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Abstract

To execute quantum circuits on a quantum processor, they must be modified to meet the physical constraints of the quantum
device. This process, called quantum circuit mapping, results in a gate/circuit depth overhead that depends on both the
circuit properties and the hardware constraints, being the limited qubit connectivity a crucial restriction. In this paper, we
propose to extend the characterization of quantum circuits by including qubit interaction graph properties using graph theory-
based metrics in addition to previously used circuit-describing parameters. This approach allows for an in-depth analysis
and clustering of quantum circuits and a comparison of performance when run on different quantum processors, aiding in
developing better mapping techniques. Our study reveals a correlation between interaction graph-based parameters and
mapping performance metrics for various existing configurations of quantum devices. We also provide a comprehensive
collection of quantum circuits and algorithms for benchmarking future compilation techniques and quantum devices.

Keywords Quantum circuits - Compiler - Full-stack quantum computing systems - Quantum circuit mapping - Profiling -

Benchmarks

1 Introduction

Quantum technology has experienced rapid development in
the past decades and has the potential to solve some classi-
cally intractable problems. Its contributions are still in the
early stage, as current so-called Noisy Intermediate-Scale
Quantum (NISQ) devices can only handle simple, small-
sized algorithms considering they are limited by size and
noise. They also encompass additional hardware constraints
such as low qubit connectivity, reduced supported gate set,
and limitations related to classical-control resources, which
makes it even more difficult to execute a quantum circuit on
these processors successfully.

Quantum algorithms, usually represented as quantum cir-
cuits, are hardware-agnostic; that is, when described, they
do not consider hardware restrictions. To execute such algo-
rithms (quantum circuits) on a quantum processor, they must
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be modified to fulfill the processor’s limitations through a
process called quantum circuit mapping. The quantum circuit
mapper, which is part of the compiler, is then at the core of
the full-stack quantum computing system, connecting algo-
rithms with quantum devices (Bandic et al. 2022).

Various techniques have been proposed to deal with the
mapping of quantum circuits (Li et al. 2019; Murali et al.
2019a; Tannu and Qureshi 2019; Li et al. 2020; Zulehner
et al. 2018; Venturelli et al. 2019; Lao et al. 2019a, b; Her-
bert and Sengupta 2018), which differ in approach (exact
or heuristic, local or global solution), methodology (e.g.,
SMT solver (Lye et al. 2015)), cost functions (optimizing
number of gates or circuit depth), and performance met-
rics (e.g., circuit fidelity). These solutions, however, adopt
a bottom-up approach, developing mappers specifically for
certain quantum processors and technologies. The majority
of quantum circuit mapping techniques have mostly focused
on hardware properties (Tannu and Qureshi 2019; Lao et al.
2022) and only considered a rather limited set of algorithm
characteristics such as number of qubits, number of quantum
gates, two-qubit gate percentage, and qubit interactions (i.e.,
what pair of qubits perform a two-qubit gate). In addition to
this, when mapping outcomes are analyzed, the focus is on
the values of the obtained metrics without further evaluating
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why some circuits show higher or lower overheads. Some
works have already pointed out the importance of including
more algorithm features in the mapping process (Lao and
Browne 2021a). A more complete and in-depth profiling of
quantum circuits will help to (i) have a deeper understanding
on why specific algorithms have higher fidelity than others
when being run on a particular processor using a specific
mapping technique; (ii) to categorize (cluster) quantum
circuits based on those parameters and predict the perfor-
mance of additional circuits with similar properties in terms
of mapping-related metrics, without actually running them
on a given device; and (iii) to develop application-driven
and hardware-aware mapping techniques (i.e., mapping tech-
niques tailored for a specific set of algorithms in addition
to overcoming hardware constraints) (Bandic et al. 2022;
Li et al. 2021a; Lao and Browne 2021b). Note that more
broadly, this characterization of quantum circuits will be
also crucial for defining a meaningful and complete set of
quantum benchmarks to evaluate not only quantum circuit
mapping techniques but also full-stack quantum computing
systems as well as for having a set of algorithm-level metrics
to measure system performance (Tomesh et al. 2022).

One of the most stringent quantum hardware constraints
that quantum circuit mapping techniques have to deal with
is the limited connectivity of physical qubits, which restricts
possible interactions between them. Therefore, in this paper,
we propose to extend the profiling of quantum circuits/
algorithms by not only extracting “standard” parameters
like the number of qubits and gates and percentage of two-
qubit gates, but also by performing a deeper analysis of
their qubit interaction graphs (i.e., representation of the
two-qubit gates or qubit interactions of the circuit). By
taking input from graph theory and machine learning, we
characterize quantum circuits based on their interaction
graph metrics (e.g., average shortest path, connectivity,
clustering coefficient). We then map those quantum circuits
into several quantum processors using a specific quantum
circuit mapping technique. In future work, we will also use
different quantum circuit mapping configurations, allowing
us to evaluate what quantum circuit features impact the
circuit mapping performance the most and identify what
combination of mapping technique-quantum hardware works
better for a given (set of) algorithm(s). Note that this analysis
can in the future help in the codesign of algorithm-driven
compilation methods and quantum hardware.

In addition, we present a categorized and, as of now,
the most comprehensive set of quantum algorithms
(benchmarks) from various sources and platforms and
in different quantum programming languages. Most of
the currently existing and used quantum algorithms,
synthetically generated and application-based circuits are
included in this collection and classified based on different
criteria. We are hoping that this algorithms/circuits set will
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be used for benchmarking quantum computing systems as
well as parts of it, such as compilation techniques.
The main contributions of this work are as follows:

1. We have performed the first characterization and cluster-
ing of quantum circuits that also considers qubit interac-
tion graph parameters in addition to the characteristics
related to circuit size (number of gates, number of qubits,
amount of two-qubit gates). In-depth profiling and clus-
tering of quantum circuits based on their more structural
parameters help to analyze why and when some (fami-
lies of) quantum algorithms show better performance
compared to the rest when being executed on a given
quantum processor, as well as which circuit parameters
have a higher impact on performance for some hardware-
compiler setups. Subsequently, that can also help to pre-
dict the mapping performance for additional circuits
with similar properties, without actually running them
on a given device, and therefore assist in recommending
an adequate mapper and hardware configuration to use.
Finally, this circuit structural parameters analysis step is
crucial for the development of future application-based
quantum devices and mappers.

2.  We have found that quantum circuits similarly structured
in terms of their interaction graph parameters will have
comparable results in terms of circuit fidelity and gate
overhead when mapped on the same quantum device
and by using the same mapping technique. By running
these groups of circuits with different hardware con-
figurations, we could make clear suggestions on which
group of circuits fits which hardware better.

