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1
Introduction

In 2010, the Intelligent Systems Division of NASA Ames together with Boeing Research & Technology jointly
started a research on Performance Adaptive Aeroelastic Wing systems (PAAW). The goal was to actively control
elastic wing shapes and optimize their performance (Nguyen [43]). Under the study of the Elastically Shaped
Future Air Vehicle Concept, the Various Camber Continuous Trailing Edge Flap concept (VCCTEF) was born
(Lebofsky et al. [30], Nguyen and Urnes Sr. [39]). As the name implies, this concept is a span-wise trailing
edge flap system which consists of multiple, semi-independent flap segments (see figure 1.1). In order to
prevent flow discontinuity those segments are connected via an elastomer material. The morphing-wing
design enables active flutter suppression, prevents unintentional aeroelastic effects such as wing-bending or
wing-torsion and gives the opportunity to optimize the aerodynamic performance in any flight envelope. It
promises significant fuel savings and improved stability.

Figure 1.1: The Variable Camber Continuous Trailing Edge Flap design

In combination with the hardware, NASA developed the theory of a Multi-Objective Flight Controller[46].
However there are several challenges that the controller is facing. First, the additional amount of control
surfaces that can be actuated increased to a number of 48 surfaces per wing, which is significantly more
when compared to a conventional wing. This increases the probability of malfunctions and as there is a de-
pendency between the segments, a potential failure of a single flap segment immediately effects all other
segments and the controller would need to adapt. Second, as the control system is designed and tuned in
simulation studies with the use of a complex model, it may fail to generalize to inaccuracies in the real-life
application as the accuracy of such model never matches 100% with the true case. Furthermore, a current
step in the control design is to linearize the model, as designing controllers for non-linear systems remains a
challenging task. Evidently, this introduces additional control inaccuracies.

One potential approach to circumvent these problems is to use Adaptive-Critic control (AC). AC is a promis-
ing branch of reinforcement learning algorithms where the controller learns itself the optimal control law
(online or offline). It is an adaptive, non-linear control approach that does not require a complex model of
the system a priori.

1



2 1. Introduction

1.1. Adaptive-Critic Reinforcement Learning
Reinforcement Learning (RL) is a branch of machine learning and provides a framework that combines math-
ematical optimization methods with the theory of classical conditioning in psychology. An agent (decision-
maker) learns itself an optimal behavior by interacting with the environment (Sutton and Barto [60]). Every
interaction is directly evaluated by a numerical reward (stimulus) and depending on how good or bad the ac-
tions are, the reward turns out to be more positive or negative. In other words, each action is either reinforced
or punished. By some means, the learning process needs to be memorized by the agent. This is done by the
value function, which stores the relationship between the behavior and the rewards, while the behavior is de-
termined by the policy. Each time-step, the agent decides on an action based on the policy and the state it is
located in. Performing that action, the environment transitions to a new state and the learning agent receives
a reward as an evaluative feedback. Based on that feedback, the agent updates its value function accordingly
in order to make a better decision the next time it is visiting the same state. Eventually, the goal is to learn a
behavior that ensures the maximum sum of rewards in the long run.

In the 1950s, Richard Bellman formulated the Bellman equation that defines the recursive relationship of
an optimal value function with respect to the states (Bellman [4]). An early approach to solve this equation
was to use Dynamic Programming (DP), which is a mathematical optimization method that quantizes the
state-space and recursively updates the value for each state in time. DP is one of the first branches in RL.
However, the problem is that the computational complexity increases exponentially with size of the state-
space and this methods is therefore only feasible in small-scale control tasks. In literature this is referred to
as the curse of dimensionality (Bellman [4, 5]).

In the past decades, efforts have been made to overcome this problem by approximating the DP solutions. Ap-
proximate Dynamic Programming (ADP) or Adaptive-Critic Designs (ACD) estimate the solution to the Bell-
man equation and policy by means of function approximators (Barto et al. [3], Konda and Tsitsiklis [28], Wit-
ten [71]). The heuristic-process is split into two components. One component, the so called critic, evaluates
the current state and estimates the value function. The other component, i.e. the actor, maps the state to
an (optimal) control law and tries to minimize the value function that is approximated by the critic. By in-
crementally updating the parameters of the actor- and critic-functions at each time-step, the controller will
eventually converge to an optimal policy. The use of function approximators additionally enables to cover the
full (continuous) state-action space. Depending on the layout, there are different forms of ACD’s (Prokhorov
and Wunsch [51]), all of which are based on two basic forms, namely Heuristic Dynamic Programming (HDP)
and Dual Heuristic dynamic Programming (DHP). These two forms will also be the focus of this thesis. HDP
approximates the value function and acts according to the minimum cost, while in DHP, the critic approxi-
mates the derivative of the cost function (i.e. the gradient) and determines the optimal control- law based on
that. A more technical description is given in chapter 2.3.

The adaptive and self-learning properties make ACD’s in particular popular for the field of research in control
theory. Both methods have been introduced successfully to multiple (highly non-linear) domains already.
Ferrari and Stengel [17] applied DHP for flight control on a small business aircraft, making use of existing
knowledge by pre-training the AC with a basic controller off-line and then improving the performance by
online training. Liu et al. [35] implemented HDP to automotive engine torque control, achieving excellent
transient response. One of the first comparisons of HDP and DHP has been conducted by Venayagamoor-
thy et al. [66], applying both algorithms for controlling a turbogenerator offline. It was concluded that DHP
showed better performance with faster rise time and better damping then HDP.
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1.2. Problem Statement
The contribution of this research is the practical comparison of HDP and DHP for aircraft control, while keep-
ing in mind their future potential for the VCCTEF design. The main research objective is:

Compare the performance of Heuristic Dynamic Programming and Dual Heuristic Programming for air-
craft control.

This poses the following main research question:

What are the theoretical and practical differences of Heuristic Dynamic Programming and Dual Heuris-
tic Programming when applied for aircraft control?

The main research question is further divided into sub-questions to distribute the work into smaller work
packages:

1. How does the VCCTEF concept work?

(a) What is the VCCTEF system?

(b) What is the current control design?

(c) What are the main challenges controlling the VCCTEF?

(d) What are the requirements that VCCTEF imposes on the control design?

2. What are Actor-Critic Methods?

(a) What is Reinforcement Learning and the concept of Dynamic Programming?

(b) What is Approximate Dynamic Programming?

(c) How are Artificial Neural Networks applied for function approximation?

(d) What is the algorithmic structure of HDP and DHP?

3. Which controller (HDP or DHP) works better when be applied for aircraft control?

(a) How are the controllers applied for (non-)linear control tasks?

(b) How to incorporate them into an aircraft control loop?

(c) How to compare the two ACD designs with respect to performance practically?

4. As an indication, which ACD design (if at all) is more favorable for aircraft control in combination
with the Variable Camber Continuous Trailing Edge Flap System?

1.3. Research approach
In order to answer the research questions as listed in the previous section, the following steps are taken:

Literature review: First, a detailed literature study is carried out in two domains. The first domain reviews the
concept of the VCCTEF architecture to give the reader an overview of the control structure as well as recent
developments in control design. It concludes to the challenges that the controls are facing and a performance
metric to classify and rate future control designs.
The second part of the literature study covers the theory of reinforcement learning and leads to a detailed
view of adaptive critic designs, heuristic dynamic programming and dual heuristic programming. It reveals
the theoretical differences of HDP and DHP and summarizes the results of preceding research.

Preliminary analysis: In the preliminary analysis, HDP and DHP are applied on a simple inverted pendu-
lum task. This experiment is often used as a benchmark for advanced control system design, because it is a
highly non-linear system and can easily be modified in complexity. The results clearly prove a learning be-
havior of the controllers and reveal a first trend of the practical differences between the algorithms. Focus
of the comparison will be in particular the performance metric that has been established from the literature
study.
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Implementation for aircraft control: After the algorithms are verified in the preliminary analysis, they are
applied on a 2D pitch-tracking control task of a F-16 aircraft. The choice of the aircraft type is rather arbitrary
and the extreme flight modes of the aircraft are not explicitly used in the simulations. The experimental study
is split into an offline and online learning process. Both RL methods will first learn the baseline reference-
following pitch control of the plant offline in multiple episodes and then need to adapt online to changes in
plant dynamics. The simulation environment will be a high-fidelity model as provided by Russell [55]. The
hyperparameter settings are found by an extensive grid-search. Eventually, the results shall show the poten-
tial benefits of one controller with respect to the other and give a tendency on the future potential of ACD’s
for the VCCTEF design.

The different phases of this thesis work can be seen in table 1.1.

Table 1.1: Outline of thesis work

Project Phase Content Research Questions
Literature Review The VCCTEF design and it’s control requirements 1

Reinforcement learning and adaptive-critic designs 2
Theoretical differences between HDP and DHP 2d

Preliminary analysis HDP and DHP for the inverted pendulum task 3a
Final thesis work HDP and DHP for F-16 aircraft control 3,4 & Main Research

1.4. Report Outline
The remaining chapters of this thesis are organized as follows. Part I summarizes the most important results
for the implementation of HDP and DHP on the F-16 aircraft model in a scientific paper. This paper is stan-
dalone and should be read independently with respect to the rest of the report. Readers with few knowledge
in the VCCTEF design or reinforcement learning are advised to read Part II of this report before engaging with
the paper. Part II reviews the preliminary research, with the literature study and preliminary analysis. It cov-
ers the VCCTEF design in chapter 2, as well as the fundamentals in reinforcement learning (chapter 3 and 4).
Chapter 4 also includes a more detailed technical description of adaptive critic designs with focus in heuris-
tic dynamic programming and dual heuristic programming. The preliminary analysis explains the inverted
pendulum experimental setup and the first results in chapter 5. Part III lists a collection of additional results
that have been collected after the preliminary research. They provide additional information to the findings
that have been presented in the scientific paper. Eventually, the whole thesis work is concluded in part IV with
additional recommendations for future research. Appendix A provides additional information about artificial
neural network function approximators, its working principle as well convergence improvements.
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Comparison of Heuristic Dynamic Programming and

Dual Heuristic Programming for Aircraft Control

F.M.Pohl ∗

The Variable Camber Continuous Trailing Edge Flap (VCCTEF) is a novel aircraft con-
trol system that intents to prevent undesired aeroelastic deflections by precise lift tailoring
along the wing span. However, the unknown dynamics and increased complexity of the
new hardware imposes difficulties to establish an optimal controller. One approach is to
use Adaptive Critic Designs (ACD). Being part of reinforcement learning techniques, their
intelligent and adaptive characteristics provide a fault tolerant solution to non-linear con-
trol problems. As a starting point, this paper compares the two fundamental forms of
ACD’s for aircraft control and evaluates their future potential for the VCCTEF design.
The two forms are Heuristic Dynamic programming (HDP) and Dual Heuristic Program-
ming (DHP). In an experimental study, both algorithms are integrated in a F-16 aircraft
model. First, the agents are trained offline to learn to control the baseline F-16 dynamics.
Then, the aircraft dynamics are changed online and the controllers need to adapt to the
new plant dynamics. The results show that DHP has a higher success ratio in the offline
learning phase and particularly converges faster to an optimal solution. During online sim-
ulations, both algorithms can deal with some changes in the F-16 aircraft dynamics even
without adaptation, although HDP reveals more robustness in this case. DHP on the other
hand, adapts better to changes in the plant dynamics when online learning is applied.

Nomenclature

α Angle of attack
c̄ Mean aerodynamic chord
η Learning rate
µ Momentum factor
δel Elevator deflection
γ Discount factor
π Policy
θ Pitch angle
θref Reference pitch angle
Cm Total aerodynamic moment coefficient about the pitch axis in the body frame
Cmq

Aerodynamic moment coefficient derivative w.r.t. q around the pitch axis
CZ Total aerodynamic force coefficient in z direction in the body frame
Ea Actor error measure
ea Actor error
Ec Critic error measure
ec Critic error
M Mach number
ec Critic error
V Value function
VT True airspeed
J Approximated Value function
J∗ Optimal Value function
λ Derivative of Value function w.r.t. states

∗Graduate Student, Control and Simulation Division, Faculty of Aerospace Engineering
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ρ Immediate reward
ε Exploration rate
ε0 Initial exploration rate
u Control signal
q Pitch rate
W Artificial neural network weights

b Artificial neural network biases
x System state vector
xc.g. Longitudinal c.g. location

Subscripts
c Critic
a Actor
m Model
t Current time step

I. Introduction

In 2010, the Intelligent Systems Division of NASA Ames together with Boeing Research & Technology
jointly started a research on performance adaptive aeroelastic wing systems. The goal was to actively

control elastic wing shapes and optimize their aerodynamic performance.1 As a potential concept they pro-
posed the Variable Camber Continuous Trailing Edge Flap (VCCTEF).2,3 The design is a span-wise trailing
edge flap system which consists of 16 semi-independent flap sections. Each flap section contains additionally
three chordwise segments for actively changing the camber of the airfoil and locally shaping the pressure
distribution. This enables active flutter suppression, prevents unintentional wing-twist and bending and
gives the opportunity to optimize the aerodynamic performance in any flight condition.
In combination with the hardware, NASA developed the theory of a Multi-Objective Flight Controller .4

However, there are several challenges that the controller is facing. First, the additional amount of control
surfaces that can be actuated increased to a number of 48 surfaces per wing, which is significantly more
than a conventional wing. In that perspective, a failure of a single flap segment can have an immediate
effect on all other segments due to the semi-dependency between the elements. This requires the controller
to be adaptive. Second, the current control design is tuned in simulation studies with the use of a complex
model. Accuracy of such model never coincides 100% with the true plant and the controller may fail to
assimilate to new situations in the real-life application. Furthermore, using linear control theory to design
the controller, requires the model to be linearized around a number of equilibrium points (trim conditions).
Evidently this process introduces additional control inaccuracies. On the other hand, all current nonlinear
control solutions such as dynamic inversion or model reference adaptive control require a detailed model of
the system a priori. Such model can be computational expensive, especially for systems with fast dynamics
and model inaccuracies can quickly lead to instability.5

One approach to circumvent these problems is the use of Reinforcement Learning(RL) methods for con-
trol. RL is a framework that combines mathematical optimization with the theory of classical conditioning.
An agent (decision-maker) learns itself an optimal behavior (policy) by interacting with the environment,
while each interaction is either reinforced or punished by means of a numerical reward (stimulus).6 This
provides the opportunity to learn non-linear control tasks even when the plant dynamics are unknown before-
hand. Additionally, the self-learning property makes it possible for the system to adapt online to changing
operating conditions, resulting in robust and fault-tolerant control characteristics. However, most approaches
in the RL framework are only able to find a solution by (re-)visiting every element in a discrete state-action
space of the Markov Decision Process (MDP). With that, they soon face the curse of dimensionality and
become infeasible for most real-life control tasks.
Actor Critic Designs (ACD), is a branch of RL that approximates the solution to the Bellman equation and
policy by means of function approximators.7–9 The heuristic process is split into two components, namely the
actor and the critic. The actor intents to approximate the optimal control law, while the critic is evaluating
the current policy by estimating the sum of rewards that can be perceived in the long run. This approach
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not only reduces the complexity of the learning process by splitting the task into multiple components, but
also enables 1) a continuous approach to the state-action space of an MDP and 2) a global approximation
of the solution.
The two fundamental forms of ACD’s are Heuristic Dynamic Programming (HDP) and Dual Heuristic Pro-
gramming (DHP). HDP is considered to be the most simple form of ACD, where the critic estimates the
value function based on the states and immediate rewards, while the actor maps the state to an optimal
control law and tries to minimize the value function that is approximated by the critic.10 DHP on the other
hand, is a more advanced form, estimating the derivative of the value function with respect to the states
and approximates the optimal control-law based on that.

Both methods have been introduced successfully to multiple (highly non-linear) domains already. Ferrari et
al.11 applied DHP for flight control on a small business aircraft, making use of existing knowledge by pre-
training the ACD with a basic controller offline and then improving the performance by online training. Liu
et al.12 implemented HDP to automotive engine torque control, achieving excellent transient response. One
of the first comparisons of HDP and DHP has been conducted by Venayagamoorthy et al.,13 applying both
algorithms for controlling a turbogenerator offline. It was concluded that DHP showed better performance
with faster rise time and better damping than HDP.

The contribution of this paper is the practical comparison of HDP and DHP for aircraft control, while
keeping in mind their future potential for the VCCTEF design. Both controllers are applied on a 2D pitch-
tracking control task of a F-16 aircraft. The choice of the aircraft type is rather arbitrary and the extreme
flight modes of the aircraft are not explicitly used in the simulations. Any aircraft type could have been
used, but the F-16 contains especially fast acting dynamics and gives a first indicator on how the algorithms
perform for aircraft control. The experimental study is split into two phases, namely an offline and online
learning phase. In the first phase, Both controllers need to learn to control the baseline model of the F-16
in several trials. The learning process starts from scratch, meaning that the controllers are trained without
any prior knowledge in memory. Then, the trained agents are applied in an online simulation where they
need to adapt to changes in plant dynamics in real-time.
Section II gives a short overview of adaptive critic reinforcement learning techniques with focus on HDP and
DHP. The implementation of both algorithms on the F-16 model is explained in Section III, followed by a
detailed description of the training procedure in Section IV. All results of the experimental study are shown
in Section V. Finally, Section VI gives a conclusion and recommendations for future research.

II. Adaptive Critic Reinforcement Learning

In the RL framework, the system is learning an optimal behavior by interacting with the environment and
receiving a numerical reward for every action it is executing. By some means, the learning process needs

to be memorized. This is done by the so called value function V , which stores the relationship between the
behavior (usually denoted as π) and the total amount of rewards that can be collected in the long run:

V π(x(t)) =
∞∑

i=0

γkρ(x(tk),u(tk)) (1)

Where x and u is the state and action at time-step tk respectively, γ ∈ [0 1) is the discount factor for infinite
learning tasks and ρ(x,u) is the reward function. In the 1950s, Richard Bellman formulated the Bellman
equation that defines the recursive relationship of an optimal value function with respect to the states.14

An early approach to solve this equation was to use Dynamic Programming (DP), which is a mathematical
optimization method that quantizes the state-space and recursively updates the value for each state in time.
DP is one of the first branches in RL. However, the downside is that the state-action space is discrete and the
computational complexity increases exponentially with size of the state-space. In literature this is referred
to as the curse of dimensionality and the concept is therefore only feasible in small-scale control tasks.14,15

Approximate Dynamic Programming methods (ADP), try to overcome the curse of dimensionality by ap-
proximating the value function and the optimal policy with the use of parametric functions.6,16 The key
feature is to cover the infinite continuous domain of the state-action space with a finite number of parame-
ters. In that perspective, the reinforcement learning problem is split into two entities, namely the actor and
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the critic.7,9 The actor is a parametric function that approximates the optimal control-law (i.e. policy π)
such that it maps the current state to a control signal u based on its parameters Wa:

u(t) = π(x(t),Wa) (2)

The critic on the other hand, evaluates the current policy by estimating the corresponding value function:

J(x(t)) = fc(x(t);Wc) ≈ V π(x) (3)

The estimation J is the output of the critic function fc and depends on the current state-input as well as
the critic parameters Wc. The superscript π denotes the dependency of the value function estimation with
respect to the current policy. Evidently, the advantage of this approach is that the complexity of the learning
problem is distributed and handled internally by two separate components, i.e. the controlling and learning
component. Based on this set-up ADP methods are also referred to as Adaptive Critic Designs (ACD).8

A. ACD types

The first ACD design family was presented by P. Werbos in the early 1990s17–19 and has been widely employed
to different applications ever since. His work includes the basic forms: HDP and DHP as well as extensions
such as Global Dual Heuristic Programming (GDHP) and their action dependent versions (AD-). Prokhorov
et. al describes those ACD formulations in detail in his paper10 and suggests two new modifications to
the original GDHP design. All ACD forms have a similar structure but they can be distinguished by the
input-output characteristics of the critic and the requirements of plant model derivatives:20

Critic Input: The critic receives a selected set of state information by the plant or plant-model. In
action-dependent cases, such as ADHDP or ADDHP, the actor-output (i.e. the control signal) is also
linked to the critic and serves as an additional input to the function approximator next to the state.

Critic Outputs: For HDP the critic approximates the value function which is usually denoted as J,
while for DHP the critic-outputs are the derivatives of the value function with respect to each states
x, i.e. ∂J

∂x , also denoted as λx. In the GDHP case the output contains both, J and λx.

