
VidCNN
Learning Blind Video Denoising

by

Michele Claus
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thursday August 30, 2018 at 1:00 PM.

Student number: 4754751
Project duration: February 5, 2018 – August 29, 2018
Thesis committee: Dr. Marcel J.T. Reinders, EEMCS-Interactive Intelligence, TU Delft

Dr. Jan van Gemert, EEMCS-Interactive Intelligence, TU Delft
Dr. Cynthia Liem, EEMCS-Interactive Intelligence, TU Delft
Dr. Ildiko Suveg, Bosch Security Systems, Eindhoven
Mr. Chengqiu Zhang, Bosch Security Systems, Eindhoven

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Contents

Scientific Article 2

1 Introduction 2

2 Related Work 3
2.1 Background . 3
2.2 CNNs for Image Denoising . 3
2.3 Video and Deep Neural Networks . 4
2.4 Real World Datasets . 4

3 Proposed Method 4
3.1 Spatial Denoising CNN . 5

3.1.1 Real Noise Model . 5
3.2 Temporal Denoising CNN . 6

4 Experiments 6
4.1 Low-Light Dataset Creation . 6
4.2 Spatial CNN Training . 6
4.3 Image Denoising Benchmarks . 7
4.4 Temporal CNN Training . 7
4.5 Exp 1: Evaluating the Optimal Video Denoising CNN Architecture 8

4.5.1 Q1: Is Temp3-CNN able to learn both temporal and spatial denoising? 8
4.5.2 Q2: In which order performing spatial and temporal denoising? 8
4.5.3 Q3: How many frames do we have to consider? . 8

4.6 Exp 2: Evaluating Sensitivity to Temporal Inconsistency . 9
4.6.1 Visualization of temporal filters . 9

4.7 Exp 3: Evaluating Performance on Gaussian Video Denoising 10
4.8 Exp 3: Evaluating Performance on Low-Light Video Denoising 11

5 Discussion 12
5.1 Summary . 12
5.2 Limitations and Future Works . 12

References 12

Supplementary Material 15

1 Background on Convolutional Neural Networks 15
1.1 Multi Dimensional Discrete Convolution . 15
1.2 Training Process . 15

1.2.1 Gradient Descent . 15
1.2.2 Tensorflow Autodiff . 16
1.2.3 The Backpropagation Process . 16
1.2.4 Vanishing and Exploding Gradient Problems . 16
1.2.5 Batch Normalization . 17

1.3 Learning the Parameters . 17
1.3.1 Padding and Stride . 17

1.4 Activation Function . 17
1.4.1 ReLU . 18
1.4.2 Leaky ReLU . 18

2 Supplementary Results 19
2.1 Hardware Details . 19
2.2 Spatial-CNN: comparison results with ReLU and LeakyReLU 19
2.3 Temp3-CNN: comparison results with BN and without . 20

3 Low-Light Test Sequences 21

References 23

Acronyms
ADC Analog to Digital Converter.

AWGN Additive White Gaussian Noise.

BN Batch Normalization.

BSD Berkeley Segmentation Dataset.

CNN Convolutional Neural Network.

DND Darmstadt Noise Dataset.

HD High Definition.

LSE Least Squares Error.

MRF Markov Random Field.

NN Neural Network.

NSS Non-local Self Similarity.

PSN Photon Shot Noise.

PSNR Peak Signal to Noise Ratio.

ReLU Rectified Linear Unit.

RNN Recurrent Neural Network.

SSIM Structural Similarity.

UHD Ultra High Definition.

1

VidCNN - Learning Blind Video Denoising

Michele Claus
TU Delft - EEMCS

Mekelweg 4, Delft, The Netherlands
claus.michele@hotmail.it

Abstract

We propose a novel Convolutional Neural Network
(CNN) for Video Denoising called VidCNN, which is capa-
ble to denoise videos without prior knowledge on the noise
distribution (Blind). VidCNN is a flexible model, since it
tackles multiple noise types, artificial and real. The CNN
architecture uses a combination of spatial and temporal fil-
tering, which learns how to spatially denoise the frames
first and how to combine their temporal information, han-
dling camera and objects motion, brightness changes, low-
light conditions and temporal inconsistencies at the same
time. We demonstrate the importance of the data used for
CNNs training, creating for this purpose a specific dataset
for low-light conditions. We test VidCNN on videos com-
monly used for benchmarking and on self-collected data,
achieving good results comparable with the state-of-the-art
in video denoising. Our model can be easily adapted to
different noise models, keeping the same temporal denois-
ing network, maintaining performance in terms of accuracy
and speed.

1. Introduction
Image and video denoising are classical computer vision

tasks, which aim to obtain the original signal X from the
available noisy observations Y . Noise can influence greatly
not only the perceived visual quality, but also segmentation
tasks [1] and compression algorithms [2]. Thus, denoising
is an important step for subsequent processes. With X as
the original signal, N as the noise and Y as the available
noisy observation, the noise degradation model can be
described as Y = X + N , for an additive type of noise,
or as Y = H(X) + N , if the noise model is signal de-
pendent, with H as the degradation function. In low-light
conditions occurs typically signal dependent noise, which
is more visible in dark regions than bright areas. Noise is
present in all imaging system due to thermal effects, sensor
imperfections and low-light conditions.

Figure 1: The VidCNN approach to Video Denoising: com-
bining two similar networks performing first Single Frame
Spatial Denoising and subsequently Temporal Denoising
over a window of three frames, all in a single feed-forward
process.

Currently, when developing new cameras in order to ap-
ply spatial and temporal filtering, the tuning of multiple fil-
ters parameters is required for each gain level. This phase
takes time and effort, but is fundamental to get the best re-
sult in terms of quality and bandwidth usage. Therefore, in
this paper, we focus on automating the denoising procedure
with a Convolutional Neural Network for flexible and effi-
cient video denoising, capable to blindly remove artificial
and real noise.
Having a noise removal algorithm working in ”blind” con-
ditions is essential, since in a real-world scenario, color and
light conditions can change suddenly, producing a different
noise distribution for each frame.
Nowadays, we can distinguish between two main types of
denoising algorithms: based on statistics or based on (deep)
learning. Statistical models include the algorithms model-
ing the image priors for denoising purposes: various mathe-
matical approaches have been used, including Markov Ran-
dom Field models [3], gradient models [4], sparse models
[5] and Nonlocal Self-Similarity (NSS). The latter is cur-
rently used in state-of-the-art techniques such as BM3D [6],

2

LSSC [7], NCSR [8] and WNNM [9]. Even though they
achieve respectable denoising performance, most of those
algorithms have some drawbacks. Firstly, they are generally
designed to tackle specific noise models and levels, limiting
their usage in blind denoising. Secondly, they include many
handcrafted parameters and complex optimization proce-
dures. Instead, Convolutional Neural Networks are able to
mimic complex procedures as denoising in a feed-forward
process, learning the parameters in the training phase.
On one hand, a lot of work has been done in the image de-
noising field. On the other hand, few algorithms have been
specifically designed for videos. Typically, video frames are
strongly correlated, and the information redundancy is the
key assumption for video denoising algorithms. The most
basic video denoising technique consists in taking the tem-
poral average over various subsequent frames. Even though
it works for steady scenes, it blurs motion parts generating
artifacts.
VBM4D [10], from the same authors of BM3D [6], is con-
sidered the current state-of-the-art in video denoising. The
main difference from the image version consist of the search
of similar patches, not only in spatial but also in temporal
domain. However, searching for similar patches in more
frames drastically increases the processing time.
We propose a convolutional neural network for blind video
denoising (VidCNN), capable to denoise videos with syn-
thetic or real noise without prior knowledge over the noise
model and the video content. For comparison purpose, ex-
periments have been run on publicly available and on self
captured videos, which will also publicly released at the
project web page 1.
The main contributions of our work are:

• We created a novel CNN architecture capable to blind
denoise videos, combining spatial and temporal in-
formation of multiple frames with one single feed-
forward process.

• We demonstrate the flexibility of VidCNN, testing it
on Additive White Gaussian Noise (AWGN) and real
data in low-light conditions.

• We further show that VidCNN can handle motion in
challenging situations, detecting temporal inconsisten-
cies and using only the correct information to improve
the final outcome.

