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Preface

This thesis investigates the application of machine learning models on foreign exchange data
around the WM/R 4pm Closing Spot Rate (colloquially known as the WMR Fix). Due to the
nature of the market dynamics around the WMR Fix, inefficiencies can occur and therefore
some predictability might be expected. We aim to find these inefficiencies. This is done
by applying machine learning models, specifically recurrent neural networks, on limit order
book data of foreign exchange (FX). The focus will be on the Euro - US dollar exchange
rate.

The thesis is performed as part of the Master Applied Mathematics at Delft University
of Technology, in collaboration with PGGM and MN. PGGM and MN are two pension
fund service providers and both provide asset management for multiple pension funds with
over EUR 400 billion combined assets under management. The thesis is part of the Aca-
demic Excellence Program (AXP), which is a collaboration between both companies and
universities.

The ideas in this thesis can be useful for both pension funds. Most importantly it
demonstrates ideas coming out of academic literature on how to extract information from
limit order book data using machine learning models. Furthermore, it provides them with
thoughts on how to improve their operations and explore other ideas.

Various “off-the-shelf” recurrent neural networks have been used, which in literature
have shown potential in predicting prices on short time scales. An attempt has been made
to see if these models can be used on a longer time scale to predict the Fix. The results
indicate, however, that the time scales used are too long for the models to make accurate
predictions based on the limit order book and a simple estimate performs better.

The thesis committee is composed of Prof. Antonis Papapantoleon, Dr. Fang Fang and
Tjerk Methorst, MSc. Prof. Papapantoleon has acted as thesis advisor and Tjerk Methorst
as daily supervisor.

I wish to thank Tjerk Methorst (PGGM) and Liakos Papapoulos (MN) for accommodat-
ing my graduation and providing all the resources, and I wish to thank Prof. Papapantoleon
for his role as thesis advisor.

Steven Kortekaas, May 2022.
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1 Introduction

By investing in assets that are traded in a foreign currency, pension funds run the risk of
losing the return on these investments when changes in currency exchange rates occur, a
phenomenon called currency risk. The exposure to these risks can be hedged by adding
foreign exchange (FX or Forex) derivatives, like FX swaps, to the portfolio. While the size
of the currency hedge remains the same, the assets it is protecting drift on the currents of
financial markets. This means the hedge needs to be adjusted which is usually done via FX
spot transactions.

Moreover, international investors use FX rates to translate asset values denominated in
foreign currencies to their domestic (reporting) currency. To do so they usually utilize refer-
ence or benchmark rates published by an independent source. One example of a benchmark
rate is the WM/R 4pm Closing Spot Rate, commonly known as the ‘Fix’. The time at which
the Fix is calculated is considered to be the most important moment in the FX spot market
[1], which is the largest global market with $6.6 trillion traded daily [2]. It is calculated
every day the currency market is open using data from 15:57:30 to 16:02:30 London time,
and serves as the FX benchmark rate for that day.

Because of its use as benchmark, hedges are often adjusted according to the value of
the Fix, resulting in a need to trade against the Fix. Furthermore the Fix is used by index
providers, such as MSCI, which contain assets expressed in various currencies. These indices
are widely adopted in the financial industry. In order to reduce tracking errors1, against for
example these indices, many investors wish to execute against the Fix.

As the Fix is used by many investors as benchmark, volume during the window is gen-
erally large and much market activity takes place. Previous research has shown that the
market dynamics during the window exhibits some predictable behaviour, which might be
partly caused by the rebalancing of currency hedges [3], and partly because certain funds
need to minimize their tracking error. These effects lead to a large number of transactions
during the window which are more driven by the necessity to trade and less by the actual
price levels. This could potentially result in inefficiencies which can be exploited.

However, in practice it is hard to get a better rate than the Fix. Since traded volumes
during the window are large, small improvements against the Fix can result in reasonable
savings for the pension funds. We aim to use insights from a data-driven approach, with the
anticipation that these insights can lead to an improvement of the FX execution strategies
with respect to the Fix benchmark.

Modelling of financial time series and forecasting2 is a vastly studied area [4], including
its application to FX. However, in recent years the application of machine learning on finan-
cial time series has emerged [5], and is showing promising results compared to traditional
approaches to time series. Specifically the application of machine learning models on limit
order books has increased. Modern day electronic market places, including those used in
the FX market, use limit order books to keep track of orders placed by market participants
and to match the orders if possible.

Traditional approaches in financial time-series often require extensive domain knowledge.
Furthermore in order to be comprehensible they are limited in predictive performance. Ma-
chine learning does not assume an underlying stochastic process generating the time series,
which allows for greater performance but at the cost of interpretability.

Few academic studies on the use of machine learning in finance investigate FX specifically,
which is surprising given the non-linear, non-stationary nature of FX [6]. Moreover, none of
these methods have been specifically applied to FX data at times around the Fix. We aim
to use the ideas in academic literature on predicting prices using machine learning methods
together with order book data of FX markets to forecast the Fix, where the focus will be
specifically on recurrent neural networks (and derived models).

1The tracking error is the difference between a fund and the benchmark it follows.
2The term forecasting and predicting are used interchangeably.
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Broadly speaking, forecasting models can be split in two groups: price prediction and
prediction of price movement (e.g. up or down). In machine learning terms, the former
constitutes regression while the latter constitutes classification. While regression might
be appealing as it produces not only the price movement, but also the magnitude, it can
be harder than classification. Furthermore, the forecasts from regression do not yield a
distribution of the uncertainty as it is assumed that the data generating process is unknown.
On the other hand, classification is dependent on chosen thresholds, which regression does
not suffer from. In this thesis, both regression and classification are considered.

With the previous in mind, the main thesis problem is given by: Is it possible to accu-
rately predict the WMR by using machine learning models on FX limit order book data?
As stated the focus of the machine learning models is on recurrent neural networks, and is
based on results in academic literature.

In Section 2 the related work is described and the ideas are presented in which way the
information can be extracted from the data. Then in Section 3 a description of FX markets
and limit order books is given. After this a general description is given of the WMR in
Section 4. The raw data used is described in Section 5. The models which are used on the
data are described in Section 6. Lastly Section 7 shows the results and Section 8 concludes.

2



2 Related work

In recent years, more evidence has been found which support the predictability of financial
markets [7] and the efficient market hypothesis has been increasingly questioned [8]. In
case of FX, working papers have shown that currency markets around the Fix exhibit some
predictability [9, 10]. Multiple sources attribute this predictability to the hedging of cur-
rency exchange rates by investors and models have been developed which in the past have
accurately predicted the direction of the Fix using equity returns [1, 3, 11]. It is assumed
in this thesis that these effects manifest themselves in the limit order book data.

In general there are two approaches in predicting financial time-series: statistical (para-
metric) models and data-driven machine learning models [12, 13]. The “traditional” statis-
tical methods assume that the time-series is generated from a stochastic process [12, 14].
However there is agreement that financial time-series behave more complex, typically due
to their non-stationarity and non-linearity [12]. Machine learning techniques are able to
overcome this deficit. In essence the need of domain knowledge has been replaced by com-
plexity of the models and computational power [15]. Machine learning models learn suitable
representations from raw data, without human input.

Specifically in the case of limit order books (LOB), stochastic models have been developed
to simulate their dynamics, e.g. [16, 17]. These models are motivated by the desire to bridge
the gap between the microscopic description of price formation and the stochastic processes
used to describe price evolution at macroscopic time scales.

Although they have advanced the economic and mathematical understanding of limit
order books, the assumed simplifications limit their practical scope [18], for instance because
of their non-linearity [19]. Because of this practitioners in finance rely on statistical methods
to model their dynamics. Machine learning methods are able to capture arbitrary non-linear
relationships without information on the data [20]. Arguably, machine learning with neural
networks is the best approach to data-driven modelling of limit order books [18].

In recent literature there has been an increase in interest regarding the use of machine
learning in finance on LOB data [21]. The models have been applied on LOBs of different
asset classes, such as equities. There has been an indication, however, that the models
exhibit some form of universality in the sense that they also perform well on data of other
financial instruments [22]. In the broad class of machine learning models, artificial neural
networks (ANN) have shown promising results on the prediction of price using LOB data.
Examples include Convolutional Neural Networks (CNN) [23], Recurrent Neural Networks
() [24], Long Short-Term Memory (LSTM) [15], and combinations of CNN and LSTM [12,
21]. Even though all these papers assume there is predicitve value in the limit order book,
there is little supporting evidence why that is [15]. Thorough literature reviews of machine
learning on limit order books can be found in [5], [25], and [26].

In the majority of these studies, the inputs are represented as raw or transformed times-
series of order book states, and the return forecasting problem is formulated as a classifi-
cation task, where a single time horizon is chosen which is either deterministic, e.g. fixed
time horizon, or stochastic, e.g. the time interval until the next price change. Usually, the
time scales of the prediction is short, e.g. seconds or even milliseconds. The application of
these models is mostly relevant for high frequency traders (HFT). For example, in [24] an
explanation of the significance for HFTs is given, and in which way these models are used
to reduce their risk.

One exception on the short time horizons is [27], where neural networks are used to
predict the EURUSD on time horizons ranging from daily to yearly (although no LOB data
is used). They conclude that the performance is better on shorter time horizons, which is
probably due to the fact that FX is one of the most volatile markets [21].

In this thesis, both a classification and a regression approach is taken. Most literature
formulate their problems as classification, however regression avoids certain issues associated
with training classifiers [15]. Classification usually predicts whether the return over a certain
horizon is positive, negative, or zero [15]. This is mostly done by creating labels from
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smoothed forward prices using moving averages, and then assigning a label according to
thresholds. However, this introduces undesirable ad hoc modelling parameters, and there is
no canonical way to perform this labeling [15].

In [15] various machine learning models (CNN, LSTM, CNN-LSTM) are considered
on equities from the Nasdaq. The price prediction problem is formulated as a regression
problem, where multiple time horizons are considered. They show that the effective horizon
of stock specific forecasts is approximately two average price changes. Furthermore, they
show that “off-the-shelf” ANNs can achieve state-of-the-art predictive performance when
they are trained on stationary input derived from the order book, called order flow.

In [18] a composite ANN model is constructed based on LSTMs and CNN, called
DeepLOB, and is applied to equity limit order book data from the London Stock Exchange.
The model is posed as a classification problem, where the labels up, down and stationary
are created using a smoothed forward price and a threshold. They use a mean and standard
deviation of the previous 5 days to normalise the data. They argue that normalisation is a
necessity for machine learning models as they are sensitive to input scaling, and that financial
time-series usually experience regime shift, so that static normalisation is not appropriate
for dataset spanning long time periods (e.g. one year). In contrast to [15], DeepLOB is not
an “off-the-shelf” ANN, but is trained on the state of the order book instead of on the order
flow.

