<]
TUDelft

Delft University of Technology

Estimation of Relative Kinematic Parameters of an Anchorless Network

Mishra, Anurodh; Rajan, Raj Thilak

DOI
10.1109/TSIPN.2025.3557585

Publication date
2025

Document Version
Final published version

Published in
IEEE Transactions on Signal and Information Processing over Networks

Citation (APA)

Mishra, A., & Rajan, R. T. (2025). Estimation of Relative Kinematic Parameters of an Anchorless Network.
IEEE Transactions on Signal and Information Processing over Networks, 11, 831-844.
https://doi.org/10.1109/TSIPN.2025.3557585

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1109/TSIPN.2025.3557585
https://doi.org/10.1109/TSIPN.2025.3557585

Green Open Access added to TU Delft Institutional Repository
as part of the Taverne amendment.

More information about this copyright law amendment
can be found at https://www.openaccess.nl.

Otherwise as indicated in the copyright section:
the publisher is the copyright holder of this work and the
author uses the Dutch legislation to make this work public.


https://repository.tudelft.nl/
https://www.openaccess.nl/en

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 11, 2025 831

Estimation of Relative Kinematic Parameters of an
Anchorless Network

Anurodh Mishra

Abstract—Estimation of the relative positions of IV static nodes
in D-dimensional space given the pairwise distances between them
is a well-studied problem in literature. However, for a network of
mobile nodes, the existing solutions proposed in literature rely ei-
ther on the knowledge of absolute positions of some nodes or enforce
constraints on the motion of individual nodes to achieve a unique
solution. In this work, we consider an anchorless environment
and propose a time-varying Grammian-based data model which
relates the relative positions of the mobile nodes to the pairwise
distances between them. Given the data model, we propose algo-
rithms to estimate the relative positions, velocity and other higher
order derivatives, referred to as relative kinematics, associated
with the network of mobile nodes. We further consider a scenario
where accelerometers are on-board on all the mobile nodes, and
investigate the inclusion the accelerometer measurements in the
proposed model. The Cramér-Rao lower bound for the proposed
data models are derived and compared with the performance of the
estimators using Monte-Carlo simulations. We further compare
and analyze the performance of the proposed estimators against
the state-of-the-art methods, and present research directions for
future work to further improve the proposed approach.

Index Terms—Lyapunov-like equation, mobile nodes, multi-
dimensional scaling, localization, time-varying distances.

1. INTRODUCTION

HEproblem of estimating the position coordinates of N
points, in a D-dimensional space, given the Euclidean
distance matrix (EDM) has a long history in scientific literature
and can be traced back to the works of [2], [3]. Analytical results
on EDMs, in [4], [5], [6] made them an essential toolset to solve
this problem, with applications in biology [7], machine learning
problems [7] and signal processing [6], [8], [9], [10], [11], [12].
In the aforementioned works, EDMs are considered as static
snapshots of the location of a set of points or nodes in time. In
numerous applications involving motion systems, such as robot
swarms [13], [14], the agents, seen as nodes, are mobile and
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measurements of pairwise distances between these nodes are
available over time. In such cases, it is useful to model this time
dependency in order to understand the underlying kinematics of
the nodes. Conventionally, this problem has been treated within
the context of an absolute reference frame where the absolute
positions of some nodes are required to be known in order to
find a unique solution to the coordinate estimation problem.
For applications involving mobile nodes, especially where it is
either impossible or very challenging to set up a fixed inertial
reference frame, this problem provides multiple challenges. This
can occur in a number of real life applications such as navigation
in inaccessible environments such as disaster-hit areas [15],
underwater navigation [16], [17], satellite arrays in space [18],
space exploration on alien surfaces [13], indoor and outdoor
wireless sensor networks [19], [20]. In such situations, a rela-
tive framework for the estimation of coordinates of the mobile
nodes and their associated kinematic parameters, such as relative
position, velocity, acceleration, etc., is desirable. However, there
has been limited work done on the time-varying aspect of EDMs.
There have been a number of works on relative localization in
an anchorless network [17], [21], [22], [23]. Generally, there
are two types of measurements considered. These are ‘self-
measurements’ referring to measurements about each individual
node and ‘inter-node measurements’ referring to measurements
taken in relation to other nodes in the network. The authors
in [21], [22] provide a theoretical framework for relative local-
ization with self-measurements and inter-node measurements.
In [21], an in-depth theoretical analysis of relative localization
for various data models, including distance measurements is
provided. Given the rotational and translational ambiguity in
distance measurements, the author decomposes the error into
‘relative error’, which depends on the ‘shape’ of the network and
‘transformation error’ which depends on the absolute error w.r.t.
the true state. It is suggested to use the orthogonal Procrustes
analysis to evaluate the relative error. In [22], Fisher informa-
tion matrix is used to analyze performance bounds. A general
framework for network localization and navigation using belief
propagation algorithm over graphical models is provided in [17],
[23]. In particular, [23] uses self-measurements obtained from
smartphones, including but not limited to accelerometer and
gyroscope measurements, and inter-node measurements such as
range information based on acoustic signals and indoor map
information. The authors propose a belief propagation algo-
rithm on the graphical model using message passing algorithm.
Similarly in [17], a belief propagation based dead reckoning
for underwater vehicles is proposed. The authors make use of
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speed and heading measurements with intermittent corrections
based on message-passing between nodes. The position is then
estimated by each node via dead-reckoning and passed to neigh-
bors as inter-node measurements. These methods are well suited
for connectivity analysis and distributed implementation.

In our work, we take the pairwise distance measurements
as the inter-node measurement and include an accelerometer
which meets the requirement of anchor-free localization as
the self-measurement. Given their low weight and cost, they
are ubiquitous in applications involving mobile nodes. In past
studies, accelerometers have been combined with range-based
sensors in multiple studies [24], [25], [26]. However, to the best
of our knowledge, their usage has either been limited to local-
ization in an absolute setting with known anchor positions or as
part of a wider array of sensors in simultaneous localization and
mapping applications [25], [26], [27], [28]. Thus, a combination
of accelerometers with pairwise distances in a mobile setup for
anchorless localization is desirable.

A. Related Work

Using range-based sensors for relative trajectory and pose
estimation has been an important research direction but the
proposed approaches rely on prior information in the estimation
step [25], [26], [28], [29], [30], [31]. In communication sys-
tems, [32] proposes a range-based estimation for relative veloc-
ity of a mobile node passing by another node in ad-hoc networks
but, for dense networks, the proposed algorithm requires the
relative velocity of at least one set of nodes to be known. Other
methods either only work in static environments [33] or pro-
vide only relative position information [14]. To our knowledge,
the earliest work estimating the relative kinematics, which in-
cludes relative position and relative velocity, from time-varying
Euclidean distance measurements was proposed in [34], [35]
and subsequently extended in [36] for relative acceleration and
higher-order kinematics. The authors presented a systematic way
to estimate higher-order relative kinematics for a network of
mobile nodes from time-varying distance measurements, where
each node has a polynomial trajectory in time. However, in [36],
to uniquely estimate the relative acceleration and other higher-
order kinematics, additional rigid-body constraints are required.
Recently, a Grammian-based approach to recover trajectories
from time-varying pairwise distances was proposed [37] by
solving a rank-constrained optimization problem. However, the
proposed solution does not lead to a unique trajectory. To find a
unique solution, the authors introduce spectral factorization of
polynomial matrices using known anchor positions. Thus, the
algorithm requires known anchor positions to estimate the rela-
tive trajectories, which goes against the premise of an anchorless
setting for the work presented in this article.