• We created a low-light dataset for a specific Bosch
security camera, with sample pairs of noise free and
noisy images, using a simple yet efficient technique to
get clean raw data.

1Project web page: https://github.com/clausmichele/
VidCNN---Learning-Blind-Video-Denoising

2. Related Work

2.1. Background

A great step forward in the Computer Vision world
has been achieved with Convolutional Neural Networks
(CNNs). CNNs are inspired by the organization of the an-
imal visual cortex: single neurons respond to stimuli only
in a limited region of the visual field known as Receptive
Field. The application to the image and video denoising
fields are recent but based on the same concepts.

2.2. CNNs for Image Denoising

The first work on image denoising using CNNs is from
Jain and Seung [11] published in 2008. From that date on-
wards, there have been enormous improvements of the pro-
posed method and architecture, thanks to newly available
hardware with more computational power and high qual-
ity datasets recently released. In 2012, Burger et al. [12]
showed how even a simple Multi Layer Perceptron can ob-
tain comparable results with BM3D [6], even though a huge
dataset was required for training [13]. Recently, in 2016,
Zhang et al. [14] used residual learning and Batch Normal-
ization [15] for image denoising in their DnCNN architec-
ture. With its simple yet effective architecture, it has shown
to be flexible for tasks as blind Gaussian denoising, JPEG
deblocking and image inpainting. The same research group
of DnCNN released in 2017 a new CNN based image de-
noiser called FFDNet [16], which compared to the previ-
ous can handle an extended range of noise levels and has
the ability to remove spatially variant noise, i.e. images
containing parts with different amounts of Gaussian noise.
However, it does not additionally tackle JPEG deblocking
and image inpainting at the same time as DnCNN does.
Ulyanov et al. [17] showed how, with their Deep Prior, they
can enhance a given image with no prior training data other
than the image itself, which can be seen as a ”blind” denois-
ing. There have been also some works on CNNs directly
inspired by BM3D such as [18, 19]. In [20], Ying et al.
propose a deep persistent memory network called MemNet
that obtains valid results, introducing a memory block, mo-
tivated by the fact that human thoughts are persistent. How-
ever, the network structure remains complex and not easily
reproducible. A recent CNN architecture consisting in an
encoder-decoder with skipping connections, the U-Net, has
been successfully used for image denoising in the work of
Xiao-Jiao et al. [21] and in the most recent work on im-
age denoising of Guo et al. [22] called CBDNet. With their
novel approach, CBDNet reaches extraordinarily results in
real world blind image denoising. NVIDIA, in cooperation
with the Aalto University, recently proposed an innovative
CNN model for blind image denoising. Their Noise2Noise
[23], based on the encoder-decoder structure, obtains al-
most the same result using only noisy images for training,

3

https://github.com/clausmichele/VidCNN---Learning-Blind-Video-Denoising
https://github.com/clausmichele/VidCNN---Learning-Blind-Video-Denoising

Figure 2: The architecture of the proposed VidCNN network. Every frame will go through a spatial denoising CNN. The
temporal CNN takes as input three spatially denoised frames and outputs the final estimate of the central frame. Both CNNs
estimate first the noise residual, i.e. the unwanted values noise adds to an image, and then subtracts them from the noisy
input (⊕ means addition of the two signals, and ”-” the negation). VidCNN is composed only by Convolutional Layers. The
number of feature maps is written at the bottom of each layer.

instead of clean-noisy pairs. Even though this could be par-
ticularly useful for cases where the ground truth is not avail-
able, such as low-light conditions, there is no explicit test on
this noise type. All these new methods show how much the
image denoising field has advanced during only ten years
thanks to neural networks. However, our goal is video de-
noising, which adds other constraints to the process.

2.3. Video and Deep Neural Networks

Video denoising using deep learning is still an under-
explored research area. The seminal work of Xinyuan et
al. [24], is currently the only one using neural networks
(Recurrent Neural Networks in this case) to address video
denoising. Even though neural networks have great gen-
eralization capabilities, their algorithm works only on gray
level videos with Additive White Gaussian Noise (AWGN)
and did not achieve state-of-art results. Here we present a
method addressing color video denoising, with comparable
results to the state-of-art. Similar tasks have been addressed
using CNNs, such as Video Frame Enhancement, Interpola-
tion, Deblurring and Super-Resolution. The key component
in all those applications is how to handle motion and tem-
poral changes. For frame interpolation, Niklaus et al. [25]
use a pre-computed optical flow to feed motion informa-
tion to a frame interpolation CNN. Meyer et al. [26] use
instead phase based features to describe motion. Caballero
et al. [27] developed a network which estimate the mo-
tion by itself for video super resolution. Similarly, in Multi
Frame Quality Enhancement (MFQE), Yang et al. [28] use
a Motion Compensation Network and a Quality Enhance-
ment Network, considering three non-consecutive frames
for H265 compressed videos. Specifically for video deblur-
ring, Su et al. [29] developed a network called DeBlurNet:

a U-Net CNN which takes three frames stacked together as
input. Similarly, we also use three stacked frames in our
VidCNN. Additionally, we have also investigated the use of
different frame numbers and present the comparison results.

2.4. Real World Datasets

An image or video denoising algorithm, has to be
effective on real world data to be successful. However,
it is hard to obtain the ground truth for real pictures,
since perfect sensors and channels do not exist. In 2014,
Anaya and Barbu, created a dataset for low-light conditions
called RENOIR [30]: they use different exposure times
and ISO levels to get noisy and clean images of the same
static scene. Similarly, in 2017, Plotz and Roth created
a dataset called DND [31]. In this case, only the noisy
samples have been released, whereas the noise free ones
are kept undisclosed for benchmarking purposes. Recently,
two other related papers have been published. The first,
written by Abdelhamed et al. [32] concerns the creation
of a smartphone image dataset of noisy and clean images,
which at the time of writing is not yet publicly available.
The second, written by Chen et al. [33], presents a new
CNN based algorithm capable to enhance the quality of
low-light raw images. They created a dedicated dataset of
two camera types similarly to [30].

3. Proposed Method
In this section, we present and describe the proposed

blind video denoising CNN architecture VidCNN. It is com-
posed by two main subnetworks: spatial and temporal de-
noising CNN.

4

(a) Noisy frame
(18.54/0.5225)

(b) CBM3D[34]
(29.26/0.9194)

(c) DnCNN-B[14]
(28.72/0.9355)

(d) CBDNet[22]
(28.48/0.9161)

(e) Our result
(30.37/0.9361)

Figure 3: Comparison of blind spatial denoising of an image from the CBSD68 dataset corrupted with 2, with Ag=64 and
Dg=4. AWGN based method as CBM3D and DnCNN does not achieve optimal result. The first blurs excessively the image.
CBDNet generates many artifacts. Using the proper noise model for training leads to a better result. (PSNR [dB]/SSIM)

3.1. Spatial Denoising CNN

We started following [14], which showed great flexibility
tackling multiple degradation types at the same time, and
experimented with the same architecture for blind spatial
denoising. It is shown, that this architecture can achieve
state-of-art results for Gaussian denoising. We found out
that using a first layer of depth 128 helps when the network
has to handle different noise models a the same time. So, the
principal difference is the first convolutional layer, which
has 128 feature maps instead of 64. The network depth is
set to 20 and Batch Normalization (BN) [15] is used. The
activation function is ReLU (Rectified Linear Unit). We
also investigated the use of Leaky ReLU as activation func-
tion, which can be more effective [35], without improve-
ment over ReLU. Comparison results are provided in the
supplementary material. Our Spatial-CNN uses Residual
Learning, which has been firstly introduced in [14] to tackle
image denoising. Instead of forcing the network to output
directly the denoised frame, the residual architecture pre-
dicts the residual image, which consist in the difference be-
tween the original clean image and the noisy observation.
The loss function is the L2-norm in equation 1, also known
as least squares error (LSE). It is the sum of the square of
the differences S between the target value Y and the esti-
mated values Yest. In this case the difference S represents
the noise residual image estimated by the Spatial-CNN.