As the goal of this thesis is to forecast the WMR, which is determined from a 5 minute
window, these time scales are considered too short. Therefore, we aim to take the ideas of
using machine learning methods on limit order books and apply them on larger time scale to
forecast the value of the WMR. In light of this, the research question can slightly be refined
as: Can these models be applied on longer time scales using limit order book data around
the WMR? The application of machine learning in order to forecast the WMR has not been
found in academic literature.

4



3 FX and limit order books

In this section some preliminaries will be considered. First the basics of the FX market is
briefly discussed After this a theoretical aspects of limit order books will be discussed to
provide details on how the data is generated.

3.1 FX

The price of a currency can be expressed with another price as numeaire, which is called
exchange rate. As an example, in case a trader wishes to buy 5 euro (EUR) using US dollars
(USD) and the exchange rate is 1.2 EURUSD, then he needs to pay 6 USD. EURUSD is to
be interpreted as amount of US dollars per euro. The same holds for other currencies, e.g.
CHFJPY (Japanese yen, JPY, per Swiss franc, CHF). This means that an exchange rate is
equivalent to the price of a currency expressed in another currency. For this reason, in the
remainder the terms price and (exchange) rate are used interchangeably.

One can also trade USDEUR, but this is against convention [donnely]. There are two
main reasons. First buying USDEUR is the same as selling EURUSD. Secondly, and most
importantly, USDEUR is traded far less than EURUSD. This means that if a trader wished
to trade EUR against the USD, this is easiest via EURUSD as the liquidity is the highest.

In contrast to some other asset classes, the FX market is decentralized so that trading
can be performed on multiple venues [28]. Currencies can be traded on multiple venues or
even over-the-counter (OTC). It is not to be expected that there are large price differences
across multiple venues, as this would otherwise lead to arbitrage opportunities3. In this
thesis data from a single venue is used, so that we assume that those data represent the
market. To support this assumption, due to the increase of volume during the window,
interbank spreads reduce significantly [1].

3.2 Electronic trading and limit order book

Modern-day trading is performed on electronic market places, which keep track of all orders
for a particular instrument placed on that market. Those orders are placed in the limit
order book (LOB) which matches the orders of buyers and sellers of a particular financial
instrument. In the following a general description of LOBs is given, which is not restricted
to FX. This is a simplified view of order books as in reality LOBs are more complex (which
will be elaborated in Section 5.2). The description of LOBs here is brief and only relevant
for this work. A more detailed overview is given in [29].

The order book represents a collection of buyers and sellers, ordered by price and time.
In Figure 1 a visual representation is given of the order book. An order is defined as a
four-tuple (side, volume, price, time), and represents the intention of a trader to buy or
sell (which is the side of the order) a certain volume (or quantity) at a certain price. The
minimum price difference between two orders is the tick size, and the minimum increment
in volume is the lot size.

The lowest ask and the highest bid price (also known as top of the book) are called the
best ask (denoted by p1a(t)) and best bid (p1b(t)) respectively. The difference between best
ask and best bid is the bid-ask spread (or spread), p1a(t) − p1b(t), and the mean of best bid
and best ask is the mid-price p(t) = (p1b(t)+ p1a(t))/2. No trade can take place at mid-price,
but it is often used to represent the general market value [12]. Away from the best ask and
best bid are other levels in the order book, denoted by pib(t) and pia(t) for the ith bid/ask

level (or depth) respectively. It holds that pia(t) > pja(t) for i > j and pib(t) > pjb(t) for i < j.
Furthermore, it generally holds that p1b(t) < p1a(t); i.e. the best bid price is lower than the
best ask price and that the spread is positive. The number of levels is not constant in time
and can be different for bid and ask.

3Without further definition of arbitrage, a difference in price between two venues could lead to a strategy
where currency is bought on the cheapest venue and sold on the most expensive at the same time.
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Figure 1: Visualisation of the limit order book. Retrieved from [15].

Orders come in two types: market orders and limit orders. Limit orders are not directly
matched to an order on the opposite side, and are therefore placed in the LOB until they are
either matched or cancelled. A market order directly matches with an order in the LOB on
the opposite site. A limit order which offers a better price than the best price in the order
book, is automatically changed to a market order. If two orders (partially) match, then a
trade occurs.

Matching of two orders usually follows the price-time priority rule. That is, an order is
first matched to the limit order which has the best price (best bid or best ask). If multiple
limit orders are open on a price level, then the order which has been placed first in time
is matched (the first-in-first-out, FIFO, principle). It could occur that the quantities of
two matched orders are different. In case the market order has a larger quantity than the
matched limit order, then the remaining quantity is matched with the next available order,
again according to price-time priority.

Each trade consists of a market order and a limit order. The side of the market order
is called the aggressor side of the trade. In essence, the aggressor pays the price of crossing
the spread.

6



3.2.1 Order book states

At each point in time, the LOB can be represented by a vector representation called the
LOB snapshot. As stated earlier, the number of levels is not constant in time nor equal for
bid and ask. However, higher levels on either side does not contain as much information on
the price direction as lower levels do [30]. For this reason, the level is kept constant and
equal for bid and ask, and is denoted by L, and higher levels in the LOB are truncated. The
LOB snapshot is then a vector st ∈ R4L given by,

st = (p1a, v
1
a, p

1
b , v

1
b , . . . , p

L
a , v

L
a , p

L
b , v

L
b )

T , (1)

where L is the number of levels in the LOB, pia = pia(t) and via = via(t) are the ask price and
volume at level i and time t, and pib = pib(t) and vib = vib(t) are the bid price and volume.
This representation of the state of the LOB is commonly found in the literature, e.g. [15,
31].

As orders are placed, changes in the order book occur in a discrete sense. This implies
that temporally the LOB can be represented in a discrete sense. I.e. sti for i = 1, . . . , N , so
that S = si

N
i=1 ∈ RN×4L.

What number of levels to use is hard to answer a priori. However, in [30] it is suggested
that higher levels in the order book contain less information, and that price discovery can
be mostly contributed to the best bid and best ask price. This might be attributed to
electronic trading algorithms which submit and cancel vast numbers of limit orders in short
periods of time [32]. In [29] it is observed that these order are placed deep in the order book,
contributing to noise [12]. These conclusions are, however, for other asset classes than FX
and whether they are valid for FX LOBs is uncertain.

3.2.2 Order Flow

LOB snapshots as in Table 4 are generally not stationary [15] (for the definition see for
example [33]). A method for compiling input data from the LOB is using order flows, which
is a common method to create stationary time series from the non-stationary limit order book
states. The bid order flows (bOF) and ask order flows (aOF) are vectors bOFt,aOFt ∈ RL,
where each component is given by

bOFt,i =


vbt,i, if pbt,i > pbt−1,i,

vbt,i − vbt−1,i, if pbt,i = pbt−1,i,

−vbt,i, if pbt,i < pbt−1,i,

aOFt,i =


−vat,i, if pat,i > pat−1,i,

vat,i − vat−1,i, if pat,i = pat−1,i,

vat,i, if pat,i < pat−1,i.

From the bid and ask order flow, the order flow (OF) is defined as,

OFt =

(
bOFt

aOFt

)
∈ R2L.

In [15] it is shown that the performance of “off-the-shelf” artificial neural networks trained
on order flows is significantly improved compared to when they are trained on the state of
the order book from (1). The transformation to the order flow is a common approach to
map the non-stationary time-series of LOB states to stationary time-series [34]. Note that
the dimension of the order flow is half of the dimension of the order book state, so that not
only the performance is increased, but the training time can also be reduced.
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4 WMR Fix

The WM/R 4pm Closing4 Spot Rate (commonly known as the WMR Fix, the WMR, the
4pm Fix, the close, or the Fix) is a benchmark used by many major financial companies,
including institutional investors such as pension funds, to valuate assets in foreign currencies.
The Fix is published daily by Refinitiv, which was previously known as the WM/Reuters.
It is easily identified as the most important benchmark in the foreign exchange (FX) market
[1, 35], which is the most heavily traded market in the world [36]. In this section background
information regarding the Fix is given.

Financial benchmarks are important for reference purposes and are widely used as refer-
ence rates to settle derivatives contracts, as a fair and transparent price to execute against,
and for valuation of portfolios [35]. The WMR Fix was established as key financial bench-
mark in 1993, when Morgan Stanley Capital International (MSCI) announced they would
use it to value foreign assets in the MSCI equity indices [37]. Since then it has been the
de-facto standard in the construction of indices consisting of international securities, even
though other benchmark rates exist5, and is used in important indices such as MSCI [40]
and FTSE [41].

In 2013, news came out that major banks in the FX market colluded by sharing order
information ahead of the Fix. This allowed them to manipulate the fixing price away from the
prevailing market price [42]. After this scandal changes were made to the fix methodology in
order to improve robustness and decrease the susceptibility to manipulation6. These changes
included the expansion of the time window during which the Fix is calculated from 1 minute
to 5 minutes, and the sourcing of currency data from multiple sources. An account of this
and a research into the effectiveness is given in [35] and [42].

4.1 WMR Methodology

On a daily basis Refinitiv publishes fixing rates for three FX products: spot, forwards and
non-deliverable forwards. Here the focus is solely on spot rates7. In total WMR provides
benchmarks for 157 currency pairs. The currencies are divided in trade and non-trade
currencies. Markets between trade currencies are more liquid, and focus here is on trade
currencies, which is relevant for the EURUSD.

The methodology is shortly described here. However it contains a number of caveats
(e.g. insufficient amount of trades) which are not elaborated on. The full description of the
methodology can be found in [39] and a short description can be found in [43].

Every second between 15:57:30 LN8 to 16:02:30 LN, executed trades and bid and offer
order rates are sampled from multiple venues9. The frequencies of incoming trades and
orders are generally higher than the rate of sampling, so that not every trade or offer is
captured.

Every captured trade is identified as either a bid or offer depending on the aggressor side
of the trade (buy or sell). The opposing side is then determined from the sampled order
at that time, given an ‘opposing trade’. This gives a set of bid trades and a set of offer
trades at each second (containing data from all venues). For both sets, the median is taken
resulting in a median bid and offer trade. The mean of these two is the WMR Fix. In figure
2, a schematic representation of the methodology is shown.

