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Summary

The performance of computer chips has dramatically increased in the last 60 → Ch. 1

years.1 This has, amongst others, been made possible by increasing the accuracy
of the lithography machines, the machines that project patterns of light onto the
chip substrate and thereby define the small details that form the electronics. An
increased accuracy also leads, however, to increased machine costs, so that the
machines need to produce more chips per unit of time to limit the costs per chip.

One of the ways to increase the production rate is to increase the size of the
wafer, the chip substrate, so that more chips fit onto a single wafer. In the past,
the wafer diameter increased a number of times, up to today’s 300 mm. It is
almost unavoidable that the wafer size will be increased further to 450 mm.

An increased wafer size automatically leads to increased dimensions of the
lithography machine’s parts. This has important consequences, especially for
the part that supports the wafer, the so-called wafer chuck. The current wafer
chucks are relatively thick and stiff, so that they can be considered as a rigid
body. The out-of-plane displacement of the point on the wafer that is being
exposed, the point of interest, can then be found directly from the four position
sensors at the chuck’s corners.

Due to mass limitations, it is difficult, however, to maintain the wafer chuck’s
required stiffness. For example, if the wafer chuck is scaled in order to follow
the transition from 300 mm to 450 mm and its mass has to be kept constant,
its stiffness decreases by a factor of 25. A less stiff chuck experiences higher
deformation when subjected to disturbance forces. In that case the position of
the point of interest can not be estimated with sufficient accuracy anymore using
the rigid body approach. Therefore, the displacement at the point of interest,
including the deformation, needs to be estimated based on measurements of
additional sensors.

A commonly employed approach to estimation is shape fitting2. Shape fitting
estimates the shape of the displacement field by fitting a set of shapes to the
measurements. Shape fitting does not use the history of the measurement
signals; it only uses the current measurement values and recombines them
into the estimates. Shape fitting was not applied to the wafer chuck before in
literature.

The goal of this thesis is to develop an estimation methodology for wafer

1For a Dutch translation of this summary, the reader is referred to p. xi.
2This name is introduced in this thesis, as the shape fitting method has no generally accepted

name in literature, although it is used extensively.
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viii Summary

chuck deformation, based on shape fitting principles, considering the aim
for low estimation error and the specific requirements related to the wafer
chuck application. In the thesis the selection of the sensor type, the sensor
placement and the algorithm for finding an adequate estimator are addressed.
Furthermore, the shape fitting method is demonstrated using an experimental
setup.

Sensor type A displacement field can be estimated from local position→ Ch. 2

measurements with respect to an external reference or from the spatial or
temporal derivatives of displacement, for example strain and acceleration.

Strain sensors measure relative displacements in the chuck, which are a
function of spatial derivates of the displacement field. The signal of an
accelerometer has to be integrated twice to obtain absolute position. This
integration increases the noise level at low frequency, so that only the higher-
frequency part of the signal is useful. Both accelerometers and strain sensors
can be relatively small and do not need an external reference, so that they can
be placed relatively unrestricted over the chuck’s surface.

The measurement of the position of a point on the chuck requires an external
reference. This is only available above the chuck around the lens column. To be
as much as possible in close sight of the reference, the position sensors need to
be placed at the sides of the wafer chuck. A configuration with four additional
position sensors at the centres of the sides, complementing the existing ones at
the chuck’s corners, is proposed.

Algorithm The disturbances that work on the wafer chuck are most domin-→ Ch. 3

ant at the frequencies well-below the wafer chuck’s lowest resonance frequency.
Thus, the wafer chuck’s response is more or less independent of frequency or
quasi-static. For this reason shape fitting is an adequate, yet simple, approach for
estimation.

In literature, different methods to construct the shape fitting estimator have
been presented. Often dynamic modeshapes are used, but for a quasi-static
system they are of less value, as none of the eigenmodes is excited at its
eigenfrequency. Alternatively, a set of displacement shapes that capture the
system’s response to its disturbances can be constructed, forming the so-called
snapshot-matrix. Methods based on snapshots are appealing because of the
straightforward way in which foreknowledge on the system’s dynamics and
typical disturbances is included. The snapshot-matrix can be partly constructed
from measurements, but must include model data if the position of the point of
interest can not be measured.

Two snapshot-based techniques from literature are the Proper Orthogonal→ Ch. 4

Mode (pom) and the Least Squares (ls) estimation techniques. The performance
of the techniques was compared on the basis of their methodical estimation error
and their error due to sensor noise. There is an inherent trade-off between the
two error sources and either of the techniques facilitates to make this trade-off.
The ls technique, if used in combination with adequate regularisation, leads – by
definition – to a lower total estimation error than the pom technique, as it directly
minimises that error. Next to that, the ls technique has a higher computational
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efficiency and yields results that, unlike the pom technique, are not influenced
by the choice of the total set of locations to be estimated for.

As the wafer chuck experiences rigid body motion, its displacement field → Ch. 5

contains rigid body contributions. These contributions are not quasi-static but
dynamic and should, thus, be removed before the shape fitting estimator can
be found. It is in practice only possible to estimate the rigid body position,
but with such an estimate, the so-called flexible residue can be obtained, which
is not a function of the rigid body position. Furthermore, if the number of
position measurements exceeds the number of rigid body modes, the resulting
redundancy in the flexible residues at the sensors need to be removed before
calculating the shape fitting estimator.

To keep the rigid body motion limited, the wafer chuck’s position is in
practice actively controlled. This leads to dynamic behaviour of the flexible
residue around the controller bandwidth. The snapshot matrix must then be
build up from sets of snapshots for a grid of frequency samples. The information
on relative phase between the signals can be captured in complex numbers. The
ls technique was adapted to deal with such a complex snapshot matrix.

In a numerical case study with eight position sensors and disturbances
distributed over the wafer-lens interface, the estimation error with shape fitting
was shown to reduce by a factor of 70 as compared to the rigid body estimate.
The lower the bandwidth for which the shape fitting estimator is optimised,
the better the estimation performance. A hybrid estimator was proposed that
fuses the estimate of a low-frequency shape fitting estimator band with a
higher-frequency position signal that is obtained from double integration of
acceleration.

Sensor placement Effective placement of the sensors is essential for ob- → Ch. 6

taining good estimation performance. Automated selection is favourable above
hand-picking, as sensor placement is not always intuitive. Requirements for a
placement algorithm include that the algorithm should fit into the framework of
shape fitting and that the algorithm should be effective and fast.

Four placement algorithms from literature were compared in different test-
cases. In a case in which the first eight dynamic modeshapes of a plate
had to be distinguished and identified using position sensors, the placement
methods yielded comparable results that were often equal to the theoretically
optimal placement. For placement of strain sensors, the performance of the
algorithms varied. Here, also the influence of the number of candidates in the
initial candidate set was tested. In general, the algorithms do not yield better
results for larger candidate sets. It was shown that applying the algorithms to
multiple relatively small candidate sets leads to better sensor configurations and
drastically improves the chance of convergence.

It is proposed to perform sensor placement in the framework of shape fitting
by a procedure that distils a set of the most prominent shapes from a snapshot
matrix, amongst others by using the proper orthogonal decomposition. Then,
the algorithms from literature can be used to optimise for distinguishability of
this set of shapes. Still, the actual placement goal in shape fitting can be rather
complex and distant from what the algorithms in literature optimise for. The
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sensor placement procedure was applied to the numerical case and was shown
to reduce the maximum estimation error of the shape fitting estimator by 40 %
as compared to the previous manually selected sensor configuration.

Experimental verification To validate the system model and demonstrate→ Ch. 7

shape fitting in a physical setup an experimental setup was developed. The setup
mimics the wafer chuck system and consists of an in the out-of-plane direction
free-floating plate, displacement sensors, a metrology frame, force actuators and
a three degrees of freedom control system.

The transfer functions from the actuators to the rigid body displacement and
local deformation were measured and compared to the results obtained with the
model. As they show close resemblance, it was concluded that the system model
is valid.

Shape fitting was experimentally demonstrated by estimating the response to
one disturbance actuator based on six flexible residuals in different bandwidths.
For an estimation bandwidth of 80 Hz, which is between the control bandwidth
and the plate’s first eigenfrequency, the resulting estimation error was a factor
of 22 smaller than if using the rigid body method. For a larger bandwidth
of 150 Hz, which is above the first eigenfrequency, the resulting error of the
shape fitting estimator increased by a factor of 10, but the error of the rigid
body estimator increased even more, so that the estimation error of shape fitting
became a factor of 40 lower than the error of the rigid body estimator.

An accelerometer was mounted to the setup’s chuck to verify displacement
sensing using the hybrid shape fitting estimator. The error of the hybrid
estimator was shown to be close to the noise level of the reference sensor.

Conclusion It can be concluded that the shape of the wafer chuck can be→ Ch. 8

estimated effectively based on a limited number of additional sensors using
shape fitting. Shape fitting is a relative simple approach, yet it is effective,
as the chuck’s deformation is mainly quasi-static. The snapshot matrix-based
ls technique in combination with regularisation based on the knowledge of
the sensors’ noise floor leads to a static estimator with minimum total error.
The technique was adapted, so that it can deal with rigid body dynamics and
dynamic effects of the flexible residue. Effective sensor configurations can be
found by incorporating sensor placement methods from literature in the shape
fitting framework.

Simulations and practical experiments show that the shape fitting estimator
yields a considerably improved position estimation of the point of interest as
compared to the current rigid body approach. As such, shape fitting can be
considered as a step forward to a lighter chuck. Necessary further steps include
developing a method for generating snapshot matrices with both model and
measurement data and incorporating the the actual disturbance conditions of
the wafer chuck in the shape fitting method.



Samenvatting

De prestaties van computerchips zijn in de laatste 60 jaar zeer sterk vooruit → Ch. 1

gegaan. Dit is onder meer te danken aan de verhoging van de nauwkeurigheid
van de lithografiemachines, de machines die lichtpatronen op het chipsubstraat
projecteren en daarmee de fijne electronische details definiëren. Een hogere
nauwkeurigheid leidt echter ook tot verhoogde machinekosten, waardoor de
machines per tijdseenheid meer chips moeten produceren om de kosten per
chip te beperken.

Eén van de manieren om de productiesnelheid te verhogen is het vergroten
van de wafer, het substraat van de chips, zodat er meer chips op een wafer
passen. In het verleden is de waferdiameter een aantal keer vergroot, tot de
huidige 300 mm. Het is bijna onvermijdelijk dat de wafergrootte in de toekomst
verder wordt vergroot naar 450 mm.

Een grotere wafer vraagt automatisch ook om vergroting van andere onder-
delen van de lithografiemachine. Dit heeft belangrijke consequenties, vooral op
het onderdeel dat de wafer ondersteunt, het zogenaamde wafer chuck. De huidige
wafer chucks zijn relatief dik en stijf en kunnen daarom beschouwd worden als
een star lichaam. De positie in de uit-het-vlak-richting van het punt op de wafer
dat belicht wordt, het point-of-interest, kan dan direct bepaald worden op basis
van de vier positiesensors op de hoeken van het chuck.

Vanwege beperkingen ten aanzien van de massa van het wafer chuck is het
echter moeilijk om het chuck voldoende stijf te houden. Als de diameter van het
wafer chuck bijvoorbeeld vergroot wordt van 300 mm naar 450 mm, terwijl zijn
massa constant moet blijven, dan neemt zijn stijfheid een factor 25 af. Een min-
der stijf wafer chuck vervormt sterker onder invloed van verstoringskrachten.
In dat geval kan de positie van het point-of-interest niet voldoende nauwkeurig
meer geschat worden op basis van de huidige star-lichaamsmethode. Daarom
moet de verplaatsing van het point-of-interest, waarvan een deel afkomstig is
van de vervorming, geschat worden op basis van metingen van extra sensoren.

Een vaak gebruikte schatmethode is shape fitting3. Shape fitting schat de vorm
van het verplaatsingsveld door het interpoleren van de metingen met behulp
van een verzameling van vormen. Shape fitting maakt geen gebruik van de
geschiedenis van de meetsignalen; het maakt alleen gebruik van de huidige
meetwaarden en hercombineert deze tot de schattingen. Shape fitting is nog
niet eerder in literatuur toegepast op het wafer chuck.

3Deze naam wordt door dit proefschrift geïntroduceerd, omdat de shape fittingmethode – hoewel
extensief gebruikt – geen algmeen gangbare naam heeft in de literatuur.

xi



xii Samenvatting

Het doel van dit proefschrift is het ontwikkelen van een schattingmetho-
dologie van de vervorming van het wafer chuck, gebaseerd op de beginselen
van shape fitting, waarbij rekening wordt gehouden met de wens van een lage
schatfout en de specifieke vereisten in de wafer chucktoepassing. In deze thesis
wordt aandacht besteed aan de keuze van het sensortype, aan de selectie van de
sensorlocaties en aan het algoritme voor het vinden van een adequate schatter.
Verder wordt de shape fittingmethode gedemonstreerd aan de hand van een
proefopstelling.

Sensortype Een verplaatsingsveld kan geschat worden op basis van lokale→ Ch. 2

positiemetingen ten opzichte van een externe referentie of op basis van de
spatiële of temporele afgeleiden van verplaatsing, zoals rek en acceleratie.

Reksensors meten relatieve verplaatsingen op het chuck, die een functie
zijn van de spatiële afgeleiden van het verplaatsingsveld. Het signaal van een
accelerometer dient tweemaal te worden geïntegreerd om absolute verplaatsing
te verkrijgen. Deze integratie verhoogt het ruisniveau op lage frequentie,
waardoor slechts het hoogfrequente deel van het signaal bruikbaar is. Zowel
accelerometers en reksensors kunnen relatief klein zijn en hebben geen externe
referentie nodig, waardoor de plaatsing over het oppervlak van het chuck relatief
zonder restricties is.

Voor het meten van de positie van een punt op het chuck is een externe
referentie nodig. Deze is alleen aanwezig boven het chuck rondom de lens-
kolom. Om zoveel mogelijk in het zicht van de referentie te zijn moeten de
positiesensors aan de zijkanten van het wafer chuck geplaatst worden. Er wordt
een configuratie voorgesteld met, naast de huidige positiesensors op de hoeken
van het chuck, vier extra sensors op de middens van de zijkanten.

Algoritme De verstoringen die aangrijpen op het wafer chuck zijn het→ Ch. 3

meest dominant bij frequenties die voldoende onder de eigenfrequenties van het
wafer chuck liggen. Om die reden is de responsie van het wafer chuck min of
meer frequentieonafhankelijk, ofwel quasistatisch. Shape fitting is daarom naast
een simpele ook een adequate schattingsmethode.

Er zijn verscheidene methodes voor shape fitting gepresenteerd in literatuur.
Vaak worden dynamische modale vormen gebruikt, maar voor een quasistatisch
systeem zijn deze van minder belang, omdat geen van de eigenmodes wordt
geëxciteerd rond zijn eigenfrequentie. In plaats daarvan kan een verzame-
ling worden geconstrueerd uit de verplaatsingsvormen die corresponderen
met de responsies van het systeem op zijn verstoringen, waarmee manier de
zogenaamde snapshotmatrix gevormd kan worden. Methodes gebaseerd op
snapshots zijn aantrekkelijk, omdat ze op een ongecompliceerde manier van de
voorkennis omtrent de dynamica van het systeem en de typische verstoringen op
een systeem gebruik maken. De snapshotmatrix kan deels worden opgebouwd
uit metingen, maar bevat in elk geval de gegevens uit een model indien het
point-of-interest niet bemeten kan worden.

