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Various authors have presented the aberration function of an optical system as a power series expansion with
respect to the ray coordinates in the exit pupil and the coordinates of the intersection point with the image field
of the optical system. In practical applications, for reasons of efficiency and accuracy, an expansion with the aid of
orthogonal polynomials is preferred for which, since the 1980s, orthogonal Zernike polynomials have become the
reference. In the literature, some conversion schemes of power series coefficients to coefficients for the corre-
sponding Zernike polynomial expansion have been given. In this paper we present an analytic solution for
the conversion problem from a power series expansion in three or four dimensions to a double Zernike polynomial
expansion. The solution pertains to a general optical system with four independent pupil and field coordinates
and to a system with rotational symmetry in which case three independent coordinate combinations have to be
considered. The conversion of the coefficients is analytically in closed form and the result is independent of a
specific sampling scheme or sampling density as this is the case for the commonly used least squares fitting
techniques. Computation schemes are given that allow the evaluation of coefficients of arbitrarily high order
in pupil and field coordinates. © 2013 Optical Society of America

OCIS codes: (080.0080) Geometric optics; (080.1005) Aberration expansions; (110.0110) Imaging systems.
http://dx.doi.org/10.1364/JOSAA.30.001213

1. INTRODUCTION
Soon after the discovery of photography, optical aberration
theory was developed systematically by Seidel [1]. The optical
aberration is given in terms of the transverse aberration
components in the image plane, for rays that are labeled by
means of their (Cartesian) coordinates in the exit pupil
plane of the optical system. The optical system possesses
symmetry of revolution, and the aberration is given with
respect to the perfect (paraxial) imaging condition. Seidel’s
theory requires paraxial input data but enables the calculation
of path-length differences (wavefront aberration) between
rays up to the fourth-order in the coordinates of the ray
intersection points with the optical surfaces and the exit pupil
plane and the coordinates of the (ideal) image point pertaining
to a pencil of rays. Later authors have increased the order
of the approximation. We mention the work of Schwarzschild
[2] for the fifth-order theory. Further developments are
found in [3] and in the extensive work by Buchdahl [4] and
Rimmer [5]. The calculation of aberration coefficients up to
orders as high as 11 for the spherical aberration has been
demonstrated. This work from 1950s to 1960s has been recon-
sidered and modernized in more recent years using formal
iteration schemes and computer algebra. In theory, arbitrarily
high orders of approximation of the aberration function
of an optical system can be reached nowadays as it has been
shown in [6,7].

The aberration analysis described above is based on
the tracing of rays through an optical system with increased

precision depending on the order to which intersection points
with the optical surfaces and ray directions are calculated. In
parallel, the Hamiltonian approach to optical system analysis
[8] was further developed [9–11]. The aberration function is
obtained in terms of wavefront (path-length) deviations be-
tween ray pairs in the object and image space. The precision
with which the deviations are calculated is improved by
inserting higher orders of approximation in the path-length ex-
pressions [12–14]. As in the case of Seidel-based aberration
analysis, the Hamiltonian path-length deviations are written
as power series expansions of the coordinates (ray direction,
intersection point) in object space, in all intermediate spaces
and in the image space. The elimination of the intermediate
ray variables is the more complicated part of the Hamiltonian
approach to optical aberration theory.

Originally, Seidel’s theory was in terms of the transverse
aberration components that are of third-order in the ray coor-
dinates. A gradual transition from transverse aberration analy-
sis to wave front aberration analysis can be observed in the
past. A basic impetus to the use of wavefront aberration for
optical system characterization has been given by Hopkins
[15]. The ray-optics based theory of optical systems, well rep-
resented by the contents of Conrady’s books [16], has been
“translated” by Hopkins into the wave aberration domain.
The continuous quality refinement of optical systems has
pushed the analysis toward more accurate wavefront aberra-
tion analysis; as an example we mention [17] that focuses on
sixth-order wavefront aberration coefficients.
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In parallel to the theoretical developments to higher order,
the measurement of wavefront deviation has been substan-
tially refined in recent years. Very high order dependencies
are included in measurements to represent not only “low fre-
quency” aberrations but also surface-induced deviations with
higher spatial frequency variation. Examples of these higher
order effects, both in modeling and in measurement, can be
found in high-resolution projection lenses for lithography
and in large astronomical telescopes. In the case of the litho-
graphic projection lenses, extremely tight requirements on
distortion and field curvature ask for a very accurate repre-
sentation of the optical aberration function with respect to
aperture and field coordinates. Higher order coefficients
are also needed when the pupil domain, scaled to the unit
circle, shows some discontinuous delimitation (vignetting
of the off-axis imaging pencils, central obstruction of a tele-
scope, hexagonal subapertures, etc.).

In general, function expansions with the aid of monomials,
in most cases comprising coefficients with alternating signs of
the binomial type, suffer from loss of digits. If it is possible to
obtain an expansion of the same function with respect to
orthogonal polynomials, this problem is drastically reduced.
The numerical examples that are given in this paper will illus-
trate the benefit of such a change from monomial expansion
to expansion with Zernike polynomials. It follows from the
preceding discussion that a comprehensive coefficient con-
version scheme from a power series expansion to a double
Zernike expansion in pupil and field coordinates up to very
high orders, typically 50–100 and even higher, would be a use-
ful tool for the optical scientist and engineer. Efforts in this
direction [18,19] were limited to a single Zernike expansion.
Moreover, the computation schemes do not support higher or-
ders than typically 20–40. A numerical breakdown occurs in
the proposed expressions for the converted coefficients due
to the extensive use of factorials.

