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Preface

This thesis proposes a new phase noise filter structure to filter the phase noise of the Digital to time
Converter (DTC) for clock and data recovery (CDR) application. The thesis is under the instruction of
Dr. Sijun Du at Delft University of Technology and Dr. Zhongkai Wang, who received Ph.D. degree
in electrical engineering from the University of California at Berkeley, Berkeley, CA, USA. The main
finding of the thesis is a new filter structure that can filter not only the phase noise of Delay locked loop
(DLL) but also that of phase interpolator (PI), while the currently charge-injection-based phase noise
filter can only filter the DLL’s phase noise. The thesis committee is formed by Dr. Sijun Du, supervisor,
and Dr.S.M.Alavi from the Electronic Circuits and Architectures (ELCA) research group.

I want to give my sincere thanks to Dr. Sijun Du for his support and guidance on this thesis project.
I’m also very grateful for the instructions from Dr. Zhongkai Wang, who shares the initial idea of the
phase noise filter and teaches a large number of implementation details during the schematic and layout
design.

Tianyu Wang
Delft, August 2023
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Abstract

The growing number of users, devices, and connections leads to a growing demand for bandwidth. This
speed communication is usually realized asynchronously, which means the data is exchanged between
two servers while the accompanying sampling clock is not exchanged. A CDR system is required on
the server that receives data to recover the sampling clock for the data. The DTC in the CDR system
is the main jitter source of the recovered data. A low-jitter DTC is required to generate data of low-jitter
performance, calling for the application of a phase noise filter. Currently, most phase noise filters are
based on the charge injection technique, which can only filter the phase noise of the DLL-based DTC.
This thesis presents a new phase noise filter, which can filter both the DLL and PI phase noise.

The proposed phase noise filter is inspired by the noise transfer function from the phase detector’s
input to the delay locked loop(DLL) output of a type-II DLL, which shows a first-order low-pass transfer
function. The noise suppression pole frequency is adjustable and can be modified by changing the
gain of each component in the circuit. In addition, by carefully placing the frequency of the LDO’s pole,
second-order noise filtering can be realized.

During design, a 10-bit DTC is constructed first and the proposed filter is placed behind the DTC to
verify the effectiveness of the filter. The design achieves the post-layout level. The simulation results
show that the DTC’s phase noise drops from 1.099 psrms to 315.9 fsrms with the filter. The area is 695
µm × 693.5 µm. The design consumes 42.3 mW with 1.8V supply in 180nm BCD technology.
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1
Introduction

Modern Internet companies such as Google and Facebook store and provide data service through the
use of “servers”. Thousands of their servers are connected to each other for data storage and exchange.
In order to save cost, asynchronous data transmission is applied in most cases. The asynchronous
means the accompanying clock of the data on the transmit side wouldn’t be sent to the receive side.
Methods that can recover the clock from the data and then use this clock to re-time the data are required,
calling for the application of Clock and Data Recovery (CDR) [1].

In this chapter, the concept of CDR is introduced first, whose main components are a digital-to-
time converter (DTC) and the CDR logic. The design goal of the thesis is a low-jitter DTC. Thus, the
introduction of the DTC structure comes in the next section. The concept of the jitter is introduced in
the third section, which is a fundamental metric of the CDR system. The motivation and scope comes
in the next section. Finally, the thesis outline is given.

1.1. Clock and Data Recovery

Figure 1.1: Block diagram of a typical CDR system

The function of the CDR is to generate a clock to sample a data stream without an accompanying
clock. Fig 1.1 exhibits the block diagram of a typical CDR system. The reference clock is usually gen-
erated by a crystal oscillator(OSC), which outputs a stable but low-frequency clock. The phase-locked
loop(PLL) aims to multiply the reference clock frequency. The clock distribution circuit distributes the
multiplied clock to the components on chip that requires clocks(e.g. ADC, logic gates, DAC, DTC). The
digital-to-time converter(DTC) is usually composed of a delay locked loop(DLL)/Phase locked loop(PLL)
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1.2. Digital to time converter 2

and a Phase interpolator(PI). The data from the transmit side is sent to the receive side, which lacks
the associated clock. The CDR system on the receiver side generates a recovering clock to re-sample
the received data. The reference clocks from the crystal OSC on both the transmit and receive sides
are assumed to have the same frequency. Thus, the reference clock on the receive side has the same
frequency as that of the received data. The CDR logic circuit controls the DTC to generate the clock
with a correct phase to sample the received data.

Fig1.2 shows the conceptual model of a CDR system. The input of the system is the data on the
receiving side, which lacks the accompanying clock. The received data are sent to the CDR system to
generate a recovered clock. The DTC outputs a clock, whose phase is controlled by the CDR logic and
the frequency is the same as the clock on the transmit side. To correctly sample the data, the sampling
point must be put away from the rising/falling edge transition. The recovered clock is utilized by the
re-timer to re-sample the received data.

Figure 1.2: Conceptual model of a CDR system

1.2. Digital to time converter
As shown in Fig 1.2, the inputs of the DTC are the digital control codes and a reference clock. The
output clock has the same frequency as the reference clock and the delay can be adjusted by the digital
code. The delay is controlled by the CDR logic, which is adjusted such that the sampling point in Fig
1.2 is away from the rising/falling edge transition.

Figure 1.3: Implementation of DLL/PLL based DTC
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There are multiple categories of DTC implementations. However, in this report, the two most sig-
nificant and readily used implementations are introduced. Their implementations are shown in Fig 1.3.
The function of the DLL and PLL is to generate multi phases. The main difference between the DLL
and PLL is that the multiple phases are generated by a voltage controlled delay line(VCDL) in DLL
while that is generated by a voltage controlled oscillator(OSC) in PLL. Consequently, there exists a
jitter accumulation in the PLL-based implementation while the DLL-based implementation doesn’t. The
DLL also shows advantages in its design simplicity, robustness, and stability than the PLL. On the
other hand, the PLL-based implementation exhibits an advantage in that the PLL’s loop bandwidth can
low-pass filter the incoming jitter[2]. Meanwhile, the DLL shows an all-pass phase characteristic, which
means the input phase noise will not be filtered. The input jitter can also be amplified due to the finite
bandwidth of the DLL delay line[3]. In a short summary, the DLL-based DTC is easy to construct but it
will amplify the input phase noise at high frequency offset. The PLL-based DTC can provide noise fil-
tering but the PI’s phase noise is left unfiltered with high design complexity. A possible implementation
is to utilize the DLL and PI structure, with a phase noise filter attached behind the PI.

Figure 1.4: Problem of frequency mismatch between two transceivers[4]

The combination of DLL and Phase interpolator (PI) is utilized to achieve a high-resolution DTC.
The DLL generates the initial multiple phases. The PI utilizes two adjacent DLL phases to generate
more intermediate phases. The more stages the DLL has, the more power consumption will the DTC
cost. Meanwhile, the PI’s linearity increases with more DLL phases. The combination of DLL and PI
ensures a power-efficient and area-efficient method to get a high-resolution and high-linearity DTC than
DLL-only DTC or PI-only DTC[5].

The PI is usually implemented in a digital way to solve the plesiochronous operation problem. The
plesiochronous operation problem refers to the frequency mismatch between the transmit and receive
sides’ reference clock, which is shown in Fig 1.4. The reference clock is generated by two crystal OSC,
whose output frequencies can’t be totally identical in reality. The post PLL multiplies the frequency of
the crystal OSC’s output clock. This frequency mismatch generates an unbound phase error. When
the PI is realized in a digital way, it has the ability to introduce a monotonically increasing phase for
CK1 that grows without saturation. Thus, it compensates for the unbound phase difference between
the received data and the recovered clock and solves the issue [4].

1.3. Concept of Jitter and Phase noise
A fundamental metric of the CDR system is the jitter performance, which is defined as the dynamic
deviation of the clock from an ideal edge. Fig 1.5 illustrates the influence of jitter on the ideal clock.
The real clock is generated by the combination of the jitter and the ideal clock. The jitter causes a
difference in the rising/falling edge of the clock. The lower ’absolute jitter’ refers to the amplitude of the
jitter. The amplitude of the jitter can be random or deterministic, resulting from the device noise such
as thermal and flicker noise (random) or supply/substrate noise, channel induced jitter (deterministic).

The phase noise is defined as the ratio of the phase noise in a 1-Hz bandwidth at a specified
frequency offset, fm, to the oscillator signal amplitude at frequency f0, which can be regarded as the
frequency-domain representation of the jitter. Fig 1.6 illustrates an example of an OSC’s phase noise
spectrum. The area ’A4’ represents the white phase noise region. The area ’A3’ represents the flicker
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Figure 1.5: Illustration of the concept of jitter[6]

phase noise region(slope = -20dB/decade). The area ’A1’ and ’A2’ represents higher order phase noise
region(slope = -40,-60dB/decade). Fig 1.6 also exhibits the conversion process from the phase noise
to jitter. The jitter is the integration of phase noise in the frequency domain.

Figure 1.6: One example of the OSC Phase Noise in dBc/Hz vs. Frequency Offset[7]

1.3.1. Jitter source of the CDR's recovered data
A vital property of the CDR system is that the jitter of the received data will not be inherited by the
recovered data. Fig 1.2 exhibits the waveform of a typical CDR system. The clock ’CK’, which is the
recovered clock of the CDR system, samples the data away from the rising/falling edge transition. Note
that the jitter of the received data appears at its rising and falling edge. Thus, the jitter from the input
data of the receiver side is masked. In this case, the jitter of the sampling clock becomes the major
jitter source of the recovered data. To get low-jitter recovered data, a low-jitter DTC is required.
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1.4. Motivation and Scope
The increasing data rate requirement for wireline communication leads to an increasingly important role
of the clock and data recovery (CDR) circuits in maintaining low bit error rates. The DTC generates the
re-sample clock in the CDR circuit, which becomes the main jitter source of the recovered data due to
the jitter mask property of the CDR circuit. To get low-jitter recovered data, a low-jitter DTC is required,
calling for the utilization of a phase noise filter.

This thesis proposes a new phase noise filter structure that can be attached to the DTC for phase
noise suppression. To verify the effectiveness of the filter, a 10-bit DTC is constructed first, which
composes of a 4-bit DLL and 6-bit PI. The DLL structure ensures a low design complexity and high
robustness compared with the PLL-based structure. The PI is realized in a digital way to solve the
plesiochronous operation problem. The proposed phase noise filter is placed behind the DTC for veri-
fication. The design is implemented in a 180-nm BCD process.

1.5. Thesis Organization
The rest of the thesis is organized as follows:

Chapter 2 introduces the related works for phase noise reduction and filtering. This chapter also
reformulates the research questions in a form that complies with the state of the art in the field.

Chapter 3 presents the mechanism of the proposed design, including a 10-bit DTC(4-bit DLL and
6-bit pipelined PI) and the thesis’s innovation, a phase noise filter.

Chapter 4 exhibits the implementation details of the proposed design. The design process of the
main components in the DLL, PI and phase noise filters are introduced as well.

Chapter 5 shows the post-simulation results of the design, including the layout, phase noise, power,
and linearity performance.

Chapter 6 discusses the effectiveness of the phase noise filter, along with the analysis on how to
further reduce the phase noise components at high/low frequency offset.

Chapter 7 gives the conclusions and presents some suggestions for future improvement.



2
Related works

This chapter first introduces the related works on reducing phase noise, including the most basic tech-
nique, increasing power consumption, and state-of-the-art techniques. Finally, the research questions
are reformulated in a form that complies with the state of the art in the field.

2.1. Related works to reduce the phase noise of the DTC
In this section, methods to reduce the phase noise of the DTC in three directions are introduced.