Twee snapshot-gebaseerde technieken uit de literatuur zijn de Proper Or-→ Ch. 4

thogonal Mode (pom) en de kleinste kwadraten (ls) schattechnieken. De
prestaties van deze technieken zijn vergeleken op basis van hun methodische
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schattingsfout en de fout ten gevolge van sensorruis. Er moet een inherente
afweging gemaakt worden tussen deze twee foutbronnen en beide technieken
bieden de mogelijkheid om deze afweging te maken. De ls-techniek leidt, indien
gebruikt in combinatie met adequate regularisatie, per definitie tot een lagere
totale schatfout dan de pom-techniek, omdat de ls-techniek direct voor deze fout
minimaliseert. Daarnaast is de ls-techniek rekentechnisch efficiënter en worden
zijn resultaten, in tegenstelling tot die van de pom-techniek, niet beïnvloed door
de keuze van de totale verzameling van locaties waarvoor geschat moet worden.

Omdat een wafer chuck star-lichaamsbewegingen ondergaat bevat zijn ver- → Ch. 5

plaatsingsveld bijdragen van star-lichaamsmodes. Deze bijdragen zijn niet
quasistatisch maar dynamisch en moeten daarom verwijderd worden alvorens
de shape fitting-schatter kan worden gevonden. In de praktijk is het alleen
mogelijk om de star-lichaamspositie te schatten, maar gebruik makend van
een dergelijke schatting kan het zogenaamde flexibele residu worden bepaald,
welke niet een functie is van de star-lichaamspositie. Verder dient, wanneer het
aantal positiemetingen groter is dan het aantal star-lichaamsvrijheidgraden, de
resulterende redundantie te worden verwijderd uit de flexibele residuen voordat
de shape fitting-schatter bepaald wordt.

Om de star-lichaamsbeweging te beperken wordt de positie van het wafer
chuck in de praktijk actief geregeld. Hierdoor vertoont het flexibele residu
dynamisch gedrag rond de regelbandbreedte. De snapshotmatrix moet in dat
geval opgebouwd worden uit verzamelingen van snapshots voor een reeks van
frequentiemonsters. De informatie omtrent de relatieve fase van de signalen
kan worden beschreven met behulp van complexe getallen. De ls-techniek is
aangepast om te kunnen werken met een dergelijke complexe snapshotmatrix.

In een numerieke voorbeeldstudie met acht positiesensors en over het vlak
tussen de wafer en de lens verpreide verstoringen, leidde het gebruik van de
shape fitting-schatter tot een reductie van schattingsfout met een factor 70 ten
opzichte van de star-lichaamsschatter. Hoe lager de bandbreedte waarvoor de
shape fitting-schatter wordt geoptimaliseerd, hoe beter schatter presteert. Er
wordt een hybride schatter voorgesteld die de schatting van een laagfrequente
shape fitting-schatter samenvoegt met een hoogfrequent positiesignaal verkre-
gen uit tweevoudige integratie van acceleratie.

Sensorplaatsing Voor het behalen van een hoge schatterprestatie is effec- → Ch. 6

tieve plaatsing van de sensors essentieel. Geautomatiseerde selectie is wenselij-
ker dan handselectie, omdat sensorplaatsing niet altijd intuïtief is. Vereisten voor
een sensorplaatsingsalgoritme zijn onder meer dat het algoritme in te passen is
binnen het shape fitting-kader en dat het effectief en snel is.

Vier algoritmen voor sensorplaatsing uit de literatuur zijn vergeleken in
verschillende tests. Bij een test waarin de eerste acht dynamische modale
vormen van een plaat aan de hand van positiesensors onderscheiden en geï-
dentificeerd moesten worden behaalden de algoritmen resultaten vergelijkbaar
met de theoretisch optimale plaatsing. Bij plaatsing van reksensors verschil-
den de prestaties van de algoritmes. Hierbij werd ook de invloed van het
aantal sensorkandidaten in de initiële kandidaatverzameling getest. In het
algemeen leverden de algoritmen geen betere resultaten bij het gebruik van
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grotere kandidaatverzamelingen. De toepassing van de plaatsingsalgoritmen op
verscheidene relatief kleine kandidaatverzamelingen leidde echter wél tot betere
sensorconfiguraties en een aanzienlijk grotere kans op convergentie.

Voor het uitvoeren van sensorplaatsing in het shape fitting-raamwerk is
een procedure geïntroduceerd die een verzameling van de meest prominente
vormen extraheert uit een snapshotmatrix, onder meer gebruikmakend van
de proper orthogonal decomposition. Vervolgens kunnen de algoritmes uit de
literatuur worden gebruikt voor het optimaliseren van de onderscheidbaarheid
binnen de verzameling van vormen. Desondanks kan het precieze optimali-
satiedoel voor shape fitting tamelijk complex en verschillend zijn van het doel
waarvoor de algoritmes optimaliseren. De procedure voor sensorplaatsing is
toegepast op de numerieke voorbeeldstudie waarbij de maximale schatfout van
de shape fitting-schatter met 40 % afnam ten opzicht van de eerder handgekozen
sensorconfiguratie.

Experimentele verificatie Om het systeemmodel te valideren en shape fit-→ Ch. 7

ting in een fysieke opstelling te demonstreren is er een experimentele opstelling
ontwikkeld. De opstelling bootst het wafer chuck-systeem na en bestaat uit een
in uit-het-vlak-richting vrij zwevende plaat, verplaatsingssensors, een metrolo-
gieconstructie, krachtactuators en een drie-graden-van-vrijheid regelsysteem.

De overdrachtsfuncties van de actuators naar de star-lichaamsverplaatsingen
en de lokale vervormingen zijn gemeten en vergeleken met uit het model
verkregen resultaten. Omdat beide sterke overeenkomst vertoonden kon ge-
concludeerd worden dat het systeemmodel valide is.

Shape fitting is experimenteel gedemonstreerd door de responsie ten gevolge
van een verstoringsactuator te schatten op basis van zes flexibele residuen. Bij
een schatterbandbreedte van 80 Hz, welke ligt tussen de regelbandbreedte en
de laagste mechanische eigenfrequentie, was de resulterende schattingsfout een
factor 22 kleiner dan bij gebruik van de star-lichaamsmethode. Bij een hogere
schattingsbandbreedte van 150 Hz, welke boven de laagste eigenfrequentie ligt,
nam de schattingsfout van de shape fitting-schatter met een factor 10 toe,
maar de fout van de star-lichaamsschatter nam nog sterker toe, waardoor de
schattingsfout van de shape fitting-schatter een factor 40 lager werd dan die van
de star-lichaamsschatter.

Een accelerometer werd bevestigd aan het chuck in de opstelling om de
hybride shape fitting-schatter te verifiëren. De fout van de hybride schatter lag
dichtbij het ruisniveau van de referentie-verplaatsingssensor.

Conclusie Er kan geconcludeerd worden dat de vorm van het wafer chuck→ Ch. 8

effectief geschat kan worden met behulp shape fitting op basis van een beperkt
aantal toegevoegde sensoren. Shape fitting is een relatief eenvoudige, maar
wel effectieve methode, omdat de vervorming van het chuck voornamelijk
quasistatisch is. De snapshotmatrix-gebaseerde ls-techniek in combinatie met
regularisatie gebaseerd op de voorkennis omtrent het ruisniveau van de sensors
leidt tot een statische schatter met minimale totale fout. De techniek is aangepast
om te kunnen werken met star-lichaamsdynamica en dynamische effecten van
het flexibele residu. Effectieve sensorconfiguraties kunnen worden verkregen
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door het invoegen van algoritmes voor sensorplaatsing in het shape fitting-
kader.

Simulaties en praktijkexperimenten laten zien dat het gebruik van de shape
fitting-schatter leidt tot een aanzienlijke verbetering van de positieschatting van
het point-of-interest in vergelijking met de huidige star-lichaamsmethode. Om
die reden kan shape fitting gezien worden als een stap voorwaarts naar een
lichter chuck. Er zijn nog verschillende verdere stappen nodig, waaronder de
ontwikkeling van een methode voor het genereren van snapshot matrices op
basis van zowel gegevens uit het model en uit metingen en het rekening houden
met de werkelijke verstoringscondities van het wafer chuck.
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Chapter 1

Introduction

1.1 A ‘self-fulfilling’ prophecy

Last year was the 60th anniversary of Moore’s law [1], which is not so much
a law, but rather an extrapolation based on his observation. In 1965, Gordon
Moore observed that the complexity of computer chips, in terms of the number
of transistors per chip area, had doubled every year. He predicted that this
tendency would continue for at least ten years. In 1975, when it turned out that
he had been right, he predicted that the complexity increase would fall off, but
still double every two years [2]. Again, his prediction came true. Moreover, chip
manufacturers and their machine suppliers adopted his forecast as their target.
In that sense Moore’s observation may be regarded as a self-fulfilling prophecy,
but the word ‘self-fulfilling’ does not fully do justice to reality. Through the
years, engineers have constantly been working at the limits of what is possible,
constantly extending the edges. In the 60 years, they have been able to increase
the number of transistors per chip area by a factor of 1010. As a result, today’s
electronics is able to fulfil wishes people could before only dream of, such
as wireless communication and high-resolution non-invasive medical imaging.
Institutes, companies and consumers benefit from fast, powerful, and efficient
computer chips.

1.2 Chip production using wafer scanners

Chips are produced in batch on wafers, i.e. round thin silicon substrates of up
to 300 mm diameter, as shown in Figure 1.2a. The electronic circuits are built
up upon this substrate with a process called photolithography. Layer by layer,
different materials are applied onto these wafers. Parts of each layer are etched
away, leaving a three-dimensional structure that forms the electronic circuitry.
To etch away only the unwanted parts of a material layer, a photoresistive layer
is applied that is partly exposed by light during the exposure step. This changes
the local properties of the photoresist, allowing the selective removal of the
photoresist during an etching step. In this way, the exposure step defines the

1
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1975 2016

Figure 1.1: An illustration of the performance improvement of computer chips. Despite
its significantly smaller volume, a current iPhone 6 smartphone contains about a 1000
times more transistors than supercomputer Cray-1 around 1975. Cray-1 could perform
108, the iPhone 6 1011 floating point calculations per second [3].

geometry of the layer’s electronic patterns. It is a crucial step, as the smaller the
electronic details can be made, the more features fit on the chip’s area and the
more powerful the chip becomes.

The lithography machine that performs the exposure is called the ‘wafer
scanner’ (Figure 1.2b). As the machine performs a difficult task, it is large and
highly complex. Figure 1.3 schematically represents the section of the machine
where the actual exposure of the wafer takes place. Light from a lens column hits
the wafer, which lies on a wafer chuck. The wafer chuck has several functions.
It keeps the wafer mechanically and thermally stable and it moves the wafer
underneath the lens column, as the lens column has a fixed position and the
whole wafer needs to be exposed. The point on the wafer that is exposed at
a certain instance in time is called the Point of Interest (PoI). A thin film of
immersion fluid is located between the lens column and the exposure area on
the wafer. As a glass-fluid transition has a smaller refraction angle than a glass-
air transition, immersion systems are able to project smaller details.

Four three Degrees of Freedom (DoFs) optical encoders at the corners of
the wafer chuck measure the chuck’s position. They measure with respect to a
metrology frame that provides a stable displacement reference. From the four
sensors at the corners of the chuck the distance between the wafer and the lens
column is calculated as well. To do this, a Rigid Body (rb) approach is used,
assuming that the wafer chuck does not deform.

1.3 Smaller details and a higher throughput

Current wafer scanners use light with a wavelength of 193 nm for the exposure
and are able to produce details in the order of 20 nm, which is 10 times smaller
than the diffraction limit of the light. To be able to manufacture even smaller
features in future, a new machine is currently being developed that uses extreme
ultraviolet light for the exposure, effectively decreasing the wavelength of the
light with a factor of 14 to 13.5 nm (Figure 1.4a).
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(a) A 300 mm diameter wafer. 300 mm is currently the
largest substrate size used for manufacturing electronic
chips. Source: Intel corporation.

(b) Example of a current wafer scanner. The wafer scanner
is performs the exposure of the wafer, thereby defining the
geometry of the electronic patterns. Source: asml.

Figure 1.2: A 300 mm wafer and a wafer scanner.
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lens column

wafer chuck

metrology frame

wafer

immersion film

distance between
lens column and wafer

exposure area

Point of Interest (PoI)

3 DoFs
optical encoder (4x)

Figure 1.3: The wafer chuck supports the wafer and moves it underneath the lens column.
The position of the wafer chuck and the distance between the wafer and lens column are
found from the displacement measurements of the optical encoders at the corners of the
wafer chuck.

A very important property of a wafer scanner is its throughput, the number
of wafers that can be exposed per hour. Due to its extreme specifications a
wafer scanner is expensive, but if more chips can be manufactured in the same
amount of time, the price of the chips decreases. The throughput of a wafer
scanner can, for example, be increased by using larger wafers. Current wafers
have a diameter of 300 mm, in future the diameter will increase by a factor of 1.5
to 450 mm (Figure 1.4b). This transition, initiated some years ago in lithography
industry [4,5], is currently somewhat simmering, but will at some point in future
be a necessary step in the process of improving lithography.

193 nm

13.5 nm 300 mm 450 mm

Larger wafers
Higher production volumes

Light with shorter wave-length
Smaller details

(a) (b)

Figure 1.4: Current trends in wafer scanners. New machines are developed for working
with extreme ultraviolet light, which makes it possible to project smaller details and thus
to build more electronics on a chip’s area. On the other hand, to keep the lithography
process affordable the wafer size needs at some point to be increased, allowing to
manufacture more chips per hour and thus leading to a higher throughput of the wafer
scanner.

Still, increasing the wafer diameter is not a trivial step. Not only the wafer
but also other parts of the machine need to become larger. The length and width
of the wafer chuck, for example, also need to scale up with a factor of 1.5. As
for the wafer chuck’s thickness, there will be an inherent trade-off between the
increase of mass and the increase of deformation.

During the exposure, the wafer chuck deforms due to different disturbance
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1
sources, for example the forces resulting from acoustic effects and the vibrations
in the immersion film. The deformations lead to an error between the actual
distance of the wafer with respect to the lens column and the value found from
the measurements at the corners. Current wafer chucks are relatively thick and
stiff to prevent significant deformation. If the stiffness, however, were to be kept
constant, the wafer chuck’s thickness should be increased [6], leading to larger
actuation and reaction forces needed to maintain the current acceleration levels.
Those larger actuator forces in turn lead to higher heat loads in the system.
Clearly, both the increased heat loads and the increased actuation forces are
undesirable in a precision system. Therefore, it would be useful to make the
wafer chuck thinner and to accept its lower stiffness as a consequence [7].

lens column

wafer chuckA

heat loads
reaction forces

lens column
air turbulence

wafer chuck

vibrations from
immersion film

A

(a)

(b)

Figure 1.5: If the wafer size is increased to 450 mm, also the size of the wafer chuck should
increase. If the stiffness needs to stay equal, the chuck should become thicker, leading to
a significantly larger mass and thus larger heat loads and reaction forces (a). Therefore,
a thinner chuck would be favourable. But a thinner wafer chuck will also experience
larger deformations due to disturbance forces caused by, for example, air turbulence or
vibrations in the immersion film (b).

1.4 Towards a lighter wafer chuck

If the wafer chuck is made thinner, its deformation increases. The effect is
especially large in the out-of-plane direction, where the deformation is primarily
caused by bending. As the deformation in out-of-plane direction increases
more rapidly than in in-plane-direction for decreasing a decreasing wafer chuck
thickness, estimation will be treated using consistently the deformation in the
out-of-plane direction.

Currently, an out-of-plane deformation in the order of 5 nm is allowed.
In the worst case in which the wafer chuck’s geometry is a simple plate and
its thickness is chosen such that the chuck’s mass stays constant, its first
mechanical eigenfrequency decreases by approximately a factor of 8 and its
stiffness decreases by a factor of approximately 25. That means that if the current
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wafer chuck deforms up to 5 nm, the deformation of the larger one would be up
to 120 nm.

