight data is subsequently processed to remove sensor biases, filter noise, and prepare the data for the system
identification pipeline. For each of the forces and moments, relevant excitations are extracted from the processed data.
This subset is then further split into validation and training data sets to facilitate model identification. This raw data
processing procedure is outlined in section [V.B

A. Experimental data collection

Outdoor flights for the MetalBeetle were conducted in a large open-field shielded by trees approximately 200 m
long and 200 m wide with a few trees at the center. For these flights, the altitude was only physically constrained by
the range limits of the on-board receivers. These large outdoor spaces allowed for more aggressive flight (e.g. barrel

¥ Indoor flights were also conducted but, to limit the scope of the paper, data acquisition and processing procedures of the indoor flights are given
in section VIILD.

e Start
e End

N 50% contour
BN 75% contour
95% contour

Fig. 6 Illustrative example of the three-dimensional

trajectory flown by the MetalBeetle during one of the Fig. 7 Velocity phase portrait of the outdoor Metal-
outdoor line-of-sight (LOS) flights. Also shown, in Beetle flights with contours encompassing velocities
grey, are the two-dimensional traces of this flight in 50%%0, 75%, and 95% away from the mean.

the x — z and y — z planes for reference.
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Fig. 8 Total velocity profile across all outdoor flights of the MetalBeetle, as measured by the GPS module. Also
shown by the orange dotted-line is the average velocity. For reference, the average velocity achieved through the
indoor flights of the MetalBeetle along with where 95% percentile of the highest velocities attained indoors are
also shown by the grey dotted-line and grey region respectively.

rolls and punch-outs) and consistent high speed flight of around 10 ms~" as shown by the velocity phase portrait of
the MetalBeetle, fig. 7. In fig. 7 the velocities are shown as contours encompassing 50%, 75% and 95% of the closest
measurement data to the mean to provide insight on where these velocities are concentrated.

All state information, including the rotor speeds, is obtained from on-board sensors and is logged at 500 Hz. The
position and velocity estimations are taken from the on-board GPS module with a fluctuating refresh rate of between
1 — 10 Hz. This GPS-derived information is then up-sampled and aligned with the IMU data through the timestamps of
the GPS updates in the logging procedure of BetaFlight.

Furthermore, as the GPS module acts as the primary source of velocity information, the presence of wind can
severely affect the true velocity measurements. While this may be mitigated by flying both with and against the wind in
a single flight (such that the stationary wind effects average out) it is still detrimental to the development of high fidelity
models. Moreover, such flight cannot eliminate the effects of gusts or instantaneous changes in wind direction. Without
a reliable way to estimate the relative velocity of the quadrotor, and due to poor weather conditions on the flight days,
flights for the MetalBeetle were contaminated with wind (average wind speed of around 6 ms~! and gusts of up to 10
ms~"'). This strongly urges the development of more reliable methods to determine the air speed of the quadrotor.

Both line-of-sight (LOS) and first-person-view (FPV) flights were conducted outdoors. Prior to take-off, the
quadrotor was switched on and held stationary for a few seconds to facilitate the estimation of the sensor biases for raw
data processing. Note that BetaFlight supports a so-called "air’ mode wherein the rotors spin at an idle rate with the
throttle set to zero. Therefore, the rotors are spinning at this idle rate as soon as the quadrotor is armed and no input to
the throttle is given. This mode was employed since it ensures that the rotors remain spinning even when the throttle is
cut during flight, such that control of the quadrotor can be maintained during aggressive flight.

The LOS flights are aimed at exciting the forces and moments along each axis through simple, repeatable,
manoeuvres. As such, LOS manoeuvres consisted of sinusoidal step inputs (e.g. backward-and-forward, side-to-side,
and ascent-and-descent manoeuvres) and rapid pulses in throttle, roll, pitch and yaw. The sinusoidal manoeuvres were
conducted by repeatedly moving back-and-forth between the extremes of the outdoor space along a given axis while
keeping deviations in all other axes to a minimum. For instance, manoeuvres along the x-axis involved pitching forward
as far as possible and increasing thrust to move forward while maintaining altitude until one end of the field is reached
then immediately pitching backwards to return to the opposite end of the field. This sequence was repeated at least few
times, but varied in number across flights. Likewise, manoeuvres along the y-axis were conducted in a similar manner.
Manoeuvres along the z-axis involved setting the throttle to maximum to ascend quickly, and reducing it to ’idle’ to
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descend rapidly. Again this sequence was repeated a few times to complete the manoeuvre. Additionally, throttle
"pulses’ where also conducted, which involved the rapid ’flicking’ of the throttle in a manner analogous to ON-OFF
control. Note that not all these manoeuvres were included in a single flight plan, but were rather spread over numerous
flights. For example, an arbitrary flight may involve x- and y- axis manoeuvres and the subsequent flight includes y- and
z-axis manoeuvres. Therefore, in aggregate, multiple flights containing these sinusodial step inputs along each of the
axes were conducted for the MetalBeetle such that similar manoeuvres may be found across many of the flights. An
example trajectory of one of the outdoor LOS flights of the MetalBeetle is given in fig. 6. Indeed, fig. 6 only emphasizes
the space needed to adequately achieve high-speed flight.

The FPV flights are geared towards aggressive manoeuvring and involved punch-outs, (front and back) flips, and
barrel rolls. Slalom-like flight between the trees located in the middle of the field was also conducted. As is the
case with such ’freestyle’ flying, manoeuvres are less repeatable. However, the ultimate goal is for the development
of models valid for such flight, irrespective of the exact manoeuvre conducted. Ideally, they are able to adequately
capture the underlying processes of these manoeuvres. Moreover, through these flights, the MetalBeetle is recorded
to achieve a top speed of 19 ms~! and consistently hits 10 75~ as shown in fig. 8. Note that, due to the wind, these
GPS measurements may not be entirely accurate of the true speeds achieved. However, they give an indication of the
attainable, and commonly flown, speeds outdoors. The average velocity flown outdoors is already double that of the
indoor flights of the MetalBeetle and is only slightly below the 95% percentile of the highest velocities achieved indoors.
Readers interested in the indoor analysis are directed to section VIIL.D.

B. Raw data processing

Following data acquisition, the raw data is processed in preparation for use with the system identification pipeline.
The processing of the raw flight data is conducted in Python 3.7 with self-written scripts. Note that measurements
coming from the on-board sensors (i.e. originating from IMU, ESC, and GPS) are filtered by the flight controller before
logging. These measurements are therefore pre-filtered prior to any processing described in this section. A dynamic (i.e.
changes with respect to the throttle level) low-pass filter is employed by BetaFlight to remove high-frequency noise in the
accelerometer data with cut-off frequencies ranging from 50 — 170 Hz. A more advanced filtering scheme (i.e. adaptive
and involving numerous filters such as low-pass and notch filters) is employed to filter the gyroscopic data since it is
essential for maintaining control of the quadrotor through the PID controllers. As such, the logged data represents the
measurements after all this filtering is applied and does not reflect the true raw data produced by the sensors. Examples
of these pre-filtered logged data measurements for the gyroscope are given by fig. 9 and fig. 10 for hovering and arbitrary
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flight respectively. Likewise, fig. 11 and fig. 12 depict the accelerometer measurements for hovering and arbitrary flight
respectively. Indeed, the pre-filtering of BetaFlight is apparent through rather noise-free signals.

Moreover, while the on-board data is recorded at 500 Hz, this sampling rate was found to be inconsistent wherein the
true logging rate varied from 470 — 510 Hz. Nonetheless, the logging module of BetaFlight handles the synchronization
of all the sensor information, including GPS. Hence, the dropped, or added, frames are consistent across all the
measurements. Consequently, regardless of indoor or outdoor flight, the processing pipeline first resamples the on-board
data to 500 Hz using a cubic spline interpolation to ensure consistency.

1. Outdoor specific data pre-processing

Even though the all the state information is measured, and synchronized, by the on-board sensors for the outdoor
flights, there are still some outdoor-specific processing procedures employed to manage the GPS-based data. A sample
of the raw logged GPS velocity measurement data is depicted in fig. 13 for a period of stationary flight. Moreover, the
PSD of the GPS velocity measurements is shown in fig. 14.

As aforementioned, the GPS measurements are inconsistent and updated slowly in comparison to the rest of the
on-board data (i.e. 1 — 10 Hz for GPS versus ~ 500 Hz for IMU and ESC). This culminates in a box-like signal for the
GPS velocity measurements as shown in fig. 15. Therefore, as the on-board data is re-sampled using a cubic spline
interpolation for sampling consistency, ringing artefacts are introduced into the velocity (and position) measurements
through Runge’s phenomenon as shown in fig. 15.

Therefore, to mitigate this, the velocity measurements are further filtered using a Savitzky-Golay filter. The
parameters which resulted in the most visually accurate results are a window size of 151 samples with a polynomial order
of 3. While the results are still imperfect, they produce a more faithful (continuous) representation of the underlying
velocity signal than the re-sampling alone as illustrated by fig. 15. Indeed, it is possible to first apply this Savitzky-Golay
filter to the GPS velocity prior to the re-sampling. However, the resultant signal is similar to that obtained when filtering
is applied after the resampling.

2. General data processing

The flight data is then passed through an Extended Kalman Filter (EKF) to estimate the accelerometer and gyroscope
biases. The EKF is constructed following the procedure of Armanini et al. [50], who define quadrotor-specific EKF
equations. However, these process equations do not consider much of the aerodynamic effects targeted by the present
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Fig. 15 Illustrative example of the box-like GPS velocity measurements, subsequent artefacts introduced by
re-sampling, the filtering of this signal to remove said artefacts for an arbitrary outdoor flight of the MetalBeetle

work. In fact, the estimated biases were observed to vary considerably during flight, likely representing the un-modelled
dynamics in the process equations. Hence, the sensor biases are only reliably estimated during the stationary period
after arming but immediately preceding take-off.

In accordance with the processing procedure of Sun et al. [8], the unbiased acceleration and rotational rates are then
further filtered by a forth-order low-pass Butterworth filter to remove noise. However, in the current research, different
cut-off frequencies are elected to capture more of the high-frequency dynamics. In fact, much of the rotor dynamics
occur in the 30-80 Hz region. Therefore, the 5 Hz and 16 Hz cut-off frequencies employed by Sun et al. [8] for the
accelerometer and gyroscope measurements respectively are much too low. Here, a cut-off frequency of 100 Hz is
applied to both the accelerometer and gyroscope instead. The corresponding PSDs are illustrated in fig. 16 and fig. 17
for the accelerometer and gyroscope respectively. Note that 100 Hz is used here since much of the BetaFlight filtering
already eliminates frequencies beyond 100 Hz, thus any information contained in the frequencies beyond 100 Hz is
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Fig. 18 Moment measurements of the outdoor MetalBeetle flights.

mostly lost. The filtered and unbiased acceleration measurements are subsequently used to compute the body forces
(through eq. (3)), while the filtered and unbiased rotational rates facilitate the moment computations (through eq. (2)).

Subsequently, the induced velocity, v;,, is calculated as it is not measured directly by the quadrotor. Indeed, eq. (16)
may be used to estimate the induced velocity, however, given that this is a forth order polynomial, multiple solutions (i.e.
roots) exist for v;;,,. Here, it is assumed that the induced velocity is similar, in magnitude, to the total velocity. Hence,
the root which lies closest - in absolute terms - to the current velocity is taken as the true induced velocity.

Prior to model identification, the input states are normalized following the methods outlined in section III.B. Through
this normalization, the normalized total rotor speed, normalized advance ratios, and normalized control moments are
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obtained. Likewise, the quadrotor’s attitude is effectively normalized by taking their trigonometric identities. This then
completes the defined input state vector, eq. (25).

Once all the data has been processed, a partition is made based on the the flights of the quadrotor. Certain flights are
elected for training the models while others are reserved purely for testing. The split is made such that excitations along
each of the axes are present in both the training and testing (i.e. validation) sets. It should be noted that the quadrotor
models are never exposed to the testing flights, and are only evaluated against them once training is complete. Due to
the aforementioned variability in manoeuvres between flights, entire flights are preferred for partitioning the training
and testing data sets in order to keep manoeuvres continuous. In any case, it is held that identified models should be
able to adequately capture the dynamics behind any of the flights. For all flights, data is truncated to the region after
take-off and before landing. Since some flights ended in crashes, the last five percent of the data is discarded.

Furthermore, during identification, the training data set is further constrained to the regions of excitation for the
relevant force or moment. For instance, for models of F), only regions of the training data set with excitations along the
x-axis are used for model identification. Indeed, there is a difference in responses characteristics between the force
and moment models. Therefore, for the forces, regions of excitation were determined by examining where the local
variance in force response is larger than the global variance scaled by some threshold (set through trial-and-error to
0.15). Whereas, given the sparsity of the moment excitations (refer to fig. 18), the prominent peaks in the signal are
interpreted as excitations. These peaks are identified using the scipy.signal.find_peaks function applied to the
absolute value of the moment measurements. Since useful dynamics may still be obtained by observing the states
immediately preceding, and following the completion of, the isolated excitations, data samples before and after the
excitations are also included in the identification subset. An example of the results of this excitation isolation algorithm
are illustrated in fig. 19 for the Fy, and fig. 20 for the M, measurements of the MetalBeetle.

V. Model Identification Results
After all the flight data has been processed, outdoor models of the chosen quadrotor platforms may be identified**.
The performance of the identified models is assessed through their accuracy and quality of prediction intervals (PIs). The
accuracy is measured through the normalized®® root-mean squared error (NRMSE) and the coefficient of determination

# Note that equivalent indoor models of the MetalBeetle may be found in section VIIL.D
$3The RMSE is normalized with respect to the range of the target data to facilitate a comparison between the different identification techniques.

50



(R?) with respect to both the entire data set and the testing data subset. The quality of the identified models’ Pls is
evaluated through the coverage probability (P/CP) and normalized mean PI width (M PIW). The identified model PIs
are constructed using a 95% confidence level and follow from the procedures in Part I: On prediction intervals. As
such, valid models should maintain a PICP > 95. Moreover, some illustrative examples of the models’ predictions
on an entire test subset flight are shown here. However, for brevity, figures and tables (e.g. of polynomial regressors)
summarizing most of the identified models are shown in the appendix (namely, sections VIII.A.3 to VIIL.A.S5).

It is expected that the identified outdoor MetalBeetle models’ performance will be adversely affected by the wind
contamination despite the aforementioned efforts made to mitigate its effect (e.g. flying both again and with the average
wind). Nevertheless, the outdoor model results may still contain useful information and could provide insight on the
necessity and configurations for airspeed sensors in future experiments. The performance metrics of the identified
outdoor force models of the MetalBeetle can be found in table 2.

Due to the presence of non-stationary effects in outdoor flights, it is perhaps unsurprising the identified ANN
force models of the outdoor MetalBeetle mostly accommodate best accuracy between the identification techniques.
However, the associated PIs fall short of the PICP > 95 condition, rendering the models unreliable and potentially
invalid. The identified ANN F, model of the outdoor MetalBeetle yields the poorest performance of the ANN models
(R*> = 0.2053, PICP = 90.8 < 95, and MPIW = 20.8%) while the identified ANN F, model produces slightly better
results (R = 0.2913, PICP = 92.3 < 95, and MPIW = 18.1%). Indeed, both the F, and Fy, ANN models show
poor accuracy. Peculiarly, the identified ANN model for F, hosts better performance, bordering acceptable metrics
(R? = 0.7700, PICP = 93.3 < 95, MPIW = 15.6%). The improved performance may be due to the fact that the
(average) wind is mostly parallel to the ground, and therefore affects the F and Fy models more than the F; models.
This is especially true for the sinusoidal ascend-descend manoeuvres. These performances only accentuates the adverse
influence of unknown wind.

Similarly, the performances of the identified polynomial outdoor force models parallel those of the equivalent ANN
models. The selected model regressors for the normalized F,, Fy, and F; models may be found in tables 5 to 7 in

Table 2 Summary of the model performances of the identified ANN-only, Polynomial-only, and Hybrid force
models for the MetalBeetle (Outdoor flight). The NRMSE and R? describe the accuracy of the model predictions
with respect to the full and test data sets. Also shown are the quality metrics for the model prediction intervals in
the form of the PICP and MPIW.

Fx
NRMSE R? PICP MPIW
Full Test Full Test Full Test Full Test
ANN 0.0645 0.0747 0.3971 0.2053 92.8196 90.7920 19.8318 20.8188
Poly 0.0765 0.0846 0.1519 -0.0197 95.4948 949728 46.9551 46.0148
Hybrid 0.0714 0.0800 0.2608 0.0868 97.3339 96.6688 51.3899 50.8426
Fy
NRMSE R? PICP MPIW
Full Test Full Test Full Test Full Test
ANN 0.0567 0.0627 0.4616 0.2913 93.6676 92.2540 17.6020 18.1279
Poly 0.0622 0.0619 0.3519 0.3085 96.7452 96.3193 36.7955 36.1483
Hybrid 0.0587 0.0620 0.4221 0.3065 98.0834 97.4967 41.3574 40.8746

Fz
NRMSE R? PICP MPIW
Full Test Full Test Full Test Full Test
ANN 0.0414 0.0485 0.8262 0.7700 953711 93.3252 14.5807 15.6362
Poly 0.0559 0.0593 0.6829 0.6563 95.0270 94.4171 34.5638 33.9786
Hybrid 0.0467 0.0508 0.7788 0.7471 97.7102 96.9595 37.3214 36.8635

Model

Model

Model
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Fig. 21 Comparison of the identified ANN-only (in purple), Polynomial-only (in blue), and Hybrid (in magenta)
models predictions of F, for flight 35 (outdoor untrained flight) of the MetalBeetle. Also shown is the measured
F, response (black dotted line). This flight was an line-of-sight outdoor flight in windy conditions (wind speed
~ 6 ms~! with gusts of up to ~ 10 ms~!). The yellow highlighted region denotes backward flight away from the
wind while the green highlighted region denotes forward flight into the wind.

section VIII.A.5 respectively. Also in the appendix are plots of the polynomial error residuals (section VIIL.A.1) and
autocorrelation thereof (section VIII.A.2). From fig. 67, the polynomial error residuals are zero-mean and appear to be
generally contained within the 1 — o~ bounds. The corresponding autocorrelation these residuals, given in fig. 69, imply
white noise (i.e. no correlation). Therefore, it may be said that the OLS assumptions are satisfied. The identified F)
polynomial model of the outdoor MetalBeetle presents an unacceptable accuracy (R? = —0.0197) with impractically
wide, but valid, PIs (PICP = 95.0, MPIW = 46%). In fact, these large PIs are a common feature of the outdoor models,
reflecting the large uncertainty involved in outdoor flight. Note, however, that the PIs found here are likely inflated by the
unknown wind experienced during flight. The identified polynomial model of Fy, hosts better performance than the F
model through a higher accuracy (R? = 0.3085) and narrower, yet valid, PIs (PICP > 95, MPIW = 36.2%). As with
the ANN models, the identified F, polynomial model of the outdoor MetalBeetle displays the highest accuracy of the
polynomial force models (R? = 0.6563) although with marginally unreliable PIs (PICP = 94.4 < 95, MPIW = 34.0%).

The identified hybrid force models of the outdoor MetalBeetle command improvements over their underlying
polynomial models, particularly in terms of extending PI validity. However, gains in accuracy are not as compelling as
hypothesized during the conceptualization of the hybrid approach. The hybrid model of F, manages to recover some
modelling accuracy over the polynomial model but still fails to fit most of the measured Fy (R> = 0.0868). Through
wider PIs, the hybrid model comfortably meets the PICP criterion (PICP > 95, MPIW = 50.8%). Conversely, the
hybrid F, model of the outdoor MetalBeetle fails to improve the accuracy of the underlying polynomial (R? = 0.3065)
while extending the, already much too wide, PIs (PICP > 95, MPIW = 40.9%). The most pronounced increase in
accuracy over the polynomial model is obtained by the hybrid F, model (R> = 0.7471) with now valid PIs (PICP > 95,
MPIW =36.9%). Taken together, the improvements afforded by the hybrid models are not as pronounced as expected.
While they do appear to promote valid PIs, this is somewhat irrelevant as these PIs are already impractically wide and
the associated model predictions unacceptably poor. Subsequently, these results provide little support for the use of
hybrid models, especially over their constituent system identification techniques.

An illustrative example of the predictive performances of these identified force models is depicted in fig. 21. Here,
the predictions with respect to F, are shown for an unseen validation LOS flight. Illustrations of the Fy and F; model
predictions for the same flight may be found in section VIII.A.4. The F response of the outdoor MetalBeetle in fig. 21
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is peculiar in that there are sudden periods of zero force scattered throughout the response. This is occurs when the rotor
speeds fall below the idle eRPM (= 750) enforced in the processing scripts to avoid singularities and high magnitude
terms during normalization. Despite this cut-off, there are still some artifacts present in the data produced by the
normalization with low e RPM values. Take, for instance, the spikes immediately following, and immediately preceding,
the zero-force regions in the yellow highlighted region of fig. 21. The prevalence of these low e RPM values is likely
due to the aggressive manoeuvres conducted, for which the throttle is cut often. Moreover, the effects of the strong wind
present throughout the flight may also contribute to this through fluctuating rotor speeds induced by the flight controller.

In fact, there is a clear difference in the characteristics of the measured force when flying into, or away from, the
wind. In fig. 21, the yellow highlighted region denotes backward flight (i.e. along negative x) into the incident wind
while the green region represents forward flight (i.e. along positive x) with the wind. When flying into the incident
wind, the component of thrust along the horizontal (i.e. parallel to the wind) needs to be increased to counteract this
wind. Assuming a fixed pitch angle (which is the case when the pitch is at its maximum, like in this manoeuvre), only
the thrust vector itself may be increased to mitigate the wind. This will induce a climb for the quadrotor, since the
vertical component of motion is less affected by the incident wind (which flows mostly parallel to the ground). The
pulse-like nature of this response stems from the fact that the throttle was periodically pulsed to maintain a somewhat
constant altitude while also exciting the dynamics. Paradoxically, this ascent stimulates a (brief) positive acceleration
along the body x-axis, hence the positive measured F in the yellow region of fig. 21 during the pulses. Indeed, these
positive pulses correspond exactly to increases in total rotor speed. The divergence of the measured force and predicted
force likely emanates from the mismatch in velocities and rotor speeds experienced during this portion of the flight.
Indeed, the measured velocities from the GPS only track the ground speed, and not the airspeed, of the quadrotor. This
velocity discrepancy also adversely affects the models’ judgement of the relation between thrust level and (absolute)
velocity. For example, when flying into the wind the quadrotor experiences a lower than expected velocity for a given
thrust level than when flying without wind.

Conversely, when flying with the wind, as in the highlighted green region of fig. 21, the quadrotor flies with a higher
velocity than expected for a given thrust level due to the pushing of the wind. Despite this, the models are able to
capture the measured force much more effectively when flying with the wind than against it. This implies that there are
some rotor inflow effects, depending on the direction of this inflow to the propeller, which are important for the force
modelling. The sudden widening of PIs that occurs between 51 and 52 seconds are of note since it implies an abrupt
uncertainty in the predictions. In fact, this coincides with a rapid decrease in throttle to reduce altitude and may thus
reflect the uncertainties related to the inflow of wind into the underside of the rotors (i.e. potentially some auto-rotation
effects). The rapid change in force starting at 53 seconds corresponds to the pitching back of the quadrotor to brake and
change direction. Interestingly, the identified models successfully reproduce the forces involved with this transition
from forward to backward flight, but fail to reproduce the measured forces associated with the opposite transition (see
measured forces at around 49 seconds in fig. 21). This again implies that there are significant wind interaction effects
and potentially rotor wake effects. Overall, the identified Fyx models are able to loosely follow the measured forces, with
the exceptions of regions where there is a perceived mismatch in input states.

Nevertheless, despite the contamination of wind, the outdoor models are able to successfully capture the forces
involved with aggressive manoeuvring. Figure 22 illustrates the models’ predictions of F, during various aggressive
manoeuvres for an FPV flight. Note that F, is shown here since most of the manoeuvres influence F,. A punch-out
manoeuvre - whereby the throttle is increased to the max - is conducted in the highlighted yellow region at the start
of the flight. It is clear that, while not perfect, the models’ predictions are in line with the measured force. In any
case, the force is mostly contained within the prediction intervals. The polynomial and hybrid models give the most
faithful reproductions of this manoeuvre. In contrast, the ANN models represent the barrel-roll and (front and back) flip
manoeuvres the best. The barrel rolls are highlighted in green, front flips in red, and back flips in orange in fig. 22. Itis
clear that the identified models are able to accurately predict the forces induced by these manoeuvres well, especially the
barrel rolls. Although the polynomial clearly performs the worst for these manoeuvres, it is still able to capture the
majority of the dynamics. Interestingly, there are some oscillations predicted for the back flips, which do not occur
for the front flips. The exact reasons for this are unknown but may relate to the interaction of the rotors with the
quadrotor’s disturbed air during the back flip manoeuvre. The oscillations are then induced by the fluctuating rotor
speeds maintaining control and appear in the models due to their reliance on the total rotor speed. Moreover, the
quadrotor achieved a recorded (ground) flight speed of 19 ms~! for the period between 29 and 30 seconds. Indeed, the
identified models are able to capture the forces involved during this high speed flight. The ability of the identified models
to capture these aggressive manoeuvres and high-speed flight, despite the persistent unknown wind, is a significant
outcome and demonstrates the potential of the system identification pipeline and techniques used therein.

53



50

—— Polynomial

—— ANN

—— Hybrid

-=- Measurement
Punch-out
Barrel roll
Front flip
Back flip

40

30

20

F; [N]

Force,
=
o

30 40 50 60
Time [s]

Fig. 22 Demonstration of the identified ANN-only (in purple), Polynomial-only (in blue), and Hybrid (in
magenta) models predictions of F, for flight 37 of the MetalBeetle involving several aggressive manoeuvres. Also
shown is the measured F,; response (black dotted line). This flight was a first-person-view outdoor flight in windy
conditions (wind speed ~ 6 ms~! with gusts of up to ~ 10 ms™'). Highlighted in various colors are the conducted
aggressive manoeuvres including punch-outs, barrel-rolls, front-flips, and back-flips.

The performance metrics of the identified outdoor moment models of the MetalBeetle are summarized in table 3.
Note that, due to the sparsity of moment responses (refer to fig. 18), the moment performance metrics are taken with
respect to the regions localized around areas of moment excitation to avoid evaluating model accuracy predominately
with respect to noise. The moment model performances with respect to the full data may be found in table 4 in
section VIII.A.3. Interestingly, the PIs are narrower for the moment models than for the force models. Indeed, the effects
of wind likely influence the moments less than the forces since the moments are primarily excited during changes in
direction. Thus, the comparatively large PIs found for the force models are probably due to the effects and uncertainties
induced by the unknown wind contamination.

The identified ANN moment models of the MetalBeetle present mediocre modelling accuracy with unreliably
narrow PIs. This performance is exemplified through the identified rolling moment, M., model (R*> = 0.3158,
PICP =87.5 <95,and MPIW = 4.7%). The pitching moment, M,,, model of the outdoor MetalBeetle boasts slightly
better performance (R2 =0.3744, PICP =90.2 < 95, MPIW = 5.9%). Although an improvement, the outdoor ANN
M, model still fails to meet the PICP > 95 criterion with invalid PIs. In comparison to ANN M, and M, models,
the identified ANN yawing moment, M., model hosts the worst performance (R2 =0.1885, PICP = 88.6 < 95, and
MPIW = 6.9%). This may be due to the fewer, and less pronounced, M, excitations in the data. Compare, for example,
the magnitudes and frequency of the M, response to the M, and M, responses in fig. 18.

The selected regressors of the identified polynomial moment models, along with their associated coefficients,
covariances, and cumulative contribution to the models’ accuracy (in terms of R?) are summarized by tables 8 to 10 in
section VIII.A.5. Also in the appendix are plots of the polynomial moment error residuals (fig. 68) and autocorrelation
thereof (fig. 70). Indeed, the OLS assumptions of zero-mean white noise error residuals appear to be satisfied.

While the identified outdoor polynomial rolling moment, M,, model experiences an improvement in modelling
accuracy over its ANN counterpart (R? = 0.4906), it still suffers from unreliable and wider PIs (PICP = 88.2 < 95,
MPIW = 8.6%). Likewise, the identified polynomial pitching moment, M, sees a boost in accuracy (R = 0.4518)
with wider, although marginally unreliable, PI metrics (PICP = 94.0 < 95, MPIW = 16.9%). In contrast, the identified
polynomial yawing moment, M, model presents both a poorer modelling accuracy (R? = 0.0702) and disappointing PI
metrics (PICP =91.8 <95, MPIW = 15.5%) in comparison to its ANN equivalent. Interestingly, the polynomial M,
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Table 3 Summary of the model performances of the identified ANN-only, Polynomial-only, and Hybrid moment
models for the MetalBeetle (Outdoor flight) localized around regions of excitation. The NRMSE and R? describe
the accuracy of the model predictions with respect to the full and test data sets. Also shown are the quality
metrics for the model prediction intervals in the form of the PICP and MPIW.

Mx
NRMSE R? PICP MPIW
Full Test Full Test Full Test Full Test
ANN 0.0293 0.0330 0.3920 0.3158 90.6702 87.5393  4.0409 4.6688
Poly 0.0231 0.0285 0.6226 0.4906 92.5027 88.1838  8.7540 8.5669
Hybrid 0.0253 0.0308 0.5454 0.4052 96.9265 95.0168 11.4349 11.3636
My
NRMSE R? PICP MPIW
Full Test Full Test Full Test Full Test
ANN 0.0399 0.0431 0.4091 0.3744 91.8470 90.2332 5.8614 5.9279
Poly 0.0386 0.0403 0.4467 0.4518 94.8601 94.0170 18.5884 16.9476
Hybrid 0.0414 0.0438 0.3642 0.3524 97.0208 96.4572 22.2708 20.4219

Mz
NRMSE R? PICP MPIW
Full Test Full Test Full Test Full Test
ANN 0.0374 0.0401 0.2522 0.1885 89.8208 88.6323  6.0165 6.9141
Poly 0.0372 0.0429 0.2607 0.0702 93.6921 91.7996 14.4381 15.4791
Hybrid 0.0357 0.0409 0.3199 0.1550 95.8735 94.5427 15.9481 17.2706

Model

Model

Model

model is the only outdoor moment model which sees a significant drop in performance between the full and test data
sets. This may be symptomatic of over-fitting or, given the better performance of the hybrid model, could represent a
lack of approximation power. Indeed, the sparse and low magnitude moment excitation may also contribute to this
lackluster performance.

Despite this improvement by the identified hybrid moment models of the outdoor MetalBeetle for M, the hybrid
moment models generally stimulate a decrease in model accuracy over the underlying polynomial. This is true for both the
identified hybrid rolling moment, M, and pitching moment, M, models (R? = 0.4052 and R? = 0.3524 respectively).
Such a deterioration in modelling accuracy, especially for outdoor data, comes as a surprise. It was hypothesized that
the non-linear approximation capabilities of the ANN would account for some of the modelling deficiencies of the
polynomial models, especially with regards to non-stationary effects. Indeed, the effects of wind may be interpreted as
strong non-stationary effect. Hence, the failure of the hybrid models to improve on the polynomial performances cast
doubt on their utility. Note, however, that the ANN-only moment models generally perform worse than their polynomial
equivalents. Hence, the effects of wind on the aerodynamic moments may nonetheless elude to ANN models and,
while the results here challenge the merits of the hybrid models, the ANNs themselves may be fitting noise in these
measurements instead of useful dynamics. Unlike the underlying polynomials, the hybrid models of M, and M, now
satisfy the PICP criterion (PICP =95, MPIW = 11.4% and PICP > 95, MPIW = 20.4% respectively). Conversely,
the identified hybrid yawing moment model, M, fails to meet this criterion (PICP = 94.5 < 95, MPIW = 17.3%) but
manages to improve upon the modelling accuracy (R*> = 0.1550) with respect to the underlying polynomial model.

An example of the predictive performances of the identified outdoor pitching moment models of the MetalBeetle
with respect to an unseen LOS flight are depicted in fig. 23. Other moment responses for this flight may be found in
section VIII.A.4. Oscillating step inputs were given to the pitch angle in the highlighted red region of fig. 23 to excite
the pitching moments. For these manoeuvres, the incident wind was perpendicular to the quadrotor’s direction of flight.
Here, the identified moment models are capable of reproducing the measured force and exhibit a (visually) good fit.
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Fig. 23 Comparison of the identified ANN-only (in purple), Polynomial-only (in blue), and Hybrid (in magenta)
models predictions of M, for flight 35 (outdoor untrained flight) of the MetalBeetle. Also shown is the measured
M, response (black dotted line). This flight was an line-of-sight outdoor flight in windy conditions (wind speed
~ 6 ms~! with gusts of up to ~ 10 ms~"). Pitching excitations were performed, perpendicular to the incident wind,
in the red highlighted region. The yellow highlighted region denotes backward flight away from the wind while
the green highlighted region denotes forward flight into the wind. Throttle pulses with the quadrotor facing the
incident wind were conducted in the orange highlighted region. Due to the wind, some pitching was necessary to
avoid drift.

This modelling accuracy deteriorates for pitching manoeuvres conducted parallel to the incident wind 1. This is evident
in the yellow and green highlighted regions, where forward-and-backward flight was conducted for which moment
excitations occur when changing direction. The ANN-based models in particular exhibit large deviations from the
measured moments which are coincident with changes in total rotor speed. In general, the models’ predictions appear
to follow the fierce moments more effectively than the more subtle fluctuations succeeding a manoeuvre. However,
these models are still able to capture some of the more nuanced moments as shown by the highlighted orange region.
Here, throttle pulses along the z-axis were conducted facing the incident wind. To avoid drifting due to the wind
the quadrotor’s pitch needed to be adjusted during the pulse, hence the measured oscillations. Overall, these results
contradict the performance metrics found in table 3 and demonstrate that the identified moment models are able to
faithfully reproduce much of the distinct measured moments (in an unseen flight) despite the presence of the wind.
However, the more subtle moment oscillations sometimes still elude the identified models. Nonetheless, these results
show promise for the identification of outdoor models, especially if measurements of the airspeed are obtained.

As with the force models, aggressive manoeuvres are also captured by the identified outdoor moment models. To
illustrate this, consider the rolling moment response of the MetalBeetle during an outdoor flight for which barrel rolls
are conducted depicted in fig. 24. Highlighted in green are the conducted barrel roll manoeuvres. Indeed, there are few
strong moment responses outside of these manoeuvres, emphasizing the utility of conducting such aggressive flight
outdoors to adequately excite the moments. The identified polynomial and hybrid rolling moment models appear to
easily capture the dynamics involved with the first barrel roll. However, the ANN model struggles to do so. All model
predictions are less faithful for the second barrel roll, wherein they struggle to follow some of the moment oscillations
immediately after the completion of the roll. Indeed, even the measured barrel roll responses are different in shape.
Through the video logs, it is clear that the second barrel roll is less "clean’ than the first and did not complete fully. This
is also obvious through the data where the first barrel roll response is well-defined. It may also be the case that the wind

Recall that the wind speeds during the flight test were approximately 6 ms~"! with gusts of up to 10 ms~!.
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Fig. 24 Demonstration of the identified ANN-only (in purple), Polynomial-only (in blue), and Hybrid (in
magenta) models predictions of M, for flight 37 of the MetalBeetle involving several aggressive manoeuvres. Also
shown is the measured M, response (black dotted line). This flight was a first-person-view outdoor flight in
windy conditions (wind speed ~ 6 ms~' with gusts of up to ~ 10 ms~!). Highlighted in green are manoeuvres
corresponding to barrel rolls

was affecting the second barrel roll. In any case, the moment models - especially the polynomial-based - appear capable
of capturing the moments involved with some of the aggressive manoeuvres despite unknown wind. This again shows
promise for the identification and development of outdoor quadrotor models.

VI. Analysis of identified models

While the model predictive performances give insight into how well the models fit the data, they do not alone
describe how realistic and useful the models actually are. It is therefore important to analyze the identified models
further to investigate their stability and sensitivity to the inputs. Indeed, while a model may give a good fit, any
instabilities therein limit its operating envelope and thus practicability. Moreover, the identified MetalBeetle models
are also implemented in a quadrotor simulation to evaluate their responses to simple step inputs to the attitude. Their
subsequent behavior should be feasible and realistic for them to be considered valid and useful. Consequently, the
analysis of the identified models discussed here entails a description of the influential states which modulate a models’
predictions and the associated stability of these terms - given in section VI.A - and finally a simulation of the models to
attitude step inputs is used to validate them in section VI.B.

A. Identified model structures & sensitivities

One of the benefits of the polynomial models is that their model structures provide direct insight into which terms
are influential to the model. Indeed, the selected regressors may be interpreted physically and may reflect some real
phenomena at play. Moreover, the additive accuracy of these regressors give an indication of the relative importance that
these regressors have for the model. While this input importance is more difficult to ascertain with the ANN models,
the final weights associated with the inputs of the model provide insight into which of these are influential states [19].
However, unlike the polynomial models, the interaction effects between these states captured by the ANN models is
much more difficult to determine.

Similarly, the model stability of the black-box ANN models are difficult to quantify while the covariances of regressor
coefficients of the polynomial models are a direct indication of their stability. For polynomial models, small regressor
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covariances indicate minimal variation of the associated regressor’s coefficient value, and thus imply a stable and reliable
model. In this paper, covariances are presented as a percentage of the associated regressor’s coefficient magnitude to
more easily compare the stability between regressors. A parallel may be drawn for the ANN models by investigating the
variance in a given input-weight pair over the final training epochs. Analogous to the polynomial covariances, it is
expected that a low weight variance implies a more stable model than those with high variances. Again, for inter-weight
comparisons, these variances are expressed as a percentage of their associated weight magnitude. Through these simple
analysis methods, the stability and reasonability of the influential model input states may be evaluated for all of the
identified MetalBeetle models.

1. Polynomial model of the MetalBeetle

The identified MetalBeetle outdoor polynomial model for F, harbors regressor instabilities and exhibits clear
contamination by wind. The associated regressors may be found in table 5 in section VIIL.A.5. Instabilities are
immediately apparent upon the addition of the first regressor, cos (8)@9,,, with a high covariance of 36.6% of the
coefficients magnitude. This high covariance, along with curious association of @;,,; with cos (6) and not sin (),
suggests that this regressor attempts to capture the component of the forces along F, produced by the total rotor speed,
and interaction effects therein, but is mislead by the contamination of wind in the measurement data. Therefore, it likely
fails to adequately model the intended phenomena. The influence of wind on the model is also apparent through the
inclusion of sin (y)u,,, (D;”m, through the association with the yaw angle, . Indeed, a reliance on i likely derives
from the offset of the quadrotor’s x-axis with the direction of incident wind to account for the unknown airspeed. Note
that the interaction of u,,, @ represents the effects of the propulsion system and the presence of the advance ratio
of the induced velocity, u,,, , may also encapsulate some thrust variance and blade flapping effects. Moreover, since
this regressor is the only one which explicitly includes a dependence on the wind direction, it may be a prominent and
significant effect. Indeed, other selected regressors, such as sin (6)u,,, @:0¢, also include this interaction. Hence, some
underlying dynamics may nonetheless be recognized by the polynomial F, model despite the prevalent wind. However,
the high covariance of the first selected regressor, and clear detrimental effects of wind, imply that the outdoor model is
invalid and unreliable.

Similarly, wind contamination incites instabilities for the outdoor MetalBeetle polynomial model of F),. Despite
this, some reasonable regressors constitute the final polynomial model. These regressors are summarized in table 6 in
section VIIL.A.5. The first selected regressor, sin (¢)@;.¢, is reminiscent of the first regressor of the F model but with
a low covariance (0.01% of the associated coefficient’s magnitude) and expected dependence on sin (¢). As such, the
outdoor F, model likely represents some of the underlying dynamics despite the incursion of unknown wind. However,
the effects of this wind are nevertheless evident in the model through regressors such as cos () /‘\2),-,1 @?,, which explicitly
include the yaw angle. Again, parallels may be drawn with respect to the outdoor F;, model, which elects a similar term
associated with the same states but modulated by sin (y). Hence, this lends further support to the hypothesis that the
interaction of u,, and @, is integral to describing the aerodynamic forces, and perhaps, is descriptive of high-speed
flight. Indeed, the addition of this regressor boosts the accuracy of the outdoor model from R? = 0.3453 to R = 0.4009.
Nonetheless, the inclusion of the yaw angle results in an invalid model. This model invalidity is further supported by
model instabilities from high covariances for some of the selected regressors. For instance, the forth regressor, @;o;p-,
hosts an unacceptable covariance of 190% of its associated coefficient magnitude.

In stark contrast to the outdoor MetalBeetle polynomial F and F, polynomial models, the F, model boasts stability
and elects mostly relevant regressors. However, the effects of wind still corrupt the regressor choices of the outdoor F,
model. The associated regressors are summarized in table 7 in the appendix (section VIII.A.5). Given the extensive
development of analytical thrust models in literature, it is perhaps unsurprising that the fixed regressors alone already
flaunt decent model accuracy (R? = 0.6210). Many of the subsequently selected regressors are reasonably associated
with the total rotor speeds, such as @?,,. Moreover, despite the presence of wind, there are traces of symmetries
between selected regressors. For instance, both cos (¢) u,,, @0 and cos (6’)\7,-,16),30, are selected as regressors and, while
different in composition, are likely intended to capture the component of thrust that contributes to forces along z while
in motion along x and y. These terms probably differ due to the effects of wind and over-fitting. Their appearance in the
model nonetheless accentuates the importance such symmetrical effects. The successive addition of regressors steadily
improves the model accuracy implying that no one regressor dominates the underlying dynamics. The associated
covariances of the regressors do not exceed 0.5% and therefore imply a stable model.

Likewise, the outdoor MetalBeetle polynomial model of M, selects reasonable regressors that are stable. The
selected regressors themselves may be found in table 8. Intuitively, the control rolling moment, i ,, total rotor speed,
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@rot, form components of many of the selected regressors. Examples include @;oritp, @ror P, and @yl p ity |, Which
advocates for their necessity in describing the underlying dynamics. This is especially true for the first selected regressor,
Wyorit p, Which promotes a significant jump in accuracy from R? =0.3092 to R? = 0.5848 for the training data subset.
Nonetheless, the effects of wind are apparent in the outdoor model due to its dependence on the yaw angle, through
cos (¥)@?2,,, which should otherwise not influence the model. Despite the contamination by wind, the selected regressors
for outdoor models show extremely low covariances (< 0.01% of the associated coefficient’s magnitude). Thus, the
identified outdoor polynomial M, MetalBeetle model is likely stable but invalid due to the wind contamination.

In contrast, the outdoor pitching moment, My, polynomial model of the MetalBeetle harbors regressors with
instabilities. The associated regressors may be found in table 9 and involve both reasonable and dubious selections.
Analogous to the M, models, many of the selected regressors are constructed with the control pitching moment, i, and
the total rotor speed, @;,. Again, both the indoor and outdoor models select ;. it as their first regressor, accentuating
its importance in capturing the underlying dynamics. Recall that @i, was also selected first for both M, models.
This strongly suggests that the linear interaction between @;,; and the corresponding control moment is descriptive of
some of the moment dynamics outdoors. However, the M,, model elects terms associated with the yaw angle, such as
cos (¢)@;,,, which should be inconsequential to the pitching moment model but appear due to the contamination of
unknown wind. Moreover, the outdoor M, model fosters an unstable regressor, @; o cf |7|, with a high covariance (19.7%
of the associated coefficient’s magnitude), added towards the end of the step-wise selection procedure. Subsequently,
the identified outdoor M, model may be considered unstable and unreliable.

The outdoor polynomial model for the yawing moment, M., elects both regressors that correlate well with the
underlying dynamics and some that are questionable. These regressors summarized in table 10. Peculiarly, the outdoor
yawing moment erroneously favors terms related to the control rolling moment, it,,. While the exact reason for this
curious preference is unknown, it is likely a symptom of the prevalent wind or over-fitting. Nonetheless, the conspicuous
linear interaction of @i, is again apparent in the yawing moment model. This lends support to the hypothesis of this
interaction being integral to describing all the moment dynamics. Moreover, a higher order variant, @, it;, is also
selected by the M, model. Consistent with all the identified outdoor models, the influence of the unknown wind in the
outdoor model is established through a yaw angle dependency in sin (i) |iig|ii, [>. Moreover, the outdoor M, model
maintains stability with low covariances for all regressors (< 0.06%). Hence, M, model may be considered stable, but
likely produces invalid results due to wind contamination.

2. Hybrid model of the MetalBeetle

The goal of the hybrid models is to augment the underlying polynomial predictions in an effort to improve accuracy.
To get a complete overview of the stability and sensitivities of the hybrid models, the ANN components may be
scrutinized. Accordingly, the weight magnitudes of the input layer, averaged over the last 10% of training epochs (i.e.
15 epochs), provides insight into any significant inputs recognized by the ANN compensators. The stability of the ANN
compensator is interpreted through the associated variability of these weights. For the hybrid force models, these weight
magnitudes and variances are respectively illustrated in fig. 25 and fig. 26. Likewise, fig. 27 and fig. 28 depicts those for
the hybrid moment models.

The outdoor hybrid model of F, exhibits clear dependency on the total rotor speed but suffers from consistent
instabilities, particularly with respect to the control moments. Indeed, the underlying polynomial model recognizes the
importance of @,,, but struggles to incorporate its effects due to the contamination of wind. Consequently, the high
weight magnitude of @;,, in the hybrid model may seek to remedy this. Given the prominence of this input, it may also
be the case that there are additional rotor interaction based effects which materialize in the outdoor flight regime. Other
inputs, although ancillary to @, involve the x and y component of the advance ratios u, and u, respectively. The
apparent relevance of uy, likely arises from the effects of wind. Likewise, the scattered importance of the attitude angles
- aside from those related to 8 - may also surface from wind effects and thus facilitate over-fitting. These dependencies
therefore suggest an unreliable model. Arguments of an unreliable hybrid model are also supported by instabilities
present in the ANN compensator. These instabilities appear to be concentrated on the control moments ii,, ii,, and i,
and may relate to the adjustments made by the controller to reject disturbances during flight. Perhaps there are also
some dynamics here which the hybrid model is struggling to fit. While other variances in the model are mostly low and
imply stability, the consistent instability of the control moments is a cause for concern and questions the reliability and
validity of the outdoor MetalBeetle hybrid model of F.

Contrarily, the outdoor MetalBeetle hybrid model for F, exhibits a more tranquil ANN compensator with better
model stabilities and more subtle weight magnitudes. These almost uniform weight magnitudes imply that the ANN
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model struggles to identify useful dynamics in the error residual of the underlying polynomial. The most notable weights
are associated with w;,; and v;;,. Collectively, these terms relate to the propulsion system of the quadrotor and, thus, the
improvements seen in model performance over the underlying polynomial likely stem from phenomena related to the
rotors and interaction effects therein. These may potentially be associated with the effects of thrust variance given the
reliance on v;,,. The scattered importance of the attitude angles implies over-fitting and the relatively high magnitudes
for the yaw angle, ¢, likely reflect the effects of wind. Despite this, the ANN compensator for the hybrid model of F
enjoys generally low variance weights. Therefore, the ANN compensator may be considered stable, although perhaps
not valid.

The outdoor MetalBeetle hybrid model of F, appears to capture additional phenomena that the underlying polynomial
model is oblivious to given the defined input significance. However, the associated variances in weights imply some
model instability. The ANN compensator attributes high magnitudes to @;,; and p,,, to encapsulate effects linked
to the rotor speeds and interactions therein. These inputs almost coincide exactly with the fundamental terms of the
analytical models of thrust variance and blade flapping. However, some of these interactions may involve the wind,
given the consistent and moderate weight magnitudes of cos (). Rather unexpectedly, the ANN compensator also
considers the control pitching moment, iz, a significant input. While the control moments are speculated to be relevant
to the dynamics of F7, the lonesome importance of it is perhaps more indicative of over-fitting. A potential explanation
for its prevalence, however, is the preponderance of FPV flights in the identification data which inherently involves more
pitch-based excitation. The majority of the weight variances of the ANN compensator are low, however, there are a few
scattered high variance terms which are a cause for concern. Of note are the instabilities associated with the pitch rate,
g, and yaw angle through cos (). Therefore, although reasonable dynamics may be recognized, predictions made by
the hybrid F, model should be interpreted with caution as they may be unstable.

In contrast to the force hybrid models, and rather unexpectedly, the ANN compensators display worse performance
for the outdoor models in comparison to their underlying polynomials. This is likely a result of inconsistent weight
magnitudes among the constituent ANN ensembles (refer to fig. 27).

This is evident for the identified outdoor M, hybrid model, which struggles to isolate influential inputs and harbors
some concerning model instabilities. While most constituent ANNS in the ensemble of the outdoor hybrid M, model
reasonably afford modelling importance to @;,; and i, not all do. Take for instance, the lack of significance of these
terms for the second ANN in the ensemble. It may be argued that this ANN has not converged, but the variability of
weight magnitudes among the remaining inputs is uncharacteristic of such non-convergence. The inability of the second
ANN to recognize to the emergent dynamics reflects the challenges of the modelling task and the risk of over-fitting in
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pensator component of the identified hybrid moment component of the identified hybrid moment models of
models of the MetalBeetle (Qutdoors). the MetalBeetle (Qutdoors).

such a hybrid approach. Rotor speed based effects appear to be important for describing the dynamics in the polynomial
error residuals, as @;,; hosts the highest weight magnitudes for the remaining ANNs. The contamination of wind
is evident through the high variance in input weights associated with cos () for the first ANN. Moreover, there is
some high input variance consistency across some of the constituent ANNs associated with the roll rate, p, which
is undesirable as it modulates some of the rolling moment dynamics. Through these high weight variances, and the
generally incoherent weight magnitudes among its constituent ANNs, the hybrid outdoor M, model is likely unstable
and invalid. This potentially explains some of the deterioration in performance experienced by this model over the
underlying polynomial.

Similarly, the outdoor hybrid model of the MetalBeetle pitching moment, M,, suffers from inconsistent weight
magnitudes with some high variance weights. Such inconsistencies are apparent through the scattered relevance of @y,
itg, and g across the constituent ANNs. While, collectively, these inputs modulate some of the dynamics behind M, the
lack of consistency is indicative of the ANN compensator struggling to extract emergent dynamics from the polynomial
model error residuals. Again, the offending ANN models may not be discounted as unconverged as they peculiarly
allocate high magnitudes to other inputs, such as it;,. Hence, these constituent ANNSs appear to seek inputs that over-fit
the training data. Indeed, this may also be a byproduct of the unknown wind contamination in the training data, which
complicates the modelling task. In any case, the outdoor hybrid model of M, may be considered unreliable and invalid.
While this model generally experiences low variances, there is a concerning high variance weight associated with ;-
which may lead to instabilities due to the dense construction of the ANNSs.

