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This paper considers supersonic spatial flow fields which are conical in the 
sense original1y introduced into aerodynamics by BUSEMANN [1]. In such a 
flow the velo city and the conditions defining the state of the gas, e.g., the pressure 
and temperature, are constant on rays through one point of the physical space, 
called the center of the conical field. Generalized conical flows, being flows 
in which these quantities are homogeneous of degree higher than zero (e.g. [2]), 
and conical fields used to construct flows of incompressible fluids (e.g. [3]) are 
thus excIuded. 

The treatment of conical flows within the frame of the linearized theory 
was initiated by BUSEMANN [4J and has been given much attention sin ce by 
many authors (e.g. [5J and [6J) . Also, higher order approximations were con­
sidered, where either linear theory ([7J, [8J ) or the non-linear solution for the 
axially symmetric flow around a circular cone ([9J, [10J) were chosen as a starting 
point. 
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For a long time the development of non-linear theory has been restricted 
to the study of particular examples, such as the solution for the axi-symmetric 
flow around a circular cone, given by BUSEMANN [IJ, [l1J and by TAYLOR & 
MACCOLL [12J, and other types of conical flow [13]. In the non-linear theory the 
flow around a specific body is obtained as a numerical solution of the differential 
equations. Methods of construction of such a numerical solution have been 
discussed by MASLEN [14J, FowELL [15J and FERRI, VAGLIO-LAURIN & NESS 
[16J, [17J . However, in solutions found by these methods, for example for the 
flow around a flat delta wing with supersonic leading edges as given by MASLEN 
[14J and FowELL [15J, certain discrepancies alise. It is of interest therefore 
to consider in more detail the non-linear equations governing conical flow. This 
has been done by BULAKH in a 'number of papers [18J-[22J, partly commenting 
on papers cited above [21J, [22J. In the present paper the properties of non­
linear isentropic conical flow are studied through a different approach, con­
sidering surface elements of integral surfaces of the non-linear equation trom 
the point of view of differential geometry. For this purpose the hodograph 
transformation of isentropic conical flow, as studied first by BUSEMANN [l1J, [23J 
and later by GIESE [24J, NIKOL'SKIl [25J and RYZHOV [26J, appears to be par­
ticularly useful. 

2. Irrotational conical flow analyzed on the unit sphere 
around the center of the flow field 

In the physical space let a right-handed co-ordinate system x, y, z be fixed 
with the origin at the center of the conical field, and let u, v and w be the 
components of the velo city along the axes, respectively. The coefficients of 
viscosity and heat conduction of the gas are assumed to be zero. If it is assumed 
moreover that the flow is isentropic, the three conservation laws (mass, momentum 
and energy) yield the following equation: 

u (1 - U
2

) + v (1 - ~) + w (1 - ~) _ x a2 Y a2 Z a2 
(1 ) 

uv vw uw 
- - 2 (Uy+V")- - 2 (vz +WY)- - 2 (w,,+UZ) =0, 

a a a 

where a is the local velocity of sound, related to the velocity components by 

a2 = y+1 a2 _ y-1 (u2 + v2 + w2) = y+1 a2 _ y-1 q2 (2) 
2 * 2 2 * 2' 

a* is the critical velo city of sound, and y is the ratio of specific heats (y = ~:). 
If the flow is free of rotation, a velocity potential may be defined in the 

usual way such that 
CP .. = u, cPy = v, cP, = w. 

Equation (1) then becomes 

cp .... (1 - ::) + cPyy(1- ~:) + CP .. (1- ::)-
(4) 

uv vw uw 
- 2CP"Y - 2 - 2CPY' - 2 - 2CP"' - 2- = 0. a a a 
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This equation may now be specialized for conical flow, using the property 
that the velo city does not change along rays through the center of the field. 
The velo city and the state of the gas depend therefore on two length co-ordinates 
instead of three, as in the general case of spatial flows. These co-ordinates may 
be taken arbitrarily to be x and y, and the flow may be considered in a plane 
z = const. It is convenient also to analyze the flow on a unit sphere with center 
at the center of the conical field. The plane z= 1 is then a plane tangent to this 
sphere at the point (0,0, 1). By rotating the x, y, z axes, any point on the 
sphere can be taken as this point. The conical properties of the flow may be 
expressed by putting 

(5) 

where ç= x/z and 'YJ= 1z, and from (3) then follows 

u=Fç, v = ~, w=F-çFç-'YJ~. (6) 

With the aid of (5) the following equation may be written for equation (4): 

Fç~[1+ç2- (U-a~W]+2Fç'l[Ç'YJ- (U-W;~~V-W7J)]+ 

+ E [1+ 2_(V-W1))2] = 0 
'1'1 'YJ a2 . 

(7) 

In order to determine under what conditions this quasi-linear homogeneous 
partial differential equation is elliptic, parabolic or hyperbolic the character­
istic directions may be dete~ined from the equation 

(
d 7J )2 [1 + ç2 _ (U -W ;)2]_ 2 (~) [ç'YJ - (u- w;) (V -W 1))] + 
d; ehar. a2 d; ehar. a2 

+[1+'YJ2- (V-a~7J)2] =0. 
(8) 

For the local investigation of the flow it is convenient to use a co-ordinate 
system in which velo city components are measured along and perpendicular 
to the radius under consideration. The x, y and z axes are therefore rotated in 
such a way that the z axis has the direction of the radius under consideration 
and the x axis is in the direction of the velocity component perpendicular to 
the radius. The rotated system may be indicated by X, Y and Z, and the 
velo city components by U, V and W, respectively, U being the velocity com­
ponent perpendicular to the radius and W the velocity component along the 
radius. If the flow is analyzed on the unit sphere, U is the velocity component 
tangent to the sphere. A streamline on the sphere may be defined as the inter­
section with a streamsurface, which may be constructed as a cone with the 
vertex at the center of the conical field and going through a spatial streamline. 
A streamline on the unit sphere is thus directed along the X axis or the velocity 
component U and is named a conical streamline. The characteristics given by 
(8) may be drawn on the unit sphere and are called the conical characteristics. 
For the point (0, 0, 1) in the X, Y, Z system the conical characteristic directions 
read 

(dE) ±1 
dH ehar. = V U 2 - 1 • 

a2 

(9) 



302 J. W. REVN: 

The conical characteristics thus subtend the Mach angle, defined in terms of the 
velo city on the surface of the unit sphere, with a conical streamline. Let us 
eaU this Mach angle the conical Mach angle /-le and the Mach number defined 
in terms of the velocity U the conical Mach number Me (= U/a); then equa­
tion (9) can be written as 

(dE) ± 1 - = l' = ±tan/-le · 
dH ehar. M~-1 

(10) 

In analogy with two-dimensional plane flow the velo city normal to the conical 
characteristics is equal to the speed of sound. The conical characteristic direc­
tions are real and have two different values for Me> 1; the equation is then of 
hyperbolic type, and the flow wiU be called conical-supersonic flow. For Me = 1 
the two conical characteristic directions are coincident, real and perpendicular 
to the conical streamline; the equation is parabolic, and the flow will be termed 
conical-sonic. If Me < 1, the conical characteristic directions are imaginary; the 
equation is of elliptic type, and the flow will be called conical-subsonic flow. 
Points on the unit sphere where U = 0 will be called conical stagnation points *. 
It is of interest to consider the relation between the characteristic surfaces in 
the spatial flow and the conical characteristics thus defined. A disturbance 
generated at a point of the flow field travels along the characteristic surface 
through that point; the characteristic surface starts as a characteristic or Mach 
eone. All characteristic surfaces emanating from points on the ray of the 
point considered may be constructed bya similarity transformation of the given 
eharacteristic surface with respect to the center of the conical field. The envelope 
of all characteristic surfaces so obtained is thus aconical surface, which intersects 
the unit sphere along tli'e conical characteristics going through the point of inter­
section of the ray under consideration. This can be seen in the following way. 
Since the velo city component norm al to the envelope, being a surface to which all 
eharacteristic surfaces are tangent, is equal to the velocity component normal 
to a characteristic surface, this velo city is sonic. Since the normal to the conical 
envelope is perpendicular to every curve on the envelope through the point 
eonsidered, the normal at a point of intersection with the unit sphere also is 
perpendicular to the ray through that point and the intersection of the 
envelope with the unit sphere. The normal to the envelope thus is tangent 
to the unit sphere and perpendicular to the intersection of the envelope with 
the unit sphere; the velo city component along it is sonic, which shows that 
the intersections are conical characteristics, A conical disturbance may be defined 
as a disturbance generated with equal strength all along one ray. The con ie al 
characteristics are then the lines along which conical disturbances tra vel. An 
analogy with two-dimensional plane flow may be interpreted in the following 
sense. When a two-dimensional sound source is moving in aplane, the sound 
signals emitted by the source are propagated by sound waves which, if the velocity 
of the source is supersonic, form an envelope, being characteristics or Mach lines, 
In conical flow the disturbances travelling along the characteristic surfaces may 
be thought of as propagating on the unit sphere along curves which are the 

* A disadvantage of this term is that the source-like character of a conical stagna­
tion point (U = 0, thus W =!= 0, because q =l= 0) is not expressed by it, 
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intersections of the characteristic. surfaces with the unit sphere. When the flow 
is conical-supersonic, the curves of intersection belonging to the characteristic 
surfaces of one ray have an envelope which consists of conical characteristics on 
the sphere. 

It may be noted that the characteristic surface emanating from the center 
of the conical field is of special interest. This surface coincides with the Mach 
~one with its apex at the center of the field and intersects the unit sphere along 
·a conical-sonic line. This may be seen from the fact that a characteristic cone 
.at some point of this conical characteristic surface is tangent to it along the 
radius through this point. The velocity component normal to the radius is 
therefore equal to the velo city component norm al to the characteristic surface 
or Mach cone. Since the latter velo city component is sonic, the velocity com­
ponent normal to the radius is sonic, and Mc=1. 

The velo city at the center of the conical field is in general multivalued; 
hence the Mach cone is not necessarily circular. Also it may be noticed that 
the influence of the center of the conical field is not restricted to the down­
stream interior of the characteristic cone from the center of the field. Actually 
it is confined to a cone, which may be constructed by connecting the center of 
the cone field with all points on the unit sphere by a curve formed by the 
conical characteristics which envelop the conical-sonic line. This may be seen 
in the spatial flow field by assuming that the disturbances originating in the 
center of the field travel initially over the conical characteristic surface from 
the center of the field. According to ·HUYGENS' principle each point reached 
on tbis surface in turn acts as a source of disturbances which propagate along 
the characteristic surface of that point. The latter surface is tangent to the 
con ic al characteristic surface from the origin but does not necessarily lie inside 
the downstream interior of it. The envelope of all characteristic surfaces starting 
at the characteristic surface from the center of the field thus bounds the region 
of influence of that center. This envelope intersects the unit sphere along the 
aforementioned curve. 

In order to illustrate the quantities defined on the unit sphere, parallel flow 
throughout tbe physical space may be considered as an example of conical flow. 
The center of tbe field may be chosen arbitrarily at any point of tbe flow. The unit 
sphere is sketched in Fig. 1. The conical streamlines, being the intersections with 
tbe sphere of meridian planes through the diameter connecting the conical stagnation 
points, go from one conical stagnation point to the other. Conical-subsonic and 
conical-supersonic regions may be distinguished, separated by circular conical-sonic 
lines which are the intersections of the Mach cone from the center of the field with 
the sphere. The envelope of characteristic surfaces emanating from points of one 
radius consists of two planes which pass tbrough this radius and are tangent to the 
Mach cone through the center of the field. The conical characteristics are the inter­
sections of tbese plan es with the sphere. 

The difficulty in trying to determine the physical properties of conical flow 
lies partly in the fact that regions of conical-subsonic and conical-supersonic 
flow may occur simultaneously in a flow field, in which case (7) is of the mixed 
type. Since partial differential equations of the mixed type are in general 
difficult to handle, we use an approach which lends itself weIl to th is specific 
problem. 
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The properties of conical flow are given by the states of mot ion that a gas 
particle in a conical flow might have. 

The motion of a gas particle may be determined by its velo city, acceleration 
and higher derivatives of the velocity up to an arbitrary order. It is seen from 
equation (6) that when for a point on the unit sphere the velocity is given by 
its components along the axes, the co-ordinates of the integral surface F(~, 'YJ) 
representing a flow where such a situation occurs and the tangent plane at 
same point on the surface are determined. Similarly, the magnitude and direct ion 
of the derivative of the velo city up to some order determines the surface element 
of F at that point, up to that order. 

chorocferistie surf ace 
thraugh the eentre of fhe fie':!;ld~:--__ _ 

\ ~ 
--- / 

I 

eonieol 
1 __ ~~~7'. 

characferisfic surf aces emonafing 
from points on radius 0 A 

eonical sfognafion 
point 

~~---4----~~----~~~~~ \ 
\ 

- - conieol-supersonie flowl1c>/ 

eonicol-sonie line Me = / 

conicol-subsonie flow /'1c< I 

eonicol slagnofion point U=o 

Fig. 1. Description on the unit sphere of parallel flow throughout physical space 

To all geometrically possible surface elements that the differential equation 
permits to be surface elements of an integral surface thus correspond possible motions 
of a gas particle in a conical flow. The physics of conical flow is thus reduced 
to the differential geometry of integral surfaces of the differential equation for 
conical flow. In combination with (7), it is useful from the point of view of 
differential geometry to consider an equivalent equation obtained by the 
Legendre or hodograph transformation, which will now be discussed. 

3. The hodograph transformation of irrotational conical flow 
The hodograph transformation of irrotational conical flow is obtained in the 

usual way by introducing the Legendre potential 

sa that 
x(u,v) =u~+v'YJ -F(ç,'YJ) , 

Xu =~, Xv='YJ· 
Comparing (6) and (11), we see that 

X(u, v) = - w(u, v). 

(11) 

(12) 

(13) 
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The opposite of the velocity component along one axis may therefore serve as 
the Legendre potential, being a function of the other two velocity components, 
and the conical flow may be represented by a surface in the hodograph space. 

By use of (13) in equation (12) follows 

wu= - ;' w.,=-'YJ. 
Differentiating (14) yields 

d;=-dwu=- (wuudu+w"v dv ), 

d'YJ = - dwv = - (wvu du + wvv dv). 

If the Jacobian determinant LI =wuuwvv-w~. is finite and different 
(15) may be solved for du and dv, and we have 

1 
du = Lr (- wvvd; + wuvd'YJ) , 

1 
dv = Lr (wvu d; - wuu d'YJ). 

(14) 

( 15) 

from zero, 

(16) 

The transformation is then locally one-to-one; that is, to one point on the unit 
sphere in the physical space corresponds one point on the surface in the hodograph 
space, and vice versa. Singularities in the transformation occur for LI =0 or 
LI-.+oo. Furthermore, sin ce 

du = u.d; + u"d'YJ = Poe d; + Po1Jd'YJ, 

dv = vod; + v"d'YJ = Po"d; + P"1J d'YJ , 
(17) 

comparing this equation with (16) yields the second derivatives of F, and the 
following differential equation may be written instead of equation (7): 

[1+ 2 (V+WWv)2]_ 2 [ _ (u+WW,,) (V+WWv)j + 
w"u Wv - a2 wuv WIl Wv a2 

+ [1 + 2 _ (U+WWu)2] = 0 wv ., w" a2 • 

(18) 

It may be noted that if w (u, v) is a solution of this equation satisfying given 
boundary conditions, - w (- u, - v) is also a solution. Therefore, as in all 
isentropic flows subject to boundary conditions in the form of prescribed stream­
lines, the flow may be reversed. The significanee of this fact will be diseussed 
later in relation to the limit cones. 

Equation (18) is of the same type as (7), and the characteristics of the equation 
may be written as 

(~)2 [1+W2-
du char. v 

(V+WWV )2j + 2 (~) [w w _ (u+wwu) (v+WWv)] + 
a2 du char. u ti a2 

+ [1+W~- (U+;2Wu)2j =0. 
(19) 

For the conieal eharacteristic directions on the hodograph surfaee in the 
U, V and W co-ordinates we have 

(~~Lar.= ± VMc
2 

- 1. (20) 

Elliptic and hyperbolic regions again may be distinguished on the hodograph 
surfaee, having two different imaginary and real conical eharacteristic directions, 
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respectively, and corres]:ilonding to conical-subsonic and conical-supersonic flow _ 
If the flow is conical-sonic, the two conical characteristic directions coincide 
along the U axis. 

As in two-dimensional plane flow the velocity along the conical characteristics. 
on the hodograph surface is sonic. The angle between the velo city vector q 
and a conical characteristic on the hodograph surface is therefore the angle rx,. 
defined from the local Mach number M(M =qfa) and given by 

tan rx = ± VM2 - 1. (21) 

It is equal to the angle between the velocity vector q and the characteristics. 
in the hodograph plane for two-dimensional plane flow, which are the well­
known Prandtl-Meyer epicycloids. Thus, when a cone passing through a conical 
characteristic on the hodograph surface and having its vertex at the origin of 
the hodograph space is developed onto a plane, a Prandtl-Meyer epicycloid is. 
obtained [24]. 