4The name can be somewhat misleading as currency markets have no close and are open from 17:00 NY
(New York time) on Sunday to 17:00 NY on Friday.

5For example the Bloomberg currency indices (BFIX) [38], the SIREN benchmark [], and benchmarks
published by Refinitiv at other times than 16:00 [39]

6[35] gives an account of desirable properties of benchmarks.
7Spot transactions have “immediate” settlement, i.e. one or two days [donnely]
8LN is used to indicate London time.
9For EURUSD these are EBS, Currenex and Refinitiv Matching.
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Figure 2: Overview of the methodology of the Fix, retrieved from [43]. Note that the window
is 1 minute, which was before the reforms, and is now 5 minutes.

There are a number of caveats in the calculation of the WMR, for example if no trade
has occurred during the second interval. In certain cases expert judgement is applied to
establish the WMR. For the interested reader in the caveats we refer to the methodology
guide [39].

4.2 Market dynamics around the WMR Fix

Because many market participants wish to execute at the fix, for example to minimize track-
ing errors, volume and liquidity during the window is generally high. The large liquidity also
attracts other market participants, such as high-frequency traders, increasing the complexity
of the market dynamics [35]. As volume flows during the window could be described as risk
minimizing and less driven by price-level these might result in inefficiencies. In this section,
the market dynamics around the WMR Fix is elaborated on. Even though it might be hard
to exploit these insights using machine learning models, insights in the market dynamics is
useful in understanding the background of the thesis problem.

Previous analysis has shown that market dynamics around the fix might exhibit some
predictability [9, 10, 11]. Reasons for this might be found in the currency hedging of foreign
assets by institutional investors, an effect predominantly visible at month-end. For example,
European investors with US equities in their portfolios tend to hedge most of their currency
risk [3]. The hedges of their American counterparts tend to be lower, and European investors
generally have larger investments in the US than vice-versa. Therefore, a change in US
equities can generate a flow in a certain direction, caused by the hedge rebalances. The
implicit assumption in this thesis is that these effects manifest themselves in the FX data.
We aim to use these effects, and to find the auto-correlations in the data for price discovery.

To understand the market dynamics during the fix and to see if they correspond to the
literature, some statistics of the order book over time are shown for the EURUSD. The
market dynamics are extracted from the data which is described in Section 5. Since the Fix
is calculated for every trading day, essentially a realization of a time-series is available for
multiple days. From this statistics can be aggregated by time of day. To this end, suppose
at day d = 1, . . . , D and time t we have some realized value xd,t. From this, the mean and
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variance over multiple days can be calculated by time of day,

µx
t =

1

D

D∑
d=1

xd,t,

σx
t =

1

D − 1

D∑
d=1

(xd,t − µx
t )

2
.

This is calculated for various statistics extracted from the order book, and shown in the
figures below. In all cases the data is taken from all trading days from November 2nd 2020
to October 29th 2021.

In figures 3 and 4, xd,t is taken to be the number of events (new orders and cancella-
tions) in the LOB during a ten second window. We can see that during the WMR window
(indicated by the vertical lines), both the mean and variance increase. Before the window,
there is already a gradual increase, but for both the mean and variance it decreases sharply
after the window.

In Figures 5 and 6 the mean spread during each ten second interval is considered. We can
observe that the average spread decreases during the window, and that the variance slightly
decreases. In contrast to the event count, the mean spread does not increase significantly
before the window.

In Figures 7 and 8 the volatility (which is calculated as the standard deviation of the
returns) is shown. An increase before the window in both the mean and variance can be
observed with their peaks around the beginning of the window.

In Figures 9 and 10 the mean and variance of the numbers of trades by time of day is
shown. Similarly to the number of event, there is a sharp increase in trading during the
window. However, unlike the event count, the mean number of trades hardly increases in the
time just before the window. This could be an indication of orders placed at higher levels
in the order book in anticipation of the direction of the price movement [29]. Similarly, an
increase in the variance can be observed during the window.

In Figures 11 and 12 the mean and the variance of the total quantity is shown. It can be
seen that both the mean and variance of the total quantity increase similarly to the number
of trades.

Lastly, in Figures 13 and 14 the mean and variance of the mean trade quantity during the
ten second window is shown. The mean does not show a clear change during the window,
except for a noticeable decrease at the beginning and end of the window. The variance
shows a clear decrease during the window, which could indicate an increase in the use of
execution algorithms.

Summarizing Figures 3-14, a clear effect in market dynamics during and around the
WMR window can be observed. Even though the increase in volatility can be unappealing
to risk-averse traders, the market during the window can adsorb large amounts of volume
so that the effects of market impact is reduced. The observations in this section are in line
with [9].
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Figure 3: Event count (number of events in
the order book) in ten seconds intervals, with
the mean taken over twelve months of trading
days.

Figure 4: Event count (number of events
in the order book) in ten seconds intervals,
with the variance taken over twelve months
of trading days.

Figure 5: Mean spread in ten seconds inter-
vals, with the mean taken over twelve months
of trading days.

Figure 6: Mean spread in ten seconds in-
tervals, with the variance taken over twelve
months of trading days.
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Figure 7: Volatility in ten seconds intervals,
with the mean taken over twelve months of
trading days.

Figure 8: Volatility in ten seconds intervals,
with the variance taken over twelve months
of trading days.

Figure 9: Trade count in ten seconds inter-
vals, with the mean taken over twelve months
of trading days.

Figure 10: Trade count in ten seconds in-
tervals, with the variance taken over twelve
months of trading days.
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Figure 11: Mean of the total trade quantity
in ten seconds intervals, with the mean taken
over twelve months of trading days.

Figure 12: Mean of the total trade quantity in
ten seconds intervals, with the variance taken
over twelve months of trading days.

Figure 13: Mean trade quantity in ten sec-
onds intervals, with the mean taken over
twelve months of trading days.

Figure 14: Mean trade quantity in ten sec-
onds intervals, with the variance taken over
twelve months of trading days.
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4.3 WMR fix under price dynamics

Since the fix methodology is somewhat complicated we aim to provide a simplified model to
estimate the fix given all the information available at that point in time. Besides, the fact
that the WMR is calculated from data sources other than the data sources used here (and
will be elaborated on in Section 5) and that expert judgement is applied in certain cases,
make it hard to exactly replicate the WMR. Lastly, the value of the fix is published several
minutes after the calculation has ended. A simplification can be sufficient for practical use
while only making a small error.

Throughout this section an underlying probability space (Ω,F ,P) is assumed. Suppose
that the mid-price Sk at time tk, k = 0, . . . , N follows a discrete stochastic process,

Sk = Sk−1 + σ
√
τkξk, (2)

where σ is the volatility, τ = tk − tk−1 and ξk ∼ N (0, 1) i.i.d., and we denote its natural
filtration by {Fn, n ∈ N}. As seen before, the volatility is not constant during the window,
but the approximation later on will be independent of the volatility. Suppose that the
benchmark S̄m,l (which is calculated between tm and tl) is a function of Sk, k = m, . . . , l,

S̄m,l = f(Sk, k = m, . . . , l).

We take S̄m,l to be the time-weighted average from time tm, . . . , tl,

S̄m,l =
1

l −m+ 1

l∑
k=m

Sk. (3)

Then the conditional expectation of S̄m,l given Fn at time tn is given by,

µn = E
(
S̄m,l|Fn

)
=


Sn n < m,

1
l−m+1

∑n
k=m Sk + l−n

l−m+1Sn m ≤ n ≤ l,
1

l−m+1

∑l
k=m Sk l < n.

(4)

For the variance we have

σ2
n = Var

(
S̄m,l|Fn

)
=


−σ2τn+K1 n < m,

−σ2τ
(
β1n

3 + β2n
2 + β3n

)
+K2 m ≤ n ≤ l,

0 n > l.

A derivation of the conditional expectation and the variance is given in Appendix A. Note
that the conditional distribution S̄m,l|Fn ∼ N (µn, σ

2
n), and is dependent on n. Under

these simple price dynamics, the process Xn = S̄m,l|Fn is not a stationary process (for the
definition see [33]).

The volatility can be estimated (e.g. by means of maximum likelihood), but this is
not the aim of this derivation. The main takeaway is that the variance decreases linearly
before the start of the window, and cubic in the window. This insight in the uncertainty
of the estimation will be used later on when analysing the results of the machine learning
predictions. Note that the conditional expectation holds if the stochastic process of Sk is a
martingale10. In case the volatility is non-constant, the expected value still holds but the
variance will be different.

10Exchange rates are often described using mean reverting processes [44]. On short time scales the drift
can thus be considered small, justifying the use of martingales.
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This estimate can also be done in a continuous-time setting,

dSt = µ̄(St, t)dt+ σ̄(St, t)dWt,

where St follows an Itô process [45] with drift µ̄ and volatility σ̄, and S0 given, and we take
the estimate to be,

S̄a,b =
1

b− a

∫ b

a

St dt.

In case the drift term µ̄ is zero, then the process is a martingale with respect to Ft. Then
the continuous case yields a comparable result for the estimate,

E
(
S̄a,b|Ft

)
=

1

b− a

(∫ t

a

Sτ dτ + (b− t)St

)
.

However, given the discrete nature of forecasting time-series using machine learning models,
the discrete setting is chosen.

The expected value E
(
S̄m,l|Fn

)
is called the naive estimate of the WMR at time tn, and

is valid as long as the underlying process is a martingale. Note from the discussion above
that the naive estimate is not a stationary process. Figure 15 shows an example of the naive
estimate, taken from the EURUSD on October 29th, 2021.

Figure 15: Plot of the naive estimate of the WMR, along with the mid-price of EURUSD.
Before 15:57:30 the naive estimate and the mid-price coincide.
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In the use of the approximation, it is necessary to get an idea on the error this gives.
In Figure 16 the histogram is shown of the error between the WMR approximation and the
value of the WMR. The error in this case is the difference between the approximation and
the WMR, and is expressed in pips (for EURUSD one pip equals $0.0001 [donnely]). The
approximation in this case is done by taking the average of the mid-price every second from
15:57:30 LN to 16:02:30 LN. This is done for each day data is available between November
2nd, 2020 and October 29th, 2021. The error is generally small and in nearly all observations
less than 1 pip. Given that this is expected to be less than the uncertainty in the prediction
of the WMR, we believe that the use of the approximation is justified.

Figure 16: Histogram of the error of the WMR approximation in pips.
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5 Raw Data

This section describes the raw data used in the predictions by the machine learning models.
Furthermore, it describes the pre-processing of the data which is necessary to be used as
input.