In contrast, the outdoor hybrid yawing moment, M, model of the MetalBeetle consistency associates high magnitudes
with justifiable inputs. However, some of the present instabilities are consequential for the outdoor models’ reliability.
All constituent ANNs agree on the significance of @;,; and the control yawing moment, i,, which understandably
influence the yawing moment. While the underlying polynomial also allocates importance to these terms, it may lack the
approximation power to capture some of the prevalent dynamics. Most of the associated weight variances are generally
low, with the exception of one notably unstable neuron. Unfortunately, this instability is associated with i, for the first
ANN in the ensemble. As i, is a significant modelling term, this instability is alarming and probably leads to poor and
unreliable predictions. As such, the outputs of the outdoor hybrid M, model should be interpreted with caution as they
are likely unreliable due to concerning instabilities.
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3. ANN model of the MetalBeetle

The weight magnitudes, averaged over the last 10% of training epochs, of the identified ANN force models of the
MetalBeetle and the variances therein are illustrated in fig. 29 and fig. 30 respectively.

The identified outdoor MetalBeetle ANN F, model allocates the highest weight magnitudes to the total rotor speed,
@tot, advance ratio of the induced velocity, u,,,, and, to a lesser extent, the pitch angle through sin (6). Again, these
inputs are associated with the effects of blade flapping and thrust variance discussed for the analytical models of the
quadrotor. These inputs are in agreement with the equivalent polynomial model for which these states form integral
regressors. Therefore, the ANN may recognize the effects of the rotor system on F, as modulated by the pitch angle.
Moreover, the outdoor model appears to allocate some importance the control pitching moment, iz, and the yaw angle,
through cos (¢). While if; may indeed be related to some underlying dynamics, the yaw angle is reflective of the effects
of wind. Such an influence of the yaw angle is also apparent in the corresponding polynomial model. The outdoor ANN
F model enjoys mostly low variance weights, which imply model stability. However, there may be some consistency in
relatively high model variances associated with the attitude angles (e.g. sin (¢)) which is a cause for concern. While
this may be a byproduct of the wind contamination, it may nonetheless lead to model instabilities.

In contrast, input importance is much less clear for the outdoor ANN F, model, which is perhaps reflective of the
difficulty in modelling task and contamination of wind. Nonetheless, the importance of w;,, and u,,, is again recognized,
which implies that at least some fundamental dynamics have been identified. However, the lack of significance allocated
to inputs expected to be related to the F (e.g. sin (¢)) casts doubt on the validity of the outdoor F,, ANN model.
Recall that such inputs are seen in the polynomial models. Nonetheless, the generally low weight variances and lack of
consistently in high variance-input pairs suggests model stability. However, there remain some high variance weights
(= 50%) which may propagate instability throughout the model, hence predictions should be interpreted with caution.

Contrary to the outdoor MetalBeetle ANN F, and F, models, the outdoor ANN F, model shows a clearer dependence
on inputs through established high weight magnitude terms. Rather intuitively, these are allocated to @;,; and y,,,.
These states are associated with the thrust variance and blade flapping effects and correspond well with the equivalent
polynomial model. The outdoor F, ANN model also recognizes some importance in ity and cos (). As discussed
for the hybrid F; model, the prominence of ii, may be a byproduct of the large number of FPV flights conducted
outdoors, or the presence of wind, or both. Likewise, the relative importance of cos (i) probably stems from the effects
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Fig. 29 Input layer weight magnitudes, averaged over the last 10% of training epochs, of the identified ANN
force models of the MetalBeetle (Outdoors).

62



Fx Fy Fe

Input

a
sin(¢) .
sin(6)
sin(y)
cos(9)

|

cos(y)

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Ensemble model

Fig. 30 Variance in input layer weights, taken over the last 10% of training epochs, of the identified ANN force
models of the MetalBeetle (Qutdoors).

of wind alone. While the model variances are generally low, there are a few concerning weights with unacceptably
high variances (i.e. & 100% of the corresponding weight’s magnitude). Although these are associated with low weight
magnitude terms, the instabilities may nonetheless propagate throughout the ANN model due to the dense construction.

The principal observations made for the hybrid outdoor moment models of the MetalBeetle are transferable to the
ANN-only models. In particular, the outdoor ANN models struggle to isolate significant inputs due to inconsistent
weight magnitudes across the ANN ensembles. These input weight magnitudes, averaged over the last 10% of training
epochs (i.e. 15 epochs), are depicted in fig. 31. The accompanying weight variances are illustrated in fig. 32.

Indeed, the identified outdoor ANN rolling moment, M, model of the MetalBeetle finds difficulty in describing any
coherent dynamics but sports generally low associated weight variances. Only shadows of the expected significant
inputs - such as p,,,, @s0:, and i, - are visible in the outdoor ANN M, model through scattered weight magnitudes
across the constituent ANNs for these inputs. This implies that the outdoor ANN model likely recognizes some of the
underlying dynamics but struggles to formalize these while getting distracted by irrelevant effects or noise. This perhaps
explains its poor performance with respect to the outdoor M, polynomial model. This inability to learn effectively is
also reflected by the relatively low weight variances of the outdoor ANN model, which imply stability (i.e. convergence).

In comparison, the identified ANN outdoor pitching moment, M,,, model of the MetalBeetle shows a clearer reliance
on some of the expected inputs but exhibits more instabilities than the M, model. Reasonably, the control pitching
moment, if,, emerges as the most important input followed by the the pitch rate, g, across all constituent ANNs. This
implies that the ANN M, model is able to recognize some of the fundamental dynamics. Moreover, the associated
variances are generally low, suggesting decent model stability and reliability. However, due to the presence of some
relatively high variances, the outdoor ANN M,, results should be interpreted with caution.

Contrarily, the identified outdoor ANN yawing moment, M., model of the MetalBeetle exhibits the highest
instabilities of the moment models and expresses anxiety in selecting significant inputs. Although, emergent inputs
are still visible through the yawing control moment, i, the total rotor speed, @;.;, and advance ratio of the induced
velocity, u,,,. These inputs correlate well with physical phenomena and the equivalent polynomial model. However,
there appears to be consistently high variances associated with sin () which may induce some unpredictable outputs,
especially given the prevalence changes in pitch during FPV flight. This implies an invalid outdoor ANN M, model.
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B. Simulation of identified models

Though the performance metrics may indicate that models perform well, or poorly, it is difficult to abstract this to
determine how useful the models actually are. Indeed, good performance is a promising start for a realistic model,
however, these metrics only evaluate such performance with respect to the measurement data. Therefore, in order to
verify if the identified models are indeed useful, a simple quadrotor simulation is developed. In this simulation, the
quadrotors are tasked with following fundamental attitude references, such as a step input to the pitch angle. Their
subsequent responses to these reference inputs may be evaluated for feasibility. Indeed, one of the main motivators
behind developing better quadrotor models is to be able to use them in simulation. As such, the quadrotor models
identified in this paper are ideally suitable for this purpose. To contextualize the results of the simulation, a brief
overview of the simulation platform is given prior to presenting the associated results.

The quadrotors (i.e. models) in the simulation are controlled via attitude, rate, and vertical velocity PID controllers.
Note that linear controllers, such as PIDs, are actually unsuitable for controlling a non-linear system like the quadrotor
across its entire flight envelope. Paradoxically, PIDs are exclusively employed by BetaFlight to facilitate the control
of the quadrotor. In BetaFlight, the non-linearities are circumvented through a form of adaptive control - effectively
localizing linear control around different parts of the flight envelope. Such control is beyond the scope of this research
and thus only a simple PID attitude, rate, and vertical velocity controllers are employed here. An illustration of the
control loop and simulation structure used here is given in fig. 33.

Briefly, the simulation is composed of an inner loop which controls the rotational rate of the quadrotor. Here, a
rotational rate command is transformed into a change in rotor speeds. The rotational rate command is obtained through
the attitude controller in the outer loop. The velocity controller is in a separate loop and controls the thrust of the
quadrotor to maintain altitude in the earth frame. Moreover, rotor actuation dynamics and saturation limits are imposed
for the simulation with parameters taken from the simulation of Sun et al. [21]. The rotor speeds are saturated to the
limits of the quadrotor used for model identification while the rotor dynamics restrict the rotational acceleration.

The initial state - composed of the attitude, velocity, and rotational rate - along with an initial rotor speed command
form the inputs to the simulation. At each simulation step, the current states, and aggregates thereof, are inputted into
the identified aerodynamic models to obtain the forces and moments. These are subsequently fed through the equations
of motion (i.e. eq. (3) and eq. (2)) to derive the state derivative, which is used to obtain the subsequent state (through
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numerical integration; specifically the explicit Euler Method***). The simulation runs at 100 Hz and is programmed
entirely in Python. It is important to note that there is a discrepancy between the body reference frame described in
section II (i.e. fig. 1) and the body reference frame used for the simulation. The identified models, and thus simulation,
follow the body reference frame of BetaFlight for simplicity in processing and interpretation (i.e. correlation with
measurements and video logs) since all measured states are recorded with respect to this reference frame. In BetaFlight,
the x-axis points forwards, y-axis to the left, and z-axis up’¥'.

All of the identified quadrotor models are first subject to a simulated hovering flight. While such flight is perhaps
outside the domain of validity for the models, it nonetheless provides valuable insight on their stability and inherent
biases. Therefore, the detailed analysis of the hovering flight is given in the appendix (section VIIL.B) with only a
summary given for the corresponding models. The hovering simulation flight is also used to help tune and verify that
the PID controllers are working as intended. Note that these controllers are largely the same across the polynomial-only,
ANN-only, and hybrid models with some slight modifications to improve, for example, damping characteristics. The final
PID values are summarized section VIII.C for each of the identified models. Moreover, the corresponding prediction
intervals (PIs) are also illustrated in the simulation results for insight on the models’ confidence.

1. Polynomial model of the MetalBeetle

The hovering simulation results of the outdoor polynomial model of the MetalBeetle, described in depth in
section VIIL.B.1, reveal the expected influence of wind. In particular, for = 0, the F harbors a non-zero constant
force (refer to fig. 77). This induces a runaway term in the corresponding velocity. Indeed, simulations of trimmed
flights did not eliminate this constant F, term, implying that it arises due to wind. It was found that this wind effect is
mostly modulated by @}, suggesting that the wind effects interact heavily with the rotor speed.

However, hovering flight is actually outside the domain of validity of the identified models since they are only
identified on segments of the data wherein relevant excitations are present. Therefore, to more representative of this, the
identified polynomial model’s response oscillating attitude step inputs is simulated.

The corresponding commanded rotor speed and attitude responses to oscillating simultaneous step roll and pitch
references are illustrated in fig. 34 and fig. 35 respectively. This particular input pattern is constructed to maintain
control of the quadrotor and ensure that the velocities do not exceed the validity limits of the model. Despite the vigorous
attitude changes (i.e. -0.8 to 0.8 rad), the outdoor MetalBeetle polynomial model is able to track the commanded

***Indeed, the forward Euler integration scheme can be notoriously unstable. However, it was found to be sufficient in this simulation and thus kept
for simplicity.
¥ Therefore, the BetaFlight axis system is still a right-handed system.
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Fig. 37 Moment response, along with associated pre-
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model of the MetalBeetle when subject to oscillating
roll and pitch angle step inputs.

attitude references satisfactorily. Indeed, these responses resemble the shapes of similar attitude commands seen in
the measurement data (see, for example, pitch and roll attitudes in fig. 40 and fig. 41 respectively) and thus imply that
the response dynamics and PID controllers are realistic. However, the attitudes occasionally struggle to meet their
references, which is undesirable. This arises from the commanded rotor speeds exceeding the upper saturation limits of
the rotors, as shown by the corresponding locations in fig. 34. Given the large rotations tasked of the quadrotor, the rotor
speeds quickly rise to the saturation limits due to the sub-optimal PID controller. Aside from these controller induced
rapid oscillations, the rotor speed responses also conform to physical expectations as the average rotor speed increases
when the quadrotor has a non-zero attitude in order to maintain altitude.

The associated force response during these oscillating step roll and pitch commands is depicted fig. 36. The effects
of wind are apparent in the simulated F response through the predominantly negative force. This is not reflective of
the measured force for similar manoeuvres, as shown in fig. 40. Indeed, through the velocity response depicted in
fig. 38, the apparent hesitation of the quadrotor to increase towards positive velocities is obvious. Note that, despite the
mostly negative force, positive velocities arise from the effects of gravity as the quadrotor tilts. Since the regressor
term, &;,,, induces this negative bias for F, (see hovering simulation results in section VIIL.B.1), the magnitude of this
negative force scales with the rotor speed. This explains the difficulty in increasing the velocity towards the positive.
The negative association of cD‘,‘U, likely stems from the (average) effects of the unknown wind. Physically, then, this
response may be interpreted as flying into the wind for positive velocities and flying away from the wind for negative
velocities. In contrast to the peculiarities of F, the Fy, force model reflects reality well. In fact, the F force response is
remarkably similar to the measurement data for similar attitude inputs, as shown in fig. 40 and fig. 41. Note, however,
that in the identification data, the thrust was also increased following a direction change to expedite these changes and
accelerate the quadrotor. This may explain some of the discrepancies between the simulation and reality. Likewise, the
associated velocity responses in fig. 38 conform well with expectations. Note, however, that they do not reflect the
outdoor measurement data well as seen in fig. 40 and fig. 41. This highlights the limitations of the outdoor velocity
estimation through GPS. Indeed, the simulated velocity response more closely matches the measurements for the indoor
experiments (see fig. 129 in section VIIL.D). As such, future research should investigate ways to improve velocity
estimations for outdoor data collection, including methods to directly measure the air speed. Similarly, the F, response
matches expectations wherein it increases following attitude changes in order to maintain altitude.

Furthermore, the simulated moment responses to oscillating roll and pitch step inputs are reasonable and reflect
instances of the associated attitude transitions. The simulated moment responses are depicted in fig. 37. These moments
are sharp and short in nature and resemble those found for similar inputs in the identification data, as illustrated by
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oscillating roll and pitch angle step inputs. oscillating yaw angle step inputs.

fig. 42. Note that the rapid initial oscillations seen in the simulated moment response arise from the rapid oscillations of
the PID controller. Such control inputs are not seen in the flight data, hence, this initial spike is due to the employed PID
controller for simulation. Nonetheless, the subsequent response - for which the PID outputs behave - conforms to reality.
Moreover, the associated PIs decrease in width for periods of greater excitation, reflecting the models’ confidence with
domains of the flight envelope similar to its identification set.

In order to evaluate excitations for the yawing moment, the response of the outdoor MetalBeetle polynomial models
to oscillating yaw step inputs is also simulated. The associated attitude response is presented in fig. 44. This response
demonstrates that the quadrotor is able to somewhat track the commanded yaw step inputs. There is a slight steady state
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Fig. 40 Outdoor flight data of taken from the Metal-  Fig. 41 Outdoor flight data of taken from the Metal-
Beetle depicting the change in force, F,, and velocity, Beetle depicting the change in force, F,, and velocity,
u, due to oscillating commanded pitch angles, 6. v, due to oscillating commanded roll angles, ¢.
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Fig. 43 Commanded rotor speed of the identified Fig. 44 Attitude response of the identified outdoor
outdoor polynomial model of the MetalBeetle when polynomial model of the MetalBeetle when subject to
subject to oscillating yaw angle step inputs. oscillating yaw angle step inputs.

error in the first step input, and a non-zero mini-step in the roll and pitch angles, which is the result of the saturation of
some of the rotors during this period as seen in fig. 43. This may be improved through a better altitude, or otherwise
thrust, controller as the current implementation attempts to reduce the rotor speeds due to a net increase in thrust during
the manoeuvre. This increase in thrust is induced by the rapid yaw rotation. To facilitate the yaw manoeuvre, rotors 1
and 4 shoot up to the upper saturation limit and rotors 2 and 3 to the lower. Given that the lower saturation bounds
are closer to the hovering thrust than the upper bounds, the average thrust increases (i.e. the midpoint between the
saturation limits is higher than the thrust needed to maintain hover). Indeed, after the final yaw manoeuvre, these rotor
speeds return to idle as would be expected of the real quadrotor.

The corresponding force and moment responses for these yaw step inputs are illustrated in fig. 45 and fig. 46
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respectively. The aforementioned yaw dependency of the force models is apparent in their simulated responses following
a change in yaw angle. Indeed, there is a non-zero F before any yaw inputs (similar to that of the hovering simulation in
section VIIL.B). However, after the first yaw step input, the force bias in the F changes and a non-zero force appears for
Fy. A similar exchange of forces is apparent following the second yaw step input. This force exchange is a consequence
of unknown wind in the identified outdoor models coupled with a natural transfer of force from x to y and vice versa
due to inertia following such a yawing manoeuvre with non-zero velocities. As it is difficult to visualize what these
force changes entail, fig. 39 depicts the velocity response of the quadrotor, for which the wind direction dependencies
of Fy and F), are especially prominent. Moreover, the force response of F, exhibits spikes in force that are in-line
with the yaw step transitions. A positive force is a result of the aforementioned net increase in average rotor speeds
induced by the controller to facilitate a yaw angle change. As such, this increase in force is reasonable and reflects
expectations. Likewise, the moment responses are rational. Both M, and M, are predominately near-zero and show
minimal responses. The minute exictations to M, and My, occur around regions of yaw step transitions, where the rotor
speeds become saturated due to the altitude controller lowering the overall thrust. Spikes in the yawing moment, M,
facilitate the yaw step transitions. These peaks are wider than the M, and M, counterparts and relate to the relatively
slower yaw dynamics. Again, the simulated M, responses resemble those found in the identification data as shown in
fig. 42. Hence, the moment responses are sensible and reflect the underlying physics of the quadrotor.

While the outdoor MetalBeetle polynomial models appear to capture some of the underlying quadrotor dynamics,
the contamination of unknown wind is apparent and produces some erroneous force responses for F, and Fy, modulated
by the yaw angle. As such, it is unsuitable as a general outdoor model. Nevertheless, these results show promise for
useful outdoor models, especially if wind is properly accounted for and velocity estimation accurate.

2. Hybrid model of the MetalBeetle

A detailed analysis of the hovering simulation of the hybrid outdoor MetalBeetle model can be found in sec-
tion VIIL.B.2. Briefly, these hovering flight simulations show clear model instability whereby the ANN compensators
appear to propagate the runaway velocities of the underlying polynomial force models to the rest of the models.
Subsequently, the rotor speeds saturate while attempting to maintain control of the quadrotor and ultimately result in a
loss of control. As aforementioned, the hovering flight is out of the domain of validity of the identified models. However,
it nonetheless provides valuable insights on how the ANN compensators interact with the underlying polynomials and
the resultant influence on the aggregate model predictions. A more representative evaluation of the hybrid model’s
performance is to simulate its response to oscillating attitude step inputs, as is done in the identification data.
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of the MetalBeetle subject to oscillating roll and pitch of the MetalBeetle subject to oscillating roll and pitch
step inputs. step inputs.

Accordingly, the simulated response of the outdoor MetalBeetle hybrid model to oscillating roll and pitch step
inputs is summarized in figs. 47 to 50. By virtue of these oscillating step inputs, the hybrid model is able to maintain
stability. The attitude response, illustrated in fig. 48, shows that the hybrid model is able to satisfactorily track the
demanding reference signal. Several kinks in the attitude response are observable and correspond to instances where the
commanded rotor speeds encounter the saturation limits, either through a commanded step response itself or to maintain
control. Consider, for example, the saturation of rotor 2 at around 2.8 seconds in fig. 47 which coincides with a loss of
tracking for the roll and pitch angles and a induces yaw response. These responses parallel those found for the equivalent
polynomial model. Aside from the apparent saturation of the commanded rotor speeds - which should not occur so
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easily in reality - the rotor speed responses appear sensible. Appropriate spikes in the commanded rotor speed occur to
motivate attitude changes and the average rotor speeds increase for non-zero roll and pitch in order to maintain altitude.

The corresponding force responses are depicted in fig. 49. Again the predominately negative bias - likely induced by
the unknown wind - of the underlying polynomial is apparent in the response of F. To visualize the effects of this
force, the associated velocity response is shown in fig. 51. Indeed, the velocity is reminiscent of that of the underlying
polynomial. Again, despite the predominately negative F, the positive velocity is afforded by the effects of gravity in
the simulation as the quadrotor pitches. As with the underlying polynomial model, the simulated F response does
not resemble the measured Fy for similar manoeuvres (refer to fig. 40) and highlights the detrimental effects of wind
for the models. Furthermore, in comparison to the underlying polynomial, similarities between the measured F), and
the simulated response fade for the hybrid model. While the hybrid model undoubtedly draws inspiration from the
measured data in fig. 41, it affords a more step-like signal which is less reflective of the true measurements than the
underlying polynomial. However, this may be due to the greater rotor saturation experienced by the hybrid model.
Given the poor velocity estimations of the GPS module, the simulated velocity response along y, v, does not match
the measurement data. However, it is nonetheless similar to the velocities seen for the indoor measurement data (see
fig. 129 in section VIIL.D), which lends some support to the validity of the hybrid F,, model. Similarly, the hybrid F,
model sensibly demonstrates an increase in force for the duration of the step inputs to maintain altitude.

Likewise, the simulated moment responses to the oscillating roll and pitch step inputs - illustrated in fig. 50 - are
realistic. Indeed, the rapid sine-wave like moment excitations are observable in the simulated responses of M, and M,
while the M, moment remains largely near-zero. Note that the difference in magnitude between the responses of M
and M, peaks is, in part, due to differences in the moment of inertia. However, the contamination by wind may also
contribute to this discrepancy. The simulated moments, including this magnitude difference, are in accordance with the
measured moment responses for similar inputs observable in outdoor flights, as shown in fig. 42. These responses are
also in agreement with the polynomial model simulation.

In contrast, the simulated response of the hybrid model to oscillating yaw step inputs does not resemble the underlying
polynomial. Indeed, the attitude response of the quadrotor during this manoeuvre, illustrated in fig. 54, demonstrates
that it is able to track the first yaw step but fails to do so with the second step. Interestingly, the tracking of the first yaw
input is better than the underlying polynomial but that of the second is much worse. Moreover, during the second yaw
step command, the other attitudes diverge from zero, which is undesirable. The reasons behind this become apparent in
the commanded rotor speed responses, depicted in fig. 53, which show the saturation of multiple rotors just before and
during the second step input.

Again, the ANN component of the hybrid models likely instigates the divergence of the attitudes through the
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tion intervals, of the identified outdoor hybrid model of
the MetalBeetle subject to oscillating yaw step inputs.

propagation of runaway velocity terms to the moment models, culminating in erroneous predictions. Indeed, through
the simulated force response for oscillating yaw step inputs in fig. 55, the negative bias of F) is obvious and induces a
runaway u velocity as shown in fig. 52. The Fy, model mostly behaves until the onset of the instabilities. However,
unlike the underlying polynomial model, the obvious exchanges in force between Fy and Fy, due the first yaw manoeuvre
are absent. This is also apparent in the velocity responses in fig. 52. This may be due to a lack of response in the roll
and pitch attitudes during the yaw manoeuvre for the hybrid simulation. However, due to a significant change in yaw for
the second input, an exchange of velocities between u and v is observed in fig. 52. Although, this manoeuvre appears to
instigate instability in the model, accentuating the issues of the hybrid model. These results highlight the significant
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influence of the ANN compensator on the hybrid model predictions. As with the other forces, the F, become unstable
following the second yaw step command and stimulates a runaway velocity, w, as seen in fig. 52. However, F, exhibits
an expected increase in force during the first yaw step input due to the net increase in rotor speeds induced by the yawing
manoeuvre.

Likewise, prior to the instabilities, the moment responses depicted in fig. 56 reflect expectations. M, and M,
predominantly remain near-zero while M, exhibits the characteristic sine-like pulse of a moment response. Note that the
simulated M, peak is wider than the measurement data, in fig. 42. This is likely due to the relatively long rise time of
the simulated yaw response, especially in comparison to the faster roll and pitch responses. This can be ironed out with
a better controller, through an increased proportional P gain. Interestingly, the associated PIs of the moment models
appear to widen in anticipation the instabilities, emphasizing the utility of these PIs.

Overall, the simulation results of the identified outdoor MetalBeetle hybrid model reveal obvious instabilities and
negate its validity and utility. While the biased Fy of the underlying polynomial model is also invalid, the ANN
components of the hybrid model propagate these instabilities throughout the rest of the hybrid model, rendering it worse
than its underlying polynomial. As such, it may be valuable to investigate strategies to mitigate this effect in the ANN
models, such that malicious states do not contaminate all the models.

3. ANN model of the MetalBeetle

The hovering simulations of the identified ANN model of the outdoor MetalBeetle are outlined in depth in
section VIII.B.3. Through these simulations, it is found that the F; ANN model produces an unrealistic thrust profile
(refer to fig. 88) wherein the lowest predicted forces are much greater than zero. Subsequently, the quadrotor is constantly
accelerating upwards, even with non-zero attitudes***, and quickly leads to runaway velocities. As with the hybrid
model, due to the dense architecture of the ANN models, these runaway terms dominate the model predictions and
induce instability. Although the input states for the ANN models are normalized, the erroneous thrust model itself may
arise from asymmetries in the F, identification data, which has mostly positive thrust.

While this may be argued as a byproduct of evaluating the ANN model’s response beyond its domain of validity,
the unstable characteristics of the outdoor MetalBeetle ANN model persist in the simulations of oscillating attitude
step inputs even though such inputs are more representative of the identification data. Therefore, the identified outdoor
MetalBeetle ANN model is likely invalid altogether.

The futile efforts of the PID controller to maintain control of the quadrotor are apparent in the incredibly oscillatory
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nature of the commanded rotor speeds, depicted in fig. 57 oscillating roll & pitch step inputs and fig. 63 for oscillating
yaw step inputs. The commanded rotor speeds spend most of their time in a saturated state and primarily oscillate
between the saturation bounds. Such behaviour is undesirable and in disagreement with the adequate control of the
polynomial models. Nevertheless, the outdoor MetalBeetle ANN model is initially able to follow the commanded step
inputs, as shown in fig. 58 for oscillating roll & pitch step inputs and fig. 64 for oscillating yaw step inputs, albeit with
poor damping characteristics for the roll and pitch angles®$¥. However, after this initial success, the ANN model is

§38Note that a trade-off between high frequency rotor speed changes and low frequency tracking oscillations is made as both are influenced by the
derivative component of the PID controller.
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unable to track the subsequent attitude step commands and instead overshoots considerably. While the performance can
be improved with a better PID controller, the rotor speeds are already much too saturated and imply that the ANN model

is difficult to control.

This is evident in the force responses of the oscillating attitude step inputs depicted in fig. 59 for roll & pitch
inputs and fig. 65 for yaw inputs. In both cases, the force responses of F, and F,, appear to respond appropriately to
the attitude step inputs by exhibiting corresponding oscillations. Moreover, in accordance with the polynomial and
hybrid equivalents, the F, responses also increase following attitude changes. However, the persistent biases in the
force models, particularly for F, induce runaway velocities (see fig. 61 and fig. 62) and initiate model instability. For



example, with the force responses to oscillating roll & pitch inputs (fig. 59), the F, rarely rises above zero newtons and
the F, model exhibits a positive force consistently above 5 N. For reference, the weight of the quadrotor is 0.396 kg
(= 4 N). Hence, the predicted F, force is much too high. The subsequent runaway velocities quickly render the ANN
models’ predictions invalid as they extend beyond the domain of validity of the model and propagate instability through
all the densely constructed ANN models. The rapid changes in velocity are also quite unrealistic given the apparent
magnitudes - around 50 to 100 N - at play.

Likewise, the moment model responses of the oscillating roll & pitch step inputs, shown in fig. 60, and yaw step
inputs, given by fig. 66, reveal the oscillatory roots of the unstable attitudes. These responses also reflect the instabilities
ubiquitous throughout the model. Again, the associated PIs appear to widen with the growing model instabilities,
accentuating the poor confidence in model predictions. This widening of PIs is particularly prominent for the oscillating
yaw step inputs.

Contrary to the relatively good performance metrics enjoyed by the ANN model of the outdoor MetalBeetle, the
simulation results imply that this model harbors little utility and demonstrates unrealistic predictions. Again, perhaps
not all of the constituent ANN models are poor, but the F, ANN model is definitely invalid. It is suspected that most, if
not all, of the outdoor MetalBeetle ANN models’ infeasible responses propagate from this offending F; model.

VII. Conclusion

In this paper, outdoor quadrotor models are identified which accurately capture high-speed flight of up to 19 ms™!
and aggressive manoeuvres - such as punch-outs, flips, and barrel rolls - despite the contamination of unknown wind for
the first time. This is facilitated through the development of a modular system identification pipeline that is compatible
with outdoor high-speed flight and aggressive manoeuvring along with a complementary simulation platform employed
to validate the identified models. Drawing inspiration from previous successes in quadrotor model identification,
polynomial stepwise regression, artificial neural networks (ANNSs), and a novel hybrid approach first proposed in this
paper combining the two techniques are implemented in the pipeline to identify the outdoor models of the MetalBeetle.
Moreover, the subsequent model predictions are accompanied by prediction intervals (PIs) which describe the models’
confidence in their predictions. From the simulation results, the estimated PIs are found to reflect growing uncertainty
in the model inputs and may forecast model instability.

One of the challenges faced with outdoor model identification is the accurate estimation of the quadrotor’s state,
especially the linear velocity. Here, a commercially available GPS module is employed for linear velocity and position
estimation of the MetalBeetle. Unfortunately, strong wind of up to 6 ms~!' with gusts of up to 10 ms~! plagued outdoor
data acquisition. Through an analysis of the model structures and sensitivities, the contamination of wind is evident for
the outdoor models through an explicit dependence on the yaw angle. Nonetheless, the outdoor models are still capable
of producing faithful representations of the measured aerodynamic forces and moments, particularly during aggressive
manoeuvring such as punch-outs, barrel rolls, front-flips and back-flips. In fact, much of the modelling success enjoyed
by the outdoor models is unrelated to the velocity and instead attributable to emergent effects associated with the total
rotor speed. Therefore, this term is likely essential for explaining the underlying dynamics.

Simulations of the identified models’ responses to oscillating attitude step commands show mixed results between
the system identification techniques. The polynomial and hybrid models’ responses to oscillating roll and pitch step
inputs are reminiscent of the measurement data when subject to similar inputs, hence some fundamental outdoor
dynamics have been recognized by these models despite the wind contamination. Nonetheless, the effects of wind are
still apparent in the step attitude responses through non-zero force biases. The hybrid model fails to track yaw step
inputs whereas the polynomial does not. Therefore, it is found that the hybrid approach, as configured in this paper, does
not achieve compelling performance improvements over the underlying polynomial model. In fact, the corresponding
hybrid models only propagate the wind contaminated polynomial force model errors throughout the rest of the model
through the dense ANN architecture, culminating in instabilities due to quickly saturating rotor speeds. Likewise, the
ANN-only outdoor models suffer from an unrealistic F, model that produces erroneous thrust predictions, which also
subsequently permeate instability through the rest of the ANN models. Consequently, the identified ANN models fail to
track any of the commanded attitude step inputs and are found to be completely invalid, despite seemingly good model
fits. Therefore, contrary to expectations, the outdoor polynomial model produces the most realistic responses as it is
able to appropriately track oscillating roll, pitch, and yaw step inputs and exhibited similar force, velocity, and moment
responses as the measurement data subject to similar input commands. Furthermore, through these simulations, the PIs
for all models were found to increase with the growing uncertainty in the system and appear to forecast instability. This
emphasizes the utility of the PIs. Given the results of the simulation and obvious contamination of wind, the identified
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models cannot be considered valid or useful for general simulation. Nevertheless, the polynomial models are the most
practical for modelling as they are easy to interpret, not computationally demanding, and intuitive to tune controllers for.
Therefore, these results promote the use of the polynomial models for outdoor quadrotor identification.

While the results of this paper show promise for the developed system identification pipeline, they also give rise to
numerous recommendations and future avenues of research. Perhaps the most pressing concern is the development of
better velocity estimation schemes for outdoor applications. To this end, future research should investigate and validate
airspeed sensors, such as pitot tubes, to facilitate velocity estimation as the GPS sensors are evidently insufficient. Until
then, future outdoor flights should be conducted in windless conditions for reliable data. Related to data collection,
more manoeuvres which excite the moments, particularly the yawing moment, should be identified and conducted given
their sparsity in the current data sets. Indeed, all employed system identification techniques struggled with the moment
model identification. Moreover, many interesting effects consistently emerge in the polynomial model structures for the
outdoor models. Hence, the significance of these effects, and perhaps their relation to physical phenomena, should be
examined in future work. This may lead to the discovery of potentially new, quadrotor-specific, fundamental modelling
terms. Accordingly, further avenues of research pertaining to improving the models would be to develop rotor-local
models which may better capture interactions effects. Furthermore, reasons explaining the apparent difficulty of the
ANN models to identify an appropriate F, model should be investigated. Given that the hybrid approach suffers from
an already invalid underlying polynomial model, its performance with respect to a valid polynomial model should
be determined to truly establish the feasibility of this approach. Indeed, alternative hybrid approaches may also be
prototyped, such as the combination of model constituents from different system identification techniques. For example,
the use of the ANN F, and polynomial F, in tandem. Similarly, more advanced system identification techniques, such
as simplex splines, may be beneficial to address issues arising from different flight domains. Given the simplicity of
the ANN used here, alternative ANN configurations, for example recurrent neural networks, and structures may also
be implemented in the pipeline. Finally, in order to make further advancements towards a functional online system
identification algorithm, the computational complexities and feasibility of the system identification techniques for
real-time model identification should be determined, including the subsequent resource and hardware requirements
these techniques impose. Nonetheless, the results of this paper make confident strides towards the advancement of
quadrotor models.
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VIII. Appendix

A. Outdoor MetalBeetle results: Extra

In this section, supplementary plots and tables associated with the results of the identified outdoor models of the
MetalBeetle are presented.

1. Plots of error residuals of identified outdoor models
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Fig. 67 Error residuals of the identified polynomial Fig. 68 Error residuals of the identified polynomial
force models of the outdoor MetalBeetle. moment models of the outdoor MetalBeetle.

2. Plots of autocorrelation of error residuals of identified outdoor models
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Fig.69 Autocorrelation of the error residuals of the identified polynomial force models of the outdoor MetalBeetle.
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3. Full identified moment model performances

Table 4 Summary of the model performances of the identified ANN-only, Polynomial-only, and Hybrid moment
models for the MetalBeetle (Outdoor flight). The NRMSE and R? describe the accuracy of the model predictions
with respect to the full and test data sets. Also shown are the quality metrics for the model prediction intervals in

the form of the PICP and MPIW.

Autocorrelation of the error residuals of the identified polynomial moment models of the outdoor

Mx
NRMSE R2 PICP MPIW
Model
Full Test Full Test Full Test Full Test
ANN 0.0300 0.0320 -0.7392 -0.7682 94.6799 93.9284 6.8186 7.4659
Poly 0.0258 0.0276 -0.2833 -0.3080 96.6600 95.9430 11.4636 11.3289
Hybrid 0.0252 0.0267 -0.2221 -0.2258 98.8612 98.5824 16.7412 16.9927
My
NRMSE R? PICP MPIW
Model
Full Test Full Test Full Test Full Test
ANN 0.0304 0.0321 0.0693 0.1323 95.1931 94.4377 8.0847 8.4023
Poly 0.0309 0.0335 0.0378 0.0556 97.8895 97.4668 21.8770 21.8470
Hybrid 0.0397 0.0415 -0.5905 -0.4516 99.0548 98.8535 26.3385 26.2501
Mz
NRMSE R? PICP MPIW
Model
Full Test Full Test Full Test Full Test
ANN 0.0278 0.0278 0.0103 -0.0762 94.4592 94.3738 7.6167 8.5046
Poly 0.0355 0.0375 -0.6098 -0.9564 97.3349 97.0472 18.2845 19.7312
Hybrid 0.0346 0.0362 -0.5325 -0.8305 98.3357 98.1689 19.9518 21.6178
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4. Plots of model predictions for validation flights

In this subsection, complementary plots of the force and moment predictions of unseen (i.e. validation) flights for
MetalBeetle are shown. In particular, the remaining force and moment plots of the validation flight which are not
illustrated in section V.

15
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—— Hybrid

-=- Measurement
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=15

Time [s]

Fig. 71 Comparison of the identified ANN-only (in purple), Polynomial-only (in blue), and Hybrid (in magenta)
models predictions of Fy for flight 35 (outdoor untrained flight) of the MetalBeetle. Also shown is the measured
F, response (black dotted line). This flight was an line-of-sight outdoor flight in windy conditions (wind speed
~ 6 ms~! with gusts of up to ~ 10 ms~!). The yellow highlighted region denotes backward flight away from the
wind while the green highlighted region denotes forward flight into the wind.
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Fig. 72 Comparison of the identified ANN-only (in purple), Polynomial-only (in blue), and Hybrid (in magenta)
models predictions of F, for flight 35 (outdoor untrained flight) of the MetalBeetle. Also shown is the measured
F, response (black dotted line). This flight was an line-of-sight outdoor flight in windy conditions (wind speed
~ 6 ms~! with gusts of up to ~ 10 ms~!). The yellow highlighted region denotes backward flight away from the
wind while the green highlighted region denotes forward flight into the wind.
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Fig. 73 Comparison of the identified ANN-only (in purple), Polynomial-only (in blue), and Hybrid (in magenta)
models predictions of M, for flight 35 (outdoor untrained flight) of the MetalBeetle. Also shown is the measured
M, response (black dotted line). This flight was an line-of-sight outdoor flight in windy conditions (wind speed
~ 6 ms~! with gusts of up to ~ 10 ms~!). The yellow highlighted region denotes backward flight away from the
wind while the green highlighted region denotes forward flight into the wind.
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Fig. 74 Comparison of the identified ANN-only (in purple), Polynomial-only (in blue), and Hybrid (in magenta)
models predictions of M for flight 35 (outdoor untrained flight) of the MetalBeetle. Also shown is the measured
M, response (black dotted line). This flight was an line-of-sight outdoor flight in windy conditions (wind speed
~ 6 ms~! with gusts of up to ~ 10 ms~!). The yellow highlighted region denotes backward flight away from the
wind while the green highlighted region denotes forward flight into the wind.

5. Identified polynomial model structures

In this subsection, the regressors of the identified polynomial models of the outdoor MetalBeetle are summarized.
Descending down the tables gives the order of selection and in grey are the fixed regressors. Also shown are the
associated covariances and cumulative accuracy contribution of each regressor.

Table5 Identified polynomial model of C for the MetalMeetle (Outdoors). The order of the tabulated regressors
indicates their selection order, with the fixed regressors appearing first in grey rows. Along with each of the
selected regressors, their associated coefficient values, and corresponding coefficient variances as a percentage of
this value are shown. The coefficient of determination, R2, describes the fit of the model upon the addition of
each regressor during training.

Regressor Coefficient Covariance R?

bias 5.061E-02 0.0162 0.0000
7 6.253E-02 0.0346 0.0016
sin (9)\7%,! -1.008E-05 0.0000 0.0022
cos (8)@?,, 3.727E+00 36.6085 0.1806
@r0tq 1.184E+02 1.4878 0.2745
sin (0) iy, Dror  1.947TE+00 0.0165 0.3349
q -2.461E+01 0.5318 0.3618
BtV -3.886E+00 0.1027 0.3811
o}, -7.382E+01 1.3368 0.3960

sin W)y, @3, 4445E+00  0.1915  0.4067
sin (0)u, @ror  -1.398E-01  0.0058  0.4168
@roril|P2W 7.406E+00 03267  0.4290

Doty 6.817E-01 0.0407  0.4380
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Table 6 Identified polynomial model of C, for the MetalMeetle (Outdoors). The order of the tabulated regressors
indicates their selection order, with the fixed regressors appearing first in grey rows. Along with each of the
selected regressors, their associated coefficient values, and corresponding coefficient variances as a percentage of
this value are shown. The coefficient of determination, R%, describes the fit of the model upon the addition of
each regressor during training.

Regressor Coefficient Covariance R?

bias -1.367E-02 0.0260 0.0000
v 4.170E-01 0.0278 0.0088
sin (¢)\7?n 8.875E-06 0.0003 0.0096
Sin (@) @yor -3.731E+00 0.0117 0.2612
QtorP -1.815E+02 2.4921 0.3453
cos ((//),u‘%m @?,,  6.899E-01 0.0146 0.4009
Brot P 5.308E+03 190.6813  0.4240
Ororilp|ity| 2.289E+00 0.0707 0.4399
p 3.335E+01 0.7794 0.4534
P -1.072E+03 50.5911 0.4688
Bror |V -4.724E+00 0.1536 0.4790
3 -5.141E-01 0.0329 0.4894
sin (¢)]a|* 3.824E-01 0.0275 0.4978

Table7 Identified polynomial model of C, for the MetalMeetle (Outdoors). The order of the tabulated regressors
indicates their selection order, with the fixed regressors appearing first in grey rows. Along with each of the
selected regressors, their associated coefficient values, and corresponding coefficient variances as a percentage of
this value are shown. The coefficient of determination, R2, describes the fit of the model upon the addition of
each regressor during training.

Regressor Coefficient Covariance R?

bias 3.218E-02 0.1640 -0.0000
@?,, -3.457TE+00 0.9322 0.6187
(@® + %) -1.112E-01 0.0535 0.6192
(Vin —W)? 1.451E-05 0.0000 0.6210
w 2.078E-02 0.0765 0.6210
cos (@) fhy,, Dror  8.373E-01 0.0545 0.7424
@}, 2.970E+02 0.4999 0.7759
Oror|q] 2.669E+01 0.3324 0.7993
cos (¢) 2, -1.361E+01 0.1009 0.8130
sin (8)@3,, -1.574E+01 0.2042 0.8227
Oror|iy] 6.850E+00 0.1481 0.8315
cos (6)pty,, -1.583E-01 0.0092 0.8383
cos (¥)|v] 2.415E-01 0.0053 0.8434
cos (8)Vin@;,, -3.915E-01 0.0140 0.8471
|ty | -9.813E-01 0.0455 0.8500
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Table8 Identified polynomial model of C; for the MetalMeetle (Outdoors). The order of the tabulated regressors
indicates their selection order, with the fixed regressors appearing first in grey rows. Along with each of the
selected regressors, their associated coefficient values, and corresponding coefficient variances as a percentage of
this value are shown. The coefficient of determination, R%, describes the fit of the model upon the addition of
each regressor during training.

Regressor Coefficient Covariance R?

bias -1.568E-05 0.0000 0.0000
p -5.813E-03 0.0032 0.0002
ip -3.920E-03 0.0001 0.3092
Ororilp 2.583E-02 0.0001 0.5848
J)mtﬁ; 3.252E-03 0.0001 0.6202
Orortlp ity -7.680E-03 0.0002 0.6379
cos (@)t p i, > 6.547E-04 0.0000 0.6522
cos ()@, -9.156E-04 0.0001 0.6615
sin (¢) @}, -6.530E-02 0.0041 0.6685
sin () py,, @2,,  3.799E-03 0.0003 0.6750
sin (¢)ﬁ§, -6.565E-04 0.0002 0.6781
@rot P 2.834E-02 0.0094 0.6808

sin (¢)puy, — -8.341E-05  0.0000  0.6834

Table 9 Identified polynomial model of C,, for the MetalMeetle (Outdoors). The order of the tabulated
regressors indicates their selection order, with the fixed regressors appearing first in grey rows. Along with
each of the selected regressors, their associated coefficient values, and corresponding coefficient variances as a
percentage of this value are shown. The coefficient of determination, R, describes the fit of the model upon the
addition of each regressor during training.

Regressor Coefficient Covariance R?

bias 6.022E-05 0.0000 0.0000
q -2.916E-03 0.0010 0.0001
iy 1.844E-03 0.0000 0.2389
@rorily -1.022E-02 0.0001 0.3262
Doty -1.356E-03  0.0001  0.3741
sin (0) v, @3, 4.021E-03 0.0004  0.3851
@tor§° 8.806E-01 0.0570 0.3974
q|v|w? 2.385E-02 0.0036 0.4073
cos (Y@}, -3.659E-03 0.0006 0.4149
iig| oW -1.195E-03 0.0002 0.4230
sin (¥))a?|p]*>  -1.005E-03 0.0002 0.4301
Dio1G°|F| -7.923E+01 19.7461  0.4352
sin (0)i? -3.601E-04 0.0001 0.4404
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Table 10 Identified polynomial model of C,, for the MetalMeetle (Outdoors). The order of the tabulated
regressors indicates their selection order, with the fixed regressors appearing first in grey rows. Along with
each of the selected regressors, their associated coefficient values, and corresponding coefficient variances as a
percentage of this value are shown. The coefficient of determination, R?, describes the fit of the model upon the
addition of each regressor during training.

Regressor Coefficient Covariance R?

bias 1.905E-05 0.0000 0.0000
7 -2.196E-03 0.0010 0.0016
iy 5.916E-04 0.0000 0.1255
Qtotlly -3.787E-03 0.0001 0.2045
@rotlitg|*lipli,  1.559E-03 0.0002 0.2264
Brority -3.072E-04 0.0000 0.2401
sin () |ig ||, > -9.452E-04 0.0001 0.2522
liig i, 4.686E-04 0.0001 0.2610
i, ]? -6.710E-04 0.0001 0.2707
Oror | PIF -2.672E-01 0.0576 0.2772
Apluy |2y%m 1.352E-05 0.0000 0.2829
121173 w -1.891E-02 0.0026 0.2866
|p||7|w3 2.193E-02 0.0051 0.2919

B. Detailed hovering simulation results of identified MetalBeetle models

The identified models of the outdoor MetalBeetle are placed in the quadrotor simulation to evaluate their responses
to hovering flight. The hovering flight is used to modify the PID controllers and provides for a baseline understanding of
the models’ performances. The subsequent simulation results of the identified polynomial-only, hybrid, and ANN-only
outdoor models of the MetalBeetle are summarized here.

1. Polynomial model of the MetalBeetle

The rotor inputs and subsequent attitude response of the polynomial model of the outdoor MetalBeetle for hovering
flight are illustrated in fig. 75 and fig. 76 respectively. Surprisingly, despite the poor model performances and
contamination of wind, the polynomial model appears to be able to maintain a near-idle rotor speed with attitudes
tending to zero. Collectively, these results suggest that the model is stabilized.

However, instabilities are apparent in the force responses of the quadrotor, depicted in fig. 77. This is expected due
to the contamination of wind. The F, model exhibits a non-zero force during hover while all other forces realistically
tend to zero. Various trimmed flight conditions, with positive and negative attitudes, of the MetalBeetle were also
conducted to investigate the effects on this constant force. However, no matter the trimmed condition, this constant term
persisted at some point in the simulation. For example, the initial forces may be around zero but after some time the F
would slowly converge back to this negative bias. It is found that the term, @?,, introduces this non-zero force in Fy (see
fig. 79). This explains the persistence of this force bias, given the sole dependence on the rotor speed and apparent
invariance of the velocity. Recall from the polynomial structures that yaw - and thus wind - is introduced to F model
through sin () and F, model through cos (¢). In the hover condition, ¢ = 0, and thus the F model may lack this wind
correction term and subsequent experiences a force bias.

Conversely, the corresponding moment responses do not appear to harbor any instabilities in the hovering condition.
These responses are shown in fig. 78. Aside from small oscillations at the beginning of the response associated with
stabilizing attitude corrections, these moments exhibit the expected behaviour as they are equal to zero during hover.
The associated PIs are compelling as they imply a lower confidence for the pitching moment, M, model, which is
associated with the non-zero Fy force. Although the M, M PIWs are found to be wider than M,, they are similar to
those of M. Hence, there may be a link between the moment confidence and the force discrepancies or, more broadly,
direction of incident wind. For all models, the PIs during hover are generally large and reflect the uncertainty in this
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condition - which is outside the envelope of the training data.

2. Hybrid model of the MetalBeetle

With respect to the hovering flight simulation of the outdoor MetalBeetle hybrid model, fig. 80 and fig. 81 depict the
commanded rotor speeds and subsequent attitude respectively. It is clear from these responses alone that the outdoor
MetalBeetle hybrid model suffers stability. A peculiar fanning-out of the commanded rotor speeds occurs. This is in
contrast to reality where such rotor speeds should be similar, as in the polynomial simulation. The expansion of the
rotor speeds is suspected to relate to predictions made by the ANN component using the runaway velocity arising from
the non-zero F,. The states, and combinations therein, are likely unfamiliar to the ANNs which eventually leads to
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Fig. 79 Cumulative contributions of the constituent regressors of the identified polynomial model of F, for
the outdoor MetalBeetle during hovering flight. Highlighted in black is the regressor which adds the negative
asymmetry due to wind to the model. Regressor contributions are in descending order in the legend.
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these unpredictable outputs across all force and moment models given the dense nature of the ANN structure. The
moments in particular influence the necessary control response by the rotor speeds. Indeed, the instability of the hybrid
model is evident through the rapid change in rotor commands at around 2.6 seconds instigated by the slowly diverging
attitude. Regardless of how the controller responds, once these rotor speeds hit saturation, the attitudes explode and the
quadrotor tends towards instability.

The corresponding force and moment responses of the hovering simulation are illustrated in fig. 82 and fig. 83
respectively. Both the force and moment responses also exhibit non-zero responses at the start of the simulation due
to the stabilization of the quadrotor from its moment of inertia asymmetries. Comparing the subsequent responses
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with the polynomial equivalents reveals the minute modifications made by the ANN compensator. Unfortunately, the
ANN compensator is not able to remove the F, force bias suspected to be a consequence of unknown wind. The
force responses resemble their polynomial counterparts until the moment of rotor saturation, wherein all forces begin
increasing in magnitude due to the non-zero attitude angles. These attitude changes originate from small excitations in
moment responses that occur at around 2.5 seconds. This excitation likely derives from the ANN components since this
behavior is not observed in underlying polynomial model. Furthermore, the saturation of the commanded rotors induces
an increase in PI widths across all models, which is indicative of the greater uncertainty with the associated predictions
and highlights the utility of these intervals.

3. ANN model of the MetalBeetle

The simulation results of the identified ANN outdoor MetalBeetle models indicate an unrealistic and invalid model,
particularly due to a poor F, model. The effects of this erroneous model are apparent in the hovering flight simulations.

The commanded rotor speeds of the identified ANN outdoor MetalBeetle models during hovering flight are shown
in fig. 84. The characteristic fanning of the commanded rotor speeds for identified ANN models are once again present
and eventually lead to instability due to rotor saturation. Again, this expansion of the rotor speeds is suspected to arise
from the ANN moment predictions on unfamiliar inputs which induce gradual attitude drifts. While the subsequent
saturation of the rotor speeds does not immediately induce instability in the associated attitude response, illustrated in
fig. 85, they initiate the divergence of these attitudes from zero. Soon after, the attitude responses blow up and the
controller struggles to maintain control with rapidly oscillating commanded rotor speeds.