L =
∑
x

∑
y

(
Y (x, y)− Yest(x, y)︸ ︷︷ ︸

Noise Residual

)2
(1)

3.1.1 Real Noise Model

The denoising performance of a spatial denoising CNN de-
pends greatly on the data used for training. Real noise dis-
tribution differs from Gaussian, since it is not purely addi-

tive but it contains a signal dependent part. For this rea-
son, CNN models trained only on Additive White Gaus-
sian Noise (AWGN) fail to denoise real world images [22].
Our goal is to achieve a good balance between performance
and flexibility, using the same trained network for multi-
ple noise models. As shown in Table 1, our Spatial-CNN
can handle blind gaussian denoising: we will further in-
vestigate its generalization capabilities, introducing a signal
dependent noise model. This specific noise model, in equa-
tion 2, is composed by two main contributions, the Pho-
ton Shot Noise (PSN) and the Read Noise. The PSN is the
main noise source in low-light condition, where Nsat ac-
counts the saturation number of electrons. The Read Noise
is mainly due to the quantization process in the Analog to
Digital Converter (ADC), used to transform the analog light
signal into a digital image. CT1n represents the normal-
ized value of the noise contribution due to the Analog Gain,
whereas CT2n represents the additive normalized part.

M =

√√√√√Ag ∗Dg
Nsat ∗ s︸ ︷︷ ︸

PSN

+Dg2 ∗ (Ag ∗ CT1n + CT2n)
2︸ ︷︷ ︸

Read Noise

(2)

NoisyImage = s+N (0, 1) ∗M(s) (3)

Equation 2 represent the real noise model, where the rele-
vant terms for the considered Sony sensor are: Ag (Analog
Gain), in range [0,64], Dg (Digital Gain), in range [0,32]
and s, the image that will be degraded. The remaining
values are CT1n=1.25−4, CT2n=1.11−4 and Nsat=7489.
The noisy image is generated multiplying observations of
a normal distribution N (0, 1) with the same shape of the
reference image s, with the Noise Model M in equation
3. In Figure 3 we can appreciate how algorithms based on
AWGN such as CBM3D and DnCNN do not achieve an op-
timal result on a different noise model. The first, in its blind
version, i.e. with the supposed AWGN standard deviation

5

σ set to 50, over-smooths the image, getting a low SSIM
(Structural Similarity, the higher the better) score, whereas
DnCNN preserves more structure. The recent CBDNet,
scores lower than the others in this scenario. Our result
shows that, to get the best denoising results, a proper train-
ing dataset with the correct noise model is necessary.

3.2. Temporal Denoising CNN

The temporal denoising part of VidCNN is similar in
structure to the spatial one, having the same number of lay-
ers and feature maps. However, in this case we will consider
three frames stacked together as input.
We consider only three frames for several reasons:
• Other works in the literature considered three frames

[27, 28, 29] for similar applications.
• We want to keep the network as efficient as possible,

lowering the needed memory and computational re-
sources.
• Empirical results show that considering more frames,

i.e. five, does not guarantee a better result.
Considering a frame with dimensions w×h×c, the new in-
put will have dimension of w×h×3c. The neural network
will learn how to combine the previous and the follow-
ing frame to enhance the quality of the current one, taking
care of temporal inconsistencies. As the Spatial-CNN, even
this one uses Residual Learning and will estimate the noise
residual image of the central input frame, combining the in-
formation of three subsequent frames. With our work we
show that residual learning is an efficient solution not only
for image denoising, but also for video denoising.

4. Experiments
4.1. Low-Light Dataset Creation

A dataset for image denoising consist in pairs of clean
and noisy images. For low-light conditions, creating cou-
ples of noisy and noise-free images is more challenging and
the publicly available data is scarce. We used the Renoir
Dataset [30] and additionally our self-collected dataset. Jo-
sue Anaya and Adrian Barbu [30] propose to use two dif-
ferent ISO values and exposure times to get reference and
distorted images. However, many camera settings and pa-
rameters are involved in this process. We wanted to use a
simpler process: grabbing many noisy images of the same
scene and then simply averaging to get an estimated ground
truth. We used a Bosch Autodome IP 5000 IR, a security
camera capable to record raw images, i.e. without any type
of processing. The setting involved a static scene and a light
source with color temperature 3460K, which has variable
intensity between 0 and 255. We varied the light intensity
in 12 steps, from the lowest acceptable light condition of
value 46, below of which the camera showed noise only, up
to the maximum with value 255. For every different light

intensity, we recorded 200 raw images in a row. This pro-
cess, even if simple and effective for our purpose, requires
much disk space and is time consuming.
Additionally, we recorded six video sequences in differ-
ent light conditions, consisting in three or four frames with
moving objects or light changes: for each frame we had to
record 200 images, which results in a total of 4200 images.
To show VidCNN performance, we could just record one
image per frame. However, we needed a reference ground
truth for comparison with other denoising algorithms.

(a) Low-light Noisy Image (b) Reference Ground Truth

Figure 4: Sample detail of noisy-clean image pairs of our
own low-light dataset, collected with a Bosch Autodome IP
5000 IR security camera. The ground truth is obtained aver-
aging 200 raw images collected in the same light conditions.

4.2. Spatial CNN Training

The training phase of VidCNN is divided in two main
parts: firstly, we train the spatial denoising CNN and later,
when we achieve a satisfying result with a steady loss func-
tion, we train the temporal denoising CNN. Our ideal model
has to tackle multiple degradation types at the same time,
such as AWGN and real noise model (as in equation 3)
including low-light conditions. During the training phase,
our neural network will learn how to estimate the resid-
ual noise content of the input noisy image, using the clean
one as reference. Therefore, we require couples of clean
and noisy images. which are easily created for AWGN and
the real noise model in equation 3. For those two degra-
dation types we use the Waterloo Exploration Dataset [36],
containing 4744 pristine images divided in seven different
categories: Human, Animal, Plant, Landscape, Cityscape,
Still-life and Transportation. The amount of available im-
ages helps greatly to generalize and allows us to keep a
good part of it for testing. The dataset is randomly divided
in two parts, 70% for training and 30% for testing. Half
of the images are being added with AWGN with σ=[0,55].
The second half are processed with equation 3, the realistic
noise model, with Analog Gain Ag=[0,64] and Digital Gain
Dg=[0,32].
The network will be trained with 50x50x3 patches follow-

6

ing [14]. We obtained 120000 patches from the Waterloo
training set, containing AWGN and real noise type, using
data augmentation such as rotating, flipping and mirroring.
For low-light conditions, we used five noisy images for each
light level from our own training dataset, obtaining 60 pairs
of noisy-clean images for training. The patches extracted
are 80000. From the Renoir dataset, we used the subset T3
and randomly cropped 40000 patches. For low-light testing,
we will use 5 images from our camera of a different scene,
not present in the training set, and part of the Renoir T3 set.
We trained our network with 100 epochs, using a batch of
128 and Adam Optimizer [37] with a learning rate of 10−3

for the first 20 epochs and 10−4 for the latest 80.

4.3. Image Denoising Benchmarks

We performed two types of benchmarking tests on our
trained Spatial-CNN. Firstly, we compared Blind Gaussian
Denoising with the original implementation of DnCNN, on
which ours is based. From our test in Table 1 on the BSD68
test set, we notice how the result of our blind model and the
one proposed by the paper [14] are comparable.

σ = 5 σ = 10 σ = 15 σ = 25 σ = 35 σ = 50

Spatial-CNN* 39.73 35.92 33.66 30.99 29.34 27.63
DnCNN-B* [14] 39.79 35.87 33.57 30.69 28.74 26.53
DnCNN-B [14] 40.62 36.14 33.88 31.22 29.57 27.91

Table 1: Comparison of Blind Gaussian Denoising on the
CBSD68 dataset. Our modified version of DnCNN for
spatial denoising has comparable results with the original
one. The values represent PSNR[dB], the higher the better.
DnCNN results obtained with the provided Matlab imple-
mentation [38]. CBSD68 available here [39]. *Noisy images
clipped in range [0,255].

Secondly, to understand the effectiveness of our train-
ing set on real-world images, we denoised the sRGB DND
dataset [31] and submitted for evaluation. The result [40] is
encouraging, since our trained model (called 128-DnCNN
Tensorflow in the DND webpage) scored an average of
37.0343dB for the PSNR and 0.9324 for the SSIM, plac-
ing it in the first 10 positions. Interestingly, the authors of
DnCNN submitted their result of a fine-tuned model, called
DnCNN+, a week later, achieving the overall highest score
for SSIM, which further confirms its flexibility.