If the deformations are such large, the current rb method for finding the
distance between the wafer and the lens column at the PoI is not good enough
any more. On the other hand, a direct measurement of the distance at the
PoI is also difficult because of space limitations in the lens area, the presence
of the wafer surface and the non-existence of a stable reference for position
measurement close to the lens area.

The solution proposed and explored in this thesis is to place additional
sensors – either displacement sensors at other locations than the PoI or sensors
measuring other measurands – and estimate the deformation at the PoI based on
their readings.

1.5 Estimating deformation using shape fitting

The physical processes that cause correlations between the measurements and
the variables to be estimated make estimation possible. More specifically, for the
wafer chuck, the mass and stiffness distribution allow the estimation of static
and dynamic deformation. Although estimators could be dynamic, for example
based on a Kalman filter, often static estimators are chosen, e.g. [8, 9]. Static
estimators make use of the momentary correlation between the measurement
quantities at the sensors and the variables to estimate, not taking into account
information from the previous measurements.

Static estimators are often chosen intuitively and applied without explicit
reasoning. Still, there are legitimate grounds to use them. First of all, if a
system behaves statically or quasi-statically, a well-chosen static estimator can
lead to equally good results as a well-chosen dynamic estimator. In the wafer
chuck case, for example, the low-frequency disturbances are, according to the
manufacturer of the systems, predominant; those low-frequency disturbances
are well below the resonance frequencies of the chuck, so that the problem may
be considered quasi-static or stiffness governed.

Many static estimators in literature make use of a set of basis functions that
describe the correlation between the values at the measurement points and the
target points. The estimate is then found using a fitting procedure which selects
a combination of basis functions that best describes the sensor values. Although
this approach is widely used, it does not have a generally accepted name. In the
rest of this work, this approach will be referred to as shape fitting and the basis
functions fitting shapes.

Estimation using shape fitting has been studied in many application areas in
which a full field measurement of a physical quantity can not be performed. The
missing values in the physical field then need to be estimated using a limited
number of measurements at other locations or of other measurands. Examples
are found in various engineering areas and domains, like estimation of the shape
or deformation of bridges [10, 11], pipe lines [12] or antennas [13] or estimation
of the thermal profiles of parts in precision machines [14]. Estimation can also
be used to generate redundancy for monitoring the condition of the sensors [15].
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An estimation problem consists typically of two mutually dependent parts:

the selection of the sensor configuration and the choice of the estimation algorithm.
The selection of the sensor configuration consists of all steps of choosing the
number of sensors, their locations (i.e. sensor placement) and the type of sensors.
For example, not only displacement sensors may be used for measuring a
displacement field but also strain sensors, as strain is a spatial derivative of
the displacement field. The choice of estimation algorithm consists of all steps
of deriving the estimated value from the sensor signals.

Another reason for using shape fitting – next to its suitability, being a
static estimation method, to quasi-static problems – is the simplicity of the
method. This simplicity has the trivial advantage of being easier to grasp, so
that adaptation of the method to specific boundary conditions of the application
might be easier, also for non-experts. Another advantage is that intrinsically
complicated problems, like the one of sensor placement and the integration with
control schemes, might be easier to solve when building upon a relatively simple
basis method.

1.6 Shape fitting estimation methodology wafer chuck
deformation

Shape fitting has often been employed in literature, in different ways and with
different levels of refinement. There are, for example, different techniques
for obtaining the fitting shapes. Although these techniques have significant
differences, they were, to the best of our knowledge, never compared in literature
before.

Furthermore, although shape fitting has been applied in high-precision
mechatronics before, for example by Koevoets et al. [16], it has not been used in
the wafer chuck application yet. The wafer chuck has some specific properties
that are important for the way shape fitting might be used, like its rb motion
and the controller action that positions the wafer chuck. The properties and the
boundary conditions of the wafer chuck also lead to specific requirements to the
sensor placement method which need to be addressed.

The goal of this thesis is, therefore, defined as follows:

The goal of this thesis is to develop an estimation methodology for wafer
chuck deformation, based on shape fitting principles, considering the aim
for low estimation error and the specific requirements related to the wafer
chuck application.

1.7 Method and structure of this thesis

In this thesis, several shape fitting methods and sensor placement methods from
different application fields and research fields are compared with as a main
objective attaining a low estimation error. The methods are adapted further
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developed to develop an estimation methodology that is suitable for the wafer
chuck application. The adapted methods are implemented on and assessed with
an experimental setup to show their applicability to the wafer chuck problem.

Chapter 2 studies the properties and boundary conditions of the wafer chuck
that are relevant to the requirements of the estimation and sensor placement
algorithms. Based upon the study, a finite element model is selected for further
use throughout the thesis and feasible configurations for the sensors that are
used for estimation are selected.

Given the properties of the wafer chuck, Chapter 3 selects shape fitting as the
estimation method and studies how the method is used in the literature. The so-
called ‘snapshot matrix’ is introduced, which contains the foreknowledge of the
mechanics and the typical disturbances that work on the system.

In literature, two methods can be found that can be used to generate a shape
fitting estimator. Chapter 4 compares these two method, both in a qualitative
and a quantitative way. The numerical results are obtained from wafer chuck
case study. The case study was simplified, as the existing shape fitting method
cannot directly handle the specific boundary conditions of the wafer chuck
related to its rb motion.

Chapter 5 adapts shape fitting method such that it is able to handle the
rb motion and the dynamic behaviour of a system. The adapted method is
applied to a more realistic numeric model of the wafer chuck. This chapter
also proposes a hybrid method that uses shape fitting in combination with
acceleration sensing.

Chapter 6 studies sensor placement, the automated choice of the sensor
locations. To obtain good estimation results it is essential that the sensors
locations are adequate. Several automatic placement algorithms from literature
are selected and a procedure is developed for integrating them into the shape
fitting framework. Numeric results show a significant improved estimation
when utilising the sensor configurations found by this procedure.

To experimentally validate the used numeric methods and to verify the shape
fitting method, an experimental setup that mimics the wafer chuck system
with its sensors, actuators and controller is developed. Chapter 7 presents
the considerations regarding the design of the setup and the estimation results
obtained using this setup.

Finally, Chapter 8 presents the conclusions recommendations based on the
research in this thesis.



Chapter 2

System properties of the wafer
chuck

To be able to select an effective method for estimation of the wafer chuck’s
deformation, it is necessary to be acquainted with the wafer chuck’s system
properties. The previous chapter briefly introduced the wafer chuck system.
This chapter further elaborates on the details of the exposure process and the
system’s dynamics that are relevant for estimation. Based on this knowledge,
the requirements imposed on the estimator are derived.

Section 2.1 provides the details of the exposure process and the motion
control system that are relevant to the estimation problem. Section 2.2 introduces
the equations of motion that govern the wafer chuck’s dynamics and that
form the physical model of the system. Based on these equations of motion
the concept of dynamic eigenmodes is presented. This concept is useful for
understanding the so-called ‘quasi-static’ behaviour of the wafer chuck system,
which proves to be crucial to the development of the estimator. Section 2.3
introduces and experimentally validates the finite element model that is used
in the numerical studies in this thesis. Although geometrically simplified, the
model shares the same physical principles as the real wafer chuck. Section
2.4 studies different sensor types that can be used for the shape estimation
and presents some feasible sensor configurations that fit into the boundary
conditions of the wafer chuck. Finally, Section 2.5 concludes the chapter, listing
the requirements and boundary conditions derived from the wafer chuck that
are imposed on the estimator.

2.1 Introduction to the system

2.1.1 Exposure path

In lithography, the pattern to be projected onto the wafer is defined by the reticle.
Thus, the reticle has a function comparable to the slide in a slide projector. The
reticle contains a single image, which is projected repeatedly onto the wafer,

9
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die

scanning during exposure
(constant velocity)

stepping before and after exposure 
(high acceleration and deceleration)

wafer

Path of the PoI: the wafer chuck moves 
the wafer with respect to the lens column

Figure 2.1: The typical path of the PoI on the wafer as a function of time. The wafer
chuck moves with respect to the stationary lens column such that this path is formed.
One-by-one the dies are exposed during the so-called ‘scanning’ in which the velocity is
kept constant in one direction. In between the exposure of two dies, the wafer is moved as
fast as possible to the next die and experiences high acceleration and deceleration levels.
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resulting in a grid of this pattern on the wafer, the dies (Figure 2.1).
Wafer scanners expose the dies one after the other. This is done in a scanning

fashion: The wafer chuck moves the wafer with respect to the fixed lens-column.
After a die has been scanned, the wafer steps to the next die and begins with the
next scan. In practice, the path of the PoI looks like the one shown in Figure 2.1.
The wafer needs to follow an alternating path, such that the reticle, which needs
to follow the motion of the image, can slide back and forth.

The stepping part is optimised to take little time, leading to high wafer chuck
accelerations. The corresponding high actuation forces lead to deformations and
vibrations of the wafer chuck. Right before the starting the scanning motion
there is some time for the wafer chuck’s vibrations to dampen out. During the
exposure, the velocity in the scanning direction is kept constant, whereas the
velocities in the other direction are kept zero. In practice, there is a small motion
in the out-of-plane direction, such as to follow the height map of the wafer that
is obtained before the exposure process [17]. Still, the resulting out-of-plane
velocities are relatively small.

2.1.2 The position and displacement of the wafer chuck

metrology frame lens column

wafer chuck

Δzm1

wafer chuck (neutral position)

PoI

wPoI

zPoI,0

zPoI

zlens

Δzm2

wm1

wm2

ΔzPoI

arbitrary, stationary position reference

position sensor 1

position sensor 2

y

x

z

Figure 2.2: The definitions of some absolute and relative positions and displacements
of points at the wafer chuck, lens column and metrology frame. Note that the rotation
angles, the wafer chuck deformation and the distance between the lens column and the
PoI are exaggerated for reasons of clarity.

In immersion lithography machines, the wafer chuck’s position is measured
in three Degrees of Freedom (DoF) by four optical encoders located at the corners
of the wafer chuck. The position of a point can only be measured with respect
the position of another point. The encoders measure the position of the wafer
chuck’s corners with respect to the so-called metrology frame, ∆zm1 to ∆zm4.
The metrology frame has a low-stiffness coupling to the world to isolate it from
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 RB coordinates

+ CC
GG

SISO PID
controllers

ws

Ty
Tu

 
 

+

+

CFF

fact

fdist

r
wafer
chuck

(a) Basic structure of the wafer chuck’s out-of-plane
control system.

RB postion
(actual)

RB position
(estimate)

CoM

metrology frame

Δzm1
Δzm2

(b) The rb position is a function the
rb coordinates. Those coordinates
are estimated from the position meas-
urements at the corners of the chuck
with respect to the metrology frame.

Figure 2.3: The wafer chuck’s position is controlled using the rb coordinates found from
the position sensors at the corners of the chuck.

ground vibrations and has a high internal stiffness to limit its deformation. Next
to the wafer chuck’s position, also the positions of the parts that need to be stable
during the exposure are controlled with respect to the metrology frame. The lens
column, for example, is actively kept in position with respect to the metrology
frame. It will be assumed that the lens column has no relative motion with
respect to the metrology frame.

Figure 2.2 provides an overview of the definitions regarding the out-of-plane
positions and displacements of some relevant points at the wafer chuck and its
surroundings. The wafer chuck is drawn in an initial, neutral state and in a
translated and deformed state. The position of all points on the wafer chuck, in
both its states, and on the metrology frame and the lens column can be seen as
referenced to the an arbitrary located, stationary reference. Three points on the
wafer chuck, corresponding to respectively position sensors 1 and 2 and the PoI,
are marked in the figure. As an example, the positions of the PoI points with
respect to the stationary reference are indicated.

The displacement field w describes the displacement of the points on the
translated and deformed wafer chuck with respect to their neutral position.
wm1, wm2 and wPoI are the respective displacements of the three marked points.
∆zm1 to ∆zm2 are the out-of-plane measurements of two indicated position
sensors. The PoI’s position with respect to the lens, the quantity that needs
to be estimated, is indicated by ∆zPoI.

2.1.3 Motion control of the wafer chuck

A control system is used for letting the wafer chuck follow the desired motion in
its six DoFs [18]. Figure 2.3a shows the basic structure of the control loop of the
out-of-plane direction. The control system consists of a feed-forward action, CFF,
and a feed-back loop with a controller, C. The control system aims at following
the position reference r and rejecting the influence of disturbances that act on
the wafer chuck, f dist.
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The chuck’s motion is controlled in terms of its Rigid Body (rb) coordinates.
In the figure, this is indicated using red lines. Controller C controls the three rb

coordinates in a single input/single output (siso) fashion. Matrix Tu translates
the forces in rb coordinates into the actuator forces, f act, that are applied to the
wafer chuck, denoted with G.

The out-of-plane position, zm, of the wafer chuck’s corners with respect to
the metrology frame is measured using the sensors at the chuck’s corners and
converted by matrix Ty into rb coordinates. If the wafer chuck were rigid, the
rb coordinates would be exact, i.e. according to the position and rotation of
the Centre of Mass (CoM). However, if the wafer chuck is compliant, the rb

coordinates should be considered estimates, as illustrated in Figure 2.3b.
For the estimation of the wafer chuck’s out-of-plane deformation, the feed-

forward action is not of interest, as the forces in the out-of-plane direction are
kept practically constant during exposure.

2.1.4 Immersion layer

In immersion lithography a film of immersion fluid is applied between the lens
column and the wafer. This immersion film improves the performance of the
optical system by increasing the so-called ‘numerical aperture’ of the lens [19,
20]. As the light leaving the lens does not enter the air but enters a liquid,
it experiences a lower angle of refraction. This in turn means that the higher
refractions orders can be imaged without increasing the diameter of the lens,
thus improving the imaging resolution.

Next to the optical improvement, the use of an immersion film also brings
challenges. It is, for example, necessary to keep the immersion fluid in place
during the scanning motion. This is taken into account for by the immersion
hood, a large ring around the lens. The immersion hood contains channels for
active supply and drain off of the immersion fluid. The immersion film is kept
in place by the so-called ‘air-knife’, a gas is blown out around the immersion
film [21]. The fluid and air flow causes disturbance forces to act between the
lens column and wafer chuck.

Furthermore, the fluid film adds boundary conditions to the free floating
wafer chuck. From Appendix B it follows that the immersion fluid acts as a
squeeze film, causing a force between the lens column and the wafer chuck
that is composed of parts proportional to their relative velocity, acceleration and
velocity squared, i.e.

Fz = −πR4

(
3µḣ
2h3

0
+

3ρḧ
20h0

− 15ρḣ2

56h2
0

)
, (2.1)

where h(t) is the height of the squeeze film, equal to the distance between the
lens surface and the wafer surface. The formula assumes that h(t) stays close
to the nominal film height, h0. With an assumed lens radius of R = 0.050 m
and a nominal nominal film height of h0 = 0.3 · 10−3 m and assuming water as
immersion fluid with a dynamic viscosity that equals µ = 10−3 Pa · s at 20 ◦C
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and a density of ρ = 1 · 103 kg/m3, the formula can be filled:

Fz = −
(

1.1 · 103
)

ḣ− 10ḧ +
(

58 · 103
)

ḣ2. (2.2)

If the lens column is assumed to be at stand-still, the first term adds damping
to the wafer chuck at the PoI, with a damping constant c = 1.1 · 103 Ns/m. The
second then adds inertia with a mass m = 10 kg. The third term is a non-linear
term but is not significant if the amplitude of h(t) is in the order of hundreds of
nanometres or lower.

Damping is important, as it leads to coupling of the eigenmodes of a system,
depending on how large the damping forces are compared to the inertia and the
stiffness forces. For the modelling of the wafer chuck in the rest of this thesis
it was assumed that the damping is negligible. The contribution of the inertia
is significant compared to the wafer chuck’s mass. For simplification, this effect
was not taken into account in the models of this thesis, but integrating it into
more refined models of the wafer chuck is relatively simple.