3. We provide the so-far most comprehensive collection of
quantum benchmarks, open-source and available in most
currently used high- or low-level quantum languages.
The goal is to help the quantum community speed up
the research process and in the development of a full-
stack quantum system by having an easily accessible,
all-in-one-place set of benchmarks that can be used
for analyzing the performance of existing and future
quantum processors and compilation methods.

The paper is organized as follows: Section 2 presents
a short introduction to full-stack quantum computing
systems and an overview of the current state-of-the-art
quantum circuit mapping techniques as well as benchmark
characterization. Section 3 introduces our profiling of
quantum algorithms and their clustering based on size and
structure. The experimental setup with the details of our
benchmark collection is included in Section 4. Section 5
showcases the obtained results on how the mapping
performance of quantum circuits when run on a specific
chip relates to their structural parameters acquired from
the analysis of their interaction graphs and their clusters
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from Section 3. Finally, in Sections. 6 and 7, conclusions
and future work are presented.

2 Background and related work
2.1 Quantum computers nowadays

Quantum hardware has significantly progressed since its
inception, and a wide variety of technologies has been
developed for implementing qubits like solid-state spins,
trapped-ion qubits, or superconducting qubits (Resch and
Karpuzcu 2019). Hardware characteristics like the number
of qubits and gate fidelity are continuously improving.
However, current NISQ devices are still immensely resource-
constrained and error-prone. They are not able to keep up
with the development of promising quantum algorithms,
that might achieve exponential speed-up, as they lack in size
(number of qubits), which is required for the implementation
of fault-tolerant and error-corrected techniques. Therefore,
it was inevitable to develop a set of algorithms that could be
successfully executed on current processors, coming from
different fields like quantum physics, chemistry, or machine
learning (Bharti et al. 2022).

Quantum compilers act like intermediaries between algo-
rithms (expressed as quantum circuits) and quantum proces-
sors. They not only translate high-level programming lan-
guage instructions (e.g., library Qiskit given in Python (Anis
et al. 2021)) into low-level ones (quantum assembly-like lan-
guage, e.g., OpenQASM (Li 2019)), but are also responsible
for making transformations and optimizations of the quantum
circuit to best fulfill the quantum hardware requirements. The
compiler design and complexity highly depend on the con-
straints imposed by the hardware and chosen technology. In
nearest-neighbor architectures (e.g., 2D array of qubits), the
primary constraint is the limited connectivity among qubits.
As running two-qubit gates requires that the paired qubits
are adjacent on the chip, restricted connectivity can become
a huge obstacle. The compiler tries to overcome that and
other limitations and helps to successfully execute a quantum
circuit on a given quantum device through a process called
mapping. Note that the mapping of quantum circuits usually
results in a gate and latency overhead that in turn decreases
the circuit fidelity. Therefore, having efficient mapping tech-
niques is crucial in the NISQ era not only to successfully
execute quantum algorithms but also for extracting the most
out of constrained NISQ devices.

2.2 Computing with NISQ devices
One of the motivations for building quantum computers

in the first place is to run algorithms that solve problems
that are intractable for existing classical computers due to

limitations in speed and memory. Current NISQ devices
can only handle simple algorithms, in terms of the number
of qubits and gates and circuit depth, as the presence of
noise and limited resources (physical qubits) still constrain
them: quantum operations have high error rates and qubits
decohere over time resulting in information loss. On top
of that, running an algorithm on a NISQ device is not a
straightforward process. That is due to hardware constraints
that affect the algorithm execution, which can vary between
quantum technologies.

One of the restrictions that affects the execution of a
quantum algorithm the most is (limited) qubit connectivity.
That applies to most technologies, including superconduct-
ing qubits and quantum dots, where qubits are arranged in
a 2D grid or some other not-fully connected topology, as
shown in the top-right part of Fig. 1, allowing only nearest-
neighbor interactions. In order to perform a two-qubit gate
in such architecture, the two interacting qubits in the circuit
have to be placed in neighboring physical qubits on the chip,
which is not always possible (see Fig. 1: two two-qubit gates
between virtual qubits 1 and 5, and 5 and 6 cannot be directly
performed because they do not share a physical connection
in the coupling graph). Other constraints that have to be con-
sidered are (i) primitive gate set—the gates of the circuit to
be executed do not always match the native gate set (sup-
ported gates) of the quantum chip. For instance, to run the
quantum circuit shown in Fig. 1 on the Surface-17 chip (Lao
et al. 2022), its CNOT gates would have to be decomposed
into X and Y rotations and CZ-gate supported by the device;
(ii) classical control constraints—shared electronics help to
scale up quantum systems but may limit parallelization of
quantum operations during circuit execution. The process of
accommodating these requirements imposed by the quantum
hardware to efficiently execute a quantum algorithm is called
quantum circuit mapping.

The quantum circuit mapping process consists of the fol-
lowing steps (not mandatory in this order): (1) Adapting the
gate set of the circuit to the gates supported by the device;
(2) Scheduling quantum operations (qubit initialization,
gates, and measurements) of the circuit to leverage its paral-
lelism and therefore shorten the execution time; (3) Placing
virtual qubits (of the circuit) onto physical qubits (on the
actual chip) so that the previously mentioned nearest-neigh-
bor two-qubit-gate constraint is satisfied as much as possible
during algorithm execution; and (4) Routing or exchanging
positions of virtual qubits on the chip such that all qubits
that could not initially interact become adjacent and per-
form their corresponding two-qubit gates (Fig. 1). This is
done by inserting additional quantum gates. How routing
is performed and which gates are inserted is technology-
dependent with various existing methods (SWAPs, Shut-
tling). Therefore, the resulting after-mapping circuit will in
most cases have more gates and a longer execution time than
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Fig. 1 Running a quantum
circuit on a 7-qubit quantum
processor. a Interaction graph @
G,(V,, E;) of the circuit shown
below; nodes V; represent
virtual qubits, and edges E;

show interactions between
qubits (i.e., 2-qubit gates). b, @
¢ The chip’s coupling graph (a)
G.(V.,E,); nodes V, represent
physical qubits, edges E,. show q0» QO q0-+»Q0 q0-» QO
connections on the chip (i.e., 1 Q1 1 1 1 —3
possible two-qubit interactions). Qi e at-+»al
d Circuit qubits (gi € V) are q2 » Q2 Q2+ Q2 —& Q2+»Q2 |+——
mapped onto physical qubits 3 »Q3 35Q3 Py 3505 —
(Qi € V). e An extra SWAP " - e+ s g
gate is required to be able to q4 » Q4 ) q4-+>Q4 ad»Q4 —+—
perform all CNOT gates q5 » Q5 S \DA AY a5+ Q5 A g5+ Q3 -4
q6 > Q6 D/ g6+ Q6 g6 »Q6 D

(d)

originally. Due to the previously mentioned highly-errone-
ous quantum operations and qubit decoherence, the overhead
in terms of number of gates and circuit depth caused by
the mapping should be minimal as it ultimately impacts the
algorithm fidelity.