4. Differential-geometric description of the hodograph trans format ion 
for irrotational conical flow 

From (14) it follows that the radius in the physical space is perpendicular 
to the surface element at the corresponding point on the hodograph surface. 
The sphere obtained by collecting at one point the unit vectors along the normals. 
to the hodograph surface is the unit sphere in the physical space, as discussed 
before. From dijjerential geometry the transjormation jrom the hodograPh space 
to the Physical space may be recognized as being the sPherical or Gaussian trans­
jormation oj the hodograPh surjace. 

An analysis of the geometry of the hodograph surface may start by investi­
gating the properties of its curvature. If further exploration is of interest, 
third and higher derivatives mayalso be taken into consideration. 

A study of the curvature of the hodograph surface can be based upon DUPIN'S. 

indicatrix. DUPIN'S indicatrix is formed by laying out along the nonnal sections 
of the surface distances equal to the square root of the absolute value of the 
radius of curvature of those sections. A curve related to DUPIN'S indicatrix is 
obtained as the intersection with the hodograph surface of a plane parallel to 
the tangent plane at the point under consideration at a distance C such that 
higher order derivatives may be neglected with respect to the second order 
derivatives when the shape of the curve of intersection is determined. If the 
second derivatives are continuous, a Taylor expansion yields the following 
equation for this intersection in the U, V, W system, attached to a radius for 
which U=UI and W=~: 

Wuu.(U - UI )2 + 2Wuv.(U - UI) V + Wvv• V2 - 2C = o. 
(22) 

This is a conic *, being an ellipse when (Wuu Wvv - WJvh = KG. > 0, a hyper­
bola when KG. < 0 and a parabola degenerated into two parallellines for KG. = 0. 

* DUPIN's indicatrix is similar to this conic ior elliptic and parabolic points. 
For hyperbolic points DUPIN's indicatrix consists in two conjugate hyperbolas, 
which are similar to this conic ii C is given two equal and opposite values. 
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Points on the surface are called elliptic, hyperbolic and parabolic points, respec­
tively. For an elliptic point the surface is curved in the same sense in all directions ; 
for a parabolic point the same is true, while in one direct ion the curvature of the 
surface is zero; and for a hyperbolic point curvatures of the surface of opposite 
signs occur. For a hyperbolic point there are two directions for which the curva­
ture of the surface becomes zero. 

The axes of the COn ic are in the principal directions, and the corresponding 
radii of curvature are called the principal radii of curvature (h and e2' Through­
out this paper el will be chosen as the major principal radius of curvature and 
e2 as the minor principal radius of curvature. The principal directions are given 
by the angle exl,2 with respect to the U axis (exl, 2 measured positive in counter­
clockwise direction) , where exl,2 may be deduced from 

2Wuv tan 2exl 2 = UT, UT,' (23) , uu- vv 

Lines On the surface which at each point are tangent to one of the principal 
directions are called lines of curvature. The radius of curvature of the curve 
of intersection of a plane through the normal to the surface and making an 
angle ~ with the major principal direction is given by EULER'S theorem, 

1 1 2-+ 1 . 2-- = - cos ex - SIn ex, 
or in the U, V, W system, R~.It e2 

(24) 

1 W. 2 w.' w.· 2 -J[ = uucos ex+2 uvsmexcosex+ vv sm ex, (25) 

where ex is the angle with respect to the U axis. 

The normal curvature un of a curve On the hodograph surface is the opposite 
of this value, whereas the other intrinsic second-order parameter of a curve 
on a surface, the geodesic torsion, may be expressed as 

7:g = Wuv cos2 ex - (Wuu - Wvv) sin ex cos ex - Wuv sin2 ex, (26) 

where 7:g is positive if the normal to the surface turns to the right when moving 
along the curve. 

From (23) and (26) it then follows th at the geodesic torsions of the lines of 
curvature are equal to zero. If transformed to the unit sphere, the lines of 
curvature have the same direction there as on the hodograph surface. 

The ratio of corresponding line elements along the lines of curvature on the 
unit sphere and the hodograph surface may be obtained from (15); the result 
is the Rodrigues equations 

(d SI, 2h = el, 2 (dsl , 2)Ph' (27) 

where Ih and (h are the radii of curvature in the principal directions 1 and 2, 
respectively, and the indices hand ph refer to the hodograph surface and to 
the unit sphere in the physical space, respectively. 

A direction making an angle exh with principal direction 1 on the hodograph 
surface (exh being measured positive in the counter-c1ockwise direction) makes 
the angle exp/< with the direction corresponding to principal direction 1 on the 
unit sphere. From (27) these angles are related by 