In what follows we limit ourselves to wavefront analysis of
an optical system. Wavefront aberration functions in terms of
power series expansions are available, but such an expansion
is not optimum. A double Zernike expansion of the aberration
function or of the transverse aberration components is pro-
posed in [20]. Such an expansion has been further studied
in [21] and applied to high-quality microlithographic projec-
tion lenses for the global optimization of the aberration func-
tion [22]. The optical aberration function has equally been
used to study the distribution over the image field of the aber-
rations of circularly symmetric optical systems whose quality
is affected by decentered or tilted surfaces, prismatic effects,
cylindrical surface deformations, etc. Pioneering work in this
field can be found in [23] with subsequent work reported in
[24–27]. The power series expansion based analysis of per-
turbed optical systems has been translated to the Zernike
framework in [28], for the lower image field dependencies
up to an order of 6.

An expansion with respect to Zernike polynomials on the
exit pupil plane and image plane coordinates is more appro-
priate and yields better results regarding efficiency and
accuracy than the corresponding power series expansion.
Especially in the case of a wavefront reconstruction or
retrieval operation, efficiency is greatly improved when
orthogonal polynomials are used for the representation of
the aberration function. In Section 2 we briefly present the

wavefront aberration function for a general optical system
and for the frequently occurring system with symmetry of rev-
olution. In Section 3 we present the conversion scheme for an
optical system with symmetry of revolution. We obtain, in an
orderly and systematic manner, the double Zernike expansion
coefficients of the pupil-field aberration function from the co-
efficients of the power series expansion in a closed form. The
expressions allow the calculation of arbitrarily high orders
and satisfy the needs of present-day and future scientists
and engineers who work on high-quality imaging optics.
Calculation of high-order Zernike polynomials Zm

n �ρ; θ� is un-
reliable when resorting to the standard power series expres-
sions for the radial polynomials. When applying a recursive
scheme, this computational problem is effectively removed
[29,30]. Section 4 focuses on the more general case of a system
without any symmetry. Some examples of coefficient conver-
sion are given in Section 5. The paper ends with some conclu-
sions on the type of functions that can be handled and on the
practical implementation of the method.

2. OPTICAL ABERRATION FUNCTION
In Fig. 1 we sketch an oblique pencil of rays that leaves an
optical system toward a paraxial image point A1. For a particu-
lar ray through a point P1�X; Y � in the exit pupil plane the
transverse aberration components �δxA; δyA� are calculated.
Simultaneously, by optical path-length calculations along a
ray or from a Hamiltonian characteristic function, we obtain
the path-length difference of a particular ray with respect to
the reference ray. The reference ray generally is the ray that
intersects the center of the diaphragm of the optical system; it
passes not necessarily through E1, the center of the exit
pupil, because of the presence of aberrations in the imaging
of the pupils. We define an optical aberration function by the
expression
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Fig. 1. Ray propagation from the exit pupil plane to the image plane.
An aberrated aperture ray intersects the reference sphere through E1
in the exit pupil in the point P with coordinates �XP; YP; ZP�XP; YP��.
The reference ray (dashed in the figure) intersects the reference
sphere in Q. The position of the perfect image point is A1. The aber-
rated ray intersects the pupil plane in the point P1�X; Y� and the image
plane in the point A0

1, with coordinates �xA � δxA; yA � δyA�. The
distance from the center O1 of the image plane to the center E1 of
the exit pupil is R1, negative in the figure. PA1 � E1A1 is the radius
of the reference sphere S, centered on A1, that is associated with the
particular oblique imaging pencil issued from an object point A0 (not
shown in the figure).

1214 J. Opt. Soc. Am. A / Vol. 30, No. 6 / June 2013 J. J. M. Braat and A. J. E. M. Janssen



W�X; Y; x; y� � �A0P� − �A0Q�: (1)

A0 is the object point for the pencil of rays (not shown in the
figure), and P and Q are the intersection points of the general
aperture ray and the reference ray with the reference sphere S
associated with the (perfect) image point A1. The aberration
functionW is defined with respect to the coordinates �X; Y � of
the intersection point P1 of the general aperture ray with the
exit pupil plane through E1 and the image plane coordinates
�x; y� of the hypothetical perfect image point A1 produced by
the object point A0. The aberration function of a general op-
tical system is written in terms of the Cartesian pupil and field
coordinates [15],

W�X; Y ;x; y� �
X

a0nmlk X
nYmxlyk

�
X

a0nmlk ρ
n�m
P1

rl�k
f cosn θ sinm θ cos l ϕ sink ϕ

(2)

with ρP1
and rf the radial coordinates with respect to the ori-

gins E1 and O1, respectively, of pupil and field coordinates;
see Fig. 1. The azimuthal angle θ is measured with respect
to the X axis of the right-handed (X , Y , Z)-coordinate system
in the pupil plane; this angle is positive when the azimuthal
orientation is rotated clockwise when viewing in the direction
of the positive Z axis. A comparable argument holds for the
azimuth ϕ in the image plane.