2.1.5 Foreknowledge on the disturbances

As the response of a system is determined by the loads that work on the system,
knowledge of these loads is important for estimating the system’s response. Part
of the loads are known as function of time so that the resulting response may
be predicted if a good model is available. The actuation forces calculated by
the feed-forward and the feed-back controller are known and, as such, their
resulting deformations can be calculated.

The disturbance forces are, on the other hand, not known as function of time.
Still, in many cases foreknowledge about the typical location or area where they
work, their typical magnitude and their typical frequency content is available.
Such foreknowledge makes estimation possible.

Examples of disturbances that work on the wafer chuck in immersion
machines include the forces due to the cables that connect to the wafer chuck,
the forces due to noise on the actuator signals and the forces induced by the
flow in the immersion film. The disturbance sources are extensively studied by
wafer scanner manufacturers in the context of error budgeting. This information
includes typical location, magnitude and frequency region of the disturbance.
The relevant foreknowledge can be used when constructing an estimation
algorithm.

The major disturbance source, causing the largest deformations of the wafer
chuck are the forces induced by the immersion film [22]. The immersion
film disturbances are mainly low-frequency, typically well-below the lowest
resonance frequency of the wafer chuck. Being the major disturbance source,
the immersion film forces will be used in the numerical analyses throughout
this thesis.

The wafer chuck’s deformation is not only caused by mechanical disturb-
ances, i.e. forces and moments, but also by thermal disturbances. Heat loads
lead to thermal gradients in the wafer chuck, which in turn lead to deformation.
As the processes in the thermal domain are typically slow in comparison to
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the processes in the mechanical domain, the thermal domain will not excite
resonances in the mechanical domain. Therefore, a thermal distribution contrib-
utes one-to-one to the deformation in the mechanical domain. Estimation of the
deformation due to thermal loads can, therefore, be based on a combination of
thermal and mechanical sensors.

2.2 Mechanical model and dynamic eigenmodes

This section studies the wafer chuck’s mechanics. The concept of the equations
of motion and their dynamic eigenmodes and modeshapes is introduced. The
concept of eigenmodes proves important for understanding the quasi-static be-
haviour, which is relevant for the estimator selection in Chapter 3. Furthermore,
the equations of motion provide the physical framework of the model that is
developed in the next section.

2.2.1 Equations of motion in matrix form

The equations of motion for a general linear solid mechanical system with
damping can be written in matrix-form as

Mẅ + Cẇ + Kw = f , (2.3)

where M, C and K are respectively the mass, damping and stiffness matrix, w
is a vector describing the generalised displacement field in terms of the nodal
coordinates and vector f describes the generalised external forces applied to the
system. This equation can be rewritten in the well-known state space form using
a set of first order differential equations as

d
dt

{
w
ẇ

}
=

[
0 I

−M−1K −M−1C

]
︸ ︷︷ ︸

A

{
w
ẇ

}
+

[
0

M−1

]
︸ ︷︷ ︸

B

f . (2.4)

The equivalent to Eq. (2.3) in the frequency domain is

−Mw′Ω2 + Cw′ jΩ + Kw′ = f ′, (2.5)

where the frequency variable Ω is a capital to better distinguish it from the
displacement w. w′ and f ′ are respectively the displacements and forces in the
frequency domain.

2.2.2 Definition modeshapes and eigenfrequencies

At its resonance frequencies, a system’s internal forces from inertia, damping
and stiffness are in perfect balance at all points of the system. If enough energy
is added via external forces and the system’s damping is low, relatively large
displacement amplitudes can be reached. The displacement field w = ϕ̆i for
which resonance occurs is called a modeshape, the corresponding frequency the
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eigenfrequency Ω = Ωi. Filling in these definitions in Eq. (2.5) and taking f = 0
for internal equilibrium the following equations are obtained

−Ω2
i Mϕ̆i + jΩiCϕ̆i + Kϕ̆i = 0, (2.6)

which can be rewritten in the form of an eigenvalue problem(
K + jΩiC−Ω2

i M
)

ϕ̆i = 0. (2.7)

Solving the eigenvalue problem yields the modeshapes and the eigenfrequen-
cies. The scaling of the modeshapes is arbitrary. In a system without damping,
the modeshapes and the eigenfrequencies are real, in a system with damping
they are complex [23].

As shown in Section 2.1.4, the immersion film adds damping to the wafer
chuck in the order of 1.1 · 103 Ns/m, depending on the height of the immersion
film. Whether this can be considered significant or not depends on the mass and
stiffness of the wafer chuck.

2.2.3 Modal coordinates

If the damping in the system is not significant the modeshapes do not transfer
energy to each other. This leads to the concept of modal decoupling and modal
coordinates, which is not only helpful for improved insight into the dynamics of
the system, but also useful in the context of modal order reduction.

It is known that any shape of the displacement field can be described as a
linear combination of the system’s modeshapes [24]:

w =
N

∑
n=1

ϕ̆nqn = Φ̆q, (2.8)

where Φ̆ is the matrix with the modeshapes, i.e. Φ̆ =
[

ϕ̆1 · · · ϕ̆N
]
, and q

is a weighing vector with the so-called modal coordinates. By introducing this
expression into the system’s equations of motion (Eq. 2.3) without the damping
term, the equations of motion can be expressed in the modal coordinates,

MΦ̆q̈ + KΦ̆q = f . (2.9)

Premultiplying with Φ̆
ᵀ results in

Φ̆
ᵀMΦ̆q̈ + Φ̆

ᵀKΦ̆q = Φ̆
ᵀ f . (2.10)

Now the properties of Φ̆
ᵀMΦ̆ and Φ̆

ᵀKΦ̆ for a system without significant
damping can be used. Modeshapes are known to be orthogonal with respect
to the mass and stiffness matrix, so that ϕ̆ᵀ

i Mϕ̆j = 0 and ϕ̆ᵀ
i Kϕ̆j = 0 for any i 6= j

[24]. Only ϕ̆ᵀ
i Mϕ̆i and ϕ̆ᵀ

i Kϕ̆i are non-zero, so that

M = Φ̆
ᵀMΦ̆ =

 M1 0
. . .

0 MN

 and K = Φ̆
ᵀKΦ̆ =

 K1 0
. . .

0 KN

.

(2.11)
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(a) Bode plot of the transfer function from a
force F on a point to a displacement w on
another point on a plate.
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Figure 2.4: The transfer function of a mechanical system with low damping is build up
from the contributions of its eigenmodes, which behave as independent second order
systems.

Note that both matrices are diagonal matrices with respectively the so called
modal mass of the eigenmodes (Mi = ϕ̆ᵀ

i Mϕ̆i) and modal stiffness (Ki = ϕ̆ᵀ
i Kϕ̆i) at

its diagonals. The modal mass and modal stiffness depend on the scaling of the
modeshapes. Equation (2.10) can thus be rewritten as

Mi q̈i +Kiqi = ϕ̆ᵀ
i f i = 1, . . . , N (2.12)

This shows that equations of motion (Eq. 2.3) can be decoupled into a set
of independent secondary differential equations using the modal coordinates.
Thus, the response of the total mechanical system with insignificant damping,
can be simply considered as a combination of separate single mass-spring-
systems. In state-space form this can be written as

d
dt

{
q
q̇

}
=

[
0 I
−Ω2 0

]
︸ ︷︷ ︸

Aq

{
q
q̇

}
+

[
0

M−1Φ̆
ᵀ

]
︸ ︷︷ ︸

Bq

f (2.13)

w =
[

Φ̆ 0
]︸ ︷︷ ︸

Cq

{
q
q̇

}
, (2.14)

where Ω2 =M−1K. Figure 2.4 shows the total transfer of a mechanical system
and the second order system responses it is build up from.
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In the frequency domain, Eqs. (2.8) and (2.12) rewrite to

w′(Ω) =
N

∑
n=1

ϕ̆n
(Ω2

n −Ω2)Mn
ϕ̆ᵀ

n f ′(Ω). (2.15)

Modal truncation Modal decoupling plays a role in the context of model
order reduction. It can be beneficial to reduce the order of a large model, for
example to reduce computation time. A method for model order reduction is
modal truncation. In this method the equations of motion are translated into
their modal form. Then a selection of most important modes is made that
is considered enough to accurately describe the system’s behaviour, the other
eigenmodes are removed [25]. Normally, the eigenmodes corresponding to the
higher eigenfrequencies are removed, as they contribute in general less to the
system’s response. In this case Eq. (2.15) reduces to

W ′(Ω) '
NT

∑
n=1

ϕ̆n
(Ω2

n −Ω2)Mn
ϕ̆ᵀ

n f ′(Ω). (2.16)

with NT < N.

2.3 Finite element modelling

This section introduces the Finite Element (fe) model that will be used through-
out this thesis.

2.3.1 Plate finite element

The geometry of a wafer chucks is highly complex. For example, it contains
features for clamping the wafer in a highly predictable and stable way and
it contains cooling channels for circulating cooling liquid. Furthermore, the
geometry has been optimised for good control properties, like low mass and
high stiffness, for example for the suspension of the position sensors.

To avoid unnecessary complexity of the model, the wafer chuck is modelled
as a plate. As the wafer adds relatively low mass and stiffness to the wafer chuck
it is not considered in the dynamic model of the chuck. These simplifications,
however, do not change the essence of the problem’s physical principles, as the
governing equations (Eq. 2.3) are equal. Only the actual geometry and mass and
stiffness distribution, captured by the mass matrix, M, and the stiffness matrix,
K, are different.

Ideally, one would want an analytic model for numerical analysis and exper-
iments. With such a model problems like the choice of the spatial discretisation
can be avoided and the calculations might be more computationally efficient.
However, an analytic model for a plate is less trivial than for, for example,
a beam. Hurlebaus and Gaul [26] state that it is impossible to find a good,
closed-form analytic model for the plate with all its four sides free (FFFF). They
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breadboard plate

impact hammer

accelerometer

elastic bands (×4)

Figure 2.5: A picture of the measurement setup used to validate the fe model. A
breadboard plate is suspended by four elastic bands. Using an impact hammer, the frfs
from the impacts in a grid of points to an accelerometer were obtained.

presented an exact solution for the plate’s eigenfrequencies, but in the form of a
series solution. Therefore, it was chosen to make use of a plate fe model.

Different plate finite elements can be found in literature, for example the one
of De Abreu et al. [27] and the one of Charbonneau and Lakis [28] and Kerboua
et al. [29]. In the numerical studies of this thesis the latter was utilised. This
element allows modelling of the mechanics of rectangular plates, both out-of-
plane and in-plane. The finite elements are rectangular and have four nodes with
each six degrees of freedom (DoFs), u, v, w, ∂w/∂x, ∂w/∂y and ∂2w/∂x∂y. The out-
of-plane displacement field w(x, y, t) consists of the polynomial terms in x and
y up to x3y3. These terms are weighed according to linear combinations of the
values of the out-of-plane nodal DoFs. The terms of the in-plane displacement
field are only weighed according to the in-plane nodal DoFs. In other words,
there is no coupling between the in-plane and out-of-plane coordinates of the
element, so that the in-plane part of the element can be simply omitted.

Using the definition of the displacement field as function of the nodal DoFs,
the mass and stiffness matrices of the plate finite element can be found. This
process was fully carried out for this thesis, as the relevant matrices of the
intermediate substeps in [29] were found to contain errors. The corrections to
these matrices are provided in Appendix H. The element and stiffness matrices
were then used to construct the full fe model. Converting the plate model
to a modal representation according to Eqs. (2.13) and (2.14) proved to be
advantageous, as this allows for modal truncation but also arbitrary placement
of actuators.
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Figure 2.6: Magnitude plot of the frfs of the plate’s response when excited at different
locations with an impact hammer and measured with an accelerometer at a single
locations. For clarity, only 10 out of the 39 frfs are shown. Based on the frfs, the
modeshapes and eigenfrequencies are obtained.

2.3.2 Experimental validation

To validate the implementation of the fe model, a set of eigenmodes correspond-
ing to the lowest eigenfrequencies were compared to results from an experiment.
The experimental setup (Figure 2.5) consisted of a 0.60 m × 0.45 m × 12.7 mm
breadboard plate (Thorlabs), hanging horizontally and supported by four elastic
bands. The elastic bands had a low total stiffness 3 · 104 N/m and were connected
at the centres of the plate’s sides for minimising the influence of the added
stiffness on the low stiffness eigenmodes, i.e. the ones corresponding to the low
eigenfrequencies. The plate was hit at a grid of 8× 5 points using an impact
hammer. The response of the plate was measured at a single point using an
accelerometer. The force signals of the impact hammer and the acceleration
signals of the accelerometer were recorded and used for obtaining a set of
Frequency Response Functions (frfs) from impact points to the measurement
point (Figure 2.6).

The measured frfs were used for obtaining the eigenfrequencies and the
modeshapes of the plate.1 The eigenfrequencies were obtained from the
measured frfs by selecting the frequencies at which the sum of the magnitudes
of all 39 frfs attains a maximum. For each in this way obtained eigenfrequency,
the values of the frfs at the eigenfrequency were selected. These values together
form a shape which should strictly speaking be called a ‘operational deflection
shape’ [32], as it contains not only contributions of the excited modeshapes itself,
but also those of other modeshapes. As the eigenfrequencies of the modes are
not closely spaced and the damping is expected to be low, however, the operation
deflection shapes at the the resonance frequencies are most probably almost

1Initially, the frequency domain parameter estimation method presented by Van der Auweraer et
al. [30] and Verboven et al. [31] was used for this purpose. This method, however, involved the use
of a weighing function. The choice of the weighing function is not trivial and might affect the results
of the comparison. For this reason, the results are not included although they turned out to be very
similar to the ones shown in Table 2.1.
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equal to the individual modeshapes.
Next to the experimental ones, also a set of eigenfrequencies and modeshapes

was found using the fe model. The plate’s relevant geometric and material
parameters were adopted from the plate’s datasheet. As the plate finite element
does not support the modelling of holes, the grid of threaded M6 holes were
not modelled geometrically, but the Young’s modulus E and the density ρ of the
plate were uniformly reduced proportional to the volume of the holes.

Table 2.1 compares the first eight modeshapes and eigenfrequencies as they
were obtained with the experiment and the fe model. The similarity of the
modeshapes of the experiment and the fe model are compared in terms of the
Modal Assurance Criterion (mac) [33]. The mac value is defined as

MACi,j =

∣∣∣ϕ̆ᵀ
i

¯̆ϕj

∣∣∣2
ϕ̆ᵀ

i
¯̆ϕiϕ̆

ᵀ
j

¯̆ϕj
, (2.17)

where ϕ̆i and ϕ̆j are the modeshapes of respectively the experiment and the
model. All mac values are close to 1, which means that the experimental and
fe model modeshapes correspond well. The eigenfrequencies, as fitted from the
measurements, are close to eigenfrequencies of the model, showing deviations
as low as 2 %.

2.4 Feasible sensor configurations for estimation

This section studies the possibilities to place additional sensors for use in the
estimation of deformation. The study includes both the sensor type but also
the locations where sensor can be placed. The section concludes with a feasible
sensor configuration based upon position sensors. Optimisation of the sensor
locations is covered in Chapter 6.

2.4.1 Measurands and sensor types

Position with respect to an external reference

The position of a point can only be measured with respect to the position of
another point. That other point, the measurement reference, may be either
located at the same object (an internal reference) or at another object (an external
reference).

In current immersion lithography machines, the position of the four corners
of the wafer chuck is measured with respect to encoder plates mounted to the
metrology frame [34]. This allows for four position measurements in out-of-
plane direction. From those the three estimate out-of-plane rb coordinates can
be calculated and one deformation DoF. When one of the four position sensors is
covered by the immersion hood only the estimate rb coordinates can be found.