Various approaches have been proposed to solve the
circuit mapping problem, each using different methods and
strategies. Some solutions are optimal (exact), but work in a
brute-force style and are thus only suitable for small circuits
(Zulehner et al. 2018; Lye et al. 2015; Siraichi et al. 2018).
For larger circuits and to allow for scalability, heuristic
solutions are a better fit (Li et al. 2019; Lao et al. 2022;
Wille et al. 2016; Guerreschi and Park 2018). Some methods
proposed by related works include the use of SMT solvers
(Murali et al. 2019a; Lye et al. 2015), greedy heuristic
(Li et al. 2019; Zulehner et al. 2018; Dousti and Pedram
2012; Bahreini and Mohammadzadeh 2015), and machine
learning-based algorithms (Herbert and Sengupta 2018;
Venturelli et al. 2018; Pozzi et al. 2020). These solutions
all focus on the “routing” part of the mapper. In addition
to this, it is possible to deal with the mapping problem by
optimizing its other stages like scheduling (Lao et al. 2022;
Guerreschi and Park 2018), gate transformation (Pozzi et al.
2020; Guerreschi 2019; Itoko et al. 2020; Tan and Cong
2021), or initial placement (Tannu and Qureshi 2019; Jiang
et al. 2021; Li et al. 2021b).

Different metrics are being used to assess the perfor-
mance of the quantum circuit mapping technique depending
on the cost function: some works have the goal of minimiz-
ing the number of gates or gate overhead (e.g., number of
additional SWAP gates) (Zulehner et al. 2018; Lao et al.
2019a, 2022; Ttoko et al. 2020; Tan and Cong 2021; Li et al.
2021b; Bandic et al. 2020; Hillmich et al. 2021), some pri-
oritize low circuit depth or latency (circuit execution time)

@ Springer

(e)

(Zulehner et al. 2018; Lao et al. 2019a, 2022; Pozzi et al.
2007; Tan and Cong 2021; Bandic et al. 2020), and finally,
some focus on the success rate of the circuit (Jiang et al.
2021; Blume-Kohout and Young 2020) and maximizing
fidelity (Murali et al. 2019a; Tannu and Qureshi 2019; Tan
and Cong 2021) by also considering the different error rates
of the quantum device. Note that the overall goal in the cur-
rent NISQ era is to maximize the fidelity and success rate
of quantum circuits, which currently mostly depends on the
gate and circuit depth overhead. Figure 2 shows the impact
of the number of gates and the gate overhead on the circuit
fidelity. However, as shown in Fig. 1, not all the circuits end
up with the same decrease in fidelity for the same or similar
gate overhead. Note that the circuit fidelity is close to 0% for
any circuit with more than 500 gates (Fig. 2a). In addition,
a gate overhead of over 200% after mapping leads, in most
cases, to a 100% fidelity decrease (Fig. 2b).

These approaches all have in common that they are
designed to adapt quantum circuits to the device-specific
properties and constraints considering only a reduced set of
algorithm properties such as gate and qubit count and two-
qubit gate percentage (including qubit interactions). A more
in-depth quantum circuit characterization, which for instance
could include characteristics of the qubit interaction graph
like the number of times each pair of qubits interacts and the
distribution of those interactions among the qubits, and of the
quantum instruction dependency graph (i.e., graph that repre-
sents the dependencies between gates in the circuit and used
for scheduling) is still missing. Looking further into interac-
tion graphs is very beneficial for the quantum circuit mapping
process, as, like stated before, the most stringent constraint
of current quantum hardware is its limited qubit connectiv-
ity. Some authors have already pointed out the importance
of including application properties (Bandic et al. 2022; Li
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Fig.2 a Circuit fidelity vs. the number of gates. b Gate overhead (%) and decrease in fidelity. Synthetically generated circuits are marked with
orange circles and real ones (i.e., quantum algorithms and routines) with blue squares. Here, only circuits with up to 500 gates were used

et al. 2020; Lubinski et al. 2021; Mills et al. 2021) and con-
sidering the characteristics of the qubit interaction graphs
for improving the mapping of quantum circuits (Bandic et al.
2020; Steinberg et al. 2022). Even in classical computing,
we notice that different computing resources are necessarily
based on what we use the computers for and which applica-
tions are executed. For instance, a dedicated GPU can be used
for highly parallelizable processes. Likewise, thorough profil-
ing can help to identify which algorithm characteristics are
required to execute it successfully on a given device and vice
versa. The structural properties of quantum circuits can also
help understand why specific algorithms show better success
rates than others when being run on a particular processor
using a specific mapping technique.

3 Profiling of quantum circuits based
on qubit interaction graphs

This section provides an overview of the qubit interaction
graph-based benchmark profiling and clustering process,
emphasizing why this could be meaningful for improving
future quantum circuit mapping techniques.

3.1 On the importance of qubit interaction graphs
for quantum circuit mapping

Qubit interaction graph G(V, E) is a graphical representation
of the two-qubit gates of a given quantum circuit. It is in
general a directed connected graph. Figure 1 shows an exam-
ple of a quantum circuit (Fig. 1d) along with its interaction

graph G,(V;, E;) representation (Fig. 1a). Directed edges E,
represent two-qubit gates, and nodes V; are the qubits that
participate in them. Since the direction of edges in most
cases does not influence the execution of the gates, it is suf-
ficient to perceive the interaction graph as undirected for the
mapping problem (A quadratic unconstrained binary 2023).
If a circuit comprises multiple two-qubit gates between pairs
of qubits, it results in a weighted graph (like in Fig. 3), which
shows how often each pair of qubits interacts and how those
interactions are distributed among qubits.

This additional information can be leveraged to provide
more insights into a circuit structure that is otherwise hidden
when only considering standard algorithm parameters
such as the number of qubits and gates and two-qubit gate
percentage. To illustrate this, Fig. 3 shows the interaction
graphs of two quantum algorithms, an instance of QAOA
and a randomly generated circuit (on the right), which a
priori are similar when only characterized in terms of the
three common algorithm parameters. What can be noticed is
that their qubit interaction graph structure is quite different:
the graph of the random circuit is more complex with full
connectivity and presents a different distribution of the
interactions between qubits, that is, of the weights. This
will result in more routing and, therefore, higher overhead,
unless we indeed have a fully connected coupling graph of
the processor (Section 5).