For an optical system with an axis of rotational symmetry,
the aberration function depends on coordinate combinations
that are invariant with respect to a rotation around the axis
O0O1 of the optical system (O0 is the center of the object
plane). Defining the pupil and field vectors ρP1

� �X; Y � � ρP1

�cos θ; sin θ� and rf � �x; y� � rf �cos ϕ; sin ϕ�, the rotation
invariant combinations are ρP1

· ρP1
, rf · rf , and ρP1

· rf . The
power series expansion of the aberration function is then
given by

Wfρ2P1
; r2f ; ρP1

rf cos�θ − ϕ�g
�
X

a0nml�ρ2P1
�n�r2f �l�rf ρP1

cos�θ − ϕ��m: (3)

The number of terms in each wavefront expansion needs a
short discussion. In optical aberration theory, the terms that
purely depend on the image plane coordinates are generally
omitted [31]. They influence the phase of the optical disturb-
ance in the image plane but are of no relevance for the calcu-
lation of the image intensity. With this restriction, the total
number of terms of a certain order N is given by

Nns �
N�N � 1��N � 5�

6
; Nrs �

N�N � 6�
8

(4)

with Nns applying to the general system and Nrs to a system
with rotational symmetry. In the latter case, N is restricted to
even and nonnegative integer values. The power series expan-
sions of Eqs. (2) and (3) will be converted into Zernike expan-
sions in the next sections. We first address the aberration
function of Eq. (3) because it applies to the common optical
systems that possess rotational symmetry in their as-designed
geometry. In the next step we address the problem of the gen-
eral optical system without any symmetry, either because a
system with rotational symmetry suffers from manufacturing

errors or because the design itself lacks any symmetry prop-
erty (e.g., “free-form” optics).

3. ZERNIKE EXPANSION FOR AN OPTICAL
SYSTEM WITH ROTATIONAL SYMMETRY
To find the Zernike coefficients of the power expansion ac-
cording to Eq. (3), we calculate the inner product of a specific
term with coefficient a0nml with a (complex) double Zernike
polynomial in pupil and field coordinates. The complex
Zernike polynomials Zm

n �ρ; θ� � Rjmj
n �ρ� exp�imθ� are chosen

because they allow a much simpler administration than those
with separate cosine and sine polynomials. We have for any
pupil function f �ρ; θ� the orthogonal expansion

f �ρ; θ� �
X
n;m

cnmR
jmj
n �ρ� exp�imθ� �5�

with cnm generally complex. The normalization of the Zernike
polynomials is such that

Z
2π

0

Z
1

0
jZm

n �ρ; θ�j2ρdρdθ � π

n� 1
: �6�

Thus the cnm in Eq. (5) are given by

cnm � n� 1
π

Z
2π

0

Z
1

0
f �ρ; θ�Zm�

n �ρ; θ�ρdρdθ: (7)

The cosine and sine coefficients of the Zernike expansion of a
general complex function follow from

ac � �cnm � cn;−m�; as � �i�cnm − cn;−m�: �8�

In the case of a real function we have the special prop-
erty cn;−m � c�nm.

Before calculating the inner product we have to normalize
the radial coordinates in pupil and field to unity and obtain an
expansion as in Eq. (3) with new unprimed expansion coeffi-
cients anml. We have the following double Zernike expansion
of the aberration function:

W�ρ; r; θ;ϕ�
�

X
n1;n2;m1;m2

cn1n2m1m2
Rjm1j
n1

�ρ�Rjm2j
n2

�r� exp�i�m1θ�m2ϕ��

�9�

with ρ and r the normalized versions of the real-space radial
coordinates ρP and rf .

To find the complete set of Zernike coefficients, we pro-
ceed in two steps. We first select a general term with index
nlm from the power series expansion and calculate the inner
product with a general Zernike term from the expansion of
Eq. (9). The inner product is denoted by In1n2m1m2

nlm with
n1n2m1m2 the indices of the Zernike polynomial; the inner
product yields nonzero values for certain index combinations
nlmm and n1n2m1m2, depending also on the properties of the
aberration function, for instance, the presence of circular
symmetry. The complete Zernike expansion then follows from
a summation of the coefficients over all possible terms anlm of
the power series.
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For the inner product of a single term from the power series
with Zm1

n1
�ρ; θ� Zm2

n2
�r;ϕ� we write

In1n2m1m2
nlm �

Z
1

0

Z
1

0

Z
2π

0

Z
2π

0
ρ2n�mr2l�mcosm�θ−ϕ�Rjm1j

n1
�ρ�Rjm2j

n2
�r�

×exp�−i�m1θ�m2ϕ��ρrdρdrdθdϕ: (10)

Writing cos�θ − ϕ� as �exp�i�θ − ϕ�� � exp�−i�θ − ϕ���∕2 and
using Newton’s binomial formula, we expand

cosm�θ − ϕ� � 1
2m
Xm
j�0

�
m
j

�
exp�i�m − 2j��θ − ϕ��: �11�

Therefore

Z
2π

0

Z
2π

0
cosm�θ − ϕ� exp�−i�m1θ�m2ϕ��dθdϕ

� 1
2m
Xm
j�0

�m

j

�Z
2π

0

Z
2π

0
exp��i�m −m1 − 2j�θ�

× exp�−i�m�m2 − 2j�ϕ��dθdϕ

� 4π2

2m
Xm
j�0

�m

j

�
δm−m1−2jδm�m2−2j (12)

with δn � 1 for n � 0 and 0 otherwise. Thus, the right-hand
side of Eq. (12) equals

8<
:

4π2
2m

�
m

m−jm1j
2

�
m1 � −m2;m − jm1; 2j even and nonnegative;

0 otherwise:

�13�

With the result of Eqs. (12) and (13), the I in Eq. (10) takes
the form

In1n2m1m2
nlm

� 4π2

2m

�
m

m−jm1j
2

�Z
1

0
ρ2n�mRjm1j

n1
�ρ�ρdρ

Z
1

0
r2l�mRjm1j

n2
�r�rdr:

�14�

Equation (14) illustrates that, for a rotationally symmetric
optical system, the Zernike expansion possesses three inde-
pendent indices n1, n2, and m1 � m2 because of a coupling
between the azimuthal indices of the pupil and field
polynomials.