5.1 WMR Fix data

The value of the WMR Fix for each day is available for the same period as the LOB data.
This data is obtained through Refinitiv. Table 1 shows a sample of the value of the EURUSD
Fix for several days.

Table 1: Sample of the EURUSD Fix for several days.

Date EURUSD

13-09-2021 1.18100
14-09-2021 1.18215
15-09-2021 1.18190
16-09-2021 1.17635
17-09-2021 1.17370
20-09-2021 1.17250
21-09-2021 1.17245
22-09-2021 1.17335
23-09-2021 1.17495
24-09-2021 1.17135
27-09-2021 1.17005

5.2 Limit order book data

Generally, LOB data comes in three degrees of granularity [31] with L1 data providing
the best bid/ask price and volumes, L2 the prices and volumes at all price levels, and L3
containing the non-aggregated orders placed by market participants.

L3 LOB data from Cboe is available for the Euro-US Dollar exchange rate. A description
of the data can be found in [46]. EURUSD is chosen as this currency pair has the largest
share in FX spot trading at 24% in 2019 [2]. The data is available for a time period from
November 2nd 2020 to October 29th 2021. The total size of the data is 142.5 GB, however
not all data is used as the focus is specifically on times around the Fix.

Two types of data is available, the limit order book event history, and trade data. From
the former the order book can be reconstructed at any point in time. The time stamps
of the raw data is in New York time, and is converted to London time11. The tick size of
EURUSD Cboe is equal to $0.00001 (0.1 pip).

Of the event history a sample is shown in Table 2. Each row represents an update in the
orderbook, which can be any of four types:

• N: new order;

• C: cancellation of an order;

• S: snapshot;

• M: modification of an order.

11London and New York do not change between summer and winter time on the same date, so that the
conversion between the time zones has to be done carefully.
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A new order consists of the side of the order (1 is bid, 2 is ask), the price, and quantity.
Every order is identified by a unique identifier. A cancellation only consists of the identifier,
which matches with either an S or N. The side, price, and quantity of the cancellation can
be found by matching it with the corresponding S or N. It is important to note that a
cancellation in the data is not necessarily the cancellation of the corresponding order, as it
could also indicate that that order has been matched. A snapshot S comes in groups, and
that group gives the state of the order book. A snapshot is similar to a new order, but when
a group of snapshots is encountered, the current state of the order book is discarded. Lastly,
a modification indicates a change in quantity for a given order. This type however has not
been observed in the data. The number of new events as plotted in Figure 3 is calculated
form the event history (in this snapshots are not considered new events). Furthermore,
Figures 4-8 are calculated from the event history.

Table 2: Sample of the event history of the EURUSD on 27-07-2021.

Time (NY) EventIdentifier Type Bid/Ask Price Quantity

15:00:14.301 49773689 N 2 1.18219 1000000
15:00:14.312 49773688 C
15:00:14.312 49773699 N 1 1.18216 1000000
15:00:14.312 49773689 C
15:00:14.312 49773700 N 2 1.18221 1000000
15:00:14.368 49773304 C
15:00:14.368 49773726 N 2 1.18225 1000000
15:00:14.368 49773401 C
15:00:14.368 49773480 C

Next to the event history, the trade data is available, of which a sample is shown in
Table 3. This data consists of actual trades which have been executed. Each row contains
the price and quantity of a trade together with the aggressor side. Trade data corresponds
to changes in the limit order book, but could differ from the mid-price at any given point
in time as no trading occurs. Note that the frequency of updates in the order book event
history is higher than the trade history. Besides the traded quantities are different from the
quantities in the LOB, which are usually multiples of 1000000. Figures 9-14 are calculated
from the trade data.

Table 3: Sample of the trade history of the EURUSD on 27-07-2021.

Time (NY) Side Price Quantity

15:00:12.789 B 1.18220 437000
15:00:16.176 B 1.18222 100000
15:00:22.622 B 1.18222 100000
15:00:22.709 B 1.18223 100000
15:00:24.656 B 1.18223 5000
15:00:40.225 S 1.18220 225955
15:00:43.526 B 1.18222 500000
15:00:47.002 S 1.18219 232598
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As mentioned in Section 3.2, in practice LOBs are more complex, which is mostly due
to rules instituted by venues. For instance, Cboe offers customized liquidity to market
participants so that certain participants are excluded from trading with each other (e.g. due
to credit limits). This means that the top of the book (the best bid and ask prices) can
become inaccessible to other market participants. Among other things, this implies that
spreads can become negative, and trades can occur at higher levels in the order book.

Next to the customized liquidity, it can happen that trades occur which were not listed
in the order book at all. This is due to the fact that Cboe offers hidden resting orders.
Furthermore, if a market order matches a limit order in the LOB, it is removed from the
LOB but does not appear directly in the trade history. This is caused by last look, which is
the option for a market participant to accept the trade within 70 milliseconds. Only after
acceptance the trade is placed in the list of trades.

5.3 Data processing

Before the machine learning models are trained, prepossessing of the raw data needs to be
performed. The reason for this is twofold. Firstly, the machine learning models used are
sensitive to the scaling of the input features. Secondly, data needs to be resampled as long
input sequences make the machine learning models computationally heavy.

Firstly, event history data needs to be transformed to the LOB snapshot format from
1. A sample of this is shown in Table 4, and in Figure 17 a visualisation at a single point
in time is shown for 15 levels, which is similar to the visualisation of the order book from
Figure 1. As can be seen from Table 2, the time stamp for an event is not unique. All events
with the same time stamp are aggregated in a single snapshot. This means that in each
state of the order book as in Table 4 multiple changes in the order book can occur.

Table 4: Sample of the state of the LOB with three levels on July 27, 2021. All volumes are
multiples of 106.

p1b v1b p2b v2b p3b v3b p1a v1a p2a v2a p3a v3a

15:31:08.400 1.18091 1 1.18089 2 1.18088 4 1.18095 0.5 1.18096 2 1.18097 5
15:31:08.408 1.18091 1 1.18089 2 1.18088 4 1.18095 0.5 1.18096 2 1.18097 4
15:31:08.451 1.18091 1 1.18089 2 1.18088 4 1.18095 0.5 1.18096 2 1.18097 3
15:31:08.469 1.18091 1 1.18089 1 1.18088 5 1.18095 0.5 1.18096 2 1.18097 3
15:31:08.472 1.18091 1 1.18089 1 1.18088 5 1.18095 0.5 1.18096 2 1.18097 4
15:31:08.480 1.18089 2 1.18088 5 1.18087 2 1.18095 0.5 1.18096 3 1.18097 4
15:31:08.488 1.18089 2 1.18088 5 1.18087 2 1.18095 0.5 1.18096 3 1.18097 4.5
15:31:08.493 1.18089 2 1.18088 5 1.18087 2 1.18095 0.5 1.18096 3 1.18097 5
15:31:08.500 1.18089 1 1.18088 4 1.18087 4 1.18095 0.5 1.18096 3 1.18097 5
15:31:08.570 1.18089 2 1.18088 4 1.18087 3 1.18095 0.5 1.18096 3 1.18097 5
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Figure 17: Visualisation of the limit order book (with 15 levels on either side) from the Cboe
data on January 20, 2021, 15:58:30 LN.

The LOB representation of Table 4 is the basic level of input to the models. However, in
certain cases we might want to add additional features to the data in order to improve pre-
dictive performance. These features can be a direct function of the raw data (e.g. volatility
of the mid-price for the past 10 seconds or essentially any technical indicator), or a com-
bination of multiple data sources (e.g. combination of the event and trade data). This is
commonly referred to as feature engineering.

However, one of the big strengths of machine learning is the fact that it obviates the
need of domain knowledge in the construction of the models. It aims to learn the patterns
in the raw data, without general information on the data. For this reason, this is not done
(with a single exception).

Added features to the state of the LOB used in the results of this thesis are:

1. Naive estimate (Section 4.3);

2. Time until 16:02:30;

3. last traded price;

4. last traded quantity;

5. aggressor side of last trade.

The naive estimate is the only input feature which is a function of the LOB data. Although
a lot of features can be added, it is limited in this thesis to just these. In the results the
input features is varied in order to determine which hold most predictive performance.

After all features are present the data is resampled. Resampling is necessary as long in-
put sequences can make the machine learning models too computationally heavy. Moreover,
update in the LOB on millisecond time scales might not provide enough additional informa-
tion to improve the predictive power. Even though resampling is performed, it essentially is
an ad hoc step in the preparation of the data, and there is no canonical way to do so. It is
hard to say what the effect is of resampling on the predictions, and what the most optimal
approach is to resampling.

After resampling the data is normalized using the rolling mean and standard deviation,
similarly to [12]. Data normalisation is needed as the machine learning models used are

20



sensitive to the scaling of the different input features. The choice of rolling mean and
standard deviation comes from the fact that using static normalisation would imply that
the data from multiple days is used for normalisation and the intraday mean and standard
deviation can vary significantly from that of multiple days. Arguably, normalisation is the
weakest spot in the preparation of the data, and the choice of window lack is hard to provide
a solid foundation for.
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6 Models

In this section the artificial neural networks (ANN) used in this thesis are described. In
particular the focus will be on recurrent neural networks (RNN). First a general introduction
to RNNs will be given, including their main assumptions and the most important paradigms.

Broadly speaking, in order to reach conclusions from data two groups can be distin-
guished [47]. One assumes the data is generated by an underlying stochastic model, the
other treats the data-generating mechanism as unknown. The latter is algorithmic in nature
and forms the basis of machine learning.

The strength in using machine learning models is that they are agnostic on the structure
of the data they are trained on, i.e. no domain knowledge is assumed. This allows the models
to be general and complex, and avoids the need of assuming any stochastic process which
generates the data. This is considered one of the great strengths of machine learning.

The essence of this section can briefly be summarized. The data is represented by
D = {(xt,yt), t = 1, . . . , T}, with xt ∈ RP , yt ∈ RM , and is assumed to be observations of
an autocorrelated process. The goal is to construct a predictor ŷt+h at a horizon of h steps,
of a response yt+h given N past observations,

ŷt+h = f(Xt;θ), Xt = (xt−N+1, . . . ,xt),

with f : RT×P → RM some (non-linear) function parameterised by θ. In this way, implicitly
the joint distribution of the in- and output is modelled, as well as the autocovariance of the
data. This is very flexible as no assumptions are made regarding the distribution of the
input or output.