Plant Model Derivatives: The backpropagation pathway for updating the function parameters,
differs with each ACD. Most designs require certain derivatives, such as ∂xt+1

∂xt
or ∂xt+1

∂ut
that can only

be obtained via an on-board model of the plant. Here, xt and xt+1 are the states in the current and
subsequent time step respectively and ut is the current control signal. The plant-model itself can be
trained simultaneously with the actor and critic or be established prior the training

All forms can be considered as a class of non-linear control methods. This means that the plant that needs
to be controlled does not need to be linearized around a certain operating point. Making use of non-linear
function approximators enables also to control systems in continuous state-action space and therefore makes
ACD the preferred reinforcement learning approach to solve real-life control tasks. Other benefits are 1)
the algorithms do not require a very complex plant model a priori, 2) it is an intelligent type of controller
that is adaptive to changing operating conditions and 3) it is robust in a noisy environment. The function
approximators in those algorithms can be any parametric function, but the most common method is to use
artificial neural networks (ANN). Their characteristics of universal function approximation and non-linear
mapping have made them a popular tool in the field of reinforcement learning and artificial intelligence.
They contain a large number of free parameters that can describe very complex systems and high state-
space dimension.21

B. Heuristic Dynamic Programming

In HDP there are four entities that interact with one another: the critic, the plant, the plant model and the
actor (see Figure 1). While the critic maps the current states to the associated value function and evaluates
the environment, there must be some kind of exchange of information that delivers the knowledge of the
critic to the actor. There is no direct link between the two entities and the information flow is provided only
indirectly during the training process. The actor maps the current state to a control signal which changes
the state of the plant that is being controlled. As the new state information is also provided to the critic
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network, the actor influences indirectly the current estimation of the value function. On the other hand,
the actor needs to approximate a control law that maximizes the value function. Starting in state x(t),
the critic estimates the associated value and the actor determines a control action u(t) that is applied to
the plant and the plant model. As a result of the transition to the new state x(t + ∆t) the agent receives
an immediate reward r, which is determined by the reward function r = ρ(x(t + ∆t), u(t)). Here t + ∆t
indicates the next time-step. It is the only source of information for the error measure of the critic. In other
words, the critic maps the new state to the value function and the approximation error is determined by the
temporal difference error, which is the difference of the estimated values at two consecutive time steps and
the immediate reward:

ec(t) = J(x(t))− (ρ(x(t+ ∆t), u(t)) + γJ(x(t+ ∆t)) (4)

Figure 1. HDP algorithm at two consecutive moments
in time. The backpropagation paths are indicated by
the dotted line. ea, ec and em are the relative training
errors for the actor, critic and model functions. rt and
x̂t+1 are the reward and predicted one-step ahead state
respectively.

The critic is therefore trained backwards in time as
a future estimation affects the current error and the
task of the critic network is to minimize its individ-
ual cost function Ec by reducing ec to zero, where
Ec is defined as:

Ec =
∑

t

1

2
ec

2(t) (5)

The actor network on the other hand, needs to ap-
proximate a policy that maps the states to the opti-
mal actions, thus controlling the plant to the regions
of maximum value. The difference between the pre-
defined optimal value J∗ and the current value is
defining the actor approximation error ea, which in
turn defines the cost function Ea that needs to be
minimized:

ea(t) = J(x(t))− J∗ (6)

Ea =
∑

t

1

2
ea

2(t) (7)

J∗ is dependent on the chosen reward function ρ(x, u) and needs to be set by the control engineer. One
approach is to define the reward function in such a way that it is negative definite, i.e. ∀x, u : ρ(x, u) ≤ 0.
This leads to a maximum sum of rewards of zero and therefore J∗ = 0. Backpropagating the current value
function through the critic and plant model network to the actor results in the required information exchange
from the critic to the actual controller.
As HDP is a model-based RL method, a plant model needs to be trained as well. This is done by finding
the difference between the approximation and true states (em) and the cost Em that needs to be minimized:

em(t) = x̂(t)− x(t) (8)

Em =
∑

t

1

2
em

2(t) (9)

Where x̂(t) is the plant model output and x(t) is the true state vector. Knowing the associated errors and
costs Ec, Ea and Em, the effect of the network parameters to the related cost can be determined by using
backpropagation:

∂Ec(t)

∂Wc(t)
=
∂Ec(t)

∂ec(t)

∂ec(t)

∂J(x(t))

∂J(x(t))

∂Wc(t)
(10)

∂Ea(t+ ∆t)

∂Wa(t)
=
∂Ea(t+ ∆t)

∂ea(t+ ∆t)

∂ea(t+ ∆t)

∂J(t+ ∆t)

∂J(t+ ∆t)

∂x(t+ ∆t)

∂x(t+ ∆t)

∂u(t)

∂u(t)

∂Wa(t)
(11)

∂Em(t)

∂Wm(t)
=
∂Em(t)

∂em(t)

∂em(t)

∂x̂(t)

∂x̂(t)

∂Wm(t)
(12)

Here, the network parameters are denoted by W . Their update is then done by gradient descent:
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W (t+ ∆t)←W (t)− η ∂E(t)

∂W (t)
(13)

Where η is the learning rate. A graphical illustration of the backpropagation paths are indicated as dotted
lines in Figure 1.

C. Dual Heuristic Programming

The major difference between HDP and DHP is that the critic network in Figure 2 approximates the deriva-
tive of the value function J(x(t)) with respect to the states x(t), which are usually denoted as λx(t). This
means that having a state vector with n variables as input to the critic, the critic outputs contains n elements

as well, describing ∂J(x(t)
∂x1(t) ,∂J(x(t)

∂x2(t) ... ,∂J(x(t)
∂xn(t) . The function approximator trains to minimize the following

error measure over time:

Ec =
∑

t

1

2
ec
T (t)ec(t) (14)

Where

ec(t) =
∂J(x(t))

∂x(t)
− γ ∂J(x(t+ ∆t))

∂x(t)
− ∂ρ(t)

∂x(t)
(15)

Figure 2 shows all relevant backpropagation elements by dotted lines. It is clear that the training process is
more complicated than in HDP due to the long backpropagation pathways. Applying the chain rule for the
derivatives, we get for state variable k:

∂J(x(t+ ∆t))

∂xk(t)
=

n∑

i=1

λi(t+ ∆t)
∂xi(t+ ∆t)

∂xk(t)
+

m∑

s=1

n∑

i=1

λi(t+ ∆t)
∂xi(t+ 1)

∂us(t)

∂us(t)

∂xk(t)
(16)

with

λ(xk(t)) =
∂J(x(t))

∂xk(t)
(17)

Where n is the total number of inputs to the critic and m the number of outputs of the actor network. With
that, ∂Ec

∂Wc
can be determined and the network weights are updated as in equation 13.

Figure 2. DHP algorithm at two consecutive moments
in time. The backpropagation paths are indicated by
the dotted line. ea, ec and em are the relative training
errors for the actor, critic and model functions. The
symbol

⊗
represents the factor within the critic es-

timation and the obtained derivatives from the actor
and plant model. The plant model is the same as for
HDP and trained the same way. λt relates to the par-
tial derivative of the value function with respect to each

state
∂J(xt)
∂xt

.

The actor function has the same objective as in
HDP, namely mapping the states to optimal actions.
Its parameters Wa are updated by backpropagating
λ(x(t+ ∆t)) through the critic and model network.
The error may be expressed as

ea =
∂ρ(t)

∂u(t)
+ γ

∂J(x(t+ ∆t))

∂u(t)
= ...

∂ρ(t)

∂u(t)
+ γλx(t+ ∆t)

∂x(t+ ∆t)

∂u(t)
(18)

Then the update of the actor parameters becomes

Wa(t+ ∆t)←Wa(t)− ηaea(t)
∂u(t)

∂Wa(t)
(19)

In a simple form of ACD, such as HDP, the ac-
tor receives the value function derivatives only in-
directly via backpropagation of the value function
J(x) through the critic and model network. This
may result in a too coarse actor behavior with a
slight off-set to the desired point. One approach
to improve the results is suggested by Borghese et
al.,22 where the actor explores additional trajecto-
ries around the nominal one. However, for math-
ematical optimization it is more valuable to obtain
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the derivatives of an optimization criterion than the optimization criterion itself. As part of advanced ACD’s,
the DHP method directly estimates the derivatives of J with respect to the states and is explicitly trained by

the reward function derivatives ∂ρ(x,u)
∂u(t) and ∂ρ(x,u)

∂x(t) . This has the advantage that the derivatives are directly

provided to the actor rather than the value function itself. According to Prokhorov et. al,10 the quality of
such direct approximation is noted to be better than obtaining the indirect approximations. Furthermore,
the model network is used for both, the critic and the actor, in the training process which leads to a better
knowledge exchange between the different entities. The drawback is that the update process itself is more
complex, involving more derivatives and update rules which makes it more tedious to set-up the algorithm
for a given problem.

III. Implementation of HDP and DHP for pitch control of the F-16 Model

For this study, HDP and DHP are tested on a 2D pitch-reference tracking problem on a F-16 aircraft
model and are compared in terms of performance. This section describes the implementation of both

algorithms.

A. F-16 Model

Table 1. F-16 trimm settings

Variable Symbol Value Units

Altitude h 5000 ft

Airspeed VT 600 ft/s

Mach M 0.547 -

AoA α 0.0273 rad

pitch angle θ 0.0273 rad

Elevator defl. δel -1.468 deg

Throttle δT 0.2102 −

The F-16 aircraft model is provided by Russell et al.23 Al-
though the choice of the aircraft type is rather arbitrary it
gives a first indicator on how the two RL controllers per-
form for aircraft control. Before the experiment, the aircraft
is trimmed to a steady-state flight with the settings as listed
in Table 1 and then linearized around that equilibrium point.
The aircraft-trim itself is found via a numerical procedure
that finds the trim settings for which the state derivatives are
near zero. Linearizing the model simplifies the controls and
reduces the dimensionality of the state space. Furthermore,
it enables to extract the pure longitudinal state-space model
from the full-state, nonlinear plant. Consider the extracted
system to be of the form:

ẋ = Ax +Bu = f(x,u) (20)

Where the state vector x consists of five state variables, i.e. altitude h, airspeed VT , angle of attack α, pitch
angle θ as well as pitch rate q. The control input is denoted by the control vector u and is limited to 2
signals, namely the elevator deflection δel and the throttle δT . It is assumed that the state information is
available to the controller at all times (full state feedback), containing zero measurement noise. Furthermore,
the controls are applied instantaneously with zero delay.

B. Approximated Plant Dynamics

Both, HDP and DHP are model-based RL algorithms, which means that they require an on-board model
of the plant for their backpropagation pathways. The plant model can be trained online simultaneously
with the actor and the critic, or it can be pre-trained before implementing it to the RL controller. Evi-
dently, training the plant model a priori gives the benefit that the actor and critic networks are provided
with correct derivatives in their updates from the start of their training loops. This reduces the complex-
ity of the training cycle and convergence is improved. Therefore, in this study the plant is trained beforehand.

Figure 3 shows the chosen structure of the plant model. It is a feed forward neural network with 10 hidden
layer neurons. The inputs are θ(t), q(t) and the elevator deflection δel. Its outputs are the pitch angle and
pitch rate at the subsequent time step ∆t. Table 2 gives an overview of the used hyperparameters for the
training procedure.
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Figure 3. Model neural network with three inputs, 10 sigmoidal hidden layer neurons and two linear output
neurons

Table 2. Hyperparameter settings for the model network

Variable Symbol value

Learning rate ηm 0.4

Momentum factor µm 0.6

Regularization L 0.01

Max epochs nmax 1000

The offline training is conducted with 120 seconds of simulation data which equals to 12000 data samples.
50% of the data-set is assigned for training and the remaining 50% for validation. The data is conducted
around the same operating region as the controllers will operate and the input-output samples are normalized
to an interval of -1 to 1 to enable faster learning. Figure 4 shows the results of the trained model with respect
to a) training data and b) validation data. It can be concluded that the plant-model successfully captures
the dynamics around the operating region with maximum difference of ±0.2[deg]. Also the pitch rate is
approximated with less than ±0.5[deg/s] deviation.
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Figure 4. Approximated plant dynamics network behavior after training. Results are shown with respect to
the a) training data and b) validation data.
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C. Reward Function

A crucial design step is the definition of the reward signal as it has to define unambiguously the goal of the
control task in a single function. In this case the goal for the controllers is to regulate the aircraft to follow a
pre-defined pitch-reference signal θref . Therefore, any deviations of the true pitch angle θ with respect to the
reference is penalized. The instantaneous reward function is defined as negative quadratic error, normalized
by the maximum angle pitch angle θmax:

ρ(θt) = −
(
θt − θreft
θmax

)2

(21)

Where the maximum allowed pitch is in this case set to 60◦, i.e. 1.0472 rad. Hence, the function itself in
Equation 21 is negative definite, meaning that ∀x : r(x) ≤ 0. This implies that the optimal value that can
be achieved is J∗ = 0. Note that the controls are not penalized as with the current problem definition it is
striven for the best tracking performance irrespectively of the control effort.

D. Actor-Critic Setup

The RL controller is integrated as shown in Figure 5. It is provided with the state and state-reference x
& xref and maps those to an optimal elevator deflection δel. Before delivering the action to the plant it is
added to the trim condition of the controls δeltrim . The RL controller contains the actor-critic and plant
model interaction scheme as shown in Figure 1 or 2 (depending on the algorithm). Both, the actor and the
critic are feed forward neural networks with tangent hyperbolic activation functions in the hidden layer. A
detailed overview of the network structures is given in the following paragraphs. Note that the throttle δT
is not adjusted and kept at its trim at all times.

δel δel

elδ

Figure 5. Reinforcement learning control setup.

1. Actor Neural Network

δ
el

Figure 6. Actor ANN estimates the policy with
∆θ and q as inputs and δel as output. It consists of
10 sigmoidal hidden layer neurons and 1 sigmoidal
output neuron. The network structure is the same
for HDP and DHP.

The actor neural network maps the current difference be-
tween the pitch angle and desired pitch angle ∆θ(t), as
well as the current body rate q(t) to the elevator deflection
δel. Its structure can be seen in Figure 6 and has the same
layout for both RL algorithms. The hidden layer consists
of 10 neurons with tangent hyperbolic activation func-
tions. The same activation function is used in the output
layer neuron. This enables to represent the saturation
limits of the controls, which is in this case δelmax

= ±25◦.
A Tangent hyperbolic function in the output neuron has
minimum and maximum values of [-1 1] which therefore
represents the normalized values of the elevator deflection
and need to be denormalized before its send to the plant.

2. Critic Neural Network

Figures 7(a) and 7(b) show the critic structure for HDP and DHP respectively. Clearly, they differ in terms
of number of outputs. In case of HDP, the critic network estimates the value function J(t) with respects to
the current ∆θ(t) and q(t) while in DHP the critic estimates the value function derivatives with respect to the
inputs, i.e. ∂J

∂∆θ = λ∆θ and ∂J
∂g = λg. Both networks contain 8 hidden layer neurons with tangent-hyperbolic

activation functions. The in- and output neurons are linear.
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(a) Critic ANN of the HDP algorithm with 8 hidden layer
neurons, estimating the value function J(t).

q q

(b) Critic ANN of the DHP algorithm with 8 hidden layer neurons,
estimating the value function derivatives ∂J

∂∆θ
= λ∆θ and ∂J

∂g
= λg .

Figure 7. Critic network layout for the different algorithms with ∆θ(t) and q(t) as inputs.

E. Convergence improvements

Artificial neural networks are considered as a powerful tool for approximating non-linear functions. How-
ever, the problem of convergence and proper tuning of the hyperparameters still remains, especially when
convergence of multiple networks depend on each other. To improve performance and convergence rates of
the neural networks, the following improvement are integrated in the algorithms:

1. Weight initalization: Whenever the neuron receives high or low values, the output saturates to the
interval bounds [-1 1], which means that the derivative of the sigmoid becomes nearly zero and learning
stagnates. This effect is curbed by dividing all pseudo-random initial weight values by the square root
of the number of input-nodes, while the weights itself are initialized with normalized Gaussians, i.e.
W ∼ 1√

nin
· N (0, 3

2 ).24

2. Adaptive learning rate: One way to improve weight-updates is to adapt the learning rate η during
the learning process.25,26 A high learning rate is desirable to make bigger steps down the slope of a
long, continual decreasing cost-function and reducing the rate leads to a good asymptotic behavior and
prevents oscillations at the later stage. For this purpose, the algorithms starts with a small initial η,
where the learning rate increases when the gradient of successive trials points into the same direction,
but is reduced as soon as the direction of the gradient fluctuates strongly.

3. Momentum factor: A momentum co-efficient µ ∈ [0 1) modifies the current gradient descent update
by adding a scaled gradient term from the previous step:24

w → wt+1 = µwt − η
∂E

∂wt
(22)

W →Wt+1 = Wt + wt+1 (23)

Where the temporary term w is initialized to be zero. Momentum-based gradient descent algorithms
have the advantage to include the knowledge of the past gradient and shall accelerate convergence. It
is only applied to the network weights and not to the biases.

4. L2 regularization: Regularization, also known as weight decay, helps to prevent the network from
overfitting by penalizing large weights.24 It adds a regularization term to the error function E:

E =
1

2n

∑

x

e(x)Te(x) +
L

2n

∑

W

W 2 (24)

where L is known as the regularization parameter, n is the total amount of samples in the data-set and
W are the network weights excluding the biases. With this addend, the weight update gets:

W →Wt+1 = (1− ηL

n
)Wt + wt+1 (25)

and the term (1− ηL
n ) is considered to be the weight decay.
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IV. Training Procedure

After the implementation into the F-16 aircraft model, the two controllers are trained in two separate
training sessions, namely an offline and online learning phase. A description of the training process and

the different update cycles is given in this section.

A. Offline Training

Table 3. Simulation Settings

Variable Symbol Value

Number of trials ntrial 100

Number of experiments N 100

Max simulation time T 20[s]

Time-step ∆t 0.01[s]

Pitch limit θ 60[deg]

For complex systems, RL methods are in general trained
offline as the learning process involves exploratory actions
that often brings the system into undesired states. Figure
8 shows an example of trajectories where the controllers
are directly learned online and offline. Clearly, in a pure
online learning procedure, the controller soon starts to
deviate strongly, unable to grasp any valuable informa-
tion. In an offline learning set-up the system is reset after
a certain period of time to the initial condition, indepen-
dent of the previous control path which gives it multiple
trials to learn. Furthermore, a guarantee of convergence
for the critic and action neural networks during offline training has been given by Prokhorov et al.27,28 That
is why the two agents are first trained offline for learning to control the baseline F-16 model. The networks
will be initialized with random weights at the start of each experimental run, meaning that the agents will
have no prior knowledge in memory. One experimental run consists of 100 training episodes that last each a
maximum of T = 20 seconds or are terminated once the aircraft exceeds a pitch angle limit of θlim = ±60◦.
The aircraft is (re-)set to the trimmed condition (see Table 1) at every t0, i.e. at the start of an episode.
Then, the controllers must track a sinusoidal reference signal with a period of 10 seconds and an amplitude
of 14.32◦. The time-steps in the simulation are 0.01 seconds and during every step, the actor and critic
network parameters are updated simultaneously, while the pre-trained plant model parameters stay fixed.
The throttle setting is kept at trim throughout the whole simulation. An experimental run is considered
a success once the actor error measure drops below a certain threshold. As the scale of the error measure
is different for the two algorithms, the threshold is not the same. For HDP, the experiment is a success if
Ea ≤ 1 · 10−2 and for DHP if Ea ≤ 2 · 10−5. The actor error is chosen as a success indicator as this entity is
the actual controller of the system. Eventually the controllers are compared in terms tracking performance
(off-set errors), convergence success rate, convergence time and number of trials that were necessary to drop
below the error threshold. In order to speed up the learning process, all signals that are provided to the
networks are normalized to [-1 1]. The pseudocode for the offline learning process can be viewed in the
appendix of this paper.
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(a) Typical example of failed online training with no prior
knowledge
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(b) Successful offline training within 2 trials, by resetting
the simulation every 20 seconds

Figure 8. Online vs offline training
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1. hyperparameter selection Table 4. Hyperparameter settings

Variable Symbol HDP DHP

Settings 1

Learning rate critic ηc 0.012 0.3

Learning rate actor ηa 0.009 0.11

Momentum factor critic µc 0.11 0.1

Momentum factor actor µc 0.11 0.1

Settings 2

Learning rate critic ηc 0.05 0.2

Learning rate actor ηa 0.01 0.08

Momentum factor critic µc 0.1 0.11

Momentum factor actor µc 0.11 0.1

Discount Factor γ 0.97

As the success of both training algorithms
heavily depends on the set of chosen hyperpa-
rameters, it is important to select them care-
fully. In general, all hyperparameters are deter-
mined by brute force and extensive grid search.
The search itself was the first phase of the of-
fline training study. The search space con-
tained in total almost 10000 different param-
eter constellations per algorithm and all have
been evaluated by averaging the results of each
setting over 5 experimental runs. Eventually,
only the best 2 settings of each algorithm have
then been chosen for the final offline simula-
tion. Table 4 shows the two selected sets of
hyperparameters.