The integral over ρ has been discussed in [32] (see also
Appendix A), and we obtain with p1 � �n1 − jm1j�∕2

Jn1m1
nm �

Z
1

0
ρ2n�mRjm1j

n1
�ρ�ρdρ

�
1
2

�
n� m−jm1j

2

�
!
�
n� m�jm1j

2

�
!�

n� m−jm1j
2 − p1

�
!
�
n� m�jm1j

2 � p1 � 1
�
!
; (15)

which is nonvanishing only when n1 � jm1j; jm1j � 2;…;
2n�m. For the integral over r there is a similar result, viz.
Jn2m1
lm with p2 � �n2 − jm1j�∕2 instead of p1.

We then obtain for a single power series term by Eq. (7) the
following Zernike polynomial expansion:

ρ2n�mr2l�m cosm�θ − ϕ�

�
X2n�m

n1�0

X2l�m

n2�0

Xm
m1�−m

bn1n2m1
nml Rjm1j

n1
�ρ�Rjm1j

n2
�r� exp�im1�θ − ϕ��

with

bn1n2m1
nml � 4�n1 � 1��n2 � 1�

2m

 
m

m−jm1j
2

!
Jn1m1
nm Jn2m1

lm

� �n1 � 1��n2 � 1�
2m

 
m

m−jm1j
2

!

×

�
n� m−jm1j

2

�
!
�
n� m�jm1j

2

�
!�

n� m−jm1j
2 − p1

�
!
�
n� m�jm1j

2 � p1 � 1
�
!

×

�
l� m−jm1j

2

�
!
�
l� m�jm1j

2

�
!�

l� m−jm1j
2 − p2

�
!
�
l� m�jm1j

2 � p2 � 1
�
!
: (16)

The numbers p1 and p2 are �n1 − jm1j�∕2 and �n2 − jm1j�∕2,
respectively. The summation range for m1 is restricted to
the following values: m − jm1j is even and nonnegative
and jm1j ≤ min�n1; n2�.

For the complete power series expansion with index
ranges 0 ≤ n ≤ Np, 0 ≤ l ≤ Lp, and 0 ≤ m ≤ Mp, we obtain
the Zernike expansion

X
nlm

anlmρ2n�mr2l�m cosm�θ − ϕ�

�
X2Np�Mp

n1�0

X2Lp�Mp

n2�0

XMp

m1�−Mp

�X
nlm

anlmb
n1n2m1
nml

�
Rjm1j
n1

�ρ�Rjm1j
n2

�r�

× exp�im1�θ − ϕ�� �
X

n1n2m1

cn1n2m1
Rjm1j
n1

�ρ�Rjm1j
n2

�r�

× exp�im1�θ − ϕ�� (17)

with cn1n2m1
the new coefficients of the Zernike polynomial

expansion and the series over m1 restricted as in Eq. (16).
The expression for the b coefficients in (16) is in a closed

form with a well-defined, limited number of terms. As is
pointed out in Appendix A, the two expressions for the radial
integrals can be written in a form that circumvents the use of
factorials and leads to a reliable product expression with
multiplication factors ≤1. The expression in Eq. (13) for the
azimuthal integral can be evaluated without problems when
m is not too large (say, m ≤ 20). Alternatively, a reliable,
on DFT’s based, method is given in Appendix B.

4. ZERNIKE EXPANSION FOR A GENERAL
OPTICAL SYSTEM
To find the Zernike coefficients of the power expansion ac-
cording to Eq. (2), we proceed along the same lines as in
the previous section. We normalize the radial coordinates
in pupil and field to unity and obtain the unprimed expansion
coefficients anmlk. The inner product of a general term of the
power series expansion with coefficient anmlk and a double
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Zernike polynomial with indices n1m1n2m2 is given by

In1n2m1m2
nlm �

Z
1

0

Z
1

0

Z
2π

0

Z
2π

0
ρn�mrl�k

× cosn θ sinm θ cos l ϕ sink ϕRjm1j
n1

�ρ�Rjm2j
n2

�r�
× exp�−i�m1θ�m2ϕ��ρrdρdrdθdϕ: (18)

The part of the inner product that is related to an azimuthal
integration over θ in Eq. (18) is given by

Im1
nm �

Z
2π

0
cosn θ sinm θ exp�−im1θ�dθ

� 1
2n�mim

Xn
j1�0

Xm
j2�0

� n

j1

��m

j2

�
�−1�j2

×
Z

2π

0
exp�i�n − 2j1�θ� i�m − 2j2�θ� exp�−im1θ�dθ

� 2π
2n�mim

Xn
j1�0

Xm
j2�0

� n

j1

��m

j2

�
�−1�j2δn�m−m1−2j1−2j2 : (19)

This is nonvanishing only when n�m −m1 is an even integer
between 0 and 2�n�m�, i.e., when n�m − jm1j is even and
nonnegative. In that case we compute

Im1
nm � 2π

2n�mim
X
j

�−1� j
�
m
j

��
n

n�m−m1
2 − j

�
�20�

with a nonempty summation range over all integer j ≥
max�0; �m − n −m1�∕2� and ≤min�m; �n�m −m1�∕2�. The in-
tegral over ϕ in Eq. (18) is given in a similar fashion as Im2

lk . The
expression in Eq. (20) can be evaluated without problems
when n and m are not too large. Otherwise, a reliable method
is given in Appendix B.