This shows the importance of quantum circuit
structure when developing mapping techniques and
the necessity of characterizing the circuits in terms
of their qubit interaction graphs. A few works have
already pointed out how interaction graph along with
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quantum instruction dependency graph can be used as
a baseline for designing better mapping techniques (Li
et al. 2019; Lao et al. 2022; Baker et al. 2020; Bandic
et al. 2023). In those works, gate dependency graphs are
used as core information for scheduling optimization
and look-ahead techniques, whereas interaction graphs
are usually only used for the initial placement of qubits
of the routing procedure. Considering that the primary
constraint affecting the fidelity of the circuit execution
is nearest-neighbor connectivity required for perform-
ing two-qubit gates, it would be valuable to know in
advance how they are distributed among qubits and not
only their quantity.

In this paper, we perform profiling of quantum cir-
cuits by focusing on interaction-graph properties and their
relation to quantum circuit mapping. To that purpose, we
took input from graph theory and analyzed qubit interac-
tion graphs based on metrics described in Hernandez and
Mieghem (2011) with a focus on those that are relevant
to the mapping problem.

Quantum circuit profiling in our work consists of the
following steps:

1. Benchmark collection—collecting benchmarks
(quantum circuits) from various sources, translating
them to the same quantum language, and extracting their
interaction graphs (Section 4).

2. Parameter selection and extraction—choosing and
extracting graph-theory-based parameters from the
qubit interaction graph that are relevant to the mapping
of quantum circuits.

3. Benchmark clustering—clustering benchmarks based on
their size- and interaction graph-related parameters.

After performing these steps, we compiled the quantum
circuits using OpenQL (Khammassi et al. 2021) and ana-
lyzed the relation between their performance and extracted
parameters, as well as clusters (Sections 4 and 5).

@ Springer

3.2 Parameter selection for quantum algorithm
profiling

There exists a vast amount of metrics used for describing graphs,
which can be classified into different groups and classes. How-
ever, not all of these metrics are relevant to our goal in terms
of qubit interaction graph analysis. After thoroughly investigat-
ing all metrics described in Herndndez and Mieghem (2011),
we chose those that are key for the circuit mapping problem.
These metrics, when calculated from the qubit interaction graphs,
should represent features of quantum circuits that have a cor-
relation with the mapping performance metrics (e.g., number of
SWAPS). For instance, the node degree distribution is a relevant
metric as it defines the connectivity of the graph (i.e., density of
qubit interactions). The more connected the graph, the higher the
node degrees. In case there is an all-to-all connected interaction
graph, all degrees would be n — 1, (n being the number of qubits)
and that graph would be more challenging to map onto limited
connectivity device topologies, which would result in the inser-
tion of a higher number of additional SWAP gates. Table 1 shows
the selected metrics subset and how they relate to the quantum
circuit mapping process.

We noticed, however, that a large amount of these metrics
are correlated, i.e., they scale in the same manner. Therefore,
the parameter space was reduced by using a Pearson correla-
tion matrix as shown in Fig. 4 (— 1/1 meaning maximally-cor-
related, O meaning not correlated) (Freedman et al. 2007). For
instance, note that a minimal node degree of a graph strongly
relates to maximal clique and edge connectivity, so in that case,
just using one of the parameters, instead of all three, is suf-
ficient. This method allowed us to reduce our previous metric
set to average shortest path (average hopcount), maximal and
minimal node degree, and adjacency matrix (interaction graph
edge-weight distribution) standard deviation. These metrics
and the common circuit parameters can be used to cluster
quantum circuits. It is expected that quantum algorithms with
similar properties should show similar performance when run
on specific chips using a given mapping strategy.
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Fig.4 Heatmap of a Pearson correlation matrix for quantum circuit and interaction graph metrics selected for mapping

3.3 Clustering benchmarks outcomes
and evaluation

As mentioned earlier, one of our goals is to find structural
similarities among quantum circuits and create some sort of
“circuit families,” whose elements (quantum circuits) will
show similar compilation behavior and require similar hard-
ware resources. The two criteria we have used for clustering
benchmarks are properties based on circuit size and qubit
interaction graph. Note that we performed a two-step clus-
tering: circuits were first clustered based on size parameters
(number of qubits and gates and percentage of two-qubit
gates) and then on qubit interaction graph metrics. The rea-
son behind this was to avoid the former to become the most
significant criteria of our clustering algorithm. Figure 5
shows the five clusters (different colors) in which a set of
300 selected benchmarks (Section 4) have been divided by
using the kmeans (Lloyd 1982) clustering algorithm. Bench-
marks are represented as lines in this parallel-coordinates
plot. The x-axis contains a list of three different parameters
with their values shown in y-axes.

Each of the five size-related clusters can then be further
divided into sub-clusters based on previously explained graph
parameters: average shortest path length, maximal and mini-
mal degree, and adjacency matrix standard deviation. In this
case, we have again selected the kmeans algorithm among

@ Springer

several others by evaluating different methods and param-
eter setups with the silhouette coefficient method (Rous-
seeuw 1987). In Fig. 6 is an example of when one of the size-
parameters-based clusters (cluster O from Fig. 5) is divided
into sub-clusters based on the interaction graph parameters. It
is also pretty straightforward for additional future circuits to
be assigned to a specific cluster (size- and interaction graph-
based) as each of the clusters and sub-clusters covers the
specific range of combinations of parameters (e.g., cluster 4
in Fig. 5 covers benchmarks with less than 25% percentage
of two-qubit gates, and cluster 3 in Fig. 6 covers the highest
minimal degree values (over 6)). Those circuits should then
have similar expected fidelity and gate overhead outcomes as
the other circuits in that cluster. How exactly do the mapping
performance metrics correlate with our clusters from Fig. 6,
and the possible reason for that will be described in the next
sections.

4 Experimental setup

This section describes all the necessary elements for perform-
ing our experiments: (i) our newly created benchmarks col-
lection (gbench benchmark suite 2021) and a subset used in
this paper; (ii) the OpenQL compiler with its Qmap mapper
(Lao et al. 2022) and Surface-97 platform, IBM Rochester
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Fig.5 Clustering of quantum algorithms based on size-related parameters
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Fig.6 Sub-clustering of quantum algorithms of cluster O (Fig. 5) based on interaction graph parameters

and Aspen-16 configuration files, and (iii) chosen set of met-
rics for evaluating the performance of the quantum circuit
mapping technique.

4.1 Quantum benchmarks collection
and classification

The fast development of quantum computing systems dic-
tates the necessity for an all-including and standardized
benchmark suite that can serve to test quantum devices as
well as compilation techniques and, in general, any part(s)
of the full stack. To address this issue, we collected vari-
ous types of quantum circuits used as benchmarks from a
large number of sources (Anis et al. 2021; Li 2019; Li and
Krishnamoorthy 2020; UCLA 2020; JKU 2018; Méller and
Schalkers 2020; Valada 2020; Microsoft 2020; QuTech n.d;

Developers n.d; Smith et al. 2016; Sivarajah et al. 2020;
Cross 2018; Last et al. 2020; Wille et al. 2008) written in
and translated to different available high- and low-level lan-
guages. An overview of our open-source benchmark suite
called QBench (gbench benchmark suite 2021) is shown in
Fig. 7.