(28) 
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The area of a surface element dAp" on the unit sphere and the area of the 
corresponding surface element on the hodograph surface dA" are connected with 
the Gaussian curvature KG by the relation 

~~~ = (h
1
e2 = KG' (29) 

Since 
(30) 

the Gaussian curvature or the Jacobian determinant is thus seen to be equal 
to the ratio of magnitudes of corresponding surface elements, being positive for 
an elliptic point, zero for a parabolic point and negative for a hyperbolic point. 
In relation to equation (28) it may be deduced that the image on the unit sphere 
of a c10sed curve on the hodograph surface is traversed in the same sense as 
the curve on this surface if KG>O, and in the opposite sense if KG<O. Singu­
larities in the transformation are to be expected for KG=O and Kç+oo (Ll =0 
and Ll-+oo). 

In addition to the Gaussian curvature, the mean curvature may be defined 
as the sum of the principal curvatures and given by 

(31 ) 

where l!1 and e2 are chosen to be positive if the hodograph surface is convex 
towards the direction of the positive W axis. 

Other directions of interest are conjugate directions. The directions defined 
by the angles C/.." and C/..;. are said to be conjugate if 

or 

tan C/..h tan C/..~ = - 2..!. , 
el 

Wuu + Wuv {tan (C/..l + C/..,,) + tan (C/..l + C/..~)}+ Wvvtan (C/..l + C/..,,) tan (C/..l + C/..~) = O. (32) 

By use of (28), equation (32) may be written as 

tan C/..~ tan C/..pJ. = - 1. 

The image on the unit sphere in physical space of a direction on the hodograph 
surface is therefore perpendicular to its conjugate direct ion on the hodograph 
surface. 

Directions which are self-conjugate are asymptotic directions, which trans­
form perpendicularly to their images. They may be obtained from (22) or (32): 

(dV) = -Wuv ± V-(WuuWvv-WJv) . 
dU asympt. Wvv 

(34) 

Thus for an elliptic point (KG>O) the asymptotic directions are imaginary; 
for a hyperbolic point (KG < 0) there are two real asymptotic directions ; and 
for a parabolic point (KG = 0) the two real asymptotic directions coincide along 
the axis of the parabola, which is in the principal direction where e-+oo. 

The differential-geometric properties of a surface, thus summarized, may be 
used to express the physical quantities of interest in terms of geometrical 
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properties of the hodograph surface, which is the particular surface under con­
sideration. This surface is characterized by differential equation (18), which at 
a point of the surface, since Wu= Wv=O, yields the relation 

(35) 

first given by BUSEMANN [23]. The radii of curvature Ru and'Rv in the directions 
of the U and V axis, respectively, then satisfy the equation 

(36) 

From (35), (20) and (32) it may easily be seen that the conical characteristics 
on the hodograph surface form a conjugate net. The conical characteristics on 
the unit sphere of one family are therefore perpendicular to the conical character­
istics on the hodograph surface of the ot her family. The + ( -) sign in equation 
(10) corresponds to the + (-) sign in (20), and the same situation is encountered as 
in two-dimensional plane flow, as has been shown by GIESE [24J and RYZHOV [26J*. 

Another system of conjugate directions is formed by the streamlines on the 
hodograph surface and the lines of constant speed (or a, pand M are constant). 
Partial differentiation of 

with respect to v, for a point X = Y = 0, yields 

aq _ 
av-O. 

(37) 

(38) 

The lines q = constant on the hodograph surface therefore intersect the U axis 
perpendicularly and are thus perpendicular to the conical streamline on the 
unit sphere. Furthermore, the lines q = constant on the unit sphere are normal 
to the acceleration, which has the same direction as the conical hodograph 
streamline. The streamlines and the lines q = constant therefore form a con­
jugate system on the hodograph surface. Further it is seen that the lines q = 

const. bisect the angle between tbe conical characteristics on th at surface [24J. 
The variations of q, a and Mare found by partial differentiation with respect 
to u of equations (2) and (37). For a point X = Y = 0 

dq aq Me 
dU au M' 

da _ aa __ y-1 M 
dU -W - - 2 - e' 

dM = aM =Me (1+ y-1 M2). 
dU au q 2 e 

(39) 

(40) 

(41) 

Tbe variations of the velocity component normal to the radius u,. and of 
Me are also of interest. For a point X = Y =0 it can be shown, after some 
calculation, that au.. 

aJ = 1 + WWuu , (42 a} 

~r; =WWuv , 

* See also [28J, p. 483, note 9. 
Arcb , Rational Mecb. Anal., Vol. 6 

(42b) 

22 
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and 
oMe = -.!.. [1 + y-1 M 2 + Ww, 1 au a 2 e UU , 

oMe 1 WUT av=a: rrUV, 

from which the direction of a line Me = constant is found to be given by 

y-1 

(43 a} 

(43 b) 

dV 1+ - 2- Mi+ WWuu 
(dU )M,=const. = - WWuv (44) 

The direct ion of the conical streamline on the hodograph surface, which also 
is the direction of the acceleration, may he seen from (32) and (38) to satisfy 

tan{3= - =-~. (
dV) W; 
dU • Wvv 

(45) 

The magnitude of the acceleration along a streamline in the physical space 
may be expressed in terms of the curvatures of the hodograph surface in the 
following way. Along a streamline in the physical space 

and 
(~;).= : ' 
(~~).= ~ " 

(46) 

where the index s refers to conditions along the streamline. By differentiation 
of (14) we have 

(dx)s = - w .. (dz). - z(dwu)s, 

(dy). = - w,,(dz). - z(dw,,)s ' 
or from equation (46) 

Again using (46) leads to * 

and 

(v+wwv) wuu-(u+wwu) Wuv 
(u+wwu) wvv-(v+ww,,) wuv' 

W 11' _w2 

(dx) =-zu uu vv uv (du) 
s (u+wwu) wvv-(v+wwv) wuv s' 

(d ) Wuu wvv-u;~v (d ) 
y • = - z v (u+wwu) wvv-(v+wwv) wuv us, 

2 
(dz)s = - zw wu" Wvv-wuv (du)s' 

(u+wwu) wvv-(v+wwv) wuv 

For the u component then follows 

(~) = _ _ 1_ (u+wwu) 11'vv-(v~WWu) wuv. , 
ds • q z w"u wvv-wuv 

* Equation (50) may be used as a check on (45). 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 
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and for the v component 

Furthermore, 
( 

dV) 1 (v+wwv) w"u-(u+w~u) w"v 
as s = - qz w" .. wvv-w~ v (5}) 

(~;)s= (~;).w,,+(~~ )sWv , (54) 

so that from equations (52) -(54) follows 

( 
dW) = _ _ 1_ (u +ww,,) (w"wvv-WvWuv)-(V+zWWv) (w"wuv-wvw"u) . 
ds s q z w"" wvv-wuv 

(55) 

By use of the relation 

(!:!L) = u (~) + v (~) + w (d w) q ds s ds s ds s ds .. (56) 

and of equations (52) , (5}) and (55) the acceleration along the streamline is then 
found to be 

!!1.. = q (!:!L) = _ _ 1_ (v+wwv)ZWuu - 2(U+wwu) (v + WzWv) wuv+ (u +wwu)Zwvv, (57) 
dt ds s . q Z Wuu Wvv-Wuv 

or, by (18) 
~ (1 +w~) wuu - 2 w"wv wt/v+ (1 +W~) wvv 
q z wu " wvv-w~v 

(58) 

In the U, V, W co-ordinate system (58) reads at the point under consideration 

dq _ a Z Wuu+Wvv 
Tt - - qr Wuu Wvv-WJv ' (59) 

where ris the distance measured along the radius. When (30) and (31) are used, 
the acceleration along the physical streamline becomes 

(60) 

This acceleration is therefore seen to be simply related to the principal radii 
of curvature of the hodograph surface. 

From this result the pressure gradient along the streamline may be found : 

!:É. =-~ KM =-~(e1 +(2) 
ds Mr KG Mr ' (61) 

where eis the density. The acceleration normal to the strearnline may be derived 
from equation (45) and (60): 

g" = ; r 1 el + e21 MZ ( WJv) MZ 1 + W;z - 1 . 
e vv 

(62) 

From this result follows the radius of curvature of the streamline in the physical 
space: 

R = ~a_M_3 r~ _--;:======= 
I el + eZ I V Ze: (1 + ~~) -1 

(6}) 

22* 
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5. Analysis of the hodograph surfaee when the transformation is regular 

Onee the co-ordinates at a point of the hodograph surface are given by the 
velo city q and the tangent plane at that point by the direction of the normal, the 
geometry of the surface may be further specified by the curvature, given by the 

f1 

Fig. 2a. Direction of tbe conical hodograph streamline 

value of the three seeond derivatives. The hodograph surface is described by the 
differential equation (18), which yields one relation for the second derivatives in 
two perpendicular directions, i.e. (35). Two additional data are then required to 
determine a surface element to the second order. For these it will be convenient 
to choose e2hh and €?! +!!2. In addition the sign of 1X1 must be given, since 

without 10ss of generality 1X1 may be chosen in the interval between - ~ and ~ . 
2 2 

When the velocity q and the tangent plane (determined by the direction of the 
normal or the radius in the physical spaee) are given, the value of Me is fixed. 
It may then be asked how !!2/el and 121+122 determine the surface. For a 
given value of Me> the directions of the characteristics are determined, and since 
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they are conjugate, to every value of (12/(21 corresponds one value of the angle 
of the major axis (Xl of the given sign. Thence follows also one value of {J giving 
the direction of the conical hodograph streamline (or the acceleration), since it 
is the direction conjugate to the direct ion of the V axis. 

cc, 
(t1f~!.!.~' ____ _ 

-/.0 

f1c=O 

Fig.2b. Direction of the major principal axis at a point of the hodograph surface 

The parameters Af" and {!2/!h therefore determine IXI and {J. The parameter 
l!i +(>2 may be seen from (60) and (62) to determine the magnitude of the ac­
celeration and can be varied independently of (>2/(21 *. 

With the aid of (20), (23), (32), (35) and (45) the following relations may 
th en be derived for (Xl and {3: 

tanlXl = ± C el V M2-1-~ 1- ~: (Mc2 -1) 

(64) 
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and 
± V{1-.h (Ml-1)}{Ml - 1-.h} 

tan f3 = el el , 
1+.h 

(65) 

el 
where the ± signs are associated. These functions are illustrated in Fig. 2. 

In order to classify the possible motions of a gas particle in a conical flow, 
the shape of the hodograph surface at elliptic and hyperbolic points may now be 
investigated. For these points the Jacobians are finite and different from zero, 
so the transformation will be regular. In addition, parabolic points may be 
considered as limiting cases of these points when KG -+0, and conical points 
and points on an edge surface as limiting cases when KG -+00. The transfor­
mation then becomes singular. Such points will be examined in more detail in 
later sections. 

I t can be seen in Fig. 2 that ~ and KG cannot be chosen completely inde­
pendently of each other. This may be seen from (35) in the following manner. 
For elliptic points all radii of curvature at these points, and in particular Ru 
and Rv, have the same sign. From (35) it then follows that ~ > 1, and·the flow 
is conical-supersonic. Conversely, if the flow is conical-supersonic, it follows 
from equation (35) that Ru and Rv have the same sign; the point may then 
be either elliptic or hyperbolic, with the asymptotic directions lying in the same 
quadrant. If the flow is conical-subsonic (~< 1), Ru and Rv have opposite 
signs, the point is thus hyperbolic, with the asymptotic directions lying in 
different quadrants. Conversely, at a hyperbolic point, the flow is conical­
subsonic (~< 1), conical-sonic (~= 1) or conical-supersonic (~> 1), depending 
on the relative positions of the asymptotic directions with respect to the U axis. 

These results mayalso be obtained by forming the product of the two 
asymptotic directions. From (34) and (35) then follows * 

(~) .(dV) = M 2 _ 1 dU asymp.1 dU asymp.2 c . 
(66) 

The same conclusions may then be derived by noting that at an elliptic point 
the asymptotic directions are conjugate complex, while they are real at a hyper­
bolic point. 

CJ..) Conical-subsonic flow 

Consider first conical stagnation points. At such a point U =0 and Mc= 0, 
if a=FO (M is finite). From (35) it follows that Wuu+Wvv=O; thus the curve 
given by (22) for ± C consists of two conjugate orthogonal hyperbolas, which 
are similar to DUPIN's indicatrix. From Fig. 2 it can be seen that f3 may have 
any value, so at the stagnation point conical streamlines from all directions 
can come together. This mayalso be concluded by remarking that at the point 
itself the direction of the U axis cannot be defined, sin ce U= O. For the same 

* With the aid of equations (20) and (66) the following property may be derived: 

(dV) .(dV) +(dV) .(dV) -0 dU asymp.1 dU asymp.2 dU ehar.1 dU ehar. 2 - • 
(66a) 
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reasons the directions of the principal axes can also have any value. Since 
(!2/(h. = -1, the acceleration along the streamline, as given by (60), is zero, sin ce 
M=f: o. This result can be seen immediately by noting that the strearnline falis 
along the radius through that point. 

Conversely, an orthogonal hyperbolic 
point does not necessarily represent a 
conical stagnation point. If the point is 
orthogonal hyperbolic, e2/el = - 1, and 
the acceleration along the streamline is 
zero. The direction of the conical hodo­
graph streamline is therefore perpendicu-

lar to the U axis (fJ = ± ~ ) . The conical 

streamline thus becomes perpendicular 
to its image, and the V axis therefore 
coincides with an asymptote. The U axis 
is then also an asymptote; thus Wuu = 
Wvv=O. From (35) it then follows that 
the conical Mach number Me may take 
any value, while for Me *0 the principal 
directions biseet the angles bet ween the 

U and V axes (!Xl = ± ~). From equa­

tion (28) it is se en that at an orthogonal 
hyperbolic point the transformation be­
co mes conformal. 

For conical-subsonic flow (M" < 1) 
points on the hodograph surface are 
hyperbolic. From BUSEMANN'S re1ation, 
equation (35), it follows that for !Xl =0, 
(!2/ (h. has the value M.2 - 1. Since the 
physical conical streamline falls along a 
principal direction, the hodograph coni­
cal streamline also does so and is there­
fore along the U axis; thus {3 = o. The 
acute angle between the asymptotes is 
bisected by the U axis. The situation 
is sketched in Fig. 3 a for accelerating 

a 
a (l .o; gs>O 

b (lioj gs>O 

(:t) y 

I --

flow and in Fig. 3 e for decelerating flow. 2 
e {J=O; g5<0 

X A C U 
~'{J=O 

/"~ BI ~ 
\."./ I 
'0/ a 

IY-/ 

(r) V 

ij 

According to (60), for accelerating flow 
Fig. 3 a-e. Typical conditions at a hyperbolic point 

(!l + e2 > 0, and, since I eli > I/hl, it follows of a conical·subsonic flow 

that el> O and e2<0. From the equations 
of RODRIGUES, equation (27), it may be deduced that points on DUPIN's 

indicatrix ABC D are mapped onto a figure A I B' C' D' on the unit sphere 
which is compressed in the direction of A C and stretched in the direction of 
B D. The images of points in the directions of the asymptotes coincide with 
the image of the point considered. The figure is then tumed over along the 

u 
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major axis AC. For decelerating flow !h+e2<0 and sin ce lell>le21, it follows 
that el<O and e2>0. DUPIN's indicatrix ABCD is than compressed and 
stretched in the same manner, but turned over along the minor axis A C. In 
both cases the geodesic curvature of the physical conical streamline is zero. 
Further typical cases may be obtained when the physical conical streamline 
has a geodesic curvature different from zero and the acceleration along the 
streamline is positive, equal to zero or negative, respectively. Typical conditions 
at a hyperbolic point of a conical-subsonic flow are given in Fig. 3. The sketches 
are arranged so that the direction of the conical hodograph streamline tums 
in counter-clockwise sense from Fig. 3 a to Fig. 3 e. It may be noticed that 
Fig. 3e may be obtained from 3a by reversing the direction of flow, whereas 
Fig. 3 band Fig. 3 d are also interchangeable in that manner. Reversing the 
flow direct ion in Fig. 3 c amounts to changing the direct ion of the positive Y 
and V axes. From equations (64) and (65) and Fig. 2 it may be seen that for 
a given value of Af" , as I fJ I is increased from zero on, I lXII changes in such a 
way that IfJl>IIXII. The acute angle between the asymptotes oscillates from 
2arctan V1-M,,2 for fJ=O to n/2 for an orthogonal hyperbolic point (lfJl =nf2) 
(Fig. 3 c). The conical streamline lies between the asymptotes which enclose 
the acute angle, except for orthogonal hyperbolic points, in which cases it 
touches one of the asymptotes, which then subtend an angle of n/2 radians. 

From (43 a), (43 b) and (45) the variation of Af" along a conical streamline 
may be obtained: 

( dM.) = ~ [1 + y-l M,,2 + W KG ] , 
dU s a 2 Wvv 

or if by repeated use of (25) and (26) the second derivatives are expressed in 
terms of ()I, e2 and IXI, and if furthermore (64) and (60) are used, we have 

(dMc ) = ~[1+M,,2{~_ Wa ~}]. 
dU s a 2 Mr gs 

(67) 

When the flow is accelerating, so that gs>O, it follows that Af" increases along 
the streamline if 

and decreases if 

W ( 
y-l M2) Mr > 1 + - 2 - c Mc2a gs· 

If the flow is decelerating, so that gs<O, it follows that Me increases along 
the streamline for 

and decreases for 

W ( 
y-l M2) Mr < 1 + - 2- e Me2a gs· 

The conical streamline is tangent to a line of constant Af" for 

W - ( y-l M2) Mr 
- 1 + - 2- e Me2a gs· 
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When the acceleration is equal to zero,' (43 b) shows that along the conicalstream­
line ~ again may either increase, decrease or remain stationary. For comparison 
it may be noted th at for two-dimensional plane flow the Mach number increases 
in expanding flow, decreases in compressing flow and does not change if the 
pressure does not vary along the streamline. 

P) C onical-sonic flow 

At a hyperbolic point the flow can also be conical-sonic (Me=1). From 
BUSEMANN'S relation, equation (35), it follows that if ~= 1 and Wvv=l=O, 
then Wuu=O. One of the asymptotes of DUPIN'S indicatrix thus faUs along 
the U axis. The other asymptote falls in the first (and third) quadrant for 
IXI > ° and in the second (and fourth) quadrant for IXI < 0. The angle of the major 
principal axis IXI and the angle of the conical hodograph streamline pare seen 
from (64) and (65) to satisfy the relations 

and 

tan IXI = ± V - (!2 
(!l ' 

tanfJ =± R. 
1+~ 

(!l 

(68) 

(69) 

These relations are illustrated in the curve for Me= 1 in Fig. 2. It may be 
deduced from equations (68) and (69) that if IPI is increased from zero onward, 
I lXII increases in such a way that 2 I lXII > I PI > I OCII. The acute angle between 
the asymptotes equals 2 IOCII and increases from zero. to nf2 when I P I increases 
from zero to nf2, while IOCII increases from zero to nf4. The conditions which 
may be encountered at a hyperbolic point if the ·flow is conical-sonic are similar 
to those in conical-subsonic flow, except that the case p = O cannot occur. This 
leaves three typical conditions, all with a curved conical physical streamline 
and positive, zero and negative acceleration along the streamline, respectively. 

They are sketched in Fig. 4. The case P = ± ~, oc = ± ~ again corresponds to 
2 4 

an orthogonal hyperbolic point; thus Wvv = 0, and the acceleration along the 
streamline is equal to zero. It may be noted again that by reversing the direction 
of flow, Figs. 4a and 4c are interchangeable. It can fUIther be shown that at 
a direction on the unit sphere perpendicular to the physical conical streamline 
the flow is conical-subsonic on the convex side of the streamline and conical­
supersonic on the concave side. This direction, in fact, coincides with the Y 
axis and maps onto the U axis, since the latter is an asymptote and thus trans­
forms perpendicularly to itself. On the Y axis the pressure on the convex side 
of the streamline is higher than on the concave side; the velocity gradient is 
therefore in the direction from the convex side to the concave side of the stream­
line. From (39) it follows that U increases when q increases; thus U increases 
from the convex side to the concave side. From (43 a) it may be seen that 
then Me also increases. The conical-subsonic flow is thus on the convex side, 
and the conical-supersonic flow region is on the concave side of the conical 
streamline. The positive U direction corresponds to the Y direction on the 
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Fig. 4 a-e. Typieal conditions at a hyperbolic point of a. conieal­
sonic line 

concave side of the streamline 