2. Exploration

Although exploration is not necessary in a policy gradient method for training the actor, the system may
settle with a sub-optimal control law. This is due to the fact that the value function has not been able to
explore other, more optimal states and exploits its current knowledge. In order to prevent this, the control
actions are occasionally perturbed such that the system deviates from its intended states and ends up in
’new’ states. The exploration rate ε determines the frequency of perturbation and adapts with the number
of episodes. At the beginning of an experimental run the probability of taking an exploring action is 10%
(ε0 = 0.1), meaning that almost every 10th step is perturbed. The probability soon decreases to near 0 after
about 60 trails. An exploratory action is chosen from a Gaussian distribution with mean µ = 0 and σ = 1

3
such that 99% of the actions are within [-1 1] bounds. The exploration function is described as:

ε(ntrial) = ε0 · e(ξ·ntrial) (26)

Where ξ is the decay of the exploration and set to -0.1 and ntrial is the number of trials.

B. Online adaptation

After the agents have been trained successfully in the offline phase, they will be applied in an online learning
setup. The goal is to determine 1) their robustness with respect to changes in the plant dynamics and 2)
their ability to adapt online to those changes.

One of the most important parameters for the longitudinal stability of the F-16 aircraft is the moment
coefficient Cm, which relates to the total moment about body axis:29,30

Cm = Cm0
(α, δel) + (

qc̄

2VT
)Cmq

(α) + (xc.g.ref − xc.g.)CZ (27)

For the online simulation study, two different configurations are tested, namely a reduction of the pitch
damping term Cmq and a shift in center of gravity position xc.g.. In the first experiment, the pitch damping
is reduced by a factor of two. Then, in a separate experiment, the center of gravity is shifted such that the
moment arm changes in sign:

∆xc.g. = (xc.g.ref − xc.g.new) = 0.35c̄− 0.40c̄ = −0.05c̄ < 0 (28)

The individual changes will be made instantaneously at t = 30s during a 60 seconds simulation run. Even-
tually the controllers are compared with respect to their control accuracy once with adaptation and once
without. If adaptation is applied, all three entities, i.e. the actor, critic and plant-model will be updated
simultaneously every time-step. Cleary, there are no exploratory actions in this case, i.e. ε = 0. The measure
of performance will be the root mean square error between the pitch angle vs. the reference as well as the
time needed for adapting to the new plant dynamics.
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V. Results

This section presents the results of the simulation studies. First the offline training performance is pre-
sented, followed by the online learning application.

A. Offline training

In order to make a fair comparison, the learning parameters need to be selected carefully. Extensive grid
search has been applied together with personal experience to find 2 sets of hyperparameters that provided
the best results in terms of control performance and learning time. However, despite the efforts, using brute
force for infinite combinations of learning parameters is just not feasable and therefore, there is no guarantee
that the selected parameters provide the best overall results. Nevertheless, they provide a tendency from
which a reliable conclusion can be drawn from.

Four performance indicators will be looked at in this comparison. The success rate describes the percentage
of experimental runs that successfully converged to an optimal control law. For all successful runs ∆θRMS

is computed, which is the root mean square error (RMS) between the pitch angle and the reference signal.
Also the required trials and time needed to converge to that optimal state is listed.

Table 5. Offline learning results with 2 dif-
ferent sets of hyperparameters

HDP DHP

Settings 1

Success Rate 39% 63%

∆θRMS 0.0389 0.0102

Required trials 22 13

Convergence time 55.5s 32.5s

Settings 2

Success Rate 29% 30%

∆θRMS 0.0335 0.0143

Required trials 25 21

Convergence time 62.5s 52.5s

Table 5 shows all the results averaged over 100 experimental
runs for 2 selected hyperparameter settings. The chosen learn-
ing parameters can be viewed in Table 4. For both settings, it
can be seen that DHP training results in a higher frequency of
successful learning sessions with up to 63% success rate, while
for HDP the best performed runs have given only 39%. Table
5 also shows clearly that using the same algorithm with just
slightly different initial learning parameters results in a drastic
change in performance. DHP, for example succeeds with the
2nd settings only 30 times out of 100 to converge to an optimal
control law, similar to HDP. In both studies, DHP results on
average in a lower RMS error, indicating a better overall control
performance. Also the convergence time and number of trials
required to converge to the optimal solution is almost 20-40%
less than for HDP. Next to that, the typical learning behav-
ior with the first hyperparameter set can be seen in Figure 9.
It shows that DHP collects overall less penalty over the trials,
while being also more stable in the process by having a more narrow confidence bound than HDP. Clearly it
approaches a stable policy within the 13th trial on average. In the best case scenario it took even 1 trial to
converge. HDP, on the other hand, reaches a stable policy between the 30 and 40 trials, or in the best case
within 15 trials.
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Figure 9. Collected Rewards over 100 experimental runs, each lasting 100 trials.
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Looking at Figure 10 both algorithms are applied in a 40 second simulation after they have been trained.
It shows as well a better tracking performance using the DHP algorithm with ±1.3◦ off-set, seemingly
representing a controller with higher gain. HDP always showed a slight bigger offset of about ±4◦ with
respect to the reference.
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(a) Response of HDP controller after offline training.
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(b) Response of DHP controller after offline training.

Figure 10. HDP vs. DHP control performance

B. Online adaptation

The best trained controllers from the previous section are tested in an online study where the plant dynamics
change instantaneously. First, it is relevant to know if the controllers are robust enough to cope with
the changes even without adapting the network parameters and then see as well how they perform when
adaptation is enabled. The RMS error is compared as well as the convergence time for the simulations
with adaptation. In this case, convergence time relates to interval between the start of the change in plant
(t = 30s) up to the point when the weight update gradients are almost zero.

1. Response to changes in plant dynamics without adaptation

Figure 11(a) and 11(b) show the control performance for the first online simulation, where the center of
gravity position is changed at t = 30s. HDP is able to adjust to the new plant dynamics quite well and
tracks the reference with an off-set of less than 3.5 degrees. The RMS error even reduces from originally
0.0386 to 0.0288. Surprisingly, DHP is unable to cope with the new system dynamics and evolves into an
unstable control law.
Similarly, Figure 12(a) to 12(b) shows the responses, where the moment coefficient Cm is reduced by a factor
of two at t = 30s. This time, both controllers are able to cope with the changes in the plant dynamics and
even improve in their performance. HDP and DHP reduce the RMS error from 0.0386 to 0.0382 and from
0.0104 to 0.0072 respectively which relates to a 1.2% and 31.% improvement.
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(b) DHP

Figure 11. Online study without adaptation and changed center of gravity positiong (∆xc.g. = −0.05c̄). The
plant dynamics are changed instantaneously at t = 30s.
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(b) DHP

Figure 12. Online study without adaptation and reduced pitch damping (Cmq/2). The plant dynamics are
changed instantaneously at t = 30s.

2. Response to changes in plant dynamics with adaptation

When enabling online learning, the controllers are able to update their network parameters during the
simulation. In this case, the actor, critic and plant-model networks are updated with every time-step.
Figure 13(a) and 13(b) show the results of the online study with the change in center of gravity. It can be
seen that HDP adapts fast, but also seems to learn a wrong behavior in time as the pitch angle diverges
more and more from the reference signal, seemingly getting more unstable. DHP, on the other hand, initially
adapts very strongly to the changes in plant dynamics and overshoots slightly the reference by ±5◦, but
quickly converges to an optimal policy with a stable control and maximum error of ±1.5◦ in less than 6
seconds.
The problem of stability for HDP becomes more apparent when updating the parameters of the neural
networks during the second online experiment, where the pitch damping is reduced (see Figure 14(a)). HDP
clearly gets unstable and is unable to adapt, although it was robust enough without adaption beforehand.
DHP did not show any problems and converged to an optimum in less than 2 seconds with a final RMS error
of 0.0099 (Figure 14(b)).
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Figure 13. Online study with adaptation and changed center of gravity positiong (∆xc.g. = −0.05c̄). The plant
dynamics are changed instantaneously at t = 30s.
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Figure 14. Online study with adaptation and reduced pitch damping (Cmq/2). The plant dynamics are changed
instantaneously at t = 30s.
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VI. Conclusions & Recommendations

In this paper, HDP and DHP are compared and evaluated on a 2D pitch-tracking task in a F-16 aircraft
model. The experimental study involves an offline and online learning phase. The results show that during

the initial offline phase, both controllers are able to learn the correct behavior and control the baseline model
of the F-16 aircraft. DHP shows higher success ratios and converges to an optimal control-law in almost half
the time as HDP. Also the tracking performance is more accurate, with an overall lower RMS error.
In the online learning phase, both controllers can handle most changes in the longitudinal aircraft dynamics
even without adapting their parameters. This reveals their robustness as the baseline controller can cope with
some changes in the dynamics, sometimes with better performance than without those changes. Especially
HDP improves in the tracking performance for all the different modes. DHP seems less robust. It is able to
follow the pitch reference signal very well for changes in the Cmq

, but is unable to handle the shift in the
center of gravity position, resulting in an unstable behavior.
However, for simulations with parameter adaptation DHP shows a clear performance improvement, as it can
adapt quickly to all the changes in plant dynamics, while HDP seemingly learns an unstable behavior.
It can be concluded that DHP is a better method for aircraft control than HDP. It showes higher success
rates, faster learning, decent robust behavior as well as quick and stable adaptation to changes in the plant
dynamics. The adaptability and self learning behavior makes it a promising solution for the VCCTEF
design. However, a major drawback of these RL methods is that the learning process is not transparent
and it is unknown what exact changes are made to the network parameters with every update cycle. This
especially becomes a problem when the controller is learning a wrong policy, getting the system unstable
as it is the case with HDP. Furthermore, the high sensitivity to the initial learning parameters makes it
unclear whenever the best parameter combinations are chosen. Just a slight change in the settings leads to
a drastic change in performance in this study. It is also noted that the RL methods are well able to control
complex systems with two states and one control variable, but as soon as the amount of states and actions
increases, the individual networks may have more trouble to converge. As overall convergence depends on the
convergence of three separate entities (actor, plant-model and critic network) the probability of convergence
of all entities to an optimum gets very low. Looking at the VCCTEF and its complexity with more than 48
control surfaces that can be actuated, a direct control of the effector using RL methods may not be feasible
at this time.
For future research it is therefore recommended to apply HDP and DHP for aircraft control in a bigger
state-action space. This shall reveal how the algorithms can perform with an increased complexity of the
tasks. Furthermore, brute force methods and grid search for defining the hyperparameters of the neural
networks is a tedious task and does not guarantee the best settings. A way to improve this (and also to
make the comparison between the algorithms more fair) is to use machine learning methods such as Bayesian
optimization to search in the hyperparameter space and solve for the best settings. Another recommendation
is to check the sensitivity and performance of the controllers with respect to sensor noise and delays. Another
idea would be to test other candidates of the ACD design family like GDHP, which supposedly combines the
benefits of HDP and DHP and may be even more beneficial for aircraft control.
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Appendix: Pseudo code

Algorithm 1 Offline learning algorithm for HDP and DHP

1: Get the pre-trained model network
2: Initialize the parameters of the actor and critic function approximators, Wa, Wc

3: Definition: x = [∆θ, q]T and u = δel
4: for ntrials do
5: Initialize t = 0 and x(t0)
6: Set the exploration factor ε(ntrial)
7: while t < T and θ < θlimit do

8: Compute the output of the critic at time t,
9: J(t) or λx(t)← fc(x(t);Wc(t))

10: Make an exploratory action or compute the actor output at time t,
11: if ε > N (0, 1) then
12: u(t) ∼ N (0, 1

3 )
13: else
14: u(t)← π(x(t);Wa(t))

15: Estimate the one-step ahead state via the plant model,

16: x̂(t+ ∆t)← fm(x(t), u(t);Wm(t))
17: Compute expected reward | reward derivatives,
18: r ← ρ(x, u) or ∂ρ

∂x and ∂ρ
∂u

19: Compute the output of the critic at t+ ∆t,
20: J(t+ ∆t) or λ(t+ ∆t)← fc(x(t+ ∆t);Wc(t))
21: Compute the critic error ec
22: Backpropagate J(t+ ∆t) or λ(t+ ∆t) and update the actor parameters Wa

23: Update the critic parameters Wc

24: Plant transitions to the new state,
25: x(t+ ∆t)← f(x(t), u(t))
26: t← t+ ∆t
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2
Variable Camber Continuous Trailing Edge

Flap

This chapter gives an overview of the past and most recent developments of the VCCTEF design. 2.1 intro-
duces the background and motivation of such system, while the technical details are described in section 2.2
Finally, 2.3 gives an overview of the most recent multi-objective control design structure.

2.1. Introduction
Commercial aircraft are usually designed for a single operating point, compromising between cruise speed
and landing requirements (Taylor [62]). Especially low performance at low speeds requires flaps and slats.
Airplanes with a higher aspect ratio are considered to be more aerodynamically efficient, but the large wing
span relative to the short root chord length may introduce stiffness problems. The use of lightweight materials
amplifies this effect by causing the wing to be even more flexible. Advanced lightweight materials have been
applied on airframe structures to a larger extent. One example is the Boeing 787 aircraft, which makes great
use of advanced composite materials for a big part of its airframe structure. The Dreamliner was released in
2011 and contains almost 50% of mainly Carbon Fiber Reinforcement Plastic (CFRP). It is claimed that the
weight savings add up to 20 percent on average when using CFRP compared to conventional aluminum de-
signs (Hale [20]). In 2015, Airbus followed with the release of the A350XWB, an aircraft which contains nearly
53% of advanced composite materials and promises 25% reduced emissions as stated by Airbus [1].

Indeed, the weight savings are significant. CFRP has a high structural-strength to mass ratio, but at the same
time may cause reduction in structural rigidity. Looking at modern commercial aircraft wings with wide
wingspan and short root chord length, the emerged flexibility can result in large elastic deflections when ex-
posed to aerodynamic forces (Nguyen et al. [47]). Especially at off design conditions, the elastic deflections
of the wing may be undesired, causing suboptimal lift distribution and/or increased drag counts. In other
words, the promised fuel savings may be counteracted by the decreased aerodynamic performance.

In recent years, there has been a study to actively adapt the shape of an aeroelastic wing to address those
problems. The idea of the so called Performance Adaptive Aeroelastic Wing (PAAW) is to reshape the wing in
any flight condition such that that optimal aerodynamic performance can be achieved and simultaneously
control effectiveness can be ensured. Initiated as a NASA Innovation Fund project, a PAAW control design
was proposed by Nguyen et al. [47] and his team in 2010. The Variable Camber Continuous Trailing Edge Flap
(VCCTEF) concept was born. Today, the project is jointly being developed by NASA and Boeing Research &
Technology under the NASA Advanced Air Transport Technology project. VCCTEF is a control surface that
provides spanwise load tailoring with continuous trailing edge flaps (see figure 2.1). It is a control design that
tackles multiple objectives, namely:

1. Neutralize negative aeroelastic effects

2. Improve handling qualities and
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3. Improve aerodynamic performance

Up to this point, the state of research is on the level of concept evaluation, which is modeling the aerodynam-
ics, optimizing the design and analyzing the performance. In simulation studies the VCCTEF concept already
promises drag reduction for cruise flight conditions while improving stability margins and complying to op-
erational constraints.

Figure 2.1: Variable Camber Continuous Trailing Edge Flap (VCCTEF) concept on a generic aircraft model (Nguyen and Tal [46])

2.2. The VCCTEF System
VCCTEF is a control surface that provides spanwise load tailoring with continuous trailing edge flaps, whereby
adjacent flap sections are joined together by an elastomer material. Starting with the project kick-off in 2010,
several studies such as Nguyen and Hornby [44] and [42] focused on improving the design with respect to op-
timal camber shape, number of flap sections and flap section widths. The most recent VCCTEF design layout
can be seen in figure 2.1 and 2.2.
There are in total 16 flap sections spread along the complete wing trailing edge, with 15 sections being at-
tached to the outer wing and 1 section being attached to the inner wing. Each flap consists of three chordwise
segments that can actively shape the camber. A detailed view of a generic cross-section is given in figure 2.3.
The outspread, spanwise control surface enables to control wing-tip bending and the wing-twist shape along
the whole wingspan. This, in turn, gives the benefit to settle for the best lift-to-drag ratio in any flight mode
and at any aircraft grossweight. get an optimal, elliptical lift distribution (Nguyen and Tal [46]). The elastomer
material between each flap prevents structural discontinuities, resulting in a more laminar airflow over the
wing and thus reducing the viscous drag counts (Boeing [8]). However, due to this flexible link the individual
flap segments are not entirely independent from each other. Even though the material is currently developed
by Boeing Research & Technology, the material properties are still classified and are unknown. It is therefore
an additional variable in the design instead of a constant, but the imposed angle constraints between two
neighboring flap sections with index i and j are assumed to be:

|δ f l api −δ f l ap j | ≤ 2deg (2.1)

The VCCTEF only replaces the conventional flaps and ailerons on an aircraft while the rudder and elevator
are still present. The thrust and control deflection limits are listed in table 2.1.
The current actuator design consists of a combination of Shaped Memory Alloys rods (SMA) in combination
with electric motor drives for each flap segment (Nguyen and Tal [45]). SMA’s have good weight vs power level
characteristics and are applicable for adaptive control, but the actuation frequency is rather slow. They drive
the two inner cordwise segments to gradually change the camber of the VCCTEF for the purpose of drag min-
imization. The out-most segment is driven by the electro-mechanical motors which enable high frequency
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Figure 2.2: The Variable Camber Continuous Trailing Edge Flap consists of 15 flap sections on the outer wing and 1 flap section on the
inner wing. All sections are connected via an elastomer material (Lebofsky et al. [29], Nguyen and Tal [46])

Table 2.1: Saturation limits of control surface deflections and thrust

Control Minimum Maximum
δV CC T EF −20deg 20deg

δel −25deg 25deg
δr −30deg 30deg
T 1000lbs 40000l bs

actuation for fast flight maneuvers, aeroelastic mode suppression as well as gust load and maneuver load
alleviation. A more detailed actuator design, however, still has to be developed in the near future.

Figure 2.3: All individual segments contain 3 flap sections to actively change the camber shape (Lebofsky et al. [29], Nguyen and Tal [46])

2.3. Multi Objective Flight Control
There have been multiple approaches to develop a control system in combination with the VCCTEF. All of
which have their main focus in drag reduction. It started with drag minimization for cruise flight at off-
design conditions (Lebofsky et al. [29]) followed by subsonic cruise for rigid wing aircraft (Ippolito et al. [23]).
S.Lebofksy, E.Ting and N. Nguyen continued with an approach of multidisciplinary drag optimization con-
trol for flexible wing aircraft in [30]. Additional studies such as Nguyen and Tal [45] and Lebofsky et al. [31]
focused on flutter suppression and maneuver load alleviation.
As the VCCTEF is a multi-functional type of aerodynamic control surfaces, it provides multi-axes control op-
tions. In that perspective, single-axis control tasks such as a pitch command has to be re-examined. In order
to ensure control effectiveness and optimal aerodynamic efficiency with the VCCTEF, a multidisciplinary con-



30 2. Variable Camber Continuous Trailing Edge Flap

trol approach is necessary. That is, next to guaranteeing stability and controllability, the control system has
to attain optimal aerodynamic performance. In 2015, Nguyen and Tal [46] proposed a multi-objective flight
control approach using VCCTEF, where the flight controller addresses the following objectives:

1. Control actuation

2. Aeroelastic mode suppression

3. Gust and Maneuver Load alleviation

4. Aircraft Stability Augmentation

5. Drag Cognizant Control & Real-Time Drag Optimization

The multi-objective control architecture can be seen in figure 2.4. The design provides the ability to find the
optimal flight control command as a compromise between the different, competing requirements. E.Tal and
N.Nguyen focused in their study on aeroelastic mode suppression and drag minimization control. The sim-
ulations even included a gust-model to simulate noisy operating conditions.
Most recently, Ferrier et al. [18] published her first results for real-time drag minimization control using adap-
tive least squares and now continues with gust load and maneuver load alleviation control within the multi-
objective flight control architecture. Y.Ferrier as well as E.Tal apply in their papers the concept of virtual
control to account for imposed structural constraints which is explained in subsection 2.3.2.
For simulations and testing, the latest research makes use of a coupled linear symmetric aeroservoelastic
model of the NASA Generic Transport Model. A small description of the simulation environment and its
development is given in the next subsection.