Benchmarks are first divided into two high-level groups:
real vs. synthetic quantum circuits. The first ones are then
further split into two categories depending on whether they
are based on quantum algorithms or are simple reversible
arithmetic circuits. In the second group, we can find three dif-
ferent subgroups based on how they are generated. Accord-
ing to Nielsen and Chuang (2002), currently used bench-
marks based on real algorithms (QFT, search algorithms,
application-based algorithms) are the ones that are of the
highest importance when measuring the performance of all

@ Springer
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Fig.7 Overview of our QBench
repository
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future quantum systems as they are scalable, meaningful, and
can show the advantage in quantum systems comparing to
classical counterparts (Tomesh et al. 2022). For the current
NISQ era, however, there is a need for benchmark libraries
like RevLib (Wille et al. 2008) that are within the domain of
reversible and quantum circuit design. Synthetic benchmarks
represent the group of randomly generated quantum circuits,
which provide a larger variety in terms of their parameters
(e.g., number of qubits, gates, two-qubit gate ratio, circuit
depth), and are mainly used to test the performance of quan-
tum devices and explore their computational power to the
fullest. For this paper, we mainly focused on (i) randomly
generated quantum circuits that are created by uniformly ran-
domly choosing single- and two-qubit gates from a prede-
fined set and then applying them on arbitrarily chosen qubits
or qubit pairs in the circuit (Valada 2020); (ii)) QUEKO cir-
cuits (UCLA 2020), which are designed to be optimal for
specific devices (e.g., with optimal depth); and (iii) Quan-
tum volume square circuit (Cross et al. 2019) that is used in
general for benchmarking quantum system architectures. A
summary of all the real-algorithm-based or synthetic circuits
that are part of our benchmark set can be found in gbench
benchmark suite (2021).

Benchmarks in our set are also classified based on their
size (large-, middle-, and small-scale and parameterized
ones) and on the higher- or lower-level language they are
written in gbench benchmark suite (2021). Note that a
parameterized (scalable) version of the circuits allows the
creation of new circuits of a desired size, which will be
very meaningful for future quantum systems (Tomesh et al.
2022). Furthermore, different translators from one quantum
language to another, interaction graphs, and interaction
graph-based profiling are also part of this benchmarks suite.

For our experiments, we selected a subset of 300 bench-
marks from QBench covering different types (previously

@ Springer

Translators

volumetric

graphs

described in this section) and qubit number ranges (2—-1281
qubits for clustering, 3—54 qubits for mapping experiments).
Note that this benchmark set is to become open source not
only for other researchers to use it for the future development
of quantum systems, but also for others to participate in its
future extensions. There will always be new benchmarks that
can be added or quantum languages to translate the current
benchmarks to, as we are in the era where we witness a
continuous development of new quantum algorithms,
compilers, simulators, and programming languages.

4.2 Quantum compiler and targeted quantum
devices

To analyze how the previously shown clusters of circuits
(Section 3) relate with their after-mapping outcomes, we
compiled the 300 selected quantum circuits using as tar-
get quantum processor an extended 97-qubit version of the
Surface-17 chip (like in Fig. 8a). Surface-17 is a quantum
processor with a surface code architecture (Lao et al. 2022),
designed to be easily scalable. The device characteristics and
all its constraints are included in a configuration file, which
is then used as input for the compiler OpenQL (Khammassi
et al. 2021). The configuration file of our chosen back-end
includes information like error rates, primitive gate set, gate-
decomposition rules, and processor qubit topology/connec-
tivity. In addition to this, and in order to compare the per-
formance of the mapper for different groups of circuits, we
performed the same experiments for two more quantum pro-
cessors: the IBM Rochester and the Rigetti 16g-Aspen chips
that are shown in Fig. 8b and c, respectively. We selected
these device configurations because they are currently com-
monly used in other research on quantum circuit mapping and
provide realistic and different connectivity patterns in their
coupling graphs. Note that in our experiments, we do not
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Fig.8 Topologies of the quantum architectures used for experiments: a Surface-97; b IBM Rochester, and ¢ Rigetti 16-q Aspen. Figures taken

from (Overwater et al. 2022; IBM n.d; Rigetti n.d)

execute the quantum circuits on actual devices, but instead,
they are just mapped into the different quantum processors;
that is, their hardware constraints are considered in the com-
piling process.

At the core of the OpenQL compiler is its Qmap mapper,
which has many options and strategies allowing to create
a sort of custom-made compilation technique. The Qmap
quantum circuit mapper considers several types of hard-
ware constraints: limited connectivity, primitive gate set,
and restrictions derived from classical control electronics.
It supports several options for circuit optimization, routing,
initial placement as well as scheduling. In addition, it out-
puts different circuit mapping performance metrics such as
the number of additional gates and circuit latency. The rout-
ing strategy we opted for was MinExtend (Lao et al. 2022),
which, among other features, includes looking back to pre-
viously mapped gates and strives to minimally extend the
latency of the circuit. It also includes different but common
gate transformation and optimization strategies such as gate
cancelation or commutation.

4.3 Metrics

The most commonly used metrics for quantum circuit
mapper evaluations are the number of added SWAPS, circuit
depth, and fidelity/reliability. In our case, we have used the
additional gates and extended depth information retrieved
from the compiler to calculate the following metrics:

1. Gate overhead is calculated as

(Gufrer—Geforey
G pverhead = T where G, and G
efore

the number of gates before and after compilation.
2. Latency overhead is defined as:

afrer TEPTESENL

L )

overhead — ’ where Lbefore and Lafter represent

Lyefore
the circuit latency before and after compilation. Latency

is calculated as the number of cycles of the circuit, which
also considers variations in gate duration, making it
different from circuit depth in which all gates are
considered to take one time-step.

3. Circuit fidelity is defined as the product of error rates
of the gates in the circuit. When mapping a circuit, the
main goal is to maximize this metric (Murali et al. 2019b;
Nishio et al. 2020). We assumed that all one-qubit and
two-qubit gates have the same error rates, respectively,
for which we used average values of the Starmon-5 chip
(QUTECH 2020).

s . Frgore=Fapr)
4. Fidelity decrease is calculated as Fypeu = —2—2=

Fiefore ’
where F,.,,. and F . represent the circuit fidelity before
and after compilation.

In the following section, we will discuss the relation of
the structural parameters of circuits with the above-stated
obtained metrics after mapping them into the Surface-97,
IBM Rochester, and Rigetti Aspen-16 devices.

5 Results

5.1 Mapping the circuits to Surface-97 chip
architecture

In this section, we evaluate and compare the mapping
outcomes of our selected circuits and analyze how the circuit
parameters impact the results. Additionally, we compare the
performance of different clusters of circuits when using the
same mapping technique and processor design (Surface-97).