2.1.1. Trade power with phase noise
It’s proved theoretically that the DTC’s phase noise directly trades with power [4]. Thus, the most
apparent method to reduce the phase noise is to increase the power consumption. A brief proof of this
theory is given as follows:

1. Assume the output clock of one normal DTC can be expressed as:

Vout(t) = V0cos[ω0t+ ϕn(t)]

= V0cosω0tcosϕn(t)− V0sinω0tsinϕn(t)

≈ V0cosω0t− V0ϕn(t)sinω0t

(2.1)

2. Consider there are N identical DTCs with their output clocks added together. Their output can be
expressed as:

Vout(t) = V0cosω0t− V0ϕn(t)sinω0t+ ...V0cosω0t− V0ϕn(t)sinω0t (2.2)

where ω0 is the average oscillation frequency and ϕn1, ..., ϕnN denote the phase noise of the
individual DTCs respectively. The output can then be expressed as:

Vout(t) = NV0cosω0t− V0(ϕn1 + ...+ ϕnN )sinω0t (2.3)

3. The normalized phase noise can be expressed as (ϕn1 + ... + ϕnN )/N . The spectrum can be
expressed as:

Sϕ(f) =
Sϕn1 + ...+ SϕnN

N2
(2.4)

because the phase noises of the N DTCs are uncorrelated. Since the DTCs are identical, their
phase noise spectrum are equal and�

Sϕ(f) =
Sϕn1

N
(2.5)

In other words, the overall phase noise is reduced by a factor of N at the cost of an N-fold increase
in power dissipation. In a short summary, the simplest way to design a low-jitter DTC is to sacrifice
power consumption, which is not desired as power is a vital metric for DTC as well.
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Figure 2.1: Phase domain model of a typical phase locked Loop[8]

2.1.2. PLL as a Phase noise filter
An alternative approach is to apply a phase noise filter. One implementation of the phase noise filter
is a phase-locked loop (PLL). Fig 2.1 exhibits the phase domain model of a typical PLL. Its working
principle is briefly introduced since it’s not the focus of the thesis. ‘KPD ’ refers to the linearized gain of
the phase detector. ‘F (s)’ refers to the transfer function of the components, CP, and loop filter. ‘KV CO/s’
refers to the linearized gain of the voltage controlled OSC(VCO). The output of the VCO is a clock with
a frequency. The phase of a clock is the integration of the clock frequency, which is the reason why
the VCO’s linearized gain is integrated in the phase domain model. The transfer function from input to
output can be expressed as:

Sϕ(f) =
KPDKV COF (s)/s

1 +KPDKV COF (s)/Ns
(2.6)

The transfer function from the PLL’s input to output shows a low-pass characteristic [9], which can be
used to filter the high-frequency phase noise. The PLL can be post-connected to the DTC to realize the

Figure 2.2: Multiplying DLL and the slave OSC as the phase noise filter

phase noise filtering. The inputs of the PLL’s PD are the DTC’s output clock and VCO’s output clock
after frequency division. The PLL’s output clock becomes the filtered clock. The problem with the PLL
phase noise filter is that the traditional second-order and third-order PLLs increase significant design
complexity, calling for a simpler phase noise filter implementation.
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2.1.3. Charge injection based phase noise filter
One phase noise filter implemented based on injection locking is exhibited in Fig 2.2 [10]. The clock
without filtering is generated by the multiplying DLL(MDLL). The working principle of the MDLL is briefly
introduced since it’s not the focus of the thesis. In most of the periods, the MUX connects the first and
end stages of the VCDL to form a ring OSC. In the rest period, the MUX connects the reference clock
’rclk’ to the first stage the VCDL. The number of ring OSC periods determines the multiplying coefficient.
The select logic counts the number of edges and determines when to inject into the ring oscillator. The
PD, Filter, and regulator work similarly to the typical DLL, which corrects the phase difference between
the reference clock and the VCDL’s output clock.

The output clock of the multiplying DLL is charge-injected to the slave OSC for phase noise filtering.
The slave OSC utilizes the same delay element as the MDLL and shares the same control voltage.
Thus, the slave OSC runs the same frequency as the MDLL in the ideal case.

Fig 2.3 exhibits the phase domain model of the MDLL and slave OSC in the Z-domain. The injection
strength is defined as Sc = Wc/(Wc +Wm). In the frequency domain, the jitter transfer function from
the slave OSC’s input to output is given by:

ϕfilt

ϕout
=

Kc

z − (1−Kc)
(2.7)

where Kc = 1 − (1 − Sc)
N and N is the multiplication factor of the MDLL. Equation2.7 indicates a

first-order low-pass filter with a single pole located at:

p0 =
−ln(1−Kc)

Ti

(2.8)

where Ti is the injection frequency from the MDLL to the slave OSC. The problem with this single-
phase charge injection structure is that there exists a phase imbalance between the injected stage and
non-injected stages. Consider the injected clock frequency is finj and the slave OSC’s self-oscillation
frequency is f0, the frequency mismatch would cause a phase error between the injected and non-
injected stages of the slave OSC, whose magnitude is proportional to (f0 − fing)/f0[11]. As a result,
the slave OSC needs to set the f0 to a frequency different from finj to achieve a zero phase error
among the slave OSC’s output phases. To address this residual phase error issue, the multi-phase
injection scheme is utilized [12].

Figure 2.3: Phase domain model of the MDLL and the slave OSC
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Multi-Phase charge injection
The OSC’s phase symmetry is restored by multi-phase injection to all OSC stages. Fig 2.4 exhibits
the implementation of the multi-phase charge injection. The first stage is a DLL with quadrature error
correction(QEC). The mixers and the OTA form the quadrature error detection and correction path. The
generated control voltage controls the delay time of the VCDL in the DLL and the oscillation frequency
of the Ring OSC(ROSC) in the next stage. All the output phases of the QDLL are injected into all the
stages of the ROSC. The inaccuracies of the QDLL’s injection phases would lead to leads or lags in the
ROSC phases. On the other hand, the feedback structure of the ROSC requires the total phase shift
around all the OSC stages to be 2π. Consequently, the QDLL’s phase inaccuracies can be suppressed.

Figure 2.4: Implementation of the multi-phase charge injection using a QDLL and a ROSC

The phase domain analysis of the multi-phase charge injection is similar to that of the signal phase
injection. The phase noise from the QDLL is first-order filtered. A multi-phase charge injection-ROSC
is an ideal candidate for high-accuracy and low-jitter multi-phase clock generation. However, when it
comes to the DTC design, this structure has the limitation that the phase noise of the phase interpola-
tor(PI) can’t be filtered.

2.2. Research Question
There are three methods to reduce the jitter of the DTC. The direct method to reduce phase noise is
to increase the power consumption, which is not desired since power is another vital metric for the
DTC design. The low-pass characteristics of the phase locked loop(PLL)’s transfer function from input
to output can be utilized to form a phase noise filter. However, the traditional second-order and third-
order PLLs increases significant design complexity due to stability issue. Amulti-phase charge injection-
ROSC is an ideal candidate for high-accuracy and low-jitter multi-phase clock generation. However,
when it comes to the DTC design, this structure has the limitation that the phase noise of the phase
interpolator(PI) can’t be filtered. The only method to reduce PI’s phase noise is to increase the power
consumption.

In order to solve the issues of the above methods, a new phase noise filter is proposed in this thesis,
featuring:

1. First-order phase noise filtering instead of sacrificing power.
2. Based on DLL instead of PLL to reduce design complexity and increase robustness.
3. Filter all the noise from the DTC, including DLL and PI



3
The proposed design

In this chapter, the mechanism of the proposed design is presented. Firstly, the overview of the design
is exhibited. The design can be divided into two parts: a high-resolution DTC and the thesis’s innovation
point, a phase noise filter, whose working principles are introduced sequentially in this chapter.

3.1. Overview of the proposed design
The overview of the design is depicted in Fig 3.1. The DTC is composed of a 4-bit DLL. The DLL is
realized with quadrature error correction instead of the traditional PFD-based structure to ensure DTC
phase linearity. The 16:2 Multiplexer(MUX) selects two adjacent DLL phases into the PI. The pipelined
PI extends the phase resolution to 10 bit. The output clock of the pipelined PI contains the correct
phase information, which is controlled by the external CDR logic. The phase noise filter replicates
the phase information of the PI’s output clock to the output and generates the filtered clock with the
reference clock.

Figure 3.1: Overview of the proposed design

3.2. Phase noise filter
Fig 3.2 exhibits the implementation of the proposed phase noise filter, which is inspired by the typical
type-2 DLL’s noise transfer function(NTF) from the phase detector to the output[13].

The working principles of the phase noise filter are the same as the type-2 DLL as well. The phase
frequency detector(PFD) detects the phase difference between the output clock of the DTC stage and
the output clock of the voltage controlled delay line(VCDL). The charge pump(CP) converts the phase
difference into a current. The loop filter(LF) integrates the phase difference error current to generate
the control voltage for the VCDL. The low-drop amplifier(LDO) controls the supply voltage of the VCDL
to modify its delay time and provides currents for the VCDL. The VCDL is composed of a cascade of

10
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differential inverter stages. The negative feedback loop ensures the phase alignment between the PD’s
two input clocks. This property is utilized to replicate the phase information from the former DLL and
PI stage to the output of the phase noise filter.

Figure 3.2: Implementation of a typical delay locked loop

Fig 3.3(b) shows the phase domain model of the phase noise filter. All the components of the
filter are linearized and all the noise sources are included. The loop filter generates a pole at DC for
integration. The LDO will also generate a pole, whose frequency is put higher than the loop bandwidth.
Thus, the whole DLL can be regarded as a one-pole system, which is stable and robust.

Figure 3.3: The phase domain model of the proposed phase noise filter

Noise transfer functions of the phase noise filter
Based on the phase domain model, the NTFs from each component to the output can be analyzed.
The most important NTF is from the PFD to the output, which shows a low-pass characteristic:

ϕOUT

ϕPI,IN
=

KPD,CPKLDOKV CDL

sCLF +KPD,CPKLDOKV CDL
(3.1)

This low-pass characteristic means that the phase noise from the former DLL and PI stages will
be first-order low-pass filtered. The phase noise suppression effectiveness is determined by the pole
frequency. For example, the reference clock of the proposed design is 1GHz. With this frequency, the
jitter performance is usually calculated as the integration of phase noise from 1kHz to 100MHz. By
placing the noise suppression pole at a low frequency(e.g. 10kHz), the jitter from the DLL and PI can
be effectively reduced.

It can also be observed from the equation 3.1 that the pole frequency can be modified, which is
related to the gain of the PD, CP, VCDL, and LDO. The magnitude of the capacitor is also relevant.
During design, it was found that changing the gain of the PD, CP, and VCDL by several orders of
magnitude is challenging due to their inherent design limitations. However, utilizing a large LF capacitor
can be a more feasible approach.