Figure 2.4: The multi-objective flight control unit and its related control loops Nguyen and Tal [46]

2.3.1. Simulation Environment
In 2004, NASA Langley developed a testbed for flight research experiments (Jordan et al. [24]). The so called
Generic Transport Model (GTM) is a unique simulation environment that provides a platform for research in
modeling dynamics and control systems. The GTM comes along with a dynamically scaled and turbine pow-
ered transport aircraft that is based on a Boeing 757, for in-flight validation of high risk flight tests. Nguyen
and Urnes Sr. [39] extended the rigid GTM with an Elastically Shaped Aircraft Concept (ESAC). It not only
includes light weight and highly flexible wing structures, but also the VCCTEF control effector. The baseline
wing stiffness is arbitrarily reduced by 50%. Fuselage and tail surface deflections are considered to be negli-
gible and for symmetric flight, the motion of the right wing is a mirror image of that of the left wing. In order
to solve coupled wing-bending and torsion aeroelastic equations Galerkins method has been used (Nguyen
et al. [41]). The conceptual design and preliminary modeling concluded phase I of the VCCTEF research and
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was followed by phase II, which involved aeroelastic analysis and flutter suppression control. It also included
2 wind tunnel tests, one for cruise configuration in 2013 (Urnes and Nguyen [65]) and one for high lift con-
figuration in 2014 (Boeing [9], Precup et al. [50]). The results formed a good database and helped to improve
the simulation model. 2D and 3D CFD simulations gave a first indication about the performance of the VC-
CTEF (Kaul and Nguyen [26]). The circular-arc-camber and parabolic-arc-camber configuration achieved a
higher lift-to-drag ratio compared to the clean wing setting. The current aeroelastic model is developed using
NASA’s vortex-latex code in combination with a Finite Element Model (FEM) (Ting et al. [64]) and a 2D tran-
sonic small disturbance code (Stahara [59]). In order to partially compensate for viscous drag, skin friction
drag is included into the model as well (Nguyen et al. [40]).

2.3.2. Simplifications and Virtual Control
As the control effector contains 16 sections and each section, again, comprises of 3 flap segments, the total
number of control surfaces adds up to 16x3 = 48 per wing. However, any control algorithm is more feasible
and more computationally reliable when fewer variables are used (Lebofsky et al. [29]). Simplifications can
be made by approximating the shape of the wing and flap segments. First, it is assumed that the chordwise
flap segments form a circular arc-camber shape, meaning that the deflection angles of the first two segments
can be described in mathematical relation to the third and last flap deflection angle (δ3) as follows

δ2 = 2

3
δ3 (2.2)

δ1 = 1

3
δ3 (2.3)

Equation 2.2 and 2.3 describe the coupling of the segments and figure 2.5 shows the definition of the deflec-
tion angles along the chordwise segments. For the development of the control design in Nguyen and Tal [46]
and Ferrier et al. [18], only the third and last deflection angle δ3 is considered, leaving out δ1 and δ2. It was
found in a previous study that the circular-arc camber shape provides the best aerodynamic performance
upon different camber shapes (Kaul and Nguyen [27]) and solely using δ3 for controls reduces the size of the
control vector by a factor of 3.

Figure 2.5: The three segments of the Variable Camber Continuous Trailing Edge Flap (Lebofsky et al. [29])

Furthermore, the control surface deflections can be defined by a shape function which is referred to as virtual
control and was introduced by Nguyen and Urnes in 2012. The shape function can be of any shape with
smooth and moderate slope (Tal [61]). That could be Fourier sine series or nth order Chebyshev polynomial
(cheby). For example, using 5th order Chebyshev polynomials gives:

∂i ,3 =
N∑

n=0
anTn(x) (2.4)

Where T0(x) = 1, T1(x) = x, T2(x) = 2x2, T3(x) = 4x3−3x, T4(x) = 8x4−8x2, T5(x) = 6x5−8x4−16x3−8x2−2x−1
and

x = yi

L
(2.5)

N is the order of the Chebyshev polynomial, a denotes the Chebyshev coefficients (a0 to a5), yi is the mid-
point of the location of the i-th flap section numbered from root to tip and L as the length of half a wing
span. Using only the Chebyshev coefficients within the control vector is also called virtual control, where a0

to a5 are then the virtual control variables (Nguyen et al. [42]). The advantage of using the shape function is
that it automatically imposes the relative position limits, i.e. structural constraints and saturation limits that
are imposed by the elastomer material. Not using virtual commands for control design, the controls would
exceed the VCCTEF constraints, i.e. saturate or the control design is unfeasible (Tal [61]).
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2.3.3. Control Design
In 2015, E.Tal and Nguyen [46] focused in their study on three control objectives namely traditional pilot-
following command (symmetric flight modes), drag minimization and aeroelastic mode suppression. In
this research, three different controllers have been designed: a Linear Quadratic Regulator (LQR), a Linear
Quadratic Gausian controller (LQG) and a LQG with active drag minimization control. For the purpose of
the control approach, the flight dynamic model was linearized around a steady symmetric level condition.
Also the model-order was reduced. A Kalman filter is added to estimate the aeroelastic states such as wing
bending and wing twist. Multiple cost functions address different control objectives. For aerodynamic per-
formance optimization, it is assumed that the drag coefficients can be estimated accurately via a drag-polar
model. However, it is mentioned that drag minimization has still many technical challenges such as sensing
and control. The study concludes that the controller was able to damp out aeroelastic modes effectively, while
following the pitch control command. When engaging LQG with active drag minimization control, it finds a
trim solution that corresponds a lower drag setting or higher lift-to-drag ratio. A higher lift-to-drag ratio of
about 4% can be achieved during cruise steady-state climb and level flight, compared to control without an
active drag minimization algorithm.

Ferrier et al. [18] followed up on the drag minimization task. In her approach she uses recursive least squares
to estimate the aerodynamic coefficient parameters and then calculate the optimal VCCTEF and elevator de-
flections using Newton-Raphson method. Similar to E.Tal, the optimal flight control for altitude-hold mode
is accomplished via a simple LQR. The speed and Mach number are kept constant with an additional speed-
hold mode. As required by the control design, the model is lineraized about a trimmed operating condition.
Although the algorithm was able to reduce the drag count by 2.9, it is not able to accurately estimate the aero-
dynamic coefficient parameters for the wingtip bending. Furthermore a constant Mach number is assumed
and sensor noise is not considered. Also, measuring in drag counts does not give a good indication about
total fuel burn or lift-to-drag behavior, i.e. the improved efficiency.
The most recent development is dealing with the 4th and last objective of the multi-objective flight con-
trol approach, namely gust and maneuver load alleviation. Three controllers are designed and tested. All of
which include a LQG as a baseline and an additional component such as model reference adaptive control
or observer-based robust control with loop transfer recovery. First results are expected to published in mid
2017.

2.4. Conclusions
This chapter has given a short overview of the VCCTEF design and current developments in control. Section
2.1 to 2.2 and 2.3 answer the research sub-questions 1.(a) and 1.(b) respectively.
The novel control effector promises significant fuel savings by actively changing the wing shape in flight as
desired. Recent control designs mainly focused on flutter and aeroelastic mode suppression, maneuver load
alleviation as well as drag minimization. However, there are several challenges that the controllers are facing:

1. The amount of control surfaces that can be controlled increases significantly. The size of the control
vector is 16x3x2 = 96 for the VCCTEF only while for a conventional aircraft it is 4 (one flap section and
one aileron per wing).

2. The controllers are designed in combination with a (reduced-order) model of the VCCTEF aircraft. Ac-
curacy of such model never matches 100% with the real-life case and even controllers with well tuned
control parameters and perfect results in simulation may not be sufficient for final implementation.

3. When using linear controllers it is required to linearize the full flight dynamic and aeroservoelastic
model about a steady condition, which introduces additional model inaccuracies.

4. With the high amount of control surfaces the probability of malfunctions increases as well. As there
is a dependency of all sections and segments, a potential failure of a single flap segment immediately
effects all other segments. This requires the control system to be adaptive to certain failure modes.

This enumeration answers the research sub-question 1.c and directly forms the baseline for the performance
metric that needs to be established for the upcoming research. It is clear, given the enumeration above, that
the controller needs to be robust, adaptive and accurate for larger state space systems.
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Table 2.2: Performance Metric

EXPERIMENTS LEARNING PERFORMANCE CONTROL PERFORMANCE

Complexity
in #states

Convergence rate
in epochs

∅ Training time
in sec

Success rate
in %

Accuracy
offset error

Rise time
in sec

2,3,4 ...
number of epochs
to reach a certain
threshold

inverse of ∅
training rate

#successes
#r uns |(yr e f − yss )| tr = tT − t0

As the VCCTEF project is still situated in the experimental phase and the model accuracy may not represent
the real life case completely, model based algorithms are not desired and adaptative characteristics become
a beneficial requirement as well. Using a Reinforcement Learning controller, as proposed in this thesis, those
requirements are accounted for. Additionally the control designs do not require linearizations around any
operating point. The rate of adaptability and the success rate of the controller to converge to an optimal
control-law are to be examined. As the experimental runs typically require a large number of trials with ran-
dom initialized control parameters (i.e. weights in case of artificial neural networks, see section A), a single
run can be misleading as the choice of initial parameters might have a bigger influence on the performance
between the proposed algorithms. The results are therefore reported for over a minimum of 20 successful
runs, excluding failed trials as they would worsen the variance measure and average-learning-time. Failed
runs will be represented within the column of ’% of learning success’ (view table 2.2 for the proposed perfor-
mance metric). The problem with this is that it may not be a clear choice to go for an algorithm if one has a
higher success rate, but lower overall performance or vice versa. So an additional performance parameter is
included as adopted by Tesauro and Janssens [63]. The average training time is the inverse of average training
rate, where the training rate is defined as the inverse of the time required to pass a certain error threshold
per run. In general, the number of trials are limited to a certain number at each run. The precision of the
best control samples of each algorithm is determined by the offset error, rise time and/or settling time. Using
the performance metric as shown in table 2.2 and recording the results for systems with different complex-
ity (denoted by the number of states that are controlled) should give a clear lead to what controller is more
beneficial for the VCCTEF design in the future. The three columns under learning performance in the list
heavily depend on the design of the parametric function approximators. They are an essential part of the
reinforcement learning controllers as described in section 4.1 and 4.2.





3
Reinforcement Learning

This chapter provides the relevant background information of Reinforcement Learning (RL) as introduced
by Sutton and Barto [60], starting with a description of the RL problem framework and concluding with the
most basic algorithm to solve RL optimization problems: Dynamic Programming (DP). It covers the discrete
RL cases only. An extension to continuous state / action spaces is given in subsequent section 4.

3.1. Markov Decision Process
Reinforcement Learning is a framework that is inspired by the most intuitive way of how animals learn,
namely by interacting with the environment (Lewis and Vrabie [34]). Generally speaking, an agent (decision-
maker) is applying actions to the environment (process) over a period of time and receives a numerical reward
for every action it is executing. The reward can be considered as an evaluative feedback, giving a measure of
performance for each action. Eventually, the goal for the agent is to optimize its behavior such that it receives
the maximum sum of rewards in the long run. The sum (total amount) of rewards is also referred to as the
return. Figure 3.1 depicts the agent-environment interaction graphically.

Figure 3.1: The agent-environment interaction in Reinforcement Learning (Sutton and Barto [60])

The time-variable is usually discrete, yielding in a sequential decision-making problem Busoniu et al. [11].
With every time-step t, the agent decides on an action ut ∈ U (xt ) based on the current state xt ∈ X . The
decision is therefore independent of states that have been visited beforehand. U and X are finite sets of pos-
sible actions and states respectively. Clearly, the information of the state variables that fully characterize the
current state of the environment needs to be available and perceived by the agent at all times. Consider the
following infinite-horizon task with states x, actions u and rewards r:

The sequence as shown above implies an important property of the agent-environment framework: The tran-
sition from state xt to xt +1 is independent of past events and only depends on the current state xt and action
ut . That is, the one-step dynamics and expected reward at t+1 can be predicted solely given xt and ut . This
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property is called the Markov property. If the agent-environment set-up satisfies the Markov property, it is
called a Markov decision process (MDP)[60] Reinforcement Learning algorithms are tools to solve optimiza-
tion problems that are modelled as a MDP. That is, a framework that is defined by the tuple 〈X ,U , f ,ρ〉, with

X Finite state space with all x ∈ X
U Finite action space with all u ∈U
f (xt ,u, xt+1) State transition function for state xt+1 based on state xt and action ut

ρ(xt ,ut , xt+1) Reward function of the transition {xt ,ut , xt+1}

Starting at an initial state x0, the agent applies action u0 to the environment. As a consequence, it finds itself
in a new state x1. The mapping from any state xt and action ut to a new state xt+1, is determined by the state
transition function f : X ×U → X , that is:

xt+1 = f (xt ,ut ) (3.1)

f is characterized by the environment or the system dynamics, while the specification of the environment is
referred to as the task. After each transition, the agent receives a numerical reward r ∈ R as an immediate
evaluation of the action and the new state. It is defined by the finite reward function ρ : X ×U → R:

r = ρ(xt+1,ut ) (3.2)

Being located in the subsequent state x1, the agent choses a new action u1 and the process starts over again.
This loop can repeat ad infinitum (continuous tasks) or stops with specified terminal conditions and repeats
a specified number of times (episodic tasks). Any goal-oriented learning problem that is set-up in this RL
framework is therefore characterized by only three signals passing between the agent and the environment:
the signal that fully describes the current state (state signal), which in turn serves as a base for the subsequent
decision (action signal) and the evaluative feedback that defines the agents goal (reward signal). The behavior
of the agent, i.e. its action-sequence, is dictated by its policy π; with π being a function that maps states to
actions π : X ×U → [0,∞). This can be expressed as:

ut =π(xt ) (3.3)

Applying ut in xt results in a transition to xt+1 under the condition that xt is not a terminal state (usually de-
noted with subscript capital letter T). The overall goal in RL is to maximize the total return (sum of rewards)
over the complete trajectory path generated by π.

The Agent-Environment Interaction (as it is depicted in figure 3.1) is the general framework of a reinforce-
ment learning problem and can be shaped to many different applications. For example, in terms of control
theory the agent is equivalent to the controller and the environment is the system that needs to be controlled.
In RL it is essential to establish the learning problem-framework rather than defining a learning method. That
is, designing the agent-environment interface and defining the reward function such that it unambiguously
defines the ultimate goal of the task. In any case, the goal is to find the sequence of actions (control-law)
that maximizes the sum of rewards over the complete time-period. As mentioned before, the time variable
is usually discrete, but the framework can be extended to continuous time as well (Bertsekas and Tsitsiklis
[7], Doya [15], Werbos [70]). However, continuous-time variants are not explicitly covered in this thesis as
discrete-time cases have been developed to a far more mature level in the past decades.

Given an MDP with finite state and action space, transition probabilities and reward function, how does
the agent learn then from the rewards it is receiving every time-step? This is done by memorizing the returns
and linking them to values of the states; values that describe how "good" or "bad" a state (state-action pair)
is with respect to other states. They are forming the so called value functions.

3.2. Value Functions & Rewards
The expected sum of rewards from any state xt ∈ X is described by the value (cost-to-go) function V (Sutton
and Barto [60]):

V π(x) = Eπ{
∞∑

i=0
γi ri+1|xt = x} (3.4)
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where Eπ{·} is the expectation operator based on policy π. This estimated return is also called the value
function. It is the agents memory that describes the relationship between the policy that the agent is following
and the total amount of rewards it is collecting along the way. That is, V π(xt ) is the expected value of return
when starting in state xt and following a policy π thereafter. It averages the actual received returns R for
any state, while the average converges to the real value as the number of visits to the states goes to infinity.
Equation 3.4 can also be formulated in a different way, namely

Qπ(x,u) = Eπ{
∞∑

i=0
γi ri+1|xt = x,ut = u} (3.5)

This is the so called Q-function or action-value function, which expresses the expected return when starting
in xt , applying action ut and then follow a policy π. Both, V π and Qπ are usually unknown and can be esti-
mated from experience. Knowing the value-function gives rise to the fundamental solution of RL problems
as it indicates the maximum return that the agent could receive in the long run from any state. In order to
weigh the importance of future rewards along the trajectory for the current estimation, the discount factor or
forgetting factor γ is introduced, with γ ∈ [0,1). When γ is near to 1, the agent is considering all rewards along
the trajectory with the same "importance" while being near 0, only recent/near-future rewards give rise to
the value of the current state. The total discounted return for an infinite horizon (Hinf) is then:

R = r1 +γr2 +γ2r3... =
∞∑

i=0
γi ri+1 (3.6)

With r being determined by the reward function r (eq. 3.2). In case of a N-step, finite horizon task, this
equation would change to

R =
N∑

i=0
γi ri+1 (3.7)

With N being a finite positive integer. In the 1950’s, Richard Bellman expressed Equation 3.4 and 3.5 in a
recursive form:

V π(x) = Eπ{ρ(xt+1,ut )+γV π(xt+1)} (3.8)

Qπ(x,u) = Eπ{ρ(xt+1,ut )+γQπ(xt+1,ut+1)} (3.9)

3.8 and 3.9 are called the Bellman equations or dynamic programming equations (Bellman [4]). They are
functional equations, which means that the solution to this equation is a function. In terms of optimality,
Bellman stated that "An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first
decision (Bellman [4])." Equation 3.8 and 3.9 can be modified and expressed in terms of Bellman’s principle
of optimality:

V ∗(x) = max
u

Eπ{ρ(xt+1,ut )+γV ∗(xt+1)} (3.10)

Q∗(x,u) = Eπ{ρ(xt+1,ut )+max
ut+1

γQπ(xt+1,ut+1)} (3.11)

The max
u

operator means to maximize the function (maximum return) by choosing the best actions u. Those

actions are determined by the optimal policy, while the optimal policy is denoted by superscript ’*’. Finding
the optimal behavior and therefore finding the solution to this maximization problem can be found via means
of RL algorithms. There exist many different methods, but all of them originated from the most basic form:
Dynamic Programming.

3.3. Dynamic Programming
The first branch of methods to solve reinforcement learning problems was developed by Richard Bellman
in the 1950’s and is known today as Dynamic Programming (Bellman(1957a)Howard (1960). It is a solution
method that assumes the environment to be a finite MDP. That is, the dynamics are defined by the transition
function f (xt ,ut ), with a given finite state-action space X and U (x) as well as the expected immediate reward
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r for all x ∈ X and u ∈ U . The key element of DP is the symbiosis of policy evaluation - approximating the
value function for a given policy - and policy improvement, i.e. altering the policy according to the maximum
expected return. It is straight forward to find an optimal policy once V ∗ (or Q∗) are found that satisfy Bell-
man’s principle of optimality given in equation 3.10 and 3.11. DP is a discrete method, meaning that it is only
able to process discrete state and action spaces. Continuous problems can be formed into a ’grid world’ by
quantizing X and U (x) which results in approximate solutions rather then exact solutions in most cases.
The DP solution is heavily based on recursion, i.e formulating the Bellman equation into an iterative update
law such that the value functions and policy can be estimated. With the number of updates going to infinity,
the estimation shall converge to the real value.

Policy Evaluation Starting with any arbitrary policy π the related value function V π can be evaluated. This
is called the policy evaluation (Sutton and Barto [60]). In context of computer programming, the bellman
equation is translated into an iterative update rule:

Vk+1(x) = Eπ{ρ(xt+1,ut )+γVk (xt+1)} (3.12)

where k is the number of update sweeps to the value function at state x. A non-trivial solution is guaranteed
if γ< 1 or the task is episodic. The value function is arbitrarily initialized first and then updated by means of
recursion. If k →∞ the approximation is said to converge to V π. The update rule applies to each state x and
the new value of each state is updated based on the expected immediate reward when taking action ut and
the old value of the successor state Vk (xt+1). Updating the value estimate based on the estimates of successor
states is referred to as bootstrapping. Obviously, this requires to occupy a chunk of memory for an array with
the size of the quanitzed state-space X . The algorithm is

Algorithm 1 Policy Evaluation, retreived from Sutton and Barto [60]

1: Initialize V (x) and π(x) arbitrarily for all states x ∈ X and define error bound ε (small positive number)
2: while ∆V > ε do
3: for each x ∈ X do
4: v =V (xt )
5: V (xt ) = E

{
ρ(xt+1,ut )+γV π(xt+1)

}
6: ∆V = max(∆V , |v −V (xt )|)
7: end for
8: end while

Policy Iteration Having determined the value function for a given random policy, it is time to find an im-
proved policy if possible. This process is called policy improvement. The policy is changed at all states ac-
cording to a new greedy policy π′(x), which maps state to actions such that the total return is at least equal or
greater than the return given under policy π(x), that is:

V π′(x) ≥V π(x) (3.13)

the update rule for the greedy policy gets:

π′(x) = argmax
u

E {ρ(xt ,ut , xt+1)+γV π(xt+1)} (3.14)

Where the argmax
u

term expresses to maximize expression by choosing the corresponding value of u. The

originally estimated value function obtained by evaluating policy π, i.e. V π(x), is now kept constant in this
update loop and provides the information to determine a better policy π′. As can be expected, the new policy
is then evaluated once again, leading to new state-values and an approximation of the value function under
policy π′. Finding V π′(x) may lead to another even better policy π′′ and so on. This sequence, i.e. itera-
tively improving the value function and policy by policy evaluation and policy improvement, is called policy
iteration. The complete algorithm is as follows:

As described in the previous section 3.3, the policy evaluation is an iterative loop itself and may require a
couple of sweeps through the state-set to sufficiently approximate V π. This requires computation time, but



3.3. Dynamic Programming 39

Algorithm 2 Policy Iteration, retreived from Sutton and Barto [60]

1: Initialize V (x) and π(x) arbitrarily for all states x ∈ X and define error bound ε (small positive number)
2: procedure POLICY EVALUATION

3: while ∆V > ε do
4: for each x ∈ X do
5: v =V (xt )
6: V (xt ) = E

{
ρ(xt+1,ut )+γV π(xt+1)

}
7: ∆V = max(∆V , |v −V (xt )|)
8: end for
9: end while

10: end procedure
11:

12: procedure POLICY IMPROVEMENT

13: constantPolicy ← true
14: for each x ∈ X do
15: π′ =π(xt )
16: π(xt ) = ar g max argmax

u
E {ρ(xt+1,ut )+γV (xt+1)}

17: if π′ 6=π(xt ) then
18: constantPolicy ← false
19: end if
20: end for
21: if constantPolicy then
22: Stop
23: else
24: go to Policy Evaluation
25: end if
26: end procedure

alternately repeating function 2 and 3 in algorithm 2 eventually governs the optimal value function V ∗ and
along with that the optimal policy. In theory it would need an infinite number of iterations to converge to
the exact optimal value, but in practice the simulations are stopped whenever the change of value function
updates is lower than a specified value ε, also called the terminal condition.
Dynamic programming is a very robust tool to solve optimization problems and finding the solution is guar-
anteed for finite MDP’s. It is essential for the theory in RL. To give a better understanding, a simple example
is given below.