Next to the four existing ones extra position sensors could be added,
each adding one deformation DoF after decoupling the estimate rb position.
Depending on the requirements of the deformation measurement, the resolution
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Table 2.1: The modeshapes and eigenfrequencies as obtained with the fe model and the
experiment. The experimental modeshapes were determined at the impact points, indic-
ated by the coloured circles (‘#’). In between the circles, the experimental modeshapes
were interpolated for visual reasons. ‘B’ indicates the accelerometer point. Having mac

values close to 1, the modeshapes of the model and experiment have almost equal shapes.
The eigenfrequencies match closely, deviating less than 2 %.

Modeshapes Eigenfrequency
from

fe model
from

experiment mac

value
from

experiment
[Hz]

from
fe model

[Hz]

percentage
deviation

0.99 147.1 147.8 −0.47

1.00 177.8 179.0 −0.67

0.99 333.3 337.9 −1.4

0.99 349.8 352.7 −0.83

0.99 427.0 430.5 −0.82

0.99 524.0 532.6 −1.6

0.98 668.4 678.1 −1.4

0.99 710.4 722.4 −1.7



2.4. Feasible sensor configurations for estimation 23

2

of the additional sensors need not necessarily equal the one of the existing
position sensors. Their standoff and range need, of course, to be comparable
to the existing ones. The additional sensor can not be placed in the wafer area.
Moreover, as the exposure lens and the immersion hood block the view of the
metrology frame, the position sensors for the out-of-plane direction must be
placed as far to the sides of the wafer chuck as possible.

Position with respect to an internal reference

Strain state Strain is the ratio between the elongation of an infinitesimal small
length in the material due to a load and its unloaded length. The out-of-plane
displacement of the points on a solid with respect to their neutral position in
the local coordinate frame x,y,z is described by the displacement field w(x, y).
From the displacement field, one-to-one the strain distribution due to bending
can be found. Therefore, strain measurements can be used for estimation of the
deformation field of the wafer chuck, i.e. the part of the displacement field that
is not caused by rb motion.

The in-plane strain of a plate is proportional to the second order spatial
derivatives of the displacement field, w, and can be described as follows [6]:

εx(x, y, z) = −z
∂2w
∂x2 , εy(x, y, z) = −z

∂2w
∂y2 , εxy(x, y, z) = −z

∂2w
∂x∂y

, (2.18)

where x, y, and z are in the plate’s local coordinate system. εx and εy are the
pure strains in x and y-direction and εxy is the shear strain, which relates to the
engineering strain, γxy, as εxy = 1

2 γxy [35]. The strain is proportional to the z-
coordinate, meaning that the highest in-plane strains occur at the top and bottom
surface of a plate, with z = ±h/2. From the strains of Eq. (2.18) the surface strain
under an angle θ with respect to the x-axis can be found as follows [36]:

ε(x, y, θ) = εx cos2 θ + εy sin2 θ + 2εxy sin θ cos θ. (2.19)

This formula shows that the strain is not only a function of the location (x, y, z)
of a sensor, but also of its direction θ.

Direction dependency of strain sensors Different types of strain sensors
include piezoelectric strain sensors, resistive strain gauges and Fibre Bragg
Grating (fbg) strain sensors. Depending on the sensor’s measurement principle
and geometry, a strain sensor has to a greater or lesser extent a preference
direction.

A piezoelectric strain sensor in general consist of a thin piece of piezoelectric
material with two electrodes at its flat sides. The sensor is fixed with one of the
flat surfaces to the measurement target. If the poling of the piezo material is
in z-direction, elongation in either direction causes an increased voltage over
the electrodes [37]. Thus, the shape of the sensor determines the direction
dependency. Rectangular sensors, for example, are more direction-dependent
than circular sensors.
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(a) Example of ε(θ) at an um-
brella point.
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(b) Example of ε(θ) at a saddle
point.
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(c) Example of ε(θ) at a saddle
point.

Figure 2.7: Three examples of the surface strain, ε(θ), as function of the measurement
direction. Indicated are the directions corresponding to ε1 and ε2. Depending on the
relative sign of ε1 and ε2, the point with these strains is called a saddle point or an
umbrella point. The strain scale is not indicated in the plots.

Resistive strain gauges measure the increase in resistance of wires that
elongate due to the strain. As the resistance wires are normally placed in
parallel, mainly the strain in the direction of the wires is measured.

A Fibre Bragg Grating (fbg) sensor also measures strain directionally. A fbg

is a grating that is manufactured in a glass fibre cable. The grating reflects part
of the light that is coupled into the fibre, while transmitting the remainder. The
frequency band that is reflected depends on the period of the grating. If the
grating is elongated, its pitch increases and this effect can be measured [24, 38].
fbg sensors have often been used for deformation estimation using strain, e.g. [8,
39, 40]. fbgs are short structures, which limits the possibility to integrate strain
over longer distances. Alternatively, Fibre Fabry-Pérot (ffp) interferometers may
be used. ffp interferometers consist of two fbgs in the fibre, spaced apart at
some distance. As the fbgs act as semi-transparent mirrors, light of a certain
frequency resonates between the fbgs. As the distance between the fbgs changes
when the fibre is elongated, also the resonance frequency changes, which can be
measured. Habel et al. show a ffp interferometer with a length of 12 mm [41].

Strain magnitude To find the order of magnitude of the strains that need to
be measured, the maximum strain of each of the modeshapes is calculated. It
is assumed that the sensor is directional, so that the maximum strain not only
depends on the position, (x, y), but also on the direction, θ.

For any position (x, y), ε(θ) has two optima, ε1 and ε2, on 0 ≤ θ < π – except
for the trivial case in which ∂ε/∂θ is constant. The signs of ε1 and ε2 may be
different or equal. Figure 2.7 provides three examples of the strain as function
of the direction, θ. Figure 2.7a corresponds to an ‘umbrella point’, for which ε1
and ε2 have an equal sign. Figures 2.7b and 2.7c correspond to ‘saddle points’,
for which ε1 and ε2 have opposite signs.

Figure 2.8 shows at the left the displacement fields, w(x, y), of a plate’s first
six eigenmodes. At the right the corresponding maximum absolute value of the
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Figure 2.8: The displacement field and corresponding maximum absolute value of
the strain intensity εintensity(x, y) at the top surface of a plate for its first six flexible
eigenmodes. The stripes point into the directions of maximum strain; the length of the
stripes is proportional to the range of the strain in that points, εrange(x, y), indicating
the sensitivity to the measurement direction. The letters a, b and c in the sixth mode
correspond to the strain plots of Figure 2.7.
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Table 2.2: Maximum surface strain in the modeshapes of plate for a normalised out-of-
plane displacement of 1 nm. The plate is made of aluminium and has dimensions of 0.55
m × 0.55 m × 0.032 m.

Eigenmode Frequency Displacement Strain

[Hz] [10−9 m] [10−9 m/m]

1 508 1 0.34

2 735 1 0.70

3 871 1 0.63

4a 1299 1 0.89

5a 2228 1 1.5

6 2371 1 1.9

strain intensity at the top surface of the plate,

εintensity(x, y) = max(|ε1(x, y)|, |ε2(x, y)|), (2.20)

is shown. The grid of stripes that is superimposed in the plots indicates the
direction of the largest strain of the respective modeshape; a strain sensor should
be oriented according to these stripes in order to have the highest sensitivity at
a certain location. The length of the stripes is proportional to range of the strain
at that point, i.e. the difference between maximum and minimum strain:

εrange(x, y) = |ε1(x, y)− ε2(x, y)|.

This indicates the strain sensor’s sensitivity to the mounting direction. At
umbrella points, with ε1 and ε2 relatively close to each other, the measurement
direction is less critical than in saddle points, where ε1 and ε2 have different
signs.

Table 2.2 lists the maximum strain that occurs in each of the first eight
modeshapes, based on the results of Figure 2.8. The displacement fields are
scaled such that their maximum displacement is 1 nm. Thus, assuming that
displacements are in the order of 1 nm and that the displacement field is well-
described by the first eight modeshapes, the typical strains are in the order of
10−9 m/m.

Note that the surface strain highly depends on the wafer chuck’s geometry.
Here, a plate is made out of aluminium with dimensions of 0.55 m × 0.55
m × 0.032 m was chosen. A different thickness, for example, would lead to
different strain. From Eqs. (2.18) and (2.19) it follows that the surface strain of
a plate is proportional to both the thickness of the plate and the scaling of the
displacement field, i.e.

ε ∝ hw. (2.21)

The scaling of the displacement field is proportional to the stiffness of the plate,
which is in turn, according to Eq. (A.1), proportional to the thickness to the
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power three, so that F/w = k ∝ h3. Thus, the surface strain scales according to

ε ∝
F
h2 . (2.22)

A halve as thick plate would experience a four times higher strain.
The measurement of strains in the order of 10−9 m/m in a bandwidth up to

100 Hz would require strain sensors with a noise level lower than 10−8 1/
√

Hz.
Lee (2003) presents an overview of the resolution of fbg strain sensors in
literature [38]. The resolutions range from 10−8 1/

√
Hz to 10−14 1/

√
Hz. Note

that these sensor systems are not commercially available.

2.4.2 Obtaining absolute position from inertial measurements

With an inertial sensor, it is possible to measure absolute position of a point
directly or to obtain it from its time derivates, namely absolute velocity and
acceleration. A practical advantage of measuring absolute position is that
the sensor needs no stationary reference in its line of sight, allowing position
measurement at points close to the lens column.

This section describes how absolute position can be obtained from inertial
measurements with a single mass-spring-damper system and elaborates on to
what extend the absolute position can be used for estimation of the wafer chuck’s
deformation.

Single mass-spring-damper system

Most accelerometers are in essence single mass-spring systems, which can be
modelled like in Figure 2.9a. If the so-called proof mass accelerates it experiences
inertia forces which causes the mass’s suspension to deform. Their relative
position, ∆z, is a measure for the acceleration of the body the sensor is connected
to, z̈0. Velocity sensors make use of various physical principles. The geophone,
which is frequently used in seismic applications, is based on a mass-spring
system like the accelerometer. Here, the velocity of the proof mass, ∆ż, is
translated into an electric signal using a coil and a magnetic field.

Figure 2.9b presents an overview of the sensitivity of different single mass-
spring-damper-based sensors. Either the relative position, ∆z; relative velocity,
∆ż, or relative acceleration, ∆z̈, is measured.2 This measurement is, in turn, a
measure of position, z0; velocity, ż0, or acceleration, z̈0, of the object of interest.
The sensitivity of the sensor is the transfer from the desired output of the sensor
to the actually measured quantity and is plotted for the different combinations
of position, velocity and acceleration.

The dashed lines In Figure 2.9b indicate how the transfer function can be
changed with active feedback. Proportional/Derivate (PD) controllers are used
that aim at keeping the either z0 constant or ż0 or z̈0 zero. In this way, in
the low-eigenfrequency systems (transfer functions ∆z/z0, ∆ż/ż0 and ∆z̈/z̈0) the
eigenfrequency of the mass spring system can be influenced. In the transfer
functions ∆ż/ż0 and ∆z̈/z̈0, a damping action can be added, resulting in a more

2Here, ∆ż is meant to be the time derivative of ∆z, i.e. d/dt(∆z).
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(b) Sensitivity plots for the different combinations of the relative motion of the proof
mass (∆z, ∆ż and ∆z̈) and the object to be measured (z0, ż0 and z̈0). The numbers in
the plot denote the slope of the corresponding line in dB per decade.

Figure 2.9: Accelerometers and geophones can be modelled as mass-spring-damper-
systems. In the frequency regions where the sensitivity is flat, the relative movement
of the proof mass with respect to the sensor’s base is a direct measure of the movement
of the object the sensor is connected to.
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or less flat sensitivity around the sensor’s eigenfrequency. Note that in all
cases the measured quantity is unchanged, unlike, for example, a force balance
accelerometer.

A sensor should respond equally to signals of different frequencies in the
frequency band it is designed for. Of interest are, therefore, the frequency
regions for which the sensitivity of the sensor is flat is. The transfer functions
∆z/z0, ∆ż/ż0 and ∆z/z̈0 have such a flat sensitivity. Those transfer functions
correspond, respectively, to a modified and a standard geophone and an
accelerometer.

The transfer function ∆ż/ż0 can be recognised as the one of a geophone.
Colette et al. [42] adapted a standard geophone by measuring the position with
respect to the housing instead of the velocity of the proof mass, obtaining the
transfer function ∆z/z0. In that way, they were able to measure absolute position
above the sensor’s eigenfrequency. As its relevant frequency band is above
its eigenfrequency, this sensor, and also the standard geophone, should have
a low eigenfrequency, Ω0. As the eigenfrequency is determined by the ratio
between stiffness and mass, low stiffness and high mass is desired. A low-
stiffness suspension of the proof mass is typically fragile, which is a problem
in the wafer chuck with its high acceleration. A high mass, on the other hand,
leads to a large sensor volume, which is not desired either. Thus, geophones are
of limited interest for the wafer chuck application.

Accelerometers have the transfer function ∆z/z̈0. The frequency band of
interest is below the sensors eigenfrequency and, thus, accelerometers can be
made relatively compact and robust. As such, accelerometers are a possible
candidate for use in the wafer chuck application.

Double integration of acceleration

Acceleration needs to be double integrated to find the position of a point.
Acceleration is an internally referenced measurand and, therefore, has the
fundamental benefit that it does not need an external reference. On the
other hand, double integration amplifies the low-frequency noise [43], so that,
typically, only the high-frequency part of the signal is useful. In the following,
the uncertainty of the obtained position signal as function of time is obtained.

Assume an accelerometer signal consists of the actual acceleration plus a
noise contribution and a constant due to sensor bias

ã(k) = a(k) + ε(k) + c, (2.23)

where k denotes the discrete time index. After double integration (Appendix C)
the position is found as follows

z̃(k) = T2
k

∑
j=1

j

∑
i=1

a(i) + η(k) +
k2 + k

2
T2c + kTv(0) + z(0), (2.24)

with η(k) the noise sequence of z̃ due to the accelerometer’s noise. In case that
the sensor noise ε is Gaussian distributed with standard deviation σε and if it
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Figure 2.10: The standard deviation of the error when obtaining position from an
acceleration signal. Here, only the error due to accelerometer noise, ε, is shown, but also
the error on the bias, c, and the initial position and velocity, z(0) and v(0) are important.

is white so that there is no correlation between the noise samples, the standard
deviation of the position error is, according to Appendix C,

ση(k) = T2σε

√
k3

3
+

k2

2
+

k
6

, (2.25)

in which k3/3 + k2/2 + k/6 can be recognised as the ‘square pyramidal number’
[44].

The relatively light mems force balance accelerometer Kistler 8330B3 (Ap-
pendix E) has a, supposedly, flat noise power density of Pf = 1.6 · 10−11 m2s−4/Hz,
so that the variance of the noise for an ideal lowpass filter with a cutoff frequency
of 1000 Hz is

σε =
√
(1.6 · 10−11)1000 = 1.3 · 10−4 m

s2 . (2.26)

Figure 2.10 shows in blue the resulting ση as function of time for a sample
frequency of fs = 1000 Hz. The uncertainty of the calculated position signal
increases rapidly, caused by the fact that ση is proportional to

√
k3 for larger k.

After 5 ms the standard deviation of the error is already over 1 nm, To improve
the accuracy of the position signal, techniques like frequent recalibration of the
position or filtering must be employed. Note that also the acceleration bias, c and
the error on the initial position, z(0), and the initial velocity, v(0), and should be
accounted for by calibration or adequate filtering.