The associated force response during hover is depicted in fig. 86. Indeed, all forces appear to harbor biases and lead
to runaway terms. For Fy and Fy, these likely originate from the influence of unknown wind while for F, the exact
causes are unknown. The F, ANN model unrealistically represents the thrust force. Figure 88 depicts the thrust profile
of the ANN-only, polynomial-only, and hybrid models as a function of the average rotor speed with all other inputs set
to zero. The ANN F, model predicts forces that are consistently above zero (i.e. hover thrust). As such, there is no way
for the model to descend, which induces many of the stability issues. There appears to be a clear difficulty for the ANN
models to capture the F, forces for the outdoor models. Perhaps this lies with the asymmetry of the thrust data but
may also stem from an over-reliance on the total rotor speed, which is always positive. Future work could therefore
investigate alternative normalization schemes which include negative terms, such as a correction first for the hovering
rotor speed. Indeed, the velocity along w encodes this information, but in outdoor flight this is obtained from the GPS
data, which does not accurately capture the velocities as seen in fig. 40 and fig. 41. In any case, all the force models
are invalid and promote runaway velocities as shown in fig. 89. These runaway velocities further promote unstable
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predictions by the ANNs. Fortunately, the associated PIs indicate the lack of confidence in the model predictions,
demonstrating their utility. Interestingly, these PIs first grow as the commanded rotor speeds near saturation, perhaps
forecasting this instability.

Figure 87 illustrates the moment responses of the identified ANN outdoor MetalBeetle model in simulated hovering
flight. Rapid oscillations at the beginning of the moment responses correspond to the initial stabilization efforts of the
quadrotor. However, these oscillations begin to grow again quickly after controller manages to stabilize the quadrotor.
As these oscillations are much lower in frequency, they likely stem from predictions made on the runaway terms and
thus propagate the instabilities. Again, the PIs appear to forecast this behavior as they widen before the low-frequency
oscillations start.
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Fig. 88 Thrust profile, as a function of the average ro-
tor speed, of the identified polynomial-only, ANN-only,
and Hybrid models of the outdoor MetalBeetle. Here,
zero corresponds to the thrust necessary to maintain
hover. As such, also shown is the true hovering rotor
speed of the MetalBeetle. Note that this profile is
generated with all other states set to zero.

Fig. 89 Velocity response of the identified outdoor
ANN model of the MetalBeetle during hovering flight.

C. Outdoor MetalBeetle simulation PID gains
The PID gains used for the controllers in the quadrotor simulation are summarized here.

1. Polynomial model of the MetalBeetle
Associated PID gains for rate controller - transforming rate command into rotor speeds.

10 10 10 100 100 100 1 2 2
10 10 10 100 100 100 1 2 2
Prate = s Trare = s Drate = (74)
10 10 10 100 100 100 1 2 2
10 10 10 100 100 100 1 2 2
Associated PID gains for attitude controller - transforming attitude command into rate command.
100 0 O 100 0 O 1 00
Pay = 0 10 0 |, lae= 0 10 0 |, Dgy= 010 (75)
0 0 10 0 0 10 0 0 1

Associated PID gains for altitude controller - transforming vertical velocity command in earth frame to rotor speeds.

0 0 10 0 0 1 0 0 1

Puiy = 0 010 s day = 0 01 , Dap = 0 01 (76)
0 0 10 0 0 1 0 0 1
0 0 10 0 0 1 0 0 1

94



2. Hybrid model of the MetalBeetle
Associated PID gains for rate controller - transforming rate command into rotor speeds.

10 10 10 100 100 100 1 2 2
10 10 10 100 100 100 1 2 2
Prate = s Trate = s Dygre = 7
10 10 10 100 100 100 1 2 2
10 10 10 100 100 100 1 2 2
Associated PID gains for attitude controller - transforming attitude command into rate command.
10 0 O 10 0 O 1 0 O
Par = 0 15 0 |, lar= 0 10 0 |, Dgt= 0 1.3 0 (78)
0 0 10 0 0 10 0 0 1

Associated PID gains for altitude controller - transforming vertical velocity command in earth frame to rotor speeds.

0 0 10 0 0 1 0 0 1
P = 0 0 10 L = 0 0 1 Do = 0 0 1 (79)
alt = 0 0 10 5 alt = 0 0 1 5 alt = 0 0 1
0 0 10 0 0 1 0 0 1
3. ANN model of the MetalBeetle
Associated PID gains for rate controller - transforming rate command into rotor speeds.
30 40 30 250 500 250 1.5 2 4
30 40 30 250 500 250 1.5 2 4
Prate = 5 Irate = s Drute = (80)
30 40 30 250 500 250 1.5 2 4
30 40 30 250 500 250 1.5 2 4
Associated PID gains for attitude controller - transforming attitude command into rate command.
10 0 O 100 O 0 1 0 0
Pay = 0 10 0 |, gt = 0 100 O |, Dgas= 01 0 (81)
0O 0 10 0 0 100 0 0 2

Associated PID gains for altitude controller - transforming vertical velocity command in earth frame to rotor speeds.

0 0 10 0 0 1 0 0 1
0 0 10 0 0 1 0 0 1
P = . I = N D = 82
alt 0 0 10 alt 0 0 1 alt 0 0 1 ( )
0 0 10 0 0 1 0 0 1

D. Supplementary model identification: Indoor MetalBeetle
Although not the focus of the present paper, indoor models of the MetalBeetle are also identified to provide a
reference of comparison of the corresponding outdoor models.

1. Indoor flight data acquisition

Before the transition to outdoor flight, indoor flights are used to verify the functionality of the pipeline and to design
input manoeuvres that adequately excite the forces and moments along each of the axes. However, data gathered indoors
will be constrained to the low-speed domain of the flight envelope.
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The indoor flights were conducted at the CyberZoo, located at the faculty of Aerospace Engineering at the Delft
University of Technology (TU Delft). This facility is confined to a space of approximately 7 m tall, 10 m wide, and 10
m long. The CyberZoo is equipped with an external OptiTrack motion capturing system which records the quadrotor’s
attitude and position at 120 Hz by tracking the IR markers attached to the quadrotor (e.g. see IR rig attached to the
MetalBeetle fig. 2). These data files are stored on the computer connected to the OptiTrack system. The quadrotor’s
velocity is then derived from the evolution of its tracked position over time. Therefore, the OptiTrack system is analogous
to the role of the GPS module for outdoor flights.

The quadrotor’s acceleration, attitude, and rotational rates are measured by the on-board IMU and logged at 500 Hz.
The Electronic Speed Controller (ESC) measures the rotational rate of each of the propellers in eRPM (electrical RPM),
which is a proxy measure for the true RPM of the quadrotor. As with the IMU information, the rotor speeds are logged
by on-board the quadrotor at 500 Hz.

Both LOS and FPV flights were conducted indoors and, prior to take-off, the quadrotor was switched on and held
stationary for a few seconds to facilitate the estimation of the sensor biases during raw data processing.

As with the outdoor flight, the LOS flights are intended to excite the dynamics along each of the axes in a, somewhat,
repeatable manner to have consistent excitations across some of the flights. Therefore, these manoeuvres are, in principle,
the same as those conducted outdoors but confied to the space of the CyberZoo. An example of the flight trajectory
during this z-axis manoeuvre can be seen in fig. 90. Also apparent in this figure are the bounds of the Cyberzoo tracking
through the flat line wherein the quadrotor exceeds the OptiTrack field-of-view.

These manoeuvres, however, excite the forces more vigorously than the moments. Therefore, to entice moment
excitations, rapid oscillations in the roll, pitch and yaw were conducted which entailed rapidly moving between the
extremes of the angular commands. In essence, this is a higher-frequency version of the sinusoidal step inputs which
does not allow the quadrotor to translate as much and excites the moments more often. As the yaw excitations are
separate from the z-axis manoeuvres, ramp inputs were given to the yaw angle to induce a spinning of the quadrotor
about its yaw axis. Again, these manoeuvres are spread over, and appear in, multiple flights.

However, it is difficult to reach high velocities and perform aggressive manoeuvres for such LOS flight indoors.
Instead, FPV flights are used to achieve higher velocities by flying in circles (both counter-clockwise and clockwise)
around a flag placed at the center of the CyberZoo with the aim of flying as fast as possible. An example of this flight is
depicted in fig. 91. While perhaps paradoxical for indoor flights, relatively high velocities, up to 5 ms~', were achieved

o Start
o End

z [m]

Fig. 90 Illustrative example of the flight trajectory Fig. 91 Illustrative example of the flight trajectory
during an LOS z-axis up-and-down manoeuvre. Also during an FPV flight. Also shown, in grey, is the
shown, in grey, are the two-dimensional traces of this ground track of this flight. Time is encoded through
flight in the x — z and y — z planes for reference. color progressing from green to red.
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Fig. 92 Reconstruction of missing OptiTrack mea-  Fig. 93 Illustrative example of results of the outlier

surements (in blue) through a linear spline interpo-  and artefact removal algorithm, as applied from the
lation (in orange). Here, the interpolation is used to OptiTrack measurements of the MetalBeetle’s position.
reconstruct estimations of the MetalBeetle’s attitude. A cubic spline is employed to remove the artefacts.

in this manner.

Since the indoor experiments rely on an external motion capturing system to facilitate the velocity and position
estimations, additional pre-processing is required to filter, align, and synchronize the OptiTrack-derived data with the
on-board IMU data. Such processing is not required in the outdoor experiments since all relevant states are measured
through on-board sensors and synchronized through the BetaFlight logging module.

Unfortunately, the OptiTrack system would occasionally lose tracking of the quadrotor either due to poor visibility
of the markers or the flight of the quadrotor beyond the field-of-view of the OptiTrack camera system (refer to fig. 90.
The loss-of-tracking events culminated in missing data and discontinuities in tracking. Missing data is reconstructed
through a linear spline interpolation. Linear splines were employed over cubic splines since attempting to interpolate
such regions with a cubic spline resulted in unwanted, and unrealistic, ringing artifacts. Consider, for example, an
ascent-descent manoeuvre for which the quadrotor leaves the trackable space. As it leaves, it holds an upwards velocity
whereas, when it enters again, it does so with a downwards velocity. The ringing artifacts occur when attempting to
interpolate this step-like signal. While imperfect, the linear interpolation reproduces a more faithful reconstruction of
the true states. An example of this interpolation, taken from one of the MetalBeetle’s flights, is given in fig. 92 and
highlights the step-like nature of some of these signals.

Moreover, these discontinuities and tracking issues contaminate the OptiTrack measurements with outliers and
artefacts. To detect such outliers and artifacts, the numerical derivative of the OptiTrack data was taken and resultant
absolute magnitudes evaluated. Magnitudes which were larger than six standard deviations of the mean magnitude
were considered to be an artifact or outlier. This procedure is consistent with the processing pipeline of Sun et al.
[8]. Subsequently, the artifact or outlier points - along with their immediately surrounding points (N = 10) - were
removed from the data. This is done to ensure that the base of the outlier peak is also removed. The subsequent gap in
data was then reconstructed using a cubic spline interpolation. Figure 93 demonstrates how this algorithm removes
artefacts present in the position measurements of one of the MetalBeetle’s flights. While imperfect at removing all
oscillations, the most prominent artefacts are removed as illustrated by the highlighted region in fig. 93. Moreover, since
the surrounding points were also removed, this interpolation did not produce aforementioned strong ringing artifacts.

The OptiTrack motion capturing system records data with respect to its own local OptiTrack axes system. Note that,
in reality, the OptiTrack system does not directly track the position and orientation of the quadrotor itself, but rather the
position and orientation of the markers affixed to the quadrotor. For the MetalBeetle, these markers are attached to
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an independent marker-rig which is strapped above the battery (refer to fig. 2) and are thus offset with respect to its
center of rotation. Hence, where necessary, the OptiTrack data is then aligned with the quadrotor’s geometric center
(it is assumed that this coincides with the center of rotation). Indeed, the attachment of the OptiTrack markers alters



the geometric properties of the quadrotor and thus influences the measured aerodynamic forces and moments. For the
purposes of this paper, variations across flights (e.g. due to movement of the marker-rig during flight) are assumed
to be negligible. Following the adjustment of the OptiTrack measurements to the quadrotor’s geometric center, the
OptiTrack-derived measurements are transformed from the OpitTrack local reference frame into the earth reference
frame, {E}. The quadrotor’s velocity is then obtained by taking the numerical derivative of the position estimates, in
{E}, through central differences [8].

Even up to this point, there still remains some rapid oscillations in the OptiTrack measurements which originate
from the difficulty in tracking the quadrotors. While not particularly an issue for the tracking of the Metaleetle (i.e.
minimal oscillations), these tracking issues were prominent for smaller quadrotors, such as the DataCan75M1 likely
due to the close proximity of the tracking markers. Note that the quality of these IR markers significantly affects the
tracking performance. For example, (tape) markers are used for the DataCan75 instead of the recommended tracking
markers since the markers are too large to be fixed to the small quadrotor. This IR tape is harder for the system to track.
The subsequent marker recognition and distinction issues - which are also seen as flickering in the OptiTrack system -
occurred even while the DataCan75 was stationary (i.e. in hover). Consequently, for generalizability and robustness of
the processing pipeline, both the OptiTrack derived attitude and velocity of the quadrotor were further filtered using a
4th order low-pass Butterworth filter with cutoff frequencies of 10 and 7 Hz respectively. These cutoff frequencies are
chosen based on the Power Spectral Densities (PSDs) of the OptiTrack measurements of the attitude and position-derived
velocity during hovering flight of the quadrotors. Hovering flight was used for this filter parameterization to best
approximate the noise associated with the marker-recognition based tracking issues. Figures 94 and 95 respectively
illustrate the PSDs of the attitude and velocity from this hovering flight for the DataCan75 and figs. 96 and 97 those for
the MetalBeetle. Illustrative examples of this filtering for the roll angle, ¢, and velocity along xg, u, for an arbitrary
(manoeuvred) flight of the DataCan75 are given by figs. 98 and 99 respectively.

The OptiTrack attitude is then further transformed to describe the rotation between {E} and the quadrotor’s body
reference frame, { B}. Through this rotation matrix, the velocities may be transformed from {E} to {B} to complete the
state vector.

However, there remains a sampling frequency discrepancy between the two datastreams. Subsequently, the OptiTrack
data is up-sampled, through a cubic spline interpolation, from 120 Hz to 500 Hz to be consistent with the sampling rate
of the on-board IMU. Note that the OptiTrack data is up-sampled, rather than the IMU data down-sampled, following

119 The DataCan75 is a TinyWhoop quadrotor also used to gather indoor flight data and evaluate the system identification pipeline. Even though it
is not discussed further here, it is desirable that the pipeline is compatible with such quadrotors.
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Fig. 98 Comparison of the OptiTrack measured roll Fig. 99 Comparison of the OptiTrack-derived hor-
angle, ¢, from an arbitrary flight of the DataCan75 izontal velocity, #, from an arbitrary flight of the
before (in blue) and after (in orange) the application DataCan75 before (in blue) and after (in orange) the
of the low-pass filter. application of the low-pass filter.
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Fig. 100 Example alignment of the OpitTrack data with the on-board measurements and subsequent trimming
of excess data. Here, the alignment of the yaw angle, i for a flight from the MetalBeetle is shown. The black
arrow indicates the direction of delay shift applied to the OptiTrack signal

the data pre-processing procedure of Sun et al. [8] and to preserve information in the measurement data. Furthermore,
to facilitate a fair comparison between indoor and outdoor models, resampling data to 500 Hz is in any case desirable
since the outdoor models solely rely on measurements logged at 500 Hz. This allows for higher-frequency dynamics to
be captured (e.g. related to the fast actuation of the rotors and the interactions therein).

As the states thus far have been recorded by two independent systems, there are likely delays between the two
datastreams. Therefore, the OptiTrack data is synchronized with the on-board data through a cross-correlation of the
attitude angles, which should largely be the consistent (i.e. aside from loss-of-tracking events). The delay between the
two datastreams is taken as the lag which results in the largest cumulative positive correlation across all the attitude
angles. This is done since the lag obtained from each attitude individually is slightly different. During the alignment of
the two datastreams, the time arrays are truncated to the largest region for which there is data available from both the
IMU and the OptiTrack system. Figure 100 illustrates the results of this alignment algorithm for the yaw angle, ¢, as
applied to a flight from the MetalBeetle. Note that, for the final state vector, the attitude estimate is taken from the IMU
and not the OptiTrack system. The motivation behind this stems from the fact that the IMU attitude is continuous (no
loss-of-tracking events) and is the primary source of attitude information for the outdoor experiments.

Subsequently, the indoor data is processed following the general data processing procedure outlined in section IV.B.2.

2. Identified indoor MetalBeetle models

The performance metrics of the identified force and moment models of the MetalBeetle for indoor flight are
summarized in table 11 and table 12 respectively. In these tables, the measures of accuracy (NRMSE and R?) and PI
quality (PICP and M PIW) are shown for both the entire flight data set and the testing data subsets (i.e. flights which
are entirely unseen during training). The results discussed here will predominantly consider the performance of the
indoor MetalBeetle models with respect to this testing data subset to better assess the validity and generalizability of the
identified models.

The identified ANN F, and F, models of the indoor MetalBeetle show good model performance while the F,
model’s performance is lackluster. The ANN model for F, manages an acceptable test accuracy (R* = 0.8827) with
almost valid and narrow PIs (PICP = 94.3 < 95, MPIW = 5.8%). Strictly speaking, the ANN F, model of the
indoor MetalBeetle does not satisfy the PICP > 95 criterion, although it is close to this condition. In the context of
its higher PICP for the full data set (PICP = 97.1% > 95%), the ANN F, model is likely over-fitting the training
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Table 11 Summary of the model performances of the identified ANN-only, Polynomial-only, and Hybrid force
models for the MetalBeetle (Indoor flight). The NRMSE and R? describe the accuracy of the model predictions
with respect to the full and test data sets. Also shown are the quality metrics for the model prediction intervals in
the form of the PICP and MPIW.

Fx
NRMSE R? PICP MPIW
Full Test Full Test Full Test Full Test
ANN 0.0142 0.0171 0.9056 0.8827 97.1247 94.2780 5.4779 5.7883
Poly 0.0151 0.0186 0.8932 0.8614 97.2022 95.6068 8.5654 8.6178
Hybrid 0.0153 0.0170 0.8900 0.8851 98.6528 97.8772  9.5466 9.6067
Fy
NRMSE R? PICP MPIW
Full Test Full Test Full Test Full Test
ANN 0.0155 0.0186 0.9608 0.9496 97.9886 96.4538 6.9486 8.9562
Poly 0.0196 0.0214 0.9375 09330 97.1383 96.2369 10.3426 12.3485
Hybrid 0.0173 0.0201 0.9517 0.9409 98.6429 979133 11.4941 13.8694

Fz
NRMSE R? PICP MPIW
Full Test Full Test Full Test Full Test
ANN 0.0495 0.0478 0.4674 0.4794 99.8279 99.7978 26.7682 26.6386
Poly 0.0143 0.0150 0.9555 0.9488 97.1612 97.6135 8.6550  8.7083
Hybrid 0.0134 0.0141 0.9607 0.9549 98.5038 98.7607 9.2570  9.3702

Model

Model

Model

data. The identified ANN F, model of the indoor MetalBeetle boasts more accurate performance (R* = 0.9496)
and reliable, yet acceptably narrow, PIs (PICP > 95, MPIW = 9.0%). Such modelling success is absent for the
identified ANN F, model which sees a poor fit of the measurement data (R? = 0.4794) with unnecessarily wide PIs
(PICP > 95, MPIW = 26.7%). Note that the comparatively wider PIs associated with the F, model over the F, and
F,, counterparts demonstrates the lack-of-confidence with the ANN F, predictions and demonstrates their utility as a
measure of prediction reliability and validity. Nonetheless, the ANN model struggles to reproduce the measured F, for
both the full and test data sets. This ANN F, model performance is especially disappointing since both the hybrid and
polynomial models exhibit significantly better performance metrics.

Indeed, all of the identified polynomial force models of the indoor MetalBeetle perform admirably. The selected
model regressors along with their associated coefficients are summarized in tables 15 to 17 in section VIIL.D.5 for the
normalized models of Fy, Fy and F; respectively. Also shown in these tables are the additive accuracy gains, in terms
of R?, and stability for each regressor relative to the training data subset. The error residuals and autocorrelation of
said residuals demonstrate that the OLS assumptions of zero-mean white noise are satisfied. The error residuals are
generally contained within the 1 — o~ bounds as shown in fig. 103. Moreover, the corresponding autocorrelation of error
residuals imply white noise in fig. 105.

Despite being the poorest performer, the F polynomial model produces a faithful fit of the measurement data
(R? = 0.8614) with reliable PIs (PICP > 95, MPIW = 8.7%). The polynomial model of F,, for the indoor MetalBeetle
exhibits a better accuracy (R? = 0.9330) at the cost of wider PIs (PICP > 95, MPIW = 12.4%) than its Fy counterpart.
Indeed, one expects minimal difference between the F and Fy models due to the symmetry and flight characteristics of
the quadrotor. However, by the very nature of FPV flight, there is a discrepancy in flight envelopes between the F and
Fy in the data sets - especially for higher speeds - which influences regressor selection. Such a force asymmetry is
apparent through a phase portrait of the force-velocity pairs, shown in fig. 101, constrained the closest 75% of data to the
mean. The data is limited to show where the majority of the force measurements lie and is thus more representative of
this asymmetry. The identified polynomial F, model of the indoor MetalBeetle serves as an excellent model, achieving
a high accuracy (R? = 0.9488) with relatively narrow and valid PIs (PICP > 95, MPIW = 8.8%).
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Fig. 101 Phase portrait of the force-velocity pairs, Fy — u and F, — v, of the MetalBeetle during indoor flights
demonstrating where 75% of the measurement data, as measured from the mean, is contained.

The identified hybrid force models of the indoor MetalBeetle seek to, and succeed in, improving the accuracies of
their underlying polynomial models. The hybrid F, model provides for a slight boost in model accuracy (R* = 0.8851)
to the levels of its ANN counterpart. In doing so, it also increases the associated PI widths to just shy of 10% and
retains their validity (PICP > 95, MPIW = 9.7%). Likewise, both the hybrid F, and F, models of the indoor
MetalBeetle manage improvements over their underlying polynomials with comparative PIs (R = 0.9409, PICP > 95,
MPIW = 13.9% and R? = 0.9549, PICP > 95, MPIW = 9.4% respectively). However, the gains of the hybrid models
are marginal and stimulate a widening of PIs. Therefore, since the polynomial model performance is already good,
perhaps a hybrid approach for indoor force model identification is excessive.

To visualize the performances of the identified indoor MetalBeetle models, fig. 102 depicts the predictive performances
of the identified F, models of the (indoor) MetalBeetle, subject to an untrained FPV flight (Flight 24). Though only
the F, performance is shown here, the other force predictive capacities for this validation flight can be found in the
appendix (section VIIL.D.5). In accordance with the performance metrics found in table 11, all identified F, models
appear capable of reproducing the measured force of an unseen flight through faithful reproductions of the measured
F in fig. 102. Indeed, the predictions themselves may not always be in line with the measured forces, however, the
measured force is typically contained within the PIs of the models. Nevertheless, there are still some regions wherein the
measured force exceeds the PI bounds. Take, for instance, the divergence of the models’ predictions and the true force at
around ¢ = 30.5 s in the highlighted region of fig. 102. From the corresponding video of this flight, the MetalBeetle is
seen to be turning sharply in this region. As all models diverge in a similar manner, there is clearly some modelling
term that misguides this response or the lack of a term which subsequently corrects for this during the sharp turn.
Decomposing the polynomial model of Fy into its cumulative regressor contributions suggests that the control pitching
moment, u, initially prescribes this behavior. Indeed, it exhibits a high magnitude response at this time in the shape of
the subsequent model F. prediction. Future work should seek the influence, and necessity, of this term on the force
models for both LOS and FPV flight.

It is clear from the identified moment model performances in table 12 that the identified force models significantly
outperform the identified moment models. Given the poor accuracy metrics, especially for M, and M, the identified
models appear to be unable to capture the dynamics behind the aerodynamic moments. However, the PI quality metrics
reveal that, even with relatively narrow PIs (indeed, much narrower than the force models), the identified moment
models encapsulate the majority of the measured moment dynamics within these PIs. Possible explanations for this
discrepancy are that either the moment measurements are heavily contaminated with noise, or that there are not enough
excitations, or a combination of the two. The accuracy metrics shown in table 12 do not distinguish between the fit
towards useful response and the fit towards noise. Hence, these performance metrics likely predominantly assess the fit
with respect to noise.

Therefore, to examine the true model performances, the performance evaluation may be localized to regions of
moment excitation. Indeed, the model performance metrics generally improve - especially with respect to the full data
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Fig. 102 Comparison of the identified ANN-only (in purple), Polynomial-only (in blue), and Hybrid (in magenta)
models predictions of F, for flight 24 (indoor untrained flight) of the MetalBeetle. Also shown is the measured F,
response (black dotted line). Flight 24 is an first-person-view flight and involves flying around a flag pole at the
center of the CyberZoo.
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Fig. 103 Error residuals of the identified polynomial Fig. 104 Error residuals of the identified polynomial
force models of the indoor MetalBeetle. moment models of the indoor MetalBeetle.

set - around regions of excitation, as shown in table 13. Despite this, the subsequent performances are still poor and
there appears to be a significant deterioration in performance from the full to the test data set. This implies that some
over-fitting may be occurring or that there are dynamics in the test set which elude the identified models.

Indeed, the ANN models appear to over-fit the training data as they struggle to maintain their accuracy across the
full and test data sets while also failing to meet the PICP > 95 criterion for the test data set. The identified ANN rolling
moment, M,, model offers an objectively lackluster accuracy (R2 = 0.3921) with too narrow PIs (PICP = 90.4535,
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Fig. 105 Autocorrelation of the error residuals of the identified polynomial force models of the indoor MetalBeetle.
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Fig. 106 Autocorrelation of the error residuals of the identified polynomial moment models of the indoor
MetalBeetle.

MPIW = 2.8%). This model performs much better with respect to the full data set with a decent accuracy and narrow
and arguably valid PIs (R? = 0.6737, PICP = 94.9 < 95, MPIW = 1.6%). Interestingly, the MPIW almost doubles for
the test set, suitably reflecting the increase in uncertainty for the ANN M, predictions. However, it cannot be said that
the ANN M, model is valid due to the questionable PI reliability. The deterioration in performance from full to test
data sets is even more pronounced for the identified ANN pitching moment, My, model with an unacceptable accuracy
(R? = 0.0347) and invalid PIs (PICP = 81.8 < 95, MPIW = 1.2%). The ANN yawing moment model also affords
a meager model accuracy (R? = 0.1718) and unreliable PIs (PICP = 88.4 < 95, MPIW = 2.4%). The poor PICP
performance suggests that, even though the ANN PIs were found to be numerically valid in Part I: On prediction
intervals, they should still be interpreted with a degree of caution. As such, more research investigating (and ensuring)
the validity of the ANN PIs should be conducted in the future. Note, however, that since the PI performance is also poor
for the polynomial models the issue may therefore lie in the difficulty faced with identifying moment models in general.
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Table 12 Summary of the model performances of the identified ANN-only, Polynomial-only, and Hybrid moment
models for the MetalBeetle (Indoor flight). The NRMSE and R? describe the accuracy of the model predictions
with respect to the full and test data sets. Also shown are the quality metrics for the model prediction intervals in
the form of the PICP and MPIW.

Mx
NRMSE R? PICP MPIW
Full Test Full Test Full Test Full Test
ANN 0.0048 0.0050 0.6540 0.6067 969873 96.3316 1.6028 2.4778
Poly 0.0048 0.0051 0.6520 0.5854 99.4874 99.5350 4.3685 6.2730
Hybrid 0.0047 0.0050 0.6605 0.6006 99.7055 99.7518 4.6062 6.6493
My
NRMSE R? PICP MPIW
Full Test Full Test Full Test Full Test
ANN 0.0040 0.0049 04114 0.0777 94.7818 90.4964 1.2408 1.2821
Poly 0.0054 0.0064 -0.0627 -0.5850 97.9734 97.3046 2.6541 2.6704
Hybrid 0.0049 0.0056 0.1414 -0.2410 99.1271 98.9573 2.9031 2.9269

Mz
NRMSE R? PICP MPIW
Full Test Full Test Full Test Full Test
ANN 0.0096 0.0098 0.0825 0.0509 91.5682 91.2393 2.0701 2.2006
Poly 0.0164 0.0115 -1.6852 -0.3163 95.9843 96.3398 4.4578 4.4850
Hybrid 0.0163 0.0114 -1.6506 -0.2861 97.4682 97.7894 4.8986 4.9626

Model

Model

Model

The identified polynomial moment models of the indoor MetalBeetle suffer similar performance hardships as their
ANN counterparts. The selected regressors, and associated cumulative model R? improvements with respect to the
training data, are summarized by tables 18 to 20 in the appendix (section VIILD.5) for the normalized M, M, and M,
models respectively. Likewise, the error residuals are zero-mean and are generally contained within the 1 — o~ bounds as
shown in fig. 104. The autocorrelation of said residuals, given in fig. 106, imply minimal correlation among the error
residuals. Thus, the OLS assumptions are satisfied.

The performance of the identified polynomial rolling moment, M,, model closely resembles its ANN equivalent but
with valid and wider PIs (R* = 0.3915, PICP > 95, MPIW = 6.2%). In contrast, the identified polynomial pitching
moment, My, model performs worse than its ANN counterpart with an unacceptable accuracy (R? = —0.1886) and
unreliable PIs (PICP =91.5 < 95, MPIW = 2.4%). Parallels between the polynomial and ANN models continue for
the identified yawing moment, M, model which suffers poor accuracy and invalid PIs (R%? =0.1580, PICP = 93 < 95,
MPIW = 4.6%). The inability of the ANN and polynomial models to produce valid PIs lends support to the hypothesis
that much of the issues with the moment models arises from the difficulty in modelling them.

Fortunately, the identified hybrid models are able to improve upon the polynomial model accuracy and extend
the PIs to satisfy the PICP > 95 condition. This accentuates the instances wherein the adoption of such a hybrid
approach is beneficial. For instance, the hybrid rolling moment model improves upon the accuracy (R? = 0.4039) and PI
validity (PICP > 95, MPIW = 6.7%) of both the underlying polynomial model. As the hybrid models’ performance
is heavily intertwined with the polynomial model, the hybrid pitching moment, M,, model retains a poor accuracy
(R? = —0.0463) but now ensures acceptable PIs (PICP > 95, MPIW = 2.6%). The hybrid yawing moment model
also sees some performance gains over its underlying polynomial with an improved accuracy (R = 0.1672) and valid
PIs (PICP > 95, MPIW = 5.1%). Overall, the identified moment models clearly struggle to capture the aerodynamic
moments, regardless of the employed system identification technique. The conspicuous parallels in poor moment model
performance across the different system identification techniques suggests that the issues with identifying moment
models lies not with the approximation power of the employed techniques, but rather with the current chosen states or
identification data. Indeed, there may be additional states (and interactions therein) missing here which may be integral
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Table 13 Summary of the model performances of the identified ANN-only, Polynomial-only, and Hybrid moment
models for the MetalBeetle (Indoor flight) localized around regions of excitation. The NRMSE and R? describe
the accuracy of the model predictions with respect to the full and test data sets. Also shown are the quality
metrics for the model prediction intervals in the form of the PICP and MPIW.

Mx
NRMSE R? PICP MPIW
Full Test Full Test Full Test Full Test
ANN 0.0080 0.0089 0.6737 0.3921 94.8985 90.4535 1.5525 2.7568
Poly 0.0082 0.0089 0.6598 0.3915 98.7544 98.8469 4.4194 6.1923
Hybrid 0.0078 0.0088 0.6911 0.4039 99.2366 99.3610 4.6952 6.6557
My
NRMSE R? PICP MPIW
Full Test Full Test Full Test Full Test
ANN 0.0068 0.0100 0.5149 0.0347 92.1336 81.7736 1.0423 1.1852
Poly 0.0074 0.0111 0.4242 -0.1886 95.2264 91.4842 2.4845 2.3400
Hybrid 0.0068 0.0104 0.5252 -0.0463 97.9163 96.7815 2.7477 2.6094

Mz
NRMSE R? PICP MPIW
Full Test Full Test Full Test Full Test
ANN 0.0134 0.0181 0.2567 0.1718 929966 88.3834 1.6520 2.3490
Poly 0.0124 0.0182 0.3584 0.1580 94.4951 93.0127 4.8706 4.6145
Hybrid 0.0123 0.0181 0.3702 0.1672 96.2987 95.2505 5.1936 5.1406

Model

Model

Model

to describing the moment models. Likewise, the current manoeuvres conducted may be insufficient for adequately
exciting the aerodynamic moments. Consequently, future research should investigate potential avenues for improving
moment models through augmented state vectors and different input manoeuvres.

Figure 107 depicts the predictive capacities of the identified pitching moment, My, models with respect to a test data
set (i.e. unseen) FPV flight. Here, the M, response is shown due to the apparent poor performances of the identified
models. Other moment responses for this unseen flight can be found in the appendix (section VIIL.D.5). In contrast to
poor accuracy observed through table 13, the MetalBeetle models’ pitching moment predictions appear to earnestly
follow the measured M, during periods of excitement. This is emphasized by the first highlighted region in fig. 107.
However, these moment model predictions appear to be sensitive to noise due to their seemingly arbitrary predictions
for periods of minimal, or no, pitching moment excitations. See, for example, the second highlighted region in fig. 107.
The poor performance in these regions likely contributes to the underwhelming model performances found in table 13.
This may also explain part of the drop in accuracy between the full and test sets, since a larger proportion of the test set
consists of noise due to having fewer manoeuvres. Nonetheless, the predictive performance illustrated in fig. 107 shows
promise for the usability of the identified moment models. Indeed, the useful moment responses are visibly sparse
in fig. 107, thus methods to mitigate the adverse effects of noisy measurements during period of minimal moment
excitement should be investigated in future work.

3. Model structures and sensitivities of the indoor MetalBeetle models
In this section, the model structures and sensitivities associated with the identified polynomial, ANN, and hybrid
models are presented.

Polynomial model of the indoor MetalBeetle

The identified polynomial F, models of the MetalBeetle select physically justifiable regressors for the indoor model
with more curious choices for the outdoor model. Unsurprisingly, the indoor model also demonstrates more stable
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Fig. 107 Comparison of the identified ANN-only (in purple), Polynomial-only (in blue), and Hybrid (in magenta)
models predictions of M, for flight 24 (indoor untrained flight) of the MetalBeetle. Also shown is the measured
M, response (black dotted line). Flight 24 is an first-person-view flight and involves flying around a flag pole at
the center of the CyberZoo.

coefficients. The selected regressors can be found in table 15. The first selected regressor!’ of the indoor model is
sin (6) 1y, @3, , which effectively captures dynamics associated forces along x induced by the rotors and interactions
therein. It also accounts for much of the modelling accuracy (R? = 0.0099 to R? = 0.8168) accentuating the significance
of this term and associated effect. The presence of the advance ratio of the induced velocity, u,,, , may also encapsulate
some thrust variance and blade flapping effects. Subsequent selected regressors routinely include (combinations of)
@ror> Ux, U, w, and 0, all of which are intuitively linked to the underlying dynamics of F. Performance improvements
are minimal beyond the addition of the sixth regressor, cos ()i, and may therefore be removed without detriment to the
model. Indeed, the final selected regressor, @;.;G°, demonstrates some instabilities due to a relatively high covariance
(8.33% of the coeflicient’s magnitude) and thus could be removed from the model. All other regressors boast low
covariances (< 0.01%) which imply model stability.

The indoor polynomial model of the MetalBeetle captures relevant dynamics in a stable model. The associated
regressors for the indoor F, model may be found in table 16. Similar to F, much of the indoor Fy, model’s success
is attributable first regressor'®, sin (¢)@?,, that facilitates motion along y through the thrust vector. This regressor
alone improves the accuracy from R? = 0.1128 to R? = 0.8282 and is thus a dominant term in explaining the dynamics.
Predictably, the rotor speed, @;,; forms a fundamental component of F, given its pervasiveness in the remaining
regressors. Additionally, these regressors incorporate (combinations of) uy, p, and iZ,,. Note that the reliance of the
Fy on p and i, likely arises from the side-to-side manoeuvres used to excite the F, dynamics. Such manoeuvres
see a strong correlation between force and associated rotational rates during the transitions in flight direction. Such
manoeuvres are more prominent in the Fy data due to the FPV flight. Accuracy gains are minimal following the addition
of the sixth regressor, @il ,, suggesting that the addition of subsequent regressors are likely over-fitting. Nonetheless,
all regressors of the F, polynomial model of the MetalBeetle are accompanied by low covariances < 1% and thus imply
model stability.

The maturity of the analytical models of thrust developed in quadrotor literature is evident through the already
decent modelling accuracy (R = 0.7910) enjoyed by the fixed regressors of the identified F, polynomial model of the

7Note that this is actually the same first regressor as is selected for the indoor DataCan75 model, which implies that it encompasses some
emergent dynamics.
18 Again, this first regressor is exactly the same as selected for the indoor DataCan75 model, suggesting some emergent dynamics.
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indoor MetalBeetle. The selected regressors themselves are summarized in table 17 in section VIIL.D.5. The indoor F,
polynomial model of the MetalBeetle successfully builds upon the fixed regressor accuracy through the addition of
regressors associated with the total rotor speed, @;,,. Most notably, the addition of @?,, stimulates a boost in model
accuracies from R” = 0.7458 to R? = 0.9738. Moreover, the component of thrust that contributes to forces along z
while in motion along x and y is captured by the first two selected regressors, cos (8)@?,, and cos ($)@?,,, respectively.
Note that these two terms harbor similar coefficient values which arise from the symmetry of the quadrotor. In theory,
these coefficients should be identical, but are likely different here due over-fitting. The prevalence of the higher order
terms associated with @,,, implies that the rotor speed, intuitively, constitute much of the underlying dynamics. Other
ubiquitous states of note are the control moments, |it,|, |ii4|, and |i, |, and interactions therein which evidently capture
some underlying phenomena. While it is unclear exactly what dynamics these terms encapsulate, it is suspected to
relate to some variance in thrust induced by the controlled rotations of the quadrotor. Indeed, such rotations directly
result from thrust differentials and involve interactions between rotor wakes. All of the selected regressors for the indoor
MetalBeetle polynomial model of F, are accompanied by low covariances (< 0.2%) which indicates model stability.

The indoor MetalBeetle polynomial model of M, selects reasonable regressors that are stable. The selected
regressors themselves may be found in table 18. Intuitively, the control rolling moment, i, total rotor speed, @;oz,
form components of many of the selected regressors. Indeed, the indoro model shares some common regressors with
the equivalent outdoor model, such as @yl p, Dsor P, and @yopltp ||, which advocates for their necessity in describing
the underlying dynamics. This is especially likely for @i, since both the indoor and outdoor models select it first.
Moreover, low covariances (i.e. < 0.01% of the associated coeflicient’s magnitude) imply that the polynomial model of
M, is stable.

In contrast, the pitching moment, M|, polynomial model of the indoor MetalBeetle harbors regressors with
instabilities. These regressors may be found in table 19. Analogous to the M, models, many of the selected regressors
are constructed with the control pitching moment, it,, and the total rotor speed @,,;. The indoor model selects @ity
as the first regressor, paralleling the choice of the equivalent outdoor model and accentuating its importance in capturing
the underlying dynamics. Recall that @;,it,, was also selected first for the M, model. This strongly suggests that the
linear interaction between @, and the corresponding control moment is descriptive of some of the moment dynamics
both indoors and outdoors. Peculiarly, the indoor model selects @;,;|p|>q as a regressor, which is driven primarily by
the roll rate, p, and should have a negligible effect on the pitching moment in this capacity. Indeed, this regressor holds
the highest covariance (3.4% of its associated magnitude) in the M, model only amplifies its debatable addition. Hence,
the reliability of the identified indoor polynomial model of My, should be interpreted with caution.

The identified yawing moment model of the indoor MetalBeetle, M, selects both sensible and questionable
regressors culminating in some instabilities. The indoor yawing moment model regressors can be found in table 20.
This model intuitively selects many terms composed, in part, of the control yawing moment, i,, the yaw rate, 7, and the
total rotor speed, @y, Interestingly, the previously observed conspicuous linear interaction of @, i, is replaced by a
higher order variant, ;. ﬁf and cast doubt on the importance of the linear relation of these two states but nonetheless
supports an emergent effect founded in their interaction. Unexpectedly, the yaw angle debuts in the indoor model
through the terms cos (¢ )i, and sin (¢ )i,. However, in this case, such a dependence is probably a consequence of
over-fitting given the similar coefficient magnitudes and inclusion of both sin and cos. Hence, the model likely attempts
to capture effects associated with i, but modulates it, coincidentally, with the yaw angle for a better fit. However,
the indoor yawing moment model may be considered unstable given the high covariance of @, |p||G| (4.2% of the
associated coefficients magnitude).

Hybrid model of the indoor MetalBeetle

The weight magnitudes of the input layer, averaged over the last 10% of training epochs (i.e. 15 epochs), provides
insight into any emergent effects recognized by the ANN compensators while the variance therein gives an indication
of stability. These weight magnitudes and variances are respectively illustrated in fig. 108 and fig. 109 for the hybrid
force models. Likewise, the input weight magnitudes of the indoor moment models are illustrated in fig. 110 with
corresponding weight variances in fig. 111.

The marginal improvements of the identified indoor hybrid model of F, are reflected by almost uniform weights
with adequate variances. Although similar in magnitude, many of the higher weight inputs of F in fig. 108 correlate
well with terms expected to be relevant for describing this force. Hence, the ANN compensator may still be extracting
useful dynamics from the polynomial error residuals. For example, the hybrid model allocates some importance to the
quadrotor’s velocities of i and w, which see minimal use in the polynomial model. The cohesive magnitudes of these
inputs suggests that no one term is dominant and implies that the ANN compensator capitalizes on interaction effects
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Fig. 108 Input layer weight magnitudes, averaged Fig. 109 Variance in input layer weights, taken over
over the last 10% of training epochs, of the ANN the last 10% of training epochs, of the ANN compenstor
compensator component of the identified hybrid force component of the identified hybrid force models of the
models of the MetalBeetle (Indoors). MetalBeetle (Indoors).

between these inputs. Moreover, both trigonometric identities of the pitch angle hold comparatively high magnitudes,
which lends support to the recognition of interaction effects (e.g. through interactions of sin (6)@;,;). However, these
uniform weights may also be indicative of over-fitting and the inability of the ANN compensator to identify any emergent
dynamics in the polynomial error residuals. While the generally low variances of the weights implies convergence and
stability in the model, there are some high variance terms, particularly for the attitude inputs, which are a cause for
concern and question the stability of the model.

Similarly, the reliability of the ANN compensator of the indoor F, model of the MetalBeetle is dubious, given
the allocation of high weight magnitudes to questionable inputs and general weight instabilities. Despite this, the
hybrid model also reasonably associates high weight magnitudes with the y- and z-component of the advance ratio, u,
and p, respectively, and the roll angle through sin (¢). In the context of the improved accuraciy with respect to the
underlying polynomial for both the full and test data sets, it is possible that the ANN compensator identifies some useful
dynamics - likely associated with the aforementioned inputs - from the polynomial error residuals. However, peculiarly,
the ANN compensator consistently assigns the highest weight magnitudes to cos (). This is probably consequence of
over-fitting, given that the pitch angle should have a negligible influence on forces along this axis. Additionally, high
variances associated with many of the input weights suggest that the model has yet to converge or is unstable. Both
scenarios are undesirable as they may lead to erroneous predictions. Therefore, despite the improvements gained by the
ANN compensator of the indoor MetalBeetle hybrid model of F, unexpected weight magnitudes and poor stability
characteristics challenge the reliability of the model.

In contrast to the predominately uniform weight magnitudes of the indoor MetalBeetle hybrid models of F, and Fy,
the corresponding F, hybrid model demonstrates clear input importance. The associated weight variances also support
model stability. The input magnitudes of the ANN compensator show a strong dependence on @;;, iy, and p,. These
inputs almost coincide exactly with the fundamental terms of the analytical models of thrust variance and blade flapping.
Therefore, the ANN compensator of F, may be targeting these phenomena. Even if this is not the case, the utility of
these inputs towards F}, is obvious. To a lesser extent, the ANN compensator also allocates some importance to (i,
which is reflective of the FPV flight and may also be relevant for modelling blade flapping. Through this, the hybrid F,
model is able to improve upon the performance of its underlying polynomial model. However, there are a number of
high variance weights in the hybrid model which may reflective of over-fitting and could induce model instability.

The identified hybrid rolling moment, M,, model of the indoor MetalBeetle associates consistent importance to
certain inputs with generally lower variances than the force models. Intuitively, the indoor hybrid model recognizes the
significance of the rolling control moment, i ,, followed by the roll rate, p, and total rotor speed, @;,,. Although the
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Fig. 110 Input layer weight magnitudes, averaged Fig. 111 Variance in input layer weights, taken over
over the last 10% of training epochs, of the ANN com- thelast 10% of training epochs, of the ANN compenstor
pensator component of the identified hybrid moment component of the identified hybrid moment models of
models of the MetalBeetle (Indoors). the MetalBeetle (Indoors).

associated weight variances are much lower than those of the force models, there are a few high variance inputs (i.e.
~ 80% of the associated weight magnitude) concentrated around the attitude inputs, which are a cause for concern.

The identified indoor hybrid pitching moment, M,,, model exhibits arguably better model stability with a sensible
selection of important inputs. For instance, the model selects iy, g, and the pitch angle, 6, which relate well to the
underlying physical phenomena. Other inputs, such as @;,, also afford high weight magnitudes among many of the
constituent ANNs. The indoor hybrid model of M, also harbors mostly low weight variances which implies stability.
However, some high variances, particularly those associated with the yaw rate, 7, are concerning given the apparent
importance of this input affored by the M, model. Therefore, the subsequent predictions may be unreliable.

Likewise, the indoor hybrid yawing moment, M, model of the MetalBeetle exhibits generally low weight variances
with some concerning high variance inputs. Furthermore, defined weight magnitudes demonstrate clear input significance.
The indoor model recognizes the relevance of the total rotor speed, @;,;, the control yawing moment #,, and the yaw
rate, 7. All of these inputs understandably have some influence on the yawing moment. The indoor hybrid M, model
harbors a single concerning high variance term, which although associated with a low weight magnitude term, may
nonetheless propagate instabilities throughout the rest of the model given the dense ANN architecture.

ANN model of the indoor MetalBeetle

The weight magnitudes, averaged over the last 10% of training epochs, and the variances therein are illustrated in
fig. 112 and fig. 113 respectively for the identified indoor MetalBeetle ANN force models. Figure 114 and fig. 115
respectively depict the input weight magnitudes and corresponding variances for the identified ANN indoor moment
models of the MetalBeetle.

The identified indoor MetalBeetle ANN F,, model allocates the highest weight magnitudes to the total rotor speed,
@yo1, advance ratio of the induced velocity, y,,,, and the pitch angle through sin (6). These inputs, and interactions
therein, presumably relate to effects of the rotor system on the forces along the body x-axis as modulated by the pitch
angle. This is in agreement with the equivalent polynomial models for which these states form integral regressors.
While the input weight variances are mostly low for the indoor model, the consistency of the variances among the
ensemble models for sin () points to some instabilities with respect to this input, which is undesirable. As this is an
integral modelling term, conclusions of stability for the ANN indoor F, model should be interpreted with caution.

Likewise, the identified indoor MetalBeetle ANN F, model recognizes clear input importance but suffers some
stability issues. As expected, the indoor ANN model of F, assigns high weights to inputs such as @;¢;, uy;,, iy, and the
roll angle, through sin (¢). Such selections are reasonable and well-founded in physical phenomena. Again, these inputs
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Table 14 Original and Modified (i.e. through the removal of the unconverged ANNs) ', ANN model performances
for the MetalBeetle (Indoor flight). The NRMSE and R? describe the accuracy of the model predictions with
respect to the full and test data sets. Also shown are the quality metrics for the model prediction intervals in the
form of the PICP and MPIW.

Fz
NRMSE R? PICP MPIW
Full Test Full Test Full Test Full Test
ANN (Original)  0.0495 0.0478 0.4674 0.4794 99.8279 99.7978 26.7682 26.6386
ANN (Modified) 0.0131 0.0149 0.9625 0.9494 98.1166 97.6724 5.0070  5.5589

Model

draw strong parallels to the indoor polynomial model counterpart. However, the indoor F), ANN curiously affords some
modelling significance to the pitch angle, through cos(6), and may indicate over-fitting. Indeed, the indoor F, model
harbors some strong instabilities (variance of > 100% of the associated weights magnitude) for a few of its neurons
which is a cause for concern and casts doubt on its reliability.

What is immediately apparent about the indoor ANN F, model is that two of the constituent ANNs have not
converged to a solution, leading to an invalid model. This is evident through their lack of distinctive weight magnitudes
with low associated variances. In fact, if these poor ANN models are removed, then the performance of the indoor
ANN F, model of the MetalBeetle improves drastically to the levels of its polynomial and hybrid counterparts, as
shown in table 14. With these ANNs removed, the indoor ANN F, model rather intuitively allocates the greatest input
importance to @;,; and u,,, . Most other inputs appear in batches of importance. Again, these inputs are reminiscent
of the analytical descriptions of quadrotor thrust models and the selected regressors of the underlying polynomial.
Consistent with the other ANN indoor force models, the F, model harbors some high variance inputs which imply model
instability. Moreover, note that the removal of the unconverged ANNs also amplifies the effects of these instabilities
which deteriorate its reliability.
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Fig. 114 Input layer weight magnitudes, averaged over the last 10% of training epochs, of the identified ANN
moment models of the MetalBeetle (Indoors).
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The identified indoor ANN rolling moment, M, model of the MetalBeetle draws inspiration from the fundamental
physical phenomena with scattered high variance weights. The indoor ANN M, model of the MetalBeetle reasonably
elects the control rolling moment, i ,, the total rotor speed, @, and the advance ratio of the induced velocity, u,,,,
as the most significant inputs. Indeed, strong parallels to the polynomial and hybrid models are apparent through the
selection of i, and @;,;, however, the choice of y,,, is more peculiar. It may be the case that there are some interaction
effects associated with u,,, that are absent in the candidate regressors of the polynomial models or similarly captured by
different regressors. Nonetheless, this apparent importance of u,,, should be investigated in further research as it may
relate to blade flapping, or even as of yet un-described, rotor interaction effects. While the sparse and scattered high
variance weights are not associated the significant inputs, they may nonetheless induce some instabilities in the M,
model.

Similarly, the identified ANN indoor M, model of the MetalBeetle shows a reliance on expected inputs but exhibits
more instabilities than its M, counterpart. The control pitching moment, it,, emerges as the most important input
followed by @;., iy, . and v;,,. Hence, these may be considered integral modelling terms in a manner reminiscent of its
M, counterpart. The extended reliance on v;;,, may stem from the lower speed flight along the quadrotor’s y-axis, for
which p,,, is less prominent, but nonetheless address similar dynamics. It should be noted that one of the constituent
ANNS of the indoor model suffers a relatively high variance associated with it,, which is undesirable and may induce
some unexpected variability in moment predictions. Subsequently, the indoor M, ANN model may be argued to be
invalid.