Example 3-3-1: Suppose an agent needs to find the shortest path from any location to either point A or
B on a fenced square. It is assumed that there are no obstacles.

Figure 3.2: The agent shall reach A or B from any point on the square as fast as possible

In a continuous world, the fastest way to connect to A or B, is obviously a straight line. However, in
order to solve this problem by using dynamic programming the state and action space needs to be
discretized, which is:

The world is formed into a 4x4 grid with the allowed action set U at all non-terminal states X with
U = {nor th,east , south, west } and X = {1,2,3, ...,14}. For any transition the agent receives a penalty of
r = −1, while the transition function is known. At the terminal states (marked in gray) the simulation
is reset. Whenever the agent is moving into the fence, it will receive a reward of -1 and will find itself
in the same state. The learning process is shown in the figure below. The numbers in each grid denote
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Figure 3.3: The discrete state-space with actions u ∈ {nor th,east , south, west }

the value of the state and the arrows show the greedy policy according to V at iteration k. It is an undis-
counted, episodic task meaning that γ= 1 and t is finite. First V is initialized to be zero for all states and
the random policy has equal probability of choosing an action from U at any state.
Assuming to be in position 5 at time step k = 1, the random policy denotes equal probabilities of choos-
ing any action from U , e.g choosing to move north has the probability of one fourth. Performing an
action leads to a reward of -1 and the agent ends up in a new state with an associated value of -1. Doing
this for every possible action yields:

V2
π(5) = 1

4
∗

4∑
i=1

(ri +V1
π(xt+1)) = 1

4
(−2−2−2−2) =−2.0 (3.15)

Where x(t + 1) denotes the successor states 1,6, 9 and 4. The rewards are determined by the reward
function ρ(x) = −1 ⇔ x is not a terminal state. This computation is repeated for every state until Vk

is sufficiently estimated. After 3 iterations, the value function already provides enough information to
find the optimal policy. That is, with k →∞ the value function does change slightly but the relations
stay the same, i.e. the policy is already optimal and does not change anymore.

Sequence of policy evaluation (r) and policy improvement(l), retreived from Sutton and Barto [60]

This is a simple example. However, the disadvantages of DP become more apparent with the growing com-
plexity of a problem. The execution time and/or memory requirements usually takes up to O(n2), as the value
function needs to be estimated for every single state in several sweeps. That is, if the state-space X or action-
space U is increasing in dimensions, the computational demand is exponentially growing as well due to the
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two intertwined iterative loops. In literature this problem is referred to as the curse of dimensionality (Bell-
man [4]). In addition, DP works only for discrete problems and quantizing the continuous state-action space
may lead to additional inaccuracies in the solution. In the example above, a better solution may be found by
approaching more the continuous case with using a finer grid or provide more action choices, for example
moving south-east. Doing so however, increases the complexity of the problem and the agent requires more
time learn and find an optimal policy.
Real-life control problems are usually far more complex, working in continuous state and/or action spaces
and may not provide full information of the environment. For those problems DP is not a practical solution.
Another major drawback for dynamic programming solutions is namely, that it requires a complete and ac-
curate model of the environment, which is seldom present.
In 1977 Werbos presented a new approach to approximate dynamic programming solutions by making use of
function approximators and updating their parameters by gradient-descent. It is called ’Heuristic Dynamic
Programming’ and sets the starting line of ’Adaptive Critic Designs’.

3.4. Conclusions
This chapter discussed the concept of reinforcement learning and included a description of important terms
such as markov decision processes, rewards and return, value function and policy as well as dynamic pro-
gramming. All modern RL methods that evolved throughout the years rely heavily on that theory. With this
chapter, research sub-question 2.(a). can be answered.





4
Approximate Dynamic Programming

Dynamic programming is a powerful tool to solve finite MDP’s, given a perfect and discrete model of the en-
vironment. However, real-life control applications are usually comprised of large, continuous state-action
spaces where the underlying dynamics of the system are usually unknown. This makes it computational in-
feasible, or even impossible to use DP. Approximate Dynamic Programming methods (ADP), try to overcome
the curse of dimensionality by approximating the value function and the optimal policy with the use of para-
metric functions (Bertsekas and Tsitsiklis [7], Sutton and Barto [60]). The key feature is to cover the infinite
continuous domain of the state-action space with a finite number of parameters. In that perspective, the
heuristic process can be split into two entities, namely the actor and the critic (Barto et al. [3], Witten [71]).
The actor is a parametric function that approximates the optimal control-law (policy) while the critic eval-
uates the current policy by estimating the corresponding value function. ADP methods are therefore often
referred to as Adaptive – Critic Designs (ACD) or Adaptive Dynamic Programming (also ADP) in literature.
Konda and Tsitsiklis [28] classified the ADP forms into three categories:

1. Critic-only methods exploit the best estimation of the optimal value function, instead of optimizing
over the policy space. The idea is to approximate the optimal solution to the Bellman equation 3.10
or 3.11 and with that finding indirectly an optimal policy. The downside is that this method is not
guaranteed to find an optimal solution.

2. Actor-only methods provide a continuous control signal using a parameterized policy, while the param-
eters are updated by adding current gradient estimates of the cost function with respect to the latest ac-
tor parameters. However, since only recent estimates are used to update the parameters, the actor does
not incorporate learning from previously gained knowledge and the learning process is rather slow due
to high variance in the policy gradient

3. Actor-Critic methods aim to combine the advantages of actor-only and critic-only methods. That is: a)
generating a continuous control signal due to the actor and b) improving the convergence properties
of the controller by using a critic to update the actors function parameters (limiting the large variance
of the policy gradients).

Due to their beneficial properties are actor-critic methods preferred reinforcement learning algorithms to
solve real-life control tasks. Their theory and architecture is the fundamental backbone to most ACD de-
signs. The first ACD design family was presented by P. Werbos in the early 1990’s [68–70] and has been widely
employed to different applications ever since. His work includes the basic forms: Heuristic Dynamic Pro-
gramming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP) and their
action depended versions (AD-). Prokhorov et. al. describes those ACD formulations in detail in his paper
[51] and suggests two new modifications to the original GDHP design. All ACD forms have a similar structure
but they can be distinguished by the input-output characteristics of the critic and the requirements of plant
model derivatives (Lendaris [33]):

Critic Input: The critic receives generally the complete state information by the plant (or plant model).
In action-dependent cases the actor – output (control signal) is also linked to the critic and serves as an
additional input.

43
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Critic Outputs: For HDP the critic approximates the value function (usually denoted as J(t)) while for
DHP the critic-outputs are the derivatives of the value function with respect to each state, i.e. ∂J (t )

∂x
(denoted as λx (t )). In the GDHP case the output contains both, J(t) and λx (t ).

Plant Model Derivatives: When employing artificial neural networks as function approximators (see
appendix A), the backpropagation path differs with each ACD structure. Depending on the design,
the update chain rule requires various derivatives where some derivatives must be obtained by a plant
model.

ACD’s have very beneficial properties. The complexity of a reinforcement learning problem is distributed
and handled internally by two separate components, i.e. the learning and controlling component. Further-
more, the algorithms belong to the class of non-linear control which means that the plant does not need to
be linearized around a certain operating point. The controller interacts with the plant directly and works in
the continuous state-action domain. Other benefits are 1) there is no previous established complex model
required 2) the controller is adaptive to changing operating conditions and 3) it is robust in a noisy environ-
ment.
This chapter explains the concept of Heuristic Dynamic Programming (section 4.1), Dual Heuristic Program-
ming (section 4.2) and ACD applications that have been developed in recent years (section 4.3). For all ACD’s
the original implementation is based on Artificial Neural Networks (ANN). Their characteristics of universal
function approximation and non-linear mapping have made them a popular tool in the field of reinforcement
learning and artificial intelligence. A detailed overview of the concept of ANN’s and the backpropagation al-
gorithm is given in the appendix of this report.

4.1. Heuristic Dynamic Programming
Heuristic Dynamic Programming (HDP) is the fundamental form of ADP techniques. There are four entities
that directly, or indirectly interact with one another: the actor, the critic, the plant and the model of the plant.
It can be used as an online-learning algorithm. Starting in state x(t ), the critic estimates the associated value
and the actor determines an action u(t) that is applied to the plant and the plant model. Having estimated
the new state x̂(t + 1) by the plant model and receiving a reward ρ(x(t + 1),u(t )), the critic computes the
associated costs for the new state. Actor, model and critic parameters are then updated according to their
respective training error. The algorithm and the update laws are depicted graphically in figure 4.1.
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Figure 4.1: HDP algorithm at two consecutive moments in time. The backpropagation paths are indicated by the dotted line. ea , ec and
em are the relative training errors for the actor, critic and model functions. ρ(t ) and x̂(t +1) are the reward and predicted one-step ahead
state respectively.

Training Algorithm
The critic approximates the value function (discounted cumulative rewards) as it is described by equation
3.10:

J (x(t )) = fc (x(t ); wc ) ≈V (t ) (4.1)
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Where J and V are the value function, x is the state vector and fc (·, wc ) is the critic function approximator
with wc parameters. An error measure Ec needs to be minimized by the critic and is defined by the differ-
ence between the true value function and J(t). Although the optimal value function is mostly unknown, the
recursive property as explained with equation 3.10 makes it possible to approximate it. For that, the temporal
difference error (TD) is defined which is the difference between the left and right hand side of the Bellman
equation:

ec (t ) = J (x(t ))− (ρ(x(t +1),u(x(t )))+γJ (x(t +1)) (4.2)

Ec (t ) = 1

2
ec

2(t ) (4.3)

J (x(t )) is the output of the critic at time t while the desired value is expressed by the term (ρ(x(t+1),u(x(t )))+
γJ (x(t +1)). The critic is therefore trained forward in time, which is of great importance for real-time applica-
tions (Prokhorov and Wunsch [51]). Minimizing this error concurrently relates to the optimal value function.
The effect of each parameter on the respective training error is determined by the gradient of the error mea-
sure with respect to the parameters, i.e. ∂Ec

∂wc
. The parameters are therefore updated with a small step size ηc

opposite of the direction of the gradient (gradient descent):

wc → wc (t +1) = wc (t )−ηc
∂Ec (t )

∂wc (t )
(4.4)

Where ηc is the positive learning rate. The term ∂Ec
∂wc

is determined by applying backpropagation:

∂Ec (t )

∂wc (t )
= ∂Ec (t )

∂ec (t )

∂ec (t )

∂J (x(t ))

∂J (x(t ))

∂wc (t )
(4.5)

The dashed lines in figure 4.1 show the backpropagation paths. However, the main component that needs
to be trained in HDP is the actor as it represents the actual controller of the the plant. Consider the optimal
control signal u∗ for any state x, the actor is denoted by fa : X →U with parameters wa

u(t ) = fa(x(t ); wa) ≈ u. (4.6)

As the critic serves as some sort of evaluation of the control signal, there must be an exchange of information
between the actor and critic (Kampen et al. [25]), so the actor can learn. This is done by determining the
gradient of the value function J(x(t+1)) with respect to actor parameters wa . In other words, it simply back-
propagates J through the critic and plant model function approximator to obtain ∂J (x(t+1))

∂u(t ) . Then the gradient
and parameter update gets:

∂Ea(t +1)

∂wa(t )
= ∂Ea(t +1)

∂ea(t +1)

∂ea(t +1)

∂J (x(t +1))

∂J (x(t +1))

∂x(t +1)

∂x(t +1)

∂u(t )

∂u(t )

∂wa(t )
(4.7)

wa → wa(t +1) = wa(t )−ηa
∂Ea(t +1)

∂wa(t )
(4.8)

Where ηa is the positive learning rate of the actor. The training objective is to minimize the error measure Ea

which is the squared error ea and defined as:

ea(t ) = J (x(t ))–J∗ (4.9)

Ea(t ) = 1

2
ea

2(t ) (4.10)

By definition, the learning error of the actor is the difference between the estimated value J (x(t +1)) and the
optimal value J∗, also referred to as the goal value. J∗ heavily depends on the reward function ρ(x,u) and
must be defined by the control designer. One approach is to set the reward function to a maximum of zero
when reaching an optimum and negative otherwise, so ρ(x) ≤ 0 (Russell and Si [54]). Then the goal value J∗
becomes zero as well. Keep in mind that ρ is the only information provided to the learning agent and it has to
represent unambiguously the goal of learning process. Defining the reward function is therefore not always
straight forward.

HDP is an algorithm that is based on approximated plant dynamics with which the derivatives ∂J (x(t+1))
∂x(t+1) and
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∂x(t+1)
∂u(t ) can be determined. If there is sufficient sample data from previous tests and/or executions available,

then the plant model may be trained offline already before implementing it in the control structure. It may
also be trained online in series with the actor and the critic if there is no data available a priori. The structure
of the model is denoted by

x̂(t +1) = fm(x(t ),u(t ); wm) ≈ f (x(t ),u(t )) (4.11)

where fm is the plant model function with wm model parameters and f are the actual plant dynamics. Like
the other function approximators, the training objective is to minimize an error measure that usually com-
prises of the squared model error em . Where em is the difference between the model output and the output
of the plant:

Em(t ) = 1

2
em

2(t ) (4.12)

em(t ) = x̂(t )–x(t ) (4.13)

And then, applying backpropagation the model parameters are updated as follows:

wm → wm(t +1) = wm(t )−ηm
∂Em(t )

∂wm(t )
(4.14)

Although it has an effect on actor and critic learning, the model training performance itself is independent
from them. Training all function approximators online makes the algorithm adaptive and robust to changing
operating conditions. Obviously, the rate of change of the system dynamics is limited by the learning speed
of the algorithm itself. The environment or plant dynamics may not alternate faster than the agent can learn.
Another important learning property in HDP is the relation between actor and critic learning rate. The critic
needs to be able to learn the value function with respect to a given policy before the policy is updated and
changing. This means that the critic learning rate is a factor higher than the actor learning rate in order for
the algorithm to converge. A summary of the algorithm is given in 3.

Algorithm 3 HDP

1: Initialize t = 0, wa , wc , (wm) and x(t0)
2: procedure START LOOP

3: Compute the output of critic at time t
4: J (t ) = fc (x(t ); wc (t ))
5: Compute the actor output at time t
6: u(t ) = fa(x(t ); wa(t ))
7: Estimate the one-step ahead state via plant model
8: x̂(t +1) = fm(x(t ),u(t ); wm(t ))
9: Compute expected reward

10: r = ρ(x(t +1),u(t ))
11: Compute the output of the critic at t+1
12: J (t +1) = fc (x(t +1); wc (t ))
13: Compute the critic error ec at time t from equation 4.2
14: Backpropagate J (t +1) and update actor parameters wa with 4.8
15: Update the critic parameters wc with 4.4
16: Plant proceeds to new state
17: x(t +1) = f (x(t ),u(t ))
18: if applicable, compute plant model error and update it’s parameters wm with 4.13 and 4.14
19: t ← t +1
20: end procedure
21: goto 2 and repeat N times

4.2. Dual Heuristic Programming
The dual heuristic programming optimization scheme is very similar to the HDP structure, except that the
DHP critic parametric function is approximating the derivative of the value function with respect to each
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state. This leads to more complicated update rules and backpropagation paths for the actor and critic as
indicated with dashed lines in figure 4.2. Just like in HDP the actor receives the state information x(t ) and
maps it to a control signal u(t ), which is observed by the plant and plant model. In the meanwhile, the
critic estimates the current value gradients with respect to the states ∂J (t )

∂x(t ) as well as for the predicted one-

step ahead state ∂J (t+1)
∂x̂(t+1) . Then, actor, model and critic parameters are updated according to their respective

training error. Figure 4.2 depicts the algorithm and it’s update laws graphically.
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Training Algorithm
Unlike in HDP the critic approximates the derivatives of the value function J with respect to the states x,
usually denoted as λ:

λ(x(t )) = ∂J (x(t ))

∂x(t )
= fc (x(t ); wc ) (4.15)

This means that having a state vector with n elements, the critic outputs contains n elements as well, describ-
ing ∂J (x(t )

∂x1(t ) , ∂J (x(t )
∂x2(t ) ... , ∂J (x(t )

∂xn (t ) . The update of the function parameters wc gets more complicated as compared to
HDP (Prokhorov and Wunsch [51]). Consider again the error measure Ec to be defined as the squared error:

Ec (t ) = 1

2
ec

T (t )ec (t ) (4.16)

with

ec (t ) = ∂J (x(t ))

∂x(t )
−γ∂J (x(t +1))

∂x(t )
− ∂ρ(t )

∂x(t )
(4.17)

where γ is the discount factor and ρ is the reward function, while the reward function derivatives depend
on the design of the reward function itself. The terms ∂(·)

∂x(t ) are vectors containing all partial derivatives of
(·) with respect to x(t ). The additional complexity of DHP lies in the added derivative terms and elongated
backpropagation paths. Applying the chain rule gives us the unknown in equation 4.17:

∂J (t +1)

∂x j (t )
=

n∑
i=1

λi (t +1)
∂xi (t +1)

∂x j (t )
+

m∑
k=1

n∑
i=1

λi (t +1)
∂xi (t +1)

∂ak (t )

∂ak (t )

∂x j (t )
(4.18)

where subscript j describes one of the n elements in the state vector, λi (t + 1) = ∂J (t+1)
∂xi (t+1) and n, m are the

number of inputs to the critic and outputs of the actor respectively. The terms ∂xi (t+1)
∂x j (t ) , ∂xi (t+1)

∂ak (t ) and ∂ak (t )
∂x j (t ) are

obtained following the dashed line in figure 4.2 with
⊗

, while the first two are obtained by the plant model
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and the last by the actor respectively. So, as the ec (t ) vector contains n elements each element is computed
by using equation 4.18 and:

ec j (t ) = δJ (x(t ))

δx j (t )
−γδJ (x(t +1))

δx j (t )
− δρ(t )

δx j (t )
−

m∑
k=1

∂ρ(t )

∂uk (t )

∂uk (t )

∂x j (t )
(4.19)

With that information the critic parameters are updated as follows:

wc → wc (t +1) = wc (t )−ηc
∂Ec (t )

∂wc (t )
(4.20)

Where
∂Ec (t )

∂wc (t )
= ∂Ec (t )

∂ec (t )

∂ec (t )

∂λ(t )

∂λ(t )

∂wc (t )
. (4.21)

This concludes the critic update scheme. The actor parametric function has the same objective as in HDP,
namely approximating the optimal policy. It’s parameters wa are updated in a rather more complex form, by
backpropagating λ(t + 1) through the critic and model network. The goal may be expressed as (Prokhorov
and Wunsch [51]):

∂ρ(t )

∂u(t )
+γ∂J (t +1)

∂u(t )
= ∂ρ(t )

∂u(t )
+γ ∂J (t +1)

∂x(t +1)

∂x(t +1)

∂u(t )
= 0 (4.22)

∂J (t+1)
∂x(t+1) and ∂x(t+1)

∂u(t ) are obtained via the critic and plant model respectively and ∂ρ(t )
∂u(t ) is provided by the reward

function. Then the weight updates become:

wa → wa(t +1) = wa −ηa

[
∂ρ(t )

∂u(t )
+γ ∂J (t +1)

∂x(t +1)

∂x(t +1)

∂u(t )

]T ∂u(t )

∂wa(t )
(4.23)

Also here, ηa is the positive learning rate of the actor and exponent T denotes the transpose. Prokhorov and
Wunsch [51] states that the added complexity also relates to better performance as compared to HDP. The
critic is provided more information during the training updates and it directly approximates the gradient of
the value function with respect to the states. This is also the term that is found back in the actor update
(i.e. ∂J (t+1)

∂x(t+1) ). The training loops are executed online and actor, critic and plant model parameters are updated
simultaneously. If sufficient data samples are provided, the plant model may also be trained offline a priori. In
general, the model training is exactly the same as it is for HDP. As a summary, the complete online algorithm
is given by algorithm 4.