Although a lower pole frequency leads to a better phase noise filtering effect, the pole frequency’s
lower bound is limited by the loop bandwidth of the DLL. The loop bandwidth is defined as the unity
gain frequency of the DLL’s open loop gain:
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LoopGain =
KPD,CPKLDOKV CDL

sCCP
(3.2)

It can be observed from equation3.2 and3.1 that the pole of the NTF corresponds to the unity gain
frequency of DLL’s loop gain. Consequently, by placing the pole at a low frequency, the loop bandwidth
is effectively set to a low frequency as well. This property limits the application scenario of the proposed
design. The NTFs from the other components to the output are analyzed as well. The NTF of the PFD,
CP, and LF to the output shows similar low-pass characteristics as well:

ϕOUT

ϕPD,CP,LF
=

KLDOKV CDL

sCCP +KPD,CPKLDOKV CDL
(3.3)

This NTF shows the same noise suppression pole frequency as that of the PFD’s NTF. This property
means that the noise from the PFD and CP will be effectively reduced as well when a large loop filter
capacitor is utilized to reduce PFD’s phase noise. This reduces the design difficulty for the PFD, CP,
and LF for low-jitter purposes. The NTFs from the VCDL and LDO to the output exhibit a high-pass
instead of low-pass characteristic:

ϕOUT

ϕV CDL
=

s

s+
KPD,CPKLDOKV CDL

CCP

(3.4)

ϕOUT

ϕLDO
=

sKV CDL

s+
KPD,CPKLDOKV CDL

CCP

(3.5)

Utilizing a large LF capacitor shifts the high pass poles of the NTFs to a lower frequency. This causes
a larger integrated jitter in the band of interest (1kHz to 100MHz), which is not helpful in reducing the
jitter from the LDO and VCDL. Consequently, the phase noise from these two components becomes the
dominant jitter source of the proposed DTC and becomes the upper limit of the proposed design’s jitter
performance. It’s crucial to design these two components for low-phase noise. Methods like increasing
the power consumption of the VCDL, increasing the transconducance of the input pairs of the LDO’s
internal differential amplifier and lowering the loop bandwidth of the LDO should be applied.

3.3. Delay locked Loop
The major function of the first-stage DLL and second-stage PI is to provide the required 10-bit phase
resolution. They can be designed to feature low power consumption and high phase noise. Their high
phase noise can be filtered by the post phase noise filter. Thus, the design emphasis of the DLL and
PI stage is the linearity of the output phases.

Figure 3.4: An implementation of a 2-bit DLL

The most challenging problem to design a high-linearity DLL is the static phase error. In this section,
the causes of the static phase error are analyzed firstly. The quadrature error correction technique is
then introduced to solve the static phase error problem.
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3.3.1. Introduction to the Static phase error
The static phase error is defined as the phase difference between the PD’s two input clocks when the
loop reaches the stable state. Fig.3.4 exhibits a typical DLL with a 4-stage VCDL, which outputs 2-bit
phases. When the DLL reaches the stable state, the PFD’s two input clocks are aligned, which are the
input and output clocks of the VCDL. In the ideal case, the VCDL’s output clock is one period delayed
version of its input clock. The VCDL has four identical delay stages, which consequently divide one
period(2π) into four equally-spaced phases(π/2, π, 3π/2, 2π). However, the PFD’s two input clocks can’t
be perfectly aligned in the real situation, leading to the static phase error.

Figure 3.5: Output phases of a 2-bit DLL

The effect of static phase error on the linearity of DLL’s output phases is illustrated in Fig.3.5. The
blue curves refer to the phases without static phase error, which divides one period into four identical
pieces. The brown curves show an output phase example with a static phase error. Considering the
reference clock’s phase is 0, the end VCDL stage outputs a ’− π

12 ’ phase. The end stage’s phase error
is conveyed to the intermediate stages. The phase error is equally divided as well, considering the four
VCDL stages are identical. The end stage’s static phase error will influence the linearity of all DLL’s
phases.

Figure 3.6: Interface between the PFD and the CP.

Causes of the static phase error
The causes of the static phase error are the non-idealities in the phase error detection path, including
the PFD and CP. Their non-idealities are analyzed separately as follows:

Non-idealities in the PFD: The function of the PFD is to convert the phase error into a duty cycle
error. Depicted in Fig.3.6, the duty cycle of the UPb and DN signals reveals howmuch time the charging
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Figure 3.7: Timing diagram of a PFD

and discharging paths of the CP should be enabled. Through simulation, it’s found that the phase error
resulting from the PFD itself is neglectable(indicated by UP PFD and DN PFD in Fig 3.6). The main
error source of the PFD is the interface between the PFD and CP. The working principle of the CP in
the next stage requires the switching signal UPb for charging to be low voltage level active while the
DN signal to be high voltage level active. The initial output signals of the PFD are both high-level active.
The interface is used to convert the high-level-active signal into low-level-active. Due to the difference
in PMOS and NMOS’s mobility, mismatch, and different inverter loading, the duty cycles of the four
output indicating signals will deviate from their ideal value. An example timing diagram of a PFD is
shown in Fig.3.7, where the duty cycle deviation can be observed. The duty cycle deviation influences
the zero phase error detection of the PFD.

Figure 3.8: Conceptual model of a CP

Non-idealities in the CP and LF: The charge pump(CP) converts the duty cycle errors into a current.
Fig 3.8 shows the conceptual model of a CP. The duty cycle of the signal UP and Down controls the
charging and discharging time. For example, With a larger duty cycle of the UP signal, more charging
currents will flow on the capacitor, which increases the control voltage and reduces the VCDL’s output
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clock’s delay time. Fig.3.9 shows a schematic of a typical charge pump. The charging path is enabled
by a PMOS, which is low voltage level active and requires UPb signal from the PFD-to-CP interface. The
other two control signals, UP and DNb, from the interface stop the charging and discharging process.
The differences in UPB ’s falling time and DN’s rising time, the coupling from the switch signals to the
bias voltage will all lead to a worse static phase error.

Figure 3.9: Schematic of a typical CP with signal coupling

These inherent non-idealities make it impossible to generate a zero static phase error, which calls
for the application of quadrature error correction.

3.3.2. Quadrature error correction
The quadrature error correction(QEC) technique is utilized to solve the static phase error problem in
the PFD-based DLL structure[14]. The reason for this improvement is that the QEC converts the phase
error into a differential voltage level error instead of the duty cycle error. Thus, the static phase error
is determined by the symmetry of the design instead of the mobility difference between PMOS and
NMOS.

The ’quadrature’ means a 90 ◦ phase difference. Fig 3.10 exhibits the block diagram of a typical
DLL with quadrature error correction. The phase detector in this technique is the XOR logic gate, which
detects the quadrature phase error between the input two clocks. Fig 3.11 shows the XOR’s output
signals with and without quadrature errors. In perfect quadrature conditions, the XOR output signals

Figure 3.10: the block diagram of a typical DLL with quadrature error correction
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have a 50 percent duty cycle and twice the frequency. When the quadrature error is larger than 90◦,
the XOR’s output signals’ duty cycle is larger than 50 percent, which means it has a higher average
value than that in perfect quadrature condition, and vice versa. The following low-pass filter(LPF) is
used to extract the average value information from the XOR gate. The operational transconductance
amplifier(OTA) converts the output voltages of the LPF into a current and integrates the current.

The ’XOR+LPF+OTA’ quadrature error detection path converts the quadrature into a duty cycle’s
average value, a differential voltage, and a current subsequently. The static phase error depends on
the gain and the mismatch situation of each component, apart from the NMOS and PMOS’s mobilities.
Consequently, this technique ensures a small static phase error.

(a)

(b)

Figure 3.11: XOR output when the input clocks are(a) in perfect quadrature(b)the presence of quadrature errors

Phase domain model
The phase domain model of the DLL with QEC is depicted in Fig.3.12, where each component’s lin-
earized transfer function(TF) and noise source are exhibited. The VCDL is realized with the cross-
coupling differential structure. Three main stages of the VCDL are shown in fig.3.12, including the
first, end, and middle stages. Eight differential VCDL stages are used in the VCDL, which generates
the required 16 phases(4-bit). The first stage and the middle stage generate the required quadrature
phases, which are sent to the XOR logic gate for quadrature error detection.

The whole loop can be regarded as a one-pole system, which is similar to the traditional PFD-based
DLL. However, it can be observed from fig.3.12 that there are three poles in the loop. Apart from the
integration pole of the OTA at DC, the second pole is created due to the utilization of an active LPF. A
Low-dropout (LDO) amplifier is utilized to adjust the delay of the VCDL, which creates the third pole. In
order to maintain the loop as a one-pole system, the DC pole from the OTA is chosen as the main pole,
which reduces the phase margin from 180◦ to 90◦. On the other hand, the rest two poles’ frequencies
should be put higher than the DLL’s loop bandwidth. The DLL’s loop bandwidth is defined as the unity-
gain frequency of its loop gain. The influence on the phase margin from the two poles of the LPF and
LDO can be ignored if they are set at least 10 times higher than the DLL’s loop bandwidth.

When it comes to the quantitative analysis, the loop gain of the DLL loop is exhibited below. The
frequency when the loop gain reaches 0dB is the DLL’s loop bandwidth.

LoopGain =
gmOTAKXORKLPFKLDOKV CDL

sCINT
(3.6)

The NTFs of the components, XOR, LPF, and the OTA can be combined into one equation. This
is because the noise of the XOR and LPF can be transformed into the noise of the OTA by timing the
linearized gain of XOR and LPF. The NTF from the three components to the output is given by the
equation below, which shows a first-order low-pass characteristic:
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Figure 3.12: Phase domain model of the DLL with quadrature error correction

ϕCK90

ϕn,XOR,LPF,OTA
=

KLDOKV CDL

sCINT + gmOTAKXORKLPFKLDOKV CDL
(3.7)

Note that the NTF refers to the relationship between the XOR’s two input clock, which is P1, P5, and
their reverse phases. The actual phase output P16 is not contained in the feedback loop. Consequently,
the NTF from the XOR to the actual output P16 is the NTF in equation3.7 plus the rms noise components
of the rest delay line stages.

The NTF from the LDO to the output is given by the equation below, which shows a first-order
high-pass characteristic:

ϕCK90

ϕn,LDO
=

sCINTKV CDL

sCINT + gmOTAKXORKLPFKLDOKV CDL
(3.8)

The NTF from the VCDL to the output is shown below, which shows first-order high-pass character-
istics as well:

ϕCK90

ϕn,V CDL
=

sCINT

sCINT + gmOTAKXORKLPFKLDOKV CDL
(3.9)

Power consumption consideration of the DLL-based DTC
The number of output phases in DLL-based DTC grows exponentially with the bit number. For exam-
ple, if the 10-bit DTC is realized by DLL, the number of the delay line stages becomes 1024. The
required power consumption and area are intolerable. To solve this issue, the phase interpolator(PI) is
incorporated into the design, which provides a more power-and-area-efficient way to expand the phase
resolution.

3.3.3. Phase noise consideration of the DLL stage
From the phase domain model of the DLL with QEC, it can be estimated that the low-frequency phase
noise will be dominant by the XOR, LPF, andOTAwhile the high-frequency phase noise will be dominant
by the LDO and VCDL. Based on the phase domain model of the phase noise filter, the phase noise
from the DLL will be low-pass filtered. The application scenario of the CDR circuits usually requires
the system to have a bandwidth of 20MHz. Thus, the noise suppression pole of the phase noise filter
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is set to at least 20MHz. The bandwidth of the DLL with QEC is usually at least several hundred MHz.
It can be estimated that the phase noise filter’s phase noise from the DLL will be dominant by the low-
frequency-offset phase noise from the XOR, LPF, and CP. During design, these components should be
taken more attention to reduce their resulting phase noise.

3.4. Phase interpolator

(a) (b) (c)

Figure 3.13: (a)PI in interpolation mode(b)PI in phase transfer mode(c)Output phases in interpolation mode and phase transfer
mode

The phase interpolator(PI) is incorporated in the design to expand the 4-bit resolution of the DLL
to 10 bits. The working principle of a basic PI is illustrated in Fig 3.13[15], which is realized by two
inverters simply. Fig 3.13a exhibits the PI in the interpolation mode. In this mode, the two input phases
of the inverters are different, whose output clock’s phase V 12 is the intermediate phase between V1
and V2. It can also be observed from Fig 3.13a that the phase interpolation incurs a delay with respect
to the original edges, V1 and V2. For this skew to be removed, V1 and V2 must experience the same
delay, calling for the arrangement in Fig 3.13b. The two input clock’s phases are the same in the phase
transfer mode. Fig 3.13c illustrates the above process. The phase information of each output clock is
detected by measuring the time that each clock reaches V DD/2.