@ Springer
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Fig.9 Mapping performance metrics: gate overhead, latency over-
head, and fidelity decrease (all in %) for all groups of benchmarks.
We differentiate (i) synthetic circuits: randomly generated circuits
(hexagons) and QUEKO circuits (UCLA 2020) (squares) and (ii) real,

ITaRt}

algorithm-based circuits: simpler arithmetic circuits (“x”) and circuits
based on quantum algorithms (“+7) (e.g., QFT or Grover’s algo-
rithm, see Section 4). Only circuits with up to 500 gates are shown

As previously shown in Section 2 (Fig. 2), the gate over-
head and circuit fidelity decrease is, on average, higher for
our type of synthetic (randomly generated) circuits than for
those based on real algorithms, even when they are in the
same range of size.! Furthermore, as shown in Fig. 9, these
two groups of circuits (real and synthetic) are further divided
into a total of four differently-structured groups that include
randomly generated circuits, QUEKO benchmarks, quantum
algorithm-based circuits, and reversible arithmetic circuits.
Note in Fig. 9 the difference between these groups in terms
of three defined mapping performance metrics. Revers-
ible arithmetic circuits showed on average the lowest gate
overhead (~ 120%) and therefore decrease in fidelity. Ran-
domly generated circuits have on average the best latency
overhead (~ 88%). To give an example, QUEKO circuits
show an average gate overhead of ~ 348%, latency overhead
of ~ 153%, and fidelity decrease of nearly 100%. This all
clearly shows the importance of including the structure of
the quantum circuit in the mapping process and leads us to
using that information to our advantage when choosing an
appropriate pair of device and mapping technique.

Subsequent to this, we unveil how size-related param-
eters: number of qubits, number of gates, and two-qubit gate
percentage relate to gate overhead and fidelity decrease,
respectively, as shown in Fig. 10. Each point in the graphs
represents a benchmark mapped to the Surface-97 processor,

! The details on how much the fidelity dropped for each benchmark
and how much it differs between the two groups are shown in Fig. 18
in the Appendix.

@ Springer

and just like in Fig. 9, different groups of benchmarks are
shown using different symbols and in the same way. In this
case, we only considered circuits with up to 500 gates, as
all those above that threshold had negligible fidelity even
before mapping. Note that these three mentioned parameters
are correlated with the mapping results of the circuits on
the chip: the closer the points in graphs are to 0 in all axes
simultaneously, the lower the overhead and fidelity decrease.
Another point that can be made from these figures is that
synthetic circuits (QUEKO and random circuits) perform
in this setup, on average, worse than the algorithm-based
circuits in terms of after-mapping fidelity and gate overhead
(just like in Fig. 9).

We have noticed earlier (Section 2) that the size of a cir-
cuit, even though an important feature, is not the only reason
why some circuits have lower after-mapping overheads than
others. Figure 11 shows how the parameters minimal degree,
maximal degree, and average shortest path of the interaction
graph influence fidelity and gate overhead of circuits. As
observed before, the closer the points in graphs are to 0 in
all axes simultaneously, the lower the overhead and fidelity
decrease. The graph shows a strong correlation of both the
increase in gate overhead (Fig. 11a) and fidelity decrease
(Fig. 11b) with the increase in maximal and minimal node
degree and average shortest path. 2D cuts of Fig. 11 are
shown in Fig. 12 for a better visualization. The following
observations can be made: (1) the higher all three circuit
parameters, average shortest path, minimal and maximal
node degree are simultaneous, the higher the gate overhead
(Fig. 12a) and fidelity decrease (Fig. 12b). This means the
fidelity is the highest and overhead the lowest if all three cir-
cuit parameters are close to 0. (2) Some patterns for circuits
belonging to the same group can be observed based on how
they are created. For instance, QUEKO circuits (squares)
have a high average shortest path (~ 3), random circuits
(hexagons) have a high average node degree (~ 8), whereas
RevLib and algorithm-based circuits (x in graph) have on
average low values of the same parameters (~ 1.5 for average
shortest path and ~ 4.5 for node degree).

In Section 3, quantum circuits have been clustered
based on size and interaction graph parameters. In Fig. 13,
we can see how the clusters based on interaction graph
similarity (example shown in Fig. 6) relate to the map-
ping performance metrics gate overhead, latency over-
head, and fidelity decrease. As mentioned in Section 4,
the lower these metrics are, the better the mapping perfor-
mance. One can notice that circuits belonging to cluster
0 outperform other circuits in terms of gate overhead and
fidelity decrease (up to 200% for gate overhead, and an
average of ~ 89% for fidelity decrease), whereas clusters
3 and 4 show the best performance in terms of latency
(up to ~ 150%). What we can further conclude when com-
paring Figs. 9 and 13a is that clusters mostly consist of



Quantum Machine Intelligence (2023) 5:40

Page 130f30 40

800
700
600
500
400
300
200
100

2-Q Gate Percentage

(a)

Fig. 10 a Gate overhead and b fidelity decrease in % (color bar) vs.
size-related parameters: number of qubits, number of gates, and two-
qubit gate percentage. We differentiate (i) synthetic circuits: randomly

700
600
500
400
300
200
100

22162p xeW

(@)

o
(=]
2-Q gate %

‘:o = 0.4
iy LIPS =i L . = 0.2
) 'z L | m 4
& a 80
o om
a 20 60
15 &
9
10 & - 40
S
5 s § -20
100 509 <
300 400
500 Lo

NUm of Jates

(b)

generated circuits (hexagons) and QUEKO circuits (UCLA 2020)
(squares) and (ii) real, algorithm-based circuits: simpler arithmetic
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175
z 150
o
%X 125
& 100
Q
3 75
* 50 80
25
- 60
L 40
4”’)
20
Lo

(b)

Fig. 11 a Gate overhead and b fidelity decrease in % (color bar) vs. interaction graph-related parameters: minimal node degree, maximal node

degree, and average shortest path

benchmarks of the same type: cluster 0 mostly has real
circuits, cluster 3 random ones, and cluster 2 QUEKO cir-
cuits. That shows, for instance, that real quantum circuits,
especially those from cluster 0, present some pattern in
the structure that is easier to map without requiring too
many additional gates. Finally, Fig. 13b, which represents
a 2D cut of Fig. 13a, clearly shows differences in the
range of gate and latency overhead for different clusters.
For instance, clusters 3 and 4 have almost constant circuit
latency overhead, on average lower than for other clusters,

whereas circuits in cluster 0 have low and similar gate
overhead. Gate overhead values of cluster 2 scale linearly
with latency overhead.