Algorithm 4 DHP

1: Initialize t = 0, wa , wc , (wm) and x(t0)
2: procedure START LOOP

3: Compute the output of critic at time t
4: λ(t ) = fc (x(t ); wc (t ))
5: Compute the actor output at time t
6: u(t ) = fa(x(t ); wa(t ))
7: Estimate the one-step ahead state via plant model
8: x̂(t +1) = fm(x(t ),u(t ); wm(t ))
9: Compute reward derivatives

10:
∂ρ
∂x̂ and ∂ρ

∂u
11: Compute the output of the critic at t+1
12: λ(t +1) = fc (x(t +1); wc (t ))
13: Compute the critic error ec at time t from equation 4.17
14: Backpropagate λ(t +1) and update actor parameters wa with 4.23
15: Update the critic parameters wc with 4.20
16: Plant proceeds to new state
17: x(t +1) = f (x(t ),u(t ))
18: if applicable, compute plant model error and update it’s parameters wm with 4.13 and 4.14
19: t ← t +1
20: end procedure
21: goto 2 and repeat N times
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4.3. Applications
Adaptive critic designs are powerful algorithms to solve complex control problems. Especially their adaptive
characteristics and online learning property make them a well respected tool for fast acting systems. In addi-
tion they are able to control non-linear plants directly without the need of linearization around an operating
point and no complex model of the plant is required a priori. In the last decade there have been several ap-
plications of ACD’s in research and industry. Some results of a few relevant examples are presented in this
section.

Prokhorov and Wunsch [51] gave a concise overview of the existing ACD structures and presented all forms
from simple ACD’s such as ADHDP and HDP to advanced algorithms such as DHP and GDHP. In their experi-
mental studies they applied those algorithms on a longitudinal autolanding problem of a simplified commer-
cial aircraft as it is described in Miller et al. [37]. The aircraft itself is subjected to wind shear and turbulent
wind gusts. Following the desired landing profile of the Instrument Landing System (ILS) and meeting the
landing requirements, the controls achieved the following results:

Table 4.1: Autolanding of a commercial aircraft Prokhorov and Wunsch [51]

Gusts N(0,1,5)
% out of 600 test trials

GDHP DHP HDP ADHDP PID

Trained with
wind shear only

tight
success

73 71 50 1 0

loose
success

99 99 98 98 99

Trained with
wind shear
and wind gusts

tight
success

71 70 45 0 0

loose
success

98 98 97 97 98

Average number of
training attempts to land

1000 1000 100 100 N/A

Here, tight success relates to an application where the runway is shortened by 30%. The algorithms are trained
for a number of trials (1000 or 100). It is claimed that HDP and ADHDP did not improve in performance after
100 trials in training significantly anymore. Table 4.1 presents clearly that GDHP and DHP achieve very simi-
lar performance and it seems that they obtain a much higher success rate compared to HDP and ADHDP.

In 2002, Venayagamoorthy et al. [66] compared HDP with DHP for neuro control of a turbogenerator where
the control signal comprises of the deviation of the exciter voltage and the deviation of the turbine power.
Turbogenerators are highly non-linear and fast acting systems with varying system dynamics when operating
conditions are changing. As shown in figure 4.3, the results are promising. Both, HDP and DHP outperform
a conventional AVR controller and Venayagamoorthy et al. concludes a better performance of the DHP algo-
rithm as compared to HDP as well. For more details the reader is referred to the paper.

Ferrari and Stengel [17] applied DHP for flight control on a small business aircraft. The controller was pre-
trained offline with help of well-tuned, linear controllers. This way the researcher incorporates already ex-
isting knowledge to the design and ensures reliability. After the offline training phase the DHP algorithm is
applied online and action and critic networks are further updated to improve performance. Implemented
in a full-scale aircraft simulation the controller shows improved performance and the ability to adapt to un-
expected conditions such as unmodeled dynamics, control failures, and parameter variations. However, it
is also mentioned that adaptive critic methods do generally converge to an optimal policy over time, but in
practice it is difficult achieve quick enough convergence to affect real-time performance (Ferrari and Stengel
[17], Howard [22], Venayagamoorthy et al. [66]). Also the problem of tuning is still an issue.

There have been several other applications, like HDP for torque and air-fuel ratio control of a V8 engine (Liu
et al. [35]) or direct HDP forms for helicopter stabilizations (Russell and Si [54])and damping oscillations of
large power systems (Lu et al. [36]). All show promising results and motivate current research to investigate
more.
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Figure 4.3: Rotor angle variation for ±5% step changes in the desired terminal voltage

4.4. Conclusions
ADP methods are a powerful tool to solve highly non-linear control tasks without the need of a complex
model of the plant a priori. The first family of adaptive critic reinforcement learning has been presented
by Werbos [70] in the early 1990’s and has been widely employed to different applications in industry and
research ever since. The two fundamental forms named Heuristic Dynamic Programming and Dual Heuristic
Programming have been presented in detail in this chapter, revealing the theoretical difference between the
two algorithms. Some details are and conclusions are quickly summarized here.

Prokhorov and Wunsch [51] mentioned that it is more valuable to obtain the derivatives of an opti-
mization criterion then the optimization criterion itself. In a simple form of ACD, such as HDP, the
actor receives this information only indirectly via backpropagation of the value function J(x) through
the critic and model network. This may result in a too coarse actor behavior with a slight off-set to the
desired point. One approach to improve the results is suggested by Borghese and Arbib [10], where the
actor explores additional trajectories around the nominal one.

As part of advanced ACD’s, the DHP method directly estimates the derivatives of J with respect to the

states and is explicitly trained by the reward function derivatives ∂ρ(t )
∂u(t ) and ∂ρ(t )

∂x(t ) . This has the advantage
that the derivatives are directly provided to the actor rather than the value function itself. According to
Prokhorov and Wunsch [51], the quality of such direct approximation is noted to be better than obtain-
ing the indirect approximations. Furthermore the model network is used for both, the critic and the
actor, in the training process. The update process itself is more complex, involving more derivatives
and update rules which makes it more tedious to set-up the algorithm for a given problem.

In terms of practical differences it seems that DHP usually provides better results, with higher rate of
convergence and learning. An example of direct comparison is given by the examples of neurocontrol
of a turbo generator (Venayagamoorthy et al. [66]) and an autolanding of a commercial aircraft in [51].

The different modules, i.e. the actor, critic and plant model are parametric functions that approximate the
optimal solutions. This way, the algorithm works directly with the (non-) linear plant in continuous state-
action space. The functions itself can be any parametric function, but the most common method in adaptive
critics is to use artificial neural networks. According to the theorems of Barron [2], it is known that artificial
neural networks can approximate processes with many variables and less errors than other, more traditional
approximators. A short summary about ANN’s and it’s working principles is given in the appendix A.

It is expected, given different levels of complexity and control tasks, that DHP is the better option to chose
for aircraft flight control equipped with the VCCTEF. The preliminary analysis in the next chapter provides
first results. With this chapter, research sub-question 2.(b) and 2.(d) can be answered. The appendix Acovers
sub-question 2.(c)



5
Preliminary Analysis

In order to compare the performance of Heuristic Dynamic Programming (HDP) and Dual Heuristic Pro-
gramming control (DHP) in practice, they are applied to the task of learning to stabilize an inverted pendulum
in the upright position. Pole-balancing tasks or inverted pendulums are common practice for benchmarking
advanced control system designs, because of multiple reasons. First of all the system dynamics are of low
dimensions with few state and action variables. Next to that it is highly non-linear and inherently unstable.
That is, without active control, the pole would not stay in the upright position, but fall to the stable point, i.e.
hanging down. Second, it is easy to understand and visualize and can be modified in terms of complexity.
The pendulum may be hinged to a torque motor directly while the torque can be sufficient to push the pen-
dulum to the upright position, or it is under-actuated and the pendulum needs to swing up. In this case the
pendulum is controlled directly, while it can also be controlled indirectly when placed on a cart (cart-pole-
problem), where the cart is pushed by a force and so on. There have been many different designs and they all
vary in terms of complexity. Another reason to use inverted pendulums for performance analysis of modern
controllers is the easy set-up.
Section 5.1 explains in detail the experimental set-up, the system dynamics and the state-action variables.
Before designing the HDP and DHP controller, a plant model is build that represents the dynamics of the
inverted pendulum. The performance of such model including the design of the function approximator is
described in section 5.2. Due to their characteristics of universal function approximation and non-linear
mapping, artificial neural networks (ANN) are used for the control design. A detailed description of ANN
including their update law and performance improvements is given in appendix A. HDP and DHP control
structures are summarized in section 5.3 and 5.4 respectively. The simulation was conducted, using 3 differ-
ent controllers: HDP, DHP and Proportional-Iterative-Differential control (PID). PID belongs to the class of
linear classical control and is commonly used in industry. This shall provide an additional benchmark with
respect to common linear control methods. Results are listed in section 5.5, followed by the conclusions in
section 5.6.

5.1. Experimental Setup
The experiment is a pole balancing task where the controller needs to stabilize an inverted pendulum in the
upright position. A picture of the set-up can be seen in figure 5.1. It contains an electric torque motor that is
connected directly to a weightless link with length l. Attached at the end of the link is a point mass m. The
motor itself is subjected to motor resistance r and a torque constant τ. Regarding the system dynamics, the
pendulum can be described in the following state-space form:

I θ̈ = mg l sin(θ)− (c + τ2

r
)θ̇+ τ

r
u (5.1)

The corresponding variables are copied from Grondman [19] and are listed in table 5.2. It is assumed that the
state information is completely available at all times, with the state vector x containing two variables. With
θ being the angle of the link measured from the upright position and θ̇ being the angular rate that is positive
when the pendulum is turning clock-wise.

51



52 5. Preliminary Analysis

x =
[
θ

θ̇

]
(5.2)

The action space is the voltage that is send to the motor and is limited to u ∈ [−3.5,3.5] V. With that voltage
the controller is able to directly control the pendulum to the upright position from any angular position.

Table 5.1: The inverted pendulum experiment

Parameter Symbol Value Units

Pendulum inertia J 1.91 ·10−4 kg m2

Pendulum mass m 5.50 ·10−2 kg m2

Gravity g 9.81 m/s2

Length of pendulum l 4.20 ·10−2 m
Friction coefficient c 3 ·10−6 N m s/r ad
Torque constant τ 5.36 ·10−2 N m/A
Rotor resistance r 9.50 Ω

Table 5.2: Inverted pendulum parameters

5.2. Plant Model Structure
Since HDP and DHP are both model-based learning algorithms, a neural network model of the plant dynam-
ics is needed. This is due to the fact that the actor and critic parameters are updated based on the model
derivatives (upon others), which are:

HDP DHP

∂x̂(t+1)
∂u(t )

∂x̂(t+1)
∂u(t )

∂x̂(t+1)
∂x(t )

Table 5.3: Model derivatives for HDP and DHP update rule

x̂(t + 1) is the estimated state at the subsequent time-step, x(t) is the state at time t and u(t) is the control
signal. A more detailed description of the update law per algorithm follows in the next sections. In a com-
plete online learning structure the model is not pre-trained, but rather learned simultaneously with the actor
and the critic while engaged in a task. However, this directly comes in hand with a poor estimation of the
derivatives in table 5.3 which impedes convergence and delays the learning process. Therefore, the model is
pre-trained before it is connected to the HDP and DHP learning algorithm.

Data-Set: First the data-set with input-output pairs [x,y] is created to which the model can be fitted on. This
is done by randomly exciting the inverted pendulum itself for three seconds in a 100 runs. Each run starts
with random initial conditions and is stopped at terminal time tend or as soon as the angular velocity exceeds
a value of 25π.
The final data-set consists of more than 20 thousand samples and is split into a training-set (70%) and a
validation-set (30%) randomly. This way, the neural network model can be validated while detecting and
preventing over-fitting. In order to prevent early saturation and slow learning of the neural networks, the
whole data-set and the sample data during simulation is normalized / mapped from θmi n−max , θ̇mi n−max

and umi n−max to an interval of W = [-1 1] (see more in appendix A.3). The max values of each variable are
later used again to denormalize the outputs of the network to the real values.

Model Network Structure: The model is a feed forward neural network and consists of one hidden layer
with ten sigmoidal neurons. Additionally, the input layer contains three linear neurons, one for the angle
θ(t ), the angular rate θ̇(t ) and the control signal u(t), while the output layer has 2 linear neurons for the one-

step ahead prediction of θ̂(t +1) and ˆ̇θ(t ). The neural network structure can be seen in figure 5.1.



5.2. Plant Model Structure 53

Figure 5.1: The model network architecture with three inputs, 10 sigmoidal hidden layer neurons and two linear output neurons

The model network is trained to identify the input-output behavior of the inverted pendulum. The ANN
identifier tries to minimize the following error measure:

EM = 1

2N

∑
x

eT
M (x)eM (x) (5.3)

eM = f̃M (x,u;WM )− f (x,u) (5.4)

with N being the total number of samples, f̃M (x,u;WM ) the ANN output vector for input x and u and f (x,u)
the desired states, i.e. the actual output of the plant given input x and u. Then, the input and output layer
weights WM and bM are updated using the partial derivative of the error measure with respect to the weights,
see appendix A for more details. The update law is performed by momentum-based Stochastic Gradient
Descent (SGD), which includes the momentum factor µM and the regularization LM . Each epoch sweeps
through the data set with batch-size n and shuffles the data-samples thereafter:

VM →VM (t +1) =µM VM (t )− ηM

n

∑
n

eM
δeM

δWM
(5.5)

WM →WM (t +1) = (1−ηM LM )WM (t )+VM (t +1) (5.6)

and

bM → bM (t +1) = bM (t )− ηM

n

∑
n

eM
δeM

δbM
(5.7)

VM is a temporary variable to determine the momentum and is initialized to be zero. Using grid search for
different hyperparameters such as the learning rate ηM , the momentum factor µM and the regularization
rate LM lead to the optimal settings as listed in table 5.4. The learning rate itself is adaptive, meaning that it
decreases in time. Note that grid search is a very basic form to search for the best hyperparameter settings
and may lead to sub-optimum. It does its job for a small amount of tweaking variables, but exponentially in-
creases in computation time with an increasing number of hyperparameters and decision space. Therefore,
it is recommended to use faster and more advanced optimization algorithms in the next phase of this thesis
such as bayesian optimization.

Model Parameters Symbol Value

Learning rate ηM 0.3
Momentum factor µM 0.7
Regularization rate LM 0.01

Table 5.4: Model ANN parameters

Simulation & Results: The learning process is done by using SGD with batch size of 300 while the elements
of all batches are shuffled after each episode. As the weights of the ANN are randomly initialized, the learning
session is repeated 10 times with the same settings (i.e. same hyperparameters). See figure 5.2 to 5.3 for the
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Figure 5.2: Results of Model-learning using the validation data-set, with 95% confidence and max-min bounds computed from 10 learn-
ing sessions, keeping the hyper parameters constant

results of convergence and final performance, using the hyper parameters from table 5.4. The mean squared
error (mse) is computed with respect to the validation data-set and is averaged over the 10 learning sessions.

It can be seen that the SGD training successfully updates the model ANN parameters in 300 epochs. The mean
squared error is gradually, but slowly decreasing with each epoch (see figure 5.2) and eventually converges to
a roughly constant value at around 1 · 10−2 with lower variance. The tendency is still decreasing, but the
performance will not improve significantly anymore. Figure 5.3 displays a sample simulation and shows that
the model accuracy is satisfying. Note that the sharp jumps in the graph are due to the discontinuity at π
(hanging down) as the angle is normalized around that point, so it does not exceed ±π. The discontinuity
introduced some bias in the estimation and the approximation power of the model ANN diverges slightly at
that point, but the differences are minor.

Figure 5.3: Performance of the model in simulation when subjected to pseudorandom inputs

Looking at the performance, the model network is accurate enough to give a good approximation of the
derivatives listed in table 5.3. The model that achieved the lowest MSE, is used for the HDP and DHP al-
gorithm.
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5.3. Heuristic Dynamic Programming Control
HDP is a sample-based algorithm that can be trained online. The actor and critic parameters are updated
each time-step according to the update law as explained in section 4.1. This section gives an overview of the
applied HDP structure.

The Reward Function: A reward function is evaluating the performance of the actions at every time-step
t. It is a continuous function that quadratically penalizes the angular distance of the pendulum to the desired
upright position θ = 0. Furthermore it takes the angular rate and control signal into account, by penalizing
non-zero values of θ̇ and u. For HDP the reward function gets:

ρ(t ) =−xQxT −Pu2 (5.8)

with

x = [
θ(t ) θ̇(t )

]
Q =

[
0.9 0
0 0.1

]
P = 0.2

The Critic Neural Network: As mentioned in section 4.1, the critic tries to estimate the value function J (x). In
order to train the neural network and update its parameters, the temporal difference error is backpropagated
through the network. The TD error is the difference of the left and right side of the Bellman equation 3.10.
Eventually, the objective of the critic is to minimize EC (t ) over time t:

EC (t ) = 1

2

∑
t

e2
c (t ) (5.9)

ec (t ) = T D = J (x(t ))− (ρ(x(t +1),u(x(t )))+γJ (x(t +1)) (5.10)

The critic neural network consists of one hidden layer with eight sigmoidal neurons, 2 linear input neurons
for θ(t ) and θ̇(t ) and one linear output neuron for J (t ). The structure can be seen in figure 5.4. Just like
the model ANN the hyper-parameter settings are found via grid-search during multiple simulations. This
time both, the critic and actor hyper-parameters, have to be tuned simultaneously. The convergence and
performance of one neural network effects the convergence and performance of the other and makes tuning
very difficult. The found hyper parameters are

Critic Parameters Symbol Value

Discount factor γ 0.97
Learning rate ηC 0.05
Momentum factor µC 0.1
Regularization rate LC 0

Table 5.5: HDP Critic ANN parameters

Figure 5.4: Critic neural network with 2 inputs, 8 sigmoidal neurons in the hidden layer and one linear output layer.

The Action Neural Network: The actor ANN is the actual controller of the system and maps the current angle
and angular rate to a voltage signal u, which is then sent to the plant and the model. As part of reinforcement



56 5. Preliminary Analysis

learning it is approximating the optimal policy and learns based on the information of the critic and the
model ANNs. Figure 5.5 shows the neural network structure. The output layer has one sigmoidal neuron
that bounds the output of the neural network between -1 and 1. This is the bounded and normalized control
signal and can be scaled to the actual voltage signal by:

u(t ) = yactor (t )umax (5.11)

Sigmoidal transfer functions are also present in the hidden layer, which contains 10 neurons. The input layer
has two linear neurons, one for each state.

Figure 5.5: Actor neural network with 2 inputs, ten sigmoidal neurons in the hidden layer and two sigmoidal output neurons.

During simulation, the actor receives the state-information each time step and projects it to an action. The
action is evaluated by means of the value function J (x), which is the output of the critic neural network. J
represents the expected total return from any state and since the maximum reward is zero (ρ(t ) ≤ 0) the
optimal sum of reward would be zero as well, i.e. J∗ = 0. Therfore, the actor tries to minimize the following
squared error over time:

E A(t ) = 1

2

∑
t

e2
A(t ) (5.12)

e A(t ) = J (x)− J∗ = J (x) (5.13)

The neural network updates are done in small steps into the direction of the gradient ∇E A = δE A
δWA

, or ∇E A =
δE A
δbA

with WA and bA being weights and biases of the actor ANN respectively. The step size itself is defined
by the learning rate, momentum factor and regularization. Table 5.6 lists the tuned parameters. Note that
the actor learning rate is smaller than the critic learning rate. This is necessary due to the fact that the critic
requires some time to estimate the value function for a given policy, so it needs to learn faster than the actor.

Actor Parameters Symbol Value

Exploration rate ε0 0.1
Learning rate ηA 0.01
Momentum factor µA 0
Regularization rate L A 0

Table 5.6: HDP Actor ANN parameters

Exploration: In order to force the pendulum to visit different states the initial angle θ0 is randomized per
trial while the angular rate θ̇0 is always zero. This supports the learning procedure, as the pendulum would
otherwise visit mostly the states in the lower half of the circle (stable point) and the chances of visiting the
optimal point [0,0] is relatively low. Having a surplus of data points in a small region of the state-space leads
to overfitting of the ANN in that region while having a poor fit otherwise.
To stimulate exploration during a simulation run, the actor is doing a random action every ε steps. The so
called exporation rate is initialized (ε0 and degrades with the number of trials, such that the actor explores
more at the start of the simulation and by the end, when learned the optimal policy, only follows greedy
actions.
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5.4. Dual Heuristic Programming Control
The DHP controller has a very similar set up as HDP. This section shortly reviews the actor-critic structure
and learning parameters.