The assumption that the noise is white is in practice rather artificial, as not
all accelerometers have a flat noise spectrum, e.g. piezoelectric accelerometers
(Appendix E). Moreover, even if the noise spectrum is flat up to a certain
frequency, it will become non-flat after filtering and sampling. When a signal is
sampled, any noise contributions above the Nyquist frequency (half the sample
frequency fs) will fold back to the frequency band up to the Nyquist frequency.
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Figure 2.11: The effect of frequency folding due to aliasing when sampling a signal of
uncorrelated noise with a sampling frequency fs. All power density content folds back
to the frequency band between 0 and the Nyquist frequency ( fs/2). The power density of
the resulting sampled signal is the sum of all this folded content.

The frequency folding of sensor noise is illustrated in Figure 2.11. Assume
a white noise signal, having a flat power density as function of frequency, as
depicted by 1. After filtering this signal with a first order lowpass filter with a
cutoff frequency equal to the Nyquist frequency its power density is decreased
to the level indicated with 2. Now, if the the signal is sampled, its noise power
does not change, but relocates by folding back into the frequency band up to
the Nyquist frequency. As the noise contributions in the frequency domain are
assumed to be uncorrelated, the power density of the sampled signal is the sum
of all folded power contributions, denoted in the figure by 3. The resulting
noise spectrum is not flat, so that the the assumption that the noise samples are
not correlated and the resulting Eq. (2.25) are not valid anymore. Besides, this
example also illustrates the noise components from above the Nyquist frequency
should be adequately filtered before sampling in order to avoid them to aliase.

The green line in Figure 2.10 shows the ση as function of time when the signal
is lowpass filtered with a 6th order Butterworth filter with a cutoff frequency of
100 Hz. The uncertainty rises, initially, less rapidly. The red line shows ση when
only a 6th order Butterworth highpass filter with a cutoff frequency of 50 Hz
is applied to the acceleration signal. As expected, the highpass filter removes
the low-frequency part of the signal, so that ση converges after some time to a
constant value. The black line corresponds to applying both filters.

Absolute position for estimation of the PoI’s position

The position of the wafer chuck is measured with respect to the metrology
frame. Due to the metrology frame’s high internal stiffness, its deformation
may be neglected. The low-stiffness suspension to the ambient, however, causes
a lowpass filter characteristic regarding the floor vibrations. At frequencies
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(a) The set of position sensor candidates con-
sist of the locations at the sides of the wafer
chuck. Here, a relatively dense set is shown,
consisting of 120 candidates.

(b) As a preliminary choice, a configuration
consisting of eight sensors at the corners and
centres of the sides is adopted. As the sensors
are placed far from each other.

Figure 2.12: The chosen preliminary sensor configuration for the position measurement
in z-direction at eight points on the wafer chuck.

below the metrology frame’s suspension eigenfrequency, the metrology frame
moves along with the floor vibrations. Thus, below the eigenfrequency, there
is a discrepancy between the absolute position measurement at the wafer chuck
and the position measurement referenced to the metrology frame. Above the
eigenfrequency, however, the metrology frame can be considered at standstill,
i.e. having a constant absolute position.

Both inertia-based sensor concepts posses a highpass filter characteristic, i.e.
above a certain frequency they yield a useful position signal. This is either due
to the physical principle (in case of a position measurement with a proof-mass)
or the required highpass filtering (in case of a double integrated acceleration
signal).

Thus, above the suspension eigenfrequency of the metrology frame and the
cutoff frequency of the inertia-based sensor, the measurement of the absolute
position with the inertia-based sensor can be directly related to the position of
the metrology frame. Still, if a discrepancy would remain, the absolute position
of the metrology frame could be measured with a similar inertia-based sensor.

2.4.3 Sensor placement candidates

Figure 2.12a shows sensor candidates for using externally referenced position
sensors. Only sensor candidates at the sides of the wafer chuck are taken into
account, as these are least covered by the lens column and the immersion hood
during the scanning phase. Out of these candidates, a configuration of eight
sensors (Figure 2.12b) is selected for further use in the next chapters. Chapter 6
elaborates on the optimisation of the sensor configuration by automated sensor
placement.



2.5. Conclusions 33

2

2.5 Conclusions

The most critical part of the lithography process is the exposure. The wafer
chuck scans during the exposure beneath the lens column with a highly constant
forward velocity, while it is kept still in its other DoFs. The wafer chuck can thus
be considered in steady state during exposure.

The deformation of the wafer chuck is partly caused by known and partly by
unknown forces. The deformation due to unknown forces, i.e. the disturbances,
must be estimated. It is important to make use of the available foreknowledge
on the disturbances and the dynamical system when performing estimation. The
disturbances are known to be low-frequency, consisting of frequencies typically
well-below the resonance frequencies of the wafer chuck.

The dynamics of a solid mechanical system with a low damping can be
described by a linear combination of its dynamic modeshapes, according to
the corresponding modal coordinates. These modal coordinates have behave as
uncoupled second order systems. The form of the mechanical problem is equal
for a wafer chuck and a plate, so that for simplification in the further analysis in
this thesis a mechanical model based on plate finite elements can be used. The
modeshapes and eigenfrequencies of the fe model were found to match closely
experimental results.

As an input for a position estimation algorithm, externally referenced
position measurements can be used. Those may either be internally or externally
referenced. Strain can be seen as a form of internally referenced position.
For displacements of 1 nm, typically maximum surface strains in the order of
10−9 m/m are encountered. From double integration of acceleration, absolute
position can be obtained. This amplifies the low-frequency noise, making
only the high-frequency part of the position signal useful. Strain sensors and
accelerometers are compact and do not require an external reference, so that the
placement and the number of those sensors is relatively unrestricted.

Position sensors that measure with respect to the stable metrology frame
are externally referenced sensors. The existing four position sensors may be
extended with additional sensors. Those sensors can only be placed outside the
wafer area and there where they are in sight of the reference. This restricts the
placement to the sides of the wafer chuck. Therefore, a sensor configuration
with four additional position sensors at the centres of the sides is proposed.
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Chapter 3

Estimation using shape fitting

The previous chapter derived requirements for the estimation method, based
on the properties of the wafer chuck system. The method should be able
to incorporate the foreknowledge on both the system’s mechanics and its
disturbances. The system is assumed to behave primarily quasi-static, as the
disturbances are relatively low-frequency. This chapter selects and further
introduces a promising method, which will be called Shape Fitting (sf), that
utilises this quasi-static behaviour. Furthermore, the snapshot matrix, which
makes it possible to include information on the system’s mechanics and its
disturbance distribution, is introduced.

Section 3.1 first formulates the estimation problem. Section 3.2 introduces
the quasi-static behaviour of a system without rigid body modes when excited
by disturbances well-below the system’s lowest dynamic eigenfrequency. Then,
in Section 3.3 a literature survey on estimation methods is presented. The basic
principles of the sf method, as described in literature, are further elaborated in
Section 3.4. Section 3.5 describes the use of snapshot-matrices to build the sf

estimator.

3.1 Definition of the estimation problem

The previous chapter showed that the estimation of the relative position between
the PoI and the lens column boils down to the estimation of the deformation field
of the wafer chuck. In such an estimation problem the values at a set of target
points need to be estimated from the values at a set of measurement points.
Suppose that a physical field is discretised in a grid of NP points. Let the values
at the measurement and target points be stacked as respectively vectors wm and
wt and let a vector w describe the momentaneous shape at the NP points:

w =

{
wm
wt

}
. (3.1)

Here, the symbol w was chosen to refer to displacement or deformations. In the
wafer chuck case, the elements of w may correspond to a grid of points, so that

35
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w can indeed be interpreted as a geometric displacement shape, of which some
points are measured and the others have to be estimated. In other application
fields, w might denote other physical quantities. In the thermal domain for
example, it would contain the temperatures of the considered points.

The measurement and the target values could also be combinations of
different quantities, e.g. strains and displacements. Moreover, the target values
need not necessarily describe the full surface of an object. In the wafer chuck,
for example, only the points directly under the lens column are of interest. In
such cases, the name ‘shape’ must not be interpreted geometrically but more
generally as a snapshot of values at the same time instance.

The measurements w̃m of the quantities wm are assumed to be corrupted by
sensor noise εm, so that

w̃m = wm + εm. (3.2)

The sensor noise is assumed to be Gaussian distributed. This is a common
assumption and is from a mathematical perspective convenient, as linear com-
binations of Gaussian variables are Gaussian themselves. A steady-state bias
may be removed through calibration of the sensor so that a zero mean can
be assumed. The noise of the ith sensor is then characterised by its standard
deviation σε,i. Furthermore, it is assumed that the noise of the different sensors
is uncorrelated. Thus, the covariance matrix of the sensor noise, Σε, is diagonal,
with the variances σ2

ε,i on its diagonal.
From the measurements, w̃m, the values of the target points, wt, need to be

estimated.

3.2 Quasi-static system response and estimation

Estimation is possible due to the correlation between the measurement values
wm and the target values wt. The correlation is influenced by the mechanics of
the object and the disturbances that work on the system. Section 2.1.5 described
the available foreknowledge on the disturbances. The main disturbances are
induced close to the PoI via the immersion layer below the lens column.
Furthermore, the bandwidth of the disturbances is limited to well-below the
lowest eigenfrequency of the wafer chuck. This has the important consequence
that the wafer chuck can be considered to deform quasi-statically.1

In the quasi-static frequency band, inertia and damping forces are small
compared to the stiffness forces, so that Eq. (2.3) becomes

Kw ' f . (3.3)

A system without Rigid Body (rb) modeshapes has an invertible stiffness
matrix K [45], so that its response, w, is directly prescribed by its inputs,
f . Consequently, the past values of the measurement signal’s do not contain
more information about the system’s response than the current measurement

1This is true for a wafer chuck that is suspended by a controller with infinite bandwidth. In
practice the controller bandwidth is limited, however. Chapter 5 shows that the deformation behaves
quasi-statically below the controller bandwidth.
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Figure 3.1: The transfer functions from a force F to a displacement w of a plate without
rb motion. For frequencies well-below the first eigenfrequency, the system behaves quasi-
statically – its response does not depend significantly on the frequency. In the quasi-static
frequency band the individual eigenmodes behave according to their stiffness line; none
of the eigenmodes resonates.

values. The estimation method, therefore, does not need to use the history of
the measurement signals.

Section 2.2.3 showed that the response of a linear mechanical system without
damping can be regarded as the sum of the responses of individual second order
systems (Figure 3.1a and b). This means that, if no rb modes are present in a
system, the system’s response at frequencies lower than the eigenfrequencies
is primarily described by the stiffness lines of the system’s eigenmodes. Thus,
the system’s response almost equals the static response, the limit frequency for
which the inertia and damping forces are fully zero. Therefore, the system is said
to behave quasi-statically in the frequency band well-below its eigenfrequencies.
The quasi-static frequency band is indicated in Figure 3.1.

In this and the next chapter, rb motion of the wafer chuck is excluded.
Estimation methods that can be applied to systems without rb motion are
expected to also work efficiently on systems that have rb motion in combination
with a position controller. Chapter 5 will extent the estimation method to the
situation in which rb modes are present.

3.3 Estimation methods in literature

Many literature sources have been devoted to the topic of estimation of physical
fields. The estimators can be classified as either static or dynamic. Static
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estimators are estimators that do not take into account the history of the
measurement signals, the estimate is fully based on the present sensor readings.
Dynamic estimators, by contrast, make use of past measurements for generating
the estimate.

3.3.1 Dynamic estimators

As dynamic estimators were not expected to yield significant better results for
a quasi-static system, no thorough study on dynamic estimators was carried
out. An often employed dynamic estimator is the Kalman filter of Kalman
and Bucy [46]. The Kalman filter can be regarded as an optimal observer [47].
Knowing the statistical properties of the disturbances working on a system and
the sensor noise, the Kalman filter optimally estimates the states of a system, for
example the displacements of points on an object. It must be noted that, the basic
principles of static estimation via shape fitting and dynamic estimation with a
Kalman filter turn out to be similar. This is further elaborated in Appendix F.
Chierichetti and Ruzzene presented a method for reconstruction of the dynamic
displacement field of a plate using a limited set of measurement [48]. This
method, however, assumes periodic signals and must be applied offline. This
method can, as such, not be used in the wafer chuck application, which aims at
real-time estimation.

3.3.2 Static estimators

Most of the considered static estimation methods were formulated in the
mechanical domain, a few in the thermal domain. The majority of the methods,
however, can equally well be applied in each of the domains. The methods
in the mechanical domain often aim at estimating displacement using strain
measurements, making use of the relation between strain and deformation.
Many papers are written in the context of showing the use of Fibre Bragg Grating
(fbg) strain sensors to find the shape of an object. In general, these papers are
relatively sensor oriented and less elaborate regarding the estimation method.
Roughly speaking, the static estimation methods can be subdivided into inverse
fe methods and fitting methods that make use of shapes, which will be called
‘sf methods’.

Inverse Finite Element methods

Tessler and Spangler developed an inverse fe method to estimate the deform-
ation in plates and shells. The method makes use of the geometric properties
of the object to estimate deformation from discrete strain measurements [49].
It was later adapted to other structures, like shear deformable plates, beams
and three dimensional frames [50–52]. Gherlone et al. state that “Because only
strain-displacement relations are used in the formulation, both static and dynamic
responses can be reconstructed without any a priori knowledge of loading, material,
inertial or damping structural properties.” [52] Thus, their method does not take
into account the available foreknowledge but has a certain implicit assumption
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on the disturbance distribution. The inverse fe method of Mainçon, in contrast,
does allow including this foreknowledge, along with the foreknowledge on the
sensor noise [12]. The information is included via variance and covariance data.

Shape fitting methods

Shape fitting methods use a number of basis vectors or shapes to describe the
deformation or displacement field. The amplitudes of the shapes are fitted to
the measurements. Three major groups of shapes can be distinguished, i.e.
polynomial shapes, dynamic modeshapes and static deformation shapes.

Polynomials Jones and his co-workers, Sekouri, Kim and Cho, Wang et al. and
Lee and Park made use of polynomial shapes [10, 53–57]. None of them shows,
however, how foreknowledge on the disturbances could be included. Kirby et
al. show, as an example, also the use of polynomials functions that satisfy the
object’s boundary conditions [8]. They also mention the possible use of dynamic
modeshapes.

Dynamic modeshapes Often, the dynamic modeshapes of the system in ques-
tion are used as fitting shapes [10,11,13,39,58–64]. The dynamic modeshapes are
an obvious choice, as they form a linear basis that can describe any displacement
field, as presented in Eq. (2.8). In most cases the number of modeshapes is
reduced via truncation, keeping only a set of modeshapes corresponding to the
lower eigenfrequencies. In case of dynamic disturbances, this seems a reasonable
choice. The disturbances are normally bound to a certain maximum frequency.
If the system has eigenfrequencies below that frequency, the corresponding
modeshapes might be relatively prominent in case of resonance.

Also in case of disturbances that excite the object quasi-statically, the
modeshapes corresponding to the lower eigenfrequencies are expected to be
relatively prominent, an effect which is demonstrated by Bert [65]. Note that
this later effect is the case for the modeshapes in terms of displacement. In
terms of the surface strain fields corresponding to the modeshapes, the higher
modeshapes of, for example, a plate or a beam stay relatively important. This
has to do with the fact that surface strain is the second spatial derivative of
displacement and that the spatial frequency of the modeshapes increases with
higher eigenfrequency. Thus, when performing strain measurements, relatively
many modeshapes need to be taken into account. This effect is illustrated in
Examples 3.1 and 3.2. Example 3.1 introduces the displacement modeshapes of
a beam and their corresponding strain profiles, which are then used in Example
3.2 to fit the displacement shape and strain profile resulting from a certain load
case.