For the integration over the radial coordinate ρ in Eq. (18)
we again use the result of Appendix A,

Kn1m1
nm �

Z
1

0
ρn�mRjm1j

n1
�ρ�ρdρ

�
1
2

�
n�m−jm1j

2

�
!
�
n�m�jm1j

2

�
!�

n�m−jm1j
2 − p1

�
!
�
n�m�jm1j

2 � p1 � 1
�
!

(21)

with p1 � �n1 − jm1j�∕2. We have for K in Eq. (21) a nonzero
result only if n1 � jm1j; jm1j � 2;…; �n�m�. Similarly, the in-
tegral over r in Eq. (18) yields Kn2m2

lk with p2 � �n2 − jm2j�∕2
instead of p1, and this is nonzero only if n2 � jm2j;
jm2j � 2;…; �l� k�.

Integration over the four variables of the general expansion
according to Eq. (4) yields for a single term in the power series
expansion

ρn�mrl�k cosn θ sinm θ cos l ϕ sink ϕ

�
XM
n1�0

XK
n2�0

XM
m1�−M

XK
m2�−K

bn1n2m1m2
nmlk Rjm1j

n1
�ρ�Rjm2j

n2
�r�

× exp�i�m1θ�m2ϕ�� (22)

with M � n�m and K � l� k. The coefficients bn1n2m1m2
nmlk

and the inner product In1n2m1m2
nmlk are related through the

expression (7),

bn1n2m1m2
nmlk � �n1 � 1��n2 � 1�

π2
In1n2m1m2
nmlk

� �n1 � 1��n2 � 1�
π2

Im1
nmI

m2
lk Kn1m1

nm Kn2m2
lk : (23)

The complete Zernike expansion is then given by

X
nmlk

anmlkρ
n�mrl�k cosn θ sinm θ cos l ϕ sink ϕ

�
X

n1n2m1m2

�X
nmlk

anmlkb
n1n2m1m2
nmlk

�
Rjm1j
n1

�ρ�Rjm2j
n2

�r�

× exp�i�m1θ�m2ϕ��
�

X
n1n2m1m2

cn1n2m1m2
Rjm1j
n1

�ρ�Rjm2j
n2

�r� × exp�i�m1θ�m2ϕ��;

(24)

with the coefficients cn1n2m1m2
being the Zernike

coefficients for the original power series expansion with
coefficients anmlk.

The results that have been obtained for the coefficients of a
double Zernike expansion can be directly applied to the con-
version of a two-dimensional power series into a standard sin-
gle Zernike expansion. With the computation scheme given
above, unwieldy results can be avoided that are inherent to
earlier schemes given in the literature and that produce a sub-
stantial loss of accuracy or a computational breakdown once
the orders n andm take on values of the order of 30 or higher.

5. NUMERICAL EXAMPLES
In this section we focus on the accuracy with which the con-
version from a power series expansion to a Zernike expansion
can be carried out. We also show that a Zernike polynomial
expansion is much more economic regarding its number of
coefficients in reproducing the original function with a certain
degree of approximation. This property is demonstrated here
for a single Zernike expansion but applies equally well to dou-
ble Zernike expansions.

Example 1: In a first example we treat a two-dimensional
example, limited to the pupil coordinates �X; Y �, to test the
accuracy of the conversion scheme. The Zernike expansion
of the monomial ρ12 is chosen because it allows an easy ana-
lytic check of the result. The appropriate coefficients of
�X2 � Y 2�6 are inserted in the power series expansion in
�X; Y �. With the coefficients a2n−2j;2j;0;0 � �nj� for n � 6 and
j � 0; 1;…; n, we obtain from Eq. (24) the Zernike coefficients
c2j;0;0;0 for j � 0; 1;…; n,

n1 n2 m1 m2 cn1n2m1m2

0 0 0 0 0.1428571428571429 � 1∕7
2 0 0 0 0.3214285714285714 � 9∕28
4 0 0 0 0.2976190476190476 � 25∕84
6 0 0 0 0.1666666666666667 � 1∕6
8 0 0 0 0.0584415584415584 � 9∕154
10 0 0 0 0.0119047619047619 � 1∕84
12 0 0 0 0.0010822510822511 � 1∕924

. �25�

The c coefficients of the Zernike expansion reproduce the unit
coefficient of ρ12 up to the machine precision. For compari-
son, we have put between parentheses the quotients of integer
numbers that exactly reproduce the function ρ12. Such a test
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could equally well be carried out for an arbitrary high order of
ρ as the calculations do not rely on the explicit calculation of
expressions including factorials of large integer numbers.

Example 2: A quadruple power series expansion is chosen
according to

W�ρ; θ; r;ϕ� � ρ3r2
�
1
2
cos3 θ� sin3 θ

�
cos2 ϕ

� ρ4r3 cos3 θ sin θ cos2 ϕ sin ϕ; (26)

where W is an example of a (real) wavefront expansion of
seventh-order in pupil and field coordinates. In the converted
double Zernike expansion 60 nonzero coefficients are found.
The conversion process is accurate down to the machine
precision and the residual error between W and its Zernike
expansion with maximum order equal to 7 is of this order
of magnitude (15–16 significant digits when using double
precision arithmetic).