6.1 Machine learning paradigms

Machine learning is a broad term, and covers various classes of algorithms. The focus in this
work will be on supervised learning. In this we are given pairs (x1,y1), . . . , (xN ,yN ), with
xi ∈ X and yi ∈ Y , and the goal is to find the relationship between X and Y . Each element
xi ∈ X is referred to as a feature (vector), with yi the corresponding label or response.

Supervised learning addresses a fundamental prediction problem, namely the construc-
tion of a non-linear predictor f̂(·) of an output yi ∈ Y given an input xi ∈ X. In this it is
assumed that X and Y are related through a “true” function f with an added noise term ε,

y = f(x) + ε. (5)

Supervised learning can be split in two sorts, regression and classification. In regression
the label is a continuous variable, Y ⊂ RM , whereas in classification it is discrete. In
the latter case we denote the output space by G ⊂ NM , and the predictor by ĝ. As an
example for classification, suppose that a response can be either of K categories so that
G = {0, . . . ,K − 1}.

In the case of classification it is usual to represent a label as a vector of zeros and a
one in the kth place, called one-hot encoding [33]. Then if we have a predictor ĝ(x;θ)
parameterized by θ with ĝ : X → [0, 1]K , then we can interpret the output at the kth index
as the probability of the corresponding category given x,

ĝk(x;θ) = P(g = k|X,θ).
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In general it is hard to determine whether a predictor performs well. As there is no
explicit assumption of the distribution of the data, traditional performance measures, such
as likelihood, p-values, or AIC, cannot be used [33]. However, for regression some insight
can be gained by assuming that the noise ε from Equation (5) has zero mean and variance

σ2. The expected value12 of the squared error, (y − f̂)2, made by the predictor can be
decomposed in three terms,

E
(
(y − f̂)2

)
=
(
f − E

(
f̂
))2

︸ ︷︷ ︸
Bias(f̂)2

+ σ2 + Var
(
f̂
)

(6)

where the first term is the square of the predictor bias, the second is the variance of the noise,
and the last term is the variance of the predictor. Note that the lower bound of the expected
value is given by the variance of the noise. Furthermore, the other two terms constitute what
is called the bias-variance trade-off. Bias can occur if a predictor misses relevant structures
in the data and is commonly associated with underfitting. On the other hand high variance
of the predictor might be the results of overfitting, so that the predictor essentially models
the noise. In case of overfitting the model performs well the data is trained on, but lacks
performance on out-of-sample data.

In supervised learning, the dataset is split in three groups, a training, validation, and test
set. The model is fitted to the training set by minimizing some loss function. The validation
set is used to valuate performance of the model during training, i.e. to check whether the loss
evaluated on the validation set decreases similarly to the loss of the training set. Validation
is important in order to avoid overfitting, since no improvement of the validation loss, but
a decrease of the training loss signals overfitting. Lastly the test set is used to validate the
best model’s performance on unseen data.

6.2 Recurrent neural networks

Recurrent neural networks (RNNs) are part of the artificial neural network (ANN) family.
RNNs are designed to explicitly handle temporal dependencies in sequential data [15]. Al-
though only derived methods from RNNs are used in this thesis, it is useful to consider their
construction as it provides some insight.

General recurrent neural networks originate in feedforward neural networks (FFNN).
Feedforward neural networks are universal approximators [48], meaning they can essentially
approximate any continuous function over the input space arbitrarily closely given that the
number of hidden units is large enough (there are some technicalities, for this see [33]).
Since FFNNs are can approximate any function, this raises the question why other types
of networks exist. The answer can be found in efficiency and an improvement on fit. In
case structures in data can be exploited, the number of weights can be decreased resulting
in less susceptibility to over-fitting, and a reduction in training time. Potentially, the most
important class of neural networks for time series is the RNN.

General RNNs construct f by introducing a hidden state zt at each time step as a
function of the previous hidden state zt−1 and the input at t, xt,

zt = g(zt−1,xt), (7)

where g is a non-linear function, and zt ∈ RH . The initial hidden state zt−N = 0. The
response is a function of the last hidden state,

ŷt+h = f(zt).

In Figure 18 a graphical representation of RNNs is shown.

12Implicitly we assume an underlying probability space (Ω,F ,P).
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Figure 18: Graphical representation of Recurrent Neural Networks. The notation is slightly
different, and the hidden units are denoted by h. Retrieved from [24]

In the most simple form of a RNN, at each time step the hidden state zt is a semi-affine
transformation of the previous affine transformation zt−1 and the input xt. The output
is given by a semi-affine transformation of the last state. This yields the following set of
equations,

ŷt+h = σ(2)
(
W (2)zt + b(2)

)
zt = σ(1)

(
U (1)xt +W (1)zt−1 + b(1)

)
,

where σ(1) and σ(2) are the non-linear activation functions, W
(1)
x , W

(1)
z , and W (2) are the

weight matrices, and b(1) and b(2) are the bias vectors.
In case of regression, the activation function of the last state σ(2) is the identity function.

For classification, σ(2) can be any monotone increasing function with limx→−∞ σ(2)(x) = 0,
and limx→∞ σ(2)(x) = 1. Typical choices for the activation functions are the hyperbolic
tangent, the sigmoid function ((1+e−x)−1), the ReLu function (max(0, x)), and the softmax
function σs : K → [0, 1]K defined as,

σs(x)k =
exp(xk)

∥exp(x)∥1
, k ∈ {1, . . . ,K},

where ∥·∥1 is the 1-norm. The softmax function is used in the classification problem for σ(2).
For the recurrent activation function σ(1) the sigmoid function is used.

In the RNN the level of non-linearity is determined by the number of hidden layers H,
and should be at least the dimensionality of xt [33].

The RNN can be considered in certain cases to be a non-linear generalization to autore-
gressive (AR) processes. This is apparent if the activation functions are linear, in case the
output becomes a linear combination of the input.

24



6.2.1 LSTM

Even though the main aim of RNNs is to take into account long-term dependencies, training
those dependencies in RNNs is quite hard due to the vanishing gradient problem [49, 50].
This deficiency is overcome by a generalization of RNNs called LSTM. Long short-term
memory (LSTM) is an extension to the standard RNN introduced by Hochreiter et al. [51].
This is done by introducing a cell memory st next to the hidden states, which represents the
state of the LSTM over time. The memory is input to non-linear gates which determine the
information flow. LSTMss have been found to be able to forecast high-frequency returns
using order book data [22, 15].

In LSTMs each layer (see Equation (7)) is given by,

ft = σ
(
Ufxt +W fzt−1 + bf

)
it = σ

(
U ixt +W izt−1 + bi

)
ot = σ (Uoxt +W ozt−1 + bo)

st = ft ◦ st−1 + ii ◦ tanh (Usxt +W szt−1 + bs)

zt = ot ◦ tanh (st)

where ◦ is the Hadamard (element-wise) product. σ is the activation function, which is

chosen to be the sigmoid function ((1 + e−x)
−1

), similarly to [15]. Furthermore, ft ∈ RH is
the forget gate’s activation vector, it ∈ RH is the input gate’s activation vector, ot ∈ RH

is the output gate’s activation vector, zt ∈ RH is the hidden state, st ∈ RH is the cell’s
memory, and U , W , and b are weight matrices and vector respectively.

The final state zt is fed to a semi-affine transformation in the same way for general
RNNs,

ŷt+h = σ(2)
(
W (2)zt + b(2)

)
.

In case of classification σ(2) is the softmax function, and the identity in case of regression.
As LSTMs produce hidden state at each time step, they create a new sequence zt,

t = T − 1, . . . , 0. This sequence can be passed on to another LSTM, creating a stacked
LSTM architecture [52]. A stacked LSTM containing multiple LSTM layers is better able
to approximate non-linear functions than single-layer LSTMs.

6.2.2 CNN-LSTM

Another method to model time-series is the CNN-LSTM, which is a combination of a Con-
volutional Neural Network (CNN), and an LSTM. CNNs are artificial neural networks that
can exploit local spatial structures in the input [12]. Combinations of both methods have
shown to increase performance as both methods combine strengths, CNN in the spatial part
(i.e. the state of the order book) and LSTM in temporal structures.

Convolutional neural networks consist of layers of discrete convolutional filters. For two
general time-series bt and xt, the convolution is given by,

yt =

∞∑
k=−∞

bkxt−k.

Convolution is commonly used in stochastic signal analysis (e.g. infinite impulse response
filters). Unlike in traditional signal filtration theory, the weights are taken as free parameters
[12].

CNNs provide ways to extract features in the spatial dimension. Here, the convolution
is performed in the spatial dimension, yielding a new time-series,

yi,t =

∞∑
k=−∞

Kkxi−k,t.
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K is called the kernel, and its dimension determines the spatial dimension of the resulting
time-series yt. Similarly to LSTMs, the resulting time series can be used as input for another
CNN layer.

A CNN can be considered to be a generalization of the micro-price. The mirco-price is
similar to the mid-price, but it is weighted by the volume of the opposite side [53],

pmicro =
v1ap

1
b + v1bp

1
a

v1b + v1a
.

If xt = (p1a, p
1
b , v

1
a, v

1
b , . . .) is the state of the order book similar to Equation (1), then applying

a CNN with kernel of size 2 results in the linear combination of the two prices in the first
output of the CNN, similar to the micro-price. This idea is further elaborated on in [12].

The time-series output of the CNN is pasted onto the LSTM creating the CNN-LSTM.
The CNN serves as a way to automate feature extraction [12], and is used to learn the
spatial structures in the data. The derived features are then passed on to the LSTM which
can extract temporal structures. In [12] the idea is used of combining CNNs and LSTMs,
but use a more elaborate method.

6.3 Training

Training is done on the input and output pairs D = {(xt, yt), t = 1, . . . , T}. The goal is to

find the approximator f̂(x) of f(x). We define a loss function L(y, f̂) for a predictor f̂ . The
goal of training the models comes down to minimizing the loss function over all observations,

min
θ

L(θ) + λϕ(θ),

L(θ) =
1

T

T∑
i=1

L(yt, f̂(xt)),

where ϕ is a regularisation penalty weighted by λ. Regularization is often used to make the
model less susceptible to over-fitting by penalising large weights [33]. However, in this thesis
no regularisation is used (as the results show no indication of over-fitting).

In case of regression, the loss function is taken to be the square error,

L = (y − f̂)2,

and L is called the mean-squared error (MSE). In case of classification, the loss function is
taken to be the negative cross-entropy,

L(g, ĝ) = −
K∑
i=1

gk ln ĝk.