and the negative U direction 
to the Y direction on the con­
vex side. 

It follows from (44) that 
the direction of the conical­
sonic line is given by 

(~~ )Mc=l 
r+1 1 

- - 2- WWuv ' 
(70) 

or, from equation (30), since 
Wuu=O, by 

(~~ )Mc=l 
=± r+1 _ 1_ 

2a VM2_1 1/ -KG' 

(71) 

where the sign is chosen equal 
to the product of the signs 
of W, tanfJ and gs, since Wuv 
has the sign opposite to that 
of the product of tan fJ and 
gs' It can be remarked that 
if gs and tan fJ have the same 
signs (or the sign of tan fJ is 
positive when g.=O), the coni­
cal physical streamline has 
its concave side on the posi­
tive Y axis. If gs and tan fJ 
have different signs (or the 
sign of tan fJ is negative when 
gs=O), the conical physical 
streamline has its concave 
side on the negative Y axis. 
If the concave side of the 
physical conical streamline is 
In the positive Y direction, 
the conical-sonic line on the 
hodograph surface therefore 
lies in the first (and third) 
quadrant for W>O and In 

the second (and fourth) quad­
rant for W < 0, while it is 
tangent to the V axis for 
W=o (th en M =M.= 1). If 
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the concave side of the physical streamline is in the negative Y direction, the 
conical-sonic line on the hodograph surface therefore lies in the first (and third) 
quadrant for W < 0 and in the second (and fourth) quadrant for W> 0, while 
again it is tangent to the V axis for W=O (Af.=M = 1). In summary, the angle 
on the hodograph surface between the velo city vector U and the part of the 
conical-sonic line on it, on the concave side of the conical physical streamline, 
is acute for W> 0, equal to n/2 for W = 0 and obtuse for W < o. 

Since at a hyperbolic point KG and also a M2 -1 will be finite, for all 
values of M, the conical-sonic line cannot he tangent to the U axis but may 
have any other direction. On the unit sphere the conical-sonic line therefore 
cannot be normal to the physical conical streamline. 

Again it may be deduced from (67) that, regardless of the value of the ac­
celeration along the streamline, Af. may increase, decrease or remain stationary 
along the conical streamline for a point on the conical-sonic line. This also 
follows from the result that the conical-sonic line may have any direction (except 
that normal to the conical physical streamline). The various possible directions 
of the conical-sonic line with respect to the conical streamline are illustrated in 
Fig. 4. 

The variation along the conical-sonic line of u.. , the velocity component 
normal to the radius, is of interest because it shows a behavior different from 
that for two-dimensional plane flow. From equations (42a), (42b) and (70) it 
may be shown th at for Me = 1, 

(dU,,) _ 1-y. (72) 
dU M,= l- 2 ' 

thus du,,/dU < 0 for y = 1.4. The velocity component normal to the radius increases 
along the conical-sonic line on the hodograph surface in that direction which 
makes an obtuse angle with the velocity vector U. In order to investigate the 
variation of Un along the conical-sonic line on the unit sphere, consider first 
the case gs=O, as sketched in Fig.4b. It may then be shown that along the 
conical-sonic line on the unit sphere u.. increases in the direction which makes 
an obtuse angle with the velocity vector U when W> 0; that u.. increases in 
the direction which makes an acute angle with the velocity vector U when 
W < 0; while Un remains stationary when W = O. By considering the properties 
of the mapping when gs =F 0 (Figs. 4a and 4c), the same conclusions may be 
seen to hold. The first re sult was also given in [17J, where it was tacitly assumed 
that W>O (v. > O in the notation of [17J). For the direction along the conical­
sonic line in which 0,. increases, since u,,=Me a=a, it follows that a increases; 
from (2) it foUows that q decreases; thus W decreases, while from BERNOULLI'S 
law it follows that p increases. 

The conical hodograph characteristics, as given by (20), are both tangent 
to the U axis. Their geodesic curvature ug may be obtained by differentiating 
(19) along a characteristic. By use of (35), for the image on the hodograph 
surface of a point X = Y = 0 we obtain 

(73) 
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U 

where the ± signs in equa­
tions (73) al1d (20) are associ­
ated and ~g is positive if the 
concave side is on the positive 
V direction. At a conical-sonic 
point the curvatures of these 
characteristics thus approach 
± 00. Both ,characteristics 
curve away from the U axis, 
and their images, the physical 
conical characteristics, both 
curve away from the Y axis. 
The physical conical charac­
teristics lie on the concave 
side of the physical conical 
streamline, since this is the 
conical-supersonic region. 

y) Conical-supersonic flow 

At a hyperbolic point, coni­
cal-supersonic flow can also 
occur. From (64) and (65) and 
from Fig. 2, conditions which 
may be encountered at such 

··Chor./ . a point may be determined. 
/,§ J I.Z ,.chor.B The most charact~risti~ of 
.~ 'Ç..' 1,2=!j /4"?:~1(Z them are sketched m FIg. 5, 

". ,.... U and again it may be seen that 
Î.;·····Chof'.1 reversal of the flow may be 

used to deduce Figs. 5 a and 
5 c from each other. These con­
ditions are largely similar to 

Hc>1ff . those at a hyperbolic point 
L-..--.::...~~~..,~U of a conical-sonic line, or a 

Fig. 5 a-e. Typieal eonditions at a hyperbolie point of a eonical·super· 
sonie flow 

conical-subsonic flow, as dis­
cussed above. It can be re­
marked, however, that the 
conical hodograph streamline 
cannot lie in the region around 
the U axis enclosed by coni­
cal hodograph characteristics. 

since I fJ I > I arc tan VM;,2 - 11· 
Also it follows from equations 
(64) and (65) that I fJ I ~ 11X11. 
so that the major principal 
axis lies between the hodo­
graph streamline and the U 
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axis. The direction of the conical hodograph characteristics with respect to the 
direction of the major axis depends on the conical Mach number Af". For Af" ~ V2, 
it follows that I lXII ~ I arc tan VM,,2 - 11, and for Af" ~ Vl, 1 lXII ~ I arc tan VAf,,2 - 11. 
If M" -+ 1, conditions at a conical-sonic line as discussed before are again found. 
The other limiting case occurs when Af,,-+oo. 

Sin ce U remains finite, a-+O when Af,,-+oo, and since q remains finite, 
M =q/a-+oo. The angle of the major axis IXI and the angle of the conical hodograph 
streamline fJ are obtained from (64) and (65): 

(74) 

and 
tan fJ -+ ± 00. (75) 

These relations are illustrated by the curve for Af,,-+oo in Fig. 2. From 
equation (66) it is seen that one of the asymptotes falls along the V axis; thus 

Wvv = o. The other asymptote then makes the angle ± (2 IIXII- ~) with the 

U axis. Since (?1 and e2 remain finite and a-+O, it is seen from (60) that the 
acceleration along the streamline is equal to zero. When Af" -+00, the acceleration 
norm al to the streamline, according to equations (45), (62) and (65), is 

(76) 

and the radius of curvature of the physical streamline is 

(77) 

A point in a conical-supersonic flow mayalso be represented by an elliptic point 
-on the hodograph surface. Typical conditions encountered at elliptic points again 
may be deduced from the relations given in (64) and (65), as illustrated in Fig. 2 
and sketched in Fig. 6. Again, it may be seen th at Figs. 6a and 6d, and 
Figs. 6b and 6c, may be obtained from each other through flow reversal. If 
ft = 0, the conical streamline remains parallel to itself when transformed and 
thus falls along a principal axis; thus IXI or 1X2 equals zero. According to equation 
(36) Rv/Ru has the value M; -1, so that for Af" < Vl the major axis of DupIN's 
indicatrix, which is an ellipse, falls along the U axis and the minor axis along 
the V axis, while for Af" > V2 the minor axis falls along the U axis and the 
major axis along the V axis. If Af" = V2, DUPIN'S indicatrix is a circle, and 
the point is an umbilical point. The transformation is then conformal. In 
Fig. 6a the situation is sketched for accelerating flow and in Fig. 6d for deceler­
ating flow. From equation (62) it may be concluded that for accelerating flow 
el+e2>0 and, since el and e2 have the same sign, el>O and e2>0. From the 
Rodrigues equations (27) it is then seen that DUPIN'S indicatrix ABC D when 
mapped onto the unit sphere is compressed in the direction of the major axis 
and stretched in the direct ion of the minor axis into the ellipse A I B' C' D', 
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Fig. 6 a-d. Typical conditions a t an e!liptic point of a conical­
su personic flow 

which has the same ratio of princi­
pal axes as ABC D. If the flow 
is decelerating, (!I + e2 < 0, and, 
since el and e2 have the same 
sign, it follows that el < 0 and 
e2< O. DUPIN'S indicatrix is com­
pressed and stretched in the same 
manner and then rotated in its 
plane through 180°. Other situations 
that may be encountered at an 
elliptic point are given in the other 
sketches of Fig. 6. It may be noticed 
that the conical hodograph stream­
line cannot lie in the region inc10sed 
by the conical hodograph charac­
teristics around a line through the 
point considered and normal to the U 
axis, since IPI < I arc tan V1I1.;2 i! *. 
For finite values of 111.; the accelera­
tion along the strearnline is there­
fore different from zero at an elliptic 

point, since then IPI =F ":: . In con-
2 

trast to the situation for conical­
supersonic flow at a hyperbolic 
point, at an elliptic point IPI ~ I(XI! ' 
while furthermore for 111.; ~ V2, 
I (XII ~ I arc tan VMc

2 11 and for 
~~ V2, !(XII ~ !arctan VMc2 - 1!_ 

The case M,; ~ 00 does not occur 
at an elliptic point, since, as may 
be seen from equation (74), (Xl be­
comes imaginary for (!I le2> o. 

* The difference between elliptic 
and hyperbolic points in regard to the 
direction of the hodograph streamline 
with respect to the hodograph charac­
teristics mayalso be understood in the 
following way. The conical disturb­
ances in the flow travel along the 
downstream physical characteristics 
which map onto those parts of the 
hodograph characteristics that are bi­
sected by the U axis for an elliptic 
point and by a line normal to the U 
axis and through the point considered 
for a hyperbolic point_ In order for 
these parts to be downstream charac­
teristics the hodograph streamline 
should lie in the regions described . 
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Singular points of the transformation may now be considered as limiting 
cases of elliptic or hyperbolic points as (h!r!I ---?O. In these cases the direct ion 
of the conical hodograph streamline and the major axis approach one of the 
directions of the conical hodograph characteristics. Singularities thus occur for 
11( ;;:;; 1. Depending on how (!l + e2 is chosen to vary in this limiting process, 
different singularities may be obtained. If el + e2 remains finite, the acceleration 
remains finite, e2---?O when e2/el---?O, while el remains finite. Thus the Gaussian 

curvature KG---?±oo, since KG= - 1- . A region on the unit sphere corresponds 
!!d!2 

to a conical point or an edge surface, which represent a region of parallel flow 
or a conical simple wave flow, respectively. If el + e2 ---? ± 00, the acceleration 
approaches infinity, and el---?oo when e2/el ---?O. Thus the Gaussian curvature 
KG vanishes. The point on the hodograph surface is a parabolic point, 
representing a point on a limit cone or the edge point in the flow around a 
sharp edge. 

These singularities will now be discussed in more detail in the following 
sections. 

6. Limit cones or conical limit lines 

Limit lines or surfaces probably were first discovered in some solutions of 
the hodograph equation for two-dimensional plane flow. A more systematic 
investigation of the properties of limit surfaces has since been given for two­
dimensional and three-dimensional flow. For an extensive discussion, giving many 
references to the literature, reference may be made to [28] . 

If limit lines or surfaces appear in a solution, regions in the flow are found 
for which the velo city is many-valued. The transformation from the physical 
space into the hodograph space therefore becomes singular. Regions with a 
many-valued solution for the velocity are bounded by limit surfaces, so called 
because the direction of the flow is reversed at these surfaces and the flow thus 
has a limiting boundary which cannot be crossed. Two types of limit surfaces 
may be distinguished. 

For limit surfaces of the kind most studied, the Jacobian determinant is 
assumed to be continuous, and to vanish at this surface. In the reversal of the 
flow the acceleration and the pressure gradient then go to infinity. In addition, 
the limit surface in the physical space is the envelope of the characteristic 
surfaces of one family, while, correspondingly, in the hodograph space the 
streamlines become tangent to the characteristic surface of the other family. 
The other type of limit surfaces occurs when the Jacobian determinant changes 
sign discontinuously across a characteristic surface. The acceleration and the 
pressure gradient are discontinuous but remain finite, and no envelope of 
characteristic surfaces is formed, while accordingly the streamline in the hodo­
graph space is not tangent to the characteristic surface. 

This physically unacceptable behavior of the flow at limit surfaces can appear 
in the solution because it is assumed that the coefficients of viscosity and heat 
conduction of the gas are zero. It may then be assumed that thermodynamical 
processes in the gas are reversible and, if no heat is added, isentropic. In the 
absence of friction al forces the inertia and pressu're forces controlling the motion 
of the gas remain in balance when the direction of the flow is reversed, so that 
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to every isentropic solution with some prescribed stream surfaces th ere corresponds 
a solution with reversed flow. At limit surfaces, however, the reversibility of 
the flow occurs in such a way as to make obvious its physical impossibility, 
since it results in a multivalued region for the velocity. The occurence of infinite 
velo city gradients in the first type of limit surfaces serves as an indication th at 
viscous stresses may no longer be neglected and that the assumption of isentropic 
flow, implying reversibility along the streamlines, is not justified any longer. 
The phenomenon of limit surfaces is analogous to ocean waves breaking on the 
beach, where the continued steepening of the waves is not counteracted by a 
mechanism analogous to the action of viscous stresses in the gas flow. In order 
to obtain solutions of physical value, layers called shock waves have to be 
introduced, these being layers in which there occur large velo city gradients and 
hence considerable effects of viscosity and heat conduction. If in such olutions 
the viscosity is assumed to approach zero, the thickness of the shock waves 
approaches zero, and the shock waves may be considered to be surfaces of dis­
continuity connecting inviscid solutions. 

One is thus led to the suggestion that to every solution with a shock wave 
there corresponds a solution with limit surfaces along which compression occurs. 
If the direction of flow in these solutions is reversed, expansion occurs along 
the limit surfaces, and these solutions do not have physical significance, since 
expansion shocks cannot be formed. To every solution containing shock waves 
then corresponds a solution with reversed streamlines without physical meaning. 
It should be noted that it is not possible to state in general that to every solution 
with limit surfaces where compression occurs there con'esponds a solution with 
shock waves. 

Apart from the trivial case of parallel flow throughout the physical space, 
a stream surface in a supersonic flow may be taken to represent the surface 
of a body immersed in a supersonic stream, which, in general, experiences wave 
drag. Sin ce wave drag is associated with the entropy rise through shock waves, 
shock waves occur in all flows which are supersonic in the sense taken above, 
and the corresponding isentropic flows contain limit surfaces. The singular 
behavior of the pressure waves along these surfaces appears to be an essential 
feature of non-linear isentropic supersonic flow. 

In conical flow a limit surface is necessarily conical, so that we may speak 
of limit cones. The intersection of a limit cone with the unit sphere will be 
called a conical limit line. As will be shown now, lines of parabolic points on 
the hodograph surface in general represent conicallimit lines of the first type, 
while the second type of conicallimit lines may occur along a conical character­
istic. 

(f..) Conicallimit lines ol the lirst type 
Consider parabolic points as limiting cases of elliptic or hyperbolic points 

by letting (h -HX', thus (hlth -*0. From equations (64) and (65) it then follows 
that the direction of the conical hodograph streamline and the major axis 
approach one of the directions of the conical characteristics. One property of 
a point of a limit line, namely, that the hodograph streamline is tangent to a 
characteristic there, is thus seen to hold also at such a parabolic point. 



Differential Geometry of the Hodograph Transformation 325 

The two asymptotie directions eoineide with the major principal direction, 
and DUPIN's indieatrix eonsists in two parallel lines. All direetions different 
from the major prineipal direct ion are eonjugate to the latter and thus map 
onto the unit sphere along the direetion of the minor prineipal axis. The hodo­
graph eharacteristie whieh is not tangent to the major prineipal axis therefore 
also maps into this direetion. In order to determine how eurves on the hodograph 
surfaee whieh are tangent to the major prineipal axis are transformed, it is 
necessary to eonsider the third derivatives. Two relations between the four 
third derivatives at a point of the hodograph surfaee are given by differentiation 
of the differential equation (18). 

By partial differentiation with respect to u and v in a eo-ordinate system 
where the W axis is taken in the direction of the normal at the point eonsidered 
(that is, the direetion of the radius in the physieal spaee), for the third derivatives 
at that point there follow the expressions 

(78) 
-(y-1)-4-wu,,+22 1+(y-1)2 W"V-2 2+(y-1)2 wvv=O, U v

2 
v { U

2
} U { U

2
} 

a a a a a 

and 

It appears eonvenient for present pur poses to rotate the axes' around the w axis, 
so that the u axis be eo mes parallel to the major axis and the v axis parallel 
to the minor axis at the point eonsidered, and u> ° at this point. Then, sinee 

at a parabJlie point wuu=w"v=O, wvv=-~' uja=1 and vja==fV.zv.ç2-1, 
(78) and (79) yield 1?2 

and 
nK2 l~ y-l1~_ ± (H-',; - 2) w,,"" + 2 y1l1" - 1 wuvv + -- ylY-'z; -1- 0. 

a 1?2 

(78a) 

(79a) 

Let the eo-ordinates at a point be given by u=ul , V=VI and w=wI' A Taylor 
expansion including terms up to the third order then gives at sueh a point 

W = WI + ~ [ - ~ (u - U I )2 - ~ (v - V1)2] + 
2 (!I 1?2 

+ ~ [wuuu(u-~)3+3wu"v(U-UI)2(V-VI)+ (80) 

Consider a curve at (UI' VI' WI ) making an angle IXh with the major prineipal 
axis and haVing a geodesie eurvature xg • The equation of sueh a eurve may 
be written as 

v - VI = tan 1X,. (u - UI) + tXg eoç3 IXh (u - UI )2 + ... . (81) 
Arch. Rational Mech. Anal.. Vol. 6 23 
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If this expression is put into equation (80) af ter the first derivatives of UI are 
taken, the image of th is curve on the unit sphere may be seen to subtend with 
the major principal direction an angle ocp}, given by 

tan OCph = lim 
(" - ",)-+ 0 

1 [ 1 1 - - tan oth,(U - UI ) + - --xgcos-3 ot}, + - w"uv+ 
(12 2(12 2 _ 

1 [ 1 - - (U - UI) + - wuuu+ tan ot}, wuu v+ 
(IJ 2 

+ tan ot}, wuvv+ -} tan 2 oth Wvvv] (U - UI)2 + ... 

+ -.!.. tan2 ot} w ] (U-U )2 + . .. 2 ~ nvv 1 

(82) 

If l!1 and (12 are both fini te and different from zero, i .e., at elliptic and hyperbolic 
points, (28) is found again when the limit is performed. At a parabolic point 
Ih~OO; thus when ()(h=f=O, equation (82) shows that all directions different from 
the major principal direct ion map into the direction of the minor principal axis, 
as we have noticed above. When OCh = 0, that is, when a curve on the hodograph 