4.4. Temporal CNN Training

Here we are describing the training process of the
Temp3-CNN, which is the temporal denoising network con-
sidering three subsequent frames.
If previously we needed pairs of clean and noisy images,
now we need pairs of videos. For artificially added noise as
Additive White Gaussian Noise (AWGN) or the real noise

PSNR [dB] SSIM

Spatial-CNN 37.0343 0.9324
CBDNet [22] 38.0564 0.9421
DnCNN+ [14] 37.9018 0.943
FFDNet+ [16] 37.6107 0.9415
BM3D [34] 34.51 0.8507

Table 2: Results of the DND benchmark [31] on real-world
noisy images. It shows that our dataset, containing differ-
ent noise models, is valid for real-world image denoising,
placing our Spatial-CNN in the top 10 for sRGB denoising.

model in equation 3, is easy to create such couples. How-
ever, for real-world and low-light conditions videos is al-
most impossible. For this reason, this kind of video dataset,
offering pairs of noisy and noise-free sequences, are not
available. Therefore, we decided to proceed according to
this sequence:

1. We selected 31 publicly available videos from [41].
2. We divided the videos in sequences of three frames

each.
3. Every sequence was added with either Gaussian noise

with σ=[0,55] or real noise 3 with Ag=[0,64] and
Dg=[0,32].

4. All the sequences went through the Spatial-CNN and
the results were stored.

5. Pairs of spatially-denoised and clean sequences will be
used for training.

We followed the same training procedure as the Spatial-
CNN, even though now the network will be trained with
patches of dimension 50× 50× 9, containing three patches
coming from three subsequent frames.
The 31 selected videos contain 8922 frames, which means
2974 sequences of three frames and a final number of
patches of 300032. We ran the training for 60 epochs with
a batch size of 128, Adam optimizer with learning rate of
10−4 and LeakyReLU as activation function. It is shown
LeakyReLU can outperform ReLU [35]. However, we did
not use Leaky Relu in the spatial CNN, because ReLU per-
formed better. We present the comparison result in the sup-
plementary material. In the final version of Temp3-CNN,
Batch Normalization (BN) was not used: experiments show
it slows down the training and denoising process. BN did
not improve the final result in terms of PSNR. Moreover,
denoising without BN requires around 5% less time. On
one hand, BN helps for spatial denoising, because inputs
have a wide range of noise levels in the same batch. On the
other hand, BN is not helpful with this setting for tempo-
ral denoising, because the inputs have less variance, having
been already spatially denoised from the same Spatial-CNN
model. Figure 5 represents the evolution of the L2-loss for
the Temp3-CNN: avoiding the normalization step makes

7

the loss starting immediately at a low value. We trained
the same network with Leaky ReLU, Leaky ReLU+BN and
ReLU+BN and present the comparison results in the sup-
plementary material.

Figure 5: Evolution of the L2-Loss during the training of
the Temp3-CNN. Batch Normalization (BN) does not help,
adding a computation overhead without any improvement
over the final result. With Leaky ReLU as activation func-
tion and with no BN, the loss starts immediately around 1
and decreases to 0.5 after 60 epochs. Denoising without
BN takes around 5% less time. We show only the first 1800
steps for a better visualization.

4.5. Exp 1: Evaluating the Optimal Video Denoising
CNN Architecture

The final proposed version of VidCNN consists in two
CNNs in a pipeline, performing first spatial and then tempo-
ral denoising. To get the final architecture, we trained Vid-
CNN with different structures and tested it on two famous
benchmarking videos and on one we personally recorded
with a Blackmagic Design URSA Mini 4.6K, capable to
record raw videos. The videos have various levels of Ad-
ditive White Gaussian Noise (AWGN). We will answer to
three critical questions.

4.5.1 Q1: Is Temp3-CNN able to learn both temporal
and spatial denoising?

• Spatial-CNN: image denoising CNN, similar to
DnCNN[14] but with 128 feature maps in the first con-
volutional layer.
• Temp3-CNN: temporal denoising CNN, same archi-

tecture of the spatial one, but with three noisy frames
as input.

We compare the Spatial-CNN with the Temp3-CNN, which
in this case tries to perform spatial and temporal denoising

at the same time.
Answer: referring to Table 3, we notice how using Temp3-
CNN alone leads to a worse result compared to the simpler
Spatial-CNN.

Foreman Tennis Strijp-S *

Res./Frames 288×352 / 300 240×352 / 150 656×1164/787

σ 25 55 25 55 25

Spatial-CNN 32.18 28.27 29.46 26.15 32.73
Temp3-CNN 31.56 27.45 29.32 25.63 31.13

Table 3: Comparison of Spatial-CNN and Temp3-CNN
over videos with different levels of AWGN. The Temp3-
CNN alone can not outperform the Spatial-CNN. Results
expressed in terms of PSNR[dB]. *Self-recorded Raw video
converted to RGB.

4.5.2 Q2: In which order performing spatial and tem-
poral denoising?

Knowing that using Temp3-CNN alone is not enough, we
now have to compare different combination of spatial and
temporal denoising.
Answer: looking at Table 4, we can confirm that using tem-
poral denoising improves the result over spatial denoising,
with the best performing combination as Spatial-CNN fol-
lowed by Temp3-CNN.

Foreman Tennis Strijp-S

Res./Frames 288×352 / 300 240×352 / 150 656×1164/787

σ 25 55 25 55 25

Spatial-CNN 32.18 28.27 29.46 26.15 32.73
Temp3-CNN &

Spatial-CNN 32.09 28.37 29.21 25.98 32.28

Spatial-CNN &
Temp3-CNN 33.12 29.56 30.36 27.18 34.07

Table 4: The combination of Spatial-CNN + Temp3-CNN
is the best performing, showing consistent improvements of
∼ 1dB over the spatial-only denoising. Results expressed
in terms of PSNR[dB].

4.5.3 Q3: How many frames do we have to consider?

We have to investigate how many frames are needed for the
best trade-off between quality and complexity, which in-
creases with every additional frame we consider. We com-
pare now the introduced Temp3-CNN with Temp5-CNN,
which considers a time window of five frames.
Answer: results in Table 5 shows that considering more
frames could improve the result, but this is not guaran-
teed. Therefore, since using a bigger time window means

8

more memory and time needed, we decided to use the three
frames model for a better trade-off. For comparison, us-
ing the Temp5-CNN on the video Foreman took 6.5% more
time than using the Temp3-CNN, 21.17s vs 19.85s on GPU.
The difference does not seem much, but if we would ap-
ply this denoiser to real videos, which are bigger in size
and longer in time, the difference would increase and the
Temp5-CNN could not fit in the memory.

Foreman Tennis Strijp-S

Res./Frames 288×352 / 300 240×352 / 150 656×1164/787

σ 25 55 25 55 25

Spatial-CNN 32.18 28.27 29.46 26.15 32.73
Spatial-CNN &

Temp3-CNN 33.12 29.56 30.36 27.18 34.07

Spatial-CNN &
Temp5-CNN 33.03 29.87 30.72 27.70 33.97

Table 5: Comparison of architectures using 3 or 5 frames.
Using a bigger time window, i.e. five frames, may slightly
improve the final result or even worsen it. Hence, we de-
cided to proceed using a 3-frames architecture. Results ex-
pressed in terms of PSNR[dB].

4.6. Exp 2: Evaluating Sensitivity to Temporal In-
consistency

To correctly combine the information coming from the
two other frames, VidCNN has to understand if the sec-
ondary frames contain useful information to improve the
reference frame or not. We can appreciate how powerful
is our model with this simple experiment:

• We consider the video Tennis from [41], adding Gaus-
sian noise with standard deviation σ=40.
• We artificially removed the white ball, covering it with

part of the background.
• We ran VidCNN and check the difference between the

experiment and the output with non-modified noisy
frames 9 and 11.

Figure 6 shows the modified input frames and VidCNN out-
put. In terms of PSNR value, we got the same value for both
normal and experimental case: 27.28dB. This result con-
firms that the network does what we expected: it uses part
of the secondary frames and combine them with the refer-
ence, but only where the pixel content is similar enough.
Thus, in this scenario the outcome does not change, since
VidCNN would not have used the information in the ball
area anyway.