B. Contributions

In this paper, our aim is to estimate the relative kinematics
of a network of mobile nodes given the time-varying pairwise
distance measurements without any prior knowledge of anchor
nodes or references in the network. The main advantage of the
proposed algorithm over the state-of-the-art in [36] is that it
does not require additional rigid body constraints to be solved

uniquely for the relative acceleration. The contributions made
in this work are briefly listed below:

® We present a novel data model for estimating the relative
kinematics of a network of mobile nodes in an anchorless
setting, i.e., relative position, relative velocity and higher-
order kinematics, using pairwise distance measurements.

e Relative kinematic estimators based on generalized least
squares are proposed based on the new data model. Unlike
the current state-of-the-art in [36], the proposed estimators
do not impose any rigid body constraints on the network of
mobile nodes. We achieve this by building on the work
of [38] on solving a pair of Lyapunov-like equations,
discussed in detail later.

e The Cramér-Rao Lower Bounds (CRLBs) for the proposed
data model are derived and compared against the state-of-
the-art.

e We further extend our data model to include accelerometer
measurements, obtained from individual mobile nodes and
propose estimators based on this extended data model.

C. Layout and Notation

Layout: Section II introduces a polynomial representation of
the trajectory traversed by the network of mobile nodes and
prepares the groundwork for the contribution of this paper.
In Section III, a Grammian-based data model is proposed to
estimate the relative kinematics of the mobile network given
time-varying distances. Section IV introduces the accelerom-
eter measurements for the mobile network and extends the
Grammian-based model to include these measurements. In
Section V-A, lower bounds on the variance of the estimates in
the form of Cramér-Rao Lower Bounds (CRLBs) are derived for
the proposed data models, and Section VI provides simulations
to showcase the performance of the algorithms compared to the
existing state-of-the-art.

Notation: Lower case alphabets, e.g., a, represent scalars and
bold lowercase letters, e.g., a, denote a column vector. A bold
uppercase letter, e.g., A, indicates a matrix and calligraphic
letters e.g., A(-) represent matrices that are explicitly shown
to be a function of a vector or another matrix. The transpose of
a matrix is denoted by AT, Half-vectorization of a symmetric
matrix A is denoted by vech(A), and a standard vectorization
is represented by vec(A). The symbol ® denotes a Kronecker
product and ® denotes a Hadamard product. The symbol N'!
denotes the factorial operation given by (Hi\[:1 n). A vector
and matrix of real-valued entries belong to RY and RM*V,
respectively. A column vector of ones with length N is denoted
by 1y, and the ls-norm is denoted by | - ||. The diagonal
elements of a matrix is denoted using diag(-) and blkdiag(-, -)
denotes a matrix with the arguments along the diagonal. The
element in position (4, 7) in a matrix A is denoted by [A]; ;.
Given a positive semidefinite matrix, G € RV*¥ | constructed
using an underlying point set X € RPN the point set es-
timate Xusing classical Multidimensional scaling (MDS), is
given by

X = Fngs (G) (1a)
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£ arg m)'én |G- xT X|| s.t.rank(X) = D (1b)

=AY2VT (1¢)

where A is a diagonal matrix containing the first D non-zero
Eigenvalues of G, and V contains the corresponding Eigenvec-
tors [39].

II. PRELIMINARIES

In this section, we lay the foundations for the estimation of
relative kinematics for a network of mobile nodes.

A. Time-Varying Relative Kinematics

Consider a system of N mobile nodes in D-dimensional
Euclidean space, whose trajectory can be modeled as an Lth
degree polynomial in time ¢, i.e.,

L

Sty =>_ " Y.t 2

=0

where S(t) € RP*¥ is the polynomial trajectory as a function of
time ¢ defined in an absolute (fixed) frame of reference [36]. Each
column of S(t) represents the trajectory coordinates of the cor-
responding nodes of the mobile network. Assuming sufficiently
smooth trajectories, the /th-order derivative of this polynomial
is defined as Y; = SO (¢)|;—o € RP*N forl € {0,1,...,L},
which form the matrix coefficients of the trajectory polynomial
presented in (2). These coefficients, Y, are referred to as the
absolute kinematic parameters of the mobile network, which
represent the absolute position, velocity, etc. between the mo-
bile nodes at ¢ = 0. The associated time-varying Grammian is
defined as

G(t) 2 S(t)T S(t). (3)

Let the pairwise distance between nodes ¢ and j with 7,7 €
{1,..., N} be denoted by d,; (). The pairwise distances can be
squared and stacked in matrix form to obtain the time-varying
EDM, denoted by D(t) € RV*N with [D(t)];; = d3;(t). The
time-varying EDM can be written in a matrix form using the
time-varying Grammian from (3) as D () = 1 diag(G(t))” —
2 G(t) + diag(G(t)) 1%. We define the value of a time-varying
function at time ¢; by using the subscript k. To this end, the
position coordinates at time ¢, is given as

X 2 S(t)

L
=y () Yt 4)
=ty =0
The associated EDM and Grammian matrices are givenby Dy, €
RY*N and G, € RV*N respectively.

B. EDM Invariance and Centering Matrices

EDMs are invariant to any rigid transformation in the position
of the underlying node network, i.e. rotations, translations and
reflections. This results in infinite configurations of the mobile
nodes associated with the same EDM. To get rid of the ambi-
guity in translation, we define the positions of the nodes in the
network w.r.t. a common reference point within the network.

A meaningful choice for this common reference point is the
geometric centroid of the mobile network [36]. To this end, using

T
the centering matrix, C £ Iy — lNNl & we modify (2) to get
the time-varying polynomial trajectory w.r.t. to the geometric
centroid of the network, i.e.

S(t)=S(t)C =
l

where Y; 2 Y,; C forl € {0,1,..., L} are the coefficients of
the centered polynomial trajectory. These coefficients, Y; are
referred to as the relative kinematic parameters of the mobile
network. The centered position coordinates Xy, at time £ is
given as

L
oyt )
=0

L
Xp =X, C=> (1" Yt} (6)
1=0
where the unknown matrix coefficients Yy, Y1, Y, ...denote
the relative position, velocity, acceleration, etc. We are now
ready to describe the problem statement for the work presented
in this article.

C. Problem Statement

The focus of this work is on the estimation of relative kine-
matic parameters in (6) and subsequently the estimation of the
relative position of the nodes in a mobile network over time.