surface is tangent to the major axis, (82) yields 

(83) 

From equations (73), (45) and tanfJ= ± 111,,2 - 1, the geodesic curvature of the 
hodograph characteristics in a parabolic point is found to be 

( ) y + 1 "'g ebar. = ± 2' 
2a Me - 1 

(84) 

which is equal to the expression for two-dimensional plane flow if Me is replaced 
byM. 

By use of th is result and (78a) in (83) the direction of the image of the 
hodograph characteristic tangent to the major principal axis is found to be 

(85) 

which when compared with equation (10) is seen to be the direction of the corres­
ponding conical physical characteristic. The hodograph characteristics thus map 
onto the physical characteristics. 

It mayalso be seen that the conical hodograph streamline maps onto the 
conical physical streamline. By differentiation of (50) along the streamline it 
follows in the above-mentioned co-ordinate system that 

(86) 

from which the geodesic curvature of a hodograph streamline in a parabolic 
point may be obtained: 

(y.g)s = e2 (± VMc2 
- 1 UI""u + UI"uv) . (87) 
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Using this expres sion in (83) yields the correct value (tan Cl.ph)s= =f VMc2 - 1. 
If wuuu=l=O, the return of a conical physical streamline at an image point of a 
parabolic point may be deduced. In this case, since at a parabolic point the 
conical hodograph streamline is in the direction of the u axis and w"u = 0, the 
projection of the hodograph streamline on a norm al plane through the major 
principal direction has a point of inflection . Sin ce furthermore (Tg)s= 0, the 
normal to the hodograph surface along a streamline thus has an extreme value 
at the parabolic point, and the conical physical streamline returns and exhibits 
a cusp. The velocity at a parabolic point changes sign, so that downstream 
of the parabolic point the solution on the surface w (u, v) continues on the 
surface - w (- u, - v). The rays in the physical space upstream and down­
stream of a line of parabolic points cover the same region, so a many-valued 
region on the unit sphere appears, bounded by the image points of the parabolic 
points. This mayalso be seen by noting that differentiation of (30) along a 
streamline at a parabolic point yields 

(
dKG ) WUU1t 

([.ït s, Ka = O = - -----e;- ' (88) 

which is different from zero if Wuuu =1=0. A parabolic line then separates a region 
of elliptic points from a region of hyperbolic points. A c10sed curve on the 
hodograph surface which does not intersect itself and which is divided into 
two parts by a parabolic line is traversed along its image on the unit sphere 
in the same direction as on the hodograph surface in the region of elliptic points, 
but in the opposite direction in the region of hyperbolic points. A doubly covered 
region on the unit sphere thus exists. All curves tangent to a major principal 
axis, inc1uding one of the two families of characteristics and the streamlines, 
when mapped onto the unit sphere return and show a cusp at the image of the 
parabolic line. All curves which are not tangent to a major principal axis, in­
cluding the other family of characteristics, are tangent to this image line. The 
image line is the envelope of these curves and thus also, for example is the 
envelope of the lines of constant speed and of one family of physical conical 
characteristics. The latter mayalso be seen by transforming the physical conical 
characteristics, as given by (8), to the hodograph surface by means of equa­
tion (15). The equation which follows may be written at the point considered 
in the form 

(89) 

The conical hodograph characteristics are therefore the representation of the 
conical physical characteristics, as might be seen by equating to zero the ex­
pression in brackets in (89) and then comparing the results with (20). Further, 
(89) may be satisfied along a line on the hodograph surface where KG=O. This 
parabolic line, when mapped to the unit sphere, win have at any point a slope 
equal to th at of one family of physical conical characteristics. Since this line 
does not coincide with a characteristic, it wiU be the envelope of the physical 
characteristics of one family. 

By differentiating equation (30), we may find the slope of the parabolic line, 
and 

tan Ö = (~) = _ W uuu 

du Ka = O WUit" ' 
(90) 

23* 
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so that for w" .. " *0 and w" .. v finite the parabolic line does not touch a major 
principal axis at any point. 

As has been remarked previously, by equations (60), (61) and (62) the ac­
celeration and pressure gradient go to infinity, since el ~oo. In addition it is 
concluded from (63) that the radius of curvature of the spatial streamline goes 
to zero. 

It is thus shown that the flow at a parabolic point, if W uuu *0, shows the 
typical behavior exhibited at limit surfaces of the first type, and th at parabolic 
lines are the images of limit cones or conicallimit lines. 

The variation of ~ along the streamline at a parabolic point is related to 
the sign of the acceleration. From (67) it follows that for K G= O 

(91) 

Since this quantity is positive, ~ increases in an accelerating flow (gs>O) and 
decreases in a decelerating flow (gs< O). This is at variance with the situation 
at elliptic and hyperbolic points, where the increase or decrease of ~ along 
the streamline is not determined by the sign of the acceleration alone. On the 
contrary, as with the geodesiccurvature of the characteristics, equation (84), 
the local flatness of the hodograph surface (KG = 0) is again expressed, since 
if ~ replaced by M, the same expression for the variation of M is found as in 
two-dimensional plane flow. 

Conditions which may be encountered at a parabolic point when w""" * ° 
are sketched in Fig. 7*. Again Fig. 7d may be obtained from Fig.7a and 
Fig. 7c from Fig. 7b by flow reversal. Further it is seen that in an expanding 
flow the conical limit line is inclined along the upstream conical physical char­
acteristic on the concave side of the streamline or along the downstream conical 
physical characteristic on the convex side of the streamline. If the flow is com­
pressing, the conicallimit line is inclined along the downstream conical physical 
characteristic on the concave side of the streamline or along the upstream conical 
physical characteristic on the convex side of the streamline. 

If {3 = 0, as for example in axially symmetric conical flow, it follows at once 

that ~=1. From (78a) and (79a) it follows that th en W"u,,=- y+1 and 
wuuv= O. From (88) it is seen th at a e2 

(92) 

so that the hyperbolic points are on the side of the ongm (U = V = 0) with 
respect to the parabolic point, and the elliptic points are on the other side. 
For accelerating mot ion the flow changes from conical-subsonic to conical­
supersonic flow, whereas for decelerating motion the flow is from conical­
supersonic flow to conical-subsonic flow. From equation (90) it is seen that 
the parabolic line is perpendicular to the streamline (b = in), as is the conical­
sonic line, as may be conc1uded from (44). On the unit sphere the conicallimit 
line is also perpendicular to the streamline. If the flow is axially symmetric, 

* The co-ordinate axes X, Y and Z, and U, V and Ware defined by the velocity 
components on the upstream side of the parabolic point. 
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the two lines coincide, so that each conicallimit line in an axi-symmeüic conical 
flow, which is represented by a parabolic line on the hodograph surface, is a 
conical-sonic limit line. 

a P-Oj9s>0 

b 

(±)Y (±lV 

Z 

t1c=1 

2 

I X 

x 

conical limit line 
-TU(-U,-V) 

(±)V 

X 

c 

7 

Char.2. ,V; 
p+q·gs<'O C/(conical limit line 

(±)y (±)~ 

2 

I X 
A 

t1C=1 

d P=0;9s<0 

Fig. 7 a-do Typical conditions al a parabalie point of a conicallimil line 

Singularities on conical limit lines may now be investigated by considering 
third and higher derivatives at parabolic points. It may be expected that 
because of the planar character of the hodograph surface at parabolic points 
these singularities will bear a marked resemblance to those of limit lines in two­
dimensional plane flow. 
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For example, if the third derivatives are taken into account, just as in 
two-dimensional plane flow cusps of a conical limit line may be encountered. 
The slope of the parabolic line may be taken as the parameter which governs 
conditions at the point in this instance. Expressing the third derivatives of 
interest in terms of this quantity ~ (where ~ is the angle with the major principal 
axis, measured positive in the counterc1ockwise sense), by means of equations 
(78a), (79a) and (90) we have 

y+1 tan6 
wu .. u=-~ _(Mc2-2}tan6±2VMc2_1 ' 

w = y+ 1 ______ 1 __ ---,;:===_ 
.. uv a!!2 _ (Mc2- 2) tan 6±2 VMl-1 ' 

y-1 
w = - -uvv a (12 

(Ml - 2) (+tan6=t=$)=t= Mc2-1 

- (Mc2 - 2) tan 6±2 VM/-1 

(93) 

(94) 

(95) 

where the upper and lower signs are to be taken according as the streamline is 
inclined at the positive or negative characteristic angle. 

Accordingly, the geodesic curvature of the hodograph streamline and the 
variation of the Gaussian curvature along the streamline mayalso be expressed 
in terms of ~, so that with the aid of (87) and (88) may be obtained the formulae 

(u) = y+ 1 =t= VMl=1 tan 6+ 1 
gs a _ (Mc2-2}tan6 ± 2VMc2_1' 

(96) 

(d:UG)KG~O.S= :~; - (Mc2_ 2}::::± 2VMc2_ 1' 
(97) 

It may now be seen that if the parabolic line is tangent to the hodograph stream­
line, when ~=o the conical limit line exhibits a cusp. From (97) it appears 

s , ....... . 
~ ·····Chop.1 

\ 
Ka >0 

Fig. 8. Cusp at a conicallimit line 

that the Gaussian curva­
ture remains stationary 
along the streamline in this 
case, and from equation 
(93), that w ...... =O. If then 
w .. """ ,*,0, the correspond­
ing physical streamline does 
not return. If it is assumed 
that there exists on the 

surface where w""u = 0 a line which does not touch the streamline (since w"UUI< ,*,0), 
the streamline through the considered parabolic point separates a region with 
streamlines which do not intersect the parabolic line from a region with stream­
lines which intersect the parabolic line twice. Correspondingly, the physical 
streamlines either do not intersect the conical limit line and do not return, or 
reverse twice, at the first and second branches of the limit line successively. A 
sketch of the conditions at a cusp of the limit line is given in Fig. 8. In order 
for the characteristics to map in the way indicated in this figure, it may be 
noted that the hodograph streamline should osculate the hodograph character­
istic. From (84) and (96) it may be shown that for ~ = 0 the geode sic curvature 
of the strèamline and its tangent characteristic are equal. 
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For given values of y, a, A( and e2' the quantity c5 uniquely determines 
the third derivatives WUUlt , W""v and Wuvv ' unless the determinant of the system 
of equations (78a), (79a) and (90) vanishes. This determinant is equal to 

=f 2 VMc2 - 1 [ - (A(2 - 2) tan c5 ± 2 VMc2 - iJ; 

thus it is equal to zero for Mc=1 and for tanc5=±2VA(2- 1 [Mc2-2J -l. The 

case M;,= 1 was discussed above, where it was shown that c5 = !!...-, w"",, = _ y+ 1 
2 a (12 

and W"uv = O. In the latter case the parabolic line is tangent to the other hodo­
graph characteristic, and the system becomes dependent if e2--+oo. In aceordance 
with the theory of characteristics, it is possible to assign not only c5 and wvvv 

but also one of the other third derivatives. 

Among the singularities of higher order, the parabolic line that coincides 
entirely with a streamline is of particular interest. This line is a plane curve 
which coincides with aeonical characteristic. At all points of it the normal 
to the hodograph surface is also the binormal to the plane curve, so that one 
point on the unit sphere eorresponds to a curve on the hodograph surface. 
Since el--+OO, the accelerations along and normal to the streamline are infinite, 
as may be deduced from (60) and (62), while the radius of curvature of the 
physieal streamline is zero. The flow is one around a sharp edge, and conditions 
at the edge point are given by the parabolic line on the hodograph surface. 
Such a singularity may be met for example in the flow around a subsonic leading 
edge of a flat delta wing at incidence or in the flow around the tip of a flat 
rectangular wing at an angle of attack with respect to a parallel supersonic flow. 
This type of singularity is different from the actual conical limit lines, since 
no flow revers al occurs, but is mentioned here beeause, as in the case of conical 
limit lines, the Jacobian of the transformation vanishes. 

f3) Conicallimit lines of the second type 

In order to recognize the oecurence of conical limit lines of the seeond type 
we now eonsider how the conical hodograph eharacteristics determine the 
geometry of an integral surface in the hodograph space. 

Let a region R of an integral surface be given, induding the boundary C; 
we ask how this surface ean be extended into a region 5, adjacent to R along 
C, in sueh a way that w(u, v), w,,(u, v) and wv(u, v) are continuo us across C. In 
the region 5 the co-ordinates of the points and the tangent planes to the surface 
along Care th us known. Furthermore, the shape of C, being the boundary of 
the region R, is known, and since C is also a curve in 5, the geodesie torsion 
and the normal curvature of C, being the two geometrie properties determined 
by the seeond derivatives in 5, are known. In addition, 5 is known to satisfy 
the differential equation (18). Written in the U, V and W co-ordinate system, 
the following equations are thus obtained: 

Wuu + (1 - Mc2
) Wvv = 0, (98) 

- sin (X cos (X Wuu + (cos2 
(X - sin2 

(X) Wuv + sin (X cos (X Wvv = Tg, (99) 

cos2oc Wuu + 2sin (X cos oc Wuv + sin20c Wvv = - Y.", (100) 
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where 'tg and %,. are the geodesic torsion and the normal curvature of the curve 
C on the surface, respectively, making an angle 0( (0( measured positive in the 
counterclockwise direction) with the U axis. 

Two cases may now occur; either the rank of the coefficient matrix is equal 
to 2 or equal to 3, while the rank cannot be equal to 1. In the first case equations 
(98) - (100) may be solved for the second derivatives in 5 to obtain the same values 
as those on C in R. Secondly, if 0( = arc tan ± VM;-1, the rank is 2, and the 
equations are dependent if there is a linear dependency between 'tg and ",.. 
In this case one of the second derivatives in 5 may be chosen, so th at a jump 
in the curvature occurs along C, which is then a characteristic. 

For the geodesic torsion of a characteristic then follows the formula 

(101) 

and for the normal curvature of the characteristic, 

. 2~-=1 V 2 ] ("II)char. = =+ M2 [Wuv ± A( - 1 Wvv , 
c 

(102) 

where upper and lower signs in equations (101), (102) and (20) correspond. 

From this dependenee of ('tg)char. and ("n)char. it follows that 

M2_2 
('tg)char. = ± ~ (X,.)char .. 

2 c- 1 
(103) 

Geometrically, this result may be understood by noting that the conical 
characteristics form a conjugate net on the hodograph surface. If one travels 
along one characteristic, the tangent plane thus rotates around the other char­
acteristic direction. The geodesic torsion of the conical characteristic is there­
fore determined by its shape and by the normal to the surface at the point 
considered, sin ce these fix the conical Mach number A( and (%,.)char .. 

Also, the geodesie curvature of the characteristic may be expressed in this 
way by means of (73) and (102): 

( ) 
y+1 W 1 

"g char. = ± M2 =+ - V (%,.)char . . 
2a c-1 a Mc2 - 1 

(104) 

If a jump in Wvv across Cis indicated by {Wvv} , wbere {Wvv} = (Wvv)s - (WYV)R 
(the indices 5 and R refei to conditions on C in 5 and R, respectively), tbe 
discontinuities in Wuv and WyV are obtained from (98) and (101), as follows: 

{Wuu} = (Mc2 
- 1) {Wvv} , 

{Wuv} = =+ VA(2 1 {Wvv} , 

{WVY} = {Wvv}. 

(105) 

From these resuIts the discontinuity across C of the Gaussian curvature may 
be calculated, and it is found that 

or 
{KG} = ± 2 Mc2 

- 1 [Wuv ± VMc2 
- 1 WvvJ {Wvv} , 

{Kd = - A(2 ("lI)char. {Wvv}. 
(106) 



Differential Geometry of the Hodograph Transformation 333 

By differentiation of the differential equation (18) on both sides of C, the 
jump across C may be seen to obey along C a differential equation governing 
the propagation of the jump disturbance along th is characteristic. It, then, 
somewhere on C a discontinuity {K&} is introduced which propagates along C 
in such a way that a part of C exists where the Gaussian curvature changes 
sign across C, this part is a curve on the surface separating a region of elliptic 
points from a region of hyperbolic points. There is then a doubly covered region 
on the unit sphere, bounded by the physical conical characteristic C', which 
is the image of C. The acceleration has a discontinuity across C but remains 
finite as long as the principal radii of curvature remain finite. Accordingly, 
the physical streamline returns and has a discontinuity in curvature at the 
characteristic C' where it has a cusp. The conical hodograph streamlines and 
the lines of curvature on the hodograph surface have corners at C. 

It might possibly be conjectured th at the different nature of the two types of 
limit lines corresponds to wh ether they lie in or on the boundary of an independent 
hyperbolic region (second type of limit line) or a hyperbolic region depending on an 
elliptic region (first type of limit line). 

7. Conical simple wave flow 

Spatial simple wave flows may be defined as flows where the velocity vector 
and the state of the gas do not vary in planes tangent to the characteristic 
surfaces originating at points of these planes. It all these planes go through 
at least one common point, the flow is conical, and the point of intersection 
is the center of the conical field *. The intersections with the unit sphere are 
great circ1es which are conical characteristics, since each plane is the envelope 
of characteristic surfaces originating on rays in it. The name "simple waves" 
refers to the fact that the conical characteristics of the other family do not 
carry flow disturbances, because the state of motion of the gas remains constant 
when crossing these conical characteristics along a straight characteristic of the 
first family. 

In order to investigate the behavior of conical simple wave flow in the 
hodograph space, consider first an integral surface R with boundary B. Let 
this surface be divided into three regions Rl' 5 and R 2 by the characteristics 
Cl and C2 in a manner as sketched in Fig. 9. The image of R on the unit sphere 
is called R', while all curves and points on R' corresponding to their images 
on Rare denoted by primes. In order ' to correspond to physical reality, as 
given by the underlying assumpticins of isentropic flow throughout the region 
bounded by B', it may be assumed that w(u, v), wu(u, v) and wv(u, v) are 
continuous functions on R. The region 5 may consist of elliptic, parabolic and 
hyperbolic points, and characteristics along which discontinuities in the second 
or higher derivatives occur. It is th us assumed that the Gaussian curvature 
remains finite in s. Chose a point P on Cl' let the conical hodograph charac­
teristic of the other family through P be Cl and the streamline s. Construct 

* Spatial simple wave flows which are not conical are excluded from the present 
discussion. An example of such a flow is the isentropic supersonic flow over a curved 
two-dimensional profile in a homogeneous stream. 
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a plane N at P normal to Cl and at P' a plane N' parallel to N. Since the 
normal at P lies in N, 0' lies in N', and N' cuts the unit sphere along a great 
circle, which is denoted by P' Q', while its image on R is denoted by P Q. The 
image of c;. on the unit sphere is C~, and since at P' the line P' Q' is normal 
to Cl, C~ is tangent to P' Q' at P'. Call U the intersection of c;. and C2 , and 
call its image U'. The region S' may now be considered to become a simple 
wave region if discontinuities in the Gaussian curvature are introduced along 