5.2 Quantum chip topology as one rationale
behind results

To further look into the reasoning behind the relation

between quantum circuit parameters and mapping perfor-
mance metrics, we first into the device topology. Thus, we

@ Springer
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map the same groups of circuits on two additional quan- (i1) The impact of structural parameters on the results

tum platforms: the IBM Rochester and Aspen-16 quan-
tum devices (Fig. 8). The outcomes are shown in Figs. 14
and 15. Figure 15 showcases detailed information on how
much each structural parameter influences the three map-
ping performance metrics: gate overhead, latency overhead,
and fidelity decrease for all three device configurations. In
Fig. 19 (see Appendix), additional details can be found.
From the figures, we can derive the following:

(i) Different groups of benchmarks based on their ori-

gin and structure perform differently when executed
on different device topologies. The main value of
the figures comes from the fact that we can clearly
choose a preferred quantum processor topology for
each of the benchmark groups (e.g., Surface-97 is
preferred for arithmetic reversible circuits, whereas
IBM Rochester might be chosen for random ones, as
shown in Figs. 9 and 14).

@ Springer

varies depending on the topology. For example,
in the case of the two new topologies, the number
of qubits was not as strongly correlated with gate
overhead, whereas the degree of the graph played
a more significant role. The correlation matrix
shown in Fig. 15 highlights that certain parameters
are more relevant for specific quantum devices.
For the IBM Rochester device, the most important
parameter for gate overhead is the two-qubit gate
percentage, whereas for Aspen-16 is the maximal
degree. The most important parameters for fidelity
decrease of both devices are the maximal and
minimal degree of the qubit interaction graph, the
number of qubits and gates, and the two-qubit gate
percentage. In contrast, for the Surface-97 device,
the most important parameters for gate overhead
are the number of qubits and the two-qubit gate
percentage, while the most important parameters
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Fig. 14 Results of the circuit compilation when mapping different quantum circuits (Random, QUEKO, Reversible arithmetic circuits—RevLib,
Quantum-algorithm based circuits) to the IBM Rochester (a) and Aspen-16 (b) device topologies using the MinExtend mapper
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Fig. 15 Correlation matrices showing correlations of mapping performance metrics (gate overhead, latency overhead, fidelity decrease) with
extracted metrics of the circuit for the three device configurations: Surface-97, IBM Rochester, and Rigetti Aspen 16-q (top-down)

for fidelity decrease are the number of qubits and
the maximal degree of the qubit interaction graph.
Latency overhead does not appear to be related to
these structural parameters, so we will investigate
this metric further in future work with other
parameters. These observations suggest that

Interaction graph parameters are more relevant for
the mapping outcomes of Aspen-16 and IBM Roch-
ester devices than for Surface-97. We can see that the
majority of structural parameters are highly correlated
with the circuit fidelity decrease. The main reasoning
behind this is that these processors have much less con-
nected coupling graphs; in other words, the sparser the
coupling graph, the strongest the correlation with the
interaction graph parameters. In our case, Aspen-16
has the most restricted coupling graph connectivity,
and consequently, its mapping metrics have the highest
correlation with interaction graph properties.

Two-qubit gate percentage, as expected, shows a
very high correlation with the gate overhead metric
regardless of the device. Other size-related param-
eters (number of qubits and gates) are highly corre-
lated with the fidelity decrease of Aspen-16 and IBM
Rochester devices due to again limited connectivity of
their coupling graphs as well as smaller device size.
On the other hand, the number of qubits only cor-
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relates with the gate overhead of Surface-97, which
can be attributed to the fact it is a much larger device
where we could run much bigger and more complex
circuits that would then lead to inevitably long routing
paths between at least some of the qubits.

(iii) The two new topologies used for these experiments
have quite similar structures (just in different scales of
qubit range), and consequently, experiments showcased
similar patterns. In future work, we plan to expand our
analysis by including additional device topologies.

(iv) In cases where there is no correlation between
interaction graph parameters and certain results (such
as latency overhead and minimal degree), it suggests
that other structural parameters may have played a
more significant role. In our future work, we plan
to investigate additional parameters such as gate-
dependency critical paths and parallelism, which are
discussed in Section 6. Similar findings were also
observed in a previous study (Tomesh et al. 2022),
demonstrating differences between topologies.

To further investigate the benchmark cluster-device rela-
tionship, we continued by observing the circuits belonging to
the same clusters. We noticed that (Fig. 16) cluster O consists
of sparse, low-degree graphs and mostly RevLib circuits; clus-
ter 1 is composed of circuits of a very large standard deviation
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Fig. 16 Qubit interaction graphs for circuits belonging to cluster O (a) and to cluster 3 (b)

of weight distribution; cluster 2 includes grid-like-shaped
circuits with mostly QUEKO benchmarks; cluster 3 has the
densest graphs with highest node degree, mostly consisting of
randomly generated circuits; and finally, cluster 4 contains cir-
cuits with large average shortest path, mostly QUEKO circuits
based on some existing algorithms (UCLA 2020).

As expected, the sparse graphs of low node degree in
cluster 0, which are easier to map to the 2D-grid-resem-
bling qubit topology, required the lowest amount of addi-
tional SWAPs, but due to specific, algorithm-based structure
could not be well optimized in terms of depth (more difficult
to parallelize operations). Cluster O is the only cluster with
circuits whose fidelity did not drop 100%

On the other hand, the 2D-grid qubit topology, which is
the most common state-of-the-art for quantum chips, could
not handle well the dense graphs belonging to cluster 3, most
of which are random circuits. However, they did perform
fine in terms of their latency. What is also interesting, based
on these outcomes, is that having, for instance, high average
shortest path (like circuits in cluster 4) leads to low latency
overhead—as explained in Section 1, which means that
the circuit depth was not extended so much. That was as
expected, considering that it means that those circuits are
much less connected and easier to parallelize.

Furthermore, we have also analyzed the relationship
between different circuit clusters and the mapping perfor-
mance metrics for the experiments performed with the lat-
ter two quantum devices, the 53q Rochester and the 16q
Aspen processor (see Fig. 17). This time, we clearly see
different outcomes. For instance, cluster O is not anymore
outperforming the others in terms of gate overhead—cluster
4 shows the lowest gate overhead of ~ 12%; cluster 3 fluctu-
ates much more in terms of latency—it goes up to ~ 450%
instead of the previous ~ 150%; and cluster 4 is doing way

better in terms of fidelity decrease—~ 90% instead of previ-
ous ~ 100%. This is more evident for the Rochester device
as the number of circuits included is significantly larger. As
16g-Aspen is on a smaller scale (lower number of qubits)
similar to Rochester device in terms of connectivity, we also
notice that they have similarly distributed clusters regarding
mapping metrics. The data points in Fig. 17b could even be
a subset of those in Fig. 17a. This outcome means that other
devices with similar topology and higher numbers of qubits
would still show similar patterns.