Most papers do not substantiate the truncation, i.e. selection of the number
of modeshapes, otherwise than in relation with the number of sensors. Bogert
et al., however, base their truncation on the modal strain energy [66]. Koevoets
et al. propose weighing factors to prioritise and modeshapes, although they do
not clarify how these factors should be chosen [16]. In an example, they use the
weighing factors in effect for a truncation. In any case, it is still unclear how
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foreknowledge on quasi-static disturbances can be included to yield an effective
sf estimator based on modeshapes.

Static displacement shapes Another type of fitting shapes are the static
displacement shapes. These seem an obvious choice in case of quasi-static
disturbances. Weeks uses Green’s functions as fitting shapes, which are the static
deformation shapes due to a point-force [67, 68]. Her method does attribute
weighing factors to the sensor locations but not to the disturbance locations.
As such, it does not include foreknowledge on the disturbances, except for the
implicit assumption that the disturbances are quasi-static and can work at any
included point on the structure. Davis and his co-workers use static deformation
shapes that are the result of arbitrarily hand-picked static load combinations
[69, 70].

The latter method can be considered as a snapshot-based method. A
snapshot captures the instantaneous shape of the field of interest. A series of
snapshots is combined to a snapshot matrix. The series may consist, for example,
of successive snapshots in time, describing the systems transient response, or of
separate quasi-static responses. As such, it is possible to capture the typical
responses of a system to its disturbances in a snapshot matrix and include
the available foreknowledge regarding the disturbances. Koevoets et al. and
Ranieri et al. make use of snapshot matrices. They use the Proper Orthogonal
Decomposition (pod) to find the most prominent shapes in the snapshot matrix,
which are then used for shape fitting [9, 14]. Hakim and Fuchs make use of a
snapshot matrix of typical static responses of the system [71]. They directly use
the snapshots as fitting shapes.

Number of sensors versus number of shapes Finally, it is noticeable that the
papers have different assumptions regarding the number of sensors, Nm, with
respect to the number of fitting shapes, Nf. Some of the papers assume an
equal number of sensors and fitting shapes (Nm = Nf) [13, 60, 61, 69, 70]. They
then use an inverse to find the shape amplitudes from the sensor values. Some
other papers consider the case that the number of sensors is smaller than the
number of fitting shapes (Nm ≤ Nf) [14, 67, 68, 71]. In this case the problem
is underconstrained. The majority of the papers only considers the case that
the number of sensors is larger than the number of fitting shapes (Nm ≥ Nf)
[9–11, 14, 39, 40, 53–59, 62–64, 66, 72], yielding an overconstrained problem. All
considered sf methods use a least squares optimisation to solve overconstrained
and underconstrained problems. One exception is the method of Weeks, which
is, however, closely related to least squares [67, 68].

3.4 The shape fitting method

This section introduces the basic principles and the formulas of the sf method.
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Example 3.1: Displacement modeshapes and strain modeshapes of a
beam

The figure shows the first five flexible modeshapes of a free beam, along
with the corresponding surface strain profiles, which are called “strain
modeshapes”. All shapes are arbitrarily scaled.

Displacement modeshape Strain modeshape
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3.4.1 Procedure

The sf method assumes that the momentaneous shape of the field can be well
approximated by a linear combination of fitting shapes. From the momentaneous
values at the measurement points, the amplitudes of the fitting shapes are
calculated. The shape estimate is then the sum of the fitting shapes weighted
by these amplitudes.

Suppose that the number of fitting shapes is NF. Each fitting shape is
formulated as a vector ϕi that describes the values at all NP points of the field.
The fitting shapes can be combined in a NP × NF-matrix Φ. The momentaneous
shape of the field, w, is then approximated by a linear combination of a limited
number of fitting shapes:

ŵ = Φq̂, (3.4)

where the elements of q̂ are the weight values corresponding to the fitting
shapes. Those weighing values are found using

q̂ = Φ+
mw̃m, (3.5)

where NM × NF-matrix Φm consists of the subset of rows of Φ that correspond
to the measurement points.

Φ+
m is the pseudoinverse of Φm, whose formulation depends on the number

of sensors with respect to the number of fitting shapes:
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Example 3.2: Fitting with modeshapes and strain modeshapes

The following figure plots a static deformation shape due to a disturbance
force and two actuator forces (left). Also the corresponding strain profile
is drawn (right).
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These shapes are in the following figure fitted by sets of respectively the
modeshapes and the strain modeshapes (Example 3.1). To evaluate how
close a fit approaches the actual shape, the rms value of the deviation
between the fit and the actual shape is calculated and then normalised by
the rms value of the actual shape. For describing the static deformation
shape with modeshapes, relatively less modeshapes are needed than for
describing the strain shape in terms of the strain modeshape.

Fit with displacement modeshapes 1−5
Normalised RMS deviation: 0.0091

Fit with displacement modeshapes 1−4
Normalised RMS deviation: 0.0098

Fit with displacement modeshapes 1−3
Normalised RMS deviation: 0.032

Fit with displacement modeshapes 1 and 2
Normalised RMS deviation: 0.075

Fit with displ. modeshape 1 
Normalised RMS deviation: 0.13

Fit with displ. strain modeshape 1
Normalised RMS deviation: 0.52
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Fit with displ. strain modeshapes 1−3
Normalised RMS deviation: 0.32

Fit with displ. strain modeshapes 1−4
Normalised RMS deviation: 0.21

Fit with displ. strain modeshapes 1−5
Normalised RMS deviation: 0.21

Fit with displ. strain modeshapes 1 and 2
Normalised RMS deviation: 0.45

Note that the fitting procedure shown in this example is not the same as
shape fitting (Section 3.4). In this example the best fit at all points was
calculated, whereas shape fitting fits the fitting shapes only at the sensor
points and then uses the fitting shapes to extrapolate this fit to the other
points of the structure.
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Figure 3.2: Mathematical model of the system’s signals. Each of the signals is assumed
to assume slowly over time. If the intervals between sampling are sufficiently large
the samples are almost uncorrelated (left). The value of each sample can, therefore, be
regarded as a realisation of a random variable. The distribution of the random variable
is assumed to be, in first approximation, Gaussian with a zero mean (right).

Φ+
m =


(
Φᵀ

mΦm
)−1

Φᵀ
m NM > NF

Φ−1
m NM = NF

Φᵀ
m
(
ΦmΦᵀ

m
)−1 NM < NF.

(3.6)

3.4.2 Estimation matrix B

Define the NP × NM estimation matrix B as

B = ΦΦ+
m, (3.7)

so that the estimate becomes
ŵ = Bw̃m. (3.8)

This illustrates that the sf estimates are simply linear combinations of the sensor
values, weighed according to the elements of B. Alternatively, the estimated
shape can be considered as a linear combination of the columns of B, weighed
by the sensor readings. As such, the columns of B can be regarded as the shapes
corresponding to each of the sensors. If the estimate, ŵ, has the geometrical
interpretation as shape, also the columns of B have that. The estimation matrix
turns out to be important in the characterisation of the estimation error (Section
3.5.5).

3.5 Shape fitting using a snapshot matrix

This section introduces the mathematical interpretation of a snapshot in a quasi-
static system and the snapshot matrix that is used for shape fitting. Furthermore,
the way the snapshot matrix can be obtained in a practical system and its
application for assessing the estimator’s performance in terms of the estimation
error is discussed.

3.5.1 Definition of the snapshot and its mathematical model

As described in Section 3.2, the bandwidth of the disturbances that work at the
wafer chuck is limited to well-below the lowest eigenfrequency of the wafer



3

44 Chapter 3. Estimation using shape fitting

chuck, so that the wafer chuck’s deformation an be considered quasi-static.
Thus, the disturbances and the deformation response vary slowly over time and
the instantaneous response is a direct result of the instantaneous disturbances.

The deformation response at a certain time instant is called a ‘snapshot’.
Two snapshots that were recorded with only a short time difference would only
differ slightly, due to the slow variation over time. A snapshot that is, however,
taken at a time instant sufficiently later, is almost uncorrelated with the first one.
Thus, a set of snapshots is more uncorrelated if the snapshots are recorded with
a larger time interval (Figure 3.2, left).

Based on probability theory, the following mathematical model of the sys-
tem’s signals is adopted. The system’s signals are constant during the running
of an experiment. At every initiation of an experiment, the input and outputs
attain new values, which are independent from the previous values. Thus, the
system’s inputs and outputs can be regarded as random variables and their
values in each experiment as realisations of those variables.

An important assumption that is made here is that the inputs, i.e. the
disturbances, are all Gaussian distributed with a zero mean and a certain
standard deviation (Figure 3.2, right). The disturbances may or may not be
correlated. Many processes in nature that are the consequence of a number of
random effects are, in first approximation, assumed to be Gaussian. This can be
substantiated based on the central limited theorem, which states that the sum
of a large number of independent random variables is approximately normally
distributed, as long as the random variables are identically distributed and have
a finite variance [73]. As the disturbances that work in the immersion film are
based on a combination of many random effects, this assumption can in first
approximation be justified. Still an open question is to what extent this process
model does reflect reality and to what extent this influences the final estimation
results.

An additional reason for making use of a Gaussian distribution for the
disturbance amplitudes is the resulting mathematical simplicity. From a math-
ematics point of view, the Gaussian distribution is advantageous: the summation
of Gaussian distributed variables simply yields a new Gaussian distributed
variable. In practice, a simple formulation is desirable, as it makes mathematics
more comprehensible. Furthermore, mathematics that is used later on, like
sensor placement algorithms (Chapter 6) is on itself computationally intensive
and benefits from a relatively simple process model.

3.5.2 Definition of the snapshot matrix

Assume that the instantaneous shape of the field, w, can be described perfectly
by linear combinations of ND snapshots that form the columns of a NP × ND
snapshot matrix W . Furthermore, assume that those shapes are weighed
according to the elements of a vector α, which are independent Gaussian
variables with a zero mean and variances given by the elements of vector σα,
so that

w = Wα. (3.9)
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The elements of w and the rows of W can be partitioned according to whether
they belong to a measurement or a target point:{

wm
wt

}
=

[
Wm
W t

]
α. (3.10)

The covariance matrix of the weights α is Σα. As the disturbances are assumed
to be independent, this is a diagonal matrix.

The snapshot matrix can have different forms, depending on the way the
snapshots are obtained. The snapshot matrix can be formed from the snapshots
corresponding to one-by-one excitation of the disturbances, as illustrated in Ex-
ample 3.3, but can also be obtained from random excitation by the disturbances.
The snapshots of the second type of snapshot matrix can be seen as linear
combinations of the snapshots of the first one. As long as the snapshot matrix
of the first type contains enough snapshots, both snapshot matrices carry, in
principle, the same information.

3.5.3 Obtaining a snapshot matrix

Snapshot matrix W may be acquired from measurements from the actual system
or from a model, but neither of these options is trivial. Acquisition of W from
measurements, however, is impossible if no measurement can be carried out at
the target points. In the wafer chuck application it is not possible to measure the
target points in the exposure area during normal operation. It is also not possible
to perform the snapshot measurements off-line, when the position of the target
points would be measurable, as the typical disturbances are not available then.

If, on the other hand, a model is used, this model should closely resemble the
actual system. In addition, also accurate information on the typical disturbances
should be available. Alternatively, a combination of measurements of the actual
system and the model may be used to generate the snapshot matrix.

In the following, snapshot matrix W and the corresponding weighing vector
α are assumed to be perfect, in the sense that they fully and accurately describe
the possible shapes of the system and their distribution. Such a snapshot can be
used to calculate the sf estimator, but also the expected estimation error.

3.5.4 Integration of the snapshot matrix into shape fitting

As discussed in the literature review of Section 3.3, two techniques for calcu-
lating the sf estimator from a snapshot matrix were encountered in literature.
The first technique directly uses the snapshot matrix for shape fitting by simply
substituting Φ by W and Φm by Wm in the Eqs. (3.4–3.8). This will be called the
Least Squares (ls) technique. The second technique first calculates the Proper
Orthogonal Decomposition (pod) and then forms the matrices Φ and Φm from
a small number (NF ≤ NM) of the most prominent Proper Orthogonal Modes
(poms). This technique will be referred to as the pom technique. Chapter 4
compares the two techniques.
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Example 3.3: Snapshot matrix with static deformation shapes

Consider the beam of the figure. It is assumed that the quasi-static
disturbance forces can only work in vertical direction on the middle part
and that the standard deviation of their magnitude is uniform over the
surface. The disturbance forces are assumed to be in static equilibrium
with two actuator forces. The tips are made slender, as they do not carry
loads.
The snapshot matrix is generated as follows. First a grid of possible
disturbance locations is defined, in this case 57 points. One by one a
disturbance is placed on such a point and the corresponding actuator
forces are calculated. Then, the resulting static displacement shapes are
calculated, some of which are shown in the figure.
F1 = 1 N

F5 = 1 N

F9 = 1 N

F13 = 1 N
F29 = 1 N

F25 = 1 N

F21 = 1 N

F17 = 1 N
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3.5.5 Estimation error

Although possibly not the only criterion, the estimation error is a fundamental
criterion in characterising an estimation algorithm’s performance. The estima-
tion error for the jth target point is defined as ε j = ŵj−wj. This can be rewritten
using Eqs. (3.2) and (3.8) to (3.10) as a function of the weighing factors α and
sensor noise εm:

ε j =
(

βjWm −wj

)
α + βjεm, (3.11)

where βj and wj are row vectors from the rows of respectively B and W
corresponding to target point j. The first term can be recognised as the
methodical error,

ε j,meth =
(

βjWm −wj

)
α,

the second as the error due measurement noise,

ε j,noise = βjεm.

In literature estimation algorithms are often purely assessed on their meth-
odical error, i.e. the estimator performance in presence of ideal sensor signals.
In real systems, however, sensors exhibit sensor noise. Depending on the noise
level of the sensors this noise may be an important part of the total estimation
error. The expected value of the total estimation error squared is then

E
(

ε2
j

)
= wᵀ

j Σαwj − 2wᵀ
j ΣαWᵀ

mβj + βᵀ
j WmΣαWᵀ

mβj + βᵀ
j Σεβj. (3.12)

The term βᵀ
j Σεβj corresponds to the expectation value of the error due to

measurement noise. Clearly, the larger the elements in βj, the larger the
influence of the sensor noise.

Finally, it is often useful to express the errors of all target points as a single
value. Depending on the implications of an estimation error at a single point,
different norms could be chosen, like the 1- (the average), 2- (the root mean
square) or ∞-norm (the maximum).

3.6 Conclusions

This chapter compared different methods for estimation of the deformation field
of the wafer chuck. The method is required to use the available foreknowledge
regarding the system’s mechanics and typical disturbance conditions. The
disturbances have a frequency content typically well-below the first dynamic
eigenfrequency of the wafer chuck, exciting it primarily quasi-statically.

Because of the quasi-static behaviour of the wafer chuck, the use of signal
values of the past does not supply more information than the signal’s current
values. This justifies the use of a static estimator instead of a more complex
dynamic estimator. Shape fitting is an often used static method. In this method,
the estimates are linear combinations of the sensor values, according to an
estimation matrix B.
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A basic assumption of shape fitting is that the deformation field can be
described well by a limited number of shapes; the amplitude of these shapes
is calculated from the sensor values. The number of shapes may be smaller,
equal or larger than the number of sensors. To attain a low estimation error it is
important to choose appropriate fitting shapes.

In literature different types of shapes are used, like polynomials, dynamic
modeshapes and static deformation shapes. The often used dynamic mode-
shapes contain information on the mass and stiffness distribution, but for de-
scribing quasi-static behaviour only information about the stiffness distribution
is relevant. However, including the available foreknowledge on the disturbance
distribution is not trivial for polynomials and modeshapes.