Cl and C2 and if R2 and S are deformed in such a way that U' approaches Q', 
while C~ coincides with P' Q' if the radius of curvature of the arc P Q approaches 
zero when Q coincides with P, wherever the point P is chosen on Cl' In this 
process the normals to the surface along C2 are chosen to vary in such a way 

Fig. 9. Conical simple wave flow 

that they do not coincide with the normals along Cl when Cl and C2 have come 
together. According .to the definition of a corncal simple wave flow given above, 
in this way S' becomes a region with straight characteristics along which the 
velocity vector and the state of the gas are constant. In the hodograph space 
the simple wave flow is then given by a surface S of zero breadth, bounded 
along its length by two corncal characteristics Cl and C2 and in general imbedded 
between the regions Rl and R 2 • Such a surface will be called an edge surface. 
It follows from EULER'S theorem, equation (24), that if the radius of curvature 
in any direction approaches zero, one of the principal radü of curvature must 
approach zero. On the edge surface S, therefore, e2~O, and the Gaussian 
curvature goes to infinity. DUPIN's indicatrix of points on S degenerates into 
two isolated points with co-ordinates ± VreJ on the major principal axis and 
the point midway between of them, representing Vf:Rl = O. Points on the edge 
surface may be distinguished by their normals, and from the limiting process 
it follows that at all points having the same velocity vector q the normals lie 
in a plane normal to Cl (or C2) *. On S, the images of different physical stream­
lines in S' flow together over the same space curve Cl (or C2); they have corners 
where they leave or enter S from Rl or R 2 • As has been noted in the previous 

* It may be clear by now that it is not an arbitrary curve on R that may be 
chosen as a sharp edge in the hodograph surface, wh ere w" and W v are discontinuous. 
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discussion of the transformation for finite values of the Gaussia,n curvature, 
when rh/rh -+0, the major principal axis falls along the direction of one of the 
<:onical characteristics, whieh then also is the direction of the eonieal streamline. 
From (32) it may be seen that when e2=0, if two directions are conjugate, at 
least one of them coincides with the major prineipal direetion, 50 all directions 
are conjugate to the major prineipal axis. Thus alllines having sueh a direetion, 
including the eonieal hodograph eharacteristie whieh is not tangent to the major 
prineipal axis and the line of constant speed, map on the unit sphere into the 
direetion of the minor principal axis, whieh then also is the direetion of the 
straight eonieal eharacteristie. In order to determine the transformation of a 
curve tangent to the major principal direct ion the derivation of equation (28) 
may be repeated in a more general form. Using (15) then yields the relation 

(107) 

where the w axis again is ehosen parallel to the normal to the surfaee, but the 
u and v axes are still arbitrary. If they are chosen parallel to the prineipal 
axes, (28) is found again. If the u axis is chosen in the direct ion of partieular 
interest, tan OCh - O, and equation (107) together with (25) and (26) yield the 
expression 

Tg 
tanocp,,=- - . 

"" 
(108) 

Therefore, sinee the geodesie torsion of the lines of eurvature is zero, the direction 
of a tangent to these lines transforms parallel to itself. 

The direction of the image of the eharacteristic tangent to the major prineipal 
axis ean be obtained by the aid of (103) and (108): 

M2_2 
tan OCph = =r= c , 

2 M; - 1 
(109) 

so again we see th at the hodograph eharacteristics map onto the physieal 
characteristies. 

In order to investigate the transformation of the streamline its geodesie 
torsion has to be determined. By repeated use of equations (25) and (26) along 
the principal direetions, the second derivatives may be expressed as a function 
of el' e2 and OCl • With these results and equations (64) and (65) the geodesie 
torsion of the hodograph streamline may be obtained from (26) as 

(110) 

50 that, when e2=0, it follows th at 

(111) 
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If this value is used in equation (108), and if further it is noticed th at for 

e2=0, (X,.). = ~, the direction of the image on the unit sphere of the hodograph 
111 

streamline turns out to satisfy 

tan (J..Ph = T VMc2 - 1 , (112) 

wmch is equal to the expres sion for the conical physical streamline. The conical 
streamlines on the unit sphere and on the edge surface thus map onto each other. 

In order to carry over the reasoning for points on the surface with finite 
Gaussian curvature to points on the edge surface these points may be distinguished 
in a similar fasmon as elliptic, parabolic and hyperbolic points. It should be 
noted that then the edge surface coincides with a space curve. Taking the tangent, 
principal normal and the binormal of this space curve as a reference system, 
the normals to the edge surface at points with the same radius vector q are seen 
to lie in the normal plane of the space curve. They can be given by the angle 
{} with the binormal at the corresponding point of the space curve, where {} 
may be chosen as measured from the direct ion of the binormal, increasing when 
turning to the principal normal over the shortest angle. According to MEUSNIER'S 

theorem, a curve on the edge surface in the major principal direct ion has 
geodesic curvature and normal curvature given by 

% =...!..-cos·o. g "1/', 
e 

(113) 

and 
1 . .0. 

Y" = - - Sl n 'u ' , 
e 

(114) 

where e is the radius of curvature of the space curve. Since this curve also is 
a characteristic, application of (113) and (114)' for {} = -!n and use of (104) gives 

2 e = - y + 1 q", (115) 

where q,. is the component of q along the principal normal (q .. ~ 0 since e ~ 0) . 

For the major principal radius of curvature of a point on the edge surface 
it follows from equations (114) and (115) that 

(116) 

If now a closed curve on the edge surface is traversed, the end points of the 
unit normal vectors to the surface describe a curve which is traversed in the 
same direction as its image curve on the unit sphere if el> 0 and in the opposite 
direction if el < 0 in the enclosed region. Accordingly, points on this surface 
wiJl be called elliptic edge points if el> 0 or hyperbolic edge points if et < o. 
If ec~oo, the point will be called a parabolic edge point. From (116) it follows 
that points for wmch n < {} < 2n are elliptic edge points, and those for which 
O< {} < n are hyperbolic edge points, while for parabolic edge points {}=O or n. 
It may be superfluous to remark th at the edge surface does not necessarily 
extend over the entire range of {}. 
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The acceleration along the streamline follows from equations (60) and (116): 

_ 2 a2 q" 
gs- - y+1 r qsin{} , (117) 

so that at elliptic edge points the flow is accelerating, and at hyperbolic edge 
points the flow is decelerating. As may easily be seen from the transformation, 
in an accelerating conical simple wave flow the straight conical physical char­
acteristics are inclined in the upstream direction on the concave side of the 
streamline and in the downstream direction on the convex side of the stream­
line, while for a decelerating flow the straight conical characteristics are inclined 
downstream on the concave side of the streamline or upstream on the convex 
side of the streamline. 

The transformation from the unit sphere to the edge surface exhibits a 
singularity at a parabolic edge point. Two lines of parabolic edge points ({}=o 
and {}= n) mayexist on the edge surface, separating a region of elliptic edge 
points from a region of hyperbolic edge points. The geodesic torsion of a line 
of parabolic edge points is by definitioh equal to the torsion of the space curve 
which coincides with the edge surface. 

Consider first the case when 'l', the torsion of the space curve, is not equal to 
zero. Since Ih --i> 00 at a parabolic edge point, it follows from equations (111) 
and (103) that the geodesic torsions of the hodograph streamline and of the 
characteristic in the streamline direction are zero. When crossing the line of 
parabolic edge points these curves thus enter a region with a different sign of 
(?! and therefore go in either direct ion from a region of elliptic edge points to 
a region of hyperbolic edge points. A doubly covered region on the unit sphere 
appears, and, sin ce ('l'g)s= ('l'g)char. = 0, the physical streamlines and the family 
of curved physical characteristics return at the image of the line of parabolic 
edge points. According to (108), since 'l'g = 'l'=F0 and "'n=O, this image line is 
everywhere tangent to the direction of the minor principal axis. According to 
(28) a characteristic of the family of straight physical characteristics is also 
tangent to this direction. Since the parabolic edge line does not coincide with 
such a characteristic, the image line is the envelope of the family of straight 
physical characteristics. As can easily be seen, the curved characteristics cannot 
form an envelope. The reversal of the streamline is made possible by a change 
of sign of the velocity. The part of the edge surface downstream of a line of 
parabolic edge points is th us mirrored with respect to the origin. It may be 
noted that .as a consequence of the convent~on adopted for the sign, (.l! changes 
sign when mirrored; thus elliptic edge points become hyperbolic edge points 
and vice versa. Along with the reversal of the streamline, the acceleration goes 
to infinity, as may be concluded from (117), and the radius of curvature of the 
spatial streamline goes to zero. Tt may be noted that on the edge surface the 
geodesic torsion of a curve tangent to the major principal direct ion is a pro­
perty which has an equivalent significance as the direction of a curve at points 
on the hodograph surface for finite KG' I t is seen from equations (103) and (111) 
that only when (?! --i> 00 are the geodesic torsions of the hodograph streamline 
and of the characteristic tangent to it equal to each other. This is equivalent 
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to the tangency of the hodograph streamline and characteristic at an ordinary 
parabolic point. If"t" =FO, the line of parabolic edge points is seen to be the 
image of aconicallimit line of the first type in a conical simple wave flow. Since 
the image of the line of parabolic edge points is tangent to a straight charac­
teristic, as is the case for ordinary parabolic points, the following situations 
may prevail. In an expanding simple wave flow the conicallimit line is inclined 
along the upstream straight characteristic direct ion on the concave side of the 
streamline or along the downstream straight characteristic direction on the 
convex side of the streamline. In a compressing simple wave flow the conical 
limit line is inclined along the downstream straight characteristic direction on 
the concave side of the streamline or along the upstream straight characteristic 
on the convex side of the streamline. From equation (67) it is seen that the 
same conc1usions with regard to the variation of 111(; along the streamline hold 
as for an ordinary conicallimit line of the first type. 

Singular points on a conical limit line in a conical simple wave flow arise 
at those points where "t" becomes zero, and singularities similar to those for 
ordinary conicallimit lines may be found. 

Of special interest again is the situation where "t" vanishes all along the space 
curve, which thus is a plane curve. The line of parabolic edge points then co­
incides with a streamline along which all normals to the edge surface fall in the 
direction of the binormal to the space curve. A point on the unit sphere is thus 
mapped onto a line on the edgé surface. From equation (117) it follows that 
at this point the acceleration along the streamline becomes infinite. Also the 
acceleration normal to the streamline becomes infinite, and the radius of curvature 
of the physical streamline becomes zero. The physical streamline has a corner 
at the image point of the line of parabolic edge points, and the flow may be 
recognized to be a centered simple wave flow. The image point is the center 
of the straight characteristics. Such a singularity may be met, for example, 
in the flow around a supersonic leading edge of a flat delta wing at incidence 
in a homogeneous supersonic flow. 

A conical simple wave flow may be bounded by an analytically different 
region along a characteristic, which, incidentally, may be a conical limit line of 
the second type. 

Along a straight physical characteristic the simple wave flow may be bounded 
by a conical-supersonic parallel flow, since also in such a flow the characteristics 
are straight. The edge surface in the hodograph space then ends at a (conical) 
point of the hodograph surface. We discuss parallel flow in the next section. 

If the conical simple wave flow is bounded by a curved characteristic, the 
edge surface is along a conical characteristic connected with a hodograph surface, 
which may have elliptic, parabolic or hyperbolic points along this line. Stream­
lines may enter or leave the edge surface from or to the hodograph surface, 
corresponding to flow into or out of a region of simple wave flow. They may 
be obtained from each other by flow reversal. Consider now a streamline at 
an elliptic point on the hodograph surface going onto an edge surface, and for 
example let the flow be as given in Fig. 6a. The streamline on the hodograph 
surface has a direction given by fJ = ° and deflects to the characteristic angle 
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arc tan ± VMe2-1 when entering the edge surface. Since gs > O, from (60) follows 
el>O and e2>0 for an elliptic point; thus (U,,)char.>O, and at the point of the 
edge surface el> o. The acceleration in the conical simple wave flow is thus 
positive, which is in accordance with the direction of the hodograph streamline 
when the edge surface coincides with a downstream hodograph characteristic. 
If the edge surface is taken along an upstream part of such a characteristic, 
the flow should decelerate; thus gs < 0, and el < o. This conclusion may be 
obtained by mirroring the edge surface with respect to the origin. The edge 
surface point thus becomes a hyperbolic edge surface point, and a conical limit 
line of the second type occurs. By inspection of Figs. 5 and 6 and by similar 
arguments involving the signs of el' e2 and gs it may be shown more generally 
that the following rule holds. 

If the streamline at an elliptic or hyperbolic point on the hodograph surface 
enters a region of conical simple wave flow, the edge surface of which coincides 
with a downstream hodograph characteristic, the transition from one type of 
flow to the other will be continuous, while if th is surface coincides with an 
upstream characteristic, a conical limit line of the second type occurs. It may 
easily be verified that for elliptic points the interchange of downstream and 
upstream characteristics involves a change in the sign of the acceleration. Con­
tinuous transition then occurs if the simple wave flow and the neighboring flow 
are both expanding or compressing flows, while limit lines appear if one of the 
types of flow is expanding and the other compressing. 

8. Regions of parallel flow in a conical flow field 

Another singularity in the transformation occurs when the flow is parallel 
in a region of the conical flow field. Since the flow is conical, this region will 
be a cone, and the shape of this cone and the flow adjacent to it are of interest. 
If the parallel flow is conical-supersonic, it may be bounded by straight conical 
characteristics or the envelope of such conical characteristics, being a circular 
conical-sonic line. If the parallel flow is conical-subsonic, the boundary may be 
obtained by considering the hodograph transformation. 

The region of parallel flow is mapped into the hodograph space at a point, 
and Ll--7oo. The hodograph surface, which is the representation of the adjacent 
flow field, exhibits a point where, depending on the way this point is approached 
along this surface, a different normal is found; this point is a conical point, 
and K G --7oo*. The cone of the normals at a conical point is congruent with 
and has the same position in space as the cone bounding the region of parallel 
flow. Now if the conical point is approached on the hodograph surface in a 
direction corresponding to the U direction of an arbitrary normal at this point, 
it is seen th at Rv vanishes with respect to Ru, and it follows from the curvature 
relation, equation ()6), that ~=1. The tangent cone at the conical point thus 

* An exception occurs if the parallel flow is entirely bounded by straight conical 
characteristics, in which case the norm al at the point takes on different values 
because edge surfaces end at the point. The point is then not conical, and Me =l= 1 
in genera!. An example of such a situation is found in the interaction of conical 
simple waves, as studied by GIESE & COHN [13J. 
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coincides with the characteristic cone of that point in the hodograph space, 
the axis of which is aligned along the velo city vector q and the semivertex angle 
of which is equal to arc tan V M2- 1. The normal co ne is therefore a circular 
cone or a part of it, aligned along the velo city vector q and with a semi-vertex 
angle equal to j..l = arc tan (M2 - 1) - ( In the · physical space the boundary is 
thus the upstream or downstream pointing Mach cone of the velocity in the 
parallel flow with apex at the center of the conical field, or a part of such a 
circular cone continued by a plane tangent to it along the generator where the 
two figures meet . Obviously, the planes corresponding to a figure composed 
of straight conical characteristics mayalso be a boundary of the parallel flow. 
The parallel flow may either be downstream or upstream of this boundary. 

From EULER'S theorem (24) it follows that if the radius of curvature in 
any direction approaches zero, one of the principal radii of curvature must be 
zero; thus e2 -+0, and DUPIN's indicatrix degenerates to the point VTeJ on the 
major principal axis and the point VTRT =0. The direct ion of the major principal 
axis is along the U axis, since e2/ el = 0 and .M" = 1; thus (1.1 = fJ = o. As for conical 
simple wave flows it may be shown by (108) and (111) that the conical stream­
lines map into each other. The same may be shown by equations (108) and (103) 
tor the corncal characteristics. 

In order to investigate the properties of the flow adjacent to the parallel 
region, it will be assumed th at the surface in the neighborhood of the conical 
point may be expressed by a series expansion, the first three terms of which 
can be written as 

W = q + A(P) P + B(P) p2. (118) 

A co-ordinate system is thus used which may be obtained by'rotating the u, v 
and w axes until the w axis is along the velocity vector q in the parallel flow 
and u and vare replaced by u=p cosP and v=p sinP. The velo city component 
normal to q is thus denoted by p. In these co-ordinates the differential equation 
(18) reads: 

[ 
1 2 ( W

2
)] 2 [1 ( W

2
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Substituting equation (118) into (119) and collecting terms of the same 
order yields the following differential equations for the functions A (P) and B (P) : 

and 
[A + A"] [1 + A 2 (1 - M2)] = 0, 

[1 + A2(1- M2)] B" - 2AA'(1- M2) B' + 
+ 2 [2 + {3 A 2 + A' 2 + 2 A A"} (1 - M2) ] B -

- -.!... M2 A (A + A") [A 2 {2 + (y - 1) M2} + 2] = 0, 
q 

(120) 

(121) 
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where M is the Mach number in the parallel flow, represented by the point 
w=q, p=O. 

Solution of equation (120) yields two results, namely, 

A (P) = A sin ( P - 'Po) , (122) 

corresponding to a point on the hodograph surface which has a tangent plane, and 

1 A(P) =A = ± , 
l'M2-1 

(123) 

which corresponds to a point on the hodograph surface with a tangent cone. 
As before, we again see that the tangent cone is a circular cone with semi-vertex 
angle arc tan VM2 -1 and with its axis along the velocity vector q of the parallel 
flow. 