Problem Statement: Given the pairwise distances, Dy, over
time, we aim to estimate the relative kinematics, Y; for [ €
{0,1,..., L} of the mobile network. We also aim to extend the
proposed solutions to incorporate accelerometer measurements
to improve the relative kinematics estimates.

To this end, in Section III, a data model is proposed using pair-
wise distances, Dy, which subsequently yield the relative kine-
matics Y; forl € {0,1,..., L}.In Section IV, an accelerometer
measurement model is given, which is then used to extend the
proposed data model to fuse accelerometer and pairwise distance
measurements, leading to improvement in the estimates of the
relative kinematics. In Section V-A, the Cramér-Rao bounds are
derived to quantify the performance of the proposed data model.

III. RELATIVE KINEMATICS USING PAIRWISE DISTANCES

In this section, we introduce the data model based on the
polynomial form of centered Grammian, Gy, in (7). The pro-
posed data model differs from the approach in [36], where
the time-varying EDMs are modeled as polynomials in time,
and [37], where the time-varying Grammian is presented as a
linear combination of a set of bases of Grammian matrices.

A. Data Model

The Grammian matrix of the centered trajectory, Gy, can be
obtained by double-centering the EDM Dy, at time ¢y, i.e.

_%CDkCZ (X}CC)T (Xk C) ZngkZGk, (7)

where Gy, is the Grammian matrix for the centered position Xy,
of the mobile network. Here we have used a property of the
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centering matrix, C, i.e. C 1y = 0. Substituting for X, from
(6) in (7), the Grammian, Gy, for the centered coordinates, can
be rewritten as

GrL=Bo+Bit,+ Byt +

where By, € {0,1,...,
mial, given by

.+ Bpth, (8)

L} are the coefficient of the polyno-

l
:Z (m!(l—m))"" YT v, ©))
Unlike [36], the Grammian is directly modeled as a polynomial
in time in (8) as opposed to the pairwise distances. Vectorizing
(8) and using the distributive property of vectorization over
summation, we get

gk:b0+tkb1+tib2+...+t£bL, (10)

where b; = vech(By), for 1€ {0,1,...,L} and gi=
vech(Gg). In reality, the measurements Dy are plagued
with noise, which in turn leads to noisy g. Let g =g+,
be the noisy measurement plagued by additive zero-mean
Gaussian noise with covariance matrix X, which is discussed
in Appendix A. Stacking all K timestamps, in column vector t

fork ={0,..., K — 1}, we get
TO=g, (11)
where T = []-K@IN; t@IN, ey tGL®I*:|, 0:
T . T
|:b07 b17 LR bL:| 8 = |:g07 gla ) ng| and

N=N(N+1)/2.

The noise covariance X, for the half-vectorized Gram-
mian g hetroscedastic block diagonal structure as detailed in
Appendix A. Thus, a generalized least-squares formulation is
proposed, given by ming ||§];1/2 (T 6 — g)||* leading to a
closed-form solution of the form

OpLue = (T7 2, T) (12)

which is the Best Linear Unbiased Estimator or BLU}; for
the choice of the covariance matrix. Using the estimated 8, an
estimate of matrix B; from (9) can be reconstructed.

1 T -1
T X g,

B. Relative Kinematics

Given the estimates of € and consequently B; in (11), we
discuss the method used to estimate the relative kinematics
parameters Y; of the centered mobile network. Since the un-
certainty in the estimates of the coefficients B; becomes worse
as the order of the polynomial increases, we only consider a
fourth-order approximation of the Grammian polynomial and
consequently a second-order approximation to the polynomial
trajectories, i.e. Y; = 0 for [ > 3. Expressing the coefficients
B, from (9) for [ = {0,1,2,3,4}, we get

By = Y! Yo, (13a)
B =YY +YTY,, (13b)
~ 1

B, = 3 (YO Y2 +Y] Yo)+ Y] Yy, (13c)

By=- (YT Y. +YIY)), (13d)

— [\D\r—l

B, = 1YQTYQ.

The approximation in (13) allows for the relative position and
relative acceleration to be calculated using classical MDS algo-
rithms [1], i.e.,

(13e)

Yo = Fons (ﬁo) : (14a)

Yo = Fua (1B4), (14b)
where \?0 is the estimate for the centered position coordinates
Y at time ¢;, = 0 and Y5 is the estimate of the centered accel-
eration. It should be noted that the estimation of relative position
using MDS is already proposed in [36] but our approximation
also allows us to estimate the relative acceleration using MDS
as well. The estimates YO and Yg from the MDS solution in
(14) are known only up to a rotation, which we denote by Hg
and H, respectively. We assume the rotation associated with Y
to be identity, i.e. I:I\O = Ip, which leaves the unknown rotation
corresponding to Yo, given by Hy to be estimated. Now for
1 € {1, 3} in(9), we have the following Lyapunov-like equations

B, =Y! Y +Y! Y, (15a)

2B3=Y2 Y, +Y] Yo (15b)

Substituting the estimates of B; from (12) for ! € {1, 3} and the
estimates of Y, Yo from (14), we get

B, =Y Y, +YTY, (16a)

2Bs = YI HI Y, + Y] Hy Yo, (16b)

where the unknown relative velocity Y; and the unknown ro-
tation Hy needs to be estimated. To this end, in the intermezzo
given below, we look at the particular results from [38] which
are then used to present our solution.

Intermezzo: The solution to the individual equations in (16), as
laid out in [38], is briefly discussed here. Given a Lyapunov-like
equation of the form

ATP+PT A =R, (17)

where A € {Yy, Y} andR € {By,2 B3} arcknownand P €
{Y1,H? Y1} is unknown in (16), we consider the following
definitions

A=U [A, 0} VT, (18)
R R
VIRV =0 2| (18b)
R2 ) 0
P-U [\Iz @} VT, (18¢)
where U € RP*D contains the left eigenvectors, A € RD*D

contains the eigenvalues and V contains the right eigenvectors
of A. Using the result from [38], the following relations hold

i; =713 /2 A, (19a)
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® = A 'Ry, (19b)

where A; is the ith eigenvalue of A, v;; is the element at ith
diagonal of ¥, which leaves only the off-diagonal elements to
be estimated. We denote the unknown off-diagonal elements
with 1), and the known diagonal elements as 1, in (19a) in the
vector form. Vectorizing (18c),

" Py
p=vec(P)=(VeU)= =(VeU)II |vy,|,
¢
¢
(20)
where 1 £ vec(¥), ¢ = vec(®) and II is a permutation
T
matrix that rearranges the elements of {¢T, ¢T} to get
T
vl vl o'

Lyapunov-like equation in (16), we have

. Taking the result from (20), for each

Yy

y1=(VeU) I |4y,
¢
P

=(VeU) I |4,
¢

(21a)

(I®Hz) y1 (21b)

where U and V are left and right eigenvectors of YO Sim-
ilarly, U and V are left and right eigenvectors of Y. Here,