The distributed weight magnitudes, and high associated variances, of the identified indoor ANN yawing moment,
M, model suggest that it struggles to capture the underlying dynamics. Nonetheless, some emergent inputs are still
visible. For example, the importance of the yawing control moment, i, , the total rotor speed, &, , the yaw rate, 7, are
recognized. These inputs correlate well with physical phenomena. While the indoor ANN M, also harbors many low
variance weights, those with high variances are critical for the model predictions. Take, for example, the extremely high
variances (= 100% of the corresponding weights magnitude) associated with 7 and it,-. This is unacceptable and implies
an invalid indoor ANN M, model.
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4. Simulation of indoor MetalBeetle models

Each of the identified models of the indoor MetalBeetle are first subject to a hovering simulation to evaluate their
responses and tune controllers. Subsequently, simulations are run to determine the models’ responses to oscillating
attitude step input commands. The subsequent simulation results of the identified polynomial-only, hybrid, and
ANN-only indoor models of the MetalBeetle are summarized here.

Note that, despite the influences of wind, and differences between the indoor and outdoor polynomial model
structures of the MetalBeetle, almost the same PID controller is found to be suitable for controlling both models. Slight
modifications were made to give a better response in terms of damping-out oscillations. Nonetheless, the transferability
of the controller implies that the identified models are similar and reflects expectations for the true quadrotors. This also
accentuates the utility of the system identification pipeline.

Polynomial model

The commanded rotor rate and attitude response of the identified polynomial model of the indoor MetalBeetle for
simulated hovering flight are illustrated in fig. 116 and fig. 117 respectively. As the rotor speeds are initialized around
their hovering values, they are expected to remain relatively constant. This is indeed the case. Moreover, the attitudes
tend to zero. While there is an obvious initial response in the attitudes, this arises from the quadrotor stabilizing itself
due to its moment of inertia asymmetries. As such, the attitudes and rotor speeds are reflective of reality for hovering
flight.

The corresponding force and moment responses are depicted in fig. 118 and fig. 119 respectively. Note that, the
confidence intervals are large here since hovering flight is technically outside the envelope of the identification data °.
Instabilities are apparent in the force response, where there are some runaway terms in the polynomial model for F,.
This is due to the snowballing effect of velocity terms in the model which increase alongside the force. Therefore, an
increase in force inflates the resultant velocity which increases the force further, and so on. To illustrate this effect,
refer to the regressor highlighted in black in fig. 121, which depicts the cumulative contributions of the F polynomial
regressors - in descending order of the legend. Note that, due to the corrections made by the controller to maintain
attitude, the F tends negative during hovering flight. However, when given even a slight positive velocity, it instead
increases positive. Upon further analysis of the roots of this instability, it was found that removing these velocity terms
altogether did not eliminate the behaviour as other model regressors simply replaced the runaway phenomena. Through
this, it is likely that the issue lies with the nature of the F-based flight. As such, F, polynomial indoor models were
identified on LOS-only and FPV-only flight, but both models still exhibited this runaway behaviour. It is therefore

19Recall, that only excitations were used for identification which inherently excludes hovering flight.
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tempting to propose that this issue is related to the lack of drag-based terms in the model, especially given the low
speeds of flight. While this may indeed be a contributing factor, the F', does not suffer such instabilities and is subject to
similar manoeuvres. Consequently, the ', model structure was also applied to the Fx model, yet the runaway problems
persisted. Indeed, the issue lies with the F), data itself and may be associated with the force asymmetries of F, towards
the positive forces in the phase portrait of the force-velocity pairs of F — u and Fy — v in fig. 120. Here, the different
contour lines denote where 95%, 75% and 50% of the data is contained with decreasing opacity respectively. The
exact reasons for this asymmetry are unknown but the inherently forward-based nature of FPV flight likely amplifies
this asymmetry. Moreover, it was also noted that the gyroscope biases would drift during flight following system
identification manoeuvres. This drift may also influence this asymmetry. In contrast, the moment responses appear
sensible and remain near zero after initial attitude corrections.

The true test of the models’ capabilities is evaluated through their responses to oscillating attitude step inputs. While
simplistic, these manoeuvres are similar to those conducted for data collection (refer to pitch commands in fig. 129) and,
thus, the models should be valid for such flight. As the roll and pitch responses are largely the same, the identified
polynomial model of the indoor MetalBeetle is subjected to combined roll and pitch step commands.

The commanded rotor speeds and resultant attitude of the MetalBeetle are depicted in fig. 122 and fig. 123
respectively. The attitude response reveals that the model is tracking the step references appropriately and that the
controller is therefore working as intended. Both the pitch and roll angles follow the references in a similar fashion and
in a manner that reflects the quadrotor’s true response to such step inputs. Slight differences are expected and arise from
asymmetries in the moment of inertia of the quadrotor. The seemingly arbitrary step attitude inputs are designed to
restrict the quadrotor to the velocity limits of the identification data such that the models remain valid. Moreover, the
commanded rotor speeds also respond as expected whereby sharp changes in rotational rates occur to initiate an attitude
change. The average rotor speed also increases during periods of non-zero roll and/or pitch to compensate for gravity, as
expected. Note that the rapid oscillations of the rotor speeds during the step inputs are due to the sub-optimal PID
gains. Moreover, these (linear) PIDs were tuned around hover and may therefore not be suitable to gracefully control the
non-linear quadrotor when turning.

Nevertheless, the quadrotor appears to respond to the step inputs as intended and the resultant force response is
illustrated in fig. 124. Given that the BetaFlight axis system is defined as x-forward, y-left, and z-up, the simulated
force responses are reasonable and reflect what may be expected following a step response. As the quadrotor rolls and
pitches, the F; increases as necessary to maintain altitude. Likewise, a positive roll angle stimulates a negative F, while
a positive pitch angle results in a positive F,. The nature and shape of these force responses is also reasonable as
they mirror those found in the identification data (refer to fig. 129). What is perhaps peculiar is the rapid oscillatory
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Fig. 122 Commanded rotor speed of the identified
indoor polynomial model of the MetalBeetle when
subject to oscillating roll and pitch angle step inputs.

Fig. 123 Attitude response of the identified indoor
polynomial model of the MetalBeetle when subject to
oscillating roll and pitch angle step inputs.

behaviour of the force responses during the step transitions. This behaviour is due to poor tuning of the controllers for
such manoeuvres, which induces rapid oscillations in the commanded inputs as shown in fig. 126. These oscillations are
introduced to the force models primarily through the rotational rate and control moment terms. For instance, consider
the behaviour of the regressor @, it of the F, model in fig. 127. Figure 127 illustrates the cumulative contributions of
the regressors following the descending order of the legend with the oscillatory regressor highlighted in black. After
a commanded step transition, the force responses progress smoothly as the quadrotor accelerates in the appropriate
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direction.

The simulated moment model responses are shown in fig. 125 and appear to contradict the poor performances seen
in section VIIL.D.2. The identified polynomial moment models produce the expected sharp sine-wave like pulses and
subsequent corrections when subject to step inputs and resemble those found in the measurement data, as shown in
fig. 134. It is noteworthy to highlight the utility of the PIs here. They show a caterpillar-like shape whereby they
increase during periods of no moment excitations - indicating low confidence - and decrease during periods of moment
excitation, exhibiting high confidence. This is reflective of the training data wherein these models were identified
through such excitations.

Indeed, it is difficult to visualize what these forces and moments entail for the quadrotor. Consequently, fig. 128
depicts the resultant velocity response. In accordance with reality, the velocity changes direction and accelerates
smoothly along with the corresponding transitions in attitude. The differences between the F and F, models are
apparent through these velocity responses whereby the velocity along x, u, is more damped than that along y, v. This is
likely a consequence of the runaway F term making it more difficult for u to change direction and may encompass drag
or rotor wake effects. The velocity responses in particular show a strong resemblance to the measured velocity along x,
u, in the identification data when subject to similar pitch inputs as depicted in fig. 129. Indeed, the shape of the velocity
responses are similar around the regions of step transition. To a lesser extent, the sharp changes in velocity towards zero
following a direction change are also evident in both the simulation responses and the measurement data. These obvious
parallels imply that the identified models capture the dynamics well. Note, however, that in the identification data, the
thrust was also increased following a direction change to expedite this transition and accelerate the quadrotor. This may
explain some of the discrepancies between the simulation and reality, especially in terms of the higher magnitudes
associated with the identification data and rapid initial changes in velocity following direction changes. Nonetheless, the
models perform faithfully and, despite the runaway F, appear to reflect reality well in periods of motion.

To complete the attitude response of the identified polynomial models of the indoor MetalBeetle, a oscillating
step input to the yaw angle is also simulated. The corresponding commanded rotor speeds and resultant attitude are
illustrated in fig. 130 and fig. 131 respectively. Again, it is clear from the attitude response that the identified polynomial
model is capable of realistically tracking the commanded yaw angles. Peculiarly, the average rotor speeds decrease
over time when they are expected to remain somewhat constant. However, the yawing manoeuvre induces an upwards
velocity which the altitude controller subsequently tries to control. A net positive thrust is generated since the rotor
speed lower saturation limit is closer to hover than the upper bound. Towards the end of the rotor response, the rotor
speeds return to idle thrust levels.
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Fig. 128 Velocity response of the identified indoor Fig. 129 Indoor flight data of taken from the Metal-
polynomial model of the MetalBeetle when subject to Beetle depicting the change in force, F,, and velocity,
oscillating roll and pitch angle step inputs. u, due to oscillating commanded pitch angles, 6.

The associated force and moment responses are depicted in fig. 132 and fig. 133 respectively. From the F, response,
the induced upwards force by the yawing manoeuvre is apparent and aligns well with the controller’s tendency to reduce
the thrust as discussed for the commanded rotor speeds. These spikes in F, are short since they correspond to the rapid
changes in yaw. Interestingly, the F', force also exhibits a notable non-zero response. This is likely induced by the
coupling of the runaway F, term and the yaw rotation of the quadrotor. Indeed, as the quadrotor translates with a
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Fig. 132 Force response, along with associated pre-  Fig.133 Moment response, along with associated pre-
diction intervals, of the identified indoor polynomial diction intervals, of the identified indoor polynomial
model of the MetalBeetle when subject to oscillating model of the MetalBeetle when subject to oscillating
yaw angle step inputs. yaw angle step inputs.

non-zero velocity along x and subsequently rotates along its yaw axis, it will stimulate a velocity along y due to the
inertia of the quadrotor. However, due to the runaway velocities, instabilities will occur should they get too large. This is
starting to happen in the force response as the magnitudes of F and F), appear to increase in magnitude towards the end
of the response. Furthermore, the yaw moment spikes align with the yaw step transitions and consist of an initial peak
followed by an opposite peak to stabilize the angle. Such a response is reflective of physical principles and the response
of the true system as shown in fig. 134. Again, the moment response PIs display a caterpillar-like shape whereby
uncertainties are high for regions of no excitation and low for those where non-zero moments occur. Importantly, the
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Fig. 134 Example of the measured moments during attitude step inputs in the identification data of the indoor
MetalBeetle.

PIs increase over time and perhaps forecast some instability in the model due to the growing runaway forces. Hence,
aside from the runaway F) term, the force and moment responses to the yaw step responses appear reasonable.

Hybrid model

As the hybrid indoor MetalBeetle models build upon the corresponding polynomial models, and are not seen to
significantly improve model performance, they are expected to demonstrate similar simulation responses. However, this
is not the case for hovering flight where even more instabilities can be seen as the hybrid response diverges considerably
from that of the polynomial model.

The corresponding commanded rotor speeds and resultant attitude are shown fig. 135 and fig. 136 respectively.
Unlike the polynomial models’ response where the rotor speeds are relatively constant, the hybrid rotor speeds slowly,
and unrealistically, fan-out. Such behaviour is caused by the ANN compensator since the underlying polynomial
produces the correct hovering response. Although the exact reasons for the divergence of rotor speeds are unclear, it is
suspected that the hovering states, and runaway velocity, cause the ANN compensator to produce erroneous predictions.
Consequently, the expansion of the rotor speeds are, in effect, due to the controller responding to misbehaving moment
models. This perceived input mismatch only pushes the ANN component to make further mistaken predictions which
cause the rotors to diverge more. Indeed, the controller is able to maintain hover until the lower rotor saturation limit
is reached by rotor 1, after which instabilities occur. It is at this point (around 1.4 seconds) that the roll and pitch
attitude angles begin to diverge from zero as seen in fig. 136. Ironically, the ANN compensator designed to handle such
unknown situations deteriorates performance in one such scenario. As the attitude diverge, and rotor 1 remains saturated,
the quadrotor loses control and tends towards instability. This is seen by the rapid oscillations of the commanded rotor
speeds after 2.5 seconds wherein the controller frantically attempts to maintain control. Since the hovering states are
apparently the issue, a trimmed condition based on the average values of the identification data was used in place
of the hovering condition. However, this also experienced similar instabilities due to persistent runaway velocities.
Interestingly, the input weight magnitudes associated with the hybrid models forecast this issue as they are found to be
mostly reliant on the velocities and attitude angles.

The model instabilities following the saturation of rotor 1 are also apparent in both the force and moment responses
of the indoor MetalBeetle hybrid model. These responses are illustrated in fig. 137 and fig. 138 respectively. Again, the
runaway F term is present although the ANN compensator appears to heavily dampen the associated instability. Even
though the hybrid model is objectively worse, this restriction of the runaway F) is nonetheless desirable and shows
promise for the method. Interestingly, the runaway F is now positive instead of negative, highlighting the sensitivity of
this instability. Up until the saturation of rotor 1, the remaining force and moment models tend to zero after the initial
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Fig. 135 Commanded rotor speed of the identified

indoor hybrid model of the MetalBeetle during hover-
ing flight.

Fig. 136 Attitude response of the identified indoor
hybrid model of the MetalBeetle during hovering flight.

-y - My

Uncertainty Uncertainty

Force [N]
Moment [Nm]

13 U L S5 T
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of the MetalBeetle during hovering flight. model of the MetalBeetle during hovering flight.

stabilization of the quadrotor. This is in-line with the underlying polynomial model response and is reflective of the
expected dynamics during hovering flight. After the rotor saturation, the F, force begins to destabilize and contributes
to the loss of control of the MetalBeetle. Although slower to react, the moment models also tend towards instability
around a second after rotor saturation. Again, the associated PIs demonstrate their utility - particularly for the moment
models - as they increase during the initial rotor saturation and continue to do so until the instabilities are prominent. As
such, the PIs may be used to forecast such stability issues.

The hybrid models response is simulated for combined roll & pitch oscillating step inputs and step inputs into the
yaw for a more representative evaluation of the model’s capacity around regions of the flight envelope for which it is
valid. These inputs are similar to those used in the corresponding polynomial model simulation, but differ slightly in
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order to confine the states to the domain of validity.

The commanded rotor speeds and resultant attitude responses of the indoor MetalBeetle hybrid model with respect
to oscillating roll and pitch inputs are illustrated by fig. 139 and fig. 140 respectively. Once again, the commanded rotor
speeds commence their divergence prior to any of the manoeuvres. However, during the step inputs, these rotor speeds
are more realistic and compressed. This supports the hypothesis that the expansion of rotor speeds during hover or
trimmed flight is due to the unstable ANN predictions on unknown regions of the flight envelope. Moreover, the average
rotor speed also increases for non-zero attitudes and reflects the additional thrust necessary to maintain altitude. Indeed,
the quadrotor is able to track the roll and pitch step inputs effectively and realistically. Furthermore, the commanded
rotor speeds are reminiscent of the underlying polynomial model.

The subsequent force response of indoor MetalBeetle hybrid model is depicted in fig. 141. Overall, the force
responses reflect expectations, mimicking the underlying polynomial responses, but exhibit some curious and unrealistic
force instabilities. The triangular nature of the F and F, force responses parallels the measurement data of a similar
manoeuvre shown in fig. 129, albeit with more oscillations. Indeed, slight differences in the measurement data are
expected since the throttle was increased to expedite direction changes and acceleration during the flight tests, but is not
conducted in the simulation for simplicity. The ANN compensator of hybrid model appears to dampen out much of the
sharp oscillations seen in the corresponding polynomial response and subsequently gives a more realistic representation
of the force response. This is evident through fig. 144, which illustrates the cumulative contributions - in descending
order of the legend - of the underlying polynomial regressors of F,. Most of the oscillations appear to be introduced by
the total rotor speed, @;o; in the @, 1y term instead of the control moments. Again, these effects are a byproduct of
the rapid rotor oscillations in the sub-optimal PID controller. Interestingly, the contribution of @, is remarkably
similar to the the measured forces, and highlights the necessity of this term and velocity in general. Peculiarly, the
F,, force exhibits a growing non-zero force following the pitch step input, which is unrealistic. Recall that the ANN
compensator is found to rely most significantly on cos (6) (refer to fig. 108). As such, the ANN compensator likely
initiates an Fy, response towards a pitch change, after which the polynomial model amplifies the erroneous force. While
the F, response is mostly reasonable, the effects of the runaway velocity are still apparent in the reluctance of the Fy to
increase its force towards the positive but apparent enthusiasm for accelerating towards the negative. These F and F)
issues are obvious in the velocity response of the hybrid model fig. 143. Again, the shapes of these responses reflect the
measurement data well. However, overall, the hybrid force models are considered invalid as they produce unreliable
force changes enticed by the ANN compensator.

In contrast, the associated moment responses presented in fig. 142 appear to be sensible. Sharp peaks in M, and M,
occur and correspond to the attitude changes while the M, response is largely zero. As with the measurement data
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Fig. 139 Commanded rotor speed of the identified Fig. 140 Attitude response of the identified indoor
indoor hybrid model of the MetalBeetle subject to hybrid model of the MetalBeetle subject to oscillating
oscillating roll and pitch step inputs. roll and pitch step inputs.
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fig. 134, the moment responses show an initial peak and subsequent correction (i.e. breaking) in the opposing direction
to stop the rotation change. The high-frequency oscillations of the M or M, response during and surrounding the
peak are likely due to the sub-optimal PID controller in tandem with saturated rotors. The associated PIs are narrowest
during a response, implying model confidence for such manoeuvres.



0.6 Roll
== Pitch

Rotor 1 I
W= Rotor 2 I
- Rotor 3 | Yaw
- Rotor4 | Actual
2200 Actual I Reference
Command |
I 04
2000 I HH’
I N 0.2

1800

1600

Attitude [rad]
_—

1400

Rotor speed [eRPM]

1200

-04
1000
H
i i |
i |

15 2.0
Time [s]

15 2.0 25 30 35
Time [s]

Fig. 145 Commanded rotor speed of the identified Fig. 146 Attitude response of the identified indoor
indoor hybrid model of the MetalBeetle subject to hybrid model of the MetalBeetle subject to oscillating

oscillating yaw step inputs. yaw step inputs.
= g Jﬁ/{\f
2 = oo} Jp—— vay}sh — m\’\vf [
: i : \
“Ax = u
0.0 A e
-o.
5 % 5 C— % e 3 % 5 5 E— 5 3 3
Fig. 147 Force response, along with associated pre-  Fig. 148 Moment response, along with associated

diction intervals, of the identified indoor hybrid model prediction intervals, of the identified indoor hybrid
of the MetalBeetle subject to oscillating yaw step in-  model of the MetalBeetle subject to oscillating yaw
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The corresponding rotor commands and attitude for the step yaw simulations are illustrated in fig. 145 and fig. 146
respectively. It is immediately clear from the commanded rotor speeds that the quadrotor has lost control during the yaw
step inputs. The attitude responses reveal that the hybrid model struggles to track the initial yaw step input through a slow
response and overshoot. Subsequently, it fails entirely to follow the second step input. This is likely due to the increase
pitch and roll angles throughout the manoeuvre. Such increases are unrealistic and stem from the ANN components of
the hybrid models. As with the hover case, one of the rotors becomes saturated after the first yaw manoeuvre, leading to
an uncontrollable attitude. Thus similar instabilities, which propagate from the diverging attitudes, are observed in the
step yaw response. Note that, instead of an oscillating yaw input, a single step input to the yaw was also simulated.
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Nevertheless, the instability issues persisted as they originate from the initial step response.

The corresponding force and moment responses for the oscillating yaw step inputs are visualized in fig. 147 and
fig. 148 respectively. As instabilities are incited in a similar manner to the hovering case (i.e. through diverging
attitudes), the subsequent force and moment responses share many of the same characteristics. Indeed, both F and F,
begin their runaway upon the saturation of rotor 1. The moments then show delayed oscillations, in accordance with
the oscillating rotor speeds, which increase over time. As with the underlying polynomial model, the F, increases in
tandem with the step yaw input due to a net increase in average rotor speeds in comparison to the speeds needed for
hovering flight. After this spike in F;, the rotor speeds return to their idle states and thus F, reduces. Likewise, the
sine-wave like shape of the M, response during this manoeuvre is sensible and reflective of the measurement data for
similar inputs as shown in fig. 134.

However, due to the obvious instabilities of the hybrid model, it can not be considered valid or useful for simulation.
Nevertheless, there are some merits to using the hybrid approach as seen in the damping of the polynomial runaway F.
Consequently, future research should investigate the causes of the ANN instabilities and explore methods or alternatives
for reducing the erroneous predictions.

Artificial Neural Network model

The simulation results of the hybrid indoor MetalBeetle model anticipate poor performance by the ANN-only models,
given that many of the observed instabilities are suspected to originate from the ANN components. Unfortunately, this
is indeed the case for the simulations of the indoor MetalBeetle ANN model, even with the unconverged F, ANNs
removed from the ensemble. Nonetheless, they are still discussed here with potential reasons for the unrealistic responses
explained.

First, the indoor MetalBeetle ANN model is subject to a hovering simulation to modify the PID controller and
investigate any inherent instabilities. The associated commanded rotor speeds are depicted in fig. 149. From the
conspicuous saturation of rotor speeds, it is obvious that the ANN model has quickly lost control. The high-frequency
initial oscillations in the response result from too high derivative (D) gains in the PID controller which, when decreased,
do reduce the magnitude of these oscillations. However, this reduction leads to low frequency oscillations in the attitude
response. It is therefore a trade-off between high-frequency rotor oscillations and low-frequency response oscillations.
Neither are desirable and both are indicative of an overly sensitive model. In an effort to improve the response, the
simulation was also run at 500 Hz?°, but the instability issues persisted. Similar to the hybrid models, a trimmed
flight condition based on the identification data was also used to verify if stability could be maintained, but the ANN

20500 Hz is the sampling frequency of the data used for model identification.
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Fig. 149 Commanded rotor speed of the identified
indoor ANN model of the MetalBeetle during hovering
flight.

Fig. 150 Attitude response of the identified indoor
ANN model of the MetalBeetle during hovering flight.
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Fig. 153 Thrust profile, as a function of the average = -
rotor speed, of the identified polynomial-only, ANN- Time 1
only, and Hybrid models of the indoor MetalBeetle.
Here, zero corresponds to the thrust necessary to main-
tain hover. As such, also shown is the true hovering
rotor speed of the MetalBeetle. Note that this profile
is generated with all other states set to zero.

Fig. 154 Velocity response of the identified indoor
ANN model of the MetalBeetle during hovering flight.

models nonetheless lost control. The reasons for this are related to the ANN F, and are discussed in more depth when
addressing the associated force response. The resultant attitude response is shown in fig. 150 for which the loss of
control is apparent through the growing and oscillating attitude angles. These instabilities appear to begin as soon as
rotor saturation is reached and is therefore reminiscent of the hybrid model instabilities.

The ANN model instability is also apparent in the corresponding force and moment responses which are illustrated
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in fig. 151 and fig. 152 respectively. The force response especially blows up to such a degree that it is already invalid
before rotor saturation occurs. Consequently, some of the indoor MetalBeetle ANN model’s issues may propagate force
models. The primary offender is the F, model, which is found to be unrealistic even with the unconverged ANNs
removed. Figure 153 depicts the thrust profiles of the identified ANN-only, polynomial-only, and hybrid models of the
indoor MetalBeetle as a function of the rotor speed with all other states set to zero. Also shown is the true rotor speeds
corresponding to the hovering flight of the MetalBeetle observed during data acquisition. While the polynomial-based
thrust profiles are somewhat linear?! and match the hovering thrust rotor speed well, the ANN-only thrust profile is
always significantly above zero regardless of the rotor speed. As such it is always accelerating upwards with over 1g of
thrust (recall the mass of the MetalBeetle is 0.396 kg ~ 4 N) and thus quickly leads to instabilities. In fact, due to
this, the altitude control is turned off during the ANN simulations to promote a longer period of stability. However, as
the velocity along z, w, quickly rises, it subsequently propagates the instabilities to the remaining models and states.
Figure 154 illustrates the associated velocity response of the quadrotor during hover wherein the runaway w can be seen.
Recall that due to the dense nature of these ANNS, runaway inputs will dominate the models’ predictions at some point,
no matter how low the significance of the input is?>. Consequently, the other velocities also begin to diverge from zero.
Therefore, this poor F, model is a contributing factor, if not the root, of the problems which plague the identified indoor
MetalBeetle ANN models. As such, the identified ANN model is invalid in the hovering condition.

Indeed, the hover condition is outside the identification envelope of the ANN models, and may therefore explain its
poor stability. Consequently, it is subjected to oscillating roll and pitch step inputs similar to what is seen in the training
data. Despite this, due to the unrealistic , ANN model, the resultant response tends towards instability.

The associated commanded rotor speeds are illustrated in fig. 155 and the subsequent attitude response is presented in
fig. 156. Similar to the hover case, the commanded rotor speeds exhibit rapid oscillations during the initial stabilization
phase of the quadrotor. These quickly saturate but control is somewhat maintained through the commanded step inputs
which cause the rotor speeds to return from their saturation limits. The attitude response reveals that the ANN model
is initially able to track the commanded step inputs to pitch and roll. However, this does not last as the rotor speeds
soon saturate again and the attitudes begin diverging from their references. Subsequently, the ANN model is unable
to recover tracking for the next step inputs and tends towards instability. Given that control was initially maintained
through the onset of the step inputs, it may be argued that perhaps with rapid enough step inputs, control of the ANN
model may be maintained before any of the forces runaway. Even if this may be the case, the resultant model is still
unrealistic and invalid. Furthermore, there is no check on the increasing F, which, due to the dense nature of the ANNS,

21This is useful for control since the PID controller is a linear controller, and thus works best with such linear responses.
22Unless, of course, all the associated weights are at zero. However, this does not happen in the identified ANN models.
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will ultimately cause issues for the remaining models.

Indeed, the force response depicted in fig. 157 show that these step inputs do not recover the runaway forces. In
fact, during the step responses, all forces only increase in magnitude beyond the domain of validity of the model. As
anticipated, the most egregious offender is F,, which holds the highest magnitudes and is likely the root of the model
instabilities. Likewise, the moment responses tend towards instability as shown in fig. 158. Note that, during the step
response, the identified moments do indeed show the expected response. Hence, there is some validity to the identified
moment models. However, this is overshadowed by the subsequent instability. What is perhaps conducted well in
the ANN models is the evident increase of the PI widths as the model veers towards instability. Such an increase is
especially pronounced for the moment models. This is reflective of the models’, undoubtedly well-placed, uncertainty in
its predictions and once again highlights the utility of these intervals.

To complete the attitude response, the indoor MetalBeetle ANN models may be subject to step inputs into the yaw
angle. Unsurprisingly, the ANN model is unable to maintain stability in the simulation of such inputs.

The associated commanded rotor speeds are presented in fig. 159 with the corresponding attitude response given by
fig. 160. Consistent with prior simulations of the ANN indoor MetalBeetle, the commanded speeds are largely saturated
and fail to control the quadrotor. From the attitude response, it is clear that the quadrotor fails to adequately follow even
the first yaw step input by overshooting significantly. Before the second yaw step input, the model has already reached
an unstable state and is therefore unable to track the reference yaw angle.

The corresponding force and moment responses also closely resemble their counterparts in previous simulations of
the ANN indoor MetalBeetle. These responses are depicted in fig. 161 and fig. 162 respectively. This inter-simulation
similarity highlights the inherent instability of the ANN model and difficulties faced in trying to maintain control.
Briefly, the force responses again increase in magnitude rapidly, rallied on by the unfeasible F, model. The moment
responses show initial oscillations associated with the stabilization of the quadrotor (i.e. before rotor saturation) and
a subsequent tranquil period before oscillating towards instability themselves. The associated PIs increase as the
instabilities grow, accentuating the models’ poor confidence with the predictions during this phase.

Overall, it is clear that, despite the apparently good performance metrics, the identified ANN model of the indoor
MetalBeetle is invalid. In particular, due to the unrealistic F, model. While there are some traces of validity in the
remaining constituent ANN models, such as the moment responses, the aggregate model does not provide much utility.
What may perhaps be an interesting avenue of further research is to investigate the effects of a hybrid approach which
employs different techniques for the model constituents. For example, by replacing the ANN F, model here with its
polynomial counterpart, perhaps performance may be improved.
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Fig. 159 Commanded rotor speed of the identified
indoor ANN model of the MetalBeetle subject to oscil-
lating yaw step inputs.

Fig. 160 Attitude response of the identified indoor
ANN model of the MetalBeetle subject to oscillating
yaw step inputs.
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model of the MetalBeetle subject to oscillating yaw
step inputs.

Fig. 161 Force response, along with associated pre-
diction intervals, of the identified indoor ANN model of
the MetalBeetle subject to oscillating yaw step inputs.

Summary of indoor MetalBeetle simulations

In summary, the simulations of the identified models of the indoor MetalBeetle show that the polynomial models
consistently produces the most feasible and useful models. The use of ANNs appears to introduce instabilities into the
model primarily due to high magnitude inputs which propagate throughout the remaining, perhaps even valid, models.
In the hybrid case, the runaway F, of the polynomial model misleads the ANN compensator predictions. For the
ANN-only models, the poor F, constituent models produces too much thrust which incites instabilities. Nonetheless,
the runaway F is a cause for concern and ultimately invalidates the polynomial models as well.
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5. Indoor MetalBeetle Results: Extra
In this subsection, additional tables and plots associated with the identification results of the indoor MetalBeetle are
shown.

Plots of model predictions

In this subsection, complementary plots of the force and moment predictions of unseen (i.e. validation) flights for
the indoor MetalBeetle are shown. In particular, the remaining force and moment plots of the validation flight which are
not illustrated in section VIIL.D.2.
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Fig. 163 Comparison of the identified ANN-only (in purple), Polynomial-only (in blue), and Hybrid (in magenta)
models predictions of F, for flight 24 (indoor untrained flight) of the MetalBeetle. Also shown is the measured F,
response (black dotted line). Flight 24 is an first-person-view flight and involves flying around a flag pole at the
center of the CyberZoo.
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Fig. 164 Comparison of the identified ANN-only (in purple), Polynomial-only (in blue), and Hybrid (in magenta)
models predictions of F, for flight 24 (indoor untrained flight) of the MetalBeetle. Also shown is the measured F,
response (black dotted line). Flight 24 is an first-person-view flight and involves flying around a flag pole at the
center of the CyberZoo.
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Fig. 165 Comparison of the identified ANN-only (in purple), Polynomial-only (in blue), and Hybrid (in magenta)
models predictions of M, for flight 24 (indoor untrained flight) of the MetalBeetle. Also shown is the measured
M, response (black dotted line). Flight 24 is an first-person-view flight and involves flying around a flag pole at
the center of the CyberZoo.
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Fig. 166 Comparison of the identified ANN-only (in purple), Polynomial-only (in blue), and Hybrid (in magenta)
models predictions of M, for flight 24 (indoor untrained flight) of the MetalBeetle. Also shown is the measured
M, response (black dotted line). Flight 24 is an first-person-view flight and involves flying around a flag pole at
the center of the CyberZoo.

Identified polynomial model structures

In this subsection, the regressors of the identified polynomial models of the indoor MetalBeetle are summarized.
Descending down the tables gives the order of selection. Also shown are the associated covariances and cumulative
accuracy contribution of each regressor.

Table 15 Identified polynomial model of C, for the MetalMeetle (Indoors). The order of the tabulated regressors
indicates their selection order, with the fixed regressors appearing first in grey rows. Along with each of the
selected regressors, their associated coefficient values, and corresponding coefficient variances as a percentage of
this value are shown. The coefficient of determination, R2, describes the fit of the model upon the addition of
each regressor during training.

Regressor Coefficient Covariance R?

bias -2.337E-02 0.0009 0.0000
i -4.356E-01 0.0036 0.0044
sin (0)72, 1.008E-06 0.0004 0.0099
sin (0) iy, @2,  3.018E+01 0.0028 0.8168
Dot x 5.748E+00 0.0105 0.8605
Drorily 3.453E+00 0.0258 0.8855
x -1.010E+00 0.0032 0.9063
sin (6)w? 2.848E-01 0.0014 0.9138
cos (Q)i 4.795E-01 0.0036 0.9237
sin ()|, 1.084E-01 0.0008 0.9288
Ororq 1.043E+01 0.0996 0.9330
ity -5.269E-01 0.0084 0.9359
@t01q -2.207E+02 8.3258 0.9372
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Table 16 Identified polynomial model of C,, for the MetalMeetle (Indoors). The order of the tabulated regressors
indicates their selection order, with the fixed regressors appearing first in grey rows. Along with each of the
selected regressors, their associated coefficient values, and corresponding coefficient variances as a percentage of
this value are shown. The coefficient of determination, R%, describes the fit of the model upon the addition of
each regressor during training.

Regressor  Coefficient Covariance R?

bias -1.228E-02 0.0006 0.0000
v -4.201E-02 0.0017 0.1002
sin (¢)\7?n -1.029E-05 0.0001 0.1128
sin (¢)@?,, -1.569E+01 0.0007 0.8282

Drothty 9.358E+00  0.0071  0.9077
1y -2.004E+00 00030 09334
Dot P -4942E+00 00531  0.9435
Drority 1.075E+00  0.0037  0.9500
GroplFl  -1.925E402 09175 0.9532
|71y 2537E+00 00417 09574
fy sl 1.617E-02  0.0001  0.959%
iz 1.489E+00  0.0213 09611
i1 -1.595E-01  0.0032  0.9623

Table 17 Identified polynomial model of C, for the MetalMeetle (Indoors). The order of the tabulated regressors
indicates their selection order, with the fixed regressors appearing first in grey rows. Along with each of the
selected regressors, their associated coefficient values, and corresponding coefficient variances as a percentage of
this value are shown. The coefficient of determination, R2, describes the fit of the model upon the addition of
each regressor during training.

Regressor Coefficient Covariance R?

bias -7.557E-03 0.0114 0.0000
@2, 1.488E+01 0.0225 0.7039
(i + %) 2.895E-02 0.0035 0.7068
(Pin — W)? -2.588E-08 0.0000 0.7181
w -1.725E-02 0.0015 0.7190
cos (0)@?,  -1.568E+01 0.0079 0.7288

cos (§)@2, -1471E+01 00115  0.7458
Brorligllir]  2.408E-01 0.1554  0.7495

ot 3.347E+02 0.0173 0.9738
Bror iy 2.074E+00 0.0168 0.9753
Ororlpxlp,  7.475E-01 0.0091 0.9766
lii,|? -3.408E-01 0.0052 0.9777
@rorlitgllity|  8.767E+00 0.1634 0.9781
litg it | -1.388E+00 0.0382 0.9785
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Table 18 Identified polynomial model of C; for the MetalMeetle (Indoors). The order of the tabulated regressors
indicates their selection order, with the fixed regressors appearing first in grey rows. Along with each of the
selected regressors, their associated coefficient values, and corresponding coefficient variances as a percentage of
this value are shown. The coefficient of determination, R%, describes the fit of the model upon the addition of
each regressor during training.

Regressor Coefficient Covariance R?

bias -2.055E-06 0.0001 0.0000
p -1.053E-02 0.0010 0.0002
ip -4.165E-03 0.0001 0.4125
Drorilp 2.725E-02 0.0001 0.5645
Drorfly -1.348E-03 0.0000 0.5993
Oportlp ity -2.443E-03 0.0001 0.6122
Apw 4.884E-04 0.0000 0.6183
sin () p? 2.513E-04 0.0000 0.6246
Qtot P 5.063E-02 0.0035 0.6297
@,O,ﬁ; litg| 2.446E-03 0.0004 0.6348
ity ||| w 2.638E-04 0.0001 0.6376
ApWiin -3.335E-06 0.0000 0.6403

sin (@)i5 ||  -1.037E-03 0.0002 0.6442

Table 19 Identified polynomial model of C,, for the MetalMeetle (Indoors). The order of the tabulated regressors
indicates their selection order, with the fixed regressors appearing first in grey rows. Along with each of the
selected regressors, their associated coefficient values, and corresponding coefficient variances as a percentage of
this value are shown. The coefficient of determination, R2, describes the fit of the model upon the addition of
each regressor during training.

Regressor Coefficient Covariance R?

bias -4.252E-05 0.0000 0.0000
q 1.048E-02 0.0006 0.0001
iy 5.862E-03 0.0000 0.2811
Drorlg -2.097E-02 0.0000 0.5413
Wrorlir] 6.724E-04 0.0000 0.6019
cos (A)iy -2.905E-03 0.0000 0.6262
cos (O)py,, @;,,  8.747B-03 0.0002 0.6549
sin (0)123 -1.521E-04 0.0000 0.6710
W0t | PIIF 1.874E-01 0.0091 0.6838
Wtorll 4 474E-04 0.0000 0.6935
Brot| PG 7.053E+01 3.3925 0.7020
iy, -3.122E-03 0.0004 0.7079
qlv|? -1.358E-02 0.0020 0.7122
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Table 20 Identified polynomial model of C,, for the MetalMeetle (Indoors). The order of the tabulated regressors
indicates their selection order, with the fixed regressors appearing first in grey rows. Along with each of the
selected regressors, their associated coefficient values, and corresponding coefficient variances as a percentage of
this value are shown. The coefficient of determination, R%, describes the fit of the model upon the addition of
each regressor during training.

Regressor Coefficient Covariance R?

bias 2.086E-05 0.0000 0.0000
r -5.301E-03 0.0001 0.0005
iy 3.283E-04 0.0000 0.2960
Bror it -5.989E-04 0.0000 0.3373
Wy, | PP -1.327E+00 0.2168 0.3845
Wrorily -2.784E-03 0.0001 0.4084
@rot| P14 -2.872E+02 42181 0.4238
15121g] 5.414E+00 0.1113 0.4563
cos (Y)i, -1.496E-04 0.0000 0.4701
sin ()i, -1.318E-04 0.0000 0.4820
VinlG|7> -1.257E+01 0.6038 0.4928
VinF> 1.665E-03 0.0001 0.5031

sin (¢)|px> 1, 1.192E-03 0.0001 0.5154
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ABSTRACT

Quadrotors are an increasingly popular platform for various research
fields and a plethora of real-life applications. Recent literature has seen
the advancement of quadrotor models, controllers, and safety. Given
the limitations of simple first principle models of the quadrotor, con-
siderable interest has been geared towards the development of robust
and compelling controllers that push the boundaries of the flight en-
velope. However, less attention has been directed towards developing
better models. Subsequently, much remains unclear about the dynam-
ics behind the quadrotor, particularly in the high-speed regime. Many
controllers depend, in some way, on accurate quadrotor models suggest-
ing that such models can only extend the capabilities of the quadrotor.
This document aims to highlight notable achievements in quadrotor
research over the previous decade and describe the current state-of-
the-art. Through this, current gaps in literature, and potential steps
forward, may be discussed. Most notably, current research is frequently
conducted indoors where external motion capturing systems can facili-
tate state estimation and where the influence of external disturbances
is minimal. It is evident that there is a need for an efficient system
identification routine for an undamaged quadrotor suitable for high-
speed outdoor applications and aggressive manoeuvres reliant only on
on-board sensors.
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3 Introduction

Research into multirotor aerial vehicles (MAVs) has seen considerable interest in recent years
due to the increasing autonomy and versatility of such vehicles. MAVs are subsequently used,
both indoors and outdoors, for applications such as videography, surveying and construction,
maintenance, agriculture and more. This interest has also culminated in numerous advance-
ments in MAV technology such as developments in fault tolerant controllers [1, 2, 3, 4, 5], the
extension of models to the high speed regime [6, 7, 8], to enable aggressive manoeuvres [9, 10,
11], and towards determining the Safe Flight Envelope of MAVs [12].

Among the family of MAVs, the quadrotor in particular remains a popular choice given its
simplicity, energy efficiency [13], and low cost of maintenance [14, 15]. As with many MAVs, the
versatility of quadrotors is facilitated by their ability to hover, Vertical Take-Off and Landing
capabilities [15], and their desirable manoeuvrability characteristics. For instance, quadrotors
have been shown to perform aggressive manoeuvres such as flying through narrow openings at
various angles [9]. However, the commonly used first principle model of the quadrotor ignores
the complex aerodynamic effects which are ubiquitous during aggressive manoeuvres. In fact,
this model is inadequate for the majority of the flight envelope, including under high speed
conditions [1]. Peculiarly, quadrotors are still able to operate in the high-speed regime and
conduct aggressive manoeuvres. This accomplishment is facilitated by high sensor update rates
and the use of robust controllers.

It is no surprise, then, that a considerable body of quadrotor literature is invested in de-
veloping more compelling and robust quadrotor controllers in spite of poor model fidelities. To
this end, sensor-based approaches have recently been employed to reduce the model dependence
of the controllers. Smeur et al. [11] demonstrate the superior performance characteristics of an
incremental nonlinear dynamic inversion (INDI) controller over the conventional PID controller.
However, INDI still requires knowledge on the control effectiveness, and therefore still depends
on an appropriate model of the quadrotor. Consequently, control of the quadrotor can also be
maintained, and even further improved, through a higher fidelity model.

Indeed, significant discrepancies between models and reality are detrimental to quadrotor
performance. Molenkamp et al. [10] found that a significant mismatch between the simulated
and true quadrotor model often lead to crashes during aggressive manoeuvring. Existing an-
alytical models are limited in their capacity to adequately describe the complex aerodynamic
phenomena prevalent in much of the quadrotor’s flight envelope. Therefore, much literature
often sees quadrotor models obtained directly from measurement data through system identi-
fication techniques. The appeal of such approaches is that the unknown effects are implicitly
accounted for in the measurement data. For example, gray-box quadrotor models have recently
been identified by Sun et al. [0, 7] which were shown to match the performance of the first
principle quadrotor model in near-hover conditions and outperform it in high-speed conditions.

However, such data-driven approaches may be impractical since sufficient data needs to
be collected to develop a reliable model. Moreover, while the system identification techniques
employed may be applicable to a multitude of quadrotors, the resultant model derived from data
is specific to a given quadrotor and configuration (e.g. with or without bumpers). Furthermore,
high fidelity quadrotor models, including those of [6, 7], currently require state information
obtained from an external motion capturing system due to limitations with the on-board sensors
[1, 2, 3]. Hence, while such research is directed towards high-speed outdoor applications, the
proposed implementations require adequate on-board state estimation and processing before
they see practical use outdoors. Recent literature on such on-board state estimation, such as
[16, 17], show promise and may facilitate this transition to outdoor research.

In tandem with this transition, the safety and reliability of the quadrotor platform should
be ensured. The simplicity of the quadrotor is, in part, achieved by sacrificing redundancy
in the rotors. Coupled with the fact that a quadrotor is a trivially under-actuated system,
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CHAPTER 8. INTRODUCTION

actuator failure is a considerable concern to the safety of the quadrotor. If nothing is done to
account for such failures, the quadrotor may have to abort its mission or, in the worst case
scenario, may result in an accident [5]. In light of this lack-of-redundancy, much research has
also examined fault tolerant control (FTC) schemes for quadrotors in order to mitigate the
consequences of partial [18, 19, 20] and complete [21, 22] actuator failures. Partial failures may
be accommodated through explicit modelling [19] or treated as uncertainties to be handled by
the controller [20]. Conversely, complete rotor losses necessitate a modification of the control
strategy whereby yaw control is typically surrendered [22]. Recent indoor flight tests conducted
by Sun et al. [1, 2, 5] have demonstrated the feasibility of such FTC approaches in both the
single and diagonal double rotor failure scenarios.

It is evident that high fidelity models of the quadrotor are valuable for extending their
capabilities and to facilitate their accepted use in outdoor applications. Much is still unknown
about the dynamics behind the quadrotor, especially outside the low-speed domain. Therefore,
this document is concerned with presenting outcomes in recent quadrotor literature and is
structured as follows: chapter 4 provides a brief history of the quadrotor highlighting notable
advancements and concludes with a simple first principle quadrotor model, used extensively
in literature. Some analytical extensions to this simple quadrotor model, aimed at improving
model accuracy, are presented in chapter 5. Recent literature has been concerned with the fault
tolerant control of the quadrotor. Therefore, chapter 6 highlights efforts made in literature to
accommodate the partial and full failure of the rotors. Given the complexity of the quadrotor
dynamics, analytical approaches to modelling are ill-equiped to describe the quadrotor under
conditions of fault or when operating along the boundaries of its flight envelope. Instead, data-
driven system identification approaches are employed, some of which are discussed in chapter 7.
In order to facilitate such techniques, estimations on the quadrotor state are necessary. Some
state estimation approaches are therefore summarized in chapter 8. This document concludes
with a research proposal, in chapter 9, aimed at addressing some of the gaps in literature
discussed in the preceding chapters.
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4 An overview of the quadrotor

The quadrotor remains a favorite among the family of micro aerial vehicles (MAVS) due to its
simplicity and flight capabilities. While the definition of what constitutes a quadrotor may be
up for interpretation, a general definition of a ’quadrotor’ may be considered as follows:

Definition 4.0.1

A quadrotor is an aerial vehicle which makes use of four propellers, typically in a cross-
like configuration, to provide lift, thrust, and attitude control facilitating the motion of
the vehicle [23].

Note that in this definition, the quadrotor does not necessarily have to be a MAV. As
outlined in section 4.1 on the history of the quadrotor, in contrast to the colloquial quadrotors
of today, many of the earlier iterations were in fact large and manned vehicles. As such, to fully
describe the history of the quadrotor, a more broad definition is used in this chapter. Despite
this, the quadrotor treated in subsequent chapters is primarily the MAV-variant seeing as much
of the contemporary research is conducted on this subclass of the quadrotor. To facilitate
these discussions, a simple model of the (MAV) quadrotor, used extensively as a benchmark in
literature, is summarized in section 4.2.

4.1 A brief history of the quadrotor

Widely regarded as the first successful demonstration of flight with a quadrotor is the Breguet-
Richet Gyroplane No. 1in 1907 [23, 24, 25, 26]. Unlike contemporary quadrotors, the the only
controllable input to the Gyroplane No. 1 was the rotor speed, all four of which were connected
via a single engine [25]. As such, the Gyroplane No. 1 was difficult to control, unstable and only
capable of vertical flight. While reports on the exact altitudes reached by the first quadrotor
differ, it is believed that the Gyroplane No. 1 achieved an altitude between 2 [24] and 5 [25]
feet (0.6 and 1.5 meters respectively), even if only for a brief time. Regardless, the Gyroplane
No. 1 was able to demonstrate that vertical flight was indeed possible and, while impractical
as a quadrotor [26], this design inspired subsequent quadrotor research.

It was not until the early 1920s when more flight capable quadrotors were constructed [24,
26, 27]. For instance, Etienne Oehminchen’s Oehmichen No. 2 made use of blade warping to
modify the angle of attack of the two-bladed rotors, enabling improved control of the vehicle
over the Gyroplane No. 1 [26]. Two additional propellers were fixed laterally and placed at
the nose of the Oehmichen No. 2 to facilitate yaw control, hence some consider this vehicle a

Figure 4.1: The Convertawings Model A Figure 4.2: The Curtiss-Wright VZ-7 (1958)
(1956) [26] [26]
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helicopter-quadrotor hybrid [26]. Other quadrotors were also developed around this time, but
due to limitations in the current technology, many of these quadrotor endeavours failed and the
popularity of such vehicles dwindled [24, 26].

Further innovations in quadrotor designs did not materialize until the mid 1950s [24, 26].
The primary innovation of these quadrotor designs was the implementation of differential thrust
which enabled improved control and forward flight of the quadrotors [24, 26]. Two pioneering
designs demonstrated the feasibility of forward flight, namely the Convertawings Model A (1956)
and Curtiss-Wright VZ-7 (1958) [26]. The Convertawings Model A made use of two engines
to control the four propellers [26]. Thus, the attitude of this quadrotor was controlled through
variable pitch of the blades and thrust of the rotors [28]. Perhaps more representative of modern
quadrotors, the Curtiss- Wright VZ-7 made use of a single motor per rotor and was thereby able
to control both forward flight and attitude through differential thrust [29]. However, a lack of
interest lead to the eventual failure of these quadrotors [26] and the stagnation of innovation
towards quadrotor technology.

Interest in quadrotors was once again rekindled in the early 1990s whereby advancements in
micro electro-mechanical systems (MEMS) allowed for the development of micro controllers [23,
24, 27]. Consequently, much of the low-level stability control could now be done automatically
on-board the quadrotor itself, using various sensors also attached to the vehicle [27]. Along
with these innovations came the transition from large manned quadrotors to comparatively
small and mostly autonomous vehicles. The small size, autonomy, low-cost and accessibility of
these MEMS-equipped quadrotors made them an attractive asset for both civilian and military
use [11, 23]. Moreover, given the rapid pace of advancements in other domains, such as those
of mobile and smartphone technology, quadrotors are only growing in popularity in numerous
industries such as construction, agriculture, videography, and sustainability [5, 11]. To facilitate
this growing interest, much research has been - and continues to be - focused on quadrotor
technology in both the commercial and academic sectors [23, 24, 27, 206].

One of the earliest commercial quadrotors was the Draganflyer series, which has seen exten-
sive use in research by virtue of its distinguished performance [24]. Many other companies and
institutions have since either developed their own quadrotor platforms, such as the Standford’s
STARMAC I & IT [27, 15, 30] (see fig. 4.3), or modified existing commercial quadrotors, such
as the Parrot Bebop 1 shown in fig. 4.4 (as is done by Li et al. in [8]). Moreover, the emergence
of open-source and customizeable autopilot software, such as Paparazzi [31], has made research
into MAVS more accessible. The choice of either building a quadrotor or using a commercial one
largely depends on the purpose of research and requirements thereof. In control-based research,
using custom software on commercial drones or off-the-shelf components is more common since
applicability to common and existing quadrotors is often a motivating factor of research.

Figure 4.3: The STARMAC II quadrotor plat- Figure 4.4: The (modified) Parrot Bebop 1
form developed by Standford University [15] commercial quadrotor [8]
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4.2 A first principle model of the quadrotor

In this section a simple mathematical model of the quadrotor is defined, based on first princi-
ples. To describe the position and orientation of the quadrotor, two reference systems are first
constructed in section 4.2.1. Based on these reference systems, the simple quadrotor model is
derived and presented in section 4.2.2. While this model is specific to the established reference
system and quadrotor, the first principle approach used may be generalized to other multirotors.

4.2.1 Reference frames

In order to describe the motion (i.e. position and orientation) of the quadrotor in space, two
reference frames are used. The inertial reference frame, denoted by {E} = {Op,2p,yp, 25}, is
fixed to a point on the ground and is oriented using the north-east-down (NED) configuration
as shown in fig. 4.5. The position of the drone in space is usually expressed with respect to this
inertial reference frame.