The use of negative cross-entropy finds is justification in the fact that the negative cross-
entropy is minimal if the distribution of the estimator equals the “true” distribution [33].

In case there is no regularisation penalty, then the training is equivalent to minimising
some function of the error εt = yt − f̂t over all observations. Note that we do not make
any assumptions regarding the distribution of the error. However, if there is an underlying
probability model, p(y|f̂), then the loss function is the negative log probability L(y, f̂) =

− log p(y|f̂).
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For example, in the case of MSE it is implicitly assumed that the error is Gaussian and
independent and identically distributed (i.i.d.). To see this, suppose εt ∼ N (0, σ2), then we
can fit the model by maximizing the log-likelihood L,

L =

N∑
i=1

log

(
1

σ
√
2π

exp
−(f̂ − yt)

2

2σ2

)

=

N∑
i=1

− log
(
σ
√
2π
)
− (f̂ − yt)

2

2σ2
.

We can see that under this assumption maximizing the log-likelihood with respect to the
parameters of f̂ is equivalent to minimizing the MSE (regardless of σ), so that we indeed
implicitly assume normality and i.i.d.

Generalizations where the error is heteroscedastic do exist, much in the way that GARCH
extends AR. However, heteroscedasticy in neural networks is nascent in academic literature
[33]. Furthermore, in the current application of RNNs in this thesis, the predicted value is
not known in the next time step. The error for each forecast is only known at the end of
the Fix window each day, making heteroscedastic generalizations infeasible.

6.3.1 Optimizers

Optimizers are algorithms to minimize loss functions. There are many forms, but most of
them employ a combination of (stochastic) gradient descent and backpropagation.

Stochastic gradient descent (SGD) is used to solve the minimization problem and train
the model. SGD uses an estimate of the gradient of the loss function, which at the kth

iteration is given by,

gk =
1

bk

∑
i∈Ek

∇Lθ(y
i, f̂k)

with Ek ⊂ {1, . . . , N} and bk = |Ek|. bk is called the batch size. The estimates of θ are
then updated at each iteration by

θk+1 = θk − tkg
k,

where tk is called the learning rate which controls the speed of convergence. If a local
minimum of the loss function exists, then the stochastic gradient descent converges to a
minimum as k → ∞. The gradient is evaluated over all points in the dataset numerous
times. A single iteration over all datapoints is called an epoch. The evaluation of the
gradient of the loss function is performed by backpropagation [33]. In this thesis the Adam
optimizer [54] is used, which implements SGD in an efficient way.

Research indicates that small batch sizes lead to local minima of the loss function which
generalize better [55]. Furthermore, due to the high non-linearity of these models, using low
learning rates the loss converges to local minima which generalize better [15].

6.3.2 Hyperparameter optimization

All of the described models include hyperparameters, which characterize their behaviour. In
case of RNNs examples of hyperparameters are the number of hidden units and the number
of layers in the model.

Hyperparameter optimization (HPO) can be used to find the hyperparameters which
result in the model with the smallest loss. The most simple form of hyperparameter opti-
mization is using random grid search, where hyperparameters are chosen uniformly over a
domain. More complex variants of HPO include Bayesian hyperparameter optimizations,
where the selection of new hyperparameters is determined using a posterior distribution.
However, due to the training times HPO is not used in this thesis.
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6.4 Code implementation

The models described above are implemented in Python 3.7 using the TensorFlow package
(framework version 2.5). The execution of the code is performed on Amazon Sagemaker,
which is a cloud computing environment. Sagemaker allows for training on large data sets by
providing additional TensorFlow containers. Using these containers, various instances can
be initiated on which the training is performed. These instances act as virtual machines,
which makes it easy to request more computational power for training the machine learning
models. The instances used in the training is the ml.p3.2xlarge and includes a GPU to
significantly decrease the training time.

6.5 Optimal execution strategies

Before continuing on to the results of the models, first the potential use of machine learning
predictions is elaborated. Even though the predictions can be given to traders in real-
time, that is not useful as traders get ample trading signals from the market. Machine
learning models are particularly useful for high-frequency traders on very short time horizons
[24], but here a different idea is presented. This is a rough outline on how to incorporate
the predictions in an execution algorithm (EA), which are algorithms to efficiently execute
trades. Execution algorithms can be designed for trading against the Fix.

The use of EAs in the FX market is surveyed by the Bank of International settlements
[56]. They also provide a basic overview of EA archetypes, why market participants use
certain EAs, and the key trade-off between execution objectives (the execution algorithm
trilemma). This trilemma entails that an EA balances between market impact, market risk
(risk arising from changing market price during execution), and opportunity cost (not being
able to execute the entire order within the time period).

The work in this section is based on the work of Almgren and Chriss [57]. This is based
on the thought that an exchange rate follows a stochastic process, but that in addition we
can make a small prediction on the future exchange rate.

In line with [57], suppose we hold a position of X units of currency, that need to be
liquidated before time T . The interval is divided in N intervals of length τ = T/N , and
from this we define tk = kτ , k = 0, . . . , N . A trading trajectory is defined as a list x0, . . . , xn,
where xk is the number of units at time tk, with x0 = X and xN = 0. From this a trade list
is defined as nk = xk−1 − xk, which is the amount of units sold between tk−1 and tk.

It is assumed in [57] that the price dynamics follows,

Sk = Sk−1 + σ
√
τξk − τg

(nk

τ

)
,

where Sk is the exchange rate at time tk, σ is the volatility, ξk ∼ N (0, 1) i.i.d., g is a
function wihich determines the permanent price impact of trading nk units. Next to that,
they suppose that there is a temporary price impact, so that the actual price for each trade
is

S̃k = Sk−1 − h
(nk

τ

)
,

where h determines the temporary market impact. h can also take into account the cost of
crossing the spread, and other trading costs.

In [57] the total cost of trading is defined as XS0 −
∑

nkS̃k, so that the liquidation
is optimized against the initial exchange rate. Here, a slight change is made, since we
wish to optimally execute against the Fix. With this in mind, we define the benchmark as
S̄m,l = f(Sk, k = m, . . . , l), and 0 ≤ m < l ≤ N . Then we wish to optimize the execution
against S̄m,l, to which end we define the cost as

C = XS̄m,l −
N∑

k=1

nkS̃k.
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We assume that Sk is adapted to the filtration Fn. Then the expected value of C given Fn

is,

E (C|Fn) = X E
(
S̄m,l|Fn

)
−

N∑
k=1

nk E
(
S̃k|Fn

)
.

Similarly the conditional variance of C can be calculated, which is slightly more complicated
as S̄m,l and S̃k are not independent.

One way to find the optimal liquidation strategy is to minimize the conditional expected
value of the cost subject to a constraint on the conditional variance. The minimization
problem is then given by,

min
C:V(C|Fn)≤V∗

E(C|Fn), (8)

for a given maximum variance V∗. This yields the (dynamic) optimal strategy nk, k =
n+ 1, . . . , N . This is similar to [57], but they have a static optimization since they use the
unconditional expectation and variance. Note that we expect the conditional variance to
decrease over time. A case is worked out in Appendix B where the optimisation is static,
and it is assumed that S̄m,l =

1
l−m

∑l
k=m Sk.

The machine learning essentially aims to predict E
(
S̄m,l|Fn

)
. Since at each time step a

new prediction is given, a dynamic strategy can be designed which solves Equation (8) at

every time step. Similarly, the machine learning can include predictions on the price ∆Spred
k

on short time scales,

Sk = Sk−1 + σ
√
τξk − τg

(nk

τ

)
+∆Spred

k .
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7 Results

In this section the results are presented. First the results from the regression are shown,
after which the classification is given.

7.1 Regression

First the number of levels to use in the state of the LOB needs to be determined. In Figures
19 and 20 scatter plots are shown of the quantity of an order versus the initial level at
which that order is placed in the LOB, using data of January 20th, 2021 between 15:52:30 -
16:02:30 LN. As many orders are placed at the same quantity and initial level, in Figure 20
only points are plotted with more than 10 observations.

From the figures it can be seen that the quantities of orders placed at higher levels in
the LOB are mostly 106, 3 · 106, and 5 · 106. Note in Figure 20 that the number of trades
at level 4 and quantity 106 is much higher than other levels/quantities. This could be an
indication of orders placed in anticipation of price movements in line with [29]. Furthermore
orders with quantities lower than 106 are often placed at lower levels in the LOB. Based on
these figures, 5 levels are used in the state of the LOB for use the models.

Figure 19: Scatter plot of the initial level ver-
sus the quantity.

Figure 20: Scatter plot of the initial level ver-
sus the quantity.

In the first regression problem, we fit a single layer LSTM on EURUSD LOB data from
January 1, 2021 until October 29, 2021. For each day, data is chosen from 15:50-16:02:30
London time. The state of the LOB is sampled every 0.5 seconds for 100 time steps, which
gives an input size of 100×4 ·5. After resampling the input data is normalised using running
mean and standard deviation of length 15. The target variable is the difference between the
WMR and the 15 time steps running mean of the naive estimate. The data set is split into
a training (70% of the data), validation (20%), and test (10%) set. For the data set used
this means there are 214 training days, 43 validation days, and 21 test days1314. The batch
size used is 64 and the learning rate is set to 10−5. The number of epochs is taken to be
200.

With this data and parameters, in Figure 21 an example of a daily prediction of the
WMR (with data from October 15th, 2021) is shown, which is the output of the LSTM
after de-normalisation. The fix window is indicated using vertical lines. As can be seen, the
predictions are very noisy, which is an undesirable property for predictions used in trading
algorithms. The error (difference between the prediciton and the WMR) over time is shown
is Figure 23, and a histogram of the error in the validation set is displayed in Figure 25.

13Rounding occurs in the splitting of the dataset, so that the proportions of the data set is not precisely
70-20-10%. This is to avoid that data from a single day is both in the validation and training set.

14The size of this data stored in binary format was 5.9 GB and consist is roughly 400 million data points.
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To this end, the predictions are smoothed using a 30 seconds rolling mean. The use of a
rolling mean is quite undesirable as the length of the window is chosen somewhat arbitrarily.
Furthermore, smoothing diminishes the model’s ability to predict sudden price movements.

The smoothed prediction is shown in Figure 22. Since the convergence of the prediction
by the LSTM is not enforced, a weighted estimate is added as prediction. The weighted
estimate before the window is equal to the prediction by the LSTM, but during the window
is weighted with the naive estimate, where the weights change linearly over time. In Figure
24 the smoothed prediction is shown around the window, so that the weighted estimate is
more clear.