T
[1/;1T, Pt ¢T} represent the vectorized and permuted
|
represent the vectorized and permuted form of ¥ and ® in (18¢)
for (16b). Combining the equations in (21), we have

form of ¥ and @ in (18c) for (16a) and [7? T

P Py
Py =(VIeTUT) 1eoH,) (VoU) |, (22)
® o)

In (22), the number of unknowns correspond to D? — D
elements in 1, and D? elements in H,. Observe that the number
of unknowns in (22) depends only on the dimension D, i.e.
2 D? — D. However, the number of equations in (22) depends
onboth D and N and is given by (N — D)D + D. This proves
useful in defining the number of nodes required to solve (22)
for any dimension D. (22) is nonlinear due to the cross-terms
between Hs and 1p,. Expanding the expressions further and
ignoring the rows associated with unknown Tpl, (22) can be
rewritten as a linear basis function model of the form

(23)

o
[(ﬁ] W (31, ha),

where hy £ vec(H,), £(14, ha) contains the cross-terms and
‘W contains the corresponding coefficients associated with the
cross-terms. To estimate the unknowns 1), and hs, (23) can be

Algorithm 1: Relative Kinematics Using Pairwise Dis-
tances.

1:  Input: Pairwise distances Dy, for all x,
ke{0,...,K}.
For all tk, C calculate G, from Dy, using (7).
Solve for Bl using (12).
Estimate YO and Yg using Bg and B4 in (14).
Solve for Y1 and Hg using | B1 and Bg in (16).
Olltpllt Y(), Yl, Y2 and Hg

SRR

posed as a least squares problem given by
2

wl,hg = arg mln
17 2

H l‘ﬂ S Wewnh)| . 4

The problem is uniquely solvable if W is invertible, which is
true for the given case as discussed in the Appendix D. An
alternate formulation exploits the known structure of h using
the orthogonality constraint, i.e.

2

)

[ﬁfl — W (3, hy)

1¢,,hy = arg min
1,h2

st.  HI Hy=1Ip. (25)
Once 1,/51 and flg are estimated, the relative velocity, ?1, can
be estimated using the relation in (21a). The details of the
solvability of (23) are discussed further in detail in Appendix D.
It should be noted that we have not included the information
from (13c) in the estimates of Y, and Hs. To further improve
the estimates, the entire optimization problem, corresponding
to By, [ € {1,2,3} can be posed a constrained nonlinear least
squares problem

yl, hgfarg HllIl ’blfcl Y1H+H2b3702 Y1

y1,ho

(26a)
st. Czhy +2hvec (YT Y)) =2b,, (26b)

Y, =H, Y,
(26¢)

where C; 2 (I®Y0) (Y oDl C2aeY])+
(YT @I)J and C3 2 (YT o YI) + (YT @ YT)J with J
as the commutation matrix. The estimates of \?1 and ﬁQ from
(16) and (23) can be used as a starting point to solve (26) to
potentially avoid any local minima.

In summary, the coefficients, B;, of the centered Grammian
polynomial in (9) are estimated using (12). Using these coef-
ficient estimates, the relative position and relative acceleration
with arbitrary rotation is estimated using (14). To solve for the
arbitrary rotation associated with the acceleration, Hy and the
relative velocity Y, the set of Lyapunov-like equations in (16)
is solved using the scheme proposed in this section. Algorithm 1
summarizes the proposed scheme for estimating the relative
kinematic parameters using only pairwise distances.
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IV. RELATIVE KINEMATICS USING PAIRWISE DISTANCES AND
ACCELEROMETERS

We now consider a scenario where all the nodes have an ac-
celerometer, and subsequently extend our existing data model to
incorporate these accelerometer measurements. For the centered
polynomial trajectory given in (5), the centered acceleration, X,
associated with the mobile network at time £, can be obtained
by twice differentiating S(¢) w.r.t. time, i.e.

L

oS() (=21 y, 2

ot?

X, —

27)
t=ty, =2

In vectorized form, we have

L
Ry = vec (Xk> =S -2n vt @)
1=2
In the previous sections, we have considered the problem
of estimating the relative kinematic parameters Y; using only
pairwise distances and introduced a data model in Section III.
With the added accelerometer per node, we look into the pos-
sibility of improving the relative kinematic estimates and dis-
cuss the underlying assumptions made. In Section IV-A, the
accelerometer measurement model is introduced. In Section IV,
the proposed data model from Section III is modified to include
the accelerometer measurements.

A. Accelerometer Measurement Model

The accelerometer measurement model for a mobile node ¢
for the centered trajectory at time ¢y, is given by

Xk = QirXik+ €k, (29)

where il kyXik € RP are the noisy and true acceleration (cen-
tered at the origin) and Q; j is the rotation matrix associated
with the accelerometer frame for node 7 at time ;. The mea-
surements are accompanied by white Gaussian noise, i.e. €; j, ~
N(0,021p) [40, Chapter 2]. Without loss of generality, we
assume a calibrated accelerometer. Stacking the accelerometer
measurements for each mobile node as columns in a matrix, we
have

QN XN | + BEg.
(30)

Xk = |Qur X1k QorXop, ...,

Using the vectorized form of centered acceleration from (28),
(30) can be vectorized as

L-2
Xp =Y (=207 yit* + e, (31)
1=2
2 b p g T ~
where X, = [ka Xoks - XNk and y =

Qy. vec(Y;) with Q = blkdiag(Q1 4, - ., Qn k). To model
the time-varying rotations, Q; ;, for each node 7, additional
information is required about the relationship between rotations
at different times ¢;. In absence of such information, the system
of equations in (31) is not useful and the number of unknowns
in Qj, increases with each k.

Assumption: In absence of any additional measurement, we
assume that Q; j, for each node ¢, is constant, which implies
that the accelerometer measurements are obtained w.r.t. a non-
rotating frame of reference. These conditions are only applicable
in situations where the mobile nodes under investigation are
holonomic motion systems[42] or a transformation is available
at all times that allows for the construction of X;, w.r.t. acommon
frame for all k.

Under the given assumption, two cases naturally arise:

1) Initial rotation values are constant but distinct, i.e.

Q= Q = bikdiag (QV,....Q™), (32

with Q) € RP*P Vi € {1,2,...,N}.
2) Initial rotation values are constant and identical, i.e.

Qk:Q®INa

with Q € RP*P resulting in Y, = QY.

The first case is essentially a more restrictive version of
the second case. These cases imply that the mobile nodes are
traversing through the D-dimensional space with fixed rotational
degrees of freedom, e.g. in a drone light show [43]. To include
time-varying rotation for the mobile nodes, additional sensors,
e.g. gyroscope, are required, which is beyond the scope of this
work. In the next subsections, we propose a least squares estima-
tor to estimate the coefficients 3, [ > 2 from the accelerometer
measurements and discuss how these coefficients can be used for
the two cases in (32) and (33) (34a)-(34d) shown at the bottom
of the next page.