Example 3: We choose

f �X; Y� � expf2πi�uX � vY�g � expf2πiρw cos�θ − ψ�g;
�27�

where u and v are real and u� iv � w exp�iψ� with w > 0
and ψ real. As a pupil function, the f of Eq. (27) represents
an overall shift of the image, with the components of the shift
vector �u; v� expressed in the diffraction unit in the image
plane. This example is, furthermore, relevant in the present
context with respect to field-dependent distortion. When u
and v vary as a function of the field coordinates r and ϕ, vari-
ous orders of symmetrical and asymmetrical distortion are
represented by the complex pupil function of Eq. (27).

The Cartesian power series representation of f is given by

f p�X; Y� �
X∞

n;m�0

anmXnYm; with anm � �2πiu�n
n!

�2πiv�m
m!

:

�28�

The Zernike expansion of f is given analytically as

f Z�ρ; θ� �
X
n;m

cnmZm
n �ρ; θ�; (29)

where

cnm � 2�n� 1�in Jn�1�2πw�
2πw

exp�−imψ� (30)

for integers n, m such that n − jmj is even and nonnegative
and u� iv � w exp�iψ� as above, and Jn�1 is the Bessel func-
tion of the first kind and of order n� 1. This follows on com-
puting the inner products of f with Zernike circle polynomials
Zm
n �ρ; θ� � Rjmj

n �ρ� exp�imθ�, using
Z

2π

0
exp�2πiρw cos�θ − ψ�� exp�−imθ�dθ

� 2πimJm�2πρw� exp�−imψ�; (31)

and the basic result from the Zernike–Nijboer diffraction
theory (see [29,33]),

Z
1

0
Rjmj
n �ρ�Jm�bρ�ρdρ � �−1�n−m2 Jn�1�b�

b
: �32�

Given N � 0; 1;…, we let

f Np �X; Y � �
X

n�m≤N
anmXnYm; �33�

f NZ �
X

jmj≤n≤N
cnmZm

n ; �34�

and we let

f NpZ �
X
n1;m1

cNn10m10
Zm1
n1

(35)

be the Zernike series representation of f Np with coefficients
cNn10m10

obtained by the method of Section 4.
In Fig. 2(a) we plot the real part of the function f for ρ � 1

and 0 ≤ θ < 2π with �u; v� � �2.5; 1.2�. In Fig. 2(b), forN � 40,
we display on a logarithmic scale the absolute value of the
difference functions

1. Rf f �1; θ� − f 40p �1; θ�g;
2. Rf f 40p �1; θ� − f 40pZ�1; θ�g;
3. Rf f �1; θ� − f 40Z �1; θ�g;

as a function of θ, 0 ≤ θ < 2π, i.e., �X; Y � on the rim of the pu-
pil. It is seen that both f 40p and f 40pZ provide a very poor approxi-
mation of f , that f 40p and f 40pZ agree up to what can be achieved
(10−9) given the large values of anm, up to 108, and the ma-
chine precision of typically 10−16. One also observes that
f 40Z gives an approximation of f with an error of 10−11 that
is of the order of the first neglected cnm’s in the Zernike ex-
pansion of f in Eqs. (29) and (30).

The next exercise is to show that—in this case of an ana-
lytically given f—using a substantially lower number of
Zernike terms in Eq. (35) still can provide an approximation
of f of the same quality as the truncated power series f Np . Thus
we let for N1 � 0; 1;…; N

f N;N1
pZ �

X
jm1j≤n1≤N1

cNn10m10
Zm1
n1
; �36�

i.e., we use the c’s computed withN , but we include only those
Zernike terms corresponding to degrees ≤N1. We let u � 2.5
and v � 1.2 as before, and we compute for a given N rms val-
ues δ of the (complex) quantities f − f app according to

δ �
�
1
J

XJ
j�1

j f f�X; Y �jg − f appf�X; Y �jgj2
�1∕2

; �37�

where the �X; Y �j with �X2 � Y 2�1∕2 ≤ 1 are the points com-
prised in a square window with side lengths 2 and lying on
the intersection points of a square grid (side length 0.2) with
the central intersection point located at the arbitrarily chosen
position �X; Y � � �0.03142;−0.0783�; J amounts to 79 for this
sampling grid. We denote by δ1, δ2, and δ3 the δ obtained in
Eq. (37) where we choose f app � f Np , f NZ , and f N;N1

pZ , respec-
tively. In Fig. 3, there is displayed the 10log δ1 and 10log δ2
(solid curve and dot–dashed curve, respectively) as a function
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ofN from 0 up toNmax � 30, 50, and 70 in the respective cases
of Figs. 3(a)–3(c). Next, for each of the cases (a), (b), (c)
in Fig. 3, the N used in Eq. (36) defining f N;N1

pZ is fixed at
Nmax, and 10log δ3 is plotted (dashed curve) as a function
of N1 � 0; 1;…; Nmax. These are the following observations:

• the value assumed by 10log δ1 at N � Nmax is already as-
sumed by 10log δ2 at N � 0, 27, 38 in the respective cases of
Figs. 3(a)–3(c),

• the graphs of 10log δ1 and 10log δ2 saturate at a level −10
and −15 from N � 62 and 45 onward, respectively,

• the values of 10log δ1 and 10log δ3 coincide
at N � N1 � Nmax,

• 10log δ3 decreases slightly when N1 is decreased below
Nmax until the point N1 � 0, 27, 38 is reached in the respective
cases, where the graphs of 10log δ2 and 10log δ3 intersect, and
these graphs practically coincide when N1 is decreased
further.