Figure 21: Predictions from LSTM without
smoothing.

Figure 22: Predictions from the LSTM
smoothed with a 30 seconds rolling mean.

Figure 23: Error of the predictions from
LSTM without smoothing.

Figure 24: Predictions during the window
from the LSTM smoothed with a 30 seconds
rolling mean.
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Figure 25: Histogram of the error in the validation set.

In figure 26 a plot of the mean-square error loss is plotted on a log-scale against the
epoch number during training. We can see that the validation loss decreases together with
the training loss, indicating that the trained LSTM does not overfit the data.

In line with [15], the performance of a trained model is compared to a benchmark esti-
mate. In case of the fix, the benchmark used is the naive estimate from equation (4). In
figures 27, 28, and 29 the performance of the model and the naive estimate can be seen on
the training, validation, and test set, respectively. The performance in this case is the root
of the cumulative root-mean-squared error (RMSE), calculated from time t to the end of
the window,

RMSEcumulative =

√√√√ 1

TN

T∑
i=t

N∑
j=1

(ŷi,j − yi,j)2.

where N is the number of days, T is the number of time steps per day, and ŷi,j is the
prediction of yi,j on day j and time i. The cumulative RMSE is done in order to get an idea
of the performance of the model over time, and since the RMSE calculated at each point is
time is more noisy.

As can be seen in Figures 28 and 29 the out-of-sample (validation and test) performance
of the LSTM is worse than the RMSE of the naive estimate. Note that in all three figures
the RMSE of the predicted WMR is is worse than for the naive estimate. Furthermore, the
RMSE of the prediction by the LSTM does not clearly decrease during the window, which
is due to the fact that the convergence is not enforced.

The RMSE of the validation set by time of day (i.e. not cumulative) is also shown in
Figure 30. The RMSE can increase in time and is not to be expected. This could be caused
by the low number of observations of 43 days.
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Figure 26: Plot of the loss of the training and
validation set on a log scale.

Figure 27: Root mean squared error from
time t until the end of the fix window, cal-
culated on the train set.

Figure 28: Root mean squared error from
time t until the end of the fix window, cal-
culated on the validation set

Figure 29: Root mean squared error from
time t until the end of the fix window, cal-
culated on the test set.

Figure 30: Root mean squared error at time t, calculated on the validation set.
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7.1.1 Comparison of various models and input features

The previous results are repeated for various inputs and models to get an idea which com-
bination provides the best performance15. A sample of the inputs is shown in Appendix C
(without the order flow OF). The input data is split in several groups:

1. LOB is the state of the order book for 5 levels;

2. OF is the order flow;

3. naive is the naive estimate as input;

4. time is the time until the end of the window;

5. trade is the last trade price, quantity and side.

Time is included as the uncertainty of the estimate theoretically decreases as the time
approach the end of the window (see Section 4.3). This is not enforced by the models,
however. Therefore, by including time explicitly, additional information is provided to the
models with the aim of improving the fit (i.e. “learning” the convergence). The same goes
for including the naive estimate as input.

The mean-squared error for the various models and inputs is shown in Table 5, where the
MSE is calculated over the entire training, validation, and test sets. LSTM(3) indicates a
stacked LSTM with three layers. Note that the MSE is calculated of the weighted estimate.
Using the prediction directly would result be a worse comparison as these prediction do not
converge.

Firstly, none of the models and input features perform better than the naive estimate.
This is an indication that the time horizon is generally too far in the future, and that there
are big effects which do not manifest themselves in the input data but have an impact on
the price formation.

In general, LSTM(3) and CNN-LSTM outperform the single layer LSTM. This is because
they allow for more non-linearity, improving the fit. However, they do not sufficiently
improve the performance of the models. Adding additional input features does improve the
performance, but only marginally. Using order flow shows a relatively large improvement
from using the LOB as input, and shows the best results across the train, validation, and
test set.

Furthermore, from Table 5 it can be seen that the performance of every model on the
test set is worse than on the validation set. As the test set contains data further in time
from the validation set, this is an indication that the performance of the models decreases
over time. The parameters of the models capture the market dynamics, which can change
over time as the dynamics undergo a regime change.

Figure 31 shows the some predictions of one of the best models from Table 7, which is
the CNN-LSTM trained on OF. The RMSE by time of this model is plotted in Figure 32
and shows better performance than the model from Figure 30.

Even though the performance of these models is worse than the naive estimate, the
convergence of the validation loss show that the training is performed well, and that it does
not cause the worse performance. Figure 33 shows the convergence of an LSTM with three
layers and trained on LOB + naive + time + trade. Even though Figure 26 suggests that
the loss can be even smaller for a larger amount of epochs, the decrease is very slow. In
Figure 33 the loss decreases very slowly as the number of epochs increases. Observe that the
rate of convergence of the LSTM with three layers is faster for a low number of epochs than
for a single layer LSTM. All trained models in Table 5 show similar convergence plots, and
the LSTM(3) and CNN-LSTM showed faster convergence than the single layer LSTM. The
value the loss converges to can be interpreted as the irreducible term in the bias-variance
trade-off form Equation (6).

15Note that the size of the dataset for the various input features is larger than the numbers mentioned
before as the dimension of the input is increased.
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Table 5: Mean-squared error of the train, validation and test sets for various inputs. All
mean-squared errors are in units of 10−7.

Input data Model Train Validation Test Training Time
Model MSE MSE MSE (hours)

Naive estimate 1.6 0.8 1.2

LOB LSTM 2.4 1.8 2.8 1.6
LOB LSTM(3) 2.0 1.5 2.3 5.7
LOB CNN-LSTM 1.9 1.6 2.3 8.3

LOB + naive LSTM 2.2 1.7 2.7 1.4
LOB + naive LSTM(3) 2.0 1.5 2.2 5.5
LOB + naive CNN-LSTM 1.9 1.5 2.3 8.5

LOB + naive + time LSTM 2.0 1.4 2.3 1.6
LOB + naive + time LSTM(3) 2.0 1.6 2.3 5.6
LOB + naive + time CNN-LSTM 1.9 1.5 2.2 8.4

LOB + naive + time + trade LSTM 2.0 1.2 1.8 1.7
LOB + naive + time + trade LSTM(3) 1.8 1.4 2.1 5.5
LOB + naive + time + trade CNN-LSTM 2.0 1.6 2.4 8.7

OF LSTM 2.0 1.4 2.1 1.7
OF LSTM(3) 1.9 1.3 2.1 5.7
OF CNN-LSTM 1.8 1.2 1.9 8.6

OF + naive (differenced) LSTM 2.0 1.5 2.2 1.8
OF + naive (differenced) LSTM(3) 1.9 1.4 2.1 5.9
OF + naive (differenced) CNN-LSTM 1.8 1.2 1.9 8.6

Figure 31: Predictions of CNN-LSTM
trained on order flow using data from Au-
gust 6th, 2021.

Figure 32: RMSE by time of CNN-LSTM
trained on order flow using data from Au-
gust 6th, 2021.
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Figure 33: Convergence of the training and validation loss of an LSTM(3) trained on LOB
+ naive + time + trade.
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7.2 Classification

Classification has been been performed on the same data as in the regression. However, in
the case of classification the response has changed from the value of the WMR that day, to a
category. In case the WMR is more than 2.5 pips over the mid-price, then the label is “up”,
if it less than 2.5 pips under the mid-price the label is “down”, and “static” otherwise. The
choice of 2.5 pips is loosely based on the root mean-squared error of the naive estimate (see
for example Figure 29).

The output of the classifier is a probability for each category. A sample of this is shown
in Table 6, where an LSTM is trained on 5 levels of LOB and the naive estimate (LOB +
naive from Table 7). The prediction of the classifier is the category with has the highest
probability. Figure 34 shows the confusion matrix of this classifier, which is used to visualise

Table 6: Sample of the output of an LSTM classifier from October 1st, 2021.

Down Static Up

15:50:58.000 0.29 0.71 0.00
15:50:58.500 0.40 0.60 0.00
15:50:59.000 0.83 0.17 0.00
15:50:59.500 0.26 0.74 0.00
15:51:00.000 0.29 0.70 0.00
15:51:00.500 0.98 0.02 0.00
15:51:01.000 0.29 0.71 0.00
15:51:01.500 0.16 0.82 0.02
15:51:02.000 0.97 0.03 0.00
15:51:02.500 0.96 0.04 0.00

the performance of the model. Each entry in the confusion matrix contains the number of
occurrences where the column indicates what the true label is, and the row indicates the
predicted label. Entries on the anti-diagonal are correctly predicted. As can be seen in
Figure 34, most predictions where “static”, indicating that the used threshold of 2.5 pips
was too large. The classification has been repeated with a threshold of 1 pip in order to

Figure 34: Confusion matrix calculated from a test set of predictions of an LSTM trained
on LOB.

reduce the number of static observations. However, none of these yielded any useful results.
For example, in Figure 35 the training and validation loss (negative cross-entropy) are shown
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of a LSTM classifier trained on order flow. The training loss converges, but the validation
loss does not. This is indicative for all other attempts. The precise reason of this is unknown,
but it could indicate that the time horizon is too large. Furthermore, since the uncertainty
of the estimate of the Fix decrease towards the end of the window, the fact that a constant
threshold is used could contribute to this bad convergence.

Figure 35: Training and validation loss of an LSTM classifier trained on order flow.
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8 Conclusion and Discussion

In this thesis, LSTMs have been applied on FX limit order book data around 16:00 London
time to forecast the WMR fix. The work is split in two approaches: regression and clas-
sification. The former constitutes the prediction of the WMR, whereas the latter concerns
whether the WMR is lower or higher than the current mid-price.

In the case of regression, the performance of the models in the training, validation, and
test set was worse than the naive estimate used as baseline. The naive estimate assumes
that the price process is a martingale, and turns out to be a better estimator.

Adding additional features to the input does generally improve the result, but only
marginally. However, transforming the non-stationary input features to the stationary or-
der flow did improve the performance, and yielded one of the best performing models.
Furthermore, the stacked LSTM and CNN-LSTM performed better than the single layer
LSTM due to increased non-linearity, but only marginally. Thus the “off-the-shelf” recur-
rent neural networks used do not appear to be suitable to be used on these time scales. The
markets appear to be more efficient than was assumed in this work.

The volatility in all predictions is very high. This could indicate that the time horizon
of the predictions is too far in the future. Most literature only considers short term predic-
tions (e.g. seconds or less), whereas the time scales used in this thesis are over 10 minutes.
Furthermore, the large volatility makes the use of these predictions impractical in trading
algorithms.