(a) Noisy Frame 9 (b) Noisy Frame 10 (c) Noisy Frame 11

(d) VidCNN Frame 10

Figure 6: VidCNN achieves the same PSNR value of
27.28dB for frame 10 of the video Tennis with AWGN
σ=40, even if we manually cancel the white ball from the
secondary frames. The network understands which part has
to take into consideration and which not, i.e. the ball area.

4.6.1 Visualization of temporal filters

The novel architecture Temp3-CNN is capable to detect the
temporal inconsistencies, but without a visual reference it
is difficult to understand the process. Hence, we want to
show in detail what our model detects and how we can in-
terpret this visualization. In Figure 7, we show the output
of two of the 128 filters in the first layer of Temp3-CNN,
where the network highlights different features of the con-
catenated input frames. In Figure 7b, we see in black the
table-tennis ball of the current frame, whereas the ones in
the previous and subsequent frame are in white. In Fig-
ure 7a instead, we see how this filter highlights flat areas
with similar colors and shows mostly the ball of the cur-
rent frame in white. Therefore, Temp3-CNN gives different
importance to similar and different areas among the three
frames. This is a simple indication on how the CNN han-
dles motion and temporal inconsistencies.

(a) Filter 59 (b) Filter 90

Figure 7: Visualization of filters 59 and 90 output of Temp3-
CNN first convolutional layer. This layer is composed by
128 filters. We used frames number 9, 10 and 11 from the
video Tennis as input. Filter 59 highlights the reference ball
and other areas with similar colors, whereas filter 90 seems
to highlight mostly contours and the ball at the reference
position in frame 10. The images have been color-inverted
for a better visualization.

9

(a) Noisy frame 148

(b) Noisy frame 150

(c) Noisy frame 149
(16.48/0.6023)

(d) CBM3D[6]
(25.60/0.9482)

(e) VBM4D[10]
(24.51/0.9292)

(f) VidCNN-G
(27.19/0.9605)

Figure 8: Blind video denoising comparison on Tennis [41] corrupted with AWGN σ=40 and values clipped between [0,255].
We show the result of two competitors, VBM4D and CBM3D, which scored respectively second and third (see Table 6) on
this test video. VidCNN performs well in challenging situations, even if the previous frame is completely different 8a, thanks
to the temporal inconsistency detection. VBM4D suffers from the change of view, creating artifacts. Results in brackets are
referred to the single frame 149 (PSNR [dB]/SSIM).

Tennis Old Town Cross Park Run Stefan

Res./Frames 240×352 / 150 720×1280 / 500 720×1280 / 504 656×1164 / 300

σ 5 25 40 15 25 40 15 25 40 15 25 55

VidCNN 35.51 29.97 28.00 32.15 30.91 29.41 31.04 28.44 25.97 32.06 29.23 24.63
VidCNN-G 37.81 30.36 28.44 32.39 31.29 29.97 31.25 28.72 26.36 32.37 29.59 25.06
VBM4D [10] 34.64 29.72 27.49 32.40 31.21 29.57 29.99 27.90 25.84 29.90 27.87 23.83
CBM3D [34] 27.04 26.37 25.62 28.19 27.95 27.35 24.75 24.46 23.71 26.19 25.89 24.18
DnCNN [14] 35.49 27.47 25.43 31.47 30.10 28.35 30.66 27.87 25.20 32.20 29.29 24.51

Table 6: Comparison of VidCNN with a video denoising algorithm, VBM4D [10], and two image denoising algorithms,
DnCNN [14] and CBM3D [34]. VidCNN-G is the model trained specificly for blind gaussian denoising. Test videos have
different length, size and level of Additive White Gaussian Noise. VidCNN performs better than blind denoising algorithms
CBM3D, DnCNN and VBM4D, which has been used with the low complexity setup due to our memory limitations. Best
results are highlighted in bold. Original videos are publicly available here [41]. Results expressed in terms of PSNR[dB].

4.7. Exp 3: Evaluating Performance on Gaussian
Video Denoising

Currently, most of the video and image denoising algo-
rithms have been developed to tackle Additive White Gaus-
sian Noise (AWGN). We will compare VidCNN with the
state-of-art algorithm for gaussian video denoising VBM4D
[10] and additionally with CBM3D [34] and DnCNN [14]
for single frame denoising. We used the algorithms in their
blind version: for VBM4D we activated the noise estima-
tion, for CBM3D we set the sigma level to 50 and for
DnCNN we use the blind model provided by the authors.
We compare two versions of VidCNN, where VidCNN-G
is the model trained specifically for AWGN denoising and
VidCNN is the final model tackling multiple noise models,

including low-light conditions. The videos have been stored
as uncompressed png frames, added with AWGN and saved
again in loss-less png format. From the results in Table 6
we notice that VBM4D achieves superior results compared
to its spatial counterpart CBM3D, which is probably due
to the effectiveness of the noise estimator implemented in
VBM4D. CBM3D suffers from the wrong noise std. devia-
tion (σ) level for low noise intensities, whereas for high lev-
els achieves comparable results. Overall, our implemented
VidCNN in its gaussian specific version performs better
than the general blind model, even though the difference is
limited. VidCNN-G scores the best results, as highlighted
in bold in Table 6, confirming our blind video denoising
network as a valid approach, which achieves state-of-art re-
sults.

10

(a) Noisy frame 2
(22.54/0.4402)

(b) DnCNN [14]
(24.30/0.5323)

(c) VBM4D [10]
(29.08/0.7684)

(d) CBDNet [22]
(30.75/0.8710)

(e) CBM3D[34]
(31.11/0.8982)

(f) VidCNN
(34.14/0.9158)

Figure 9: Detailed comparison of denoising algorithms on the low-light video Train with light intensity at 50/255. Our
VidCNN shows superior performance in this light condition, preserving edges and correctly smoothing flat areas. Results
referred to frame 2, expressed in terms of (PSNR [dB]/SSIM).

Train Mountains Windmill

Res./Frames 212×1091 / 4 1080×1920 / 4 1080×1920 / 3

Light 50/255 55/255 [55,75]/255 44.6 lux 118 lux 212 lux

VidCNN 34.05 36.96 40.84 32.96 35.42 36.69
VBM4D[10] 29.10 33.48 37.34 26.62 30.69 32.92
CBDNet[22] 30.89 34.56 39.91 29.56 34.31 36.22
CBM3D[34] 31.27 34.06 40.20 29.81 34.06 35.74
DnCNN[14] 24.33 29.87 32.39 21.73 25.55 27.87

Table 7: Comparison of state-of-art denoising algorithms over six low-light sequences recorded with a Bosch Autodome IP
5000 IR in raw mode, without any type of filtering activated. Every sequence is composed of 4 or 3 frames, with ground
truths obtained averaging over 200 images. The Windmill sequences has been recorded with a different light source, where
we were able to measure the light intensity. Highlighted in bold our VidCNN results, which performs significantly better.
Results expressed in terms of PSNR[dB].

4.8. Exp 4: Evaluating Performance on Low-Light
Video Denoising

Along with the low-light dataset creation, we also
recorded six sequences of three or four frames each:
• Two sequences of the same scene, with a moving toy

train, in two different light intensities.
• A sequence of an artificial mountain landscape with

increasing light intensity.
• Three sequences of the same scene, with a rotating

toy windmill and a moving toy truck, in three differ-
ent light conditions.

Those sequences are not part of the training set and have
been recorded separately, with the same Bosch Autodome
IP 5000 IR camera. In Table 7 we present the results of
VidCNN, highlighted in bold, in comparison with other

state-of-art denoising algorithms on the low-light test set.
We compare our method with VBM4D [10], CBM3D [34],
DnCNN [14] and CBDNet [22]. VidCNN achieves sub-
stantial improvements over the competitors, especially for
the lowest light intensities. Surprisingly, the single frame
denoiser CBM3D performs better than the video version
VBM4D: the difference may arose, because CBM3D in its
blind version uses σ = 50, whereas VBM4D has a built-
in noise level estimator, which may perform worse with a
completely different noise model from the supposed Gaus-
sian one. CBDNet achieves also remarkable results as ex-
pected, since it is suitable for real-world noisy images. In
this case we can appreciate how powerful CNNs are, in con-
ditions where designing a specific denoising algorithm for
a specific sensor would be difficult and time consuming.