The Reward Function: Just like for HDP, the reward function quadratically penalizes the difference of the
angular deflection and angular rates with respect to the nominal values [0 0] using equation 5.8 and

Q =
[

0.9 0
0 0.1

]
P = 0.2

With DHP, the reward function becomes a more active part in the actor and critic training. That is δρ(t )
δx(t ) is part

of the derivatives to update the critic neural network weights and δρ(t )
δu(t ) for the actor weights. The individual

partial derivatives are as follows:

δρ(t )

δθ(t )
= 1.8 ·θ(t )

δρ(t )

δθ̇(t )
= 0.2 · θ̇(t )

δρ(t )

δu(t )
= 0.2 ·u(t )

The Critic Neural Network: The critic is approximating the derivative of the value function J (x) with respect
to the states. Those partial derivatives are denoted as λx , with x being any state of the state vector. So, in
this example there are two partial derivatives λθ and λθ̇ . The error measure for the minimization problem
becomes:

EC (t ) = 1

2

∑
t

eT
c (t )ec (t ) (5.14)

ecθ (t ) = δJ (t )

δθ(t )
−γδJ (t +1)

δθ(t )
− ρ(t )

δθ(t )
(5.15)

ecθ̇
(t ) = δJ (t )

δθ̇(t )
−γδJ (t +1)

δθ̇(t )
− ρ(t )

δθ̇(t )
(5.16)

with

λθ(t ) = δJ (t )

δθ(t )
λθ̇(t ) = δJ (t )

δθ̇(t )

and

δJ (t +1)

δθ(t )
=λθ(t +1)

δθ(t +1)

δθ(t )
+λθ̇(t +1)

δθ̇(t +1)

δθ(t )
+λθ(t +1)

δθ(t +1)

δu(t )

δu(t )

δθ(t )
+λθ̇(t +1)

δθ̇(t +1)

δu(t )

δu(t )

δθ(t )

δJ (t +1)

δθ̇(t )
=λθ̇(t +1)

δθ̇(t +1

δθ̇(t )
+λθ(t +1)

δθ(t +1)

δθ̇(t )
+λθ̇(t +1)

δθ̇(t +1)

δu(t )

δu(t )

δθ̇(t )
+λθ(t +1)

δθ(t +1)

δu(t )

δu(t )

δθ̇(t )

Critic Parameters Symbol Value

Discount factor γ 0.97
Learning rate ηC 0.1
Momentum factor µC 0
Regularization rate LC 0

Table 5.7: DHP Critic ANN parameters

Note that the derivatives of the one-step-ahead state with respect to the current state (δx̂(t+1)
δx(t ) ) as well as

δx̂(t+1)
δu(t ) is given by the model network. The hat symbol above θ(t +1) and θ̇(t +1) has been omitted for read-

ability. The derivative of the action u with respect to the current state is coming from the actor network.
Figure 5.6 shows the critic neural network. There are eight sigmoidal neurons in the hidden layer, 2 linear
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Figure 5.6: Critic neural network with two inputs, eight sigmoidal neurons in the hidden layer and two linear output layer.

input neurons and 2 linear output neurons. Table 5.7 lists the optimal hyper parameters as they have been
found by grid-search.

The Actor Neural Network: The actor neural network for DHP is exactly the same as it is for HDP in terms of
structure, i.e. same number of neurons and hidden layers as well as one sigmoidal output layer in order to
include saturation limits of the control signal. The hyper parameter settings change slightly and are listed in
table 5.8.

Actor Parameters Symbol Value

Exploration rate ε0 0.1
Learning rate ηA 0.05
Momentum factor µA 0
Regularization rate L A 0

Table 5.8: DHP Actor ANN parameters

Also the exploration is done in the same way as it is for HDP. This provides some consistency in the results.

5.5. Results
This sections shows the results of the experiments. The simulation time is discrete with time-step of δt =
0.01s. First, the HDP and DHP algorithms are compared with respect to their learning performance. Then,
subsection 5.5.2 presents the control characteristics for the inverted pendulum with the two RL algorithms as
well as an additional linear controller namely PID.

5.5.1. Training Performance
A good measure of learning performance is the cumulative reward over the set of experiments. Each experi-
ment is repeated 20 times, each containing 300 trials. The maximum cumulative reward that can achieved is
0. See figure 5.7a and 5.7b for details. These results also include failed runs. HDP failed to converge to an op-
timum in 5 experimental runs out of 20 while for DHP it was only one training session that did not converge.
This gives a success rate of 75% and 95% respectively. HDP convergence rate seems much more coarse and
still contains a lot of variance at trial 200. DHP on the other hand is rather steady and with low variance near
the optimum at approximately 150 trials. The red lines mark the maximum of all runs per trial and shows that
HDP does not visit the optimum before 60 attempts while for DHP it takes about 20 trials.
The critic-training performance as shown in 5.8a and 5.8b is much more clear for HDP. Starting with a max-
imum mean squared error of about 0.018 and converging to a stable, steady behavior at 1 ·10−3 at 150 trials.
The DHP algorithm contains high peaks of up to 13 on average in the first attempts, but quickly reduces to a
minimal value. At trial 100 the mse is below 1 and after 150 attempts the critic error approaches values in the
scale of 1 ·10−6.
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(a) HDP (b) DHP

Figure 5.7: Average cumulative reward and confidence bounds per trial of HDP and DHP control

(a) HDP (b) DHP

Figure 5.8: Critic mean squared error

(a) HDP (b) DHP

Figure 5.9: Actor mean squared error
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(a) HDP (b) DHP

Figure 5.10: Initial and trained policy after 300 trials with normalized state-action space. The max-min values of -1 and 1 correspond to
the control signal [-3.5, 3.5] volt; θ [−π, π] radians and θ̇ [−25π, 25π] radians per second.

The actor is the actual control system of the plant. Figure 5.9a and 5.9b shows the training process for HDP
and DHP respectively. In HDP the mean squared error is reduced to a rather noisy but stable minimum of
around 1 ·10−2 after approximately 150 trials. DHP, on the other hand approaches a minimum rather quickly
at around 100 attempts and approximates with an mse of less than 1 ·10−5. Though the values differ signif-
icantely by being a factor of 10−2 smaller when compared to HDP, both algorithms also work in a different
scale. So the value itself shall not be compared in the conclusive remarks. It is more the convergence rate,
variance and consistency that is of importance.

When looking at the trained policy in figure 5.10a and 5.10b, it can be seen that it consists of very flat re-
gions near θ = ±π, i.e hanging down position. So the controller learns to apply maximum torque in either
direction, whenever the pendulum is located in the lower half. If the pendulum reaches exactly ±pi (in the
figure noted as ±1) with θ̇ = 0, then the controller can barely chose between a max/min control scheme as
both options are desired.
Getting closer to the optimal point of [0, 0] the policy shape is a steep slope, with very fine adjustments at the
optimum, i.e. fine control signals near zero. Figure 5.10a and 5.10b also shows clearly the transformation of
an initial, random policy to the optimal policy.

5.5.2. Control Performance
Chosing the actor of both algorithms with the best control behavior from all experimental runs, the response
to a disturbed pendulum is shown in figure 5.11.

Figure 5.11: Plant response with HDP and DHP control. Disturbances are applied at t=0s and t=2s at 125 and -60 degrees respectively



5.6. Conclusions 61

Disturbance was initiated at t0 = 0[s] and t1 = 2[s]. Both controller successfully stabilize the pendulum from
125 degrees within 0.7 to 0.8 seconds after the disturbance occurred. The rise-time to reach ±5 degrees
around the nominal point is approximately 0.6 and 0.7 for HDP and DHP respectively. HDP often showed
an offset error of about 2-5 degrees while DHP usually controls the pendulum very closely to 0. Also for -60
degrees deflection both controllers push the pendulum to an optimum within 0.5 s.

Comparison with Linear Control: In order to benchmark HPD and DHP against classical control theory,
a third controller is included. Proportional-Iterative-Differential control (PID) is one of the most commonly
used industrial control system. It would be desirable to stabilize the inverted pendulum in the upright posi-
tion using linear control theory, but as mentioned before the pendulum is highly non-linear. For that matter,
the system is linearized around the desired operating point, i.e. θ = 0deg, assuming small-angle theorem,
with |θ| ≤ 12deg. The PID control parameters are tuned using the Matlab simulink PID function. The tuning
objective is to create a fast acting PID while limiting overshoot and transient response time. The specific con-
trol parameters are listed in table 5.9.
It can be seen that all controls manage to stabilize the pendulum. PID has a fast rise-time of 0.2 seconds, but
with a slight overshoot of 2-3 degrees. It settles to a steady state after around 0.6 seconds. DHP is slightly
slower in rise time (0.4 s) but settles faster to a steady state in 0.5 s at zero. The previously mentioned offset
error with HDP control is now clearly visible. HDP pushes the pendulum to the nominal point in 0.3 seconds,
but overshoots and ’gets stuck’ at a steady state of ±2 degrees.

Figure 5.12: Performance of HDP and DHP with respect to classic linear control. Disturbances are applied at t=0s and t=2s at 12 and -8
degrees respectively

Table 5.9: PID control parameters

PID Parameters Value

Proportional ( P) 1.6273
Interal (I) 7.3649
Derivative (D) 0.0859

5.6. Conclusions
In this chapter, HDP and DHP have been applied on an inverted pendulum experiment. First a model net-
work was pre-trained on a data-set, matching validation data with a mean squared error lower than 1 ·10−2.
Then, the actor and critic networks were connected and trained. The hyperparameters for all modules were
found using grid search. It was soon clear that the hyperparameter values had a significant effect on the over-
all performance of the algorithms. Grid search is a cumbersome and time-consuming method, but eventually
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gave a set of parameters that provided satisfying results. Nevertheless, the results as shown in table 5.10 and
5.11 change completely when tuning the parameters differently. A good tuning is therefore essential. The
listed results have been found to be the best results for both algorithms.

During training DHP showed better performance by faster convergence and learning speed as well as more
stable behavior. It was able to train the modules within 100 trials with lower variance than HDP. The success
rate was 95% which shows more reliable behavior as compared to HDP with 75%. Especially the failed trials
introduced more variance and coarse results of the HDP algorithm.

Looking at the control performance itself, both algorithms achieve very good results by stabilizing the pen-
dulum in less than a second from any operating point. HDP reached the nominal values by 0.1s faster than
DHP, but showing a slight offset error of 2-5 degrees. Although the offset error may be introduced by some
integration/computation errors, it was noticeable that HDP mostly stabilized the pendulum in a range near
the optimum in all experimental runs. This was even the case when penalizing the action to a higher degree,
i.e. increase the P value in the reward function 5.8. Exploration near the optimum helped to converge to a
slightly better set-point, but still an offset was present. The reason for this is due to the fact that the agent can
not distinguish the minor differences between the optimal and near optimal points when approaching θ = 0.
The error becomes unnoticeably small. This is also an explanation of the rather coarse training behavior, as
the agent is still updating the actor which leads to jump-arounds around the nominal trajectory.
DHP instead, uses the approximation of the derivative of the cost function with respect to the states for up-
dates and does not seem to have this problem. It always converged to the exact optimum (±10−6 difference
on average). This is due to the derivatives as they can still pose high values near the optimum, especially
when the optimum is a very sharp, narrow point. On the other hand, HDP seems to result in a rather more
aggressive control policy, leading to shorter rise-times. On average the HDP controller approached the nom-
inal region 0.1 to 0.2 seconds faster than DHP. These characteristics should be kept in mind as some plants
may require a more aggressive and fast acting control solution.

When compared to linear control, both controllers showed similar if not better results. DHP steered the pen-
dulum to the optimum in 0.1 s faster then the PID, without any overshoot. HDP, on the other hand, controlled
the pendulum to a steady-state even in 0.3 s (0.2 s faster than DHP), but with an offset error.

All in all it can be concluded that both algorithms show strong behavior, but DHP provided a better solu-
tion with faster convergence and learning speed. It’s results were more reliable and stable as compared to
HDP. A summary of the results is given in table 5.10 and 5.11 .

Table 5.10: Learning and control performance of Actor and Critic for HDP and DHP. These are the results for controlling to the nominal
point from 120 degree initial deflection

ACTOR
LEARNING PERFORMANCE CONTROL PERFORMANCE

Convergence rate
in trials

∅ Training time
in sec

Success rate
in %

Accuracy
offset error

Rise time
in sec (θ0 = 125deg)

HDP 150 338 75 ± 5 0.6
DHP 120 256 95 0 0.7

CRITIC
Convergence rate
in trials

∅ Training time
in sec

Success rate
in %

HDP 150 338 75
DHP 100 213 95

Table 5.11: Comparison of DHP and HDP with a linear PID controller after 12 degrees deflection

CONTROL PERFORMANCE
Accuracy
offset error

Settling time
in sec (θ0 = 12deg)

PID 0 0.6
HDP ±2 0.3
DHP 0 0.5
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6
Offline Learning Behavior

This chapter gives an example of the offline learning progress of HDP and DHP. It shows, how the two agents
are developing with each trial and how the initial policy evolves to the final control law. The last section gives
a short sensitivity analysis on the initial weights.

6.1. Policy evolution

The following graphs visualize the pitch response of the F-16 aircraft together with the desired reference. They
are depicted on a time-series plot, while a trial ends at every 20 second interval and the simulation is resetted
to the trim condition. With 100 trials this means that there is 2000 seconds of total simulation time. In order
to make it more readable, only the first 200 seconds are shown, which corresponds to 10 trials. The controls
are not perturbed in this case.
Figure 6.1a and 6.1b show an example of the learning progress, where both algorithms finalize in an optimal
policy. Clearly there is a learning process with every trial. HDP starts with extreme elevator deflections from
±25[deg] and then slowly converges to follow the reference signal. As there is no exploration, HDP is only
slowly re-learning that the initial spike in the control-signal is not favorable. DHP also starts with quite strong
elevator deflections near the saturation points, but quickly adapts.
Similarly, Figure 6.2a and 6.2b show the learning progress with respect to the reward, actor and critic mean
squared error (MSE). Note that only the first 10 trials correspond to the response plots of Figures 6.1a and
6.1b. It can be seen that the actor error increases slightly in the first 2 trials of the experiment. This may be
caused by the critic learning progress. The actor parameters rely on the convergence and information from
the critic and if that is not trained well yet, the actor wont find a proper solution or even diverges. That is why
the critic needs to learn faster (converge faster) than the actor. This explains also some oscillations that are
visible in the learning process of the actor. If the critic finds itself in a new state-sequence (by exploration or
by coincidence) and receives a higher reward/less penalty, then it will immediately update the value function
approximation. The actor, then, will receive higher error measures and needs to adapt all over. Depending
on the learning rate, this may take several trials again, or in some cases may even lead to divergence.
The optimal policy shapes after training can be seen in figure 6.3a and 6.3b. HDP shows a much more extreme
control behavior, with mostly highly negative or positive elevator deflections. Only in a small region of q and
∆θ the elevator deflection gets near zero. Additionally, it is noted that the control behavior is shifted. It
would be expected to give a 0 elevator deflection at q = 0deg and ∆θ = 0deg, but instead the actor suggests
δel = −25deg. The actor after DHP training shows a much more smooth surface with less extreme control
deflections (±20deg maximum). Also the control at state [q = 0, ∆θ = 0] is nearly zero, which indicates that
the actor shape is correctly aligned.
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(a) HDP response for the first 10 trials. The dotted line
marks a new trial.
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(b) DHP response for the first 10 trials. The dotted line
marks a new trial.

Figure 6.1: Offline learning history. Every t = 20[s] the simulation is resetted. If the pitch angle exceeds 60 degrees, the trial is considered
as a fail and the simulation stops.
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(b) DHP

Figure 6.2: Reward and error history for the complete experimental run. The error plots are on a log scale and the dotted line denotes
the trial at which the reward approaches near 0.
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Figure 6.3: Actor input-output behavior after training
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6.2. Neural network weight-updates
A good indicator for the learning progress is the evolution of the neural network. If it is a stable process, the
weights of the actor and critic are converging to a constant and don’t diverge or oscillate. Figure 6.4a to 6.7b
show the update of the weights within the first 20 trials of the same experimental run as given in the previous
section. Clearly, the weights and biases are heavily changing in the first four to five trials and then stay almost
constant with small adjustments.
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Figure 6.4: Evolution of the actor weights and biases during the first 20 trials.
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Figure 6.5: Evolution of the critic weights and biases during the first 20 trials.
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Figure 6.6: Evolution of the actor weights and biases during the first 20 trials.
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Figure 6.7: Evolution of the critic weights and biases during the first 20 trials.

6.3. Sensitivity to initial weights
The results of the previous experimental run do not only depend on the chosen network structure and /hy-
perparameters, but also on the initial weights. Figure 6.8a to 6.10b, show the effect of different initial weights
on the evolution of the learning process. The hyperparameters have been fixed as well as the network struc-
ture and only the weights are randomly initialized at the beginning of each experimental run. The magenta
shaped area in the plots denotes the 95% confidence bounds of the successful experiments. Especially at the
beginning of the experiments, the confidence bounds are wider, indicating a more coarse learning behavior
and convergence rate. In the later stage, the bounds become significantly smaller. It is also noted that critic
and actor error within HDP first start to get worse. This may be related to the higher amount of exploratory
steps at the beginning of the experimental run. Rather then following the current (sub-optimal) behavior, the
exploratory steps may push the agent to undesired states, leading to higher penalty and errors. In DHP, the
learning process seems not at all to be prone to exploration. It consistently converges with each trial.



6.3. Sensitivity to initial weights 69

0 20 40 60 80 100

trials [-]

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50
R

ew
ar

d 
[-

]

Average Reward
95% Confidence Bounds

(a) HDP

0 20 40 60 80 100

trials [-]

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

R
ew

ar
d 

[-
]

Average Reward
95% Confidence Bounds

(b) DHP

Figure 6.8: Collected rewards over 100 experimental runs, with exploration. All failed runs are excluded
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Figure 6.9: MSE of the actor network over 100 experimental runs. All failed runs are excluded
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Figure 6.10: MSE of the critic neural network over 100 experimental runs. All failed runs are excluded





7
Hyperparameter Selection

This section gives a short overview of the selection process for finding the best hyperparameters.

7.1. Importance of tuning
There are many parameters in a artificial neural network that need to be defined such as the number of layers,
weight regularization, layer size, learning rate, momentum factor etc. This can be a tedious task especially
when multiple networks are linked and trained simultaneously. In HDP and DHP there are three artificial
neural networks that depend on each other and on each others convergence. Therefore, also the tuning
of the hyperparameters for each entity is interconnected. In order to improve convergence, the different
networks can be trained offline, with a given data set, or a stable policy. As has been presented in the paper, a
slight change in the hyperparameter settings can have a major impact on the convergence of the algorithm.
It is therefore important to surely find the correct settings for the parameters, i.e. optimize the learning rate,
momentum factor etc.

7.2. Optimization
Grid Search: The idea of grid search is simple and is considered to be the most widely used strategy for hyper-
parameter optimization next to manual search (LeCun et al. [32], Rumelhart and McClelland [53]). Consider a
set of hyperparametersλ= {µ,η,L...} that effects the learning algorithm and each parameter has an associated
set of values {K (1)...K (s)}. Then, the number of experiments is directly related to every possible combinations
of those hyperparameters values, i.e. the number of trials is H =∏S

s=1 |K (s)|. Obviously, the more elements in
λ or the more possible values K, the bigger the grid and the more elements H need to be tested. That is why
grid search usually performs poorly in practice, as it requires a lot of time and test runs (Bergstra and Bengio
[6]). In addition, the random initialized weights also have an effect on learning performance which means
that each experiment with a certain parameter-set would need to be repeated a certain number of times with
different weight-sets in order to determine the performance within some confidence bounds. This method
has been applied in this thesis. It is a rather simple brute-force algorithm to find the right parameter settings.
Almost 10000 different settings have been applied, each for 5 experimental runs in order to exclude the effect
of random initial weights on the final performance. The selected search space can be seen in table 7.1. Note
that the search space differs per algorithm. DHP seemed to perform better with slightly higher values for the
learning rate and momentum factor. The critc learning rates have generally been higher as this entity needs
to converge faster than the actor. If a certain setting has given good results, additional experiments have been
conducted in the neighborhood of that setting. The search itself is computational expensive, requires a lot of
simulation time and does not guarantee the best selected sets for the final runs. For future research it is rec-
ommended to use rather more advanced methods to find the right settings, such as Bayesian optimization.

Bayesian Optimization: In contrast to the previous two methods, Bayesian optimization is an automated
process of finding the optimal parameters. It assumes the unknown function (in this case the maximum
return) to be sampled from a Gaussian Process (GP). Snoek et al. [58] presents the framework of Bayesian
optimization in machine learning and describes an algorithm that also takes into account the variable cost
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(duration) of the learning process. Basically, after each experiment the hyperparameters are changed accord-
ing to the Expected Improvement over the current best results or the Expected Improvement per second. It
has been shown in Snoek et al. [58] that the results with Bayesian optimization outperforms current optimiza-
tion benchmarks. That is why this tool is a considerable feature for this thesis. It has not yet been included
for the results obtained in chapter 5, but it is planned to use it for the upcoming experiments.