Figure 3.14: The block diagram of a typical DLL with quadrature error correction[16]

The PI units in Fig 3.13 are cascaded to expand the resolution with the PI structure. The problem
with this traditional structure is that the number of PI units grows exponentially with the bit number. Fig
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3.14 illustrates the configuration of a 3-bit PI. The 3-bit configuration requires 7 PI units and the N-bit
configuration requires 2N − 1 PI units. Although the power consumption of the PI unit is smaller than
that of the VCDL delay line unit, the exponential growth power consumption and the area of the PI
structure are still not preferred. To reduce power consumption and area, the pipelined PI structure is
applied.

3.4.1. Pipeline PI structure
The power consumption and area of the pipelined PI structure grows linearly with the bit number[17].
Fig 3.15 shows the structure of the pipelined PI from the design in [17]. Each stage extends one-
bit resolution, which is composed of three PI units. The inputs of each stage are two phases to be
interpolated. The output phases are two delayed versions of the two input phases and one interpolated
phase. There is an extra multiplexer (MUX) stage between each PI stage, compared with the traditional
PI structure. The MUX selects the desired two intermediate phases of the three phases from the former
PI stage. For example, the first stage outputs 0◦, 45◦, 90◦. The output phases of the second stage would
become 0◦, 22.5◦, 45◦ if 0◦, 45◦ are chosen by the MUX stage. The output phases of the second stage
would become 45◦, 67.5◦, 90◦ in the other case.

The pipelined PI structure’s power consumption and area grow linearly with the bit number. Thereby
the power consumption and area can be saved.

Figure 3.15: the block diagram of a typical DLL with quadrature error correction

3.4.2. Phase noise consideration of the PI stage
The PI structure is an open-loop system while the DLL with QEC is a closed-loop system. Thus, there’s
no phase model analysis of the PI stage. The phase noise of the PI will exhibit the following pattern:
At low frequency offset, the phase noise is dominant by the flicker noise, which drops with a rate of
−10dBc/Hz. At high frequency offset, the phase noise is dominant by the white noise, which shows a
flat spectrum.

The only method to reduce the phase noise from the PI stage is to increase its power consumption
by increasing the size of the transistors in the PI units and MUXs.



4
Circuit Implementation and Analysis

The implementation details of the proposed design go in this chapter. The construction of the main
components in the DLL, PI, and phase noise filters are introduced sequentially.

4.1. Delay locked loop
The implementation of the DLL with QEC is shown in Fig 4.1, containing an 8-stage VCDL, a current-
mode-logic(CML) XOR, a LPF, an OTA, and two LDO amplifiers. The input buffers and dummy XOR
gates are not shown in the figure for clarity. The cross-coupled differential VCDL is utilized in the design
to minimize the rise and fall time of the clock transition.

Figure 4.1: Implementation of the DLL with QEC

4.1.1. Procedures to design the DLL
The first step is to determine the number of VCDL unit stages to meet the delay time requirement of a
1GHz reference clock. The second step is to design the XOR, LPF, OTA, and LDO individually. The
pole positions resulting from the LPF, OTA, and LDO should be figured out. The third step is to utilize
the phase domain model in Fig 3.3. Each component’s linearized gain can be derived by open-loop
simulation. With the pole of the OTA at DC, the poles of the LPF and LDO need to be put higher than
the loop bandwidth to ensure enough phase margin for loop stability. Utilizing the equation 3.2, the loop
bandwidth can be calculated. The jitter performance of the DLL can be estimated by each component’s
noise times their NTFs. The static phase error can also be predicted by the open loop simulation of
XOR, LPF, and OTA.

The rest of this section follows the procedures above to construct the first-stage DLL.

20
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4.1.2. Determine the number of VCDL unit stages
The number of VCDL unit stages should consider three aspects: power, phase noise, and achievable
delay range. The power refers to the size of the VCDL. The phase noise directly trades with the power
consumption. Since the phase noise from the first-stage DLL will be filtered by the third stage, the
attention on the power and phase noise aspects can be reduced.

The achievable delay range refers to the delay range from VCDL’s input to the output. This delay
range is modified by the VCDL’s supply voltage provided by the LDO. The black curve in Fig 4.2 shows
the simulation results of a VCDL unit stage’s delay time by sweeping the control voltage. The control
voltage starts from 0.7V, since the inverter will stop working if the control voltage is less than 0.7V. The
points of interest in the figure are the delay time range of ’Vctl’ from 0.7V to 1.3V. The delay time range
of 8 delay unit stages is 0.66ns, which is less than the period of the reference 1GHz clock. Thus, the
number of the delay unit is chosen as 16.

Figure 4.2: Simulation results of VCDL’s delay time under different control voltage

Influence of VCDL's non-linear gain
The VCDL’s gain refers to how much delay time that a VCDL can generate under different control
voltages, which can be derived from Fig 4.2. The VCDL’s gain with 16 stages is plotted in Fig 4.3a,
which shows a non-linear characteristic. The gain of VCDL varies when the control voltage changes.
This non-linear gain affects the loop gain. One example is illustrated in Fig 4.3b. The loop gain in Fig
4.3a shows a 2.5 times difference between its lowest and highest value. The gain of other components
in the loop is fixed. The loop bandwidths show a 2.5 times difference as well.

4.1.3. Current-model Logic XOR logic gate
The CML-XOR gate serves as the phase detector for quadrature error detection. The reason to utilize
CML-XOR logic gate instead of the normal XOR gate is that the normal XOR gate can’t work prop-
erly at high speed. The XOR’s output signals’ frequency doubles the input frequency, which makes it
challenging for the normal XOR to rise to VDD and fall to VSS.

Fig 4.4 exhibits the schematic of the CML-XOR gate. Note that it requires two quadrature phase
inputs and their reverse phases. Thereby the phases, CLK45◦, CLK135◦ and their reverse phases
are selected for quadrature error correction. Generating the reverse phases with inverters creates skew
and worsen the quadrature error detection performance.

On resistance of the load PMOS determines the upper rail. The size of the input NMOS and the
NMOS current sources determines the lower rail. The output swing is determined by the pull-up strength
of the load PMOS and pull-down strength of the NMOS. A larger swing leads to a higher XOR detection
gain at the cost of a higher dynamic power consumption. The PMOS and NMOS current sources have
four identical pieces. This configuration ensures symmetry during the layout design. It’s worth noting
that any asymmetry will lead to a quadrature detection offset, which worsens the linearity performance.
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(a) (b)

Figure 4.3: (a)Implementation of a typical delay locked loop(b)DLL’s loop gain under two VCDL gain

The outputs of the XOR gate are two differential signals. The detected quadrature error information
is indicated by the duty cycle of the output signals. The post LPF extracts the average value out of
XOR’s output signals. The quadrature error is zero when the average values of XOR N and XOR P
are the same.

Figure 4.4: Schematic of the CML XOR in the proposed design

4.1.4. Active Low Pass Filter
The LPF behind the XOR gate extracts the average value out of XOR’s output signals. The reason to
use an active LPF is that the XOR’s output signals’ swing is between ’VDD’ and ’VDD-0.2V’. Extracting
the DC value of these two signals leads to the two input transistors of the OTA behind the LPF biased in
the triode region. This reduces the gain of the OTA and the total loop gain. Common mode feedback is
utilized in the active LPF to ensure the OTA’s input transistors can be biased in a saturation region. This
is also the reason why the differential XOR gate is used: the common mode feedback will not change
the relative average value difference between XOR’s output signals. Another advantage of utilizing
an active LPF is that the active LPF has a non-0dB DC gain, which means the phase detection error
coming from the XOR gate will be enlarged. This enlarged error enhances the operation of quadrature
error correction.

Fig 4.5 shows the schematic of the Gm-C active LPF with common mode feedback(CMFB). The
CMFB is realized by the left branch. The size of the current source in the left branch is proportionally
smaller than that in the right branch. The other transistors are proportionally sized as well. The CMFB
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ensures the output voltage level is around the input voltage ’VCM’. The value of the capacitors C1 and
C2 is identical. AC simulations should be conducted to ensure the pole frequency of the active LPF is
higher than the DLL’s loop bandwidth.

Figure 4.5: Schematic of the active LPF in the proposed design

4.1.5. Operational Transconductance Amplifier
The primary function of the OTA is to provide gain in the loop and converts the differential dc voltage
difference of the LPF into a current. The integrated current generates the control voltage for the VCDL.

Figure 4.6: Schematic of the OTA in the proposed design

Fig 4.6 exhibits the schematic of the OTA. The cascode output stage ensures a high gain. The
reason why the two-stage technique is not used is that this structure provides better symmetry. The
capacitance of the capacitor for integration has a low limit. This is because the output resistance of the
OTA isn’t infinitely large, which makes the OTA’s pole not at DC. The OTA’s pole frequency should be
low enough to ensure enough phase margin for the DLL.
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4.1.6. Low Dropout Amplifier
The design of the LDO requires much attention as the LDO itself forms a control loop. The input voltage
signal of the LDO is the integrated output voltage of the OTA. The function of the LDO is to provide the
corresponding supply voltage level for the VCDL to adjust its delay time and provide currents for the
VCDL to operate.

Figure 4.7: Schematic of the LDO in the proposed design

Fig 4.7 exhibits the schematic of a LDO. The loop contains an amplifier, a power PMOS transistor,
two resistors, and two capacitors. The amplifier provides enough loop gain to ensure the output voltage
is correctly amplified by the two resistors’ ratio. The power PMOS supplies the currents for the VCDL.
The two capacitors are utilized to adjust the LDO’s loop bandwidth. ’CAP2’ is also used to reduce the
kickback from the VCDL. The dynamic currents drawn by the VCDL are visualized as an equivalent
shunt resistor at the LDO’s output node.

Figure 4.8: The LDO’s output voltage and current profile with one LDO in closed-loop simulation

There are two poles in the LDO loop. The first pole locates at CAP1’s node. Its frequency depends
on the power of the PMOS’s gate capacitor, the amplifier’s output resistance, and CAP1. The second
pole depends on CAP2, the VCDL’s equivalent shunt resistance, the two resistors, and the PMOS’
small signal on resistance. To ensure the LDO works properly, the frequencies of the two poles need
to be arranged. One pole is selected as the main pole of the LDO loop, which needs to be put at
a low frequency. The other pole needs to be put higher than the LDO’s loop bandwidth to ensure
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enough phase margin. Due to the small resistance of VCDL’s equivalent shunt resistor(high power
consumption), it requires an extremely large CAP2 to put the second pole at a low frequency. Thus,
the pole at the CAP1 node is selected to be put at a low frequency. The high output resistance of
the resistor makes it feasible to create a low-frequency pole without applying a large capacitor. The
amplifier used in the LDO is of the same structure in Fig 4.6. Note that there exist poles at the current
mirror nodes of the amplifier. The transistors of the current mirror need to be sized to put the poles at
a higher frequency than the LDO’s loop bandwidth.

4.1.7. The two LDO strategy
It can be observed from the whole DLL’s circuit implementation in Fig 4.1 that two LDO amplifiers are
utilized. These two LDO share the same control voltage and resistor ratio. The application of two LDO
increases the power consumption due to the use of two amplifiers. However, it’s necessary to apply
two LDOs to ensure the output phases’ linearity. One LDO supplies the currents for the input buffer
stages of the VCDL and the dummy stages at the last of the VCDL.