Figure 4.5: Illustration of the inertial reference frame, {E'}, following the North-East-Down
(NED) configuration with origin at Og.

To describe the orientation of the drone with respect to the inertial frame, the body reference
frame, {B} = {Op,rB,yB, 2B}, is defined. As the name implies, this reference frame is fixed to
the quadrotor with origin, Op, at the center of gravity of the drone, zp pointing forwards, yp
to the right, and zp aligned with gravity when the drone is hovering as illustrated in fig. 4.6.
In the rest of this document, the superscript B in A® indicates that the entity A is expressed
in the body frame, {B}. No superscript means that A is expressed in the inertial frame, {E},
unless stated otherwise.

The (orientation of the) body frame can be related to the inertial frame through the euler
angles: ¢ (roll), 6 (pitch), and ¢ (yaw). These angles are illustrated in fig. 4.7 wherein the
faded blue quadrotor denotes the orientation which is aligned with {E}. The rotation matrix
about each axis is given by eq. 4.1 wherein ¢(-) and s(-) denote the cosine and sine operators
respectively (i.e. ¢(-) = cos(+) and s(-) = sin(-)).

1 0 0 c(@) 0 s(0) c(y) —s(¥) 0
Re(9) = |0 c(¢) —s(d)|, Ry(O)=] 0 1 0 |, RA(¢)=[s(¥) c(sp) O
0 s(g) (o) —s(0) 0 c(o) 0 0 1

(4.1)

Rotations about multiple axes can be given by a product of the appropriate rotation matrices
defined in eq. 4.1. For example, the rotation matrix from the body frame to the inertial frame
can be obtained by first rotating about the x-axis, then y-axis and finally the z-axis. Note that
this order is reversed in the subscript of the rotation matrix R (i.e. this rotation is shown as
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Figure 4.6: Illustration of the generic quadrotor in the breaststroke configuration, whereby rotor
one is rotating counterclockwise, denoted by wy. Depicted is the body reference frame, B, with
origin, Op, at the quadrotor’s center of gravity (c.g.). Also shown are geometric parameters b
and ¢, which respectively represent the yp and xp distances from the rotor centers of rotation
to the c.g. of the quadrotor.

X3

Xy [ ]

4
2 7,

Rotor 3

Figure 4.7: Definitions of the Euler Angles: ¢ (Roll), # (Pitch), and ¢ (Yaw)

R.,:; meaning that the z-rotation is performed after the y-rotation which is performed after the
x-rotation). Equation 4.2 denotes the resultant rotation matrix from body to inertial reference

frame, REB-
REB = Rzyac(¢7 9a 1/1) = Rx(ﬁb)Ry(e)Rz(w)
c(0)c(v)  s(¢)s(0)c(v) — c(@)s(v)  c(d)s(0)c(¥) + s(¢)s(¥)
Rep = |c(0)s(¥) 5(0)s(0)s(t) +c(8)e() c(0)s(0)s(v) - s(@)e(s) (42)

—s(0) s(¢)c(0) c(¢)e(0)

Intuitively, the inertial frame can be aligned with the body frame by rotating through the
negatives of the euler angles in the reverse order. Therefore, the resultant rotation matrix from
inertial frame to body frame, Rpg, is given by eq. 4.3.

c(0)c(y) c(0)s(v) —s(0)
Rpp = |s(¢)s(0)c(¥) — c(d)s(¥) s(9)s(0)s(v) + c(P)e(y)  s(d)c(0) (4.3)
c(@)s(0)c(y) + s(@)s(y) c(@)s(0)s(y) — s()e(yp)  c(P)c(8)
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4.2.2 Quadrotor dynamics

With the reference frames defined, a simple model of the quadrotor may be constructed. Let
the position of the quadrotor in the inertial frame be given by

T
=l v 3
The velocity of the quadrotor can be obtained by taking the derivative of the position as
T
illustrated by eq. 4.4 with the velocity vector defined as V = {u v w} .

V=¢£ (4.4)

Using this relation, along with the assumption that the quadrotor is a rigid body, a simple
model of the quadrotor can be derived by following Newton’s laws of motion. The resultant
force and moment equations are given by eq. 4.5 and eq. 4.6 respectively.

mV = mg + RppF? (4.5)

LO" + 0F x LOB = MP (4.6)

In these equations, m denotes the mass of the quadrotor and I, gives its moment of inertia.
The gravity vector along zg (refer to fig. 4.5) is given by g. The resultant force acting on
the quadrotor, FZ, is a sum of the control forces exerted by the rotors and the aerodynamic
forces acting on the quadrotor. Since these forces act on the quadrotor itself, they need to be
transformed into the inertial reference frame, hence, Rgp represents the rotation matrix from
the body frame, {B}, to the inertial frame, { E'}. Consequently, eq. 4.5 is defined in the inertial
frame. .

The rotational rates of the quadrotor are given by £ = [p q r} and are expressed in
the body frame. As such, the total moment acting on the quadrotor, M, is also defined in the
body frame and is comprised of the control moments, aerodynamic moments, and gyroscopic
moments (due to the rotation of the rotors).

Attentive readers may have already noted that eq. 4.5 and eq. 4.6 are defined in different
reference frames. Given that the body frame may be rotating with respect to the inertial frame,
the velocity in the inertial frame can related to the velocity in the body frame through eq. 4.7.
It can be verified that when there are no rotational velocities acting on the body (i.e. Q = 0),
the velocity in the inertial frame is equivalent to that in the body frame.

V=vEiaBxvh (4.7)

Therefore, using eq. 4.7 and expressing the inertial terms with respect to the body frame,
eq. 4.5 can be re-written in {B} through eq. 4.8

m (VB + 08 x VB> = Rppmg + FP (4.8)
Depending on the complexity of the quadrotor model, different forces and moments may be
neglected when considering FZ and M? respectively. However, to control the quadrotor, it is

necessary to model the control forces and moments induced by the rotors. Therefore, let

FP =F2 + Aps (4.9)

M?Z = MP 4 Ays (4.10)
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where FZ and M? denote the resultant control force and moments generated by the rotors
respectively. Similarly, Aps and Ays represent the other (e.g. aerodynamic) resultant forces
and moments which may also act on the quadrotor.

In a conventional quadrotor, the control forces and moments can be manipulated by con-
trolling the thrust of individual rotors. A simple model of the total thrust generated by the
rotors is given by eq. 4.11 where w; denotes the angular velocity of the i*™® rotor’ and kg is a
constant for the quadrotor which represents properties of the rotor and air density [0, 32, 33].
Note that g is typically identified through measurements of the hovering quadrotor in windless
conditions where the influences of App are negligible, i.e., aecrodynamic effects are negligible
[33]. Hence, F® = FB when hovering.

T=roy w (4.11)
Since the resultant thrust, T, acts in the negative zp direction, the control forces exerted
on the conventional quadrotor can be summarized through eq. 4.12.

0 0
Fo=1|0 | = 0 (4.12)
-T —Ko Y w2

The control moment exerted on the quadrotor depends on the geometry of the quadrotor.
Namely, the arm lengths from the rotors to the center of gravity. Following fig. 4.6, these arm
lengths are b (along the yp axis) and ¢ (along the xp axis). The (rolling) moment about xp is
generated through differential thrust of rotors 1 & 4 and rotors 2 & 3 and can be given by

2 2

MP = bk (wl —w? —w? —i—wi)

Likewise, the (pitching) moment about yp is governed by rotors 1 & 2 and rotors 3 & 4 and
can be expressed through

MP = tro (0] + wi — wi — wj)

Unlike the moment about xp or yp, the moment about zp (yaw axis) is controlled by the
moments produced by the rotation of an individual rotor and therefore depends on the configu-
ration of the quadrotor [9]. Figure 4.6, illustrates the ’breaststroke’ configuration: wherein rotor
1, wy, rotates counterclockwise. An alternative configuration is known as the ’bear-hug’ config-
uration which has rotor 1 rotating clockwise. In fig. 4.6, the rotations of rotors 1 and 3 produce
a negative moment while those of rotors 2 and 4 produce a positive moment. Consequently, the
moment about zp is given by

B 2 2 2 2
MP =1 (~wi +wi — wj +wj)

where 7 is a constant called the rotor torque coefficient and, like kg, may likewise be
identified from measurements taken during hover under no-wind conditions. Therefore, the
control moment, MZ, is given by eq. 4.13.

bHQ —b/ﬂo —bl-ﬁo b/ﬁ)o
MCB: f/io £K0 —flig —flig (413)

—70 70 —T0 70

1t is assumed that the rotors are perfectly flush with the z3-yp plane. Therefore, the angular rate of the rotor
is only about the zp-axis. Note that this is a simplification and, in reality, imperfections in the manufacturing
and assembly will cause slight deviations. However, the majority of the angular rate will be around the zp-axis
for conventional designs and thus the out-of-axis thrust produced is negligible.
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Some literature, such as [6], also model the gyroscopic effects and rotor inertia in the base
model. These effects will be neglected for the base model presented in this section and will
instead be treated in the subsequent chapter. In the absence of aerodynamic effects, and ne-
glecting the gyroscopic and inertial effects of the rotor, the resultant moment acting on the
quadrotor simplifies to M? = Mf .

With this, a simple dynamic model of the quadrotor is given by eq. 4.6 and eq. 4.8 with
forces and moments described by eq. 4.12 and eq. 4.13 respectively. However, this simplified
model is only valid in the near-hover regime. Consequently, there is a considerable amount of
literature centered around developing a more accurate model of the quadrotor. Some of the
most commonly seen, primarily analytical, extensions to the simplified quadrotor model are
therefore treated in chapter 5.
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5 Extensions to the simple quadrotor
model

While the simple quadrotor model defined in chapter 4 (section 4.2) can describe the quadrotor,
and is often used as a basis for several quadrotor models, it is only valid for a limited region
of the flight envelope. In fact, as will be highlighted in this chapter, this model is only valid
under near-hover conditions (i.e. < 2ms~! [7]). Therefore, the simple model inadequately
describes the quadrotor in the majority of the flight envelope, including simple translational
flight. These model inaccuracies only grow when the quadrotor operates at high-speeds and/or
performs aggressive manoeuvres. For example, Sun et al. [7] found that the performance of such
hovering models completely deteriorates above 5ms~2. Moreover, the simple model does not
consider external disturbances, which may be quite prominent in outdoor environments (e.g.
the presence of wind).

Therefore, to account for some of these effects, various extensions to the simple model are
proposed in literature. Some of the most common and relevant modifications are discussed in
this chapter. Note that most of these extensions are derived analytically from physical principles.
Of course, data-driven approaches also exist and see widespread use in literature (e.g. [0, 7, 8,
34, 35]). However, such approaches are treated in chapter 7.

Some literature sources, such as Sun et al. [0], consider the effects of rotor inertia’s and
the gyroscopic moments induced by these motors to be non-negligible even in hover. Hence,
section 5.1 discusses these effects. The presence of wind is something that cannot be ignored for
MAVs operating outdoors and is therefore treated in section 5.2. Related to the effects of wind
are aerodynamic forces and moments which act on the quadrotor during both hovering and
translational flight. Namely, the influence of thrust variance and blade flapping are presented
in section 5.3.

5.1 Rotor inertia and gyroscopic moment

The rotation of the quadrotor propellers induces a gyroscopic moment on the quadrotor. This
moment can be described by eq. 5.1 where the index, 7, denotes the i*" propeller. Here, I, gives
the moment of inertia of the propeller, Q7 describes the rotation rate of the quadrotor, M,,
represents the moment induced by propeller i and w; denotes the rotation rate vector of the 7"
propeller [11].

Lof + QP xLw? =MP (5.1)

Decomposing eq. 5.1 into the individual components along the body axis results in

M5 Lpoip — Iy, Qewiy, — Iy Qewiy + I, Qyuw;,

Tig Tox Tyy Ty T2z
B .
Mri = MTBW = Iryywiy + Irmezwix + Irnyzwiy — 1. waiz (52)
MTB;Z L«ZZ(,ZJZ'Z — Irmewa’x — ImyQywiy + L«yyﬂxwiy + Irwamwim
In eq. 5.2, I, Ir,,, and I, denote the moments of inertia about the rp, yp, and zp axes

respectively. I, is the product of inertia of the zp and yp axes. The rotational velocities of the
individual rotors, ¢, about the zg, yp, and zp axes are given by w;,, w;,, and w;, respectively.
Similarly, Q = [Qx,ﬂy,QZ]T = [p,q,r]T.

Note that the term I, and I, , are absent (i.e. I, = 0) since it is assumed that

the rotors are flush with the zp-yp-plane (as is done in chapter 4). For unique quadrotors,

=1

Tyz
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Figure 5.1: Illustration of the angle of attack, a, (left) and angle of sideslip, 3, (right) with
respect to the quadrotor body frame.

wherein such propeller symmetry does not hold or the propellers are not flat in the z-axis, then
the appropriate product of inertia terms should be included in eq. 5.2.

Since the propellers rotate about the zp axis, their rotational velocities are much greater than
along either the xzp or yp axes (i.e. w;, > w;, and w;, > wi, and w;, and w;, are negligible)
[L1]. Moreover, the inertia of the quadrotor is much larger than that of the propellers (i.e.
I, < I,). Therefore, the only significant terms in eq. 5.2 are those with large w;, which are
terms containing w;, or its derivative. Equation 5.2 can therefore be reduced to

Irzz Qywiz
ME ~ _ITZZQLIJwiZ (53)
I'f‘zzwiz

5.2 Presence of wind

Since MAV research has only recently seen major growth, much of the quadrotor research has
been conducted indoors wherein the influence of wind is negligible. However, a multitude of
quadrotor applications involve outdoor operations wherein the influence of external disturbances
cannot be omitted. In this section, only a simple representation of wind is given. It is noteworthy
to highlight that modelling wind on its own is a challenging task, given its stochastic nature.
Such models are out of the scope of this paper. Hence, in this section, it is assumed that the
instantaneous wind vector is known in {E'}.

In chapter 4 (specifically, section 4.2), the velocity vector V used represents the airspeed
of the quadrotor and is therefore influenced by the presence of wind. Moreover, depending on
the magnitude of the wind, complex aerodynamic effects may be at play even if the quadrotor
appears to be barely moving with respect to the inertial frame. Much of the research into
quadrotor dynamics and control is conducted in windless conditions (see, for instance, [5, 8, 9,
17, 23]). While this is perhaps suitable for indoor applications (such as drone racing), ignoring
wind is problematic for outdoor applications where such effects are typically non-negligible.

T
The airspeed of the quadrotor, V = [u v w] is related to the ground speed, V¢, and
relative wind speed, Vw, through eq. 5.4 [7].

V=Vg-—Vw (5.4)
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The angle of attack, «, is the angle between the xp — yp plane and the relative velocity
vector of the aircraft and may be calculated through eq. 5.5 [7]. The angle of sideslip, 3, is
given by the angle between the zp — zp plane and the relative velocity vector which is related
to the airspeed through eq. 5.6 [7]. For clarity, the definition of these angles are also depicted
in fig. 5.1.

w

a=aresin (o) (55)

B = arcsin (\/1)20—1—7112> (5.6)

Given that o and S are defined with respect to the relative velocity vector, conditions with
V = 0 result in singular angles. It is evident from eq. 5.4 that this condition is satisfied when the
ground speed equals the wind speed. A special case of this occurs when the drone is hovering
under conditions of no wind. Given the prevalence of hovering in quadrotor operations, special
care should be given to account for such singularities.

5.3 Aerodynamic effects

Due to their complexity, aerodynamic effects are often neglected in quadrotor models. While this
may be suitable for a nominal quadrotor in near-hovering conditions [36], such simplifications
are incompatible with the dynamics at higher velocities, during aggressive manoeuvres, or even
for damaged quadrotors. In other words, neglecting these aerodynamic effects confines the
quadrotor model to a narrow region of the flight envelope thereby restricting its capabilities.
Comnsequently, much literature has been focused on developing accurate aerodynamic models
for the quadrotor. Such literature draws heavily from extensive helicopter literature [36] with
adjustments made to harmonize with the quadrotor dynamics. In this section, two effects that
see frequent attention in literature are discussed: the influence of thrust variation and the
influence of blade flapping.

5.3.1 Thrust variation

One of the prominent aerodynamic effects which comes into play at higher velocities is the
increased dependence of thrust - and therefore altitude control - on the relative velocity between
the rotor and surrounding air, V' (see eq. 5.4), and the angle of attack of the rotor disks, «,
[15, 36]. These variables are not taken into account for the simple thrust model presented in
chapter 4 (i.e. eq. 4.11) which only depends on the angular rate of the rotors, w; V j € [1,4].

Air gains additional energy, through an increased velocity, as it passes through the rotor.
Let this additional velocity be the induced velocity, v;. The thrust of the quadrotor, at arbitrary
a,, can be found using momentum theory as shown in eq. 5.7 [33]. Here, «, is the angle of
attack of the rotor disk (i.e. rotor plane, which is assumed to lie in line with the 25 —yp plane).
The mass flow, m, is a function of the area swept by the rotor blade, A, and the air density p.

T = 2pAv; \/V2 + 2V sin(ay )v; + v2 (5.7)

In order to determine the thrust in eq. 5.7, the induced velocity v; needs to be known.
This quantity can be rather difficult to obtain, so another expression relating the thrust and
induced velocity is needed to complete the system of equations. Blade element theory can be
used to derive another equation for the thrust which also depends on V, ., and the rotor blade
geometry. Equation 5.8 represents the thrust derived from blade element theory [33, 37]. It is
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important to emphasize that eq. 5.8 is ill-suited for conditions where the quadrotor is close to
horizontal surfaces (e.g. roof or ground) since it neglects the ground effect.

_ pabc Z?:l wjzR?’ <9r V2 cos? (o) 0, n Vsin(a) + ”i> (5.8)

2 3 20 JwlR? 230 wiR

In eq. 5.8, a represents the lift curve slope of the rotor, b the number of blades (typically
two for a quadrotor), R denotes the radius of the rotor, ¢ the blade chord, and 6, the pitch of
the rotor blade. Quadrotors, and indeed some helicopters, often harbour twisted rotor blades
(i.e. the blade pitch varies along the blade span) and chord lengths which may also vary along
the blade span. In the underlying helicopter literature [37], it is assumed that the chord, ¢,
is constant. This assumption is subsequently carried over into quadrotor literature by Powers
et al. [33]. Powers et al. [33] further simplify the blade geometry by assuming fixed pitch
blades, contributing to some of the observed modelling errors. For twisted blades, Johnson [37]
proposes two representative values for 6, depending on the nature of the twist. For linearly
twisted blades, 6, may be represented by the pitch at 75% of the rotor’s radius while for ideally
twisted blades, 6, is given by the pitch at the tip of the rotor blade [37].

Regardless of the exact intricacies of the blade geometry itself, the parameters a, b, ¢, R,
and 6, are constant for a quadrotor [6]. Therefore, these terms can be lumped into constant
coefficients and eq. 5.8 can be rewritten as:

4 4
T =k Zw? + ko V? cos?(ay) + k3 (V sin(ay) + v;) ij (5.9)
Jj=1 Jj=1
In the case where the quadrotor is either ascending or descending, i.e. o, = 3, then eq. 5.7
and eq. 5.9 simplifies to eq. 5.10 and eq. 5.11 respectively [33].

T = 2pAv; |V + v (5.10)

4 4
T=ry wltns(V+v)d w (5.11)
j=1 j=1

Moreover, in the special case where V' = 0 (e.g. during hovering conditions), eq. 5.10 can be
further simplified and rearranged to obtain the induced velocity during hover, vy, as given by

[ T

Continuing with the case where V' = 0 and substituting eq. 5.12 for v; in eq. 5.11 yields
eq. 5.13, relating the thrust to the rotational rate.

4 4
T =K1 wa—}—ﬁgthwj (5.13)
i=1 j=1

In fact, since vy, is also a function of T, eq. 5.13 can be rearranged into quadratic expression
in thrust. Solving the resultant quadratic expression leads to a solution given by eq. 5.14 [6,
33]. Note that this solution is analogous to the simplified thrust model presented in section 4.2
and therefore highlights the limitations of the simplified model. Namely, that it is only valid
in near-hover conditions (i.e. quadrotor zp-axis is aligned with inertial frame z. axis: a, ~ 5
and quadrotor is not moving: V & 0).

7=k Y w? (5.14)
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Outside of hover conditions, the thrust variance effect comes into play [6] and the additional
thrust, T, generated by the rotors can be defined as the actual thrust subtracted by the thrust
during hover, T}, as shown in eq. 5.15.

T,=T—T, (5.15)
Substituting eq. 5.9 and eq. 5.13 (note that here T'= T},) into eq. 5.15 yields

4
T, = kaV? cos®(a,) + k3 [V sin(ar) + (v; — vp)] ij (5.16)
j=1

In eq. 5.16, (v; — vp) gives the additional thrust v,. The induced velocity during hover, vy,
can be obtained experimentally. Therefore, the true induced velocity, v;, can be computed using
eq. 5.17 [15, 36] which can subsequently be used to obtain the thrust variance.

Vi
\/(V cos oy )? + (v — Vsinay)?

Note, however, the presence of the induced velocity, v;, on both sides of eq. 5.17. Therefore,
for an arbitrary «, and relative velocity, V', eq. 5.17 is now a fourth order polynomial with respect
to the induced velocity, v;. Although solving this equation would allow for the computation of
the actual thrust, 7', it may prove challenging to do so accurately since the equation itself needs
to be solved and the correct root needs to be chosen. Solutions to this relation can be obtained
experimentally through a rotor test rig as done by Powers et al. [33]. However, in [33], the
results found through the experiment were not consistent with data collected during free flight
of the quadrotor, even though the model itself was consistent with the test rig results. Powers
et al. [33] suspect that this is due to the difference in flow conditions between the rotor test
rig and free flight. Regardless, the test rig results indicate that the thrust variation decreases
for increasing «, (i.e. as the zp axis approaches the zp axis) and at «, > 30° the largest error
between the no-wind state and full-wind state (=~ 3ms~!) was 1 gram' [33].

The thrust variance effect also induces a variance in the control moments of the quadrotor,
which is not considered in the simple model. Moreover, the simple moment model described in
chapter 4 (eq. 4.13) has been found to be inadequate for predicting the pitching moment during
forward flight [6]. Unfortunately, models of such aerodynamic moments are seldom discussed
in literature. Thus, there appears to be a lack of analytical models for the moment variance.
Instead, in chapter 7, a data-driven stepwise regression approach to deriving a moment variance
model is presented. Since such data-driven approaches are specific to the identified quadrotors,
they will not be treated further in this section. Enthusiastic readers are instead directed to
chapter 7 (specifically, section 7.1).

V; =

(5.17)

5.3.2 Blade flapping

Another well documented aerodynamic effect, which is significant for the attitude control of the
quadrotor, is the phenomena of blade flapping [15, 36, 38, 39]. During translational flight, the
advancing blade (i.e. the blade moving towards the direction of motion) sees a higher relative
velocity than the retreating blade (i.e. the blade moving away from the direction of motion)
[15]. Therefore, at each revolution, the blades of the rotor oscillate or 'flap’ due imbalance in
lift between the blades. Since the blades both advance and retreat in a given revolution, they
flap once up and once down. The net result is that the rotor plane tilts away from the direction
of motion, offsetting the resultant thrust vector. This also induces a moment on the drone if
the effective rotor plane is offset with respect to gravity [15, 30].

tThe quadrotor tested was the kQuadNano which weighed about 76 grams with the battery attached [33].
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Moreover, the thrust imbalance also provokes an asymmetry in the induced drag of the
rotor (along the 25 — yp plane) which is otherwise cancelled out during hover (assuming wind-
less conditions). Therefore, due to the rigidity and flapping of the blades, there is also a net
horizontal drag force acting on the quadrotor which may be significant for contemporary (i.e.
small) quadrotors [39]. Most quadrotors also have rotor blades which are not hinged at the hub.
Therefore, the blade flapping induces a moment at the rotor hub [36]. All of these additional
forces and moments have implications for the attitude control of the quadrotor.

Fortunately, a lumped sum model has been formulated from helicopter literature to (approx-
imately) account for these effects [0, 39]. For general translational motion, a simplified relation
describing the flapping angle is given by eq. 5.18 where S84, and ﬁﬁ ap A€ the steady-state flap-
ping angles of the rotor plane to the relative velocity along and perpendicular to the direction
of movement respectively [39].

Ate

Blap = — 1’1&22
(5.18)

L phis

Bfiap = ~15L,2

In eq. 5.18, u denotes the advance ratio which is defined as the ratio of the horizontal
velocity of the rotor to the linear velocity of the rotor tip (see eq. 5.19; R gives the radius of
the rotor) while A;. and A;4 are positive constants [39]. Note that eq. 5.18 is derived using the
virtual hinge model, which is described and experimentally verified for a quadrotor in [15]. A
virtual hinge model is necessary since the flapping angle equations used in traditional helicopter
literature assume that the rotor blades are hinged at the rotor hub, which is typically not
the case. Assuming that the blades are hinged culminates in a somewhat linear relationship
between the flapping angle and the incoming velocity for the majority of the quadrotor’s flight
envelope [15]. Therefore, modelling the rotor blades as hinged results in an over-prediction
of the true flapping angle of the rotor plane, as demonstrated in experiments by Hoffmann et
al. [15]. Instead, to more accurately model the flapping angle, Hoffman et al. [15] propose
that an effective (i.e. virtual) hinge point somewhere along the blade’s length be used instead,
enabling the continued use of the hinged model developed in helicopter literature. However, as
highlighted by Mahony et al. [39], this virtual hinge model results in a phase shift between the
sine and cosine components. Fortunately, this phase shift can be captured in the constants A;.
and Als-

V% 4 v

1
wBR (5.19)

H =

For a typical quadrotor, the advance ratio (eq. 5.19) is small. This is because the linear
velocity of the rotor tips is usually higher than the translational velocity of the quadrotor (since
the rotors need maintain lift during motion). Therefore, the advance ratio, u, is assumed to
be small enough such that % 12 is negligible. Under these assumptions, eq. 5.20 can be defined
indicating the sensitivity of the flapping angle of each rotor, i, to the translational velocity in
the body frame wherein the first, second, and third rows denote the flapping angle due to the
x-,y- and z-components of the velocity respectively [39]. Note that, unlike the equation for Ay,
in [39], eq. 5.20 defined in this paper incorporates a directional term for A;4 dependent on the
rotor number, 4, in order to be consistent with the definition of { B} (see fig. 4.6). In this report,
the xp and yp run between the propellers while in [39] these axis run along the quadrotor arms.
Moreover, eq. 5.20 is consistent with an equivalent formula for A, used by [6], whose authors
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make use of the same definition of {B}.

Alc (_1)i_1A15 0
(—1)fA, A, 0],i=1,234 (5.20)
0 0 0

1
Aftap, = PR
If the stiffness of the rotor is assumed to be similar to a torsional spring, then the induced
drag can be modelled as directly proportional to the flapping angle [39]. This approximation
is suitable for describing the first bending mode of the rotor and the small flapping angles
involved [15]. Therefore, the induced drag can be expressed using eq. 5.21 where Cp,,, . is the
induced drag coefficient matrix with elements d, and d, denoting the induced drag coefficients
along their respective axes. Assuming that the rotors are undamaged, then d, = d, due to
the symmetry of the rotors. Note that the induced drag is found to be proportional to the
velocity of the quadrotor, rather than the squared velocity as one would expect [6, 38]. This
is due to the relatively low speeds in which the quadrotor operates and due to the imbalance
in lift between the advancing and retreating blades [21]. However, this is not to say that this
linear velocity-drag relation also holds at higher velocities. In fact, the pioneering literature (i.e
[15, 38, 39]) for quadrotor blade flapping effects only consider indoor and low speed conditions.
Therefore, the relationship between the induced drag and the velocity of the quadrotor should
be investigated further in both outdoor environments and in the high speed regime.

Cp VB ~ diag (d,, d,,0) VB (5.21)

induced

Taken together, the drag coefficient matrix describing the effects of blade flapping and
induced drag stemming from rotor, 4, can be described using eq. 5.22.

CDflapi = Ajfiap, + diag (dg, dy, 0) (5.22)

Subsequently, the aerodynamic forces resulting from blade flapping and induced drag can
be described through eq. 5.23. Since the flapping angle and induced drag depend on the lift
(i.e. thrust) produced by the rotor, the lumped model of drag is scaled with the thrust of the
respective rotor, 7, in eq. 5.23 [39].

4
Fu,,, = TiCpg,, VP (5.23)

i=1
Now that the (simplified) aerodynamic forces due to blade flapping are modelled, the mo-
ments induced by the blade flapping can also be considered. As aforementioned, there are two
moments which arise due to the flapping of the rotor blades. The first is a moment, Myqp,, .,
generated by longitudinal component of the offset thrust, T4, , due to the tilting of the rotor
plane. The second is the moment generated around the motor hub due to the stiffness, & f4p, of
the rotor blades. These moments are given by eq. 5.24 and eq. 5.25 respectively [15, 36]. Both
of these moments are a function of the blade flapping angle, 8fi,p. In eq. 5.24, Iy, denotes the

offset between the rotor plane and the quadrotor center of gravity (c.g.).

Mﬁaplcm = Tﬁaplon Sin(ﬁflap)lc.q (524)

Mﬁaphub = £ flapB flap (5.25)

It should be noted that the lateral tilt of the thrust vector also induces moments perpen-
dicular to the incident wind but these are cancelled out due to the counter-rotating propellers
and symmetry of the quadrotor [15].
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Of course, the extensions on the simple quadrotor model described in this chapter were
derived assuming a nominal quadrotor operating in the low speed regime. Therefore, the afore-
mentioned relations, and even the simple model itself, may be invalidated by damages to the
quadrotor or at higher velocities. As with many aerospace vehicles, safety is paramount. For
this reason, much of the current MAV research is centered around accommodating potential
faults. Some methods for doing so are treated in chapter 6. Additionally, the extensions out-
lined in this chapter harbour several simplifications and assumptions and subsequently fail to
capture some prevalent aerodynamic phenomena and interactions, especially in the high speed
regime. To bridge the gap between analytical models and realistic systems, data-driven system
identification techniques are often employed and are discussed in chapter 7.

154



6 Actuator Faults

Given that the quadrotor is an under-actuated system, maintaining stability and control in the
event of damages is a challenging task. In light of the growing use of drones in the various
applications, safety of the quadrotors and their surroundings are of paramount importance.
This has stimulated extensive research into fault tolerant control (FTC) investigating how to
maintain control of the drone despite partial, or full, failures of one, or more, rotors [410]. Such
research is aimed at maintaining sufficient control such that the drone may continue its mission
or land safely. In this chapter, approaches presented in literature considering partial and full
actuator faults are discussed.

Much of the literature centered around partial rotor faults tend to model faults using a
multiplicative fault model [18, 19, 41] or as model uncertainties/errors [4, 20, 40, 42, 43]. The
principle behind these techniques is to adjust the commanded inputs (e.g. rotor speeds, thrust,
rotor power etc.) such that equilibrium is maintained. This approach can be extended to partial
faults across all rotors simultaneously. Although, complications arise when considering actuator
saturation limits. Moreover, these techniques rely on the assumption that the quadrotor is still
fully controllable, which is typically the case but is not always true. Section 6.1 discusses the
approaches used in literature to accommodate partial rotor faults.

When one, or more, rotors have failed then the nominal control strategy is no longer appro-
priate to provide stability and control. Therefore, the control strategy itself must be modified.
Literature which consider the complete loss of one, or more, rotors typically surrender yaw con-
trol in order to maintain positional control resulting in the so-called 'relaxed’ hover condition
[1, 2, 21, 22]. Given the difficulty of this task, control with only single rotor failures and diag-
onal double rotor failures have been demonstrated through flight tests. The techniques which
facilitate this control are discussed in section 6.2.1 and section 6.2.2 for the single and double
rotor failure scenarios respectively. In theory, the work of Mueller et al. [22] suggests that it
is also possible to maintain control with adjacent double rotor failures and even three rotor
failures. However, this has not been demonstrated in flight tests and is therefore not discussed
extensively here.

6.1 Partial loss of rotor effectiveness

There are two commonly taken approaches to account for partial rotor failures in literature. The
first is to model the partial failure and use a fault detection algorithm to identify the occurrence
of a fault (see, for example, [18, 41, 19, 44, 45]) as discussed in section 6.1.1. For such cases,
partial rotor failures are typically modelled as a product of the nominal (i.e. commanded) rotor
speed and a factor denoting the severity of the failure. An alternative approach is to circumvent
the modelling of the failure and instead treat rotor failures as model uncertainties (as in [4,
20, 42, 46, 47]) or model errors (as in [40, 43, 48]) which are subsequently handled by a robust
controller. Such approaches are summarized in section 6.1.2.

6.1.1 Modelling a partial actuator fault

When a rotor experiences a partial failure, its rotational speed is affected proportionally to
the magnitude of the fault. For the i*® rotor (i = 1,...,4), this relationship can be expressed
through eq. 6.1 where w; B denotes the true rotational rate of the rotor while w;? denotes the
commanded rotational rate. 7; € (7, 1] describes the multiplicative fault with 7, = 1 denoting a
healthy rotor, 1; > 0 representing a rotor experiencing loss of effectiveness and 7; = 0 indicating
a failed rotor. Here, a lower bound 7 > 0 is enforced to ensure full controllability of the
quadrotor [18]. Complete rotor failures are treated later on in this chapter, since these require

155



6.1. PARTIAL LOSS OF ROTOR EFFECT .. CHAPTER 6. ACTUATOR FAULTS

a modification of the control strategy to maintain flight.

w;"B = mwiB (6.1)

While 77 > 0 provides a theoretical lower bound, Avram et al. [19] propose a more practical
lower bound for 7 based on the saturation limits of the rotor. This condition is presented in
eq. 6.2. For generality, it is assumed here that the rotors may have different saturation limits,
denoted by wgat; (e.g. aft rotors in fig. 4.6 may have higher saturation limits to facilitate
sustained high speed flight in the wake of the front rotors [6]). However, for the conventional
quadrotor, these saturation limits are the same for each rotor (i.e. 7; =7Vi € {1,2,3,4}).

1
- gl

6.2

’ 2wsat,7j Ko ( )

These rotor speeds directly affect the control forces and moments defined in section 4.2

(recall eq. 4.12 and eq. 4.13 respectively). Assuming that the quadrotor is operating at near-

hover conditions when the fault occurs, i.e., that the thrust model given by eq. 4.11 holds, then
the thrust produced by the it can be written as [18, 44]

B
TiB = (1 — H(t — tfi)vfi) /ﬂ?ow? (6'3)

In eq. 6.3, H(t — ty,) indicates the occurrence (and evolution, in the case of time-varying
faults) of a fault for rotor ¢ at time t7,. Avram et al. model H(t — ty,) as a step function in
both single [18] and multiple [19] fault scenarios. As with eq. 4.11, kg denotes the rotor thrust
coefficient. The entity vy, £ 1 — n? denotes the fault parameter associated with w;Z [18]. Tt
follows that vy, = 0 for a nominal rotor.

Similarly, using the control moment structure of the simple quadrotor model (eq. 4.13 in
section 4.2), the complete control moment may be expressed through eq. 6.4 [18]. Here, 79
denotes the torque constant, b and ¢ are part of the quadrotor geometry and are defined in
fig. 4.6. The 4 x 4 identity matrix is given by Isx4 and Ay establishes the location of an
actuator fault and is therefore also a 4 x 4 matrix with all zero entries aside from a 1 on the
diagonal corresponding to the faulty rotor [18]. For example, if rotor three experiences a fault,
then Ay = diag(0,0,1,0).

2

bfi() —bﬁo —blio bHO wé

MCB = |lrg Llry —tlryg —Lrg (I4><4 — H(t — tfi)vfz‘Af) W2 (6.4)
—To 7o —T0 7o ;
Wy

Note that in fault model derivation of [18, 19], the rotor inertia and gyroscopic moment
effects described earlier (see section 5.1 in chapter 5) are not taken into account. In [18], these
effects are attenuated by the model uncertainty bounds of the fault detection and diagnosis
module while in [19] a robust controller accounts for these modelling errors. However, since a
model of the gyroscopic moments has already been derived in this paper, the influence of the
loss of effectiveness of a single rotor can also be determined.

Recall from eq. 5.3 that the gyroscopic moment depends on both the angular rate, w, and
it’s derivative, w. Thus, taking the derivative of eq. 6.1 yields

w3 P = niw® + nioP (6.5)

Therefore, the gyroscopic moment induced by the i*" rotor can be represented by eq. 6.6
with vy, 21— (mg + 772-). Attention should be directed towards s, which is undefined when
the rotor is not accelerating (i.e. w? = 0). However, the last row in eq. 6.6 (containing i’,) is
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also zero in such cases. Further note the difference between vy, in egs. 6.3 and 6.4 (functions of
n?) and 73 £ 1 — n; here (function of 7;). For cases where the loss of effectiveness factor, 7;, is
not time-varying after a fault occurs, then the term 7y, simplifies to vy,.

IrzzQy(]‘ - H(t - tfz)sz)sz;
MP = | —I Qu(1— H(t — ty,)vy, )w? (6.6)

Tzz
I (1_H(t_tfi)7)fi)w£

Tzz

The challenge with the partial actuator fault model described by eqs. 6.3 and 6.4 is the
approximation of the loss of effectiveness (i.e. identification of 7;). Typically, this is done
through a fault detection and estimation algorithm, as done in [18, 41, 44], or is integrated with
the adaptive control law directly [19]. In both cases, the controller is then able to compensate
for the loss of effectiveness of the faulty rotors. For example, Avram et al. [19] maintained
tracking performance in flight tests despite the loss in effectiveness in one, two, three and all
rotors. This was accomplished by integrating the estimation of the fault degree in the adaptive
control law [19]. In fact, some literature sources even avoid the fault modelling altogether and
task a robust controller with accounting for partial faults.

6.1.2 Using robust control to account for failures

A popular approach to account for actuator damages is to employ a fault-tolerant, or otherwise
robust, controller. The core idea being that any damages incurred by the quadrotor are treated
as model uncertainties and/or errors and can subsequently be compensated for by the robust
controller [1]. Therefore, the challenging task of modelling the effects of actuator damage is
avoided completely. This raises the question on whether it is even worthwhile identifying a
model of the damaged quadrotor, if such a model appears to be unnecessary. However, these
controller-based approaches also harbour their own limitations - differing depending on the
control method employed - some of which will be discussed in this section. In addition, more
accurate models lessen the burden on, and facilitate the design of more adept, controllers for
the given task and are therefore valuable. While the linear robust control field sees substantial
interest and research, it will not be discussed extensively here due to the limitations of such
methods when applied to highly non-linear systems, such as the quadrotor.

Among the robust non-linear controllers, the Sliding Mode Controller (SMC) or Sliding
Mode Disturbance Observer (SMDO) sees frequent use in literature. This is primarily due
to its robustness against uncertainties and (matched) disturbances [4, 20, 49, 50]. A matched
disturbance is an external disturbance which enters the system through the control input channel
while an unmatched disturbance is one which enters the system through other channels [51].
Since (partial) actuator faults directly influence the control input, they can be considered a
matched disturbance. In more realistic scenarios where unmatched disturbances also act on the
system, the SMC may be augmented with other controllers catered to handle such disturbances,
as is done with the Attractive Ellipsoid Method (AEM) in [52].

Sliding Mode Control

Due to the prevalence of the SMC in literature, it will be discussed in more detail here. Given
a non-linear system, the goal of the sliding mode control (SMC) is to drive the state trajectory
to, and maintain the state trajectory at, a pre-defined manifold. Therefore, the design of an
SMC involves [20]:

SMC-01 The selection of a manifold, or sliding (hyper)surface, for which the system exhibits
the desired behaviour when confined to this manifold

SMC-02 The design of the control law such that the system approaches and remains in the
manifold defined in step SMC-01 thereafter.
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In conventional SMC design, a sliding variable, o, is defined such that when o = 0 is satisfied,
the system is ’sliding’ along the desired manifold and consequently the target states are reached
asymptotically [20, 50]. The design on this sliding variable is such that it can be driven to
zero by the control input, w, in finite time. Conventionally, o is defined as a function of the
state error, e, between the desired states and the true states such that the desired tracking
performance is assured (i.e. e — 0 when o = 0). To illustrate this, consider a system defined
by eq. 6.7 where X is the state and u the control input.

X = f(X) + h(X)u (6.7)

The error, e, between desired state, X4, and true state, X, is given by eq. 6.8.

e=Xges — X (6.8)

There are various ways to define the sliding variable, o, with a common choice denoted by
eq. 6.9 [20, 50]. This leads to the convergence of o to zero with time and rate of convergence
dictated by parameter ¢ [20].

c=¢é+ce, ¢>0 (6.9)

Note that other choices of defining o exist, and depend on the desired performance of the
error dynamics. For example, Li et al. [12] use eq. 6.10, which augments eq. 6.9 with an integral
term for improved steady-state performance. Whereas others, such as [41], ignore the derivative
term in eq. 6.10.

U:é+ce—|—/~c/e (6.10)

Regardless of the definition of the sliding variable, the subsequent process in defining the
control law is the same. To remain on the sliding manifold (i.e. to maintain ¢ = 0), the so-
called equivalent controller is used which can be derived by considering the Lyapunov Function
in eq. 6.11 [50].

1
V= 502 (6.11)

It follows that, the sliding phase is achieved when V' = 0. However, to guarantee asymptotic
stability of the sliding phase (i.e. to remain on the sliding manifold) the following conditions
need to be satisfied [50]:

i. V<0 wheno#0

ii. lim V=
|o|—o00

The derivative of eq. 6.11 is given by

V=00 (6.12)

Therefore, the equivalent control, u.g, is obtained by setting V = 0 and substituting § =
é+cé = Xq— X + cé (with X given by eq. 6.7) into eq. 6.12 and solving for u.

The above derivation establishes how to stay on the sliding manifold, but not how to reach it
from a point outside this manifold. To achieve this, another control law, uy;, is defined to force
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the trajectory towards the manifold. This can be accomplished through a simple sign function
such as eq. 6.13 [50]

1, if >0
ugis = sign(o) = 4 0, if o=0 (6.13)
-1, if o0<0

Thus the sliding mode control law is the summation of the equivalent controller, u.,, with
the discontinuous controller, ug;s.

However, there is no guarantee that the system can reach the sliding manifold from the
current state within finite time. In fact, the trajectory of the system can only reach the sliding
surface within finite time if the reachability condition is satisfied. For the current example,
this is given by eq. 6.14 where « is a parameter which dictates the reaching time (larger «
corresponds to faster reaching times) [50].

) o
o6 < G o] (6.14)

In light of this, it is important to emphasize that the SMC is only resilient to disturbances
during the sliding phase and not the reaching phase [50]. Some methods, such as the Integral
Sliding Mode, have been developed to mitigate matched disturbances acting on the reachable
phase [50, 53]. Another issue with SMC is that, even if the reachability condition is satisfied, it
does not guarantee that the system can reach the manifold safely, i.e., that the trajectory from
the current state to the sliding surface is even possible.

Assuming that the sliding mode is reachable by the system, there are still some characteristics
of SMC which impede its practical use. An especially notable one for quadrotor actuator faults
is that SMC gains (e.g. k in eq. 6.10) increase with the uncertainty bounds or derivatives thereof
[4], which may be quite substantial depending on the fault severity. High gains are undesirable
since they magnify the noise in the system, could potentially excite unmodeled dynamics, and
provoke the chattering phenomenon (i.e. oscillations about the sliding mode) [4, 49].

Recall that some of the main motivations for using SMC is its ability to reject disturbances
and provide control, accuracy and finite time convergence of the sliding variables. These very
properties are facilitated through discontinuous control inputs (e.g. eq. 6.13), which achieve the
desired performance through high, effectively infinite, switching frequency between the control
actions [50]. In reality, the switching frequency of the control inputs is constrained by sampling
frequency of the system which contributes to the chattering effect [54]. Moreover, chattering can
also be induced by unmodelled dynamics, such as the simplification of fast actuator constants
[54]. For practical applications, such rapid control variations are unrealistic and the subsequent
oscillatory system behaviour undesirable.

One may propose, instead, to use a continuous control input which resembles its discon-
tinuous cousin. However, by using a continuous control input, the beneficial properties of the
SMC no longer hold [50]. Namely, that the convergence of the sliding variable to zero in finite
time is not guaranteed and, as a consequence, the system reaches a state only in the vicinity of
the sliding manifold. Another option, known as chattering attenuation, is to instead design the
SMC around the derivative of the input, such that true control input is actually continuous [50,
54]. This method results in the asymptotic convergence of the sliding variable to zero leading to
what is called an asymptotic sliding mode. However, this approach only reduces the chattering
and does not eliminate it completely. Similar observations can be made with other methods
proposed in literature, such as higher-order sliding modes, designed to attenuate the chatter-
ing [50]. Other literature sources make use of a sliding mode disturbance observer (SMDO) to
quantify the model uncertainties (e.g. actuator fault) such that high SMC gains may be avoided
and the chattering effect also reduced [4, 47].
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Discussion of other fault tolerant control schemes

Considering these drawbacks of SMC, some literature sources prefer the use of other fault
tolerant controller schemes such as model reference adaptive control (MRAC) [40, 43, 48],
incremental non-linear dynamic inversion (INDI) [11, 55], and backstepping methods [24, 56,
57]. However, these approaches also harbor their own limitations.

For instance, the adaption of the control law in MRAC is governed by the error between
a reference model and the true/measured states [10]. Therefore, actuator faults are accommo-
dated in this error and subsequent modification of the controller. However, large errors induce
aggressive inputs and may lead to instability. These can somewhat be mitigated through the
modified MRAC, but at the cost of poorer performance (i.e. slower adaption of the controller)
which itself can also be detrimental [40)].

Similarly, backstepping methods also suffer from large uncertainties in both the model and
the environment. Backstepping works as follows: from a known internally stable subsystem, the
controller of the immediate outer loop is designed to track the desired motion while stabilizing
this subsystem. By applying this method recursively, and progressing out from the inner loops,
each outer subsystem is progressively stabilized [58]. The allure of backstepping is founded in its
applicability to nonlinear systems and has previously been applied in passive FTC schemes for
quadrotors as in [56]. However, depending on the order of the system, deriving the backstepping
control law can be quite intensive [56, 59]. Further, large parametric uncertainties may result
in undesirable performance and even instability, given the model dependence of this approach
[57, 60]. Even if the controller were capable of accommodating such uncertainties (e.g. through
integral backstepping), this usually also comes at the cost of more conservative control laws
which may result in inadequate performance. This is because these methods optimize for the
stability over reducing the error between the desired and true states.

The system model dependency can be reduced through an incremental (i.e. sensor-based)
variant of backstepping [57, 60]. In fact, incremental backstepping has been shown, in theory
[60] and simulation [57], to be able to resist uncertainties in the control effectiveness matrix
to a certain degree. Other sensor-based methods, such as INDI, also rely on the controller
effectiveness matrix to sustain control [1, 4, 11]. However, these incremental methods are
still susceptible to poor tracking performance in the event of a failure since the actual control
effectiveness matrix may diverge considerably from the modelled control effectiveness [11].

It follows then, that reducing these model uncertainties can lead to improved performance.
Indeed, some literature sources employ an adaptive control law based on (potentially time-
varying) fault estimation [43, 61, 62, 63]. Inherently, these methods rely on some form of
system identification, e.g. through Neural Networks as in [63], to facilitate the estimation of
the model/parameters. However, the performance of many of the existing fault estimation
algorithms deteriorates under conditions with external disturbances [64] or time-varying faults
[43]. This is a considerable concern for outdoor applications wherein such disturbances are
prevalent. While Xiao et al. [13] recently developed a more robust fault estimation algorithm,
its performance was only verified in simulation. Moreover, many indoor flight tests which
investigate fault tolerant control, such as [1, 3, 5, 7], make use of an external motion tracking
system to provide some state information for control. Such an external motion tracking system is
unrealistic for outdoor applications. Clearly, there is a need for a system identification algorithm,
based only on information from the on-board sensors, which can ideally be applied online.

6.2 Complete rotor failures
As noted in section 6.1, in the event of rotor failure(s), the underactuated quadrotor is no

longer fully controllable. Therefore, the control strategy itself needs to be modified in order to
maintain control of the quadrotor [21]. The strategy itself may differ depending on the number
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and location of these failures. In literature, strategies to accommodate both single and double
rotor failures have been considered, and even demonstrated through flight tests [1, 2, 21, 22, 65,
66, 67]. The general strategy is to forfeit some angular control (most commonly, yaw control) to
maintain control of the altitude and reduced attitude of the quadrotor. Section 6.2.1 presents
strategies for the single rotor failure case while section 6.2.2 addresses the double rotor failure
case. Recent exciting research has extended current strategies from near-hover conditions to the
high-speed regime [1, 2], which is also discussed in the relevant sections. Despite this, there are
still some barriers to the implementation of such strategies in outdoor quadrotor applications.

6.2.1 Single rotor failure

In the event of a single rotor failure, the same equations presented in section 4.2 from chapter 4
may be used by setting the damaged rotor to zero. For instance, if rotor 4 were to have failed,
then wy = 0. The control force, FCB, and moment, Mf therefore reduce to eq. 6.15 and eq. 6.16
respectively. Note that rotor 4 is used as an example here and that the system of equations is
similar given any of the other rotor failures.

0 0
Fi=10|= 0 (6.15)
=T —Ko (w% + w% + wg)

2
bkg —bry —bro| |wy

MCB = f/ﬁ:o Elﬂ;o —Elﬂ;o w% (6.16)

—T0 T0 —T70 W3

Definition 6.2.1

The relaxed hover conditions are those wherein the quadrotor remains substantially in
the same position where the angular velocity may be non-zero. However, the average of
the translational acceleration is zero to maintain, somewhat, the same position in space
in the absence of wind [22].

It is clear that the under-actuated quadrotor is no longer able to maintain full control.
Indeed, when one rotor fails, the moment symmetry in the yaw direction is broken. As such,
authors in literature propose that the yaw control be surrendered to maintain positional control
[21, 22, 65] or that the opposing rotor (i.e. rotor 2 if rotor 4 fails) be switched off [66, 67].
In fact, translational tracking of the quadrotor with a failed rotor has been verified through
simulations in [55, 67]. Through flight tests, the authors of [21, 22] show that a quadrotor is
able to maintain its position following a rotor failure, defined as the 'relaxed hover condition’
(see definition 6.2.1). More recently, authors of [1, 3] have demonstrated the high speed flight
of the quadrotor despite a rotor failure through wind tunnel test flights.

In these literature examples, the control strategy is the same and is based around primary-
axis attitude control [21]. In the relaxed hovering condition, the primary-axis is defined as the
axis about which the compromised quadrotor freely spins and is illustrated in fig. 6.1. This axis
is fixed with respect to the quadrotor body and points towards the average thrust direction [I,
21]. Let n? = (ng,ny,n,) denote a unit vector along the primary-axis, which can be chosen
arbitrarily. In order to maintain altitude, n? should oppose the direction of gravity such that
the inequality given by eq. 6.17 is satisfied [1].

gl

max

—Ny, >m

(6.17)
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Figure 6.1: Illustration of the primary axis, Figure 6.2: Illustration of the primary axis, n®,

n?, about which the quadrotor spins. For about which the quadrotor spins. For reference,
reference, the quadrotor body reference sys- the quadrotor body reference system, { B}, is also
tem, { B}, is also depicted for the case where depicted for the case where n, > 0 and n, > 0.
n, = —1 (ie. n = [0,0,—1]7). Here, the Here, the quadrotor wobbles due to the compo-
quadrotor does not wobble. nents of thrust in the xp and yp directions.