Table 7.1: Search space of the hyperparameter settings for grid search

Variable Tested values HDP Tested values DHP

nneur ons 4 to 14 in steps of 1 4 to 14 in steps of 1

ηa 0.001 - 0.02 in steps of 0.001 0.01 - 0.2 in steps of 0.01
ηc 0.01 - 0.05 in steps of 0.01 [0.1 - 0.5 in steps of 0.1

µa [0, 0.1, 0.2] [0, 0.1, 0.2]
µc [0, 0.1, 0.2] [0, 0.1, 0.2]



8
Plant Model Performance

DHP and HDP are model-based RL methods, meaning that they require an on-board model of the plant. This
chapter reviews the quality of the pre-trained plant model and also shows the online training behavior.

8.1. Offline training
The plant-model is an artificial neural network with 10 sigmoidal neurons in the hidden layer. It is trained
offline at first, meaning that the parameters are updated in several epochs with previously gathered data.
Before training, the data set is split into a training and validation sub-set. At the start of each epoch, the
data samples of the training set are (re-)shuffled and divided into batches. Each batch is then individually
presented to the neural network, for training. After an epoch, the mean squared error is determined with
respect to the complete training and validation set. Figure 8.1 shows the MSE history throughout the training
process. Clearly, the model error drops below 10−4 within less than 10 epochs. Since the neural network is
fitted on the training set, the error continues to decline, while the validation MSE nearly gets constant. This
also shows the significance of having an additional validation set, in order to detect if overfitting occurs.
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Figure 8.1: Plant model MSE over 100 epochs

8.2. Online adaption
In an online simulation, the plant model dynamics change instantaneously. For this particular example the
change in center of gravity position is shown, to give the reader an idea what happens with the plant model
during online adaptation. Figure 8.2 shows the learning process of the plant model at t = 30[s], which is the
time the change in plant dynamics occur. It can be seen that the plant model learns quickly, but with high
oscillations at the beginning. After about 10 seconds it converges to a minimum of 1 ·10−4 on average, with
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small oscillations. The oscillations seem to coincide with the aircraft motion, which is following a sinusoidal
reference with a 1 seconds period.
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Figure 8.2: Online adaption of the plant model due to a shift in center of gravity position at t = 30[s]



9
Direct Online Learning Approach

This chapter shows an example of a direct online training with DHP. The agent has no knowledge in memory
at the start of the simulation. Figure 9.1 shows the response of 100 seconds. It takes the algorithm about 18
seconds to converge to a near optimum and then refines until about 55 seconds, where the difference between
the response and the reference gets nearly zero (with an off-set error of ±1[deg]). The chances of convergence
are relatively low of about 15% and depend on the initial weights. HDP on the other hand, diverged quickly
in all the experimental run and was unable to learn an optimal control law (0% success).
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Figure 9.1: Direct online learning with DHP over 100 seconds and zero exploration.
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10
Conclusions

This thesis work has provided the results to determine the theoretical and practical differences of HDP and
DHP for aircraft control. This chapter summarizes all results and conclusions that have been found through-
out the study and gives some recommendations for future research.

10.1. Properties of VCCTEF
The idea of the VCCTEF system is to actively control and reshape flexible wings of an aircraft in any flight
condition in order to achieve optimal aerodynamic performance, improve handling qualities and neutralize
negative aeroelastic effects. VCCTEF is a design of Performance Adaptive Aeroelastic Wings that provides
spanwise load tailoring with continuous trailing edge flaps, whereby adjacent flap sections are connected
via an elastomer material. There are in total 16 flap sections spread along the complete wing trailing edge
with 15 sections being attached to the outer wing and 1 section being attached to the inner wing. Each flap
consists of three chordwise segments that can actively shape the chamber. As the VCCTEF is a multifunctional
type of aerodynamic control surfaces, it provides multi-axes control options. In that perspective a multi-
objective control architecture has been developed that intents to suppress aeroelastic modes, alleviates gust
and maneuver loads, stability augmentation and drag optimization. However, there are multiple challenges
that the controls are facing:

1. High amount of control surfaces that need to be steered. In total there are 48 surfaces per wing that can
be controlled.

2. Model inaccuracies, meaning that the established model never matches 100% with the real-life case
and designed controller need to

3. Certain level of dependency between each flap segment, which causes a problem as soon as malfunc-
tions occur. Failure of a single section has an immediate effect on all other sections.

4. Linearization of the control systems may lead to additional inaccuracies

The controller needs therefore be robust, adaptive and accurate for large state-space systems. One potential
approach for VCCTEF control is to use Adaptive-Critic Designs. ACD is a promising branch of reinforcement
learning, where the controller learns itself the optimal control law (online or offline). It is an adaptive, non-
linear control approach that does not require a complex model of the system a priori.

10.2. Comparison of HDP and DHP for aircraft control
The fundamental designs in ACD are heuristic dynamic programming and dual heuristic programming. HDP
uses the approximation of the value function J(x) as the information for updating the policy while in DHP
the derivative of the value function with respect to the states is directly used for the actor parameter-updates.
Both algorithms have been applied to various applications in industry already and have shown promising
results.
The contribution of this study is the application and comparison of HDP and DHP for aircraft control and
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their potential for the VCCTEF design. During the preliminary analysis, both algorithms have been applied
on an inverted pendulum task in over 20 experimental runs, each consisting of 300 trials. It is shown that
DHP provided more reliable results with higher success rate of 95% then 75% for HDP. It also showed a faster
convergence rate, as it required less than 100 trials to converge, while HDP needed 150 trials on average. The
learning behavior for HDP was also much more coarse and the final control performance showed a slight
offset error of ±5 degrees. Nevertheless, the rise-time was up to 20% faster when compared to DHP. The pre-
liminary research was the first stage of analysis and the results show clearly the learning effect for the two
algorithms, which verifies the developed code. Evidently, DHP seems to be a better choice for aircraft control
with the VCCTEF design. This is due to the fact that it showed higher reliability, faster learning and better
control performance.
During the main thesis work, HDP and DHP have been compared and evaluated on a 2D pitch-tracking task
in a F-16 aircraft model. The experimental study involved an offline and online learning phase. The results
have shown that during the initial offline phase, both controllers were able to learn the correct behavior and
control the baseline model of the F-16 aircraft. DHP showed higher success ratios and converged to an op-
timal control-law in almost half the time as HDP. Also the tracking performance was more accurate, with an
overall lower RMS error.
In the online learning phase, both controllers could handle most changes in the longitudinal aircraft dynam-
ics even without adapting their parameters. This reveals their robustness as the baseline controller could
cope with some changes in the dynamics, sometimes with better performance than without those changes.
Especially HDP improved in the tracking performance for all the different modes. DHP seemed less robust.
It was able to follow the pitch reference signal very well for changes in the Cmq , but was unable to handle the
shift in the center of gravity position, resulting in an unstable behavior.
However, for simulations with parameter adaptation DHP showed a clear performance improvement, as it
could adapt quickly to all the changes in plant dynamics, while HDP seemingly learned an unstable behavior.
It can be concluded that DHP is a better method for aircraft control than HDP. It showed higher success rates,
faster learning, decent robust behavior as well as quick and stable adaptation to changes in the plant dy-
namics. In general, the adaptability and self learning behavior makes it a promising solution for the VCCTEF
design. However, a major drawback of these RL methods is that the learning process is not transparent and it
is unknown what exact changes are made to the network parameters with every update cycle. This especially
becomes a problem when the controller is learning a wrong policy, getting the system unstable as it was the
case with HDP. Furthermore, the high sensitivity to the initial learning parameters makes it unclear whenever
the best parameter combinations are chosen. Just a slight change in the settings has lead to a drastic change
in performance in this study. It was also noted that the RL methods are well able to control complex systems
with two states and one control variable, but as soon as the amount of states and actions increases the indi-
vidual networks may have more trouble to converge. As in the online learning phase the overall convergence
depends on the convergence of three separate entities (actor, plant-model and critic network) the probability
of convergence of all entities to an optimum gets very low. Looking at the VCCTEF and its complexity with
more than 48 control surfaces that can be actuated, a direct control of the effector using RL methods may not
be feasible.



11
Recommendations

For future research it is recommended to apply HDP and DHP for aircraft control in a bigger state-action
space. This shall reveal how the algorithms can perform with an increased complexity of the tasks. Next to
that, it would be interesting to see how well HDP and DHP performs when the state information is provided
by sensors that include sensor noise. Furthermore, brute force methods and grid search for defining the hyper
parameters of the neural networks is a tedious task and does not guarantee the best settings. A way to improve
this, is to use machine learning methods such as Bayesian optimization to search in the hyperparameter
space and solve for the best settings. This makes also the comparison between the algorithms more fair as
can be guaranteed that the networks perform with the best settings.
Another idea, would be to test other candidates from the design family such as GDHP, which supposedly
combines the benefits of HDP and DHP.
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A
Artificial Neural Networks Function

Approximators

Inspired by the functionality of a human brain Artificial Neural Networks (ANN) have gained a lot of attention
in recent research especially in the field of machine learning and artificial intelligence. In general they can be
seen as parametric functions that imitate the input-output behavior of any process. The typical feed forward
neural network is therefore a mapping of parameter space to function space (Busoniu et al. [11]). Consider a
dynamical process with the following property:

x(t +1) = f (x(t ),u(t )) (A.1)

This process can be represented by an ANN approximator such that

x̂(t +1) = f̃ (x(t ),u(t ); w) ≈ x(t +1) (A.2)

where f̃ (x(t ),u(t ); w) is the function approximator with parameters w , using the same inputs as the origi-
nal system and approximating the original output. w are real numbers, also called the network weights and
express the importance of respective inputs to the output. A feed forward neural network is a typical exam-
ple of a parametric function that is non-linear in its parameters (Bertsekas and Tsitsiklis [7], Hassoun [21]).
The form and number of parameters are typically defined before tuning and implementation. Looking at
f̃ (x(t ),u(t ); w), the structure or such ANN can be described as follows (see figure A.1).

Figure A.1: Artificial neural network structure with 2 linear input neurons in the input layer, n neurons in the hidden layer and 1 linear
output neuron. Each line indicates a connection between two neurons, while the connection contains a specific weight w

f̃ consists of multiple sections, the so called layers and each layer contains a certain number of neurons.
The Neurons itself are linear or non-linear functions, called activation-function or transfer-functions. The
number of input variables of the process determines the number of neurons in the input layer. Those are
usually linear, meaning that they do not change the input value. The connections between each neuron
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in one layer to a neuron in the subsequent layer is subjected to a weight w and denoted by lines in figure
A.1. After the input layer follows a number of hidden layers, although one hidden layer is usually enough to
capture most plant dynamics (Nielsen [48]). The number of hidden layers and number of neurons in each
layer are design variables that need to be defined by the engineer.

A.1. Feed Forward Path
Processing the input and mapping it to an output signal is done by feed forward computation. Consider the
network as shown in figure A.1. The states x1 and x2 pass the input neurons which are linear. In general, the
output of neuron i in layer j is described by h j i . So, for the input layer it gets:

h11 = x1

h12 = x2

h11 and h12 are then multiplied by n number of weights (denoted by black lines in figure A.1), where n is
the total number of neurons in the next layer. The inputs to the neurons in the hidden layer is therefore a
weighted sum of x1 and x2 with an additional bias b j i and is denoted by z j i :

z j i =
m∑

k=1
xk w j i k +b j i (A.3)

Where k is the neuron from the previous layer with maximum m neurons. These are observed by the respec-
tive neuron transfer function in the hidden layer. Transfer-functions φ(z) within the neurons are typically
sigmoidal functions such as hyperbolic tangent (see figure A.2). They compress the input z to an interval
between 0 and 1 (or -1 and 1). The output therefore gets

h2 =φ(z) (A.4)

which is a vector containing n elements, i.e. one for each neuron. The final outputs yi are then determined
by the weighted sum of h2

ŷi =
m∑

k=1
h2i k w2i k +b2i (A.5)

If the output neuron is a sigmoidal function as well (necessary when saturation of outputs is desired), then
the output gets

ŷi =φ
(

m∑
k=1

h2i k w2i k +b2i

)
(A.6)

This completes the feed forward path. Eventually, the network weights w need to be tuned such that the ANN
output ŷ approximates the desired output y . The update of the network parameters is done by backpropaga-
tion.

A.2. Backpropagation
Backpropagation is the most common way to update the parameters in a feed forward artificial neural net-
work (Riedmiller and Braun [52]). The basic idea is to determine the influence of each weight in a neural
network with respect to a specified error function E. This is done by means of the chain rule and finding the
partial derivatives of E with respect to each weight (Rumelhart and McClelland [53]):

∂E

∂w j i
= ∂E

∂yi

∂yi

∂zi

∂zi

∂w j i
(A.7)

∂E

∂b j i
= ∂E

∂yi

∂yi

∂zi

∂zi

∂b j i
(A.8)

where wi j and bi j are the network weights and biases respectively, for the connection between neuron j and
i, yi is the output of the i-th neuron and zi the weighted sum of the inputs to that neuron. In most cases this
error function is the squared difference between the output of the network y and the desired value yD :
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Figure A.2: Sigmoid transfer function and its derivative

E = 1

2

∑
k

e2
k

ek = yk − yD

with k being the number of outputs of the ANN. Having computed all partial derivatives from equation A.7
the minimum of E can be found by applying Stochastic Gradient Descent (SGD) rule:

w j i → wi j (t +1) = w j i (t )− η

n
η

∑
n

∂E

∂w j i
(A.9)

and

b j i → bi j (t +1) = b j i (t )− η

n
η

∑
n

∂E

∂b j i
(A.10)

With n being the size of the data-samples. Basically the weight is shifted in the direction of the negative gra-
dient with step-size η, where η is the so called learning rate. The learning rate has a crucial role with respect
to convergence and performance of the neural network. Choosing a value too high may lead to oscillations
and performance will diverge in time rather than converge to an optimal solution. Some other settings lead
the ANN to fall into a local optimum and if the learning rate is too low, the process takes too much time-steps
to learn such that it may not even be apparent in the results. Tuning the parameters such as learning rate,
number of nodes and hidden layers as well as the training and test sets can be very tedious and choices are
seemingly arbitrary LeCun et al. [32]. With a high-dimensional, non-convex cost cost surface that contains
multiple local minima, backpropagation may be very slow and convergence is not guaranteed. In recent years
there have been some developments and extensions to improve convergence and find the optimal hyper-
parameters settings. A small review of those methods is given in the following sections A.3 and 7.2.

The backpropagation algorithm may be applied to each input-output pair seperately or in batches. In the
example where a whole batch of data-pairs is presented to the network before the weights are adjusted is
considered as batch-learning. SGD is a method that can be employed to update the weights online, i.e. each
time a single data-pair {x, y} or mini-batch is presented. This method is preferred because 1) it converges
much faster especially for data-sets with similar patterns, 2) results are often more accurate and 3) the online
learning applicability.

Although feed forward ANN’s have strong properties such as global approximation, non-linear approxima-
tion, black-box modeling and the possibility to represent high state-space dimension, usually linear parame-
terized approximators are preferred. This is due to the fact that those functions have better locality, meaning
that it is possible to improve approximation power in a small region of the input space without effecting val-
ues outside of that region (Coulom [12]). Examples of such linear parameterized function approximators are
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radial basis function networks (Bertsekas and Tsitsiklis [7]), tile coding (Sherstov and Stone [57], Watkins [67]),
multilinear interpolation (Davis [14]) and Kuhn triangulation (Munos and Moore [38]).

A.3. Convergence Improvements
There have been multiple ways to improve the convergence and performance of artificial neural networks
such as modified error functions, improved weight initialization, momentum co-efficient, adaptive learning
rate and different transfer functions.

Momentum Factor: An early approach was to introduce a momentum co-efficient µ which modifies the
current gradient descent update by adding a scaled gradient term from the previous step (Nielsen [48]):

vi j → vi j (t +1) =µvi j (t )−η ∂E

∂wi j
(A.11)

wi j → wi j (t +1) = wi j (t )+ vi j (t +1) (A.12)

The temporary term vi j is initialized to be zero and µ ∈ [0 1). Momentum-based gradient descent algorithms
have the advantage to include the knowledge of the past gradient and shall accelerate convergence. How-
ever, in practice the problem of tuning is still present and not always leads to a more stable learning process
(Riedmiller and Braun [52]). The choice of α and µ essentially relates to the training success and speed. The
momentum factor is only applied to the weights and not to the biases.

Adaptive Learning Rate: Another way to improve weight-updates is to adapt the learning rate during the
learning process (Darken and Moody [13], Schiffmann et al. [56]). A high learning rate is desirable to make
bigger steps down the slope of a long, continual decreasing cost-function and reducing the rate leads to a
good asymptotic behavior and prevents oscillations at the later stage. There are different strategies for learn-
ing rate adaption and some algorithms and their performance are presented in Schiffmann et al. [56]. The
majority uses the information of the error function and its gradient to update the learning rate. The most
common strategies can be described as follows (Plagianakos et al. [49]):

• The learning rate increases exponentially with every epoch that resulted in a reduced error and de-
creases significantly whenever the error increases

• Starting with a small α, the learning rate increases when the gradient of successive epochs points into
the same direction, but is reduced as soon as the direction of the gradient fluctuates strongly

• Each weight is receiving an individual learning rate which increases whenever the ∂W has the same
sign as the ∂W in the previous epoch. An example of such method is the Delta-Bar-Delta rule (Wu et al.
[72])

• With each iteration the learning rate is calculated using a specified formula such as the "running aver-
age" or the "search and converge" (Darken and Moody [13])

Those algorithms may take into account the effect of the learning rate, but this effect can be disturbed by the
behavior of the derivative ∂E

∂wi j
itself (Riedmiller and Braun [52]). An approach to overcome this issue is to ap-

ply Resilient Propagation (RPROB) where the weight update is determined only depending on the sign of the
derivative and not on the value of ∂E

∂wi j
(Riedmiller and Braun [52]). it has also been demonstrated by various

experiments that the algorithm promises a significant decrease in required learning epochs. In Schiffmann
et al. [56] this algorithm is said even to be the fastest with very good performance and independent of the
initial step-size settings.

Weight-initialization: There is one problem in particular with sigmoidal neural network structures that ham-
pers the learning process. The input to each neuron is the weighted sum of input-signals and due to the
properties of sigmoid functions, this signal is mapped to an interval between -1 and 1 (or 0 and 1). Whenever
the neuron receives high or low values, the output saturates to the one of the values near the interval bounds.
As explained in the previous section the derivative of the sigmoid function is an important addend in the
backpropagation algorithm, but the derivative becomes nearly zero in those boundary regions. That is why
different weight initialization of the neural network lead to different learning behavior & results. There are
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multiple ideas to deal with this issue. One example is to add simply a small constant to the derivative such
that it never gets zero (Fahlman [16]). However, Riedmiller and Braun [52] noted that this did not lead to a
better and stable convergence property. Nielsen [48] described a better way to improve weight initialization
by simply dividing all pseudo-random weight values by the square root of the number of input-nodes. The
weights itself are initialized with normalized Gaussians.
In any case, this problem makes it obvious why the data-set needs to be normalized as high values for in- and
outputs would lead to immediate saturation and slow learning.

Regularization: A neural network with a large number of free parameters can describe very complex systems,
but a good fit with the available data may not necessarily conclude that the ANN is a good model (Nielsen
[48]). It just means that it fits well with the given data, but it may not capture the genuine dynamics of the
system itself. It is possible that the ANN is trained too well on the given set and thus fails to generalize to new
situations and data points. In literature, this is referred to as overfitting and it is one of the reasons why the
data-set is split into a training and test-set. So the performance of the ANN is evaluated based on a data-set
that the ANN has not seen before. Another way to restrict overfitting is by regularization techniques. There are
several methods such as dropout, artificially expanding the training-set, or L1 and L2 regularization (Nielsen
[48]), while the later one is the most common method. L2 regularization, also called weight decay, adds a
regularization term to the error function E:

E = 1

2n

∑
x

e(x)T e(x)+ L

2n

∑
w

w2 (A.13)

where L is known as the regularization parameter, n is the total amount of samples in the data-set and w are
the network weights excluding the biases. With this addend, the weight update gets:

wi j → wi j (t +1) = (1− µL

n
)wi j (t )+ vi j

′ (A.14)

and the term (1− ηL
n ) is considered to be the weight decay.

All aforementioned tools show promising results in application, which is why most of them are included
within this research as well. Due to the circumstances of HDP and DHP algorithms, an ANN class was devel-
oped which includes SGD backpropagation, momentum factor, L2 regularization, normalized input-output
data-pairs and improved weight initialization. The SGD property makes it possible to train the ANN’s online.
It is recommended to include the RPROB algorthim in combination with advanced adaptive learning rate ca-
pabilities in the next step such that convergence and performance are improved even further. All methods
that are mentioned in this section may help to achieve better results, but the problem of tuning of each pa-
rameter is still present. Some methods for finding the best hyper-parameter settings are discussed in the next
section.
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