(33)

B. Estimates Using Accelerometer Measurements

The accelerometer measurements in (31) for K timestamps
can be stacked together in a column vector given by

F=Va, (35)

N ®IND} ,

o T
= |:YQa VAT B 7-K':|
with 75 = ik The closed form estimate for the accelerometer

coefficients can be obtained by solving the least-squares
problem arg ming ||V a — 7|3 leading to

where V = {1K®IND, tk®@Inp,

_qT
YL}, TZ{TO, T1,

a=(VTv) ' vl (36)

which is an optimal unbiased estimate of the acceleration coeffi-
cients, il , under the assumption of white Gaussian noise model,
where Y; £ vech(y;), VI = {0,1,..., L}.

C. Constant and Distinct Initial Rotations

For the assumption in (32), the coefficient estimates y; can
be used to estimate the relative orientation between the mobile
nodes. To this end, consider the estimate By from (12). Let
[B4];,; denote the element at position {ij} of the matrix and
[Y2]; denote the ith column of matrix Ys. Thus, using (13), we
have

4[Byij = [Y2)T [Yal;
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= Y27 QF Q; [Ya;
Y217 Qij [Yol),

where Q;; is the relative orientation between nodes ¢ and j.
Thus, the relative orientation can be estimated by solving the
following constrained least squares problem

2

b

Qi = arg min H4 [Bu]i; — [Yal! Qi [?2]j’

T
S.t. ij Qi; =1p.

For consistency between the relative rotation of the mobile
nodes, we have

(37)

Qij = Qix Qkj, VE.

The additional constraints in (38) can be used to further constrain
the solution.

(38)

D. Constant and Identical Initial Rotation

For the assumption in (33) and given ?l , | > 2 estimates from
(36), the formulation in (8) can be modified such that

ék:]§0+]§1tk+]§2ti+...+]§[/,1 té_l, 39)
where ék = Gk — ZIL:2 (l');z ?Z ?l and El =
anzo;m;&l,vwz (m! (L =m)) Y, Yim for le

{0,1,...,L —1}. Here, we define ?l =Y,; for [ <1.
Vectorizing (39), we get

fI\:k-:Bo+tkgl+t%62+"’+t]€BL717 (40)

where b; = vech(B;), for 1 €{0,1,...,L—1} and T) =
vech(ék). Without loss of generality, let ¥, = T + 1, be the
noisy measurement plagued by additive Gaussian noise with
covariance matrix 3, . Stacking all K timestamps in column
vector I, (40) can be extended as,

TO=r+ 1)
where’i‘: [1K®IN’ t®IN, ey tﬁL71®1N},5:
~ ~ ~ T T
|:b0, bl, ey bL,1:| and T = |:f‘(), ey f‘K .

Similar to Sections III-A, the estimation problem for 0 in 41

837

Algorithm 2: Relative Kinematics Using Pairwise Distances
and Accelerometer Measurements.

1: Input: Pairwise distances, Dy, and centered

accelerometer measurements, )Nik, for all ¢,
ke{0,...,K}.

For all ¢, calculate Gy, from Dy, using (7).
Estimate Y, for [ > 2 using (36).

Solve for B; using (42).

Estimate Yo using Bg in (14a).

Solve for Y; and Q using B; and Bg in (43).
Output: Yy, Y1, Yy and Q.

AR A

can be posed as a generalized least squares problem given by
arg ming |=-1/2 (T 6 — #)||2 which admits a solution

0— (TT >ue T)fl T 515, 42)

E. Relative Kinematics Estimate

The relative position estimate at time ¢ = 0 can be calculated
by solving for Yy in (14a). The estimate Yo from (36) has
an unknown rotation QQ corresponding to the non-rotating ac-
celerometer frame that needs to be estimated. Hence, to estimate
the remaining unknowns, Y1 and Q, consider the following set
of equations

B, =Yl Y +Y7Y,, (432)

- =T =
2B;=Y, Q" Y, +Y] QY;, (43b)

which can be solved for Y; and Q using the solving scheme in-
troduced in Section III-B. The proposed scheme in the presence
of accelerometer measurements along with pairwise distances
is summarized in Algorithm 2. It should be noted that, unlike
the second-order approximation in Section III-B, given the
accelerometer measurements, Algorithm 2 does not make this
assumption and can be used for a general polynomial trajectory
of any order L.

v._ (244, 385, 81, 19, —792,
07 | 588, —456, —992, —730, 879,
—  [-5 -8 -6, 6 -1, 2 1
Yl — ) ) ) ) ) )
787 757 777 797 737 727
2. _ [—0.17, —0.42, 022, —0.07, 021,
> o042, 017, 098, 073, 048,
7. _ [—0.07, —0.02, 0.02, -001, 0.01,
*7 002, 007, 008, 003, 0.08,

—554, —965, —985, —49, —503
(34a)
970, 155, 318, —858, 419
-5 9, =5
' ’ (34b)
—-10, 2, -1
—-0.15, 0.55, —0.72, —0.49, -0.34
(34c¢)
0.08, —0.43, -0.14, 0.56, 0.91
—0.05 0.05 —-0.02, -0.09, —-0.04
b b b b (34d)
0.1, —0.03, —0.04, 0.06, 0.01
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V. PERFORMANCE BOUNDS AND COMPUTATIONAL
COMPLEXITY

In this section, we discuss the theoretical performance bounds
of the proposed data model in the form of Cramér-Rao Lower
Bounds or CRLB. These bounds are then used during simula-
tions in Section VI as benchmarks to compare the performance
of the proposed estimators. We also discuss the computational
complexity of the proposed algorithms.

A. Cramér-Rao Lower Bounds

‘We begin by writing the data model for the transformed mea-
surement g, obtained by double centering and half-vectorizing
the pairwise distance measurements, and the associated noise
covariance, as derived in Appendix A

g=g+1n,g (44)

where the noise covariance is defined as 3g = E[n, ng]. The
covariance matrix for @ in (11) is derived in Appendix A.

Given the noise model in (44), the CRLB for the vectorized
form of the relative kinematics parameter z € {yo,y1, ...}, is
given by

E[z -2 > Fl, (45)

where E[] is the expectation operator and F, is the associated
Fisher information matrix given by

F,=JI'%,17, (46)

where J, is the Jacobian w.r.t. the parameter to be estimated.
For relative position, Y, and relative acceleration, Y5, the co-
variance matrix 3, for half-vectorized polynomial coefficients
{b1, b3} can be obtained from (56) in Appendix A and the
Jacobian J, can be calculated using the procedure laid out in
Appendix B. For relative velocity, Y and orientation Hs, the
Fisher information matrix, F',, for the system (16) is derived in
Appendix C for the unconstrained case. However, the rotation
matrix Hy must satisfy the orthogonality constraint given by
H2T H> = Ip. Aslaid out in [44], the constrained CRLB can be
calculated as

Elz—z >U (UTF.U) " U7, (47)

where U is a matrix whose columns form the orthonormal basis
for the null space of the Jacobian of the constraint matrix. For the
modified data model in Section IV-D, the induced distribution
on the new measurements r in (40) results in Chi-squared
distribution. This complicates the derivation of CRLB and thus,
is not dealt with any further.