For a conical point equation (121) simplifies by use of (123) to 

_ _ 1'+1 M4 
B(P) - B - - -- (M2 )2 2q -1 

(124) 

Thus to a second approximation the hodograph surface is axially symmetric 
in the vicinity of the conical point. Correspondingly, the flow adjacent to the 
parallel flow is axi-symmetric in the immediate neighborhood of the Mach cone 
of the parallel flow. An analogous result was obtained by BULAKH [18J, [20J. 

Furthermore, it is se en from (124) that a plane through q cuts the hodograph 
surface along a line of intersection which is concave towards the velocity vector 
q for I w 1< q and convex towards this axis of the tangent cone for I w I> q. From 
this fact the possible types of conical flow with a region of parallel flow may 
be obtained. They are sketched in Fig. 10. In this figure the possible meridian 
cuts of the hodograph surface are given. The corresponding physical flow pattems 
may be constructed by noting that the normal to the hodograph surface should 
be taken positive in the direct ion such that passing along the hodograph stream­
line and the corresponding physical streamline does not lead to contradictory 
results. It is seen that continuous transition from or into a parallel flow is 
possible across a downstream Mach cone if the adjacent flow is expanding (type I) 
and across an upstream Mach cone if the adjacent flow is compressing (type Il). 
Transitions from or into a region of parallel flow across a downstream Mach 
cone if the adjacent flow is compressing (type lIl) and across an upstream Mach 
cone if the adjacent flow is expanding (type IV) are possible only if the hodograph 
surface is mirrored with respect to the origin. Thus in these cases conical 
limit lines of the second type occur. In Fig. 10 flows into ,a parallel flow region 
are denoted by a and flows out of such a region by b. Furthermore, it may be 
noticed that the types of flow Ilb, Ila, IVb and IVa may be obtained from 
the types Ia, Ib, lIla and IIlb, respectively, by flow reversal. 

Further properties of the adjacent flow may be derived from the actual 
value of B, which yields for the major principal radius of curvature at a conical 
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point the forrnula 

(125) 

where the positive sign should be taken in expanding flow and the negative 
sign in compressing flow. From the approximate axial symmetry of the hodograph 

Ne· ! 
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BIb compressing flow olong a downsfream Noch cone 

Fig. 10a and b. Types of conicaJ flow with a region of parallel flow. al Continuous transition from or into a region of 
parallel flow, b) transition from or into a region of parallel flow across a limit cone. 

surface in the neighborhood of the conical point the sign of e2 may be obtained, 
and so also the sign of the Gaussian curva~ure. Since {J=O at the conical point, 
an elliptic point corresponds to conical-supersonic flow, and a hyperbolic point 
to conical-subsonic flow. Inspection of the meridian curves, given in Fig. 10, 
then shows that for a continuous transition the flow goes through 111,,= 1, while 
across a limit cone the flow remains conical-subsonic or conical-supersonic. 

This result m.ay also be obtained by con~idering the variation of 111" along 
the streamline. In order to use equation (67) the acceleration along the stream-
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line may be found from (60) and (125) to be 

(126) 

and, incidentally, the acceieration normal to the streamliile may be obtained from 
equations (62) and (125): 

while the radius of curvature of the physical streamline is equal to 

M2 
R=(r+ 1)r -M2 . 

-1 

The variation of Me along the streamline is then equal to 

(127) 

(128) 

(129) 

which is exactly the negative of the value found at a parabolic point for M" = 1, 
equation (91) . Thus, in contrast to the case for parabolic points, where the local 
flatness of the hodograph surface leads to flow patterns with a close resemblance 
to two-dimensional plane flows, the infinite Gaussian curvature here leads to 
opposite tendencies. In fact, (129) shows that M" decreases in an expanding flow 
and increases in a compressing flow*. 

Since M" = 1 at the Mach cone, the same conclusions as given above with 
regard to the change of M" across this cone .are th en obtained. 

. . 
The foregoing discussion permits some conclusions with regard to the existence 

of a second .conical-sonic line, as discussed first by FERRI [17] and later by 
BULAKH [22J. 

In [17] the supersonic flow around a triangular conical wing with sharp' 
supersonic leading edges and a flat 'outboard region was discussed. It was shown 
by means of a series expansion in the vicinity of the conical-sonic line and by 
numerical calculations that adjacent to the conical-supersonic parallel flow in 
the outboard region another conical-supersonic region existed, termiriated by 
a second conical-sonic line. Since it may be expected that in tbis case the flow 
will be expanding bebind the downstream Mach cone considered, type Ib of the" 
flows just discussed win prevail, giving a conical-subsonic flow in the adjacent 
region. As was shown by BULAKH [22], the series expansion used in [17] was 
not valid in this case, so that conclusions can not he based on it. Also, BULAKH 

showed that in the rotational part of the flow field the conical streamlines are 
characteristics along wbich discontinuities in the derivatives of the velocity are 
possible. Such discontinuities actually occur along the conical streamline wbich 

. * At elliptic and hyperbolic points the Gaussian curvature is finite and different 
from zero, and both tendencies occur simultaneously, which is expressed by the fact 
that the sign of the variation of Me is not determined by the sign of the acceleration 
alone. 

Arcb. Rational Mech. Anal., Vol. 6 24a 
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separates the rotational from the irrotational flow, and along which the jump 
of vorticity, introduced by the discontinuity in the curvature of the shock wave, 
is carried downstream. Most likely these discontinuities were not accounted for 
in the numerical calculations. It mayalso be noticed that in several of the flow 
patterns given in [17J the conical-sonic lines on the convex body surfaces are 
inc1ined downstream instead of upstream as would follow from the previous 
discussion on conical-sonic lines. 

If the transition from or into the parallel flow is continuous, the foregoing 
considerations, resulting in flows sketched in Fig. 10, show that a conical­
supersonic flow adjacent to a parallel flow is possible in an expanding flow in 
front of a downstream Mach cone (type I a) and in a compressing flow bebind 
an upstream Mach cone (type Ub). Actually the latter type of flow may be 
found in the weIl known Busemann diffuser flow [11]. These flows will in general 
be bounded by another conical-sonic line. 

If the transition occurs across a limit cone, Fig. 10 reveals that a conical­
supersonic flow adjacent to a parallel flow occurs in compressing flow if the 
Mach (limit) cone is downstream with respect to the parallel flow (type lUb) 
and in expanding flow if the Mach (limit) cone is upstream with respect to the 
parallel flow (type IVa). 

The foregoing discus sion does not pretend to give a complete analysis qf the 
singularities in the transformation. For example, the properties of the trans­
forrnation if a-+O, both when U,*"O and when U -+0, deserve further attention. 
Also, the existence of branch type singularities, where possibly the hodograph 
surface forms an edge line along which two sheets on the same side of this line 
meet, may be investigated. 

It is hoped, however, that the consideration of the local properties of the 
hodograph transformation for irrotational conical flow from the point of view 
of differential geometry may have proved to give valuable information on the 
structure of conical flow. Nevertheless, the solution of a particular flow problem 
can be completed only by numerical calculation. Such a calculation may be 
performed either in the physical space, using a numerical method as described 
in the references cited above, or in the hodograph space. It would be useful 
to construct both the flow field and the hodograph surface while performing 
these calculations. 

As an example of how the qualitative nature of the flow may be determined 
by means of the hodograph transformation, the flow around a flat delta wing 
with supersonic leading edges will now be discussed. 

9. Supersonic flow around a flat delta wing with supersonic leading edges 

An example of the flow around a delta wing with supersoruc leading edges was 
first computed in the non-linear theory by MAsLEN [14J and since th en has been 
given special attention by FOWELL [15J and BULAKH [21]. Recently, BROOK [29J 
also gave a discussion of the flow field. Consider a flat delta wing with semi-vertex 
angle ~, placed at an angle of attack ex and zero yaw in a uniform supersonic 
stream with a Mach number M. The leading edges will be chosen to be super­
sonic; that is, ~>arc tan VM2_1 for ex not too large. Take the origin of the 
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right-handed co-ordinate system at the center of the conical flow, which is the 
apex of the wing, and the x and y axes in the plane of the wing, the x axis along 
the center line of the wing, positive in the downstream direction, and the y axis 
perpendicular to it, positive on the starboard side of the wing. The z axis is 
normal to the wing surface, and the angle of attack Ol: is chosen positive if the 
positive z axis is on the upper side of the wing. A sketch of the flow field and the 
hodograph surface is given in Fig. 11. All curves and points on the unit sphere 
are projected cent rally from the center of the conical flow onto a plane normal 
to the center line of the wing. The flow corresponds approximately to 01:= 5°, 
<5 = 45° and M =3 . 

Since the leading edges are supersonic, the flow on the upper and lower 
surface of the wing do not interfere and may thus be treated independently. 

Consider first the upper side of the wing, where the flow is expanding around 
the leading edges. As sketched in Fig. 1 the conical characteristics are straight 
in the parallel flow. The region of flow influenced by the wing is bounded by 
the downst re am part B' C' of the conical characteristic through the point of 
intersection of the leading edge with the unit sphere and by the remaining part 
of the conical-sonic line, being the envelope of the straight conical characteristics 
in the parallel flow (which is not a characteristic curve as stated in [21J). The 
parallel flow is given on the hodograph surface by the point 1l with the velocity 
vector q = 0.802 *, corresponding to M = 3, pointing upwards at an angle of 5 ° 
with the u, v plane. The cone of the normals to the hodograph surface in 1l 
is also sketched in Fig. 11. Adjacent to the straight characteristic B' C' the flow 
will be a simple wave flow, and since at C' the conical physical streamline exhibits 
a corner, the flow is centered in C'. In order for the streamlines in the parallel 
flow to turn around the leading edge they should have their concave side towards 
the wing surface, so that the straight characteristics are inclined downstream 
on the convex side of the streamlines; the flow is thus expanding. The flow 
expands until the velo city vector is parallel to the wing surface and another 
region of parallel flow in between the last characteristic of the simple wave 
flow C' F' and the wing surface occurs. This parallel flow region maps onto the 

. point ~ in the hodograph space. The conical simple wave flow is given in the 
hodograph space by an edge surface, lying in the plane through 1l normal to 
the leading edge of the wing 0' C', and extends from 1l to ~. The curve coinciding 
with the edge surface is thus a plane curve, the binormal of which at every point 
is parallel to 0' C'. The line of parabolic edge points corresponds to conditions 
in the center C' of the expansion waves, where, as was discussed before, the 
acceleration is infinite and the radius of curvature of the streamline is zero. 
Since the flow is expanding, the edge surface contains only elliptic edge points. 
The radius of curvature of 1l P2 may be obtained from equation (115) when 
the velocity is resolved into its components along the tangent, normal and 
binormal of the space curve 1l ~. Since 1l ~ is a characteristic, the velocity 
component qt along it is sonic. From (2) it follows, when y= 1.4, that 

(130) 

* Throughout this dis<?ussion the maximum speed will be taken as unity. 
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Furthennore, the velocity component along the binonnal qb may be found by 
projection of the velocity in ~. Thus 

(131) 

For the velocity component along the principal nonnal q" then follows 

(132) 

and by (115) the radius of curvature of 1l ~ is given by 

e = 0.834 V1.2 q2 - 0.5192. (133) 

Starting at ~ in the direction nonnal to the plane 0' B'C', the curve ~~ may 
now be . constructed *. The point ~ then appears to have a velocity vector 
q= 0.810, corresponding to M = }10 and deflected towards the center line of 
the wing through an angle of approximately 30

• From (117) it may be seen 
that along the first characteristic B' C' the acceleration increases in the direction 
from B' to C' with the inverse of sin -e. to become infinite at C'. In B', 1\1,,=1; 
thus U=a = qt, and W= Vq2- U2= Vq~+q!, from which it follows that 
q" (sin -e.t1= W = a VM2 -1. The acceleration along the streamline in B' then 
is shown from (117) to be equal to 

2a
2 V~ = 0.0565 r

1 
• gs = (y+1) r (134) 

This is exactly twice the value of the acceleration in the flow adjacent to the 
conical-sonic line A' B', which' may be seen from (126) to be 

a2 VM2-1 1 
gs = ( ) M = 0.0283 - . y+1 r r 

(135) 

The difference in nature of the simple wave flow, deterrnined completely 
by the leading edge having a two-dimensional character, and the flow adjacent 
to the Mach cone of the undisturbed stream, influenced by the apex of the wing 
and having a three-dimensional character, is thus expressed by a jump in the 
acceleration in B'. It may be recalled that in the linear theory there is a dis­
continuity in the velocity across B' C', while along A' B' the velocity gradient 
in the bordering flow becomes infinite [6J. 

The influence of the apex of the wing, noticeable along A' B', enters the 
simple wave flow at the point B' and carries downstream along the downstream 
conical characteristic B' F'. This boundary was also taken in the solution of 
MASLEN [14] and given special attention by BULAKH [21J when commenting on 
a paper by FOWELL [15]. It was pointed out by FOWELL [15J that it should 

* It should be noted that ~ ~ is not the Prandtl-Meyer epicyc10id shrunk by 
the factor 1'1- qg, as is stated in [13J in relation to centered simple wave flow around 
a swept-forward leading edge. 
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also be possible to construct the region of influence of the apex of the wing in 
the spatial flow field by considering the characteristic surface which emanates 
from the apex and intersects the unit sphere along a conical-sonic line. This 
line was then taken as boundary of the region of influence. As was noted in 
Section 2, however, disturbances originating at the apex of the wing admittedly 
travel initially along this characteristic surface but then continue along the 
characteristic surfaces from points on it. The envelope of these surfaces intersects 
the unit sphere along the above-mentioned conical characteristic B' F ' *. In the 
hodograph space the shape of this characteristic is obtained from the known 
shape of 1l P:a and the normal at Il corresponding to B' (direct ion O' B'). With 
the aid of (103) the normals to the edge surface along the image of characteristic 
B' F ' may then be determined, starting from the known values of Me and (Xn)char. 
at Il. The boundary between the parallel flow in the outboard region of the 
wing and the inboard region is the continuation of the characteristic B' F' down­
stream along the straight characteristics F' E'. This boundary was also given by 
MAsLEN [14] and BULAKH [21]. It was pointed out by BULAKH [21J that in 
addition to this line the conical-sonic line E' D' to which F' E' is tangent con­
c1udes this boundary line, because when the angle of attack is decreased, the 
inboard region would otherwise fill the whole space influenced by the total wing. 
This argument, however, applies only to small angles of attack, for which a 
conical-sonic line E' D' indee~ may be expected, but the example given by 
MASLEN and several numerical calculations presented by BROOK [29J show that 
at higher angles of attack the straight characteristic continues up to the wing 
surface**. 

It is natural to assume that the flow in the inboard region in the vincinity 
of the downstream Mach cone A' B' is expanding, and the transition across 
the conical-sonic line will then be continuo us since flow of the type Ib occurs. 
Thus, there is no ground to expect a shock wave to be formed near this line, 
as was done by BULAKH [21]. Along A' B' the flow becomes conical-subsonic, 
and on the hodograph surface points close the conical point Il are ·hyperbolic. 
Because of the symmetry of the flow with respect to the line A'G', the stream­
line A'G' will not be curved out of the plane of symmetry; thus {3=OCl=O. On 
the image of the streamline A' G' on the hodograph surface Il G there will be 
hyperbolic points, where conditions as sketched in Fig. 3 a prevail. The point 
G' is a conical stagnation point, where all the streamlines on the upper side of 
the wing come together, and it is mapped onto the orthogonal hyperbolic point 
G in the u, v plane. In the vincinity of the other downstream Mach cone D' E' 
the flow may be assumed to be compressing. This may be justified by noting 
that in the parallel flow along the wing surface the streamlines are directed 
towards the center of the wing and have to be deflected to be co me parallel to it. 
Thus the streamlines must be curved with the concave side to the leading edge, 

* Another conical flow solution where the region of influence of the origin has 
been incorrectly chosen was given in [30], where the supersonic flow near the junction 
of two wedges was studied. 

** In the case that a conical-sonic line D' E' appears, in [29] the characteristic 
tangent to D' E' in D' is incorrectly taken as the boundary between the regions 
determined by the leading edge and the wing apex. 

1 
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and the pressure gradient is therefore opposite to the direction of flow (and 
lying in the x, y plane, normal to the radius). Stated more freely, the two­
dimensional expansion around the leading edge would be too severe for a three­
dimensional flow, and as soon as the influence zone of the apex is reached, it 
appears that an overexpansion has taken place which has to be neutralized by 
a compression. From the considerations given in the section on parallel flow 
it follows, however, that the transition to compressing flow along a downstream 
Mach sone leads to flow type lUb, such that the Mach cone is a limit cone. 
The curve D' E' is therefore, for all angles of attack, a conical limit line. The 
flow near D' E' in the inboard region is conical-supersonic. Sin ce the streamline 
D' G' along the wing surface is not curved out of the x, y plane, it follows that 
{J = 0, and on the hodograph surface D' H' is mapped onto a curve of elliptic 
points ~H lying in the u, v plane where conditions as sketched in Fig. 6d prevail. 
In order for the streamline to arrive at G' it should return once more, while since 
M;,= ° in G', the flow should change from conical-supersonic to conical subsonic. 
Since {J=O all along the streamline on the wing surface, the latter means also 
that on the hodograph surface at the same point the points along the hodograph 
streamline change from elliptic to hyperbolic. This transition occurs at the 
parabolic point H, where since {J = 0, Mc= 1 (Fig. 7 d), while the image point 
H' is a point of a conical limit line of the first type. The streamline H' G' is 
mapped onto the line of hyperbolic points H Gin the u, v plane, where conditions 