11

5. Discussion
5.1. Summary

In this paper, we presented a novel CNN architecture for
Blind Video Denoising called VidCNN. We use spatial and
temporal information in a feed-forward process, combining
three consecutive frames to get a clean version of the mid-
dle frame. We perform temporal denoising in simple yet
efficient manner, where our Temp3-CNN learns how to han-
dle objects motion, brightness changes, camera motion and
temporal inconsistencies. We define our model as Blind,
since it can tackle different noise models at the same time,
without any prior knowledge nor analysis of the input sig-
nal. We created a dataset containing multiple noise models,
showing how the right mixture of training data can improve
image denoising on real world data, such as on the DND
Benchmarking Dataset [31]. We achieve state-of-art results
in blind gaussian video denoising, comparing our outcome
with the competitors available in the literature. We show
how it is possible, with the proper hardware, to address low-
light video denoising with the use of a Convolutional Neural
Network, which would ease the tuning of new sensors and
camera models. Collecting the proper training data would
be the most time consuming part. However, defining an au-
tomatic framework with predefined scenes and light condi-
tions would simplify the process, allowing to further reduce
the needed time and resources. Our technique for acquir-
ing clean and noisy low-light image pairs has proven to be
effective and simple, requiring no specific exposure tuning.

5.2. Limitations and Future Works

One of the biggest limitations of VidCNN, if we would
use it in real-world scenarios, is the needed computational
power. At the current state, even with an high-end graphic
card as the Nvidia Titan X, we were able to reach a max-
imum speed of ∼ 3fps on HD videos. However, most
of the current cameras work with Full HD or even UHD
(4K) resolutions, with always higher frame rates. We did
not try to implement VidCNN on a mobile device support-
ing Tensorflow Lite, which converts model and weights to
a lighter version more suitable for handled devices. Hence,
this could be a possible new development and challenging
question to investigate on, since every week the available
hardware in the market gets more powerful. Something that
we still have to analyze in depth are the generalization ca-
pabilities of the proposed method: we were able to collect
real data from a single sensor type and we should investigate
further its performance, using data from multiple sensors at
the same time.

References
[1] Ivana Despotovi, Bart Goossens, and Wilfried Philips. Mri

segmentation of the human brain: Challenges, methods, and
applications. In Computational and Mathematical Methods
in Medicine, volume 2015, pages 1–23. 05 2015. 2

[2] Peter Goebel, Ahmed Nabil Belbachir, and Michael Truppe.
A study on the influence of image dynamics and noise on
the jpeg 2000 compression performance for medical images.
In Computer Vision Approaches to Medical Image Analysis:
Second International ECCV Workshop, volume 4241, pages
214–224. 05 2006. 2

[3] Stefan Roth and Michael Black. Fields of experts: A frame-
work for learning image priors. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, volume 2, pages 860–867. 01 2005. 2

[4] Jian Sun, Zongben Xu, and Heung-Yeung Shum. Image
super-resolution using gradient profile prior. In 2008 IEEE
Conference on Computer Vision and Pattern Recognition. 06
2008. 2

[5] Huibin Li and Feng Liu. Image denoising via sparse and re-
dundant representations over learned dictionaries in wavelet
domain. In 2009 Fifth International Conference on Image
and Graphics, pages 754–758. 09 2009. 2

[6] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and
Karen Egiazarian. Image denoising by sparse 3-d transform-
domain collaborative filtering. In IEEE transactions on im-
age processing, volume 16, pages 2080–95. 09 2007. 2, 3,
10

[7] Julien Mairal, Francis Bach, J Ponce, Guillermo Sapiro,
and Andrew Zisserman. Non-local sparse models for image
restoration. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 2272–2279. 09 2009. 3

[8] Weisheng Dong, Lei Zhang, Guangming Shi, and Xin
li. Nonlocally centralized sparse representation for image
restoration. In IEEE transactions on image processing, vol-
ume 22. 12 2012. 3

[9] Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu
Feng. Weighted nuclear norm minimization with application
to image denoising. In 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pages 2862–2869. 06 2014.
3

[10] Matteo Maggioni, Giacomo Boracchi, Alessandro Foi, and
Karen Egiazarian. Video denoising, deblocking, and en-
hancement through separable 4-d nonlocal spatiotemporal
transforms. In IEEE transactions on image processing, vol-
ume 21, pages 3952–66. 05 2012. 3, 10, 11

[11] Viren Jain and Sebastian Seung. Natural image denoising
with convolutional networks. In D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, editors, Advances in Neural Infor-
mation Processing Systems 21, pages 769–776. Curran As-
sociates, Inc., 2009. 3

[12] H.C. Burger, C.J. Schuler, and Stefan Harmeling. Image de-
noising: Can plain neural networks compete with bm3d? In
2012 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, pages 2392–2399. 06 2012. 3

12

[13] Bryan C. Russell, Antonio Torralba, Kevin Murphy, and
William T. Freeman. Labelme: A database and web-based
tool for image annotation. In International Journal of Com-
puter Vision, volume 77. 05 2008. 3

[14] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and
Lei Zhang. Beyond a gaussian denoiser: Residual learning
of deep cnn for image denoising. In IEEE Transactions on
Image Processing, volume 26, pages 3142–3155. 07 2017.
3, 5, 7, 8, 10, 11

[15] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In Proceedings of Machine Learning Research,
volume 37, pages 448–456. 02 2015. 3, 5

[16] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Ffdnet: Toward
a fast and flexible solution for cnn based image denoising. In
IEEE Transactions on Image Processing, volume 27, pages
4608 – 4622. 09 2018. 3, 7

[17] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.
Deep image prior. hhttps://arxiv.org/abs/1711.
10925, 11 2017. Accessed: 20-08-2018. 3

[18] Stamatis Lefkimmiatis. Non-local color image denoising
with convolutional neural networks. In 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 5882 – 5891. 07 2017. 3

[19] Dong Yang and Jian Sun. Bm3d-net: A convolutional neu-
ral network for transform-domain collaborative filtering. In
IEEE Journals & Magazines, volume 25, pages 55 – 59. 01
2018. 3

[20] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Mem-
net: A persistent memory network for image restoration.
pages 4539–4547, 10 2017. 3

[21] Xiao-Jiao Mao, Chunhua Shen, and Yu-Bin Yang. Image de-
noising using very deep fully convolutional encoder-decoder
networks with symmetric skip connections. In Advances
in Neural Information Processing Systems 29, pages 2802–
2810. 12 2016. 3

[22] Shi Guo, Zifei Yan, Kai Zhang, Wangmeng Zuo, and Lei
Zhang. Toward convolutional blind denoising of real pho-
tographs. https://arxiv.org/abs/1807.04686,
07 2018. Accessed: 20-08-2018. 3, 5, 7, 11

[23] Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli
Laine, Tero Karras, Miika Aittala, and Timo Aila.
Noise2noise: Learning image restoration without clean data.
2018. 3

[24] Xiaokang Yang Xinyuan Chen, Li Song. Deep rnns for video
denoising. In Proc. SPIE, volume 9971. 09 2016. 4

[25] Simon Niklaus and Feng Liu. Context-aware synthesis for
video frame interpolation. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 06 2018. 4

[26] Simone Meyer, Abdelaziz Djelouah, Brian McWilliams,
Alexander Sorkine-Hornung, Markus Gross, and Christo-
pher Schroers. Phasenet for video frame interpolation. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 06 2018. 4

[27] Jose Caballero, Christian Ledig, Andrew Aitken, Alejan-
dro Acosta, Johannes Totz, Zehan Wang, and Wenzhe Shi.
Real-time video super-resolution with spatio-temporal net-
works and motion compensation. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2848–2857, 07 2017. 4, 6

[28] Ren Yang, Mai Xu, Zulin Wang, and Tianyi Li. Multi-
frame quality enhancement for compressed video. In 2018
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2018. 4, 6

[29] S. Su, M. Delbracio, J. Wang, G. Sapiro, W. Heidrich, and
O. Wang. Deep video deblurring for hand-held cameras.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 237–246, 07 2017. 4, 6

[30] Josue Anaya and Adrian Barbu. Renoir a dataset for real
low-light image noise reduction. In Journal of Visual Com-
munication and Image Representation, volume 51, 09 2014.
4, 6