In eq. 6.17, T)qz denotes the total available thrust. Choosing n, = —1 aligns n® with the
instant thrust direction and results in the quadrotor spinning without wobbling (see fig. 6.1).
Conversely, electing |n.| < 1 means that a fraction of the generated thrust is in a direction
perpendicular to gravity, thereby inducing translational motion. However, due to the yaw
rotation of the quadrotor, the drone in fact follows a circular trajectory given by eq. 6.18 for
a constant n® [21]. Should both n, > 0 and n, > 0 then the quadrotor will "'wobble’ while it
spins [1].

/1 — n2

ne  [|QF]]

As a consequence, the quadrotor can either spin without wobbling or with wobbling (see
fig. 6.2) depending on the choice of n?. Flight results of [21] suggest that allowing wobbling
(i.e. setting n, > 0 and n, > 0) is more energy efficient per propeller than enforcing n, = —1.
However, this choice may be unacceptable given certain applications of the quadrotor (e.g.
carrying a payload), but should be taken into consideration when the safety of the quadrotor is
paramount.

By manipulating n?, the reduced attitude and position of the quadrotor can be controlled
provided that n, # 0 and the quadrotor geometries satisfy: b # 0 and ¢ # 0 (see fig. 4.6). For
a proof of this controllability for the single rotor condition, readers are referred to [21].

The task of the controller, then, is to define a desired acceleration in the inertial reference
frame, ages, which n® must track while satisfying eq. 6.17. Hence, the controller can be decom-
posed into a slow outer loop positional controller, which generates ag.s, and a fast inner loop
controller whose aim is to manipulate n? to achieve ag.,. This is accomplished by aligning n®”
with another unit vector, nges, that is related to ages through eq. 6.19.

nB
ages = REp <_T;Tdes> ndBes +g (6.19)

The first term on the right hand side of eq. 6.19 denotes the projection of the desired thrust,
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Tyes, onto the current primary axis, n?, further projected onto the desired primary axis, nges.
Since g and ag.s are expressed in the inertial reference frame, Rgp denotes the rotation matrix
from the body to the inertial reference frame. The thrust along zg should be equal in magnitude
to the gravity vector, g, in order to maintain the altitude. Any accelerations perpendicular to
gravity constitute the desired "horizontal’ movement (if any). The objective of the attitude
controller is to then align n? with nge <> to be able to track the desired accelerations. In the case
where ag.s = 0, then the quadrotor is in the relaxed hover condition with n? opposing gravity.

Figure 6.3: Illustration of the reduced attitude control strategy. In order to maintain altitude
and move in the desired direction given by ag.s, the current primary axis of rotation, n, should
be aligned with the desired axis of rotation, nge;.

a5 itself may be derived from a reference (i.e. commanded) position. A simple PID
controller may be employed for this purpose. For instance, Sun et al. [1] implement eq. 6.20
where (kp,kp,kr > 0) are the PID gains for their outer loop positional control. Recall & and
V are respectively the position and velocity of the quadrotor in the inertial frame, {E}.

Ades = kP(Edes - 5) + kD(édes - V) + kr /(gdes - £)dt (620)

All that is left is to design the inner loop reduced attitude control in order to align n? with
ndBeS. The derivative of np is given by eq. 6.21 where nalEeS denotes ng., in the inertial reference

frame, {E'}. Note that both aj.s and g are expressed in { E}. Therefore, ng is easily obtainable
in {E} (refer to fig. 6.3).
07 = —QF xnf 4+ Rppnl, (6.21)

Let nf | = [d1,ds, d3]T, then eq. 6.21 can be rewritten as

nf = n? x QF + Rppnl
0 —d3 da | |p
= ds 0 —d; q —l—RBEI'lC]iBS
—d2 d1 0 T
From here, the control strategy depends on the controller used. A general approach is
provided by Mueller and D’Andrea [22] and facilitates a linear time-invariant controller design.

However, rather than working with nge s directly, Mueller and D’Andrea [22] instead introduce
a new ’control’ coordinate frame, {C'}, which satisfies

(6.22)

ng . = Repns  =10,0,1]7 (6.23)
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Whereby the rotation matrix, Rcp, denotes the rotation matrix from {B} to {C'}. Note
that the elements of Rop which correspond to a rotation about np may be chosen arbitrarily.
The projection of the angular velocities in {C'} may likewise be obtained through eq. 6.24.

Qc = RepQPf = [pc,qc,rc] (6.24)

Similar to eq. 6.21, fldces may be expressed as

ng, = —Q¢ xnS,, + Repnk, (6.25)
Let ndces = [h1, ha, h3]T. The objective, then, is to drive hy — 0, hy — 0, h3 — 1, and
hdces — 0. Note that control of h; and hy guarantees control of hs since nge . is a unit vector,

hence only h; and ho need to be controlled. Therefore, the deviation of the state vector from
these targets can be summarized in eq. 6.26.

€ = [h1, ha,p%, ¢, (r’ —n“Q)]" (6.26)

In order to maintain hover, the altitude of the quadrotor needs to be an input variable. This
leaves N, — 1 variables to control the reduced attitude, where NN, is the number of functional
propellers. So long as there is one functional propeller, Mueller and D’Andrea [22] propose a
general approach to maintain control of the quadrotor by transitioning into the relaxed hovering
condition. This approach linearizes the system about the hover solution, which vary depending
on the number of failed rotors. In [22], Mueller and D’Andrea consider single, double and triple
rotor failures for a conventional quadrotor. In addition to this linearization, [22] assumes that
the average desired vehicle acceleration (i.e. eq. 6.19) is constant. Thus, flges = 0. In fact, if
the dynamics of the outer loop (i.e. positional controller) are sufficiently slow, then fldEe ; may be
neglected entirely [21, 22]. Taking these considerations into account yields the following system

0 +1Q° 0o -1 0]
Fegq o 1 0 0
€ER 0 0 a1l a2 ai3| €+ Bu (6.27)
0 0 az a2 a3
.0 0 asy asy ass|

In eq. 6.27, a;; can be obtained through the projection of eq. 4.6 on {C'}. The exact values
of B depend on the choice of u (i.e. choice of inputs; be this thrust, rotor speeds, power etc.)
but ultimately also follow from eq. 4.6 [22].

Linearizing about the hover solution restricts the quadrotor to near-hover conditions. In-
stead, both [1] and [55] make use of a Non-linear Dynamic Inversion (NDI) controller to avoid
this linearization. In fact, one of the objectives of [1] was to investigate the aerodynamic effects
which occur during high-speed flight of a quadrotor with a failed rotor. The challenge with
using NDI, however, is that the matrix in eq. 6.22 is non-invertible. Recall that nges is a unit
vector, therefore v/d3 + d3 + d% = 1. Consequently, accurate tracking of any two variables from
dy,dy or ds will guarantee tracking of the final variable [1]. If d; and dy are taken, then the sign
of ds3 can also be inferred assuming that n? is always in a direction opposing gravity. Therefore,
taking the subspace given by eq. 6.28 facilitates the standard NDI procedure since the matrix
is now invertible [1, 55]. In eq. 6.28, ﬁffes represents the z and y components of Rpgnf .

di| |0 —ds
dy|  |ds 0

Now a distinction is made between [1] and [55]. Lu and van Kampen [55] take the intuitive
approach by defining n? as the state and nges as the reference. However, as uncovered in

P do

q

+ r+nk (6.28)

—dq

164



6.2. COMPLETE ROTOR FAILURES CHAPTER 6. ACTUATOR FAULTS

the experiments of Sun et al. [l], this choice results in poor stability performance due to
measurement noise and model uncertainties. Instead, desirable stability characteristics are
achieved with the opposite definition, whereby n® is taken as the reference and ndB; . the state.

It should be noted that, for the quadrotor, the uncontrolled yaw rate is independent of the
roll and pitch rates [21] and can therefore be obtained through the quadrotor model (i.e. third
row of eq. 4.6) or through measurements. From the high-speed wind tunnel experiments of Sun
et al. [1], it is preferable to use the measurements since the yaw rate varies as a function of the
flight speed and heading angle, which are unaccounted for in the simple quadrotor model (i.e.
eq. 4.6). Given that eq. 6.28 depends on the yaw rate, accurate estimations of this quantity are
necessary for acceptable control.

Solving for the (controllable) angular rates, and replacing the left hand side of the equation
with the virtual control input, vy, yields

0 -1/d d -
Pdes | _ fds| (g, | |, nl (6.29)
Qdes 1/d3 0 _dl
with virtual input, vy, given by eq. 6.30 with gains k;, ky, > 0.

6.30
715 + ky(nf — dg) ( )

In fact, eq. 6.30 simplifies to eq. 6.31 since the primary axis, n, is fixed with respect to the
body of the quadrotor. Therefore, nZ = hf = 0.

i km(”f —dy)
V] = [ky(nyB B d2)] (631)

From here, both [1] and [55] implement an incremental non-linear dynamic inversion (INDI)
controller to translate the desired pitch rate, roll rate, and total thrust (i.e. Tyes in eq. 6.19) into
the commanded rotor speeds, w;. INDI is elected since it is a sensor-based method, and thus
only relies on a control effectiveness model. Therefore, the complex modelling of aerodynamic
effects due to the failure of a rotor, which are unaccounted for in the simple hovering moment
model of [21], can be circumvented. This also facilitates the investigation of the influence of
these aerodynamic effects. Understanding these effects can better inform future quadrotor and
controller designs [1].

High-speed flight tests of Sun et al. [1] show that the aerodynamic moments, M, and forces,
F,, are significant in comparison on the relaxed hovering conditions. Furthermore, the spin-
induced aerodynamic moments vary in magnitude over one rotation of the quadrotor. It was
found that, to account for these moments, the rotor speeds also oscillate within one rotation of
the quadrotor [1]. This is in contrast to the relaxed hovering condition wherein these rotor speeds
remain constant within a revolution [21, 22]. The consequence of this rotor speed variation is
that the primary axis, n”, oscillates around the desired primary axis, ndEe s> leading to tracking
errors. Positional control is only sustained since the average thrust may still be aligned with
uf, [1].

As discussed in [21, 22], variations in n” also result in changes to the wobbling angle and yaw
rate. Therefore, the oscillatory behaviour of the rotor speeds also induces a periodic variation
in the yaw rate. Furthermore, this variation is also a function of the air speed. As expected,
in low-speed conditions, the yaw rate variation is not so pronounced. However, for speeds of
4ms~! or higher, this variation is significant.

Therefore, Sun et al. [1] found the moment model, given by eq. 6.32, to be highly nonlinear
due to the aerodynamic moment acting on the quadrotor. The aerodynamic moment, M, itself
is a function of the airspeed, V, heading angle, 1), and rotational rate of the quadrotor, €2, with
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1 = 0 when the quadrotor is facing the wind [1]. While not impossible, obtaining an accurate
model of M, is ambitious and designing a controller around this perhaps impractical [1].

4
M=MZ+Y MP+ M, (V,9,QF) (6.32)

i=1
With regards to the aerodynamic forces induced by the spinning, F,, Sun et al. [1] found
a linear relationship between drag (along the incoming wind) and velocity. This is consistent
with the linear relationship during the relaxed hover conditions and can be expressed through
eq. 6.33 [21, 22]. In eq. 6.33, the superscript S denotes the stability reference frame, {S} =
{Os,xs,ys, 25}, which is defined with origin coincident with Op, xg pointing towards the
incoming wind, yg, to the right and zg pointing downwards. Cy, denotes the drag coefficient.
Moreover, Sun et al. [1] found a quadratic relationship between the velocity and lateral force
(i.e. along yg) whose sign depends on the direction of spin of the quadrotor. Therefore, a model
for the lateral force can be given by eq. 6.34 where r denotes the yaw rate and C7, and Ca,

are constant coefficients which can be identified from flight test data [1].

FS=Cy,V5 (6.33)

F§ =sign(r) (CryV® + CoyV?Y) (6.34)

It should be noted that during the flight tests of Sun et al. [1], state information was collected
using an external motion capturing system (OptiTrack) and was subsequently transmitted to the
quadrotor via WiFi. This is due to limitations in the on-board sensing hardware coupled with
the challenges of state estimation under the relaxed hover condition (i.e. when the quadrotor
is spinning). Therefore, the first step in transitioning to outdoor applications is to demonstrate
these novel techniques using only the on-board sensors. This challenge is only compounded
by the fact that, outdoors, external disturbances are more prevalent in comparison to a more
controlled indoor environment (such as a wind tunnel). To this end, Solanki [16] has recently
developed a state estimation routine capable of attitude estimation during single rotor failures
using only the on-board sensors, however this has not been verified outdoors. Indeed, some
literature has begun the transition into outdoor experiments, such as that of Stephan et al.
[68] on fault tolerant control using linear parameter-varying control. However, [68] considers
near-hover and low speed scenarios (~ Ims~!), and does not describe the external conditions
of the outdoor flight tests.

Furthermore, it is commonly assumed in current literature on complete rotor failures that
the entire rotor is removed once the failure occurs [1, 2, 3, 21]. Therefore, there are no effects
of an idle or otherwise windmilling rotor. In practice, a failed rotor may remain attached to the
quadrotor and thus subsequent aerodynamic effects and interactions will be present. Therefore,
these effects should also be accounted for in future research.

6.2.2 Double rotor failure

When two rotor failures are considered in literature, the constraint that these failures occur
diagonal to each other on the quadrotor is often imposed [21, 22, 67]. In fig. 4.6, this would
entail rotors 1 & 3 or rotors 2 & 4 failing together. However, some sources also consider adjacent
propeller failures, which is more likely than diagonal failures, and even extend their methods
to three propeller failures [21, 22]. Although, such techniques are only verified in simulation
and have yet to make the leap to flight tests. Conversely, control of a quadrotor with diagonal
rotor failures has been demonstrated in flight tests both in hovering [21, 22] and high-speed [2]
conditions.
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Similar to the single rotor failure case in section 6.2.1, a quadrotor with opposing double
rotor failures can also be controlled by surrendering yaw control [21, 22]. Therefore, control
task is again to align the primary axis (i.e. axis of rotation), n®, with a desired primary axis,
nZ  derived from the positional controller (i.e. nZ . which maintains the altitude and moves in
the desired direction with acceleration ages) through the remaining inputs, u.

The control input definition depends on which rotors have failed. If rotors 2 & 4 have failed,
then the control input can be described by

u=[ug,uo)’ = [w? Wit =5 =1 (6.35)

Whereas, if rotors 1 & 3 fail instead, then the control input is

u = [ug, UQ]T = [w%,wi]T — 5 =-1 (6.36)

Since the dynamics (e.g. the yaw rate direction) depend on the type of failure, the variable
s; € {—1,1} is defined to represent this. For a quadrotor with the same configuration as fig. 4.6,
let s; = 1 when only rotors 1 & 3 remain functional while s; = —1 if only rotors 2 & 4 are
operational.

Again, Mueller and D’Andrea [21, 22] propose the same generalized approach linearized
about the hovering conditions mentioned when discussing single rotor failure (section 6.2.1). In
essense, control is facilitated by setting the remaining rotors to constant speeds that are different
between the rotors (e.g. w2 > wy, wo = wy = 0) [22]. However, to facilitate the movement of the
drone in high-speed conditions, the approach of [2] is presented in depth here. Note that this
approach is based on the authors’ prior work on single rotor failure [1, 55] and thus the same
equations may be employed. Recall eq. 6.22 with nges = [dy,ds, d3]", which is reiterated here
for convenience.

0 —d3 do | |p
nf.=|ds 0 —di| |q| +Rpenk,
—d2 d1 0 r

In contrast to the single rotor failure case, it is most energy efficient to spin without wobbling
during hover [21]. Therefore, n” should be aligned with the instantaneous thrust direction (i.e.
n? = [0,0, —1]7). Accordingly, the goal of the controller is to bring d; = da = 0 for hovering
conditions. Given that \/d} +d3 +d% = 1, and assuming n® always points in a direction
opposing gravity, it follows that tracking on d; and ds also guarantees tracking of ds.

When operating in the high-speed flight regime, complex aerodynamic effects become in-
creasingly significant. To account for this, Sun et al. [2] define the 'relaxed trimming equilib-
rium’ which is an extension of the relaxed hovering condition of Mueller et al. [21]. The primary
difference between these being that the relaxed trimming equilibrium harbors a drag force, Iy 4y,
which must also be accounted for by the average thrust of the quadrotor to maintain equilibrium.
Under these conditions, the magnitude of thrust needs to be increased relative to the hovering
condition, while the primary axis can remain along the thrust vector (i.e. n® = [0,0, —1]T). Tt
becomes apparent, then, that the saturation of the rotors is a pressing concern for high-speed
flight suffering actuator faults. In fact, Sun et al. [2] suspect that such actuator saturation is the
cause of deteriorating tracking performance with increasing flight speed following the eventual
loss of control at a speed of 8.8ms™ 1.

Another consideration for double rotor failures in the high-speed regime is the definition of
the control inputs. As with single rotor failure in section 6.2.1, the double rotor failure also
makes use of a cascaded control structure: the outer loop handles the positional control while
the inner loop manages the attitude control. The challenge with two failed rotors is that only
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Figure 6.4: Definition of x and the new coordinate system, {P} = {O,,zp,yp,2zp}, on a top
down view (left) and 3-Dimensional view (right) of the quadrotor.

two controlled outputs may be elected. Clearly, one of the control outputs should be the altitude
in order for the quadrotor to maintain flight. Therefore:

= (6.37)

This leaves one variable to control the reduced attitude. In the case of a single rotor failure,
the reduced attitude was controlled through elements d; and ds of the unit vector ndBeS. With
two failed rotors this is no longer possible. Instead, Sun et al. [2] propose that these quantities
be controlled implicitly through a linear combination of d; and ds.

By defining a new coordinate system, { P} = {Op, zp,yp, zp}, the second output, y,, can be
defined as a projection of nge s on zp [2]. This new coordinate system is obtained by rotating the
body frame, {B}, about the zp-axis through angle y (refer to fig. 6.4). The sign of x depends
on which two rotors are operational and can therefore be expressed through eq. 6.38.

X = si/x| (6.38)

Therefore, the second output, ys, can be defined as:

Yo = dy cos x + dasin (6.39)

However, this choice leaves the projection of nges on yp uncontrolled, which may induce
instability. Therefore, in order to determine the conditions for which the system is stable, the
inner loop state vector, X;nner, can be decomposed further into external, &;pner, and internal
states, Ninner, by transforming the nonlinear affine system into normal form [2, 69, 70]. Sun et
al. define X;pner as [2]:

T
Xinner = |d1 do p q T 2z w] (6.40)

The external states are derived from the chosen inner loop control outputs (i.e y; and y2)
and their first derivatives [2]. Equation 6.41 denotes the derivative of y;.

n=i=w (6.41)

The derivative of yo follows from eq. 6.22 and is given by eq. 6.42 with ¢; and ¢y denoting
to the first and second rows of REBfldEes respectively.

Y2 = dl cosx—l—dg sin y

, (6.42)
= (—dsq+dar +c1)cosx + (dsp — dir + ¢2) sin
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Figure 6.5: Definition of 8 and geometric property h on a top down view (left) and 3-Dimensional
view (right) of the quadrotor.

Therefore, the external states can subsequently be described as

&1 Y1 P

Ll _ || 2 o (6.43)
&3 Y2 dq cos x + dasin x

&4 o (—dsq + dar + c1) cos X + (dsp — dyr + ¢2) sin

With four external states, three internal states should be defined to complete the state
vector. Sun et al. [2] therefore define the projection of nges on yp as an internal state, 71,
along with two other internal states described in eq. 6.44. While the choice of internal states
is up to the designer, these internal states must satisfy the conditions that their first order
derivative does not contain the control input, u, and that resulting transformation matrix (i.e.
transformation of states to their normal representation) is invertible [2].

N —dy sin x + dg cos x
| = | gcos{ — s;psinC (6.44)
"3 T+ Spuw

The virtual angle, ¢, is defined in eq. 6.45 [2]. Similarly, eq. 6.46 describes the entity pu.
The variable s, € {—1,1} depends on the direction of rotation of the remaining rotors. For
clockwise spinning rotors s, = 1, conversely s,, = —1 for counterclockwise spinning rotors. For
generality, Sun et al. [2] define § as the angle between the zp-axis and the rotor arm connecting
rotors 2 & 4 with 8 € [0, 5] (see fig. 6.5). This corresponds to 8 = 7 with the definition of
{B} in fig. 4.6. The moments of inertia of the drone are given by I, and I, assuming that the
products of inertia are negligible, i.e. I, = diag(l,, Iy, ;). The mass is given by m, 19 is the
rotor torque coefficient and kg is the thrust coefficient.

Iy

¢ =tan"? (I cot ﬂ) (6.45)
y
mT

Sun et al. [2] demonstrate that, in the relaxed trim equilibrium, the internal dynamics of
the inner-loop system are locally asymptotically stable if and only if x is chosen such that all
the eigenvalues of A in eq. 6.47 have strictly negative real parts.

—T COoS — 1
sin(|x| — ¢) —7A A
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with
A = (AT + 2a,0s,) sin? ¢ + (AT — 2a,@s,) cos* ¢ (6.48)
A = —(AzT + 2a,ws,) sin Csin | x| + (A7 — 2a,ws;) cos ¢ cos || (6.49)
Ap =12t 4, = Ll A, = Ll (6.50)
ag = %, ay = % (6.51)

subject to the following assumptions [2]:

assumption-01 The aerodynamic forces, F,, and moments, M,, are independent of the control
input u.

assumption-02 The desired primary axis, ni, > varies slowly in time such that r'lfe s~ 0.

assumption-03 The average rotor speed is constant (w ~ @) and independent of the input.

assumption-04 The yaw rate of the quadrotor is constant, r & .

For the proof of this proposition, enthusiastic readers are referred to [2].

Sun et al. [2] conclude that the stability of the internal dynamics is invariant of the failure
type (i.e. Vs;) provided that |x| is constant. However, this may not hold under significant
aerodynamic forces and moments since these were neglected by Sun et al. [2] for this particular
conclusion.

Although assumption-03 seems rather counter-intuitive, it has been corroborated by flight
test data in [2]. Recall that Sun et al. [2] consider the relaxed trim equilibrium, wherein the total
thrust force is approximately constant. Therefore, assumption-03 is only invalidated when this
equilibrium is broken, such as during aggressive maneuvers. Despite this, Sun et al. [2] found
the internal dynamics to be stable even when the quadrotor was tasked with simple lateral and
vertical maneuvering under windless conditions. This is likely a consequence of the commanded
thrust being constant for various intervals of time, rather than being continuously changing.
Hence, assumption-03 is only broken in the vicinity of a commanded thrust change (e.g. step
increase), but remains valid otherwise.

As with their prior work, Sun et al. [2] again make use of an INDI controller, which is
restructured to accommodate these internal dynamics. Even though the stability of the internal
dynamics can be ensured with appropriate selection of x, the performance of the controller
depends on the control effectiveness matrix. The effects of the inputs, u, on the output states,
y1 and g9, can be seen through their second derivatives which are given by eq. 6.52 and eq. 6.53
respectively.

F, R
i = gl + —2 — 33k0(u1 + u2) (6.52)
m m

iia = dy cos x + da sin x (6.53)

In eq. 6.52, F, , represents the aerodynamic forces acting on the quadrotor along the zg
axis, g is the gravity vector, and Rs3 denotes the last term on the diagonal of Rgpp. Grouping
terms, eq. 6.52 can easily be rewritten as eq. 6.54 where ®; describes the forces acting on the
quadrotor along the zg-axis and B; denotes the control effectiveness on .

§1 = @1+ Bi(u1 — u2) (6.54)
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By — — Hro (6.55)

m

In contrast, the control effectiveness matrix in eq. 6.53 is not as clear. Jl and c.l-g can be
obtained by taking the derivative of eq. 6.21. Using the product rule, this yields

. ) - B .
ndB;S = ndBes x QF + ndB;s x Q + QBnges + RBEndEes (6.56)

- B
Only the second term in eq. 6.56 (i.e. nf  x Q) contains quantities related to the input,
u, while all the other terms are only functions of the state vector, Xinner-

dor — d3q
- B
ng, x QO = |dsp— dyr (6.57)
diq — dap
The rotational accelerations, @ = [p,¢,7]T, can be obtained through the simple moment

model eq. 4.6 (see section 4.2) with the addition of the aerodynamic moments acting on the
quadrotor, My, = [My 4, My, M, .]T. §2 is given by eq. 6.58.

P Ayrq — 2a,qwsy, + 51Gp(ur — ug) + Mo
gl = | Ayrp —2aypws, + Gg(ur —uz) + Mgy (6.58)
7 A.pg — }—: — $nGr(ug +u2) + M, ,

In eq. 6.58, A;, Ay, and A, represent the inertia terms and were previously defined in
eq. 6.50. Likewise, the terms a, and a, are given by eq. 6.51. @ follows from assumption-03
and denotes the average rotational rate of the rotors. The aerodynamic drag induced by the
yaw rate is captured by the yaw damping coefficient, «v. This coefficient has been found to vary
linearly with the yaw rate [21]. The terms G, G4, and G, relate to the thrust and torque
coefficients and are presented in eq. 6.59 where h is the shortest distance from the rotors to
the center of gravity (from the geometry of fig. 4.6, h = v/b? + £2. For an illustration see also
fig. 6.5).

szw’ quw’ Gr:% (6.59)

Grouping terms related to u and substituting the first two rows of eq. 6.56 into eq. 6.53
yields

o = {P21(x)+ [—daspnGr(ur + u2) — d3Gg(ur — u2)]} cos(x)

: (6.60)
H{P22(x) + [d3s1Gp(ur — u2) + d18nGr(u1 + ug)]} sin(x)

The lumped terms @3 ;(x) and P32(x) encompass nonlinear terms and aerodynamic effects
from the first and second rows of eq. 6.56 respectively. Sun et al. [2] simplify eq. 6.60 by ex-
ploiting knowledge of the controllability of the conventional quadrotor. Namely, that it requires
less control effort to roll and pitch than to yaw. This also follows from the angular acceleration
control effectiveness given in eq. 6.59. Thus, the following assumption can be made

G, << min(|G, Gy ) (6.61)

Therefore, eq. 6.60 may be simplified further to eq. 6.62. Here, ®o(x,x) represents the
nonlinear terms and aerodynamic effects projected onto zp.

B2 = Pa(x, x) + d3{s;Gpsin(x) — Gqcos(x) }(u1 — u2) (6.62)
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Recall that x = s;|x/|, therefore

spsin(sy|x|) =sin(|x]) vV s €{-1,1} (6.63)
Substituting G, G4 and x = si|x| into eq. 6.62 gives

Jo = Palx,x) + ds{w sin([x) — =222 cos(|x|)}(ur — uz)
= By x) + I (oin([]) — F2 cos([x])} 1 — o)
Notice that the coefficient of cos(]x|) is equivalent to tan(¢) (refer to eq. 6.45). Therefore,

eq. 6.64 can be succinctly expressed as eq. 6.65 where By represents the control effectiveness
matrix and is defined in eq. 6.66.

(6.64)

G2 = Po(x, X) + Ba(u1 — u2) (6.65)
_ dzkgsin(B) .
By—-§£&@7$mc—mn (6.66)

Therefore, to guarantee control, both B; and By should not be zero. This results in the
following conditions for controllability:

e For 1y
i. R33 # 0: Thrust should be outside the horizontal plane in {E'}
e For yo
ii. d3 # 0: The desired primary axis should not not perpendicular to the zp-axis (i.e.

thrust must have a component along zp)

iii. sin(¢ — |x|) # 0: Adds an additional constraint on x to ensure that the quadrotor is
controllable in addition to being stable.

Note that as |sin(¢ — |x|)| — 0, the control effectiveness on yo deteriorates culminating in
aggressive control inputs. Such inputs are undesirable and may be unrealistic considering the
actuator dynamics. Therefore, Sun et al. [2] also impose eq. 6.67 as a constraint on the selection
of x.

Bu(x))
min (G, 1 Gal) = (6.67)

Through a case study of three different selections of x:

Yee(x|) £

* |Xc1|: which violates the condition e (|x|) > 1
* |X¢z2|: which has positive real eigenvalues in A
e |Xc¢3|: which has strictly negative real eigenvalues in A and satisfies yee(|x|) > 1

It was found that, indeed, choosing |x., 1| results in large and oscillatory actuator inputs which
eventually results in a crash due to actuator limitations [2]. Alternatively, choosing |y, 2| exhib-
ited a divergence of the internal states, indicating instability and eventually leading to a crash.
Selecting |x.,3| results in the convergence of the states and inputs [2].

It is noteworthy to emphasize that INDI relies on measurement updates, which are subject
to noise, to generate the control law. To mitigate the effects of measurement noise, Sun et al.

[2] apply a low-pass filter to the variables, which induces a delay on the signal. Therefore, in
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practice, all time-varying variables should be filtered using the same cut-off frequency to ensure
that the signals are synchronized.

While an exciting advancement in the field of quadrotor control, the contributions of Sun et
al. [2] - and, in fact, many others on double rotor failures such as [21, 22] - only demonstrate! the
control of quadrotors with diagonal rotor failures and not adjacent failures. The latter failure
scenario is perhaps the most common type of double rotor failure and is therefore an important
avenue in which to extend current knowledge. Indeed, Mueller et al. [22] outline a strategy
for control with two adjacent failed rotors (as described in section 6.2.1). In the adjacent rotor
failure case, pitch/roll control is surrendered and the remaining rotors set to a constant thrust
level that is different for each rotor [22]. This thrust level is defined by the ratio of thrusts which
consumes the least amount of power, and thus varies per quadrotor. However, this is geared
towards finding a hovering solution. Therefore, the proposed strategy is only valid in near-hover
conditions and may not be the most effective policy. Perhaps, in the event of adjacent rotor
failures, movement may be facilitated by making use of the aerodynamic forces and moments
acting on the quadrotor.

Furthermore, as with the single rotor failure case, the results of Sun et al. [2] were facilitated
through accurate state estimates obtained from an external motion tracking system (OptiTrack).
Again, these control strategies should be compatible with on-board state estimation to expedite
their practical use in outdoor applications.

"In terms of flight tests. Mueller et al.[22] have shown that, in theory, it is possible to control a quadrotor
with adjacent failures in the relaxed hover condition.
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7 System identification of quadrotors

What has emerged from the previous chapters is that the development of more accurate quadro-
tor models is necessary to fully exploit UAVs while simultaneously improving safety. Up to now,
a simple quadrotor model has been described upon which some extensions to this base model,
founded on well-studied phenomena and actuator faults, were discussed. However, several
simplifications were made in the derivations of these extensions. For example, in the case of
actuator faults, it is often assumed that the rotor is somehow removed from the quadrotor such
that complex interaction effects need not be considered. In reality, failed rotors may remain at-
tached to the quadrotor and their influence on the controllability perhaps relevant. Quadrotors
routinely operate at higher speeds where unmodelled aerodynamic effects become prevalent.
Moreover, complex interaction and coupling effects emerge during aggressive manoeuvres and
remain unaccounted for in the models discussed previously. Understanding how these effects
influence the quadrotor, and perhaps even how to exploit them, facilitates optimized control of
the (un)damaged quadrotor.

It is impractical to analytically derive models which are valid across the entire flight regime.
Therefore, research into quadrotor models beyond the domain of validity of current analytical
models typically make use of various data-driven system identification techniques. Exact ap-
proaches differ depending on the application and desired accuracy. This chapter discusses a
few of these approaches starting with a simple, yet effective, approach using polynomial models
in section 7.1. Given recent advances in Artificial Neural Networks, and their ever-growing
popularity, section 7.2 outlines a Neural Network approach to system identification.

7.1 Polynomial models

One of the merits of using polynomial based models is that they are simple to apply and
interpret [7]. Prior knowledge can be applied to determine both the structure and regressors
of the polynomial, facilitating a so-called ’gray-box’ approach to modelling [7]. Of course,
polynomial models can also be employed when little information is known, although selecting
appropriate model candidates becomes more challenging. Therefore, polynomial models are
often used as an initial modelling technique for system identification in aerospace [71].
Polynomial models are a data-driven approach wherein measurement data are used to fit

(i.e. ’train’) the model. This is accomplished through regression, which is typically of the form

z=A0+¢ (7.1)

where z € RY denotes the measurement data of length N. The matrix A represents arbitrary
combinations (e.g. power series) of the independent variables (in this case, the quadrotor states)
wherein the first column is a constant vector. This matrix is expanded in eq. 7.2. The parameters
corresponding to the regressors (i.e. elements) of A are given by 6. Therefore, A0 denotes
predictions of the model. The residuals between these predictions and the measurement data is
denoted by e.

1 &1 &2 - &m

A = 1 52.71 52:72 527m = [17 517 527 s ’gm] (72)

1 év1 én2 - ENm

For systems which are linear in the parameters, the optimal model parameters, é, which
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minimize the error residuals in eq. 7.1 can be estimated through ordinary least squares (eq. 7.3).

0= (ATA)1AT; (7.3)

Once the desired model fidelity is known, designers must decide on the appropriate model
structure to satisfy the requirements. It is clear from eq. 7.1 that the model performance
depends on the choice of the regressor matrix, A. The complexity of A is a function of the
chosen regressors and the number of thereof. Increasing the complexity of A may lead to lower
model residuals at the risk of over-fitting the measurement data. Conversely, a simple regressor
matrix may fail to adequately capture the governing dynamics. Moreover, the computational
load increases with the complexity of A. This therefore raises the question of how to choose a
suitable model structure.

7.1.1 Stepwise regression

Sun et al. [6] propose the use of a stepwise model structure selection algorithm, which sees
frequent use in conventional aircraft system identification literature [71, 72], to identify a high-
speed model of a quadrotor. The motivation behind stepwise regression is to let the algorithm
determine the most suitable model structure given a set of model candidates. This set is known
as a candidate pool of regressors and is comprised of combinations - be these polynomials,
exponents, logarithms or otherwise - of the quadrotor states.

The principle behind this approach is to, in the forward step, select a regressor from the
candidate pool which leads to the greatest improvement in model accuracy. Subsequently, in
the backward step, the quality of the current selected regressors is reassessed by evaluating the
performance of the model with each of the regressors removed. This is done since regressors
added earlier may become redundant due to the combination of the current model regressors, and
may therefore be removed without detriment to the model quality. The algorithm terminates
once the regressor that was removed in the backward step is the same as that added in the
forward step, otherwise the forward step commences again and the process repeats itself.

The stepwise regression is initialized with eq. 7.1 and A = [1,...,1]”. Regressors are added
to the model based on their correlation with the measurement points, z, after adjustment for the
effects of the current regressors in the model [71]. Note that, immediately following initialization,
the only regressor in the model is the bias vector, A = [1,..., 1]T. This adjustment is conducted
in order to ensure that the added regressors capture variations of the measurement data which
are otherwise absent in the current model (i.e. absent in A) [71]. The adjustment is performed
as follows [71]:

i. The candidate regressors in the pool are adjusted to orthogonalize them with respect to
the regressors already in A. This is accomplished through eq. 7.4.

ii. The measurement data, z, are likewise modified using eq. 7.5 to account for the adjust-
ments of the candidate regressors in the previous step. Note that A is the same in both
eq. 7.4 and eq. 7.5

ec; =& — A(ATA)T'ATE, (7.4)
€:; =12; — A(ATA) 'AT7; (7.5)
Following this adjustment, the correlation of the (adjusted) candidate regressors with the

(modified) measurement points can be assessed for each regressor using eq. 7.6 [71]. The regres-
sor corresponding to the highest absolute correlation is selected for addition to the model. Note
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that the original regressor is selected and not its adjusted variant. For example, if €¢; results
in the highest correlation, then regressor &; is elected for model addition.

v — i (e li] — Eeg) (€2l — &)
VN, (eeslil — e6))* SN (exglil — )

The selected regressor is only added to the model if it results in a significant improvement
to the model itself. This is assessed through a F-statistic and is given by eq. 7.7 whereby Fj
denotes the test statistic and Fry is the user-defined cutoff based on a significance level, «, of
the test statistic (i.e. Finy = F(a;1, N —p —1)) [71]. The choice of significance level is up to
the designer. For aircraft systems, it is often the case that N > 100 and p < 10 (thus, N >> p)
implying that the effect of p on Fjy is negligible. Therefore, Fry is assumed to be constant
and is commonly set to Fyy =4 [71].

(7.6)

_ SSr(0y1;) — SSr(6,)

Fy
&2

> iy (7.7)

In eq. 7.7, ép gives the model parameters without the added regressor, §;, while 9p+j
represents the model parameters with the addition of §;. In both cases, the parameters can

be estimated through OLS using eq. 7.3. SSg(0) denotes the regression sum of squares and is
defined in eq. 7.8 where N gives the number of measurement points and z the mean measurement
value [71].

SSp(0) =6 ATz — Nz (7.8)

s? denotes the fit error variance and is defined by eq. 7.9 with p denoting the current number
of regressors in the model [71].

N : )\ >
S, (2l - A6)
R (7.9)
N—-p-—1

If the condition Fp > Fyx is satisfied, then the regressor §; is added to the model. It may
be the case that the addition of §; to the model makes some previously added regressor super-
fluous. Therefore, following the addition of a regressor §;, all model regressors are examined for
redundancy [71]. It is important to note that, for this check, the regressors are not adjusted and
therefore remain in their original form. For p model regressors, the quality of each regressor,
&}, is evaluated through the test statistic defined in eq. 7.10 where 9p,k denotes the parameters

corresponding to a model with all p regressors except &, [71].

Fop— SSr(8,) — SSr(6,-1) (7.10)

g2

Should any of the regressors satisfy the condition Fyj < Foyr where Foyr is another user-
specified threshold, then regressor with the lowest I is removed from the model. As with
Fin, typically Foyr = 4 [6, 71]. Should &, = §; (i.e. should the removed regressor be the
same as the just added regressor) then the algorithm terminates. If this is not the case, or if
no regressors meet the condition Fy; < Foyr, then the algorithm continues adding regressors
until the termination condition is met.

However, this termination condition does not consider the over-fitting of the model to the
measurement data, z [6, 71]. Therefore, additional stopping conditions may be implemented
to mitigate this effect. For example, the Predict Square Error (PSE) given by eq. 7.11 may be
used, which prevents overfitting due to too many regressor terms [0, 71]. In eq. 7.11, §y = A6
represents the model predictions and oh,4, is the a constant defined by eq. 7.12. The second
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term in eq. 7.11 represents the penalty for a model with p regressor terms and therefore scales
with increasing p.

sl T2 P
PSE = N(z y) (z y)+ammN (7.11)
N
1
U?na:p = N Z (Z[Z] - 2)2 (712)
i=1

The PSE has previously been used by Sun et al. [6] as a stopping condition for the model
structure selection of a high-speed quadrotor model. The PSE stopping condition is met once the
PSE of the previous iteration is less than that of the current iteration (i.e. PSE > PSEj.s).
Having defined an approach for selecting an appropriate model structure based on a pool of
model candidates, all that is left is to determine this candidate pool itself.

To demonstrate a potential method for defining model candidates, the selection process of
Sun et al. [6, 7] will be used. However, regardless of the avenue taken to obtain the model
regressors, the application of the stepwise regression algorithm is the same.

7.1.2 Selecting model candidates

A candidate pool of regressors can be determined through knowledge on the first principle
models and observations from flight test data [6, 7].

The basic dynamics of the quadrotor can be captured by using the first principle model of
the quadrotor (namely, eqs. 4.6 and 4.8 in section 4.2). By investigating the relations between
state variables in the first principle model, it follows that polynomial functions may be used
to describe these relations. For a polynomial of degree, d, with n independent variables, the
number of terms, Ny, in the candidate pool excluding the constant term’ (i.e. bias vector in A)
is given by

(d+n)!
nld!
Therefore, a polynomial with d = 3 and n = 3 has N; = 19 terms. As an example, the
candidate pool for a polynomial given by P3 (u, |v|,w) is: {u, |v|, w, u?, |v|?, w2, ulv|, vw, |v|w,
ud, o3, w3, u?|v], vtw, [v)?u, |v|? 2

N; = -1 (7.13)

w, w?u, w?|v|, ulv|w}.

As aforementioned, the simple first principle model fails to capture the relevant dynamics in
the high-speed regime. Therefore, by using insights from chapter 5 (i.e. extensions to the simple
quadrotor model), the polynomial candidate pool may be extended to capture these effects.

Force model candidates

Recall from chapter 5 that thrust variance and blade flapping are two aerodynamic effects
commonly treated in quadrotor literature. Thrust variance influences the total thrust generated
by the quadrotor while the blade flapping induces additional forces perpendicular to this thrust
vector. Knowledge of these phenomena may be used to guide the choice of the force model
candidates.

From section 5.3.1, the additional thrust (eq. 5.16) induced by the thrust variance effect was
found to be

4
T, = kaV2cos*(a,) + k3 (Vsin(a,) + [v; — vp)) ij
=1

tNote that the bias vector is excluded from the candidate pool since it is assumed to be present in the
regressor matrix, A. Therefore, the candidate pool discussed here refers to only the potential regressors up for
selection during stepwise regression, and not the fixed regressors (e.g. the bias vector).
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Where T, denotes the additional thrust, V represents the airspeed of the quadrotor, «, the
angle of attack, v; the induced velocity, v, the induced velocity during hover and w; gives the
rotational speed of the j* rotor (5 € [1,...,4]).

The total force, F,, acting on the quadrotor along the zp-axis is given by eq. 7.14 with T},
denoting the thrust during hover and D, the drag induced by the aerodynamic effects.

F,=-T+D,=—(To+1Ty)+ D, (7.14)
Substituting eq. 5.16 into eq. 7.14 yields

4 4
E, = —{kaV?cos?(a,) + k3 (V sin(ay) + [vi — vp)]) ij + Ko ij)} + D, (7.15)
i=j j=1

The relative velocity, V', of the quadrotor can be decomposed into components defined in the
body frame (i.e. [u,v,w]"). The velocity, w, is given by the projection of V onto the zp-axis.
In other words, w = V'sin(«,). Similarly, v and v can be described by the projection of the
relative velocity onto the z-yp-plane, which is denoted by u? + v? = V2 cos?(a.). Therefore,
the force model can be rewritten as

4 4
F, = —{ko(u® +v*) + k3 (w + [v; — vp]) ij + Ko ij)} + D, (7.16)
j=1 j=1

However, this force model fails to consider interaction effects between the rotors and the
drone frame. Moreover, accurately determining [v; — vp,] and D, can prove challenging, thereby
limiting the practicability of this force model. Instead, Sun et al. [6] propose a polynomial
model of F},, based on eq. 7.16, which can account for these interaction effects and approximate
[v; — vp] and D,.

To adequately capture interaction effects between the states, it follows that a polynomial
model of F, should have a minimum order of three due to the dependence of F, on the states
u, v, and w. A suitable polynomial model of F, is given by eq. 7.17. Here, P? denotes a
polynomial of degree d. The first term in eq. 7.17 represents the thrust during hover, which
can be easily be identified from flight data during hover. The second term, P}%z,p accounts for
ka(u? 4+ v?) and D, among other aerodynamic effects and interactions. The last term, sz,w
relates to w3 (w + [v; — v)).

4 4
F, = —ko ZWJQ + Pf?lz,l (u, [v], w) + sz,Q (u, [v], w) ij (7.17)
j=1 Jj=1

With this, the candidate regressor pool for F, is defined. The sign of the forward-backward
movement (i.e. u) is conserved to investigate forward-aft rotor interactions since only forward
flight is considered in [6]. Consequently, |v| is used here to avoid issues with the sign of the
lateral motion of the quadrotor, since the dynamics of these motions are hypothesized to be
independent of the sign [6]. Note that in their later work, Sun et al. [7] take the absolute
value of both u and v for their F, model since they consider forward flight with varying heading
angles.

Blade flapping induces significant aerodynamic drag, perpendicular to the thrust force, on
the quadrotor during flight. In fact, these drag forces were found to be more influential than
the pressure and parasitic drag of the quadrotor frame itself [6]. For this reason, the drag of the
airframe is neglected in the polynomial model of Sun et al. [6]. Following the blade flapping
induced force derivations of section 5.3.2, the forces acting along xp and yp can be described
through eq. 7.18 [39]. Here, R denotes the radius of a rotor, A;, and A;, are constants which

178



7.1. POLYNOMIAL MODELS CHAPTER 7. SYSTEM IDENTIFICATION ..

describe the blade flapping, and d, and d, are the induced drag coefficients for the = and y
directions respectively.

4 .
F, 1 A —1)7-14 d, 0
-S1, (3 o (DAL ]) H (7.18)
Fy =1 wj R (—1)JA13 Alc 0 dy v

One assumption made in the derivation of the blade flapping effects is that the quadrotor
propellers rotate at similar speeds [39]. Consequently, for a nominal quadrotor, the terms
associated with A;, cancel out due to the counter rotation of the propellers yielding

4
Ay
Fo=u) T, ( c +dm> (7.19)
= ij
4
F,=v T»( 1C+d> (7.20)
y Z J wiR Yy

It is evident that F, and F, also depend on the thrust produced by each rotor, T}, and
by extension are also influenced by the thrust variance effect. Therefore, as with deriving the
model for F,, the thrust can be decomposed into T} = T} , + T} . Therefore, eqs. 7.19 and 7.20
are equivalent to egs. 7.21 and 7.22 respectively.

Ay,

4
A
F, = ukg Z <Bl)cwj + drw?)

J=1

Ay
R

C

4
—i—uz
j=1

(HQ(’U,Q + ’1)2) + /‘dg(w + Ua)w]') <

ij

A,

+ dm>: (7.21)

(7.22)

4 4 ;
Fy:vmoz< wj—l—dmw?) —i—vz +dy>
Jj=1 j=1" _

By looking at the first terms of eqs. 7.21 and 7.22 respectively, it is evident that there is a
dependence of the state on both w; and w?. Intuitively, there is a strong collinearity between
these two variables for the majority of the quadrotor flight envelope. Such high correlations
between the regressors deteriorates the performance of the resultant model. Therefore, to ame-
liorate this, Sun et al. [6] propose that wjz be absorbed by w; such that eqgs. 7.21 and 7.22
become eqs. 7.23 and 7.24 respectively.

(ﬁg(uz + ’1}2) + H3(’w + Ua)wj') (ij

4 4 -
A A
F, = ukg ij < BI’C + dx) + uz (K}Q(u2 + 1;2) + r3(w + va)wj) (wjllc% + dz> (7.23)
Jj=1 j=1 "t J
4 A 4 A .
F, = vko ij < ]%C + dx> + UZ (EQ(QE + %) + Kg(w + vg)w;) (w]l}% + dy> (7.24)
=1 j=1 b |

Notice that the second term of both eqgs. 7.23 and 7.24 resembles the first term of the thrust
model (see eq. 7.16). Therefore, the second terms of the drag models may also be approximated
by a polynomial similar to that of eq. 7.17. Doing so also harbors the advantage of accounting
for interaction effects, which are otherwise neglected in eqgs. 7.23 and 7.24. Therefore, a suitable
polynomial drag and thrust model can be described by eq. 7.25 where X; and Y] are parameters
which can be identified from flight data [6].

4 4
Ey Xlqu:1 wj 4 Py (u, |v],w) + PP o (u, [v], w) Ej:l Wi
a i
Fyl = Yiv)l,_jwj+ P2y1(|u\,v, w) + P;lyz(]u|, VW) D5 Wi (7.25)
4 4
F; —ko Zj:l %2' + sz,l (u, [v], w) + PI%‘Z,2 (u, [v], w) Zj:l Wi
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Let F, = [Fa7x,Fa7y,Fa7z]T denote the components of the force model which contain the
candidate regressors. That is, let:

F, Xiu Z?:l wj+ Foqz
Fy| = | YioXi wj+ Fay (7.26)
F, —ko Y g w? + Fap

By applying the aforementioned stepwise regression algorithm, Sun et al. [6] obtained
eq. 7.27 to describe Fy, and Fj .. Note that a model structure for F,, was not presented
in [6] since only forward flight was being considered and presumably due to the similarity in
structure to Fy ;. However, to avoid speculation, no Fj , model is presented here either since
the measurement data used for identification was not readily available.

Fa,z
Fa,z

| Xa|vw + Xsulv| + Xguw? Z?Zl w; + Xsuw Z?Zl wj + Xeuw? + Xzulv|? + Xgulv|
Zy + Zyw E?zl wj + Zou® + Zs|v|* + ZyuPw + Zs|v|w? + Zgu? 2321 wj
(7.27)

Aside from Zj, the order of the terms in eq. 7.27 reflects the order in which they were selected
by the stepwise regression algorithm. Intuitively, some of the most influential terms of the drag
model are related to the horizontal velocities. Likewise, the most influential term for the thrust
model is related to the rotational speeds of the rotors. The expected dependence of Fj ., on
the horizontal velocities (see the first term of eq. 7.16) can also be seen. However, it should be
noted that the order of regressor selection is sensitive to measurement data used for regression
and, with slightly different measurement data, the regressor priorities may be different. Hence,
the selected regressors should also be evaluated for their sensitivity in terms of priority before
any conclusions may be drawn about their general significance to the model.

According to the results of Sun et al. [6], the identified force models outperform the simple
quadrotor model. In hover conditions, where the simple model is valid, the identified force
models emulate the prediction accuracy of the simple model. In the high-speed regime, the
identified force models were able to accurately model the quadrotor dynamics while the simple
quadrotor model fails to do so.

Moment model candidates

Unlike the derivation of the force model candidates, literature seldom considers (aerodynamic)
moment models. Therefore, the model candidates can be formulated from observations on flight
test data and physical insights on the underlying dynamics of the system. Sun et al. adopted
this approach in [6] in order to identify an accurate pitching and yawing moment model of the
quadrotor in the forward flight high-speed regime. The pitching moment is relevant for fast
forward flight while the yawing manoeuvre is common in quadrotor videography and is prone
to actuator saturation.

It is apparent that the thrust force produced by each rotor directly influences the resultant
control moment. Therefore, the thrust variance effect also induces moment variations on the
quadrotor [6]. This suggests that the difference in thrust between the front and aft rotors (i.e.
U,) may be an influential pitching moment model term. Likewise, the difference between the
clockwise and counterclockwise rotor torques, U,, should be considered for the yawing moment
model. Following the definition of the quadrotor in this paper (i.e. fig. 4.6), U, and U, can be
defined by eq. 7.28 and eq. 7.29 respectively.

U, = wi +wh — wi —w} (7.28)
U, = —w? + w2 — w2 + w2 (7.29)
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Another effect influencing the moment models is aerodynamic damping [22]. The magnitude
of damping is related to the rotational rate of the quadrotor, £2. Subsequently, the pitch rate, g,
should be added as a state for the pitching moment model and the yaw rate, r, for the yawing
moment model [6, 7]. Additional moments affecting both moment models may originate from
the interaction effects between rotors and the airframe along with moments from the airframe
itself. Therefore, preliminary models of the pitching and yawing moments may be described by
eq. 7.30 and eq. 7.31 respectively.