exist as given in Fig.3e. Along P2GPa the hodograph surface is normal to the 
u, v plane: At H the parabolic line is normal to the u, v plane, while at H' the 
conical limit line is normal to the x, y plane. On the hodograph surface the 
parabolic line runs to some point K, and the whole of this surface containing 
elliptic points (excluding the elliptic edge points on 1l~) is mirrored with respect 
to the origin. 'In Fig. 11 the area to be reflected is enc10sed by a dotted line. 
Evidently, the disturbance introduced at B' propagates along the downstream 
characteristic B' E' and the conical sonic line E' D' in such a way th at down­
stream of some point K' a conicallimit line of the second type is formed. The 
exact location of K' can be found only by a numerical ca1culation of the whole 
flow field. In fact, the hodograph surface, exc1uding the edge surfaces 1l ~ 
and II Pa only, contains regions where the differential equation is either elliptic, 
parabolic or hyperbolic, depending on an elliptic region.: For reasons which will 
become apparent later, it will be assumed that K' lies on B' F' somewhere in 
between B' and F'. The straight characteristic F' E' is then a limit line. The 
flow adjacent to it must have straight characteristics and thus will be a conical 
simple wave flow. Furthermore, the waves will not be centered, because other­
wise the flow would be completely determined by the outboard region. In the 
hodograph space th is conical simple wave flow is mapped onto an eci.ge surface 
~L, which coincides with a 'space curve, since its torsion is different from zero. 
In ~ the tangent to ~L is normal to the plane 0' E' F', and since the flow is 
decelerating, the edge surface consists of hyperbolic edge points, which are 
obtained by mirroring the edge surface containing elliptic edge points. The 
region of conical simple wave flow will be bounded by the curveq. downstream 
characteristics from E' and F', which arrive at their point of intersection L' 
as upstream characteristics. Since both characteristics are curved and only two 
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characteristic directions are possible, the direction of the straight characteristic 
must coincide with at least one of them at L'; thus M;,=1, and both curved 
characteristics are tangent to the straight characteristic. The edge surface ~L 
therefore ends on the conical-sonic line which runs from H to the conical point 11. 
Along F' L' and E' L' propagates a discontinuity in the acceleration, caused by 
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sonic point. The point L' then lies 
downstream of H' K', and the charac­
teristic F' L' and E' L' intersect the limit 
line in J' and I', respectively. Since the 
transition across F' J' occurs continu-

U ously, the image of the regionF' J' K' on 
the hodograph surface ~J K consists of 
elliptic points, as do the edge surface 
in the region ~I J and the hodograph 

Dhar.z surface in the region ~I H, which is 
the image of region D' E' l' H' on the 

U unit sphere. The parabolic line H K 
enters the edge surface at I and con­
tinues as a line of parabolic edge points 
IJ, leaving this surface at J to become 

Dhar.Z a parabolic line J K again. The image 
of IJ on the unit sphere I' J' is the 

U envelope of straight characteristics. 
Conditions in the inboard region 

along B' F' may be deduced from the 
hodograph surface by assuming that fJ 

Char.2 varies continuously along the charac­
teristic separating the edge surface 11 ~ 

U · from the hodograph surface. Typical 
points along this curve are chosen in 
Fig. 12 to show the different situations e 

Fig. 12 a-eo Typical conditions on the characteristic B'F' which prevail. The image of the stream-
. line through B' on the side of F' leaves 

the edge surface 11~ in l1 'along the U axis, which is also the direction of l1Pz 
at this point, and fJ=rxl =0, whereM;,= 1. From B' toF' along B' F', M;,increases; 
thus on the edge surface I fJ I increases when going from 11 to Pz. On the hodograph 
surface I fJ I increases more rapidly, in accordance with the fact that at hyperbolic 
points the hodograph streamline should lie in the region which the hodograph 
characteristics enclose around a direction normal to the U axis. I t follows then 
that at these points the flow is still expanding if IfJI < in, as sketched in Fig. 12a, 
and when IPI is in~reased more, the acceleration along the streamline becomes 
zero for. IfJl =in (Fig. 12b), while the flow is compressing if IfJl exceeds this 
value (Fig .. 12c), In all these cases the transition across B' F'· is continuous, 

I 
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since if the flow is reversed, the streamline on the edge surface is se en to be 
directed along the downstream characteristic *. Thus in the neighborhood of B' 
in addition to the smaU two-dimensional expansion a spatial expansion occurs, 
and further downstream along B' F', a continuous compression. If B' F' is 
foUowed furlher downstream, I IJ I changes enough to bring the streamline into 
the other characteristic direction when the parabolic point K is reached. The 
deceleration has then become infinite, and the situation is sketched in Fig. 12d. 
It may easily be shown, from the transformation, that the conicallimit line of 
the first type in K' touches the characteristic B' F', which from this poînt on 
becomes a conical limit line of the second type. Still further downstream the 
hodograph streamline enters the region which the characteristics enc10se around 
the U axis, and the point is thus elliptic, which also may be deduced from the 
fact that the parabolic line is crossed. The transition is now across a limit line, 
sin ce if the flow is reversed, the streamline on the edge surface is directed along 
the upstream characteristic, while the flow changes from expanding to compressing. 
This situation is sl}etched in Fig. 12e. The course of the physical conical stream­
lines and the hodograph streamlines on the expansion side of the wing may 
now easily be understood from the considerations given above. 

Because of the appearance of limit cones at aU angles of attack it may be 
conc1uded that no continuous solution fqr the flow on the expansion side exists **. 
In order that a physicaUy possible flow pattern can occur, in the region of the 
limit cones a shock wave must be formed. The formation of this inboatd shock 
may be expected to start with zero strength at the point K' tangent to the 
two limit cones and to continue until it hits the wing surface normally***. 

Indeed, as was shown by FowELL [15J in experiments,. an inboard shock 
wave was found. The flow downstream of this shock wave does not necessarily 
have to be conical-subsonic, and it will be rotational if the shock is curved. 
In G' a Ferri singularity in the entropy distribution will then occur. 

On the lower side of the wing a compression takes place, and an isentropic 
solution involving limit cones mayalso be' constructed. Yet, obviously, unless 
detachment occurs, a plane shock wave C' M' may be seen to be attached to 
the leading edge, downstream of which a region of flow parallel to the wing 
surface exists. This region of parallel flow is bounded downstream by a Mach 
cone, showing up as a circular conical-sonic line M' P' on the unit sphere. Since 

* This continuous transition may be shown not to be in contradiction with the 
fact that the characteristic separates regions of elliptic edge points and hyperbolic 
points, because the edge surface lies on the same side of this separation curve as 
the hodograph surface. 

** This conclusion was also reached in [15J and [29J, where it was remarked that 
the simple wave regions from the leading edges at some angle of attack overlap, 
thus making a continuous solution impossible. As was pointed out before, however, 
.this picture of the flow is based on an incorrect.presentation of the spatial influence 
of the apex of the wing and does not justify conclusions with regard to the possibility 
of a continuous solution. 

*** In [21J and [29J it was assumed that the shock wave begins at D'. There is 
na reason, however, to expect that the shock will extend beyond K' in the region 
where a continuous transition across B' F ' was found. 
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in the parallel flow the streamlines are directed away from the wing center 
line, an expansion occurs along 0' P' in order to turn the streamlines towards 
the direction of the center line. The type of flow Ib therefore prevails, giving 
a continuous transition across C' M~ into a conical-subsonic flow. Thus, there 
is no reason to expect a shock wave to be formed in the neighborhood of C' M' 
as was done by BULAKH [21]. In the example given by MASLEN [14J, along 
C' M' the flow was found to be conical-supersonic. As was pointed out by 
BULAKH [22J, however, the jump in curvature of the shock wave at the junction 
of the plane shock C' M' and the curved shock M' N' introduces a jump in vorti­
city, propagating downstream along the streamline M' Q', which is most likely 
not accounted for in the numeri cal calculations in [14]. Since downstream of 
the curved shock the flow is rotational, a velocity potential cannot be defined, 
and the hodograph transformation breaks down. Also for this reason, the ho do­
graph surface for the compression side of the wing is not given in Fig. 11. Again 
a Ferri singularity in the entropy distribution occurs at Q'. 

This completes the present description of the supersonic flow around the 
delta wing with supersonic leading edges. 

A note may be added concerning the supersonic flow around the tip of a 
flat rectanguJar wing at incidence, which was discussed in connection with the 
delta wing by BULAKH [21]. Since this flow pattern essentially may be obtained 
by turning one of the leading edges of a delta wing with 90° apex angle perpen- J 
dicular to the undisturbed flow while the other then becomes a subsonic edge,' 
the flow on the side of the leading edge may be expected to be similar to that 
for the delta wing as discussed before. In fact, it may be shown that on the 
expansion side two limit lines again appear, which are tangent at their point 
of contact on the characteristic terminating the Prandtl-Meyer expansion, and 
thus a continuous solution is not possible. Again an inboard shock will be formed, 
starting with zero strength at the point of tangency of the limit lines. On 
the compression side of the wing the parallel flow is again bounded by a down-
stream Mach cone along which a continuous transition into expanding flow 
takes place and no shock occurs. The hodograph surface for this flow pattern 
as given by BUSEMANN [23J may be modified, according to the results found 
for the delta wing, to include regions of elliptic points, in which an edge surface 
is imbedded, and separated from the region of hyperbolic points by a parabolic 
line. The conditions on the subsonic edge are given by a parabolic line, coinciding 
with a characteristic, which also is a streamline. 
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, Overzicht 

In dit proefschrift worden supersone wervelvrije kegelstromingen beschouwd. 
Dit zijn stromingen van een samendrukbaar medium (gas), waarvoor in ieder 
punt van de (driedimensionale) ruimte, de snelheid groter is dan de locale geluids­
snelheid, geen wervels optreden en de toestandsgrootheden van het gas (bijv. de 
druk en de temperatuur) en snelheid constant zijn op stralen door het centrum 
van het kegelvormige veld. Het veld kan daarom worden beschreven op de 
eenheidsbol met het centrum als middelpunt. Door het ontbreken van wervels 
in de stroming kan een snelheidspotentiaal worden gedefinieerd, welke door 
toepassing van de wetten van de mechanica en thermodynamica blijkt te voldoen 
aan een partiële differentiaalvergelijking van de tweede orde met als onafhan­
kelijk veranderlijken twee plaatscoördinaten, welke worden gebruikt om op de 
eenheidsbol te meten. Deze differentiaalvergelijking heeft een quasi-lineair 
karakter, d.w.z. de termen van de tweede orde komen voor in een lineaire com­
binatie, terwijl hun coëfficiënten echter afhangen van de onafhankelijk verander­
lijken, eerste afgeleiden van de potentiaal en de potentiaal zelf. Het type van 
deze vergelijking in een bepaald punt op de eenheidsbol wordt bepaald door de 
waarde van het conische getal van Mach ~, gedefinieerd als de verhouding van 
de snelheidscomponent loodrecht op de straal (dus voor een punt op de eenheidsbol, 
rakend aan de eenheidsbol) en de locale geluidssnelheid. Voor een conisch-subsone 
stroming (Me < 1) is de vergelijking elliptisch, voor een conische-sonische stroming 
(Me = 1) parabolisch en voor een conisch-supersone stroming (Me > 1) hyper­
bolisch. De twee families karakteristieken van de vergelijking worden conische 
karakteristieken genoemd en liggen op het boloppervlak. Zij bepalen de twee 
karakteristieke richtingen in een punt van de bol, welke verschillend en imaginair 
zijn voor M, < 1, samenvallend en reël voor Me = 1 en verschillend en reël voor 
~ > 1. De doorsnijding met de eenheidsbol van een kegel met het centrum 
als top en een (ruimtelijke) stroomlijn als richtkromme wordt conische stroomlijn 
genoemd. De samenhang van deze beschrijving van de stroming op de eenheidsbol 
en die in de ruimte, zowel als de overeenkomsten en de verschillen met de twee­
dimensionale vlakke stroming van een samendrukbaar medium worden besproken 
en toegelicht aan het voorbeeld van de homogene evenwijdige stroming. 

Teneinde de structuur van kegelvormige velden nader te leren kennen worden 
vanuit één punt de snelheidsvectoren van een dergelijk veld uitgezet, zodat de 
eindpunten aldus een oppervlak opspannen in de hodograafruimte. De trans­
formatie van de physische ruimte naar de hodograafruimte staat bekend als de, 
ook voor vlakke samendrukbare stromingen toegepaste hodograaf-of Legendre­
transforma:tie. Het blijkt nu, dat voor kegelstromingen de afbeelding van het 
hodograafoppervlak op de eenheidsbol in de physische ruimte de, uit de diffe­
rentiaalmeetkunde bekende Gausse of spherische afbeelding van een oppervlak 
is. Dit wil zeggen, dat wanneer de eenheidsnormaalvectoren van het hodograaf­
oppervlak worden uitgezet vanuit één punt, juist de voor de beschrijving van 
kegelstromingen gebruikte eenheidsbol in de physische ruimte wordt verkregen. 
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Er volgt nu een differentiaalmeetkundige beschrijving van het hodograaf­
oppervlak en van de locale eigenschappen van de transformatie met behulp van 
een, ~it de differentiaalvergelijking af te leiden relatie voor de kromstralen in 
een punt van het hodograafoppervlak. De afbeeldingsdeterminant van Jacobi 
voor de afbeelding van de bol op het hodograafoppervlak blijkt bijvoorbeeld 
gelijk te zijn aan de Gausse kromming van laatstgenoemde oppervlak (zo ook 
aan de verhouding van de oppervlakte van een oppervlakteelement op de bol 
tot dat van het corresponderende oppervlakteelement op het hodograafoppervlak). 
Voorts wordt aangetoond, dat de conische karakteristieken op het hodograaf­
oppervlak een geconjugeerd net vormen, welke zich afbeeldt op het net van de 
conische karakteristieken op de eenheidsbol. Hieruit en uit de transformatie 
volgt dan, dat de conische karakteristieken op het hodograafoppervlak van één 
familie en de conische karakteristieken op de eenheidsbol van de andere familie 
een stelsel vormen, dat in de corresponderende punten orthogonaal is. Een ander 
geconjugeerd net op het hodograafoppervlak vormen de lijnen van constante 
grootte van de snelheid en de stroomlijnen. Een geconjugeerd net van krommen 
van belang als referentiesystem is het (orthogonale) net der krommingslijnen, 
welke zich op de bol afbeeldt, zodanig, dat in de corresponderende punten een 
kromingslijn evenwijdig is aan zijn afbeelding op de bol. Nadat, de physich 
van belang zijnde grootheden zijn uitgedrukt in meetkundige grootheden van 
het hodograafoppervlak, - zo kan bijvoorbeeld ook de versnelling van een gas- 1 
deeltje op eemToudige wijze worden geschreven als de som van de hoofkromte-
stralen van het hodograafoppervlak in het corresponderende punt -, volgt een 
nader onderzoek van het gedrag van de hodograafstroomlijnen en karakteristieken 
t .O.V. de kromtelijnen, wanneer het conische getal van Mach Me en de Gausse 
kroming (juister gezegd de verhouding van de hoofdkromtestralen en de som der 
hoofdkromtestralen) worden gevarieerd. Voor een reguliere afbeelding, dus 
wanneer de afbeeldingsdeterminant (of Gausse kromming) eindig en van nul 
verschillend is, en dientengevolge de punten op het hodograafoppervlak elliptisch 
of hyperbolisch zijn, wordt dit gedrag in detail besproken voor conisch-subsone, 
conisch-sonische en conisch-supersone stromingen en toegelicht aan een aantal 
figuren (figuur 3 tJm 6). 

Singulariteiten in de afbeelding treden op wanneer de Gausse kromming naar 
nul of oneindig gaat, terwijl dan de hodograafstroomlijn en één van de conische 
karakteristieken beiden raken aan de kromtelijn, waarvoor de absolute waarde 
van de hoofdkromtestraal het grootst is. Zij treden dus op voor M.~ 1. 

Er wordt aangetoond, dat een lijn van parabolische punten de afbeelding is 
van een conische grenslijn (van de eerste soort) d.i. de doorsnijding van een 
kegelvormige grensoppervlak met de eenheidsbol. De mogelijkheid van het 
optreden van discontinuïteiten in tweede en hogere afgeleiden van de potentiaal 
langs de karakteristieken leidt tot het mogelijke bestaan van conische grenslijnen 
(van de tweede soort), welke worden afgebeeld op conische hodograafkarakter­
istieken, waarvoor de afbeeldingsdeterminant (Gausse kromming) door nul springt. 

Een parabolische lijn, welke geheel samenvalt met een hodograafstroomlijn 
en hodograafkarakteristiek is de afbeelding van de stroming in het randpunt 
van de stroming om een scherpe rand, zoals bijvoorbeeld in de omstroming van 
een subsone vleugel voorrand van een deltavleugel voorkomt. 
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Als voorbeeld van stromingen, waarvoor de afbeeldingsdeterminant naar on­
eindig gaat worden de stromingen besproken, waarvoor langs slechts één der 
families conische karakteristieken zich verstoringen voortplanten (simple wave 
flow). Deze stromingen worden afgebeeld in de hodograafruimte op een rand­
oppervlak, d.i. een oppervlak, dat samenvalt met een ruimtekromme, terwijl in 
elk punt van de ruimtekromme verschillende punten van het randoppervlak, 
onderscheiden door hun normaal, samenvallen met dit punt van de ruimte­
kromme. Met behulp van de transformatie worden nu elliptische, parabolische 
en hyperbolische randpunten gedefinieerd en de eigenschappen van de trans­
formatie verder onderzocht in analogie met het geval voor een eindige Gausse 
kromming. Een lijn van parabolische randpunten blijkt de afbeelding te zijn 
van een conische grenslijn (van de eerste soort) in een "simple wave" stroming. 
Een .lijn van parabolische randpunten, welke geheel samenvalt met een hodo­
graafstroomlijn en hodograafkarakteristiek is de afbeelding van het snijpunt met 
de eenheidsbol van de centreerlijn van een gecentreerde "simple wave" stroming 
om een scherpe rand, zoals bijvoorbeeld in de omstroming van een supersone 
vleugelvoorrand van een deltavleugel voorkomt . . 

De overgang van een "simple wave" stroming naar een stroming, waarin 
langs beide families karakteristieken verstoringen lopen wordt onderzocht, waar­
bij speciaal wordt gelet op het optreden van conische grenslijnen. 

Een ander voorbeeld van het geval, waarvoor de afbeeldingsdeterminant naar 
oneindig gaat is dat van de homogene evenwijdige stroming, welke wordt afgebeeld 
op een punt in de hodograafruimte. De mogelijke begrenzingen van dit soort 
stromingen en de wijze van overgang naar aangrenzende kegelstromingen wordt 
onderzocht, waarbij weer in sommige gevallen grenslijnen worden gevonden. 

Tot slot wordt als toepassing van bovenstaande beschouwingen aangegeven 
hoe door gelijktijdige constructie van het hodograafoppervlak en het veld op de 
eenheidsbol in de physische ruimte een kwalitatief beeld kan worden verkregen 
van de supersone stroming om een deltavleugel met supersone vleugelvoorranden, 
onder een invalshoek geplaatst in een homogene evenwijdige stroming. Dit beeld 
wordt vergeleken met uit de literatuur bekende numeriek berekende resultaten. 
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