We discuss other possible reasoning behind the results in
Future work section.

6 Discussion and future work

In Section 3, we mentioned that for completing the description
of the structure of quantum circuits, in addition to the interac-
tion graph, we also require gate dependency graph properties.
Gate dependency graphs can give insight into how a circuit
evolves in time. The critical path within the graph is the most
relevant property as it is related to the parallelization degree
of the gates, which directly influences the circuit depth. This
would also help to explore the oracles or other patterns and
repetitions within the circuit. In addition to gate dependency
graphs, properties like the amount of parallelism in the circuit
(gate density), measurement, and idle gates are influencing the
success rate of the circuit a lot (Tomesh et al. 2022).

In addition to this, we must not underestimate the role of the
mapping technique in these outcomes. For example, including
features like look-ahead/back approaches or optimal initial qubit
placement would probably have a stronger influence in terms of
mapping results when used on circuits with already predefined,
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Fig. 17 Quantum circuit mapping metrics vs. clusters of quantum circuits when targeting IBM Rochester (a) and Aspen-16 (b) topologies

steady, and repetitive structures. To verify this assumption, we
plan to compare the performance of quantum circuits when
using different types of mappers and optimization properties
to investigate the mapper-circuit relationship in contrast to the
device-circuit relationship demonstrated in this paper. That
could then lead to providing guidelines for designing and opti-
mizing algorithm-aware mapping techniques. To this purpose,
structured design space exploration methodologies can be used
as pointed out in Bandic et al. (2020).

To conclude, in our future work, we would like to explore
further (i) other structural parameters of quantum circuits
based on gate dependency graphs such as critical path, the den-
sity of gates per layer, and the amount of measurement and idle
gates. With this, we will ensure to encapsulate all structural
perspectives of quantum circuits when performing benchmark
clustering and profiling; (ii) how these observed patterns (with
current parameters and additional ones) can help us to predict
the mapping performance of new circuit samples assigned to
our clusters, without actually running them on the device; (iii)
how exactly the interaction graph and coupling graph similar-
ity relate to the mapping result; and (iv) investigate a relation-
ship between interaction graphs and gate dependencies with
the chosen mapping technique and to which extend that affects
the circuit mapping performance on-chip. For this, we will
include more compiling options when performing compari-
sons. This insight into a circuit structure could help us compare
and improve currently existing mapping techniques and enable
us to have algorithm-driven mappers and quantum devices.

@ Springer
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7 Conclusion

Current quantum devices are still bounded by size and
noise and can only handle small and simple quantum
algorithms. To execute quantum algorithms, expressed
as quantum circuits, on these error-prone and resource-
constrained devices, they need to be adapted to overcome
those limitations and therefore prevent additional errors.
That process is referred to as the mapping of quantum
circuits and represents a complex optimization problem that
is dependent on both, processor and algorithm properties.
In addition to hardware properties, in this paper, we have
analyzed how the structure of quantum circuits affects their
mapping performance. Our selected quantum circuits were
characterized in terms of not only standard parameters, such
as the number of qubits and gates and percentage of 2-qubit
gates, but also in terms of their interaction graph (i.e., graph
theory-based) parameters that include average shortest path,
minimal and maximal node degree, and standard deviation
of the edge-weight distribution. Our results show a strong
correlation between these parameters and circuit mapping
metrics: gate overhead, latency overhead, and fidelity
decrease increased with the increase in all the chosen
parameters. The effect of these parameters varies across
different devices and metrics. For example, the degree
parameter has a larger impact on fidelity decrease for the
IBM Rochester device than for the Surface-97 device. From
these findings, we can identify the preferred devices for an
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algorithm with specific individual metrics. Furthermore,
after clustering the circuits based on mentioned parameters,
we found patterns in mapping performance (in terms of the
three mentioned metrics) of the circuits belonging to the
same cluster, when mapped using the same technique on the
same device. For instance, clusters with simpler, low node-
degree graphs showed better performance when targeting a
2D-grid topology regarding gate overhead, whereas clus-
ters consisting of complex and dense circuits outperformed
others in latency. On the other hand, different performance
results were noted when running the same groups of circuits
on two other less-connected devices: size parameters like
the number of qubits were far less relevant, and synthetic
circuits outperformed real ones (which was not the case for
Surface-97), and finally, the correlation between clusters of
benchmarks and mapping results was unlike to the previ-
ously obtained ones. It was also shown that the way circuits
were created is very related to their structure and impacts
the results (e.g., if they were uniformly randomly generated
circuits), as those circuits were in most cases grouped in
the same clusters. Finally, we could see how the clusters
scale with different mapping metrics. For instance, in one
of the clusters, gate overhead scales linearly with latency
overhead; in another, gate overhead is constantly within a
specific range regardless of the increase in latency.

The proposed method and current findings will help to
enhance circuit mapping techniques by including informa-
tion about the structure of the circuit as well as to have a

Appendix 1
1.0
0.8
0.6
0.4
N | l “
ZLLWWE‘W“?‘WF NN IFLII ccff"l‘?"
"‘>§Q:6 g>>> W -tvgzg._ >§E ggW‘
255 ; m:,—iﬁzcg B % S, obdas £o0 %»’ggmag'ﬁ%gﬁ
RS, BB Ees BT ol
g‘? a UU D E & g ° v > g
2 9¥s £ 2 03
. 3 33 = & o
U & v
g £ 5
]
a)

I Fidelity before
EEm Fidelity after

deeper understanding on the disparity of the observed out-
comes when executing different quantum algorithms. In
addition, structural parameters of circuits could be used to
predict their fidelity decrease and gate and latency over-
head for some specific processor and compilation technique
without running them on actual devices. This could help
to analyze and perform a design space exploration as well
as codesign of current compilers, quantum processors, and
quantum applications. Ultimately, this process contributes
to the development of application-specific quantum systems,
where algorithms will be run with higher performances.

Quantum circuits are also used as benchmarks for evaluat-
ing mapping and quantum processors. However, the quan-
tum community still does not agree on one benchmark set
used, which resulted in an overwhelming amount of sources
of quantum circuits. In this work, we have created a soon-
to-be open-sourced easy-to-use benchmark collection having
benchmarks from various sources cataloged in folders based
on how they are implemented (e.g., based on a real algorithm,
random, application-based), the language they are written in,
and their size. The set also contains various scripts for trans-
lating circuits from one language to another, circuit interaction
graphs, and profiling results, as described in this paper. We
hope this collection will be useful for testing new quantum
processors, updated regularly by the research community to
keep up with the new technologies, compilers, programming
languages, and most importantly applications, and eliminate
the over-the-top amount of benchmark sources.
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Fig. 18 Fidelity decrease for real circuits (a) and synthetically generated ones (b). In this figure, we included only the benchmarks whose fidelity

was higher than 10% to begin with
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