[31] Tobias Plotz and Stefan Roth. Benchmarking denoising al-
gorithms with real photographs. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 07 2017.
4, 7, 12

[32] Abdelrahman Abdelhamed, Stephen Lin, and Michael S.
Brown. A high-quality denoising dataset for smartphone
cameras. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 06 2018. 4

[33] Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun.
Learning to see in the dark. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 06 2018.
4

[34] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Color
image denoising via sparse 3d collaborative filtering with
grouping constraint in luminance-chrominance space. In
2007 IEEE International Conference on Image Processing,
volume 1, pages I – 313–I – 316, 09 2007. 5, 7, 10, 11

[35] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical
evaluation of rectified activations in convolutional network.
2015. 5, 7

[36] Kede Ma, Zhengfang Duanmu, Qingbo Wu, Zhou Wang,
Hongwei Yong, Hongliang Li, and Lei Zhang. Waterloo Ex-
ploration Database: New challenges for image quality as-
sessment models. volume 26, pages 1004–1016, 02 2017.
6

[37] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations, 12 2014. 7

[38] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng,
and Lei Zhang. Dncnn matlab implementation. https:
//github.com/cszn/DnCNN, 2016. Accessed: 20-08-
2018. 7

[39] CBSD68 benchmark dataset. https://github.com/
clausmichele/CBSD68-dataset. Accessed: 20-08-
2018. 7

13

hhttps://arxiv.org/abs/1711.10925
hhttps://arxiv.org/abs/1711.10925
https://arxiv.org/abs/1807.04686
https://github.com/cszn/DnCNN
https://github.com/cszn/DnCNN
https://github.com/clausmichele/CBSD68-dataset
https://github.com/clausmichele/CBSD68-dataset

[40] DND Benchmark Results. https://noise.visinf.
tu-darmstadt.de/benchmark/. Accessed: 20-08-
2018. 7

[41] Xiph.org Video Test Media [derf’s collection]. https:
//media.xiph.org/video/derf/. Accessed: 20-
08-2018. 7, 9, 10

14

https://noise.visinf.tu-darmstadt.de/benchmark/
https://noise.visinf.tu-darmstadt.de/benchmark/
https://media.xiph.org/video/derf/
https://media.xiph.org/video/derf/

Supplementary Material of VidCNN - Learning Blind Video
Denoising

Michele Claus
TU Delft - EEMCS

Mekelweg 4, Delft, The Netherlands
claus.michele@hotmail.it

1 Background on Convolutional Neural Networks
In this section we want to give a high-level introduction to the concepts used in our Video Denoising
CNN. For this reason, we will only go through the types of components we used. For a better and
more in-depth explanation we suggest the book [1]. Convolutional Neural Networks (CNNs) are
a type of feed-forward artificial Neural Networks, which are mostly used to analyze and elaborate
multi-dimensional signals such as images. In fact, an image can be composed of a single channel
for gray level, three or four for color images and more for multi-spectral data.
CNNs have been successfully applied to image recognition, object detection and also image denois-
ing tasks. In this section we want to present the components of the CNN architecture we used for
the implementation of VidCNN, the blind video denoising network.

1.1 Multi Dimensional Discrete Convolution
The basic and fundamental operation of CNNs is the Convolution. Since we are in the digital
domain, our data has been quantized and we will work with discrete values, which means we
use a particular type of convolution. The general form of the multi dimensional discrete valued
convolution can be written as

(I ∗K)ij =

k1−1∑
m=0

k2−1∑
n=0

C∑
c=1

Km,n,c · Ii+m,j+n,c + b , (1)

where I ∈ RH×W×C represents our image signal with C number of channels, K ∈ Rk1×k2×C×D

represents the kernel with D filters and biases b, one for each filter. The operation is composed
only by multiplication and addition, with complexity depending on the size of the image and the
kernel. With a gray-scale image of size (H×W) and a kernel (k×k), the complexity will result
as O(HWkk). If the kernel is separable, which means it can be written as the convolution of two
one-dimensional vectors K = K1 ∗ K2, the complexity decreases to O(2HWk). In the Neural
Network field, the kernel is also called receptive field.

1.2 Training Process
1.2.1 Gradient Descent

The Gradient Descent is a generic optimization algorithm capable of finding optimal solutions in
various problems. The main idea of Gradient Descent is to tune parameters iteratively to minimize
a pre-defined loss function. The loss function is the L2-norm in equation 2, also known as least
squares error (LSE). It is the sum of the square of the differences S between the target value Y
and the estimated values Yest.

L =
∑
x

∑
y

(Y (x, y)− Yest(x, y))2 (2)

The Gradient Descent measures the local gradient of the error function with regards to the filter
weights w, which have been randomly initialized, and step by step follows the highest gradient

15

Figure 1: Graphical representation of a 2D discrete valued convolution with a 3×3 kernel. Source
[2].

(which we can see as a measure of "steepness") attempting to decrease the loss function, until the
algorithm converges to a minimum. A necessary parameter of the Gradient Descent algorithm is
the learning rate, which determines the size of each update step: if too small it will take many
iterations to converge, whereas if too high could lead to divergence instead of convergence. There
can be several hills and valleys the optimizer has to overcome to get to the absolute minimum. A
gradient descent variant that attempts to mimic the physical behavior of a ball rolling down the
loss-function surface with momentum is the Adam optimizer, which tries to avoid getting stuck in
local optima valley. We use Adam optimizer during our CNN training phase, with predefined first
order momentum of 0.9.

1.2.2 Tensorflow Autodiff

Tensorflow has built-in functions which can automatically and efficiently compute the gradients:
we do not have to use any loop for multiple derivatives. There are multiple approaches to compute
gradients automatically and Tensorflow uses the specific Reverse-mode autodiff. You can refer to
[1] for more details.

1.2.3 The Backpropagation Process

In 1986, D.E. Rumelhart et al. published an article about an innovative training algorithm called
backpropagation [3]. We can describe it as a Gradient Descent using reverse-mode autodiff. For
each training instance, the algorithm feeds the data to the CNN and computes the output of
every consecutive convolutional layer. This step is called forward pass and it is the same we use for
estimation (denoising in our specific case). Afterwards, computing the Loss, the algorithm measures
the difference between the reference sample (in our case a patch of clean image) and the actual
output of the CNN (the denoised image patch). Subsequently, it measures how much of the error
comes from each neuron in the last convolutional layer. It proceeds computing the contribution of
the previous layers, until the process reaches the input layer. This reverse pass measures efficiently
the loss gradient across all the layers by propagating it backward in the network. The name of the
algorithm comes from this final step.

1.2.4 Vanishing and Exploding Gradients Problems

The backpropagation algorithm propagates the error gradient from the output layer up to the input
layer. The gradients are used for updating the weights in each neuron, but unfortunately gradients
value gets often smaller and smaller as we reach the lower layers. As outcome, the algorithm leaves
the lower layer connection weights almost the same, avoiding the training to reach an optimal
solution. This problem is called Vanishing Gradient. The opposite, the Exploding Gradient, can
also happen, making the gradients increase too steeply and the algorithm to diverge. There are
different solutions to overcome this problem, which involve the use of particular activation functions
or normalization steps, such as Batch Normalization.

16

1.2.5 Batch Normalization

Thanks to particular activation functions as ReLU and LeakyReLU, the vanishing/exploding gra-
dient problem is attenuated at the beginning of the training phase. However, it is not guaranteed
it will not reappear during training. In 2015, Sergey Ioffe and Christian Szegedy published a paper
[4], where they proposed a technique called Batch Normalization (BN) to address this issue, which
they refer as Internal Covariate Shift. The technique consist of adding a normalization step before
the activation function of each layer. This operation zero-centers and normalizes the input and
then scales and shifts the results using a parameter for each operation. Hence, it learns the optimal
scale and mean of the input for each layer.

1.3 Leaning the parameters
The result of a convolution depends on the kernel type: the size and values will determine the final
result. There are many different types of kernels, which can extract contours, increase sharpness
or contrast, blur and perform morphological operations. However, in the case of Convolutional
Neural Networks, the type of kernel is not predefined, but it will be learned during the training
phase, hence it is called receptive field. The process used for training the kernels weights is based
on the gradient descent calculation and is called backpropagation, because it will start computing
the gradient at the last layer and propagate it back to the higher ones. Before explaining the
backpropagation process we have to introduce some other parameters and definitions.