B. Computational Complexity

In this section we discuss the asymptotic computational com-
plexity of the proposed algorithms. For Algorithm 1, the compu-
tational complexity of the proposed estimator is determined by
the least squares solution step 3, (12). Given 8 € RN (Z+1) with
N = N(N + 1)/2, for fixed L, the computational complexity of
the inversion operation is O(NN%) and the matrix multiplication
is O(N*~T) in the number of mobile nodes. The computational
complexity for classical multidimensional scaling algorithm,

complexity of the eigenvalue decomposition of the chosen ma-
trix coefficient B; which is given by O(NN?) in the number of
mobile nodes. In the proposed solving scheme in step 5 for a
pair of Lyapunov equations, the computational complexity is
dictated by the solution to the constrained least-squares solution
in (25) and is given by O(N3D®). Thus, for large networks, the
asymptotic complexity is dominated by the number of nodes in
the network V. For small networks, the length of the times series
determines the computational complexity. For Algorithm 2, we
need an additional computation for the estimation of matrix
coefficients Y, [ > 2 from centered accelerometer data in step
3, which has the computational complexity of O(N?3D?) for a
fixed order L of the polynomial trajectory owing to the inversion
of matrix V in (36).

VI. SIMULATION

For the simulation setup, we consider a scenario with N = 10
mobile nodes in D = 2 dimensions, with the absolute Kine-
matics matrix coefficients, Y;, given in (34). The noise in the
measurements, pairwise distance and accelerometer, are mod-
eled as zero-mean Gaussian noise with a standard deviation
of o4 = 0.01m [26], [45] and o, = 0.001 m/s? respectively.
A total of Ny, = 1000 Monte-Carlo runs were executed. Let
Z(n) represent the relative kinematic parameter estimate for
the nth Monte-Carlo run, where Z € {Y, Y1, Y2}. The Root-
Mean-Square-Error (RMSE) for the parameters of interest, Z,
is computed as

Nexp

RMSE(Z) = N | ([Nl 3 [[vech (H Z(n) — z) H2 ,
n=1

(48)

where H is the optimal Procrustes rotation calculated for the nth
Monte-Carlo run. For the CRLB, the root-mean-square-error is
calculated as

1 1y 1/2
RMSE(Z) = +— (Tr (F"))"”,
where Tr(+) is the trace operator and F'z is the appropriate Fisher
information matrix corresponding to parameter Z. All simula-
tions are performed for a fixed time interval of AT = [—5, 5]
seconds with a varying range of K. The code for the simulation
carried out in this work can be found on Github [46].

In Section VI-A, the relative kinematic estimates using the
proposed data model are compared against the state of the art [36]
for the constant velocity case. The Cramér-Rao bounds of the
proposed algorithm is compared with the bound derived for [36]
for these estimates. Section VI-B provides the simulation results
for the constant acceleration case together with the Cramér-Rao
bounds. Section VI-C discusses the effect of signal-to-noise ratio
(SNR) for distance and accelerometer measurements. Unless
otherwise stated, SNR is calculated as —10 log;( (o), where o
is the standard deviation for the parameter under consideration.

(49)

A. Constant Velocity Scenario

Fig. 1(a) compares the RMSE for the estimates of the relative
kinematics solution for the constant velocity case, w.r.t. the
State-of-the-Art (SOTA) in [36, Sections 3.4 and 4.1]. The
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CRLB (47), for varying K. The corresponding State Of The Art (SOTA) [36] results are plotted for comparison.

(RMSE) for all coefficient estimates compared to [36]. The
CRLBs for the proposed estimator (45) and SOTA [36, Section
6.2] are also shown. For Y, the CRLB for the proposed data
model almost overlaps with the SOTA as the underlying noise
model is the same. The slight difference can be attributed to the
approximation of the noise model as laid out in Appendix A. The
CRLB for Y; shows a significant improvement over the SOTA.
The proposed estimator seems to achieve the CRLB for the
constant velocity case. However, the slight difference between
the two blue curves can be attributed to the approximation in the
noise model. It should also be noted that Fig. 1(b) shows the
RMSE of position estimates using the proposed model over time
for various values of K. The accuracy of the estimates decreases
as one moves away from ¢ = 0 as the Taylor approximation gets
worse away from the point of approximation.

B. Constant Acceleration Scenario

As previously discussed, the estimation of relative kinemat-
ics in the SOTA in [36] requires additional rigid body con-

coefficients, B; in (8) of the proposed method with the method-
ology given in [36]. Fig. 2(a) shows the comparison in terms
of RMSE of the coefficients B; between the proposed method
and the SOTA. Fig. 2(b) shows the RMSE for the estimates
of the relative position, velocity and acceleration at time ¢ = 0
for varying K. The CRLBs for the relative kinematics are
also plotted for the relative kinematic parameters, as given in
Section V-A. The performance gap between the proposed es-
timator and the theoretical bound decreases as the number of
samples increases. A joint estimation approach may potentially
lead to close-to-optimal performance. Finally, Fig. 5 shows the
effect of adding accelerometer measurements by modifying the
data model under the assumption laid out in (33). The addition
of the accelerometer significantly improves the estimation of
relative kinematic parameters.

C. Effect of Signal-to-Noise Ratio

In this subsection, we consider the role of noise on the
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Fig. 4. RMSE for the approximation error in (51) for different SNR values.

of signal-to-noise ratio (SNR) on the pairwise distances. Here,
the standard deviation, o4 for the pairwise distances is varied
between 1m and 0.0lm with the corresponding SNR value
given by —10 log(o4) dB. The RMSE value for the estimates
decreases as the SNR increases, as expected.

In particular, the error corresponding to the relative velocity,
Y, issignificantly affected by the noise on the pairwise distances
as shown by the blue curve. The nonlinear trendline for the case
without accelerometer is due to the fact that there is noise on
both the coefficient estimates By, [ € {1, 3} and the kinematic
estimates ?m, m € {0, 2} in (16). However, this effect is less
pronounced when accelerometer measurements are included,
as shown by the red curve. The errors in the estimates of Y
and Y. negatively affect the accuracy of Y estimate. This is
apparent in the form of (15) which relies on these estimates.
With an improvement in the estimate of Y5 using accelerometer
measurements, the RMSE for Y; improves significantly.

As discussed in Section I'V-C, for constant but distinct orien-
tation of the accelerometer sensor on the mobile nodes, one can
estimate the relative orientations of the individual sensors by
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Fig. 5. a) RMSE for the relative position, relative velocity and relative accel-
eration at t = 0 with (w/) and without (w/0) accelerometer measurements, for
varying K.
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Fig. 6. RMSE of relative kinematic parameters for a general trajectory with

L = 3 for varying K in the presence of accelerometer measurements.

solving the constrained least squares formulation in (37). How-
ever, the extremely lowAsignal-to-noise ratio for the estimated
polynomial coefficient B, makes it impractical.