My = lroUy + P (u,w,q)Uy + enry (7.30)

MZ = TOUT + Pig(ua v, T)UT + EM,z (731)

Here, €3 denotes the unmodelled moments acting on the quadrotor. The first terms in these
equations represent the control moments stemming from the simple quadrotor model while the
second terms address the moments emanating from the thrust variance effect. Note that the
constituents of velocity acting in-line with the moments are excluded from the state variables
since their contribution to the moment is negligible.

Recall from the discussion pertaining to blade flapping in chapter 5 (section 5.3.2) that this
aeordynamic effect also induces moments on the quadrotor. Namely, a pitching moment due
to the tilting of the thrust vector (longitudinal moment) and another due to the flapping of
the blades around the rotor hub (hub moment) [6]. The longitudinal moment is a function of
the steady-state blade flapping angle and the rotor thrust. Therefore, the pitching moment
is influenced by the interaction between the rotor angular rates, w;, and the velocity of the
quadrotor. The hub moment depends on the stiffness of the propeller blades and the steady-
state blade flapping angle, which itself is a function of the velocity. Therefore, eq. 7.30 can be
expanded to eq. 7.32 to accommodate these effects.

4
M, = LroUy + PP (u,w, )Uy + Pg(u,w,q) > wj + P (u,w,q) + eary (7.32)
j=1

It is suspected that the aerodynamic interactions during high speed flight may diminish the
thrust of the aft rotors, thereby leading to pitch up moments [7]. The reason being that, as
the quadrotor is in forward flight, and depending on its angle of attack, the rear rotors may be
caught in the wake of the front rotors. For a quadrotor in forward flight, the angle of attack is
dependent on its velocity and is therefore already captured by the term P{(u,w,q) in eq. 7.32.

Therefore, a suitable pitching moment model can be defined as eq. 7.33 [6].

4
M, = lroUq + Py (u,w, q)Uq + P3 (u,w,q) Y wj + P3(u,w,q) (7.33)
j=1

The yawing moment model can be extended using two commonly modelled effects in litera-
ture, which are prevalent even in hover conditions. The first is the rotor inertia and gyroscopic
moment previously discussed in chapter 5 (section 5.1). Another is the linear yaw damping term,
~r, with damping coefficient v [22]. Incorporating these effects yields eq. 7.34. The constants

70, Ir.,, and 7 can be estimated from measurements taken during hover [6].

4
M, = 70U, + I, Z(fl)jwj + 7+ PP (u,v,m) Uy + ez (7.34)
j=1

Sun et al. [6] postulate that the translational speed and rotation of the quadrotor influences
its yawing moment and therefore propose eq. 7.35 as a polynomial model of the yawing moment.
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The addition of P§ is to address the potential variation in yawing moment as a function of
the thrust while the Pg polynomial captures general effects related solely to the airspeed and
rotational rate of the quadrotor, such as the moments induced by the airframe.

4 4
M, = 1oU, + I,._, Z(—l)jd}j + 1 + PP (u,v,7)U, + P3(u,v,r) ij + Pd(u,v,7)  (7.35)
=1 j=1

Using the polynomial terms of eq. 7.33 and eq. 7.35 as the model candidates for the pitching
and yawing moment models respectively, Sun et al. [6] identify the following model structures

My = f/{()Uq + My + Mlqu + MquUq + Mngq + Myu + M5u3 + Mgw

+MruwUy + Mgq + Mgu Z?Zl wj + Mou? Z?Zl wj + Mpjuw

(7.36)

4
M, = 1oUp + Ir.. Y (=1)d; + yr + No + N + NoulU, + NauPUy + Nyo®U, + Nsuv  (7.37)
j=1

From the selected model candidates in eq. 7.36 and eq. 7.37 it is clear that the thrust
variance effect is contributes significantly to both the pitching and yawing moments. The
moment generated by the motor itself, i.e., terms with Z?Zl wj show little priority in the
pitching moment model and are absent entirely from the yawing moment model [6]. For the
pitching moment, this is likely due to the small offset between the rotor plane and the c.g. of
the quadrotor (recall that the longitudinal moment depends on the distance to the c.g.). With
regards to the yawing moment, influence of the rotor generated moments are likely captured
sufficiently by the first and second terms of eq. 7.37.

These identified moment models (i.e. eq. 7.36 and eq. 7.37) were found to outperform
the simple quadrotor model [6]. As with the force models, the moment models mirror the
prediction performance of the simple quadrotor model during hovering conditions while the
identified moment models are more accurate in the high-speed regime.

It should be noted that the prevalence of U, and U, in the moment models imply that
these models are sensitive to the angle of sideslip of the quadrotor. Depending on the angle of
sideslip, the aft rotors may be contained or free of the wake of the front rotors thereby affecting
resultant moments. In fact, in a more recent high-speed quadrotor identification study by Sun
et al. [7], the selected model regressors were found to differ depending on the sideslip angle.
In this study, Sun et al. [7] utilized the same stepwise regression algorithm to identify the
high-speed models but with different regressors. In [7], Sun et al. utilized the advance ratios
(see eq. 7.38) to build the model regressors. This choice was motivated by the impracticality
of modelling the rotors individually, since the sensor measurements of the quadrotor observe
their combined effect. Therefore, a dimensionless approach is taken which scales the forces and
moments by the average rotor speed [7]. As with their prior work in [6], Sun et al. in [7] found
significant improvements in model accuracy when using the identified models over the simple
quadrotor model.

u v w

y My = )y Mz = n

2

] w*

Jj=1"J
7 R

My = n

2

] w*

Jj=1"J
7 R

it (7.38)

4
The improved performance of both variants of the high-speed models identified by Sun et al.
[6, 7] exemplify the flexibility of the stepwise regression technique. The merits of using the sys-

tem states [6] or their dimensionless variants [7] as a basis for the regressors are that the selected
regressors can be easily interpreted as physical phenomena, contributing to understanding on
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XN~ Wy

Figure 7.1: Illustration of the artificial neuron. The neuron receives inputs, z;,7 € [1,2,..., N],
which are scaled by the weights, w; of the neuron with wg denoting the bias term. The weighted
sum of these inputs, z, passes through some activation function, o(z), resulting in output, v.

quadrotor dynamics in the high-speed regime. However, this dependence on the chosen model
candidate pools also exposes a limitation of the stepwise regression technique. Namely, that a
poor selection of candidate regressors - which may be due to a lack of understanding on the
dynamics governing a system - will likely lead to a poor model. Therefore, stepwise regression
may be unsuitable for systems for which little knowledge is available. Moreover, these methods
require that the system is linear in the parameters, which may not always be the case.

7.2 Artificial Neural Networks

As is evident from the previous sections, knowledge on the quadrotor models is rather incomplete
and irregular. This limits, to a certain extent, the use of gray-box models. Therefore, when
investigating uncharted regions of the flight envelope, black-box system identification approaches
are often employed. Artificial Neural Networks (ANNs) have emerged in recent decades as a
particularly popular choice for such black-box modelling due to advancements in computational
efficiency [73] and improvements to ANNs themselves, such as the development of unsupervised
trainable deep ANNs (DNNs) [74].

ANNSs are capable of capturing unknown non-linearities [75, 76] in a system and are thought
to be universal function approximators [35]. The latter property is especially powerful since
it facilitates the modelling of unobserved states from the measurement data, making ANNs
particularly attractive as a system identification technique. It is no surprise, then, that ANNs
have successfully been applied to identify models of aircraft [77, 78, 79], rotorcraft [80, 81], and,
more recently, quadrotors [34, 35, 82, 83].

7.2.1 Mathematical foundations behind artificial neural networks

A Dbrief introduction to the theoretical foundations behind the components and potential struc-
tures of an ANN are provided here. Through this, some considerations for constructing ANNs
in a system identification framework may be highlighted.

The artificial neuron

An ANN is a system of interconnected artificial neurons designed to emulate biological neural
networks. Reminiscent of a biological neuron, fig. 7.1 illustrates the structure of an artificial
neuron which parameterizes its inputs into a single (nonlinear) output.
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Let x; denote an input to the neuron with i € [1,2,..., N] for N inputs. Each input is
subsequently scaled by a corresponding adaptive weight, w;. Included in the model of the
neuron is a bias term denoted by wg. The purpose of this bias term is analogous to the role of
a constant in a polynomial function. The sum of these weighted inputs and bias term, z (see
eq. 7.39), is subsequently transformed by some activation function, o(z), culminating in the
neuron output, v.

N
z = wgy + Z W;T; (7.39)
i=1

The choice of activation function is up to the designer of the NN and depends on the desired
neuron output and position of the neuron in the NN structure. Some commonly used activation
functions are summarized in table 7.1. In general, activation functions can be classified as either
projection functions or as kernel functions. The distinction being that kernel functions, such as
the radial basis function (RBF), are centered around some fixed point!, ¢, and asymptotically
approach zero in directions radiating away from this point. Therefore, kernel functions transform
the inputs to a local region of the model. Conversely, inputs fed through projection functions
have a global influence on the model. Naturally, projection activation functions are suitable
to model global model trends while kernel activation functions are equipped to capture local
dynamics. Note, however, that an ANN using RBFs cannot be trained locally. Thus, when a
local change occurs in the system (e.g. due to an actuator fault), the entire network needs to
be retrained to accommodate this change.

Interconnected neurons: the neural network

The structured organization of neurons, with the same or different activation functions, defines
the network. The most simple NN architecture is perhaps the feed-forward neural network,
illustrated in fig. 7.2, wherein information only flows from n inputs to m outputs. A general
feed-forward neural network is composed of an input layer, K hidden layers, and an output
layer. It should be noted that the input layer does not contain neurons and instead relays the
inputs to the neurons of the first hidden layer.

Another commonly used NN architecture is the recurrent neural network (RNN), which
is specialized for time invariant systems. Consequently, RNNs are particularly alluring for
system identification and control. In fact, Mohajerin et al. [83] applied an RNN in a hybrid
configuration with first principle techniques to identify a model of a quadrotor. RNNs exploit
the temporal invariance of the system to reduce the number of parameters (namely, weights)
in the network. Figure 7.3 illustrates the RNN concept wherein the input-output mapping,
while dependent on previous states, is invariant of the time. Since RNNs learn in a similar way
to feed-forward ANNSs, the rest of this section uses the simpler feed-foward ANN to facilitate
explanations.

The structure of a feed-foward ANN is determined by the number hidden layers, K, and
the number of neurons in a hidden layer, n;. These variables considerably impact the resultant
performance of the ANN. The simplicity in improving model performance is an integral factor
behind the popularity of ANNs in modelling. George Cybenko famously postulated theorem 1
[84] implying that the predictive capabilities of ANN models can be improved by simply adding
more neurons to a given layer.

Theorem 1. Provided that there are no constraints imposed on the available number of neurons
or the magnitudes of weights, then a single hidden layer feedforward neural network with sigmoid
activation functions can approximate continuous functions with arbitrary precision.

tTypically, the origin is taken as the fixed point i.e. ¢ = 0, for simplicity.
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Activati
fc IV:. ton Classification Equation Comments
unction
+ Output bounded to
Projectio 0,1
Sigmoid ) .1 ! o(z) = H% [ ] . .
function € — Vanishing gradient
— Not zero-centered
+ Output bounded to
Projecti 1,1
Tanh rojection o(z) = 1%22 ) [ ]
function te + Zero-centered
— Vanishing gradient
Projecti 0 if <0 + More efficient learning
rojection if z
ReLU ) ) o(z) = ) + Simple
function z if z>0 .
— Dying ReLLU problem
+ Solves dying ReLU
problem
Leakv ReLU Projection (2) ale* —1) if 2<0  — Additional parameter
ea e o(z) =
Y function z if 2>0 o
— Sometimes inconsistent
results
+ Local modelling
+ Straight forward
Radial Basis Kernel 2 .g. ]
) ] o(z)=e* optimization
Functions function .
— Computationally
expensive

Table 7.1: Summary of commonly used neural network activation functions. Some of the advan-
tages (+) and disadvantages (-) of each function are highlighted under the 'Comments’ column.

In fact, Andrew Barron [85] quantified the integrated squared error, J, of a feed-foward
NN with a single hidden layer, containing nj; neurons, using sigmoidal activation functions as
eq. 7.40. Interestingly, this is independent of the input dimension space, p. Compare this to
the integrated squared error for basis function expansions (e.g. polynomials) with nj terms
(i.e. regressors) which is given by eq. 7.41. The work of Cybenko [84] and Barron [85] clearly
encourage the use of ANNs due to their desirable approximation capabilities.

J:O<1> (7.40)

J-O(é%) (7.41)
Ty,

It should be highlighted that, although ANNs are suitable for high-dimensional problems,
eq. 7.40 only provides a theoretical limit and does not reflect the practical accuracies of an
ANN. In fact, blindly adding neurons leads to diminishing returns. Increasing the number of
neurons increases the susceptibility of the feed-forward ANN to over-fitting. Such wide ANNs
are adept at memorization and begin to model the noise in the data instead of the dynamics
behind the data. More neurons also entails more trainable network parameters, demanding
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Figure 7.2: Network architecture of a single hidden layer feed-forward artificial neural network.
Neurons are indicated through circular blocks while the input pass-through nodes are given by
square blocks.

more computational effort. Using fewer neurons relieves this computational load. However,
too few neurons may result in under-fitting whereby the feed-foward ANN fails to adequately
capture the system dynamics. Strategies to balance these are discussed later in section 7.2.2.
An alternative to manipulating the number of neurons is to instead change the number
of hidden layers. In general, increasing the number of hidden layers improves the abstraction
capabilities of the ANN. For example, an ANN with no hidden layers is only suitable for linear
separable functions [86]. With one hidden layer the ANN can now represent functions with a
continuous mapping from R™ — R™. Accordingly, single hidden layer feed-forward ANNs are
suitable for most modelling applications [86]. Increasing the number of hidden layers even fur-
ther enables the network to learn intermediate features of the dataset. Consider, for example,
the application of DNNs to image classification. By visualizing various hidden layer outputs of
a convolutional NN (CNN), Zeiler et al. [73] were able to uncover that deeper layers extract
increasingly complex features, derived from the shallower layers. For instance, the first hidden
layer appears to capture elementary features of the image such as edges; the following layer
extracts more complex features derived from these elementary features, such as textures; subse-
quent layers show more class-specific features such as faces or legs and subsequently vary more
across inputs in comparison to shallower layers [73]. Therefore, unlike increasing the number
of neurons, increasing the number of hidden layers facilitates generalization through feature
extractation instead of memorization. This property of DNNs explains their ever-growing pop-
ularity and preference over wide ANNs. This is not to say, however, that adding layers resolves
the issue of over-fitting. In fact, over-fitting is still a considerable issue for DNNs. Additionally,
as with wide ANNs, the computational demand of training scales with the number of hidden
layers. This is exemplified in the work of Mohajerin et al. [83] wherein the training of the deep
RNN for quadrotor system identification was facilitated by a powerful GPU (GeForce Titan

Xp).

Training through backpropagation

For ANNS, training is accomplished through a learning procedure known as ’backpropagation’
[87, 88, 89, 90] which aims to find a set of network weights that minimize the error between the
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Figure 7.3: Ilustration of a Recurrent Neural Network (RNN). An RNN exploits the temporal
invariance of a process to reduce the number of network parameters. In this case, the weights
can be simplified following w? = w? = w! = w. Shown are the input, hidden and output weights
denoted by 4,h, and o respectively. The inputs to the system are given by wu, the state of the

system is represented by x while y denotes the output. Here, ¢t denotes the time.

network outputs and desired outputs, for all (especially unseen) inputs. The backpropagation
procedure exploits the error between the network output(s) and its target value(s) to update
the network weights. This is achieved by working backwards, from the output to the inputs, to
recursively obtain the gradient of the error with respect to the network weights. Subsequently,
the weights can be adapted to minimize this error through gradient descent.

Consider a feed-forward neural network with an input layer, an arbitrary amount of hid-
den layers, and an output layer. For this network, impose the constraints that there are no
connections within a given layer or from one layer to previous layers and that the network is
dense’ [90]. Let x denote the inputs, y the network outputs, t the targets (ie. y = t), and
wfj the weight from neuron ¢ in layer £ — 1 to neuron j in layer k. The error between the net-
work outputs and targets is defined by some user-set cost function, J(x,w). The squared error
(eq. 7.42) is frequently used as the cost function in backpropagation [87, 90, 91]. Nevertheless
other functions may also be used so long as they produce informative error gradients which
correspond to the desired convergence characteristics of the network (e.g. towards the mean of
the dataset or the median).

1 N m
522 nh_ynh (742)
n=1h=1

The backpropagation learning algorithm is initialized with arbitrary network weights, from
which the corresponding outputs of the network are derived [87]. Subsequently, the error be-
tween the network outputs and targets may be computed using eq. 7.42.

Starting from an arbitrary network output, y, the error gradient with respect to the weights
can expressed using the chain rule through eq. 7.43 where zj gives the weighted sum of the inputs
(including the bias term) into output neuron h in the output layer K (i.e. zj is given by eq. 7.44)
[87, 90]. Note that yp is used as an example here but, in principle, the process is equivalent
for the other outputs h € [1,...,m]. The total error is then obtained by summing over these

tFor NNs, the term ’dense’ means that the layers are fully connected; i.e. a neuron in layer k receives inputs
from all neurons in the previous layer, k£ — 1, and is connected to all neurons in layer k£ + 1
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outputs.
0J _ 9J % (7.43)
8wih 8Zh 8wih
TK—l
zp = Z o Ll (7.44)
i=0

Using eq. 7.42, g—i can be resolved for some arbitrary (differentiable) activation function,

o, through

= 2 (3Nt — o(znp)?
0 0z ]\§2 i ( h ) (7.45)

= Z (tn U(Znh)) (Zn,h)
0z,

Likewise, ) D, can be readily obtained using eq. 7.44 yielding eq. 7.46. Essentially, eq. 7.46
indicates that the influence of weight, w;p, between neuron ¢ and neuron h depends only on the
output of neuron i, ’UK ! This makes intuitive sense since the weight w;;, connects neuron i
with neuron h and is therefore invariant of other neuron outputs from the same layer.

Oz, K-1
= ¢! 7.46
Ow;p, Yi ( )

Substituting eq. 7.45 and eq. 7.46 into eq. 7.43 leads to

0J _ s
= Z 70 ))0 (znn) (7.4

However, the output of neuron 7 also depends on the outputs, and therefore weights, of the
preceding neurons. Fortunately, the outputs of one neuron depend linearly on the inputs to the
neuron and weights thereof [90]. Consequently, the same procedure for deriving eq. 7.47 may be
applied per layer of the ANN. For this reason, adding neurons and layers increases the training
time considerably as more paths are added to the backpropagation algorithm.

For an arbitrary neuron, j, in an arbitrary layer, 1 < k < K, the weighted sum of inputs,

k—

kcan be expressed through eq. 7.48 wherein v ! denotes the output from neuron [ in layer

h

7 )
k—1. wl ; describes the weights of the respective connections. The number of outputs from the
layer k — 1 is given by r*~1

Z v, wl] (7.48)

In a similar fashion to eq. 7.43, the partial derivative of the cost function with respect to
the weights can be written as

0 _ 9] 0z (7.49)
awfj B 6,2]’? 8wfj '
g J can be expressed as
a7 _i 0J 02! 7.50)

— =
0z~ p

k+1 k
] 7 0z 8zj

Here, the key difference with the prior derivation for the output layer is that there are now
r*+1 outputs (due to the dense nature of the hidden layers) which all have their own respective
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‘errors’ that have been backpropagated from the outputs of the network. Per definition, zf“

is related to zj’~c through eq. 7.51 with o the activation function of the hidden layers.

Let 57
k+1 _
4q k+1 (752)
0z
thus eq. 7.50 can be expressed as
8 k+1
E+1,, k+1
Z q " wy; (7.53)
92k
As with the output layer, ﬁ can be obtained using eq. 7.48 to yield
ij
2 Tk k
puf, = Bl <Zl:° “ w"'j) (7.54)

— k—
= v;

Therefore, the backpropagation formula for an arbitrary neuron in the network can be found
through eq. 7.55. Using this equation, the influence of each of the weights of the network on
the cost function can be determined and subsequently updated in the appropriate direction.

k+1

0J
S = vt qu“wgﬂ (7.55)
wij

The question now is how to adapt these weights? Since the gradient gives an indication
of the direction in which the weights should be changed, eq. 7.56 may be used to update the
weights proportionally to the gradient through a constant, « [87, 90].

Wnew = Wold — O4VJ(VVolcl) (756)

Where VJ(w,q) denotes the gradient (expanded in eq. 7.57) of all the weights, w, € [1, R],
in the network.

VJ(Wold) =

T
J _[ aJ  aJ 0J ] 757

= , N
OWoid Owera,1 Owela,2 OWweld,R

For a database of size, N, the gradient may be computed as

N
VJ(w) = ]1721 (W) (7.58)

Taking eq. 7.58 with the weight update rule (eq. 7.56) results in the so-called gradient descent
method. For large N, using the gradient descent may be inefficient. Therefore, the database can
be split into batches of size, n << N, containing data points (i.e. t;;z;) that are independent of
each other and identically distributed. This is known as the stochastic gradient descent, where
the gradient may be estimated by eq. 7.59.

1 i‘: <8J ti, Xi, )) (7.59)

=1

3 \

189



7.2. ARTIFICIAL NEURAL NETWORKS CHAPTER 7. SYSTEM IDENTIFICATION ..

For some applications, the simple (stochastic) gradient descent may be inefficient (e.g. too
slow). In light of this, some extensions to this method are employed in literature to improve
the convergence performance. For instance, the velocity of the gradient descent may be used to
allow the algorithm to take larger update steps if the gradient is consistently along the same
direction. This is known as stochastic gradient descent with momentum, and is defined in
eq. 7.60 where i denotes current update iteration and « € [0,1] is a constant representing how
influential previous weight updates are [90].

AWpewt] = —aVJI(Woa[i]) + YAWpew [t — 1]

Whnew [Z] = Wold[i] - AVVne'w [Z]

(7.60)

However, too large of a step can result in poor convergence to the minima of the cost function.
For instance, the algorithm may be unable to venture into a valley since the step size is wider
than this valley. Hence, other methods, such as RMSProp [92], aim to reduce the update step
size over time to mitigate this. Better yet, the principles of momentum and decreasing the
step size over time can be combined. One such method is ADAM proposed by Kingma and Ba
[92]. The choice of the optimizer depends on the requirements imposed on the network (e.g.
convergence time and accuracy).

7.2.2 Considerations for training artificial neural networks

There are several design choices to be made when constructing an ANN, many of which influence
its subsequent performance. A small, yet well-defined, ANN could easily outperform a complex,
but poorly designed, one. Hence, some considerations to guide ANN design choices are presented
here.

Hyperparameter choice

As is perhaps evident from prior discussions, there are several different parameters in an ANN
which can be tuned. These are known as hyperparameters and are traditionally set before
training. Much of the challenges in designing a good ANN model resides in the appropriate
selection of these hyperparameters.

The hyperparameters of the neuron itself include the activation function and weight ini-
tialization. The choice of activation function (see table 7.1 for some examples) relates to the
desired output and training characteristics of the neuron in question. For example, the sigmoid
function is typically employed in the output layer and is used for binary classifications due to
the bounds of its output (i.e. [0,1]). However, the sigmoid function, and similar, suffer from
the ’'vanishing gradient’ problem. Essentially, for large inputs, the resultant weight update is
small (due to the bounded outputs) culminating in a slow learning rate. ReLU remedies this
by having an unbounded upper limit (i.e. [0,inf)) and therefore is increasingly popular as a
hidden layer activation function [89]. Instead, the ReLU suffers from the 'dying ReLU’ problem
whereby large negative weights induce a zero gradient. This means that neuron can no longer
contribute to learning in the network.

Regarding weight initialization, assuming that the activation functions are the same between
the neurons in a layer, the initial weights should be distinct from each other. This is done to
eliminate redundancy and facilitate learning of different features [91]. Typically, the weights
are initialized using a uniform distribution.

The hyperparameters which relate to the structure of the ANN, such the as number of hidden
layers and the number of neurons per layer, dictate the complexity of the ANN. As discussed
before, this complexity influences the approximation capabilities of the ANN. To reiterate,
adding more neurons in a layer, up to a certain point, will typically reduce the error between the
training data and model predictions. Adding more layers improves the abstraction capabilities
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of the model empowering it to process more complex input-output mappings. However, higher
ANN structural complexity requires more computational resources to train and runs the risk of
over-fitting the training data.

Related to the training of the ANN are the choices of the cost function, optimizer, number
of training epochs and the training batch size (if any). The cost function should be chosen such
that it reflects the desired convergence characteristics and that the resultant error gradient is
informative for weight updates. For example, for regression, an appropriate cost function may
be one that minimizes the squared error. Whereas for classification, such a cost function is not
as informative as one which details the number of correct classifications. The optimizer governs
the speed and convergence of the training and is therefore a trade-off between training time and
convergence to (local) optima. The batch size indicates how much of the training data set should
be used for training at a time while the number of epochs denotes one forward and backward
pass of the entire training dataset. Therefore, the more epochs, the more the network learns
and the more time it takes to train. After a certain number of epochs, the learning effectively
plateaus. This can be an indicator of over-fitting since the cost function evaluates the error
with respect to the training data.

Regularization

Recall that the goal of the training is to minimize the error between the model predictions and
the underlying dynamics of the process in question. The cost function used in backpropagation
(see section 7.2.1) actually measures the empirical loss of the model, which is the error to the
training data. Hence, a good empirical loss does not necessarily reflect good overall model
performance, since the ANN may now be capturing noise and artefacts in the training data.
This is mitigated through regularization (see definition 7.2.1) techniques [91].

Definition 7.2.1

Regularization involves any technique used to improve the performance of an artificial
neural network for states outside of the training data set.

Perhaps the most effective form of regularization is to simply use more real data [91]. The
idea here is that, with more data, the general trends underlying the modelled process emerge
over the noise and artefacts contained in the data samples. However, simply obtaining more
data is often expensive and impractical. An alternative, then, is to augment the existing data
to produce additional data samples [38, 91]. The principle of data augmentation is to modify
the data in such a way that reflects the true data and encourages the ANN to generalize.
For instance, for image classification, existing images could be modified in color, translated,
or rotated to create 'unseen’ images [38]. Of course, such augmentation is straightforward for
classification based tasks [91] and much more difficult for regression, as is the case for system
identification. Moreover, designers must be cautious when augmenting data such as to not
introduce artefacts which may subsequently be modelled by the ANN. Referring back to the
image recognition example, this would entail avoiding rotations of certain letters, such as 'm’,
to avoid confusion with others, such as 'w’.

It is typically desirable to have similar weight magnitudes across the ANN, such that few
neurons do not dominate the output of the network leading to instability in these outputs. Both
L1 and L2 regularization are often used to penalize the weights of an ANN [91]. These weight
penalties are appended to the cost function, J, used to update the weights in the backpropa-
gation technique. In general, this can be described by eq. 7.61 where p = 1 and p = 2 denote
L1 and L2 regularization respectively, and A € [0, 00) scales the influence of the weight penalty
term [91].

J(y,t,w) = J(y,t) + Allwl[} (7.61)
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In L1 regularization, the weight penalties act linearly on the cost function leading to zero-
weights. This results in a spare network where only the essential weights are remain, representing
the essential features of the network [91]. The weight penalties in L2 regularization are quadratic
with respect to the cost function, leading to small valued weights. This has implications on the
variance of the input data, wherein features that have low covariance with the outputs have
'reduced’ weights [91].

Regularization can also be accomplished by exploiting the stochastic training process. Ordi-
narily, ANNSs are initialized with random weights. Consequently, the emergent model is typically
different from one initialization to the next. Multiple ANNs can be trained on the same data
set since the errors present in one model are unlikely to appear in another [91]. This model
ensemble method has seen success in ANN literature (see, for instance, the improved ensemble
performance of Krizhevsky et al. [88]). This approach is well-founded in the field of machine
learning and is used to reduce the variance of the output by combining, in some way, the model
ensemble outputs. This can be acheived by simply averaging the ensemble outputs. Given
that some models perform better than others, Bishop [93] proposes a weighted average to im-
prove results. More complex combinations include stacked generalization, wherein a non-linear
method (even another ANN) is used to combine the model outputs [94]. In the case of ANNs
of the same structure and initial weights, it is also possible to average the weights of a model
ensemble to produce one model. This approach has also seen improved predictions [95]. This
may be done practically by averaging the weights of the last few epochs of the training phase.
It should be noted that averaging weights of networks with the same structure but different
weight initializations is ill-advised and typically does not lead to improved performance.

Training a single model can be time consuming and resource intensive, thus training model
ensembles may not be practical depending on the application. A more practical implementation
of this concept is to use ’dropout’ while training [88]. For every forward pass of the backprop-
agation algorithm, neurons are randomly ’dropped out’ by setting their weight to zero with a
certain probability. This alters the network architecture for each pass, therefore acting as a
"different’ model. Since neurons can dropout, the co-dependence of neurons is reduced and they
are subsequently encouraged to learn more general features [88]. Once the training is complete,
all neurons are included in the model, scaled by the probability of dropping out [88].

Validation

A considerable concern for modelling with ANNs, and black-box models in general, is the
issue of over-fitting the training dataset, even if the aforementioned regularization techniques
are applied. Therefore, it is customary to partition the dataset into a training subset and a
validation (or test) subset. The training subset is used solely for the training of the ANN while
the validation set is used to evaluate the performance of the ANN using 'unseen’ data. The
goal, then, is to determine the level of ANN complexity (i.e. the selection of hyperparameters)
which results in the lowest validation (or total) error (refer to fig. 7.4). While various error
functions may be used, the mean squared error (eq. 7.62) is a popular choice and is compatible
with regression.

N
MSE = % 3 (¢l - 1)’ (7.62)

=1
One may argue that the validation error could be coincidental and not reflective of the true
model performance. Cross-validation is a form of validation which may be used to mitigate
this. The idea is similar to that of model ensembles in that the dataset is randomly partitioned
into a training and validation subset multiple times. The combination (e.g. average) of the
validation errors gives a better approximation of the true model performance, for a given set of
hyperparameters. When cross-validation is used, the training data subset is typically partitioned
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Figure 7.4: Tlustration of the neural network (NN) performance, as a function of the NN
complexity, with respect to the training data set (blue) and the test data set (red).

further to facilitate cross-validation. The idea is to preserve the test subset such that the model
can be evaluated with respect to unseen inputs.

7.2.3 Neural networks as applied to quadrotor system identification

Through the discussion on how ANNs work and their alluring modelling capabilities, it is no
surprise that ANNs have been applied for quadrotor system identification. Bansal et al. [35]
successfully demonstrated, through real flight tests, the use of an ANN to facilitate the sys-
tem identification of a quadrotor. Perhaps most notable from the results of [35] is the found
generalization capabilities of even simple feed-forward ANNs. The quadrotor was able to track
trajectories which involved simultaneous translation and (yaw) rotation when the ANN was
only trained on data from the decoupled dynamics (i.e. only rotation and only translation) [35].
Therefore, to illustrate how ANNs may be employed for system identification, the approach of
[35] is used as an example here.

Let the quadrotor state be defined as x = [€,V,(, Q)T where & = [z,y,2]” denotes the
position, V = & = [u, v, w]T the velocity, ¢ = [¢,0,]T the euler angles, and Q = [p,q,7]T the
angular velocities of the quadrotor. Contrary to the inputs defined in section 4.2, Bansal et
al. [35] define the inputs to be u = [uy,u2, uz, us]’ where u; gives the thrust, uy the rolling
moment, ug the pitching moment and u4 the yawing moment. This is synonymous with the
control forces and moments definitions in section 4.2 and is therefore a linear combination of
the rotor speeds (see eq. 4.12 and eq. 4.13).

The state-derivative is given by eq. 7.63 wherein f(x,u;#) represents the system model,
with parameters 6, mapping the states and inputs to the state-derivative. A distinction is made
between the mapping from states and inputs to the derivative of velocity, denoted by f,, and
the mapping to the derivative of the angular rates, fq.

e
f’U(X7 u; 91)
RppQ
fo(x,u;02)

x = f(x,u;0) = (7.63)
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As with any system identification task, the goal is to derive 6 which minimizes the cost
function for which Bansal et al. [35] elect to use the mean squared prediction error (MSE).
Equation 7.64 and eq. 7.65 express the MSE for f, and fq respectively. Here, N denotes the
number of observations and f(.),n the respective observed values (i.e. targets).

N
1 ] )
Jv :%gnﬁ (;va,n_fv(xnvun;el)” ) (764)
1 (L
JQ = Tnézn N (; HfQ,n - fQ(XTquL; 92)”2> (765)

Bansal et al. [35] subsequently train two multilayered feed-forward ANNs (one for each cost
function). This simple network architecture is composed of an input layer which passes x and u
to a single hidden layer. ReLU is chosen as the hidden layer activation function motivated by
previous successes in system identification literature [35]. The output layer receives inputs from
the hidden layer to which it adds a bias term to produce the ANN output, f, (or equivalently,
fa). Therefore, the equation representing the output of NN, (i.e. ANN associated with f,) can
be written succinctly as

fo(B;01) = Wg:vg(le:vﬁ + bh,v) + bow (7.66)
Likewise, the expression for the output of NNq (i.e. ANN of fq) is

fa(B;02) == W] oo(WiloB + bra) + bog (7.67)

For eq. 7.66 and eq. 7.67, B := (x,u) denotes the input to the network and o(-) denotes the
hidden layer ReLU activation function (i.e. o(-) = max(0,-)). Wj and W, are the weights of the
hidden and output layers respectively. Likewise, b, and b, are the bias vectors for the hidden
and output layers respectively. These networks are trained separately using supervised learning
where information on the current state and input is used to predict the subsequent state. Only
the current state is used since this eases the design of the controller [35]. It is noteworthy that
other literature sources employing ANNSs for system identification, such as [83], retain knowledge
of previous states in their ANN to improve model performance.

Bansal et al. [35] collect training data through automated and manual flight tests of their
quadrotor resulting in N = 240, 000 data samples. Prior to training, these data samples are pre-
processed to expedite the training procedure. The trigonometric identities of the euler angles
are used such that the ANNs only infer information from the orientations themselves instead
of the absolute values of the angles (e.g. 0 and 27 are the same orientation). Positional inputs
are not fed into the ANNSs since the accelerations of the drone should be independent of these.
The remaining inputs are normalized and centered around zero for better training performance.
Therefore, the inputs to NN, and N Nq are given by

B =1[V,Q,sin(¢), cos(C), u1, ug, us, u4] (7.68)

In the initial training phase, Bansal et al. [35] discovered that including the angular mo-
ment terms (ug,us,uyq) in S for NN, resulted in poor performance due to over-fitting. Similar
observations were made with including u; for NN,. Since u; represents the total thrust, it is
not expected, based on the first principle models, to influence the orientation of the quadrotor.
Likewise, the angular moments (ug, us3, u4) should not influence the translation of the quadro-
tor, since this should be independent of orientation. Therefore, Bansal et al. [35] remove these
inputs from the respective ANNs. In reality, however, there are couplings between the orien-
tations and translations. For instance, since the thrust direction is fixed to the body of the
quadrotor, the movement of the quadrotor depends on its orientation (e.g. to move forwards
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the quadrotor must pitch down; it cannot move forwards while pitching up). This dependence is
only exaggerated at higher velocities. Moreover, yawing while translating may lead some rotors
to reach their saturation limits more quickly than expected. Perhaps the simplicity of the ANN
structure proposed by [35] is unable to capture these. Incorporating more layers to the ANN
may ameliorate the over-fitting issue by enabling the ANN to capture more complex interaction
effects. However, these considerations were not discussed by Bansal et al. [35].

To evaluate the resultant ANNs, Bansal et al. [35] partitioned the data into three segments.
The first two are used for training (60%) and (cross-)validation (25%). This promotes the
generalization of the ANNs and facilitates the tuning of the hyperparameters. The remaining
15% of the collected data is used to evaluate the resultant ANNs and check for over-fitting.
Since the training MSE and test MSE were similar for both NN, and NNgq, it was concluded
that the resultant ANNs were able to learn the dynamics to a satisfactory accuracy [35]. These
ANNSs were then exposed to a reference trajectory which coupled their learned dynamics (i.e.
involved simultaneous rotations and translation). The results of Bansal et al. [35] show that
the ANNs facilitate the control of the quadrotor for this unseen input, demonstrating their
generalization capabilities with even simple network architectures.

Indeed, there are numerous strategies to implement an ANN based architecture for system
identification, varying in intricacy. For instance, many researchers prefer the use of radial basis
function neural networks (RBFNN) due their local properties [82]. Extensions to the RBFNN
are typically focused on improving the training process [82]. While many researchers opt for
simple feed-forward ANNs with one [35, 82] or two [34] hidden layers, different network archi-
tectures, such as RNNs [83], are also used. The complexity of these networks grows as research
in the field matures and the computational capacity of the quadrotors improves. Moreover,
ANNSs may also be used in hybrid approaches. The defining characteristics of a system may be
captured by simpler methods, or even through analytical approaches. The unmodelled aspects
of the dynamics are then accounted for by an ANN. In fact, Mohajerin et al. [83] employed
such a hybrid approach to system identification. This hybrid model consisted of the standard
quadrotor model whose outputs were augmented by an RNN to account for deviations. Simula-
tion results indicate that this hybrid model outperforms the standard model and a standalone
black-box RNN model [83]. Clearly, such hybrid approaches show potential and may facilitate
the development of more transparent and accurate models. The next step is to demonstrate
such (hybrid) DNNs in flight tests.
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8 State estimation

In order to apply system identification to the quadrotor, it is necessary to obtain information
about its state. This process is facilitated by state estimation and there are a number of
techniques which may be used to achieve this [16]. While not the central focus of this paper
or the subsequent research, it is important to understand the capabilities and limitations of
current state estimation routines. Therefore, a brief summary of commonly used sensors and
state estimation algorithms are presented in this chapter.

Much of the current state-of-the-art quadrotor research, which conduct flight tests, often
make use of an external motion capturing system, e.g. OptiTrack or Vicon, to assist with the
state estimation (see, for instance, [1, 2, 5, 7, 19, 22]). Such systems are unrealistic for use in
outdoor applications. Therefore, recent literature has focused on developing state estimation
algorithms reliant only on the available on-board sensors [16, 17, 38, 96, 97].

Subsequently, section 8.1 summarizes some commonly used quadrotor sensors while sec-
tion 8.2 reveals how these sensors are used in both traditional and novel state estimation algo-
rithms.

8.1 Quadrotor sensors

Most quadrotors are commonly outfitted with an inertial measurement unit (IMU) and a camera
[17,97]. The IMU is typically composed of an accelerometer, a rate gyroscope and, occasionally,
a magnetometer’. One of the main challenges with quadrotor state estimation is obtaining an
accurate estimate of the quadrotor velocity. Quadrotor camera(s) are increasingly being used to
facilitate this velocity estimate [97]. Consequently, the IMU sensors and camera will be briefly
summarized in this section.

8.1.1 Accelerometer

The accelerometer is assumed to be attached near the center-of-mass of the quadrotor, and
subsequently measures the specific force in the body reference frame, {B} [16, 98]. In theory,
the specific force measured by an accelerometer is given by eq. 8.1 where m denotes the mass,
REgp the rotation matrix from the body to the inertial frame, F represents the force acting on
the quadrotor while g denotes the gravity vector.

V= Rup (F - mg) (8.1)

In reality, the low-cost MEMS accelerometer also measures random noise, €,, and (time-
varying) bias, bg s [16, 97, 99]. Assuming zero-mean Gaussian white noise with standard devia-
tion ¥, = diag(0a,2, a,y, 0a,z) [16, 99], the actual measured acceleration is

Vi =V 4 €, +bay (8.2)

8.1.2 Rate gyroscope

The angular velocity of the quadrotor, measured in the body frame, can be obtained through
the rate gyroscope. As with accelerometers, the measurement quality of low-cost MEMS rate
gyroscopes is often quite poor [97, 99]. Therefore, the angular velocities are often contaminated
with random noise and a time-varying bias vector [16, 97]. Assuming zero-mean Gaussian white

"Note that in some literature, such as [16], the magnetometer is not considered a part of the IMU. Instead,
the combination of the magnetometer and IMU is termed MARG (Magnetic, Angular Rate, Gravity).
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noise with a standard deviation ¥, = diag(og 4, 04,y,04,2), the gyroscope measurement can be
expressed through

Q= Q+ey+by, (8.3)

In eq. 8.3, €2 denotes the actual angular rate, €, the zero-mean white noise vector and, by ;
the (time-varying) bias vector.

8.1.3 Magnetometer

Magnetometers are typically used to resolve the heading angles of a quadrotor by locally mea-
suring the earth’s magnetic field [97]. This magnetic field may be treated as a constant due
to available magnetic models [16]. However, the local magnetic field may be locally disturbed
due to the environment (e.g. power lines) and the systems onboard the quadrotor itself [99].
Therefore, magnetometers often require some calibration before their use [97]. Assuming this
is completed, the magnetic field measured by the magnetometer can be described by

B,, = RgpB + ¢, + by (8.4)

In eq. 8.4, B,, represents the (calibrated) measured magnetic field whereas B is the local
magnetic field vector expressed in the inertial frame. Hence, Rpp denotes the rotation matrix
from the inertial to the body reference frame. €, gives the zero-mean Gaussian white noise
recorded by the sensor with standard deviation 3, = diag(oyp g, Oby, 0p,-) and by denotes the
time-varying bias vector [16].

8.1.4 Camera

The quality of cameras used on quadrotors may vary considerably. Cameras which manage
high sampling rates with desirable resolutions are often expensive both in terms of capital and
computational cost [97]. The exact specifications of the cameras depend on their application and
environment. For example, the resolution of the camera should be high enough to resolve and
track features in the environment to facilitate reliable visual odometry (i.e. obtaining position
and orientation from cameras). Here, high definition cameras (720p or greater) appear to be
appropriate. However, such cameras typically suffer from high latencies (> 140 ms). Instead,
FPV cameras may be used which harbor lower latencies (< 40 ms) but suffer from poorer
resolutions (from 400 to 1000 TVLT).

Regardless, much research is conducted by the robotics community on visual odometry
which has stimulated many improvements in the field [96, 97]. Subsequently, there are various
methods which may be employed in visual odometry. The principle behind these techniques is
to either track certain features (e.g. edges, colors etc.) between consecutive frames [96, 100] or
to compare these frames directly (e.g. in the frequency domain through phase correlation [101]).
By observing the transformation of these features (or phase shifts), the changes in position and
orientation of the quadrotor may be estimated [100].

Methods reliant on feature tracking see more frequent use for quadrotor state estimation
[17, 96, 100]. Following the procedure of Shen et al. [100] as an example, the orientation can
be computed using eq. 8.5 where the orientation of the current image, j, is given by R;. R,

tNote the difference between resolutions for conventional digital cameras, measured in pixels, and FPV
cameras, measured in Television Lines (TVL). Pixel-based resolutions count the number of pixels along the
vertical of an image, while TVL-based resolutions count the number of lines along the horizontal of an image.
Hence, assuming a 16:9 aspect ratio, a 1000 TVL FPV resolution is slightly worse, in terms of pure resolution,
than a 720p conventional camera.
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denotes the camera orientation of image n, which is used as a reference. The rotation between
image j and n is given by R, ;.

Rj = RyRy; (8.5)

Using this orientation information, the position can be computed by minimizing eq. 8.6
[100]. Here, &; denotes the position of the camera (assumed to be the same as the quadrotor)
when image j was taken, Z represents the features of j where each features’ position is given by
p;. u;; represents the unit length feature vector of the camera in the body frame.

argmm Z
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X Rju;j (8.6)
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The stereo camera setup of Shen et al. [100] enabled the quadrotor to operate at moderate
velocities (4ms~!) and moderate roll and pitch angles (20°). However, such stereo camera setups
are uncommon in quadrotors and add undesirable weight. In more recent work, Loianno et al.
[96] utilized a monocular camera to facilitate state estimation and were able to sustain higher
velocities (4.5ms~!), roll and pitch angles (90°), and angular rates (800°/s) than Shen et al.
[100]. It is not specified which of the cameras (VGA or 4k) equipped on the quadrotor platform
used by Loianno et al. [96] facilitated the visual odometry. Other literature, such as [17], make
use of the camera to recover only a single attitude.

However, there are some clear drawbacks with using visual odometry to measure the state. In
order to improve the reliability and accuracy of these state estimates, images need to be corrected
for the lens distortion and have any outliers removed. Subsequently, these computer vision
algorithms are computationally expensive to run at a sufficient update rate and are susceptible
to inaccuracies [17]. Moreover, the frame rate of the camera caps the (rotational) velocities that
the quadrotor may achieve while maintaining reliable state estimates. This becomes problematic
in rotor failure scenarios where the quadrotor is consistently spinning. Indeed, a faster camera
may be employed, but increasing the number of frames demands more computational resources.
Thus, ongoing research in visual odometry is aimed at reducing this computational cost [17].
Moreover, visual odometry in quadrotor applications relies heavily on tracking (static) features
in the environment and is therefore less reliable on relatively feature-less applications (e.g.
search and rescue at sea) or those where perceived motion in the environment is independent
of the quadrotor’s motion (e.g. moving animals) [97].

8.2 State estimation techniques

Clearly, the measurements obtained from the primary quadrotor sensors described in section 8.1
are contaminated with noise and biases. Using the states directly from these measurements may
lead to ill-informed control inputs. Therefore, state estimation techniques may be employed
to process, filter, and combine the measurements from these sensors to improve these state
estimates. The Mahony, Madgwick and Extended Kalman Filters are commonly used for the
attitude estimation of a quadrotor [99]. Consequently, these filters are summarized in this
section. However, given the limitations of these filters, they underperform when tasked with
estimating the state of a quadrotor with a failed motor [16]. Therefore, a novel state estimation
technique proposed by Solanki [16] - designed to accommodate state estimation under such
failures - is also presented.

8.2.1 Mahony filter

To enable to attitude estimation using low-cost MEMS technology, Mahony et al. [102] propose
the use of three nonlinear complementary filters, collectively known as the Mahony filter. This
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filter utilizes two vectors defined in the earth reference frame to construct an instantaneous
measurement of the rotation matrix between the inertial and body reference frames [102]. These
vectors are typically taken from the accelerometer (gravity vector) and magnetometer (earth
magnetic field vector) with the requirement that these vectors are non-colinear [102]. It is
further assumed that the gravity vector is dominant in the acceleration measurements, which
is not necessarily the case in the operational regime of the quadrotor [99] or following damages
to the system [16].

However, when that these assumptions hold (e.g. during hover), the attitude estimate is
obtained by integrating the rate gyroscope measurements. This alone provides a poor estimate
of the attitude due to the signal quality of the rate gyroscope. Therefore, the accelerometer
and magnetometer readings are used to derive the orientation error to correct the gyroscope
estimates [16, 102]. This culminates in accurate orientation estimates [99], which is desirable
for quadrotor applications. It is noteworthy to highlight that changes in the local magnetic field
may induce errors in these estimates.

In subsequent work, Mahony et al. [103] demonstrated that the filter may still be employed
when only one vector is known, provided that the direction of this vector varies over time.
Moreover, much of the success of the Mahony filter can be attributed to its computational
efficiency, in comparison to more conventional complementary filters [16, 99, 104].

8.2.2 Madgwick filter

Similar to the Mahony filter, the Madgwick filter also aims to tackle the challenge of attitude
estimation through low-cost MEMS in a computationally efficient manner. To avoid singular-
ities and approximation issues associated with Euler angles, Madgwick et al. [104] opt for a
quaternion representation of attitude.

The principle behind the Madgwick filter is to fuse the orientation estimate as obtained
through the numerical integration of the angular rates, go, with that obtained from aligning
a reference frame with the measurements through gradient descent, ¢v. In doing so, the char-
acteristic drift affecting the gyroscope measurements and the high-frequency errors stemming
from the gradient descent are symbiotically accounted for [104]. The angular rates may simply
be obtained from the gyroscope and subsequently integrated for gn. The other estimate of ori-
entation is obtained by first defining reference directions in the inertial frame, given by gravity
vector and the earth’s magnetic field vector, and comparing these to the measured accelerations
and magnetic fields from the sensors. This results in an optimization problem wherein the ob-
jective is to find a rotation vector, ¢v, which aligns the reference directions with those measured
[104].

However, the issue with defining a reference direction using the earth’s magnetic field is that
there are distortions present. Local disturbances (e.g. due to nearby metal structures) further
affect the local magnetic field. Static local sources can typically be removed through calibra-
tion while distortions in the earth’s magnetic field can be partially compensated for by using
gravity as a reference of orientation [104]. Doing so prompts the magnetic field disturbances to
only affect the yaw estimates of the attitude. This is different than the Mahony filter where
disturbances affect the entire attitude estimation.

The two attitude estimates (i.e. go and gy) are combined by first removing the gyroscope
measurement error from the rate of change of go (i.e ¢o) along the direction defined by the
magnetometer and accelerometer to obtain ¢.s;. The attitude estimate is then updated based
on the estimate at the previous time sample and the propagation of the rate of change of
orientation (i.e. Ges) within this time interval [104].

As with the Mahony filter, the Madgwick filter also assumes that the gravity vector is the
dominant acceleration in the system and that the magnetic field is constant [16, 104]. Therefore,
the performance of these filters may deteriorate under conditions of prolonged body accelerations
and changing magnetic fields.
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8.2.3 Kalman filter

The Kalman filter is widely used in state estimation, especially for autonomous systems [105,
98, 104]. The principle of this approach is to take a weighted average of the predicted and
measured state (see eq. 8.7). Specifically, the predicted state is corrected by the measurements.
Since predicted states are used, some knowledge of the system model is necessary.

X =x,+ K (2, — 2p) (8.7)

In eq. 8.7, x and x,, denote the state estimate and state prediction respectively. Similarly,
Z,, and z, represent the measured and predicted outputs of the system. The importance of
these outputs is scaled by the Kalman gain, K. The measurements themselves may be im-
proved by fusing information from multiple sensors (e.g. camera) at the cost of consuming more
computational resources [106].

One of the main attractions of the Kalman filter is that it provides insights into the con-
fidence of the state predictions and estimations through the state prediction error covariance
matrix and state estimation error covariance matrix respectively. Smaller covariances reflect
more reliable state predictions and/or estimates. This is assuming that the process noise and
measurement noise are independent and can be represented as zero-mean Gaussian white noise
[105]. Therefore, knowledge of the noise acting on the system is also required to apply the
Kalman filter.

The original (linear) kalman filter is only valid for linear systems [16, 105, 107]. This is
typically not the case for the quadrotor, especially for high-speed conditions. A more suitable
alternative is the Extended Kalman Filter (EKF') or the Unscented KF (UKF) for especially non-
linear systems. The EKF linearizes the system around the nominal values of each measurement
point through the derivation of the Jacobians of the system which may become tedious for highly
non-linear systems [16, 107, 108]. Subsequently, they may prove challenging to implement for
some systems and can be especially computationally restrictive for MEMS-enabled systems
[104]. Moreover, the error covariance matrices computed by the EKF likely underestimate
the true errors since the approximation errors stemming from the linearization are neglected.
Regardless, the EKF (and its variants) remain a popular and proven choice for state estimation
for quadrotors.