0 0,5 1 1,5 2
−1

−0,5

0

0,5

1

θ/π 

(f)R

0 0.5 1 1.5 2
−16

−12

−8

−4

0

10log|R(  f)|δ
 f − fp

 f − fpZ

 f − fZ

p

40

40

40

θ/π 

Fig. 2. Real part of the exponential function f �ρ; θ�. The parameter values are u � 2.5 and v � 1.2. (a)Rff �X; Y�g at the rim of the unit circle (ρ � 1
and 0 ≤ θ < 2π). (b) Solid curve: 10log jRf f − f 40p gj on the unit circle rim; dashed curve: 10log jRff 40p − f 40pZgj; dot–dashed curve: 10log jRff − f 40Z gj.
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 f − fZ
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−20
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0
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 f − fp
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 f − fZ
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Fig. 3. Residual rms errors δ1 and δ2 for the representation of the exponential test function [u � 2.5, v � 1.2 in Eq. (27)] according to Eqs. (33) and
(34), respectively, as a function of N ≤ Nmax � 30, 50, and 70 in (a), (b), and (c), respectively. Furthermore, the residual rms error δ3 for the
representation of the same test function according to Eq. (36) with N � Nmax and N1 � 0; 1;…; Nmax.
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The saturation matter for the graphs of 10log δ1 and 10log δ2
can be explained from the machine precision (equal to ap-
proximately 15 significant decimal positions when standard
“double precision” arithmetic is used), from the fact that about
5 decimal places are lost when computing f Np due to large
values of janmj, and the fact that jcnmj have reached a level
of 10−15 from n � 45 onward.

That the values of 10log δ1 and 10log δ3 coincide at N �
N1 � Nmax should be expected since f NpZ and f N;N

pZ coincide
with one another within machine precision.

An explanation of the last of the observed phenomena
above is somewhat more subtle. Consider, instead of the quan-
tity δ in Eq. (37), the analytically more tractable quantity

Ijf − f appj2 �
1
π

ZZ
X2�Y 2≤1

jf �X; Y � − f app�X; Y �j2dXdY: �38�

We have from Eqs. (29) and (36) that

f − f N;N1
pZ �

X
n;m;n>N1

cnmZm
n �

X
n1 ;m1;n1≤N1

�cn1m1
− cNn10m10

�Zm1
n1
:

�39�

Hence, by the orthogonality of the circle polynomials and the
normalization in Eq. (6), we have

I
�� f − f N;N1−1

pZ

��2
− I
��f − f N;N1

pZ

��2
� 1

N1�1

� X
n;m;n�N1

jcnmj2 −
X

n1;m1;n1�N1

jcn1m1
− cNn10m10

j2
�
; (40)

when N1 decreases from Nmax, the second term in Eq. (40)
dominates the first one until the cN1m and cNN10m10

involved
have the same order of magnitude. Hence, the quantity in
Eq. (40) is negative until then. When N1 is decreased further,
the error made in computing the cNN10m10

as estimates of cN1m is
smaller than the magnitudes of the cN1m themselves, and so
the graphs of 10log δ2 and 10log δ3 coincide to an increasing
extent with lower N1.

6. CONCLUSION
Explicit expressions have been given for the coefficients of a
double Zernike expansion of a function of three or four var-
iables from its power series expansion. The conversion
scheme for the expansion coefficients is exact and can be ap-
plied to the (real) aberration function of an optical imaging
system. The conversion process is based on the calculation
of the inner product of a power series term with a specific
product of two Zernike polynomials, one defined on the pupil
plane coordinates, and the other one on the image plane co-
ordinates. Complex exponentials are used for the description
of the azimuthal dependence of the Zernike polynomials. The
advantages are an easier administration and the fact that the
complex coefficients of a complex function can be calculated
within the same framework as that for real functions.

The inner products are given in closed form and can be cal-
culated up to machine precision for arbitrary high orders.
Separate expressions have been derived for the frequently en-
countered optical systemwith rotational symmetry and for the
more general system without this symmetry property. The or-
der of Zernike polynomials is generally limited to those in the

classical list of “Fringe–Zernike polynomials.” In modern high-
quality imaging systems like lithographic projection lenses
and very large astronomical telescopes with segmented sub-
apertures, much higher orders are needed, either in measure-
ment or in modeling. With the analysis presented in this paper,
an optical aberration function in power series notation of
high order can be conveniently and very accurately converted
into the corresponding double Zernike expansion, avoiding
the cumbersome administration and lengthy results from
earlier work.

Numerical computations have shown that the Zernike ex-
pansion reproduces the function value given by the initial
power series up to the machine precision. In the case of
analytically given pupil functions, it is observed that the
maximum degree of the obtained Zernike expansion can be
substantially decreased, maintaining the same level of
approximation of the initial function. The numerical exercises
show that in this case a reduction in maximum degree of the
Zernike expansion by a factor of typically two is feasible.

The conversion scheme can be applied not only to the op-
tical aberration function itself but also to the complex exit pu-
pil function f � A expfiΦg with the amplitude function A and
the phase function Φ on the exit pupil given as a function of
the position of the image point. Starting from the power series
expansions of A and Φ, the power series expansion of f is
obtained by analytic means or with the aid of formal algebra.
This power series expansion is then converted to a (double)
Zernike expansion. With the aid of the complex coefficients of
this expansion the complex amplitude distribution of the dif-
fraction image is calculated in a semi-analytic way using the
extended Nijboer–Zernike diffraction theory [34,35]; the
analogous computation of high-numerical-aperture diffraction
images is found in [32].

APPENDIX A: INTEGRAL OF THE PRODUCT
OF A MONOMIAL AND A RADIAL ZERNIKE
POLYNOMIAL
Here we follow the approach in [29] and [33] where, with the
aid of Rodrigues’ equation for the Jacobi polynomials, it is
shown that

Rm
n �ρ� �

ρ−m�
n−m
2

	
!