Figure 4.9: The LDO’s output voltage and current profile with two LDOs in closed-loop simulation

Themain reason to apply the two LDO strategies is to reduce the influence of VCDL’s kickback effect.
Fig 4.8 illustrates the effect of VCDL’s kickback. The results are derived from the DLL’s closed-loop
simulation with only one LDO. The upper curve shows the output voltage of the LDO. The lower curve
shows the LDO’s output current profile. Based on the phase domain model, the delay time of the VCDL
is determined by the LDO’s output voltage level times the VCDL’s linearized gain. The output voltage
level of the LDO shows a 20mV peak-to-peak waveform, which results from the unbalanced current
profile. The rise and fall transition of the VCDL’s each phase draws current from the LDO’s output
capacitor. The power transistor of the LDO charges current to the capacitor. This process incurs the
wavy shape of LDO’s output current profile. However, the large current gap can be observed every
500ps, which results from the input buffer stages and output dummy stages. The input buffer stages
include a self-biased inverter stage and two VCDL unit delay stages. The self-bias inverter stage is
used to convert the inverter’s supply voltage level from VDD to the LDO’s output voltage level. The
two VCDL unit delay stages ensure the clock transition shape is similar to the shape in the VCDL. The
16 phases of the VCDL ranges are equally spaced between 0◦ and 337.5◦. The phases of the input
buffers can be regarded as 315◦, 292.5◦. The phases of the output dummy stage can be regarded as
360◦ or 0◦. More currents will be drawn from the LDO when these phases are reached, which creates
the current gap in the current profile.

The two LDO strategy ensures a balanced current profile by utilizing an independent LDO for the
VCDL. Fig 4.9 exhibits the simulation results with the two-LDO strategy. The output voltage level of the
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LDO shows a 0.625mV peak-to-peak waveform, which is greatly reduced from the 20mV peak-to-peak
waveform. Note that the other LDO’s output voltage still has a large peak-to-peak waveform, which is
verified by the simulation to have a tolerable influence on the VCDL’s output phase linearity. There still
exists a small voltage gap every 500ps, which results from the static phase error problem. When the
DLL is in perfect quadrature condition, the voltage gap will disappear.

4.1.8. Method to predict jitter performance
To simulate the jitter performance of the whole DLL, a closed loop ’pss+pnoise’ simulation in the virtuoso
tool needs to be conducted. The closed loop simulation is time-consuming, since the loop requires a
time corresponding to the loop bandwidth to settle at the stable state. The long-time simulation makes it
inefficient to debug or get simulation results under different corners. Amore efficient method to estimate
the DLL’s jitter performance is to utilize the phase domain model by each component’s noise times the
square of their noise transfer functions(NTF).

Fig 4.10 shows such procedures. The power spectral density(PSD) of the noise current is derived
from the ’pss+pnoise’ simulation. The NTF is derived from the phase domain model. Note that the
NTF in section3.2 considers only one pole from the OTA. However, to get a better match between the
simulation results and the calculated results. The poles from the LDO and LPF are also considered.
The calculated equivalent phase noise of the DLL loop, contributed only by the noise from XOR,LPF,
and OTA, shows a similar curve with the simulation results. This method is utilized in the first stage
and third stage of design. In the third stage design, the closed loop simulation becomes infeasible due
to the low loop bandwidth.

Figure 4.10: Phase Noise contribution of the XOR,LPF,and OTA based on the phase domain model
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4.1.9. Method to predict static phase error
The DLL goes into the stable state when the OTA generates a zero integrated current. Thus, open loop
simulation of XOR, LPF, and OTA can be conducted to predict the static phase error condition. The
simulation set-up is exhibited in Fig 4.11. The inputs of the XOR gate are set such to emulate the clock
delay of 45◦, 135◦, 225◦, 315◦. The variable ‘Delay’ is set as a range centering the ideal delay time of
250ps. The output node of the OTA is connected to a dc voltage source, whose value is set as the
control voltage level in closed-loop simulation. The output waveforms to be measured are the input
currents of the dc voltage source.

Figure 4.11: Simulation set up for open loop static phase error estimation

Fig 4.12 exhibits the pre-simulation results. The OTA’s output currents show a linear relationship
with the input clocks’ delay offset. The zero current point of the Y-axis, OTA’s output average current,
refers to the 250.4ps input delay offset, which means a 0.8ps static phase error. The reason why the
static phase error is doubled from the input delay offset of 0.4ps is that the QEC corrects quadrature
phases, while the VCDL contains two quadrature phases from input to output. The static phase error
results of the closed-loop simulation match this open-loop simulation results. This simulation strategy
saves time since the closed-loop simulation needs a long time to achieve the stable state.

Figure 4.12: Simulation results of the open loop static phase error estimation
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4.1.10. Issues that worsen the static phase error problem
A zero static phase error requires a fully-symmetry of the design. Several factors will worsen the QEC
effectiveness, which is analyzed in this subsection:

Wiring of the XOR logic gate for phase detection
The XOR gate serves as the phase detector in the first-stage DLL. Any asymmetry in the XOR gate
leads to a phase detection offset, which worsens the static phase error problem. During pre-simulation,
the signals can be connected by the same wire name. The loading condition of the signal paths for the
XOR’s four inputs is the same. However, in the layout aspect, the loading condition is changed.

Fig 4.13 exhibits the wiring of the input/output paths in the layout level of the XOR design. The blue
line represents ’metal1’. The yellow line represents ’metal2’. This wiring strategy shows less phase
detection error compared with other wiring strategies. However, it can be observed that the wiring
length of the four input signals is not the same. Each signal path has different resistance and parasitic
capacitance conditions. These differences worsen the static phase error problem.

Figure 4.13: The wiring strategy of the signal paths in the XOR’s layout design

Wiring between the XOR logic gate and the VCDL
The XOR gate of the quadrature error detection(QEC) detects 4 out of 16 phases of the VCDL. Three
dummy XOR gates are required to ensure the 16 output phases of the VCDL have the same loading
condition. The wiring between the 4 XOR gates and the VCDL becomes an issue that worsens the
static phase error problem. Fig 4.14 exhibits the wiring strategy between the XOR gates and the VCDL.
The wiring ensures an almost equal path resistance. However, the parasitic capacitance can’t be made
equal, leading to the offset in the quadrature error detection.
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Figure 4.14: The wiring strategy of the signal paths between the four XOR gates and the VCDL
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4.2. Interface between the DLL and PI
The number of the first stage DLL’s output phases is 16. Two adjacent phases of the 16 phases will be
sent to the next stage PI. An interface between the DLL and PI is required to select the two phases for
the PI, which is realized by two 16:1 multiplexers(MUX). In this section, the architecture of the 16:2 MUX
is introduced. The conventional transmission gate-based MUX has a cross-talk problem that worsens
the phase linearity. The MUX structure that can solve the issue is then proposed.

4.2.1. Implementation of the two 16:1 MUX

Figure 4.15: Schematic of the conventional MUX

The demonstration of the 16:2 MUXs would take up too much space. To demonstrate the overview
clearly, the overview of an interface with two 8:1 MUXs instead of two 16:1 MUXs is depicted in Fig 4.18.
The 8:1 MUX is constructed by three cascade stages of the 2:1 MUXs. The number of 2:1 MUX units
in each stage is binary distributed. The different colors of the MUX in one stage indicate the difference
in their selecting signals in Fig 4.18. The wiring of two colors represents a different metal used in the
layout aspect design. Their length should be carefully arranged to ensure an equal path resistance
since the unit resistance of metal one and metal two is different.

Figure 4.16: schematic of the MUX with internal buffers

Conventionally, an 8:2 MUX has three stages and requires six selecting signals. However, it can be
observed from Fig 4.18 that eight selecting signals are applied in the design. Two extra selecting signal
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is utilized at the first stage to ensure an equal loading for the VCDL of the first stage. Table4.1 exhibits
the digital control codes for the two 8:1 MUXs. The 1-to-4 codes refer to one 8:1 MUX that outputs the
first phase of the DLL. The 5-to-8 codes output the second phase. The ’0’ and ’1’ refers to the selected
upper or lower path. Note that the first stage MUXs’ input is connected directly to the VCDL of the first
stage DLL. Thus, the loading of the VCDL would become unequal when the digital code 1 and 5 are the
same. The red-emphasized code refers to the special cases where the loading for the VCDL wouldn’t
be equal without the extra control signal. In other cases, the fourth and eighth digital control codes are
equal to the first and fifth codes. In special cases where Phase 4 and 5 or Phase 1 and 8 are required,
the MUXs need to select the lower or upper paths at the same time, which creates unequal loading for
the VCDL.

Selected phase 1 Selected phase 2 Selecting code 1 to 4 Selecting code 5 to 8
Phase 1 Phase 2 0110 1011
Phase 2 Phase 3 1011 0100
Phase 3 Phase 4 0100 1001
Phase 4 Phase 5 1000 0111
Phase 5 Phase 6 1111 0010
Phase 6 Phase 7 0010 1101
Phase 7 Phase 8 1101 0000
Phase 8 Phase 1 1000 0111

Table 4.1: Digital control code for the two 8:1 MUXs

The actual digital control code implementation for the two 16:1 MUXs follows the same logic. It
would have four stages and 10 selecting signals.

4.2.2. Implementation of a 2:1 MUX
Fig 4.15 exhibits the schematic of a basic 2:1 MUX, which is basically two transmission gates. The
selecting signal enables the passing of one of the two signal paths. This simple structure encounters
a linearity problem due to the cross-talk capacitor between the input and output nodes. The size of
the transistors are 2um/180nm(PMOS) and 1um/180nm(NMOS). With this size, the capacitance of the
cross-talk capacitor is 0.2aF. The capacitance is very small but still leads to an intolerable linearity
error(larger than 1LSB).

Figure 4.17: Schematic of the PI unit A
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There are two methods to address this issue. The first method is to proportionally increase the width
and length of the transistors, which leads to a longer distance between the input and output node to
reduce the cross-talk capacitor. From the simulation, the cross-talk capacitor of the doubled-size tran-
sistors still has an intolerable linearity problem. A possible solution is to add a shield between the input
and output nodes at the layout level. The implement ion of the shield refers to a metal bar connected
to VDD or VSS that is placed between the input and output node(on the gate of the transistor at the
layout level). This method increases the parasitic capacitance for the MUX signal path but reduces the
influence of cross-talk. Due to the minimum width requirement of metal one and the minimum space
between two metal ones, the size of the transistor can’t be set as the minimum size to pass the design
rule check(DRC).

The problem with the proportionally increased size method is that the drive capacity isn’t increased.
From the simulation, the rise and fall edge transition of the clock signal can’t be realized properly due
to the limited drive capacity of the MUX. To solve this issue, one inverter buffer is applied in the MUX,
which provides enough drive capacity for the clock signal to pass.

Figure 4.18: Overview of the two 8:1 MUXs



4.3. Phase Interpolator 33

Figure 4.19: Overview of the 6-bit Phase Interpolator

4.3. Phase Interpolator
The job of the phase interpolator stage is to expand the 4-bit phase resolution of the DLL to 10 bit. In this
section, the overview of the phase interpolator is introduced first. Then comes the circuit implementation
of the two PI units. Thirdly, the implementation of the MUX stages is introduced as well. Finally, the
methods to estimate the overall linearity performance of the PI are explained.

4.3.1. Overview of the 6-bit phase interpolator
The traditional PI structure has the problem that its power and area grow exponentially by 2 with the bit
number. For example, a six-bit phase interpolator would require 64 PI units. In order to save the power
consumption and area, the pipelined PI structure is applied, whose power and area grow linearly with
the bit number.