For the estimators proposed in (24) and (25), we apply Gaus-
sian noise directly on B; and Bgs in (16). Fig. 4 shows the
comparison between the two approaches for the estimate of ¢, in
(23). The noise on By significantly affects the RMSE compared
to the noise on B since the entries of B3 have smaller values
leading to worse SNR. The constrained least squares leads to
better estimates as the data gets noisier.

D. General Polynomial Trajectory Scenario

For the general trajectory case, it is assumed that the mobile
nodes follow a polynomial trajectory of order L = 3. We begin
with the case where accelerometer measurements are available.
Fig. 6 shows the RMSE of the relative kinematic parameter
estimates for varying values of K, as laid out in Section IV
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and Algorithm 2. Similar to the constant velocity and accelera-
tion scenarios, the RMSE decreases with increasing number of
samples K. In general, the proposed algorithm can estimate the
relative kinematic parameters in polynomial trajectories of any
given order L, in the presence of accelerometer measurements.

In the case where only pairwise distance measurements are
available, the general polynomial trajectory scenario can be
extended using an adaptive filter, which is the subject of ongoing
research. There are a number of challenges associated with the
design of such a filter. One such challenge is in the estimation
of higher-order matrix coefficients B;, [ > 2 in (8), which are
severely affected by the noise levels in the pairwise distance
measurements. This in turn affects the estimates of relative
velocity Y and relative acceleration Ys. Another challenge
is related to the fact that the position estimates, for each time
window, give only the shape of the network in space for the given
window, i.e. the relative position of the nodes w.r.t. the centroid
of the network. In order to establish a relationship between Y
over different time windows, a prediction and update step is
required together with the associated convergence analysis. A
complete analysis of the details of the adaptive filter is outside
the scope of the presented work.

VII. CONCLUSIONS & FUTURE WORKS

In this paper, a Grammian-based formulation to the problem of
estimating the relative kinematics given time-varying pairwise
distances between mobile nodes is presented. The proposed
method meets the state-of-the-art on the estimation of relative
position and improves on the accuracy for relative velocity
estimation in anchorless scenarios. Furthermore, the proposed
method estimates the relative acceleration and higher-order pa-
rameters without the requirement of any rigid body constraints.
Cramér-Rao bounds for the proposed data model are compared
against the state-of-the-art and simulations are provided to show
the performance of the proposed approach against the state-
of-the-art to highlight the effectiveness of the proposed data
model. The inclusion of accelerometer measurements, under the
assumption of a non-rotating accelerometer frame, considerably
improves the relative kinematic estimates.

For future work, we aim to implement the proposed estimators
on practical datasets with mobile nodes such as [47], [48].
Another direction for future investigation is the design of an
adaptive filter using the second-order polynomial approximation
presented in Section III and the associated convergence analysis
based on the challenges mentioned in Section VI-D. Moreover,
we have considered constant non-rotating frames of reference for
the accelerometer measurements, which limits the applicability
of the proposed approach to only holonomic systems. For a more
general approach, additional information about the orientation of
the accelerometers is required to model the relationship between
these measurements over time. Our work can serve as a base
case study in this direction. Another research direction is to
formulate a joint approach, combining pairwise distances and
accelerometer measurements, into a common data model. This
can lead to a more efficient estimator and improve upon the work
presented here. Additionally, the denoising approach in [37] to
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Fig. 7. RMSE for the approximation error in (51) for different SNR values,

where SNR is defined to be 10 loglo(%).

get less noisy Grammian matrices and 'Divide-and-Conquer’
approach proposed in [49] can further improve these results with
comparatively little effort.

APPENDIX A
NOISE MODELS

In this section, we assume a Gaussian white noise model for
the pairwise distances in EDM, Dy, and derive the noise models
for the proposed data models with and without accelerometer
measurements.

A. Noise Model for g in (11)

We assume an additive white Gaussian noise model for the
pairwise distance measurements d;; ;. [36], given by

dij k= dijk + Mij ks (50)

where dij,k is the noisy measurement and 7;; j ~ N(O,Jg).
Squaring (50), we get

Jzzj,k = dzzj,k + 771'2j,k +2.dij K Nijk (5la)

~ dfj,k + 2dij 1 Mij k- (51b)

The error in approximation of the squared distance is shown in
Fig. 7 for various distance values and SNR values. The validity
of the approximation would depend on the application chosen.
Stacking the squared distances, we get

d;? = S vec(Dy) = d? + 2 diag(dy) 1, 52

where ]jk is the noisy EDM at time ¢, with S as the full row-rank
selection matrix for selecting the unique non-zero elements of
D;.Here,d;, £ [dij k), Vi, j < Nji < jis the stacked pairwise
distances at time tj,.. The covariance matrix for the data model
in (52) is given by g4, = 4 diag(d;) ¥, diag(dy) € RV*N
with 4 = E[n,, ] = 02 I5.

Now, rewriting the expression for the Grammian, G, from
(7), we get

vec(Gy) = —% (C" ® C) vec(Dy). (53)
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Substituting (52) in (53), the half-vectorized Grammian, gy, can
be written as

gr = Md?, (54)
where M = —1 L (C” @ C) St, L € RV*N” i the elimina-
tion matrix and S' is the Moore-Penrose pseudo-inverse of S.
Using (54) and the data model for vech(Dy,) from (52), the data
model for noisy gy can be written as g, = gx + 1y, with the
noise covariance matrix, Xg, = E[nl ng ] =M Ip, M".
Stacking together the K timestamps, the noise model for trans-
formed measurements g from (11) is given by

g=g+1n,, (55)

with B¢ = E[nl n,] = diag(Xg,. B¢, , - . ., Bg, ). The diag-
onal structure for the covariance matrix is justified under the
assumption that the measurements at different timestamps are
independent. Given X, the covariance matrix for the coefficient
estimates 6 in (11) is given by 3¢ = TT 3¢ T. For later use,
we split this covariance matrix as

Yoo, o1, ..., oL
Y10, 211, ..., g

o= . s (56)
Lo, Xr1, .-, XLL

where X;; denotes the covariance between half-vectorized poly-
nomial coefficients b; and b; in (10).

B. Noise Model fort in (41)

For the data model in (40), we rewrite the expression for the
modified measurement in (39),

L

T = vee(G) = g — vec (Z a2 vr ?l> . (57)
1=2

Similar to the noise model for g in (55), one can approximate

the noise for the second term in (57) using a heteroskedastic

Gaussian distribution. Consequently, the noise model for T can

be written as a sum of two heteroskedastic Gaussian variables.