�
d

d�ρ2�

�n−m
2 f�ρ2�n�m

2 �ρ2 − 1�n−m2 g �A1�

withm nonnegative and n −m even and nonnegative. This ex-
pression is used for the calculation of the integral of Eqs. (14)
and (21),

I �
Z

1

0
ρaRm

n �ρ�ρdρ: (A2)

We put �n −m�∕2 � p, �n�m�∕2 � q, insert the Rodrigues
expression in Eq. (A2), and with ρ2 � x we obtain

I � 1
2�p!�

Z
1

0
x�a−m�∕2

�
d
dx

�
p
�xq�x − 1�p�dx: �A3�

By a single integration step by parts, we obtain

I � 1
2�p!�

�
a −m
2

�Z
1

0
x�a−m�∕2−1

�
d
dx

�
p−1

�xq�x − 1�p�dx: �A4�
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After p integrations by parts we have, using q − p � m,

I � �−1�p
2�p!�

�
a −m
2

�
� � �
�
a −m
2

− p� 1
�Z

1

0
x�a�m�∕2�x − 1�pdx:

�A5�

The remaining integral over x is equally subjected to p
integrations by parts,

I � �−1�2p
2

�
a−m
2

	 � � � �a−m2 − p� 1
	�

a�m
2 � 1

	 � � � �a�m
2 � p

	 Z 1

0
x�a�m�∕2�pdx: �A6�

We then obtain the final result

I �
1
2

�
a−m
2

	 � � � �a−m2 − p� 1
	�

a�m
2 � 1

	 � � � �a�m
2 � p� 1

	 : �A7�

The derivation is valid as long as �a −m�∕2 − p > 0. However,
both I in Eq. (A2) and the right-hand side of Eq. (A7) depend
analytically in a with R�a� > −m − 2. Therefore, the result of
Eq. (A7) extends to this range by analyticity. Finally, the result
of Eq. (A7) can be written in terms of Γ functions as

I �
1
2Γ
�
a−m
2 � 1

	
Γ
�
a�m
2 � 1

	
Γ
�
a−m
2 − p� 1

	
Γ
�
a�m
2 � p� 2

	 ; �A8�

where the right-hand side vanishes when a � m� 2p − 2;
m� 2p − 4;…;m.

A numerically stable evaluation of I in (A7) is based on the
product representation

I � 1
a�m� 2p� 2

Yp−1
j�0

a −m − 2j
a�m� 2j � 2

: �A9�

The general factor of the product expression in (A9) is well
behaved and ≤1, and a numerically accurate calculation of
I is possible in standard double precision arithmetic for
arbitrary high orders n and a. For p � 0, the multiple product
is put equal to unity.

APPENDIX B: DISCRETE FOURIER
TRANSFORM COMPUTATION OF THE
FOURIER COEFFICIENTS OF cosn θ sinmθ
Assume that f �θ� is a 2π periodic, integrable function of θ, with
Fourier series

f �θ� �
X�∞

m2�−∞
am2

exp�im2θ�: �B1�

The Fourier coefficients of f can be approximated or com-
puted by discretization of the Fourier integral

am1
� 1

2π

Z
2π

0
f �θ� exp�−im1θ�dθ; integerm1: �B2�

Thus for any S � 1; 2;…, we have from Eq. (B1)

1
S

XS−1
s�0

f
�
2πs
S

�
exp

�
−2πim1

s
S

�

� 1
S

XS−1
s�0

X�∞

m2�−∞
am2

exp


−2πi�m2 −m1�

s
S

�

�
X�∞

r�−∞
am1�rS; (B3)

where it has been used that for integer t

XS−1
s�0

exp
�
2πit

s
S

�
�
�
S; tmultiple of S
0; otherwise:

(B4)

In the case that

f �θ� � cosn θ sinm θ; �B5�

we have that am2
� 0 in Eq. (B1) when jm2j > n�m. There-

fore, when m1 is an integer with jm1j ≤ n�m and
S > 2�n�m�, the series on the last line of Eq. (B3) has only
one nonzero term, viz. the term with r � 0. Hence we have
then

am1
� 1

S

XS−1
s�0

f
�
2πs
S

�
exp

�
−2πim1

s
S

�
: �B6�

Now also note that f �θ� in Eq. (B5) is real, and so a
−m1

� am1

for integer m1. We thus conclude that all required numbers
Im1
nm of Eq. (19) can be obtained according to

Im1
nm �

Z
2π

0
cosn θ sinm θ exp�−im1θ�dθ � 2πam1

� 2π
S

XS−1
s�0

cosn
�
2πs
S

�
sinm

�
2πs
S

�
exp

�
−2πi

m1s
S

�
; (B7)

for m1 � 0; 1;…; n�m;n�m� 1; ;…; S − 1. Equation (B7)
has the form of a discrete Fourier transform (DFT) on S points
applied to the function f �θ� in Eq. (B5) sampled at θ � 2πs∕S,
s � 0; 1;…; S − 1. This DFT formula has a fast implementa-
tion, called FFT, in which all quantities Im1

nm, 0 ≤ m1 ≤
n�m for a given n and m are computed simultaneously,
using only O�S ln S� operations and with very favorable
roundoff error propagation.

The approach of evaluating azimuthal integrals using the
DFT applies also for the double integral in Eq. (12); this
integral can be written as

2πδm1−m2

Z
2π

0
cosm θ exp�−im1θ�dθ; �B8�

and the remaining integral is of the form of (B7).
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