PI Phase Digital codes PI Phase Digital codes PI Phase Digital codes
1 000000 23 010110 45 101100
2 000001 24 010111 46 101101
3 000010 25 011000 47 101110
4 000011 26 011001 48 101111
5 000100 27 011010 49 110000
6 000101 28 011011 50 110001
7 000110 29 011100 51 110010
8 000111 30 011101 52 110011
9 001000 31 011110 53 110100
10 001001 32 011111 54 110101
11 001010 33 100000 55 110110
12 001011 34 100001 56 110111
13 001100 35 100010 57 111000
14 001101 36 100011 58 111001
15 001110 37 100100 59 111010
16 001111 38 100101 60 111011
17 010000 39 100110 61 111100
18 010001 40 100111 62 111101
19 010010 41 101000 63 111110
20 010011 42 101001 64 111111
21 010100 43 101010
22 010101 44 101011

Table 4.2: Digital control code for the two 8:1 MUXs

Fig 4.19 exhibits the overview of the pipelined PI. The input is the 16:2 MUX, which selects two
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adjacent phases from the DLL. Every two path represents the period(360◦) for the PI. Each stage is
composed of PI units of one type. The PI unit A stage passes the phase delay information from the
rising edge to the falling edge. The PI unit B stage does the opposite job. The upper and lower PI
unit aims to transfer the original phase information of the two input clocks. The middle PI unit aims to
generate an intermediate phase between the two input clocks by phase interpolation. The 2:1 MUXs
select two of the three clocks to the next PI stage. For example, when the 16:2 MUX inputs 0◦ and
22.5◦, the first 2:1 MUX stage can be selected to output 0◦ and 11.25◦ or 11.25◦ and 25◦.

The 2:1 MUXs use a similar structure to the one in the interface between the DLL and PI stages.
However, the 2:1 MUX stages between each PI stage will not reverse the edge phase. Each PI unit
stage can provide a one-bit resolution. The PI unit A and B stages are placed in an alternative order.
3 unit-A stages and 3 unit-B stages are required to realize the 6-bit resolution. Table.4.2 shows the
digital control codes for the 6-bit PI. The number ’0’ enables the upper path of the two 2:1 MUX at each
stage. The number ’1’ enables the lower path. Note that the last phase ’64’ is not necessary. This is
because of the phase rotation property of the PI, which means the last phase of the PI’s period equals
the first phase of the PI’s next period from the DLL.

4.3.2. Implementation of PI unit
There are two types of PI units applied in the design. Fig 4.17 exhibits the schematic of the PI unit A.
The two input clocks are firstly sent to two inverters and a NOR logic gate. When the phase information
is carried on the rising edge, the information is transferred to the falling edge after the inverter, which
triggers the post-pull-up PMOS. The pull-up PMOS transforms the falling edge information into the
rising edge. The symmetric NOR gate is applied, which ensures equal loading for the two input clocks.
The output of the NOR gate will become high to reset the PI’s output voltage from high to low when the
two input clocks are both low.

Figure 4.20: Schematic of the 2:1 MUX in the PI stage

It is worth noting that when the pull-up PMOS and reset NMOS are turned on at the same time,
a short current path would occur between VDD and VSS. The exact point is when the input clock is
transformed from low to high. The NOR gate would output a high voltage when the two input clocks
are both low. When the delay time of the NOR gate is longer than the inverter’s delay time, the short
current path would occur. In order to avoid this short current path, the delay time of the inverter is
designed to be slightly larger than the delay time of the NOR logic gate. The ’Vtune,PI,UP’ is the control
voltage of PI unit A, which can adjust the pull-up strength and the phase interpolation point. Thus, the
phase linearity of the whole PI stage can be adjusted.

The PI unit B does the opposite job of unit A, which converts the phase information on the falling
edge to the rising edge.Fig 4.22 exhibits the schematic of the PI unit B. To eliminate the short circuit
current path, the delay time of the inverters is designed slightly longer than that of the NAND gate. The
output of the NAND gate will become high to reset the PI’s output voltage from low to high when the
two input clocks are both high.
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4.3.3. Implementation of the 2:1 MUX
In order to avoid the influence of the coupling capacitor from the input to output nodes, the 2:1 MUX
applied in the PI stage has a similar structure to that in the Interface stage. Fig 4.20 exhibits the
schematic of the 2:1 MUX utilized in the PI stage. The number of inverters is chosen as two instead of
one. Thus, the phase information on the rising or falling edge won’t be reversed.

The design will become more power efficient if the number of inverters between two PI unit stages
is one. In this case, just one type of PI unit is required.

Linearity problem due to cross-talk capacitors
In this subsection, the influence of the cross-talk capacitors on the linearity performance of the PI is
introduced. One simulation example result is exhibited in Fig 4.21. The x-axis is the digital control code
and the y-axis is the PI’s output clock’s cross time of 0.9V. The simulation is conducted when applying
the simple transmission gate MUX. Only the first 9 digital codes are simulated but the linearity problem
is clear enough to observe. Ideally, the curve should be a straight line. Due to the cross-talk capacitors,
the output cross time is not even monotonous. The linearity problem is solved by applying the 2:1MUX
structure shown in Fig 4.20.

Figure 4.21: Simulation results of the PI’s linearity when applying the simple transmission gate MUX

4.3.4. Methods to estimate the overall linearity performance of the PI
The simulation of the PI’s linearity requires a sweep of the PI code from 1 to 64. The simulation of
one code doesn’t take much time compared with the first DLL simulation. This is because the PI is an
open-loop system while the DLL is a close loop system. However, the sweep of all the digital codes
still takes a long time.

Thanks to the structure of the pipelined PI, the overall linearity performance can be estimated by
observing the phase information of a few points. The output phases of the first PI stage are P1, P32,
and P64. The tuning of its control voltage will not influence the phase of P1 and P64 but influence
the phase of P32. With a higher ’Vtune,PI,UP’, the pull-up strength becomes weaker, which leads to a
longer time that the output voltage reaches the phase interpolation threshold point. Thus, the phase of
P32 will become more close to P64. With a lower ’Vtune,PI,UP’, the phase of P32 will become closer to
P1. The linearity of the first PI stage affects the linearity of the third and fifth stage, since they are all
constructed by PI unit A. On the other hand, the linearity of the second, fourth, and sixth PI stages can
be estimated by the phase information of P16. By simulating 3 points, P1, P16, and P32, the overall
linearity performance can be estimated.
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Figure 4.22: Schematic of the PI unit B

Debug Linearity problem
The debugging of PI’s linearity problem becomes challenging in the layout level. The virtuoso calibre
PEX tool extracts all the parasitic capacitance and resistance. The PI’s performance can be fine in
schematic level simulation while failing at the layout level. The debugging of the PI follows the below
procedures:

• Using PEX tool to extract ’R’ and ‘C+CC’ parasitic. Simulating the results respectively to where
the error comes from, resistor or capacitor.

• Assume the problem comes from the parasitic capacitor.
• Add parasitic capacitors between two nodes in the schematic(e.g. IN-OUT; IN-VDD; OUT-VSS)
• Simulating in the schematic level to locate the problem
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4.4. Phase noise filter
The phase noise filter is a typical type-2 DLL. In this section, the overview is first introduced. Then
comes the implementation of each component.

4.4.1. Overview of the Phase noise filter
Fig.4.23 exhibits the overview of the phase noise filter. The phase noise filter has two input clocks: the
output clock from the DLL and PI stages; the reference clock. The reference clock is delayed by the
VCDL. The delayed output clock is sent to the PFD to compare the phase difference with the output
clock from the DLL and PI stages. The CP and LF convert the detected phase error into an error voltage
signal. The LDO adjusts the supply voltage of the VCDL to modify the delay time.

Figure 4.23: Overview of the phase noise filter

4.4.2. Voltage controlled Delay Line
The implementation of the VCDL is similar to that in the QEC-DLL stage. The main difference is that
there is no output buffer for the VCDL except for the last stage, while each stage has an output buffer
in the QEC-DLL. This is because the DLL with QEC requires an equal loading for each stage to ensure
the 16 output phases’ linearity. However, the DLL in the filter stage outputs only one phase.

The number of the VCDL stages is chosen as 10, which follows a similar logic introduced in sec-
tion4.1.2. The delay time of the VCDL should cover 1ns when sweeping the control voltage from 0.7V
to 1.2V. When the control voltage is lower than 0.7V, the inverter wouldn’t work properly. When the
control voltage is larger than 1.2V, the power PMOS transistor wouldn’t work in the saturation region.

4.4.3. Phase frequency Detector
The phase frequency detector(PFD) applies the classic TSPC logic based structure, which inherits
the high-speed PFD design in [4]. The working principle is explained by the timing diagram shown in
Fig.4.25. This PFD detects the rising edge of the two input clock signals. Initially, both A and B are low
while the UP and Down signal are high. Thus, the Reset signal generated by the NOR gate is low. The
node X is charged to VDD. The rising edge of A occurs earlier than that of B and stops the charging
to the node X. The UP signal changes from high to low due to the turn-on of M1. The rising edge of B
does a similar job and causes the reset signal to become high.

The PFD converts the phase difference between the two clocks into a duty cycle error. A is the
reference clock and B is the output delayed clock of the VCDL. The UP signal in Fig.4.25 shows a
larger duty cycle, which will cause the charging time in the CP longer than the discharging time. Thus,
the control voltage will rise and decrease the delay time of the VCDL to align the rising edge of A and
B.

Noise consideration
The phase noise resulting from the PFD at low frequency is dominant by the flicker noise of the PFD
while the dominant phase noise source at high frequency is the PFD’s white noise. From the phase
domain model, the phase noise resulting from the PFD will be low pass filtered by the loop bandwidth.
Thus, the resulting phase noise at high frequency can be filtered effectively. The low-frequency phase
noise requires more attention. The flicker noise can be decreased by proportionally increasing the width
and length of the transistors. The white noise can be decreased by increasing the power consumption.
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Figure 4.24: Schematic of the Phase frequency detector in the phase noise filter

Dead zone problem
The dead zone problem refers to the time that UP and Down are both low, which is indicated by ’TRST ’
in Fig.4.25. Ideally, the reset signal should be high immediately. However, the delay time for the NOR
logic is unavoidable. This dead zone time will influence the CP in the next stage, which will cause the
transistor of charging and discharging to turn on at the same time. The mismatch between the charging
and discharging currents will worsen the static phase error problem. However, the static phase error
will not become a problem in this design as long as the phase error is constant.

Figure 4.25: Timing diagram of the Phase frequency detector

4.4.4. Interface between the PFD and CP
The duty cycle difference between the Up and Down signals will adjust the charging and discharging
time of the CP in the next stage. The charging process is controlled by PMOS while the discharging
process is controlled by NMOS. An interface is required to convert the low-active duty cycle of the Down
signal into the high-active duty cycle.

Fig.4.26 exhibits the schematic of the interface. Due to the structure of the CP in the next stage,
the control signals and their reverse signals are generated. The UPb signal turns on the charging
transistor. The DN turns on the discharging transistor. Note that there exists a skew between the four
control signals. This skew can be reduced by adding a transmission gate in the signal path. However,
the transmission gate would change the output signals’ rising and falling patterns, which increases the
static phase error. Although in this design, the magnitude of the static phase error is not important. The
transmission gate is still not added to save power and area.
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Figure 4.26: Interface between the PFD and CP

4.4.5. Gate-switch cascode Charge Pump and loop filter
The function of the CP is to convert the duty cycle error from the PFD into a current. When the phase
difference is zero ideally, the current becomes zero. This current is integrated into the loop filter to gen-
erate the control voltage for the VCDL. The loop filter in this DLL design is a simple capacitor. Fig.4.27
exhibits the schematic of the CP in the proposed phase noise filter. The design is modified from the
gate-switch CP in [4]. The modification is the cascode output to ensure a high output impedance. Dur-
ing the operation of the phase noise filter, the output control voltage of the CP changes corresponding
to the digital control codes. The control voltage determines the bias situation of the output transistors
and changes the static phase error. To ensure a constant static phase error, the gate-switched cascode
CP is utilized.