8.2.4 Adaptive fuzzy complementary kalman filter

Solanki [16] recently developed a novel attitude estimation routine - called the Adaptive Fuzzy
Complementary Kalman Filter (AFCKF) - aimed at providing accurate state estimates of the
quadrotor, even under circumstances of actuator failure. As with the Mahony and Madgwick
filters, the AFCKF relies only on measurements from the magnetometer, accelerometer and rate
gyroscope. Despite the additional computational demand over the Madgwick filter, the AFCKF
is more computationally efficient than the EKF [16].

Inspired by the Magdwick and Mahony filters, the AFCKF also relies on the gravity vector
for attitude estimation. Hence, linear accelerations are assumed to be negligible in comparison to
the gravity vector. However, unlike the Madgwick or Mahony filters, the AFCKF also accounts
for any centrifugal accelerations measured by the accelerometer due to the offset of this sensor
and the body’s center of mass [16]. This correction term is necessary since, under single rotor
failure conditions, the quadrotor spins about its yaw axis [21, 22] culminating in a measured
centrifugal force. The acceleration can then be transformed into an attitude estimate for roll and
pitch using gradient descent. This process is similar to that of the Madgwick filter [104]. Note
that the yaw estimate is unreliable at this point, since the magnetometer is not (yet) used for
attitude estimation. Additional attitude estimates for the roll and pitch are obtained through
the numerical integration of the rate gyroscope measurements and is therefore reminiscent of
Madgwick et al. [104].
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Subsequently, a Multiplicative Extended Kalman Filter (MEKF) is used to fuse these two
attitude estimates. The standard EKF is not compatible with a quaternion based represen-
tation of attitude without some modification [109]. To this end, Solanki [16] makes use of a
Multiplicative EKF (MEKF) wherein the correction term is composed of a quaternion multipli-
cation, which preserves their norm [109]. The MEKF is comprised of a sensor and process model
whereby the sensor model relates to the attitude estimates obtained from the accelerometer and
the process model those from the rate gyroscopes [16].

Instead of implementing the gyroscope bias and drift corrections in the MEKF, Solanki
[16] instead opts to correct for this using an approach similar to Mahony et al. [102]. While
the MEKF can accommodate these corrections, doing so increases the number of states to be
estimated and thus the computational demand. The proposed correction utilizes information
from the accelerometer and previous attitude estimate to account for the drift [16].

Contrary to the approaches of Mahony et al. [102] and Madgwick et al. [104] where the
magnetometer is used for the full attitude estimate, Solanki [16] only uses the magnetometer
and rate gyroscope to obtain the yaw estimate. The presumed benefit of such sensor separation
is that any magnetic disturbances do not affect the roll and pitch attitudes, which are more
crucial for control. However, the benefits of sensor fusion with the magnetometer are indeed
lost for the roll and pitch estimates. The final yaw estimate is obtained through a weighted
average of the yaw estimate derived from the gyroscope with that from the magnetometer. The
weights of this average are modulated through fuzzy logic and vary depending on the gyroscope
saturation and magnetic field disturbances [16]. The general idea being that the weight of the
respective yaw estimate decreases with increasing gyroscope saturation or increasing magnetic
field disturbances. Indeed, if both sensors are deemed unreliable (i.e. saturated gyroscope and
large magnetic disturbances), then the yaw estimate is also unreliable.
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9 Research proposal

Over the past decade, a considerable amount of research has been conducted on the increasingly
autonomous quadrotor. Such research has demonstrated the capabilities and versatility of this
vehicle by expanding upon its flight envelope. Much literature (e.g. [33, 36, 39]) builds upon the
simple quadrotor model in an analytical manner by incorporating well-documented aerodynamic
effects. When faced with the challenge of modelling unfamiliar phenomena, some literature (e.g.
[6, 7, 35, 83]) consult data-driven system identification techniques, such as Neural Networks,
to capture these effects. Others instead prefer to employ robust controllers to accommodate
modelling errors and uncertainties (e.g. [4, 40, 43]). Several advancements have also been made
in improving the safety of quadrotors. Most notably, the sustained control of a conventional
quadrotor despite the complete loss of one and two (opposing) rotors has been demonstrated
through flight tests in both low-speed [21, 22] and high-speed conditions [, 2].

Despite these incredible results, much is still unknown about the dynamics behind the
quadrotor, especially in the high-speed regime. Current quadrotors are able to operate at such
conditions by virtue of the capabilities of the employed controllers. The performance of these
controllers can be improved through more accurate models, thereby extending the capacity of
the quadrotor. Therefore, current gaps in literature are summarized in section 9.1 with the
subsequent research objectives aimed at addressing some of these gaps given in section 9.2.

9.1 Summary of gaps in literature

It is evident that quadrotors are a popular outlet for research in the fields of robotics and
aerospace. While several advancements have been made over recent decades, there are still
some substantial gaps in literature. Perhaps the most prominent is that much of the current
research is conducted indoors, in conditions devoid of external (stochastic) disturbances, and
where external motion capturing systems are usable.

Many simplifications and assumptions are made in the analytical models of the simple
quadrotor and extensions thereof (i.e. chapter 4 and chapter 5 respectively). This means
that the simple quadrotor model is only valid in near-hover conditions. While the extensions
seek to remedy this, they themselves impose some restrictions on their use. Much of the theory
behind the effects of thrust variance and blade flapping is founded in helicopter literature [36].
As such, the thrust variance effect considers the rotors individually and therefore neglects the
interaction effects between these rotors. As observed in the wind tunnel flight tests of Sun et al.
[7], there is indeed an interaction effect between the rotors in high-speed conditions influencing
the total thrust produced. Likewise, Powers et al. [33] witnessed a divergence between their
model predictions and true flight tests, likely due to similar effects. Many of the existing models
in literature have only been validated in the low-speed domain of the flight envelope and are
therefore unsuitable for high-speed scenarios or those involving aggressive manoeuvres. More-
over, current knowledge of these aerodynamic effects is asymmetrical in that the aerodynamic
forces are well-documented whereas knowledge on aerodynamic moments is lacking. Therefore,
valid models in the high-speed regime which consider aerodynamic effects and interactions are
necessary.

Indeed, existing literature has managed to identify high-speed quadrotor models [1, 6, 7]
or has successfully demonstrated aggressive manoeuvres [9, 10, 96]. System identification tech-
niques (chapter 7) are typically used construct high-speed models while aggressive manoeuvres
are facilitated by specialized controllers specific to certain trajectories or through learning. How-
ever, data collected for these endeavours are often obtained indoors, with the aid of external
motion capturing systems, and are devoid of the external disturbances commonly seen in out-
door environments. Consequently, identification procedures valid for outdoor data must be
resilient against both measurement and system noise. Moreover, the physical constraints of the
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indoor space limit the achievable speeds and manoeuvres of the quadrotor thereby restricting
flight envelope coverage. Hence, there is a need for a quadrotor model that is identifiable without
the help of an external motion capturing system and is valid outdoors, in high-speed conditions,
and for aggressive manoeuvres.

Recent literature has been especially concerned with fault tolerant control (chapter 6) of
quadrotors, since safety is essential for their accepted use outdoors. In fact, Stephan et al. [68]
demonstrated the flight of a quadrotor with one failed rotor outdoors in low-speed conditions.
Regarding high-speed flight tests, Sun et al. managed to achieve high-speed flight of a quadrotor
with one failed rotor [1] and, more recently, two opposing failed rotors [2] by maintaining the
so-called relaxed trimming equilibrium. However, this equilibrium is broken when the quadrotor
experiences sustained accelerations, such as during aggressive manoeuvres. In this literature [1,
2, 68], failed rotors were imposed before the quadrotor began motion and, in the case of Sun et
al. [1, 2], were removed entirely. Moreover, while theoretical solutions to adjacent double rotor
failures exist in literature, none have managed to validate these in flight. This failure mode is
arguably more common than the diagonal rotor failure scenario investigated by Sun et al. [2].
Thus, it is currently unclear how failures incurred during high-speed flight, and how the presence
of the failed rotor(s), influence the quadrotor - especially for adjacent double rotor failures.

However, before this can be determined, the effect of a partial loss of effectiveness of one, or
multiple, rotors sustained during high-speed flight should be investigated. In literature, partial
faults are accommodated either through modelling [18, 41, 44] or a fault tolerant controller
[4, 43, 46]. While utilizing fault tolerant controllers is more popular, many of the employed
controllers result in reduced performance and are sensitive to external disturbances. Likewise,
approaches related to modelling the faults make use of fault estimation and detection algorithms
which also suffer from similar sensitives [64]. This makes them ill-suited for applications outdoors
where external disturbances are prevalent. Therefore, an adaptive framework composed of online
model identification and fault accommodation is necessary to address partial failures, and other
non-stationary effects, influencing the quadrotor in outdoor flight.

9.2 Research objectives

In many ways, the potential of a quadrotor is constrained by its model and controller. While
much research is conducted on improving these controllers, less attention is directed towards
the creation of better models, even though these can also facilitate substantial advancements in
performance. Many applications of quadrotors see their routine operation in outdoor environ-
ments, often at high-speeds or demanding aggressive manoeuvres. In existing literature, high
fidelity quadrotor models valid under such conditions have yet to be identified using information
solely from the on-board sensors.

Accordingly, the proposed research objective relates to the system identification of quadro-
tors. Since a high fidelity outdoor model of the quadrotor has never been identified due to
the challenges it entails, the proposed research objective limits itself to the nominal quadro-
tor and does not enforce an online implementation. Nevertheless, in consideration of these
ultimate goals, this research objective is also concerned with the efficiency of potential system
identification routines. Therefore, the proposed research objective is

Towards an online system identification routine for an undamaged quadrotor
suitable for high-speed outdoor applications and aggressive manoeuvres using
only on-board sensor information.

In light of recent literature on system identification (e.g. [7, 83]), a hybrid approach between
stepwise regression and artificial neural networks (ANN) shows promise for outdoor system
identification and will be an integral aspect of the subsequent research. The concept behind
the proposed approach is for the stepwise regression to capture the dominant stationary (body)
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dynamics while the ANN compensates for more complex, perhaps non-stationary, effects. There-
fore, in order to tackle the stated research objective, the following research questions should be
addressed:

i.

ii.

iii.

iv.

How can (combinations of) commercially available quadrotor sensors be used for system
identification in visual tracking system denied environments?

(a) What are the necessary on-board sensors to facilitate state estimation?

(b) How may these sensors be configured to reliably and repeatedly measure the relevant

quadrotor states?

How does the proposed hybrid system identification approach compare to its constituent
system identification techniques individually?

What type of flight manoeuvres are necessary to excite the quadrotor body dynamics?

(a) What manoeuvres are measurable in outdoor environments by the equipped sensors?
(b) How can these manoeuvres be reliably and repeatedly performed in outdoor environ-
ments?
How feasible is the proposed system identification routine for an online implementation?
(a) What is the computational complexity of the proposed hybrid system identification
algorithm?

(b) What requirements would the proposed hybrid system identification approach impose
on the quadrotor hardware?

204



References

1]

[11]

[12]

S. Sun, L. Sijbers, X. Wang, and C. de Visser. “High-Speed Flight of Quadrotor
Despite Loss of Single Rotor”. In: IEEE Robotics and Automation Letters 3.4 (Oct.
2018), pp. 3201-3207. 1SSN: 2377-3766. DOI: 10.1109/LRA.2018.2851028.

S. Sun, X. Wang, Q. Chu, and C. d. Visser. “Incremental Nonlinear Fault-Tolerant
Control of a Quadrotor With Complete Loss of Two Opposing Rotors”. In: IEEFE
Transactions on Robotics (2020), pp. 1-15. 1SSN: 1941-0468. DOT:
10.1109/TR0.2020.3010626.

S. Sun and C. de Visser. “Aerodynamic Model Identification of a Quadrotor Subjected
to Rotor Failures in the High-Speed Flight Regime”. In: IEEE Robotics and Automation
Letters 4.4 (Oct. 2019), pp. 3868-3875. ISSN: 2377-3766. DOLI:
10.1109/LRA.2019.2928758.

X. Wang, S. Sun, E.-J. van Kampen, and Q.P. Chu. “Quadrotor Fault Tolerant
Incremental Sliding Mode Control driven by Sliding Mode Disturbance Observers”. In:
Aerospace Science and Technology 87 (2019), pp. 417-430. 1sSN: 1270-9638. DOI:
10.1016/j.ast.2019.03.001.

S. Sun, M. Baert, B. S. van Schijndel, and C. C. de Visser. “Upset Recovery Control for
Quadrotors Subjected to a Complete Rotor Failure from Large Initial Disturbances”.
In: 2020 IEEE International Conference on Robotics and Automation (ICRA). May
2020, pp. 4273-4279. DOI: 10.1109/ICRA40945.2020.9197239.

S. Sun, R. J. Schilder, and C. C. de Visser. “Identification of Quadrotor Aerodynamic
Model from High Speed Flight Data”. In: 2018 AIAA Atmospheric Flight Mechanics
Conference. 2018. DOI: 10.2514/6.2018-0523.

S. Sun, C.C. de Visser, and Q.P. Chu. “Quadrotor Gray-Box Model Identification from
High-Speed Flight Data”. In: Journal of Aircraft 56.2 (2019), pp. 645-661. DOI:
10.2514/1.C035135.

S. Li, C. De Wagter, C.C. de Visser, Q.P. Chu, and G.C.H.E. de Croon. “In-flight
model parameter and state estimation using gradient descent for high-speed flight”. In:
International Journal of Micro Air Vehicles 11 (2019). DOT:
10.1177/1756829319833685.

D. Mellinger, N. Michael, and V. Kumar. “Trajectory generation and control for precise
aggressive maneuvers with quadrotors”. In: The International Journal of Robotics
Research 31.5 (2012), pp. 664-674. DOI: 10.1177/0278364911434236.

D. Molenkamp, E.-J. Van Kampen, C. C. de Visser, and Q. P. Chu. “Intelligent
Controller Selection for Aggressive Quadrotor Manoeuvring”. In: AIAA Information
Systems-AIAA Infotech @ Aerospace. DOIL: 10.2514/6.2017-1068.

E. J. J. Smeur, Q.P. Chu, and G. C. H. E. de Croon. “Adaptive Incremental Nonlinear
Dynamic Inversion for Attitude Control of Micro Air Vehicles”. In: Journal of
Guidance, Control, and Dynamics 39.3 (2016), pp. 450-461. pOI: 10.2514/1.G001490.

S. Sun and C.C. de Visser. “Quadrotor Safe Flight Envelope Prediction in the
High-Speed Regime: A Monte-Carlo Approach” In: ATAA Scitech 2019 Forum. DOI:
10.2514/6.2019-0948.

J. K. Stolaroff, C. Samaras, E. R. O’Neill, A. Lubers, A. S. Mitchell, and D. Ceperley.
“Energy use and life cycle greenhouse gas emissions of drones for commercial package
delivery”. In: Nature communications 9.1 (2018), pp. 1-13. DOI:
https://doi.org/10.1038/s41467-017-02411-5.

205


https://doi.org/10.1109/LRA.2018.2851028
https://doi.org/10.1109/TRO.2020.3010626
https://doi.org/10.1109/LRA.2019.2928758
https://doi.org/10.1016/j.ast.2019.03.001
https://doi.org/10.1109/ICRA40945.2020.9197239
https://doi.org/10.2514/6.2018-0523
https://doi.org/10.2514/1.C035135
https://doi.org/10.1177/1756829319833685
https://doi.org/10.1177/0278364911434236
https://doi.org/10.2514/6.2017-1068
https://doi.org/10.2514/1.G001490
https://doi.org/10.2514/6.2019-0948
https://doi.org/https://doi.org/10.1038/s41467-017-02411-5

REFERENCES REFERENCES

[14]

[19]

[21]

J. Verbeke and J. De Schutter. “Experimental maneuverability and agility
quantification for rotary unmanned aerial vehicle”. In: International Journal of Micro
Air Vehicles 10.1 (2018), pp. 3-11. porL:
https://doi.org/10.1177/1756829317736204.

G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin. “Quadrotor helicopter flight
dynamics and control: Theory and experiment”. In: AIAA guidance, navigation and
control conference and exhibit. 2007, p. 6461. DOI: 10.2514/6.2007-6461.

P. Solanki. “Attitude Estimation of a Quadcopter with one fully damaged rotor using
on-board MARG Sensors”. MA thesis. Kluyverweg 1, 2629 HS Delft, The Netherlands:
Delft University of Technology, Oct. 2020. URL:
http://resolver.tudelft.nl/uuid:43b7alc8-7b67-48a4-97b0-7fe9c8af884a.

J. Svacha, G. Loianno, and V. Kumar. “Inertial Yaw-Independent Velocity and
Attitude Estimation for High-Speed Quadrotor Flight”. In: IEEE Robotics and
Automation Letters 4.2 (Apr. 2019), pp. 1109-1116. 1SSN: 2377-3766. DOI:
10.1109/LRA.2019.2894220.

R. C. Avram, X. Zhang, and J. Muse. “Quadrotor Actuator Fault Diagnosis and
Accommodation Using Nonlinear Adaptive Estimators”. In: IEEE Transactions on
Control Systems Technology 25 (6 Nov. 2017), pp. 2219-2226. 1SSN: 10636536. DOI:
10.1109/TCST.2016.2640941.

R. C. Avram, X. Zhang, and J. Muse. “Nonlinear Adaptive Fault-Tolerant Quadrotor
Altitude and Attitude Tracking with Multiple Actuator Faults”. In: IEEE Transactions
on Control Systems Technology 26 (2 Mar. 2018), pp. 701-707. 1SSN: 10636536. DOI:
10.1109/TCST.2017.2670522.

A.-R. Merheb, H. Noura, and F. Bateman. “Design of Passive Fault—Tolerant
Controllers of a Quadrotor Based on Sliding Mode Theory”. In: International Journal
of Applied Mathematics and Computer Science 25 (Sept. 2015). DOIL:
10.1515/amcs-2015-0042.

M. W. Mueller and R. D’Andrea. “Stability and control of a quadrocopter despite the
complete loss of one, two, or three propellers”. In: 2014 IEEE international conference
on robotics and automation (ICRA). IEEE. 2014, pp. 45-52. 1SBN: 978-1-4799-3685-4.
DOI: 10.1109/ICRA.2014.6906588.

M. W. Mueller and R. D’Andrea. “Relaxed hover solutions for multicopters: Application
to algorithmic redundancy and novel vehicles”. In: International Journal of Robotics
Research 35 (8 2016), pp. 873-889. 1ssN: 17413176. DOI: 10.1177/0278364915596233.

S. Bouabdallah, P. Murrieri, and R. Siegwart. “Design and Control of an Indoor Micro
Quadrotor”. In: Proc. of The International Conference on Robotics and Automation
(ICRA). Vol. 5. IEEE International Conference on Robotics and Automation (ICRA
2004). Zirich: ETH-Ztrich, 2004, pp. 4393-4398. DOI: 10.3929/ethz-a-010085499.

J. Jiang, J. Qi, D. Song, and J. Han. “Control platform design and experiment of a
quadrotor”. In: Proceedings of the 82nd Chinese Control Conference. July 2013,
pp- 2974-2979. 1SBN: 978-9-8815-6383-5.

J. G. Leishman. “The breguet-richet quad-rotor helicopter of 1907”. In: Vertiflite 47.3
(2002), pp. 58-60.

J. Kim, S. A. Gadsden, and S. A. Wilkerson. “A Comprehensive Survey of Control
Strategies for Autonomous Quadrotors”. In: Canadian Journal of Electrical and
Computer Engineering 43.1 (2020), pp. 3-16. 1SsN: 0840-8688. DOTI:
10.1109/CJECE.2019.2920938.

206


https://doi.org/https://doi.org/10.1177/1756829317736204
https://doi.org/10.2514/6.2007-6461
http://resolver.tudelft.nl/uuid:43b7a1c8-7b67-48a4-97b0-7fe9c8af884a
https://doi.org/10.1109/LRA.2019.2894220
https://doi.org/10.1109/TCST.2016.2640941
https://doi.org/10.1109/TCST.2017.2670522
https://doi.org/10.1515/amcs-2015-0042
https://doi.org/10.1109/ICRA.2014.6906588
https://doi.org/10.1177/0278364915596233
https://doi.org/10.3929/ethz-a-010085499
https://doi.org/10.1109/CJECE.2019.2920938

REFERENCES REFERENCES

[27]

[33]

[36]

[37]

[38]

G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin. “Precision flight
control for a multi-vehicle quadrotor helicopter testbed”. In: Control Engineering
Practice 19.9 (2011). Special Section: DCDS’09 — The 2nd IFAC Workshop on
Dependable Control of Discrete Systems, pp. 1023-1036. 1SSN: 0967-0661. DOI:
https://doi.org/10.1016/j.conengprac.2011.04.005.

C. Gablehouse. Helicopters and Autogiros: A History of Rotating-wing and V/STOL
Awviation. English. Philadelphia: Lippincott, 1969.

S. Harding. U.S. Army Aircraft Since 1947: An Illustrated Reference. Schiffer Military
History. Schiffer Pub., 1997. 1SBN: 9780764301902.

G. Hoffmann, D. G. Rajnarayan, S. L. Waslander, D. Dostal, J. S. Jang, and

C. J. Tomlin. “The Stanford testbed of autonomous rotorcraft for multi agent control
(STARMAC)”. In: The 23rd Digital Avionics Systems Conference (IEEE Cat.
No.04CH37576). Vol. 2. Oct. 2004, 12.E.4-121. por: 10.1109/DASC.2004.1390847.

B. Gati. “Open source autopilot for academic research - The Paparazzi system”. In:
2018 American Control Conference. June 2013, pp. 1478-1481. DOI:
10.1109/ACC.2013.6580045.

J. Svacha, K. Mohta, and V. Kumar. “Improving quadrotor trajectory tracking by
compensating for aerodynamic effects”. In: 2017 International Conference on
Unmanned Aircraft Systems (ICUAS). June 2017, pp. 860-866. DOTI:
10.1109/ICUAS.2017.7991501.

C. Powers, D. Mellinger, A. Kushleyev, B. Kothmann, and V. Kumar. “Influence of
aerodynamics and proximity effects in quadrotor flight”. In: Faperimental Robotics: The
13th International Symposium on Experimental Robotics. Heidelberg: Springer
International Publishing, 2013, pp. 289-302. 1SBN: 978-3-319-00065-7. DOT:
10.1007/978-3-319-00065-7_21.

N. A. Bakshi and R. Ramachandran. “Indirect model reference adaptive control of
quadrotor UAVs using neural networks”. In: Proceedings of the 10th International
Conference on Intelligent Systems and Control, ISCO 2016. Institute of Electrical and
Electronics Engineers Inc., Oct. 2016. I1SBN: 9781467378079. DOI:
10.1109/1IS8C0.2016.7727123.

S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, and C. J. Tomlin. “Learning
quadrotor dynamics using neural network for flight control”. In: 2016 IEEE 55th
Conference on Decision and Control, CDC 2016. Institute of Electrical and Electronics
Engineers Inc., Dec. 2016, pp. 4653-4660. 1SBN: 9781509018376. DOI:
10.1109/CDC.2016.7798978.

H. Huang, G. M. Hoffmann, S. L. Waslander, and C. J. Tomlin. “Aerodynamics and
control of autonomous quadrotor helicopters in aggressive maneuvering”. In: 2009 IEEFE
international conference on robotics and automation. IEEE. 2009, pp. 3277-3282. ISBN:
978-1-4244-2788-8. DOI: 10.1109/R0OB0OT.2009.5152561.

W. Johnson. Helicopter Theory. Dover Books on Aeronautical Engineering. Dover

Publications, 2012. 1SBN: 9780486131825. URL:
https://books.google.nl/books?id=FiEapaNgjLcC.

D. Abeywardena, S. Kodagoda, G. Dissanayake, and R. Munasinghe. “Improved State
Estimation in Quadrotor MAVs: A Novel Drift-Free Velocity Estimator”. In: IEEFE
Robotics Automation Magazine 20.4 (2013), pp. 32-39. DOL:
10.1109/MRA.2012.2225472.

207


https://doi.org/https://doi.org/10.1016/j.conengprac.2011.04.005
https://doi.org/10.1109/DASC.2004.1390847
https://doi.org/10.1109/ACC.2013.6580045
https://doi.org/10.1109/ICUAS.2017.7991501
https://doi.org/10.1007/978-3-319-00065-7_21
https://doi.org/10.1109/ISCO.2016.7727123
https://doi.org/10.1109/CDC.2016.7798978
https://doi.org/10.1109/ROBOT.2009.5152561
https://books.google.nl/books?id=FiEapaNgjLcC
https://doi.org/10.1109/MRA.2012.2225472

REFERENCES REFERENCES

[39]

[40]

[41]

[42]

[44]

[45]

[47]

R. Mahony, V. Kumar, and P. Corke. “Multirotor Aerial Vehicles: Modeling,
Estimation, and Control of Quadrotor”. In: IEEE Robotics Automation Magazine 19.3
(Aug. 2012), pp. 20-32. 1sSN: 1558-223X. DOI: 10.1109/MRA.2012.2206474.

A. Chamseddine, Y. Zhang, C. A. Rabbath, C. Fulford, and J. Apkarian. “Model
reference adaptive fault tolerant control of a quadrotor UAV”. In: AIAA Infotech at
Aerospace Conference and Fxhibit 2011. American Institute of Aeronautics and
Astronautics Inc., 2011. 1SBN: 9781600869440. DOI: 10.2514/6.2011-1606.

A. Baldini, R. Felicetti, A. Freddi, A. Monteriu, and M. Tempesta. “Estimation of
actuator faults in quadrotor vehicles: from theory to validation with experimental flight
data”. In: 2020 International Conference on Unmanned Aircraft Systems (ICUAS).
Institute of Electrical and Electronics Engineers (IEEE), Oct. 2020, pp. 1249-1256.
ISBN: 978-1-7281-4278-4. DOI: 10.1109/icuas48674.2020.9214026.

T. Li, Y. Zhang, and B. W. Gordon. “Passive and active nonlinear fault-tolerant control
of a quadrotor unmanned aerial vehicle based on the sliding mode control technique”.
In: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems
and Control Engineering 227.1 (2013), pp. 12-23. DOI: 10.1177/0959651812455293.

S. Xiao and J. Dong. “Robust Adaptive Fault-Tolerant Tracking Control for Uncertain
Linear Systems with Actuator Failures Based on the Closed-Loop Reference Model”. In:
IEEE Transactions on Systems, Man, and Cybernetics: Systems 50 (9 Sept. 2020),

pp. 3448-3455. 1SSN: 21682232. DOI: 10.1109/TSMC.2018.2876125.

G. Ortiz-Torres, P. Castillo, F. D.J. Sorcia-Vazquez, J. Y. Rumbo-Morales,

J. A. Brizuela-Mendoza, J. De La Cruz-Soto, and M. Martinez-Garcia. “Fault
Estimation and Fault Tolerant Control Strategies Applied to VTOL Aerial Vehicles
with Soft and Aggressive Actuator Faults”. In: IEEE Access 8 (2020), pp. 10649-10661.
ISSN: 21693536. DOI: 10.1109/ACCESS.2019.2963693.

7. Zhao, X. Wang, P. Yao, J. Xu, and J. Yu. “Fuzzy health degree-based dynamic
performance evaluation of quadrotors in the presence of actuator and sensor faults”. In:
Nonlinear Dynamics 95 (3 Feb. 2019), pp. 2477-2490. 1sSN: 1573269X. DOI:
10.1007/811071-018-4711-2.

Y.M. Zhang, A. Chamseddine, C.A. Rabbath, B.W. Gordon, C.-Y. Su, S. Rakheja,

C. Fulford, J. Apkarian, and P. Gosselin. “Development of advanced FDD and FTC
techniques with application to an unmanned quadrotor helicopter testbed”. In: Journal
of the Franklin Institute 350.9 (2013), pp. 2396-2422. 1sSN: 0016-0032. DOI:

10.1016/j. jfranklin.2013.01.009.

L. Besnard, Y. B. Shtessel, and B. Landrum. “Quadrotor vehicle control via sliding
mode controller driven by sliding mode disturbance observer”. In: Journal of the
Franklin Institute 349.2 (2012). Advances in Guidance and Control of Aerospace
Vehicles using Sliding Mode Control and Observation Techniques, pp. 658-684. 1SSN:
0016-0032. po1: 10.1016/j.jfranklin.2011.06.031.

I. Sadeghzadeh, A. Mehta, and Y. Zhang. “Fault/damage tolerant control of a
quadrotor helicopter UAV using model reference adaptive control and gain-scheduled
PID”. In: AIAA Guidance, Navigation, and Control Conference 2011. American
Institute of Aeronautics and Astronautics Inc., 2011. 1SBN: 9781600869525. DOI:
10.2514/6.2011-6716.

K. D. Young, V. I. Utkin, and U. Ozguner. “A control engineer’s guide to sliding mode
control”. In: IEEE Transactions on Control Systems Technology 7.3 (May 1999),
pp. 328-342. 18SN: 1558-0865. DOI: 10.1109/87.761053.

208


https://doi.org/10.1109/MRA.2012.2206474
https://doi.org/10.2514/6.2011-1606
https://doi.org/10.1109/icuas48674.2020.9214026
https://doi.org/10.1177/0959651812455293
https://doi.org/10.1109/TSMC.2018.2876125
https://doi.org/10.1109/ACCESS.2019.2963693
https://doi.org/10.1007/s11071-018-4711-2
https://doi.org/10.1016/j.jfranklin.2013.01.009
https://doi.org/10.1016/j.jfranklin.2011.06.031
https://doi.org/10.2514/6.2011-6716
https://doi.org/10.1109/87.761053

REFERENCES REFERENCES

[50]

[51]

[53]

[62]

[63]

Y. Shtessel, C. Edwards, L. Fridman, and A. Levant. Sliding mode control and
observation. Springer, 2014. 1SBN: 978-0-8176-4892-3.

J. Ni, C. Liu, and H. Liu. “Continuous uniformly finite time exact disturbance observer
based control for fixedtime stabilization of nonlinear systems with mismatched
disturbances”. In: PLoS ONE 12 (4 Apr. 2017). 1SsN: 19326203. DOI:

10.1371/journal .pone.0175645.

P. Ordaz, M. Ordaz, C. Cuvas, and O. Santos. “Reduction of matched and unmatched
uncertainties for a class of nonlinear perturbed systems via robust control”. In:
International Journal of Robust and Nonlinear Control 29 (8 May 2019),

pp- 2510-2524. 1sSN: 1049-8923. DOI: 10.1002/rnc.4506.

M. Rubagotti, A. Estrada, F. Castanos, A. Ferrara, and L. Fridman. “Integral sliding
mode control for nonlinear systems with matched and unmatched perturbations”. In:
IEEE Transactions on Automatic Control 56 (11 Nov. 2011), pp. 2699-2704. 1SSN:
00189286. DOI: 10.1109/TAC.2011.2159420.

V. Utkin and H. Lee. “Chattering problem in sliding mode control systems”. In:
Proceedings of the 2006 International Workshop on Variable Structure Systems,
VS8S’06. 2006, pp. 346-350. 1SBN: 1424402085. DOI: 10.1109/VSS.2006.1644542.

P. Lu and E.-J. Van Kampen. “Active fault-tolerant control for quadrotors subjected to
a complete rotor failure”. In: IEEE International Conference on Intelligent Robots and
Systems 2015-Decem (2015), pp. 4698-4703. 1SSN: 21530866. DOI:
10.1109/IR0S.2015.7354046.

X. Zhang, Y. Zhang, C.-Y. Su, and Y. Feng. “Fault Tolerant Control for Quadrotor via
Backstepping Approach”. In: /8th AIAA Aerospace Sciences Meeting Including the New
Horizons Forum and Aerospace Exposition (2010). DOI: 10.2514/6.2010-947.

P. van Gils, E.-J. Van Kampen, C. C. de Visser, and Q. P. Chu. “Adaptive Incremental
Backstepping Flight Control for a High-Performance Aircraft with Uncertainties”. In:
AIAA Guidance, Navigation, and Control Conference. DOI: 10.2514/6.2016-1380.

M. Krstic, P. V. Kokotovic, and 1. Kanellakopoulos. Nonlinear and Adaptive Control
Design. 1st. USA: John Wiley & Sons, Inc., 1995. 1SBN: 0471127329.

L. Sonneveldt, Q. P. Chu, and J. A. Mulder. “Nonlinear flight control design using
constrained adaptive backstepping”. In: Journal of Guidance, Control, and Dynamics
30 (2 May 2007), pp. 322-336. 1SSN: 15333884. DOI: 10.2514/1.25834.

B. J. Jeon, M. G. Seo, H. S. Shin, and A. Tsourdos. “Understandings of Classical and
Incremental Backstepping Controllers with Model Uncertainties”. In: IEEE
Transactions on Aerospace and Electronic Systems 56 (4 Aug. 2020), pp. 2628-2641.
ISSN: 15579603. DOI: 10.1109/TAES.2019.2952631.

W. Hao and B. Xian. “Nonlinear adaptive fault-tolerant control for a quadrotor UAV
based on immersion and invariance methodology”. In: Nonlinear Dynamics 90 (4 Dec.
2017), pp. 2813-2826. 1SSN: 1573269X. DOI: 10.1007/s11071-017-3842-1.

X. Zhang and Y. Zhang. “Fault Tolerant Control for Quad-rotor UAV by Employing
Lyapunov-based Adaptive Control Approach” In: ATAA Guidance, Navigation, and
Control Conference (2010). DOI: 10.2514/6.2010-8052.

Y. Song, L. He, D. Zhang, J. Qian, and J. Fu. “Neuroadaptive Fault-Tolerant Control
of Quadrotor UAVs: A More Affordable Solution”. In: IEFE Transactions on Neural
Networks and Learning Systems 30 (7 July 2019), pp. 1975-1983. 1SSN: 21622388. DOT:
10.1109/TNNLS.2018.2876130.

209


https://doi.org/10.1371/journal.pone.0175645
https://doi.org/10.1002/rnc.4506
https://doi.org/10.1109/TAC.2011.2159420
https://doi.org/10.1109/VSS.2006.1644542
https://doi.org/10.1109/IROS.2015.7354046
https://doi.org/10.2514/6.2010-947
https://doi.org/10.2514/6.2016-1380
https://doi.org/10.2514/1.25834
https://doi.org/10.1109/TAES.2019.2952631
https://doi.org/10.1007/s11071-017-3842-1
https://doi.org/10.2514/6.2010-8052
https://doi.org/10.1109/TNNLS.2018.2876130

REFERENCES REFERENCES

[64]

[65]

[78]

X. Nian, W. Chen, X. Chu, and Z. Xu. “Robust adaptive fault estimation and fault
tolerant control for quadrotor attitude systems”. In: International Journal of Control 93
(3 Mar. 2020), pp. 725-737. 18SN: 0020-7179. DOI: 10.1080/00207179.2018.1484573.

A. Lanzon, A. Freddi, and S. Longhi. “Flight Control of a Quadrotor Vehicle
Subsequent to a Rotor Failure”. In: Journal of Guidance, Control, and Dynamics 37.2
(2014), pp. 580-591. DOI: 10.2514/1.59869.

V. Lippiello, F. Ruggiero, and D. Serra. “Emergency landing for a quadrotor in case of
a propeller failure: A backstepping approach” In: 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Sept. 2014, pp. 4782—-4788. DOI:
10.1109/IR0S.2014.6943242.

C. de Crousaz, F. Farshidian, M. Neunert, and J. Buchli. “Unified motion control for
dynamic quadrotor maneuvers demonstrated on slung load and rotor failure tasks”. In:
2015 IEEE International Conference on Robotics and Automation (ICRA). May 2015,
pp- 2223-2229. DOI: 10.1109/ICRA.2015.7139493.

J. Stephan, L. Schmitt, and W. Fichter. “Linear parameter-varying control for
quadrotors in case of complete actuator loss”. In: Journal of Guidance, Control, and
Dynamics 41 (10 2018), pp. 2232-2246. 1SSN: 15333884. DOT: 10.2514/1.G003441.

X. Wang, E.-J. van Kampen, Q.P. Chu, and P. Lu. “Stability Analysis for Incremental
Nonlinear Dynamic Inversion Control”. In: Journal of Guidance, Control, and
Dynamics 42 (5 May 2019), pp. 1116-1129. 1SsN: 0731-5090. DOI: 10.2514/1.g003791.

H. K. Khalil and J. W. Grizzle. Nonlinear systems. Vol. 3. Prentice Hall, 2002. 1SBN:
9780132280242.

V. Klein and E.A. Morelli. Aircraft System Identification: Theory and Practice. AIAA
education series. American Institute of Aeronautics and Astronautics, 2006. ISBN:
9781563478321.

E. A. Morelli. “Global nonlinear aecrodynamic modeling using multivariate orthogonal
functions”. In: Journal of Aircraft 32.2 (1995), pp. 270-277. DOL: 10.2514/3.46712.

M. D. Zeiler and R. Fergus. “Visualizing and Understanding Convolutional Networks”.
In: Computer Vision — ECCYV 2014. Cham: Springer International Publishing, 2014,
pp. 818-833. 1SBN: 978-3-319-10590-1. DOI: 10.1007/978-3-319-10590-1_53.

G. E. Hinton and R. R. Salakhutdinov. “Reducing the dimensionality of data with
neural networks”. In: Science 313 (5786 July 2006), pp. 504-507. 1sSN: 00368075. DOT:
10.1126/science.1127647.

S. Lu and T. Bagar. “Robust nonlinear system identification using neural-network
models”. In: IEEE Transactions on Neural Networks 9 (3 1998), pp. 407-429. 1SSN:
10459227. por: 10.1109/72.668883.

S. Chen, S. A. Billings, and P. M. Grant. “Non-linear system identification using neural
networks”. In: International Journal of Control 51 (6 1990), pp. 1191-1214. 1SSN:
13665820. DOT: 10.1080/00207179008934126.

K. Kirkpatrick, J. May, and J. Valasek. “Aircraft system identification using Artificial
Neural Networks”. In: 51st AIAA Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition 2013. American Institute of Aeronautics and
Astronautics Inc., 2013. 1SBN: 9781624101816. DOI: 10.2514/6.2013-878.

J. Harris, F. Arthurs, J. V. Henrickson, and J. Valasek. “Aircraft system identification
using artificial neural networks with flight test data” In: 2016 International Conference
on Unmanned Aircraft Systems, ICUAS 2016. Institute of Electrical and Electronics
Engineers Inc., June 2016, pp. 679-688. 1SBN: 9781467393331. DOI:
10.1109/ICUAS.2016.7502624.

210


https://doi.org/10.1080/00207179.2018.1484573
https://doi.org/10.2514/1.59869
https://doi.org/10.1109/IROS.2014.6943242
https://doi.org/10.1109/ICRA.2015.7139493
https://doi.org/10.2514/1.G003441
https://doi.org/10.2514/1.g003791
https://doi.org/10.2514/3.46712
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1126/science.1127647
https://doi.org/10.1109/72.668883
https://doi.org/10.1080/00207179008934126
https://doi.org/10.2514/6.2013-878
https://doi.org/10.1109/ICUAS.2016.7502624

REFERENCES REFERENCES

[79]

[83]

[85]

[86]

[87]

S. A. Bagherzadeh. “Nonlinear aircraft system identification using artificial neural
networks enhanced by empirical mode decomposition”. In: Aerospace Science and
Technology 75 (Apr. 2018), pp. 155-171. 1SsN: 12709638. DOI:
10.1016/j.ast.2018.01.004.

R. Kumar, R. Ganguli, and S. N. Omkar. “Rotorcraft parameter estimation using
radial basis function neural network”. In: Applied Mathematics and Computation 216 (2
Mar. 2010), pp. 584-597. 1SSN: 00963003. DOI: 10.1016/j.amc.2010.01.081.

A. Punjani and P. Abbeel. “Deep learning helicopter dynamics models”. In: Proceedings
- IEEE International Conference on Robotics and Automation. Vol. 2015-June.
Institute of Electrical and Electronics Engineers Inc., June 2015, pp. 3223-3230. DOI:
10.1109/ICRA.2015.7139643.

A. J. Al-Mahasneh, S. G. Anavatu, and M. Garratt. “Nonlinear multi-input
multi-output system identification using neuro-evolutionary methods for a quadcopter”.
In: 9th International Conference on Advanced Computational Intelligence, ICACI 2017.
Institute of Electrical and Electronics Engineers Inc., July 2017, pp. 217-222. 1SBN:
9781509047260. DOI: 10.1109/ICACI.2017.7974512.

N. Mohajerin, M. Mozifian, and S. Waslander. “Deep Learning a Quadrotor Dynamic
Model for Multi-Step Prediction”. In: Proceedings - IEEE International Conference on
Robotics and Automation. Institute of Electrical and Electronics Engineers Inc., Sept.
2018, pp. 2454-2459. 1SBN: 9781538630815. DOI: 10.1109/ICRA.2018.8460840.

G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In:
Mathematics of Control, Signals, and Systems 2 (4 Dec. 1989), pp. 303-314. 1SSN:
09324194. por: 10.1007/BF02551274.

A. R. Barron. “Universal approximation bounds for superpositions of a sigmoidal
function”. In: IEEE Transactions on Information Theory 39.3 (May 1993), pp. 930-945.
ISSN: 1557-9654. DOI: 10.1109/18.256500.

J. Heaton. Introduction to Neural Networks with Java. Heaton Research, 2008. 1SBN:
9781604390087. URL: https://books.google.nl/books?id=Swlcw7M4uD8C.

P. J. Werbos. “Backpropagation through time: what it does and how to do it”. In:
Proceedings of the IEEE 78.10 (Oct. 1990), pp. 1550-1560. 1sSN: 1558-2256. DOI:
10.1109/5.58337.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet classification with deep
convolutional neural networks”. In: Communications of the ACM 60 (6 June 2017),
pp. 84-90. 1SSN: 15577317. DOIL: 10.1145/3065386.

Y. Lecun, Y. Bengio, and G. Hinton. “Deep learning”. In: Nature 521 (7553 May 2015),
pp- 436-444. 18SN: 14764687. DOI: 10.1038/nature14539.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations by
back-propagating errors”. In: Nature 323 (6088 Oct. 1986). 1SSN: 0028-0836. DOTI:
10.1038/323533a0.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv:
1412.6980 [cs.LG].

C. M. Bishop et al. Neural networks for pattern recognition. Oxford university press,
1995.

D. H. Wolpert. “Stacked generalization”. In: Neural Networks 5 (2 Jan. 1992),
pp- 241-259. 1SSN: 08936080. DOT: 10.1016/S0893-6080(05)80023-1.

211


https://doi.org/10.1016/j.ast.2018.01.004
https://doi.org/10.1016/j.amc.2010.01.081
https://doi.org/10.1109/ICRA.2015.7139643
https://doi.org/10.1109/ICACI.2017.7974512
https://doi.org/10.1109/ICRA.2018.8460840
https://doi.org/10.1007/BF02551274
https://doi.org/10.1109/18.256500
https://books.google.nl/books?id=Swlcw7M4uD8C
https://doi.org/10.1109/5.58337
https://doi.org/10.1145/3065386
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/323533a0
http://www.deeplearningbook.org
https://arxiv.org/abs/1412.6980
https://doi.org/10.1016/S0893-6080(05)80023-1

REFERENCES REFERENCES

[95]

[97]

[100]

[101]

[102]

[103]

[104]

[105]
[106]
[107]

[108]
[109]

P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson. “Averaging
Weights Leads to Wider Optima and Better Generalization”. In: 3/th Conference on
Uncertainty in Artificial Intelligence 2018, UAI 2018 2 (Mar. 2018), pp. 876-885. URL:
http://arxiv.org/abs/1803.05407.

G. Loianno, C. Brunner, G. McGrath, and V. Kumar. “Estimation, Control, and
Planning for Aggressive Flight with a Small Quadrotor with a Single Camera and
IMU”. In: IEEE Robotics and Automation Letters 2 (2 Apr. 2017), pp. 404-411. 1sSN:
23773766. DOI: 10.1109/LRA.2016.2633290.

Y. Li, S. Zahran, Y. Zhuang, Z. Gao, Y. Luo, Z. He, L. Pei, R. Chen, and

N. El-Sheimy. “IMU/Magnetometer/Barometer /Mass-Flow Sensor Integrated Indoor
Quadrotor UAV Localization with Robust Velocity Updates”. In: Remote Sensing 11 (7
Apr. 2019), p. 838. 1sSN: 2072-4292. DOI: 10.3390/rs11070838.

R. C. Leishman, J. C. Macdonald, R. W. Beard, and T. W. McLain. “Quadrotors and
Accelerometers: State Estimation with an Improved Dynamic Model”. In: IEEE Control
Systems Magazine 34.1 (Feb. 2014), pp. 28-41. 1ssN: 1941-000X. DOT:
10.1109/MCS.2013.2287362.

S. A. Ludwig and K. D. Burnham. “Comparison of Euler Estimate using Extended
Kalman Filter, Madgwick and Mahony on Quadcopter Flight Data”. In: 2018
International Conference on Unmanned Aircraft Systems, ICUAS 2018. Institute of
Electrical and Electronics Engineers Inc., Aug. 2018, pp. 1236-1241. I1SBN:
9781538613535. DOI: 10.1109/ICUAS.2018.8453465.

S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar. “Vision-Based State Estimation
and Trajectory Control Towards High-Speed Flight with a Quadrotor.” In: Robotics:
Science and Systems. Vol. 1. Citeseer. 2013, p. 32.

F. Morbidi and G. Caron. “Phase correlation for dense visual compass from
omnidirectional camera-robot images”. In: IEEE Robotics and Automation Letters 2.2
(2017), pp. 688-695. 1SSN: 2377-3766. DOI: 10.1109/LRA.2017.2650150.

R. Mahony, T. Hamel, and J. Pflimlin. “Nonlinear Complementary Filters on the
Special Orthogonal Group”. In: IEEE Transactions on Automatic Control 53.5 (June
2008), pp. 1203-1218. 1SSN: 1558-2523. DOIL: 10.1109/TAC.2008.923738.

R. Mahony, T. Hamel, J. Trumpf, and C. Lageman. “Nonlinear attitude observers on
SO(3) for complementary and compatible measurements: A theoretical study”. In:
Proceedings of the IEEE Conference on Decision and Control. 2009, pp. 6407-6412.
ISBN: 9781424438716. DOI: 10.1109/CDC.2009.5399821.

S. O.H. Madgwick, A. J.L. Harrison, and R. Vaidyanathan. “Estimation of IMU and
MARG orientation using a gradient descent algorithm”. In: IEEE International
Conference on Rehabilitation Robotics. 2011. 1SBN: 9781424498628. DOTI:
10.1109/ICORR.2011.5975346.

G. Welch and G. Bishop. An Introduction to the Kalman Filter. Tech. rep. USA, 1995.

R. Anderson and D. M. Bevly. “Using GPS with a model-based estimator to estimate
critical vehicle states”. In: Vehicle System Dynamics 48.12 (2010), pp. 1413-1438. DOI:
10.1080/00423110903461347.

H. W. Sorenson. “Least-squares estimation: from Gauss to Kalman”. In: IEEE Spectrum
7.7 (July 1970), pp. 63-68. 1SSN: 1939-9340. DOI: 10.1109/MSPEC.1970.5213471.

S. Sérkké. Bayesian filtering and smoothing. Vol. 3. Cambridge University Press, 2013.

P. Martin and E. Salatin. “Generalized multiplicative extended kalman filter for aided
attitude and heading reference system”. In: AIAA Guidance, Navigation, and Control
Conference. 2010, p. 8300. DOI: 10.2514/6.2010-8300.

212


http://arxiv.org/abs/1803.05407
https://doi.org/10.1109/LRA.2016.2633290
https://doi.org/10.3390/rs11070838
https://doi.org/10.1109/MCS.2013.2287362
https://doi.org/10.1109/ICUAS.2018.8453465
https://doi.org/10.1109/LRA.2017.2650150
https://doi.org/10.1109/TAC.2008.923738
https://doi.org/10.1109/CDC.2009.5399821
https://doi.org/10.1109/ICORR.2011.5975346
https://doi.org/10.1080/00423110903461347
https://doi.org/10.1109/MSPEC.1970.5213471
https://doi.org/10.2514/6.2010-8300

	List of Figures
	List of Tables
	I Scientific Paper: On prediction intervals
	Numerical validation of prediction intervals for artificial neural network quadrotor models
	Introduction
	Model reliability assessment through prediction intervals
	Prediction Intervals for Polynomial models
	Prediction Intervals for ANN models

	Procedures for numerical validation of prediction intervals
	Generation of mock-flight data
	Simulated input manoeuvres for model identification
	Identification of quadrotor models

	Results of numerical validation
	Numerical validation through additive noise
	Numerical validation through distinct simulation runs

	Conclusion
	Appendix


	II Scientific Paper: On outdoor model identification
	Development of a system identification routine suitable for modelling high-speed and aggressive quadrotor flight outdoors
	Introduction
	Fundamentals of the quadrotor platform
	Quadrotor reference frames
	Simple model of the quadrotor
	Analytical extensions to the quadrotor
	Employed quadrotor platform: The MetalBeetle

	System identification methods
	Constituent states for model identification
	Normalization of quadrotor states
	Polynomial models for quadrotor system identification
	Artificial Neural Networks for quadrotor system identification
	Novel hybrid approach for quadrotor system identification
	Quadrotor model identification pipeline

	Data acquisition and processing
	Experimental data collection
	Raw data processing

	Model identification results
	Analysis of identified models
	Identified model structures & sensitivities
	Simulation of identified models

	Conclusion
	Appendix
	Outdoor MetalBeetle results
	Detailed hovering simulation results of MetalBeetle models
	Outdoor MetalBeetle PID gains
	Supplementary model identification: Indoor MetalBeetle



	III Prelimenary report
	Introduction
	An overview of the quadrotor
	A brief history of the quadrotor
	A first principle model of the quadrotor
	Reference frames
	Quadrotor dynamics


	Extensions to the simple quadrotor model
	Rotor inertia and gyroscopic moment
	Presence of wind
	Aerodynamic effects
	Thrust variation
	Blade flapping


	Actuator Faults
	Partial loss of rotor effectiveness
	Modelling a partial actuator fault
	Using robust control to account for failures

	Complete rotor failures
	Single rotor failure
	Double rotor failure


	System identification of quadrotors
	Polynomial models
	Stepwise regression
	Selecting model candidates

	Artificial Neural Networks
	Mathematical foundations behind artificial neural networks
	Considerations for training artificial neural networks
	Neural networks as applied to quadrotor system identification


	State estimation
	Quadrotor sensors
	Accelerometer
	Rate gyroscope
	Magnetometer
	Camera

	State estimation techniques
	Mahony filter
	Madgwick filter
	Kalman filter
	Adaptive fuzzy complementary kalman filter


	Research proposal
	Summary of gaps in literature
	Research objectives

	References