The convergence of the methods is an indication that the models are not overfitted, and
that state of the order book does not contain sufficient information for the prediction on
longer time scales. The latter can also be seen in the light of the bias-variance trade-off from
Section 6.1, as the loss converges to the irreducible noise which is implicitly assumed. The
fact that the state of the order book does not provide enough information means that the
noise term has to model all other market dynamics, contributing to the noise.

Furthermore, the naive estimate might be a good estimator for the following reason. As
market participants wish to execute against the Fix, they make use of execution algorithms.
From the problem of optimal execution, it can be seen that a TWAP (time-weighted average
price) algorithm is optimal given the price dynamics. If many parties at the same time
execute using similar algorithms, this might create herd behavior. Additionally, in [9] it is
stated that the first part of the Fix window is indicative of the second part. However, since
the uncertainty in the estimate of the fix decreases cubically, the second part of the Fix
window has not so much influence on the outcome of the value of the Fix.

Next to regression, the problem was also stated as a classification problem. However,
all attempts at classification did not yield useful results. In all cases the training loss
converged but not the validation loss. The precise reason for this is unknown, but the
constant threshold used could contribute to this, as the uncertainty of the Fix estimate
decreases towards the end of the window.

The used machine learning models suffer from three large weaknesses: normalisation,
resampling, and smoothing. All three introduce ad hoc modelling parameters, such as the
window of normalisation, the resampling frequency, the smoothing window, and the weighted
estimate. Moreover, smoothing is undesirable as the predictions become less sensitive to
quick changes in the underlying dynamics of the order book. The weighted estimate is
introduced to enforce convergence of the LSTM predictions to a single value at the end of
the window.

The special market dynamics are not captured by the LSTMs, even though they are
designed to avoid the need of domain knowledge. This might be improved by investigating
the assumption that the error is independent and identically distributed, and heteroscedastic
extensions could be considered.

More complex models can be considered, such as DeepLOB [12]. However, given that the
performance of the models is worse than the naive estimate, it can be argued whether using
more complex models will lead to different results. Relatively simple models are often able
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to make good first predictions, which can be improved by more complex ones. However, in
this case the “off-the-shelf” methods do not yield a satisfactory prediction.

The inclusion of the naive estimate as feature has not improved the results of the regres-
sion. Further research can investigate other ways how to include the naive estimate in the
input, or how to enforce the convergence to a single value at the end of the window.

The training in this thesis has been performed in a static manner, i.e. the entire data
set is split into a training, validation, and test set. Instead training can be performed in
a rolling-window backtesting fashion, which better resembles a production setting. In this
case, the model is trained on a small period of time, for example 4 weeks, where the first
week is reserved for validation, the following three weeks for training, and the last week for
testing. Then, if a new time period is available, for example a week of data, then the model
is retrained where new week is used for testing, and the previous test data becomes part of
the training data. This gives several benefits, such as the fact that nearly the entire dataset
has been used for training, and the performance can also be measured on nearly the entire
dataset. Furthermore, in this way regime changes in the market dynamics can be captured.
Besides, the results from the regression indicate that the performance deteriorates on longer
time scales, as the MSE of the test set for all models is worse than the validation MSE. This
could be overcome as well.

Lastly, regarding optimal execution abundant research can be done. The analysis of the
market dynamics in Section 4.2 can be used together with the optimal execution problem
worked out in Appendix B to lead to an improved optimal execution during the fix window.
For example, from the number of events placed in the order book an estimate can be made on
the permanent market impact. Similarly the temporary market impact can be estimated as
well as the transaction costs (which include the spread). Furthermore, in optimal execution
it can be interesting to consider reinforcement learning, which is another branch of machine
learning next to the supervised learning performed here. The reinforcement learning can be
applied in a setting of optimal execution against a benchmark.

In the end forecasting financial time series is incredibly hard as market continually change
dynamics and many parties are performing research in order to benefit form it. Even as a
model might perform well on a certain time period, there is no guarantee that it will work
on another.
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A Expected value and variance of S̄

Here the conditional expected value and variance of S̄m,l as defined in Equation 3 are derived.
The expected value follows directly from the linearity of the expected value,

µn = E
(
S̄m,l|Fn

)
=


Sn n < m,

1
l−m+1

∑n
k=m Sk + l−n

l−m+1Sn m ≤ n ≤ l,
1

l−m+1

∑l
k=m Sk l < n.

(9)

The calculation of the variance,

Var
(
S̄m,l|Fn

)
=

1

(l −m+ 1)2
Var

(
l∑

k=m

Sk|Fn

)
,

is split in three cases. Firstly, if n < m,
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)
=

1
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)
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1
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(
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σ
√
τξk + Sn

)
|Fn

)

=
σ2τ

(l −m+ 1)2
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(
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i=n+1

ξk|Fn

)
.

The variance can be further simplified,
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Using this the variance for n < m is,
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)
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41



where K1 is a constant independent of n. The derivation for m ≤ n < l is similar,

Var
(
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β1n

3 + β2n
2 + β3n
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where β1, β2, β3, and K2 are independent of n. Lastly, for l ≤ n, the variance is zero.
Summarizing the three cases, the conditional variance of S̄ is,

σ2
n = Var

(
S̄m,l|Fn

)
=


−σ2τn+K1 n < m,

−σ2τ
(
β1n

3 + β2n
2 + β3n

)
+K2 m ≤ n ≤ l,

0 n > l.
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B Optimal liquidation under price dynamics

In line with [57], suppose we hold a position ofX units of currency, that need to be liquidated
before time T . The interval is divided in N intervals of length τ = T/N , and define tk = kτ ,
k = 0, . . . , N . A trading trajectory is defined as a list x0, . . . , xn, where xk is the number
of units at time tk, with x0 = X and xN = 0. From this the trade list is defined as
nk = xk−1 − xk, which is the amount of units sold between tk−1 and tk. Suppose the
exchange rate Sk follows the following process,

Sk = Sk−1 + σk

√
τξk − τgk

(nk

τ

)
,

where σk is the time-dependent volatility, ξk ∼ N (0, 1) i.i.d., and gk is the time-dependent
permanent market impact. Furthermore, suppose that the price at which we can trade S̃k

depends on the quantity of the trade,

S̃k = Sk−1 − hk

(nk

τ

)
,

where we refer to hk as the time-dependent temporary market impact. This is similar as in
[57], with the difference that the volatility, permanent, and temporary market impact are
time-dependent. The reason for this is that during and around the WMR fix, these can vary
quite a lot, as is shown in Section 4.2. In theory, the analysis from Section 4.2 can be used
in this optimal liquidation problem to devise a strategy to trade against the Fix.

Next we define the benchmark against we wish to optimally execute as

S̄m,l =
1

l −m+ 1

l∑
k=m

Sk =

l∑
k=m

wkSk.

The cost of trading against this benchmark is defined as,

C = XS̄m,l −
N∑

k=1

nkS̃k.

The goal is the find the nk such that the cost optimal in some sense. Note that the cost can
be written as
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The expected value of the cost is

E (C) = −XS0 +
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Similarly, the variance is given by

Var (C) = Var
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where K is a term independent of xk, and

1k =

{
1, m ≤ k ≤ l,

0, otherwise.

The optimal strategy might be found by minimizing the expected cost, under a maximum
level of variance,

min
C:V(C)≤V∗

E(C).

To solve this, we introduce a Lagrange multiplier λ, and minimize U(C) = E (C)+λVar (C),
which is equivalent to minimizing,

Ũ(C) =

N∑
k=1

τxkgk

(nk

τ

)
+ nkhk

(nk

τ

)
−X1kwk

k∑
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τ

)
+ λσ2

kτ(−2X1kwkxk + x2
k)

− 2λσ2
kτXxk

N∑
q=k+1

1qwq.

No market impact and constant volatility

If we assume no market impact gk = hk = 0, then the minimization problem reduces to the
minimization of the variance. If we in addition assume that the volatility is constant, then
the minimization problem is easy to solve. Taking partial derivatives with respect to wj ,
and setting these to zero, the optimal trading trajectory is given by

xj = X

N∑
q=j

1qwq =
X

l −m+ 1

N∑
q=j

1q.

Note that this solution satisfies x0 = X and xN = 0. This optimal strategy is called a
time-weighted average price (TWAP), executed during the time window of the benchmark.

Linear market impact

As in [57], we can specify the market impact functions as

gk (v) = γkv,

hk

(nk

τ

)
= ϵksgn(nk) +

ηk
τ
nk.
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Then Ũ(C) reduces to,

Ũ(C) =

N∑
k=1

xkγknk + ϵk|nk|+
ηk
τ
n2
k −X1kwk

k∑
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2
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Note that in case the permanent market impact is constant, this can be simplified further.
First, since nk = xk−1 − xk,

k∑
i=1

γni = γ(X − xk).

Secondly (see [57]),

N∑
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γxknk =
1

2
γX2 − 1

2
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k.

With this 10 becomes (dropping out terms independent of xk),
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Grouping all terms,

Ũ(C) =

N∑
k=1

ϵk|nk|+ η̃kn
2
k + αkxk + βkx

2
k,

where

η̃k =
ηk
τ

− 1

2
γ,

αk = X1kwkγ − 2λσ2
kτX

N∑
q=k

1qwq,

βk = λσ2
kτ.

Ũ(C) can be minimized numerically.
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C Input features

p1b v1b p2b v2b p1a v1a p2a v2a

15:50:08.500 1.22916 2 1.22915 4 1.22920 2 1.22921 4
15:50:09.000 1.22916 2 1.22915 4 1.22920 2 1.22921 4
15:50:09.500 1.22917 2 1.22916 2 1.22920 1 1.22921 3
15:50:10.000 1.22917 2 1.22916 2 1.22921 4 1.22922 4
15:50:10.500 1.22908 1 1.22907 1 1.22911 2 1.22912 2

last last last naive. time
trade trade trade WMR to end
price quantity side estimate window

15:50:08.500 1.22919 1 1.0 1.229180 741.5
15:50:09.000 1.22919 1 1.0 1.229180 741.0
15:50:09.500 1.22919 1 1.0 1.229185 740.5
15:50:10.000 1.22919 1 1.0 1.229190 740.0
15:50:10.500 1.22914 0.2 1.0 1.229095 739.5

Table 7: Sample of the input data used in Section 7.1 taken from January 6th, 2021. Volumes
in the table are in units of 1000000
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