1.3.1 Padding and Stride

Performing a 2D discrete value convolution consist of multiple multiplications and a final sum, for
each output value (or pixel). The kernel will slide over the image, and the result will be placed
in the central position, as shown in Figure 1. However, placing the kernel on a border pixel, will
leave some of the kernel values without a multiplication factor from the image. Using for instance
a (3×3) kernel and an image of (H×W), the output will shrink of 1 pixel on each side with a final
size of (H−1×W −1). Avoiding this effect and obtaining the same image size as output is possible
by padding the input image before the convolutional step with zeros: this will increase the input
size to (H + 1×W + 1) and allow to obtain the expected size as output.

Figure 2: Graphical representation of a zero padded input image: all the kernel values have a
multiplication factor on the border. Source [2].

Another fundamental parameter, which controls the output size, is the stride. The stride
indicates how much the kernel will move at each step along each axis: using a stride of [1,1], for
the 2D case, means that the kernel will move of just one pixel each step. However, if we increase
the stride value, the kernel will move with bigger steps and the obtained pixels will decrease.

1.4 Activation Function
The activation function is typically used after every Convolutional Layer to introduce non-linearity.
Our CNN has to learn from real-world data, which is mostly non-linear and therefore, we have to
use a particular function to transform our output. In 2011, Glorot and Bengio published a paper
[5] explaining how the vanishing/exploding gradient problem was partly due to the poor choice of
the activation function. Until then, most researchers supposed that the sigmoid function was the
best choice, since it was similar to the one in biological neurons. However, it turned out that other

17

activation functions behave much better in deep neural networks. The ReLU distinguished from
others, because it does not saturate for positive values and it is fast to compute. In the VidCNN
architecture two similar activation functions are used: ReLU and LeakyReLU.

1.4.1 ReLU

The Rectified Linear Unit function, introduced recently in the Machine Learning field [5], sets to
zero all the negative values, according to the formula:

ReLU(x) = max(o, x) (3)

We used this function in the Spatial-CNN architecture, following [6], where they show its effective-
ness for image denoising tasks, among others. An advantage of this activation function, compared
to the Sigmoid (commonly used in machine learning), lays in their range: the ReLU has range
[0,+∞], whereas the Sigmoid [0, 1], which is more suitable when working with probabilities. An-
other important factor to take into account, is that the gradient of the ReLU function does not
vanish as we increase x. On the other hand, the gradient of the sigmoid function vanishes as we
increase or decrease x. When training deep neural networks with Backpropagation, this has major
benefits.

Figure 3: The ReLU activation function. All negative input values are set to zero, introducing
non-linearity efficiently.

1.4.2 Leaky ReLU

The introduction of ReLU gave major benefit for training networks with deep architectures. How-
ever, ReLU introduces an issue called dying : when the dot product of the ReLU input with its
weights is negative, the neuron dies and its output will be always zero. Subsequently, the gradient
will be always zero. The loss, back-propagated from later layers gets multiplied by zero, hence no
error signal arrives to earlier layers. Leaky ReLU has been introduced to overcome this problem:
instead of setting to zero all the negative values, it maps them according to a parameter, usually
set to 0.01. Leaky ReLU allows a small gradient even when the unit is inactive.

LeakyReLU(x) =

{
x if x > 0

0.01x otherwise
(4)

We used Leaky ReLU in final version of the Temp3-CNN, the network performing temporal
denoising, which gave better results than ReLU.

18

Figure 4: The Leaky ReLU activation function. It allows small negative values, letting the gradient
being non-zero also in the left part of the plot.

2 Supplementary Results

2.1 Hardware details
All the developing, training and testing have been run on the same machine with the following
specifications:

• O.S.: Ubuntu 16.04

• CPU: Intel Xeon E5-1620 v4

• RAM: 32GB

• GPU: Nvidia Titan X (Pascal)

• Deep Learning Library: Tensorflow 1.9 (Python 2.7)

2.2 Spatial-CNN: comparison results with ReLU and LeakyReLU
Here we present the comparison result of the Spatial-CNN, trained with two different activation
functions. We tested both on the same benchmarking dataset, the CBSD68. Even though Leaky
ReLU gave us better result for the Temp3-CNN architecture, in this scenario the simpler ReLU is
still the best choice among them.

σ = 5 σ = 10 σ = 15 σ = 25 σ = 35 σ = 50

Spatial-CNN - ReLU 39.73 35.92 33.66 30.99 29.34 27.63
Spatial-CNN - Leaky ReLU 38.64 35.22 33.06 30.47 28.78 26.99

Table 1: Comparison of Spatial-CNN, trained with ReLU and Leaky RelU, on the CBSD68 dataset
corrupted with Additive White Gaussian Noise of multiple levels. The same network, trained in
the same way, perform better using the ReLU activation function, instead of the more recent Leaky
ReLU.

19

2.3 Temp3-CNN: comparison results with BN and without
In Table 2, we present a comparison of the same VidCNN trained with three different settings:

1. Using Leaky ReLU as activation function and no normalization.

2. Using Leaky ReLU as activation function and Batch Normalization.

3. Using ReLU as activation function and Batch Normalization.

The results show how, using the more complex Leaky ReLU to train our temporal denoising
network Temp3-CNN, we obtain the best results. In Table 2, we also show the difference in time
needed to denoise the same videos, where the use of Batch Normalization increases it. We notice
also that, due its lower computational complexity, the Temp3-CNN trained with ReLU and Batch
Normalization is faster than the one trained with Leaky ReLU and BN.

Train Mountains Windmill

Res./Frames 212×1091/4 1080×1920/4 1080×1920/3
Light 50/255 55/255 [55,75]/255 44.6 lux 118 lux 212 lux

VidCNN Leaky ReLU 34.05 36.96 40.84 32.96 35.42 36.69
Elapsed Time [s] 1.6361 1.6164 6.4080 5.8228 6.3080 6.1896
VidCNN Leaky ReLU + BN 34.07 36.98 40.76 32.87 35.34 36.81
Elapsed Time [s] 2.0089 2.3251 7.2746 6.6507 6.5803 6.6682
VidCNN ReLU + BN 33.88 36.57 40.42 32.77 35.27 36.40
Elapsed Time [s] 1.7450 1.7567 6.4485 5.4045 5.3711 5.4232

Table 2: Comparison of VidCNN trained with different settings on the same low-light test set. Two
activation functions have been used, Leaky ReLU and ReLU. Batch Normalization has been used in
two settings as normalization step. The best result in terms of Peak Signal to Noise Ratio (PSNR)
and elapsed time is achieved by VidCNN trained with Leaky ReLU and no Batch Normalization.

20

3 Low-light Test Sequences
In this section we present the remaining low-light test sequences we recorded, not shown previously
in the main article. The sequence Windmill contains many different objects and flat areas, plus
the windmill and the toy truck that are moving. The sequence Mountains does not contain moving
parts, but the illumination increases in time.

(a) Noisy frame 1 (b) Denoised frame 1

(c) Noisy frame 2 (d) Denoised frame 2

(e) Noisy frame 3 (f) Denoised frame 3

Figure 5: The test sequence Windmill, with light intensity of 212 lux. On the left we see the noisy
sequence and on the right the VidCNN denoised output, which can correctly preserve edges and
smooth flat areas.

21

(a) Noisy frame 1 (b) Denoised frame 1

(c) Noisy frame 2 (d) Denoised frame 2

(e) Noisy frame 3 (f) Denoised frame 3

(g) Noisy frame 4 (h) Denoised frame 4

Figure 6: The test sequence Mountains, with light intensity increasing at each frame. We can
appreciate how VidCNN can preserve the frame features looking at the house in details.

22

References
[1] Aurlien Gron. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts,

Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., 1st edition, 2017.

[2] Figure 1 and 2 source. http://machinelearninguru.com/computer_vision/basics/
convolution/image_convolution_1.html. Accessed: 20-08-2018.

[3] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations
by back propagating errors. In Nature, volume 323, pages 533–536, 10 1986.

[4] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of Machine Learning Research, volume 37,
pages 448–456. 02 2015.

[5] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pages 315–323, 2011.

[6] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising. In IEEE Transactions on Image
Processing, volume 26, pages 3142–3155. 07 2017.

23

http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html