Figure 4.27: Schematic of the charge pump in the phase noise filter

There are three types of CP introduced in [4], including source-switched, drain-switched, and gate-
switched. The reason to choose the gate-switched structure is the high output impedance that it offers.
It has been tested by simulation that the output impedance of the two-transistor cascode structure is not
enough to ensure a constant static phase error for the source-switched and drain-switched structures.
This is because the output transistors will be in the triode region during the rising and falling edge of
the UP and DOWN signals.
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4.4.6. Low Dropout Amplifier
The LDO applied in the phase noise filter has the same structure as that in the first stage DLL with QEC.
The main difference is the two capacitors’ value. From the phase domain model, there should exist
only one pole within the loop bandwidth to ensure enough phase margin. This main pole is selected as
the loop filter’s pole at DC. Thus, the pole of the LDO needs to be put higher than the loop bandwidth.
Although the DLL is viewed as a linear system during analysis, the nonlinearity of the VCDL’s gain
makes the loop a nonlinear system. The VCDL’s linearized gain at the lowest VCDL control voltage is
three times larger than the gain at the highest VCDL control voltage. As a result, the loop bandwidth
will change three times when the control voltage varies from its lowest to the highest value. The lowest
bandwidth is 160kHz. Thus, the bandwidth of the LDO is set at 1MHz to ensure the DLL’s stability.

Figure 4.28: Loop gain and AC response of the LDO

Fig.4.28 shows the two pole frequencies in the LDO of the last stage DLL. The blue curve is the
loop gain of the LDO. The purple curve is the AC response of the LDO. The first pole of the LDO’s loop
gain locates at several thousand Hz. The second pole locates at several mega Hz. This configuration
ensures that the whole LDO acts as a stable block with a DC gain determined by the resistor ratio and
a pole locates at 1MHz. However, two large capacitors (201pF and 203pF) are utilized to ensure these
two poles’ frequencies. The large capacitors take up a large amount of area of the final layout.

It’s worth noting that the DLL would still be stable if the LDO’s bandwidth is set at tens of mega Hz.
In this case, the value of the two capacitors needs not to be so large. The reason to utilize two large
capacitors is that it can reduce the noise bandwidth of the LDO and the VCDL, since the phase noise
from the VCDL and LDO dominates the whole design’s phase noise at high frequencies.
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Results

The work stops at the layout and post-layout simulation level. Firstly, the layout view is given. Secondly,
the output spectrum of the phase noise filter is exhibited. Thirdly, the power breakdown for each com-
ponent is exhibited. Fourthly, the simulation results of two design trade-off relationships are exhibited.
Fifthly, the linearity performance is exhibited. Finally, the results of this work are compared with a work
with a similar structure.

5.1. Layout
Fig.5.1 shows the layout view of the design. The total area is 940 µm × 955 µm. The total active area
is 695 µm × 693.5 µm. The number of active I/O pins is 28, including 7 digital control pins for the PI,
10 digital control pins for the DLL, and 6 analog voltage control pins for the PI.

Figure 5.1: Overview of the phase noise filter

To control the pull-up and pull-down strength of the PI unit A and B in the pipelined PI stage, two
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analog control voltages are required. However, there are six analog control voltages used in the design.
The reason to utilize six control voltages is to compensate for the influence of mismatch. Thus, six PI
unit stages are assigned with six independent control voltages. A large area is consumed by the two
200pF capacitors of the two LDO in the phase noise filter. These large capacitors ensure a low noise
performance for the VCDL and LDO. The loop filter capacitor of the phase noise filter is externally
connected, which makes it possible to adjust the noise suppression pole of the filter.

5.2. Phase noise spectrum of the phase noise filter
Simulation Set-up
The simulation results are derived when the noise suppression pole of the phase noise filter is put
at 160kHz, which requires a 100pF loop filter capacitor. Two 1GHz reference clocks are input to the
system with a 1.8V power supply. The corner is set at TT 27oC. The virtuoso PEX tool is utilized to
extract the ’R+C+CC’ parasitic. The transient simulation is conducted first to get the time when the DLL
loop reaches the stable state(Although the bandwidth of the system is known, the time for initialization
is unknown). This time is then utilized in the ’Pss+Pnoise’ simulation to get the phase noise spectrum
of the phase noise filter’s output clock.

The design has three stages, including the DLL, PI, and the phase noise filter. The simulation of
the whole system is time-consuming, since the DLL and the phase noise filter are both closed-loop
systems and requires time to reach the stable state. In order to save simulation time, the unfiltered
phase noise from the DLL and PI and the filtered phase noise from the phase noise filter are simulated
separately. The phase noise spectrum from the DLL and PI is simulated first. The results are input to
the phase noise filter by the ’noise file’ property of the ’Vsin’ voltage source in analoglib. Two inverters
are placed behind the ’Vsin’ voltage source to convert the sine wave into the square wave.

There are 1024 (10-bit) results to be derived for the phase noise filter. However, to show the effec-
tiveness of the phase noise filter, the simulation results of one situation are enough.

Figure 5.2: Output spectrum of the phase noise filter
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Simulation results
Fig.5.2 exhibits the post-simulation results of the phase noise filter in the worst case, where the VCDL’s
control voltage is lowest and the phase noise is in the worst situation. It’s worth noting that the loop
bandwidth of the phase noise filter would also change corresponding to the digital control code. With a
lower VCDL control voltage, the filter’s bandwidth is higher, corresponding to a higher noise suppression
pole frequency. The ’PN from DLL and PI’ curve is derived from the simulation results of the DLL and
PI stage without the phase noise filter stage. The ’PN from the filter’ curve refers to the output phase
noise when only enabling the phase noise from the phase noise filter. The ’PN of the output clock’
curve is the output phase noise spectrum when all the noise sources are enabled. The ’Resulting PN
from DLL and PI’ curve is the output phase noise spectrum of the phase noise filter when only turning
on the phase noise from DLL and PI.

There are two noise sources of the output clock, which are the input clock’s noise(from DLL and PI)
and the phase noise filter. By comparing the ’PN from DLL and PI’ and the ’Resulting PN from DLL and
PI’ curves, it can be observed that the phase noise from the DLL and PI drops at the rate of -40dBc/Hz
from the 160kHz. The integrated jitter(from 1kHz to 100MHz) of the unfiltered DLL and PI’s output clock
is 1.099 psrms. The integrated jitter drops to 315.9 fsrms after filtering. The integrated jitter resulting only
from the phase noise filter is 188 fsrms. The accumulated jitter from 1kHz to 100MHz is 368 fsrms.

5.3. Power Breakdown
Simulation set up
The power breakdown analysis becomes infeasible after extracting the parasitic with the PEX tool.
Thus, the following power breakdown analysis is derived from the pre-simulation. The corner is TT
27◦C. The simulation results are derived when the DLL reaches the stable state.

The power breakdown of the design is divided into two parts. This is because the power consump-
tion of the VCDL in the phase noise filter would change based on the digital control codes. The power
breakdown of the first and second stages, DLL and PI, is analyzed together while the power breakdown
of the phase noise filter is analyzed independently.

5.3.1. DLL and PI
Fig.5.3 shows the power break down of the DLL and PI. The total power consumption of DLL and PI in
the post-simulation level is 27.9 mW. The ’VCDL buffer’ item refers to the power consumption of the ac-
coupling buffer and inverter buffer in the VCDL, whose power supply is VDD. The power consumption
of the VCDL delay stages(including dummy stages) is contained in the power consumption of the ’LDO
main’ and ’LDO buff’.

Figure 5.3: Power Breakdown of the DLL and PI
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5.3.2. Phase noise filter
The power breakdown of the phase noise filter depends on the chosen digital control code. The digital
control code decides the delay time of the VCDL by changing the control voltage. The different control
voltage of the VCDL corresponds to different power consumption. The power consumption of the
phase noise filter ranges from 14,4mW to 20.7mW (post-simulation results)depending on the chosen
digital control code. Table.5.1 is one example of pre-simulation results of the phase noise filter’s power
breakdown.

Components Current(uA)
PFD 408
LDO 8600
CP 167
Bias 33
VCDL Buffer 1011

Table 5.1: Digital control code for the two 8:1 MUXs

5.4. Power consumption of the DLL and PI versus the Phase noise
filter's bandwidth

The main design goal of the thesis project is to verify the effectiveness of the phase noise filter, while
the jitter requirement is left unspecified. The final output jitter of the filter is 368 fsrms while the total
power consumption is 42.3mW, where the DLL and PI contribute 315.9 fsrms.

The high-frequency-offset phase noise component of the DLL and PI is filtered by the post phase
noise filter, while the low-frequency-offset phase noise is left unfiltered. The low-frequency-offset phase
noise of the DLL and PI can only be reduced by increasing their power consumption. The aim of this
simulation is to figure out the relationship between the power consumption of the DLL and PI and the
final phase noise.

Figure 5.4: Power consumption of the DLL and PI stages versus the phase noise filter’s bandwidth
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Simulation Setup
The simulation is conducted at the schematic level. This is because the increase of the DLL and
PI’s power consumption is realized simply by increasing the number of the symbol(e.g. By changing
the name in virtuoso to ’i195<1:10>’, ten DLL and PI units are parallel-connected, which consumes
ten times power consumption). Another reason to simulate at the schematic level is that the power
consumption of the DLL and PI can’t be extracted from the total system’s power consumption after
extracting the parasitic with the PEX tool. The selected numbers of the units are 1,2,4,8,16. The phase
noise spectrum of these five situations is recorded and sent to Matlab. Matlab applies the transfer
function of the phase noise filter on this spectrum, whose noise suppression pole frequency(which is
also the phase noise filter’s bandwidth) can be adjusted. The pole frequencies are adjusted such that
the final jitter maintains a rms jitter of 266fsrms under different DLL and PI power situations.

Simulation Results
Fig.5.4 shows the relationship between the phase noise filter’s bandwidth and the power consumption
of the DLL and PI stages. Each point in fig.5.4 indicates how wide the filter bandwidth should be under
a given DLL and PI power consumption to achieve a rms jitter of 266fsrms.

5.4.1. Bandwidth of the phase noise filter versus the final output jitter
The phase noise filter’s bandwidth influence the noise suppression effectiveness of the phase noise
at high-frequency offset. The noise suppression pole frequencies can be adjusted by modifying the
loop bandwidth of the phase noise filter, which is realized by changing the magnitude of the loop filter’s
capacitance.

Simulation Setup
The simulation is conducted at the post-simulation level. The phase noise spectrum of the DLL and
PI(the unit number is 1) is input to the phase noise filter by utilizing the noise file property of the ’vsin’
voltage source. The corner is TT 27◦C. The capacitance of the loop filter is chosen such that the loop
filter’s bandwidths are 1.6k,16k,160k,1.6M, and 16M respectively.

Simulation Results
Fig.5.5 exhibits the relationship between the bandwidth of the phase noise filter and the resulting rms
jitter.