APPENDIX B
CRAMER-RAO LOWER BOUNDS FOR RELATIVE POSITION AND
RELATIVE ACCELERATION FOR (14)

Following the derivations in [35], consider the following
general formulation for estimating unknown kinematic parame-

T
. yf,} € RNP>Lip (14) from
estimates, denoted as b € RN ,

b= S(y) + My

where b e RN with N = W The form of the
nonlinear equation s(y) in (14) is given as s(y)=

tery £ vec(Y) = [le,

(58)

s(yr,y1), s(yi,ya), -, S(yN,yzv)] with
s(yi,yj) =y! yj. To get the noise on ¥, = E[n/ n,] on

the coefficient estimates in (14), consider the covariance matrix

in (56). Based on the parameter under consideration in (14),
the corresponding conditional covariance matrix can be easily
evaluated. The Fisher information matrix is given by

n () = ()

where the Jacobian matrix for s(y) with respect to y,

(59)

is given by %}f’) — {aaiyi')v . %} , where 3;;3:) —
Oy 2sva) %yym} , with
e
y, ifi=j
9s(y;,¥k) T el
Bl ST ifi=i (60)

2yl otherwise.

The inverse of the Fisher information matrix gives the desired
lower bound.

APPENDIX C
CRAMER-RAO LOWER BOUND - RELATIVE VELOCITY AND
ROTATION FOR (16) AND (43)

Consider matrices A, C, X € RM*N gych that M < N. Ad-
ditionally, matrices P, Q € RV*N are positive-definite sym-
metric matrices. Consider the pair of Lyapunov-like equations,
similar to the one given in (16),

ATX +XT A =P, (61a)
CTHX+XTH" Cc=qQ, (61b)
where H” H=1. We define h=vec(H) Let z=

T T
xT h”| where x = vec(X) = {xlT ijV] . The

system model can be written as

vech(P) sp(z) n,
= = + , 62

vech(Q [sq(z) 1, (62)

where
T
sp(z) = [Sp(xlvxl)a sp(X1,X2), -0, Sp(XNaXN)} ;
T

Sq(z) = |:Sq(X17 X1, h)7 Sq(Xl, X2, h)7 ey Sq(XN>XN7 h):| )

and sp(x;,x;) = al xj +xI aj, sq(Xi,x;,h) =cl Hx; +
xI" H” c;. Here, £, = E[n? n,] can be evaluated from (56).
The corresponding Fisher information matrix for the joint esti-
mation of x and h is given by

= (20) 50 (2,

The Jacobian matrix for s(z) with respect to z, is given by
Os(z) _ |:Bsp(z) asq(z):| ,Where

(63)

0z oz 12}
aSp(Z) __ | 9sp(2) Isp(z) 0
az - oxy R oxn ’
Jsq(z) ds, () 9s,(z) ds,(2)
9z L oxi v v oxn o oh |-
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The derivatives as‘;(’_z), 82‘;(’?) and "( ) are given by
Gsp(z) _ | 9sp(x1,%2) 9sp(XN_1,XN)
ox, ox; 0 ox; ,

Osq(z) _ {asq(xl,xz,h) Bsq(xN,l,xN,h)i|

aXi oOx; ) Tt ox; )
with
2al ifk=i=j
0sp(xi,X5) a;F ifk=i#£j
ox,  |al ifk=j#i

07 otherwise,

2¢TH ifk=i=j

Osq(xi,x5,h) |l H ifk=i
Ox, ) IH ifk=j
o” otherwise,

T T . .
¢ x;+x c; ifk=1
6Sq(X1,X2,h) L L

g G g k=

o7 otherwise,

where ¢; is appropriately defined based on M.

APPENDIX D
SOLVABILITY OF LYAPUNOV-LIKE EQUATIONS

As discussed in Section III-B, for a pair of equations of the
formin (15) and its subsequent reduced form in (23), the aspects
related to the solvability of such a pair of equations is discussed
here. We begin by rewriting (22),

P B Py
Y| =K I Hy) K |, , (64)
é ®

where K £ VT @ UT and K £ V ® U. The above equation
can be rearranged to yield

l%] W £(1, hy), (65)

é

To see this, we split matrices K and K in blocked form as follows

Ky, ..., Kin Kii, ..., Kin
K=| @, 0 K=
Kyi, ..., Kuyn Kyi, ..., Kpyn
where K;; € RP*P_ Expanding further, we get
Py R, ..., Riwn 78
Pa| = | L ha| (66)
® Ryi, ..., Ryn| L?

where R;; £ > & K. Ho K. To recover coefficients correp-
sonding to only known elements of LHS, we consider a row of
the equation in (66) where ¢1 € 11, h1 and hy are unknown but

—e— 2D
401 o 3D

N /
04

-20 4

Number of equations - Number of unknowns [-]

T T T T T
10 15 20 25 30
Number of nodes N [-]

oA
v

Fig. 8. Conditions for solvability of (65) derived from (15) in Section III-B
for both 2D and 3D cases.

g € 1Py is known, i.e.
Y1 = ki1 ha ki1 91 + ki ho kig ¢
+ k12 h1 ka1 ya — k12 ha ko1 12,

Thus, we can collect the coefficients for the unknown 1)1, h1 and
hg, which form the first row of matrix W in (65).

The invertibility of matrix W depends upon the ranks of
estimates of the Grammian polynomial coefficients, B, B3 €
RN >N Since these coefficients correspond to centered poly-
nomial trajectory, the centering operation causes the estimates
to lose rank, i.e. the estimated matrices have rank N — 1.
However, this rank loss can be compensated for by choosing
more nodes. For the given case, the matrix W is invertible.
Among the unknowns, we have 1p; € RP* and h € RP2, where
D £ D? — D and D, depends upon the how we formulate the
rotation vector h. For D-dimensional space, Dy = (g ) corre-
sponding to the rotational degrees of freedom and D, = D? if
no constraints are imposed.

For instance, consider the case for D = 2. This leads to 1), €
R2. We further denote the unknowns in rotation matrix Hy as

T h —h

h = [hl, h2] where Hy = | %! The number of
h27 hl

cross terms in £(2), h) is given by (Dﬁ'l) (Dlz).ForD = 2and

T
h = {hl, hz] , the number of cross terms can be calculated

as (i’) (?) = 6, which is given by

T
€(¢1ah):{§1, &, &, &, &, fe} (67a)

T
Z{hh ha, hi, Y11, hi, Y12, ho, Y11, he, 1/11,2} )
(67b)

T
where ¢, = [le 1/)1,2} . For N > 4, (65) is solvable. For

the given set of basis function in (67), the unique arguments 1,7)1
and h can be calculated as

/ﬁl :§T7 ﬁ2:§;>

mg oo b

1 2

1bll

Hence, uniqueness in £(1);, h) implies uniqueness in its argu-
ments, ¥, and h.
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Fig. 8 shows the number of nodes required for both 2D and
3D cases. As discussed, solvability depends on the number of
mobile nodes available. The number of nodes required can be
reduced further by incorporating the constraints, similar to the
2D case, on the rotation vector h. Furthermore, the accuracy
of the estimates scales well with the number of nodes as it
essentially increases the size of the LHS of (65) leading to better
estimates.
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