Figure 5.5: relationship between the bandwidth of the phase noise filter and the resulting rms jitter
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5.5. Linearity performance
Due to the low loop bandwidth of the phase noise filter, simulating the integral non-linearity(INL) and
differential non-Linearity(DNL) performance of the DTC’s all digital codes is time-consuming. An alter-
native approach is to simulate the INL and DNL performance of the DLL and PI’s output clock, whose
delay time information will be replicated by the phase noise filter. Fig.5.6 shows the post-simulated INL
and DNL performance of the output clock produced by the DLL and PI. The INLPP is 2.75 LSB and the
DNLPP is 3.42 LSB. The INL and DNL performance will worsen by 0.1 LSB due to the static phase error
offset.

The linearity of the first stage DLL with QEC determines the performance of 16 codes 0,64,128,...,
1024. It can be observed from the figure that the main linearity problem comes from the DLL, which
results from the asymmetry in the layout design. The linearity performance of the rest digital codes is
determined by the PI. It can be observed that the INL and DNL error of the PI is less than 1 LSB, thanks
to the two analog control voltages.

Figure 5.6: INL and DNL performance of the phase noise filter



6
Discussion

In this chapter, the effectiveness of the phase noise filter is examined first, based on the simulation
results. Secondly, methods to further improve the jitter performance of the design are discussed, based
on the simulation results and phase domain model. Finally, the results of the design are compared with
another phase noise filer based on a different working principle. The advantages and the limitation of
the proposed design are then discussed.

6.1. Effectiveness of the phase noise filter
The effectiveness of the phase noise filter is proved by the ’PN from DLL and PI’ and the ’Resulting PN
from DLL and PI’ curves in fig.5.2. The phase noise from the DLL and PI drops at the rate of -40dBc/Hz
from 160kHz, which is the frequency of the noise suppression pole. Based on the phase domain model,
the filter should provide first-order low-pass filtering. The first pole is provided by the loop bandwidth
160kHz. The second pole is provided by the LDO bandwidth 1MHz.

6.2. Methods to improve jitter performance
From the phase domain model and the simulation results, the final output phase noise at high frequen-
cies is dominant by the VCDL and LDO, which is high-pass filtered by the feedback loop. The phase
noise at low frequencies is dominant by the PD and CP, since their phase noise is low-pass filtered.

The final output jitter of the filter is 368 fsrms with 42.3mW power consumption. This jitter perfor-
mance can be improved by taking methods to reduce low-frequency and high-frequency phase noise.

6.2.1. Reduce Low-frequency-offset phase noise
From the simulation results, the dominant low-frequency offset phase noise source is the PN from DLL
and PI. Based on the phase domain model, the PN from the PD and LPF in the filter is another source.

To reduce these low-frequency offset phase noise, the most feasible approach is to increase their
power consumption, since the power consumption directly trades with the phase noise. From the sim-
ulation results, the DLL and PI contribute 315.9 fsrms to the final jitter of 368 fsrms. The high-frequency-
offset noise components from the DLL and PI are low-pass filtered while the low-frequency-offset noise
components are left unfiltered. The increase in the DLL and PI’s power consumption is unavoidable if
a lower jitter performance is required. This method is illustrated in fig.5.4.

From the phase domain model, the low-frequency-offset phase noise can be filtered with a low-
frequency-offset noise suppression pole frequency. However, it requires a large capacitor to put the
noise suppression pole at a low frequency, which takes much area. The loop bandwidth would drop
corresponding to the pole frequency as well, which will limit the application scenario of the phase noise
filter. Thus, this method is not considered.
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6.2.2. Reduce High-frequency-offset phase noise
The high-frequency-offset phase noise sources are the VCDL and LDO in the filter, which can’t be
low-pass filtered by the phase noise filter. The most feasible approach is to increase their power con-
sumption(e.g. increase the sizing of the transistors)

The second method is to decrease the bandwidth of the LDO. The modification of the LDO band-
width is not helpful in improving the noise transfer function from the LDO to the output, but is helpful in
reducing the noise bandwidth of the LDO itself. Note that there’s a lower bound for the LDO bandwidth
to ensure the loop stability. The LDO bandwidth can be realized by increasing the two capacitors in
the LDO. The increased value of the load capacitor decreases the second pole frequency. The other
capacitor needs to be increased as well to ensure enough phase margin.

Although the high-frequency-offset phase noise components from other sources will be low-pass
filtered, their high-frequency-offset phase noise may still contribute much jitter if the noise suppression
pole frequency is relatively high. In this case, the pole frequency can be decreased by increasing the
capacitance of the loop filter. This method is illustrated in fig.5.5.

6.3. State of the art comparison
The results are compared with a similar structure with a 10-bit DTC with a charge-injection-based phase
noise filter [12]. This work shows a larger jitter and higher power consumption, along with a larger area.
However, the performance of this design is limited by the 180nm process. For example, with a higher
reference clock frequency under more advanced technology, the number of VCDL delay stages in the
DLL can be reduced, which saves area and power. The jitter integration range can also increase from
1kHz-100MHz to 10kHz-1GHz. Thus, the noise suppression pole frequency can be increased, which
leads to a higher loop bandwidth and a smaller loop filter capacitor.

Table 6.1: PERFORMANCE SUMMARY

Metrics This work [12] JSSC’22
Architecture QDLL+PI+DLL QDLL+MPILOSC+PI

Resolution(bits) 10 10
DLL Resolution 4 3
PI Resolution 6 7
Technology 180nm 65nm
Reference
Freq.(GHz) 1 7

Power(mW) 42.3 22.71
Supply(V) 1.8 1.2
Integrated
Jitter(fsrms)

368(1kHz-
100MHz) 106 (10kHz-1GHz)

INLmax 1.73LSB <2.84LSB in DLL(<1◦)
<1.12LSB in PI

Area(mm2) 0.482 0.0432
Bandwidth(Hz) 160k 20M
Filter DLL noise ! !

Filter PI noise ! #

The reasons for the disparity and the theoretical advantages of the design are given in the following
subsections.
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6.3.1. Advantages of the design
The most outstanding advantage of the proposed phase noise filter is that it can filter the phase noise
from both the DLL and the PI, while the other phase noise filter can only filter the DLL’s phase noise.
Last but not least, the high-frequency offset phase noise is dominant by the phase noise from a ring
OSC in [12] while the dominant high-frequency-offset phase noise source is a VCDL in this design.
The jitter generated by the VCDL is less than that generated by the ring OSC under the same power
consumption condition[18]. This is because the phase noise will circulate in the ring OSC, which means
the phase noise will be integrated, while the VCDL doesn’t have this problem.

6.3.2. Limitations of the design
The first stage of the two designs applies a similar structure, DLL with quadrature error correction. The
asymmetry in the layout design becomes the main limitation of the total design’s linearity performance.

The second stage of the proposed design applies the PI with pipelined structure while the other
design applies the traditional PI structure. The pipelined PI shows less power, area, and a better
linearity performance but requires two extra analog control voltages.

To adjust the noise suppression pole frequency, a large capacitor may be required for the loop filter,
which takes much area. However, the noise suppression pole frequency is adjusted by charge injection
strength in [12].



7
Conclusion

In this chapter, the main contributions of the proposed design are summarized. It also provides some
recommendations for future research.

7.1. Summary of Main Contributions
This thesis proposes the design of a 10-bit DTC with a new architecture of phase noise filter. The DTC
is realized by a 4-bit DLL with QEC and a 6-bit pipelined PI. The type-2 DLL’s noise transfer function
from the PFD to the output is utilized to form the phase noise filter, which shows first-order low-pass
characteristics. The loop bandwidth of the LDO can also be utilized to provide a second pole and forms
a second-order low-pass characteristic. The design is conducted in a 180-nm BCD process, where the
schematic and layout design is finished. The post-layout simulation results show that the final output
jitter of the filter is 368 fsrms while the total power consumption is 42.3mW, with the noise suppression
pole frequency at 160kHz. The jitter from the DLL and PI is reduced from 1.099psrms to 315.9 fsrms.
The area is 695 µm × 693.5 µm. The design consumes 42.3 mW with 1.8V supply in 180nm BCD
technology.

Compared with the charge-injection-based phase noise filter, the proposed design shows a theoret-
ical advantage in that the PI’s phase noise can be filtered. The phase domain model and the simulation
results also reveal a design framework for further jitter improvement. The low-frequency-offset phase
noise sources are the DLL, PI, and the PD and LPF in the phase noise filter, whose phase noise can
be reduced by increasing power consumption. The high-frequency-offset phase noise sources are the
VCDL and LDO in the phase noise filter, which can be reduced by increasing power consumption and
reducing noise suppression pole frequency.

7.2. Recommendation for future work
7.2.1. More advanced technology
The design applies the 180nm technology, which shows a larger parasitic capacitance and higher sup-
ply voltage compared with the more advanced technology. These properties all lead to higher power
consumption.

The large parasitic capacitance also determines the upper limit of the clock frequency. The highest
applicable clock frequency in 180nm is about 2 ∼ 3 GHz. The applied clock frequency in the proposed
design is 1GHz, considering the XOR gate would work at twice the reference clock frequency. The
number of the VCDL stages in the DLL is determined by the period of 1GHz. 16 VCDL stages are
applied in the proposed design to cover the 1ns delay range. However, with a higher reference clock
frequency, less number of VCDL stages can be utilized. For example, the VCDL stage number is 8 with
a 7GHz reference frequency in [12]. The reduction of the VCDL stages is desired in the DTC design,
since the phase resolution expansion by PI is more power and area efficient than that by the DLL. Last
but not least, the jitter is accumulated throughout the VCDL. With a smaller number of VCDL stages,
less jitter would be accumulated at the end stage.

One problemwould occur with amore advanced technology, which is the reduced output impedance
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of the gate-switch cascode CP in the phase noise filter. The reduced impedance would affect the charg-
ing and discharging current offset when the control voltage varies. This would influence the phase infor-
mation copy from the DLL and PI to the phase noise filter. However, the control voltage range to cover
a period of the reference clock would also reduce, which loosens the output impedance requirements.

7.2.2. Layout design symmetry
From the INL and DNL simulation results, the maximum INL error resulting from the DLL is larger than
1LSB while the maximum INL error resulting from the PI is less than 1LSB. The major linearity errors
result from the DLL’s static phase error problem. The pre-simulation of the DLL shows almost zero
static phase error while the post-layout simulation shows a large INL error due to the asymmetry in
layout. During the transformation from the schematic to the layout, the simulation shows the following
factors lead to the degradation of the static phase error problem:

• The unequal resistance and unsymmetrical parasitic capacitance conditions of the four input paths
of the XOR gate. The equal resistance can be realized by ensuring the same length of each wiring
path. However, the symmetrical parasitic capacitance is difficult to realize. The feasible solution
is to reduce the parasitic capacitance as small as possible between the signal paths.

• The unequal resistance and unsymmetrical parasitic capacitance conditions of the sixteen signal
paths from the sixteen output buffers of the VCDL to the four inputs of the XOR gate.

• Unequal loading of the VCDL due to the wiring of the independent MUX (the Mux which is con-
trolled by an independent selecting signal) at the last stage of the VCDL.

• The resistance from the power supply (VDD and VSS) to the transistors of the VCDL and the
MUXs. The path length from VDD to various stages of the VCDL and MUX is different, leading
to unequal path resistance. The actual supply voltage on each VCDL stage and MUX will then
deviate from the ideal 1.8V.

7.2.3. MUX stage of the pipelined PI
The MUX stage of the pipelined PI in this design is realized by inserting two inverters between the two
transmission gates. The two inverters reverse the falling/rising edge transition direction and require
two types of PI units to ensure the phase can be conveyed from rising to falling edge or falling to rising
edge.

This MUX structure can be improved by inserting only one inverter between the two transmission
gates. Although the MUX will then reverse the phase direction, the PI unit will reverse the direction as
well. Consequently, one type of PI unit is required and they can share the same analog control voltage,
which can reduce one I/O pin.
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