The use of the shapes in a snapshot matrix allows the inclusion of the
available foreknowledge on the location and magnitude distribution of the
disturbances in the estimator. Assuming point disturbances with Gaussian
distributed magnitudes, the quasi-static deformation shapes resulting from each
disturbance can be used to build up the snapshot matrix. The sf estimator
can be directly based on the full snapshot matrix (ls technique) or on the most
prominent pattern in the snapshot matrix (pom technique). If the matrix captures
the possible deformations well, the snapshot matrix can also be used to calculate
the expected error of the estimator.



Chapter 4

Snapshot matrix based
techniques for shape fitting

In the previous chapter, the Shape Fitting (sf) method was selected for estimation
of wafer chuck’s deformation. It was chosen to use shape fitting based on a
snapshot matrix. The snapshot-based approach is promising, as the snapshot
matrix allows including the relevant foreknowledge on the system and its
typical disturbances. Two snapshot matrix-based methods from literature were
introduced: a method that first computes the Proper Orthogonal Modes (poms)
based upon the snapshot matrix (the pom technique) and a method that directly
uses the snapshot matrix in combination with Least Squares (ls) fitting (the ls

technique). These methods were, to the best of our knowledge, not compared in
literature before. This chapter compares the two, both based on their theoretical
formulation and based on numerical analysis, in order to find which method
is most suitable for deriving the estimator. The numerical experiments focus
on the deformation of the wafer chuck due to its main disturbance source, the
immersion film.

First, in respectively Section 4.1 and 4.2, estimation using the pom technique
and the ls technique is introduced. The two methods are then compared in
Section 4.3 based on their theoretic formulation. One of the comparison criteria
is the estimation error, which consists of methodical error and error due to sensor
noise. It is shown that both methods can be adapted in different ways such that a
trade-off can be made between those error sources. In Section 4.4 the techniques
are numerically assessed and compared. In a simulation, the sf method is
applied to a wafer chuck model with highly simplified boundary conditions.
Finally, Section 4.5 concludes that for several reasons the ls technique is more
suitable than the pom technique.

49
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4.1 Estimation using the Proper Orthogonal Modes
(POM technique)

4.1.1 Method

Each column of snapshot matrix W , representing a snapshot of the system, can
be imagined as a point in a NP-dimensional space. The full snapshot matrix can
then be thought of as a point cloud with ND points. Intuitively, one would want
fitting shapes that capture the most prominent patterns in the snapshot matrix.
This can be achieved using the Proper Orthogonal Decomposition (pod). For
the given snapshot matrix it finds a set of orthogonal vectors and corresponding
singular values. The vector with the highest singular value spans the direction
in the NP space that minimises – in a least squares sense – its total distance to
the points in the point cloud, i.e.

arg min
ϕ̌1

ND

∑
i=1

m2
i =

ND

∑
i=1

|wi|2 −
(

wᵀ
i ϕ̌1
|ϕ̌1|

)2
, (4.1)

where mi is the distance between the ith point of the snapshot matrix and the
direction span by ϕ̌1. The minimisation problem of Eq. (4.1) is equivalent to the
maximisation problem

arg max
ϕ̌1

ND

∑
i=1

l2
i = arg max

ϕ̌1

ND

∑
i=1

(
wᵀ

i ϕ̌1
|ϕ̌1|

)2

, (4.2)

where li is the length of the orthogonal projection of wi onto ϕ̌1.
Defining λ1 as ∑ND

i=1 l2
i , the solution of this optimisation problem (the full

derivation is included in Appendix D) is found using the eigenvalue problem

λnϕ̌n = WWᵀϕ̌n, (4.3)

where WWᵀ can be recognised as a multiple of the sample covariance matrix of
W . The eigenvectors ϕ̌n and eigenvalues λn are called, respectively, the Proper
Orthogonal Modes (poms) and the singular values of W . The pom corresponding
to the largest singular value, λ1, is the one that minimises Eq. (4.1). It can
be reasoned that the other poms also minimise distance Eq. (4.1), with the
additional constraint that it is orthogonal to the vectors with higher singular
values. Eventually, NP poms and singular values can be obtained.

The set of fitting shapes is formed from the poms with the highest singular
values, i.e. the ones that carry the most information about W .

Φ̌ =
[

ϕ̌1 · · · ϕ̌NF

]
. (4.4)

The number of fitting shapes, NF, should be chosen such that the estimation
error is as low as possible.

Example 4.1 illustrates estimation with the pom technique for a simple two
DoFs system.
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Example 4.1: 2 DoFs system (POM technique)

x
x(t)

y(t)

y

The figure shows the construction of the fitting shape using poms for a
simple system with two Degrees of Freedom (DoFs). x and y denote the
displacements of the two points (DoFs); x belongs to the measurement
point and y to the target point, whose displacement must be estimated.
The response of the system is assumed to be well-described by two
snapshots w1 and w2, together forming snapshot matrix W . Thus, it
is assumed that the output of the system is a linear combination of
shapes w1 and w2 with Gaussian distributed weighing factors with equal
standard deviation. For this two DoFs system, the sf matrix is simply
scalar, b, so that ŷ = bx.
The poms ϕ̌1 and ϕ̌2 corresponding to W are shown in the figure. The
first pom, ϕ̌1, spans the line that minimises m2

1 + m2
2, the most prominent

direction in the snapshot matrix. In this two DoFs case, the direction of
pom ϕ̌2 is trivial, spanning the least prominent direction in the snapshot
matrix. The ellipses show the equidensity contours of the probability
density function of the combinations w =

[
w1 w2

]{
α1 α2

}ᵀ,
where α1 and α2 are standard Gaussian distributed. Note that their semi-
axes are spanned by the poms.
bpom is found from the direction of most prominent pom, ϕ̌1. bpom can be
understood as the slope of the line ŷ = bpomx, which is indicated in red.
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4.1.2 Comparison between proper orthogonal modes and dy-
namic modeshapes for shape fitting

In many cases, shape fitting is performed using an equal or smaller number of
fitting shapes than the number of sensors (NM ≥ NF). In that sense poms and
dynamic modeshapes are used in a highly comparable way, namely to find a set
of fitting shapes that leads to an effective estimator.

Feeny and Kapagantu show that for a special class of systems the poms of a
snapshot matrix equal the modeshapes of the system, namely for systems that
have a mass matrix that is a multiple of the identity matrix [74]. An example of
such a system is a multiple mass-spring system with equal masses. They show
that for such a matrix

WWᵀϕ̆j = qᵀj q1ϕ̆1 + . . . + qᵀj qNϕ̆N , (4.5)

with qi a vector with the modal amplitudes of the ith mode at time instants t =
t1, t2, . . . , tND . They make use of the fact that for free vibration, the eigenmodes
will resonate at different frequencies, so that qᵀj qj � qᵀj qi with i 6= j for a large
enough number of snapshots ND. From this and the fact that for such a system
the eigenvectors are orthogonal it follows that the eigenvectors and thus the
poms of W are equal to the system’s modeshapes.

In a similar fashion it can be shown that the poms found using quasi-static
response – of a system with a unitary mass matrix – to standard Gaussian
distributed disturbances at all its inputs equal the system’s modeshapes. The
quasi-static response (Ω = 0) of the ith modal coordinate can using Eq. (2.15) be
expressed as

qᵀn =
1

Ω2
nµn

ϕ̆ᵀ
n

 fᵀ1
...

fᵀN

, (4.6)

with f i a column vector of the forces at the ith input point at the at time instants
t = t1, t2, . . . , tND . Thus, the expected value of qᵀj qi can be expressed as

E
(

qᵀj qi

)
=

1
Ω2

j µj
ϕ̆ᵀ

j E


 fᵀ1

...
fᵀN

[ f 1 · · · f N
]ϕ̆i

1
Ω2

i µi
. (4.7)

If the disturbances of the different points are indeed standard Gaussian distrib-
uted and uncorrelated, E

(
qᵀj qi

)
is proportional with ϕ̆ᵀ

j ϕ̆i and thus E
(

qᵀj qi

)
= 0

for i 6= j.
Most systems, however, do not posses a unitary mass matrix, so that the

modeshapes are not orthogonal with respect to each other and do not equal the
poms. Furthermore, the choice of equally distributed quasi-static disturbances
at all input points does not make sense, as choosing different amplitudes at
different points makes it possible to add the foreknowledge on the spatial
distribution of the disturbances.

Example 4.2 compares the effectiveness of modeshapes and poms for fitting
beam deformations.
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Example 4.2: Shape fitting with POMs and and dynamic modeshapes

This example is based on the beam and the snapshot matrix of Example
3.3. The snapshot matrix was build up from the deformation shapes
corresponding to disturbances at the middle part of the beam.
The following figure shows the first three modeshapes of the tapered
beam. Also the first five poms, which were calculated using the snapshot
matrix, are shown.

Modeshape 1

Modeshape 2

Modeshape 3 POM 3

POM 2

POM 1

The deformation shape corresponding to load case n = 17, as shown in
Example 3.3, was fitted using different sets of either modeshapes or poms.
The results are plotted in the figure below, along with the normalised rms

residues between the fitted and actual shape. The results illustrate that
for accurately fitting this deformation shape with poms, fewer shapes are
needed than when fitting with modeshapes.

Modeshapes 1−3: 0.093 POMs 1−3: 0.017

Modeshapes 1−2: 0.31 POMs 1−2: 0.018

Modeshape 1: 0.32 POM 1: 0.12
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4.2 Estimation using the full snapshot matrix (LS
technique)

The least squares method finds the estimation matrix B that directly minimises
the methodical estimation error. This method calculates for each degree of
freedom the corresponding optimal coefficients that result in the smallest
estimation error, in the least square sense, for all deformation shapes in snapshot
matrix W . The optimisation for the jth degree of freedom reads:

βj = arg min
βj

E
(

ε2
j,meth

)
= arg min

βj

[(
βjWm −wj

)
α
]2

, (4.8)

where row vectors βj, εj and wj are respectively the jth row of the matrices B,
E and W . This problem is clearly a weighted least squares problem, which is
known to have the following solution

βj = wjΣαWᵀ
m
[
WmΣαWᵀ

m
]−1, (4.9)

so that the full matrix BLS is given by

BLS =
[

βᵀ
1 · · · βᵀ

NP

]ᵀ
= WΣαWᵀ

m
(
WmΣαWᵀ

m
)−1. (4.10)

Note the similarity between this result and Eqs. (3.6) and (3.7). It follows that the
ls technique is a special case of shape fitting, in which the set of fitting shapes
is formed by snapshot matrix W .

Example 4.3 illustrates estimation with the ls technique for a simple two
DoFs system.

4.3 Comparison between the POM and the LS tech-
nique

4.3.1 Influence of the choice of target points

The pom and the ls technique differ fundamentally in the sense that the
estimation performance of the pom technique depends on the chosen subset of
target points. Typically, the number of target points depends on the application
and could be, for example, all points (full field) or just a single point. In any case,
one would expect that the estimation of a point does not depend on whether it
was calculated as part of the full field or just as a single point. Clearly, the ls

technique optimises for each point separately (cf Eq. 4.9). The pom technique,
however, makes use of a set of poms in matrix Φpom and their orthogonality
depends on all chosen points. The question arises how the choice of the target
point subset influences the results of the pom technique. Therefore, different sets
of target coordinates will be chosen in the numerical study.
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Example 4.3: 2 DoFs system (LS technique)

x

y

Gaussian probability
density function

y

For the two DoFs system of Example 3.3 with the same snapshot matrix
W =

[
w1 w2

]
, the optimal estimation parameter b can be calculated

with the ls technique. The above figure shows the construction of the
line m with slope bls that leads to optimal estimation. This line directly
minimises estimation error ε2

1 + ε2
2. Unlike the line found with the pom

technique, line m does not span the longest semi-axis of the equidensity
contour ellipses, but intersects them in their left- and rightmost points.
Thus for any given measurement x the ls technique selects the estimate
ŷ that has the highest probability for the given measurement x, as
illustrated in the left inset.
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4.3.2 Methodical error

The pom technique uses poms to extract a set of the most prominent shapes from
snapshot matrix W . This set is then used for shape fitting; the less prominent
shapes are disregarded. When those less prominent shapes are present in the
shape of the field, they will not be recognised as such, but wrongly recognised
as contributions from the set of most prominent shapes. This so-called spill-
over effect causes the methodical error of the pom technique. The ls technique,
however, directly optimises for the smallest methodical error.

4.3.3 Error due to sensor noise

Both the pom and the ls technique use inversions that are typically close to
singular, meaning that it is difficult to distinguish the fitting shapes from their
values at the sensors. An increased effort needed for distinguishing the fitting
shapes manifests itself in larger values in matrix B. Those large values will,
according to Eq. (3.12), amplify the sensor noise so that the estimation error
due to sensor noise increases. The pom technique can deal in a natural way
with this problem. By reducing the number of selected poms, NF, those can
be distinguished more easily, so that the estimation error due to sensor noise
decreases. This is at the cost of an increased methodical error, because if less
modes are taken into account, the methodical error increases. This means that
there is an inherent trade-off between the error due to sensor noise and the
methodical error. According to [75], the optimal truncation can be found by
testing all NF ∈ {1 . . . NP} and selecting the one leading to the smallest total
estimation error.

The choice of a lower truncation number, NF, can be regarded as a way to
regularise the inversion problem. The ls technique, as formulated by [71], does
originally not allow for regularisation, but may be regularised in a comparable
way as the pom technique. Instead of inverting WmΣαWᵀ

m itself, a lower rank
approximation of the inverse is calculated that has reduced information about
W [76]. If WmΣαWᵀ

m is expressed as a singular value decomposition:

WmΣαWᵀ
m = U diag

{
σ1 · · · σNM

}
Vᵀ, (4.11)

its inverse can be expressed as(
WmΣαWᵀ

m
)−1

= V diag
{

σ−1
1 · · · σ−1

NM

}
Uᵀ. (4.12)

For the lower rank approximation of the inverse, the smallest singular values are
replaced by zero:(

WmΣαWᵀ
m
)−1 ' V diag

{
σ−1

1 · · · σ−1
NT

0
}

Uᵀ. (4.13)

The amount of regularisation depends on the choice NT. The optimal truncation
can be found by testing all NT ∈ {1 . . . NM} and selecting the one resulting in
the smallest total error.
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4.3.4 Least squares solution for least total error

The previous section showed that both the pom and ls technique allow for
a regularisation such that the total estimation error is a balance between
methodical error and noise error. This in itself is, however, no guarantee for
optimality. Therefore, it is proposed to directly optimise for a minimum total
estimation error (Eq. 3.12):

∇βj
E
(

ε2
j,total

)
= ∇βj

E
((

wᵀ
j α− βWmα− βjεm

)(
αᵀwj − αᵀWᵀ

mβᵀ
j − εᵀmβᵀ

j

))
= ∇βj

(
wᵀ

j Σαwj − 2wᵀ
j ΣαWᵀ

mβᵀ
j + βjWmΣαWᵀ

mβᵀ
j + βᵀΣεβᵀ

j

)
= −2wjΣαWᵀ

m + 2WmΣαWᵀ
mβᵀ

j + 2Σεβᵀ
j = 0, (4.14)

so that
βj = wjΣαWᵀ

m
(
WmΣαWᵀ

m + Σε

)−1. (4.15)

The full matrix BLS is then defined as follows

BLS =
[

βᵀ
1 · · · βᵀ

NP

]ᵀ
= WΣαWᵀ

m
(
WmΣαWᵀ

m + Σε

)−1. (4.16)

Note that compared to Eq. (4.10) a term Σε is added to the inverse, which acts as
a regularisation by bringing the matrix to be inverted closer to a diagonal matrix.
The solution can be recognised as a form of generalised Tikhonov regularisation
[77].

Although Mainçon has a different mathematical formulation and does not
use a snapshot matrix [12], his method is, in basis, comparable to the here
presented method, as both make use of the foreknowledge on the disturbances
and sensor noise in the form of covariance matrices. Indeed, for a system that
has no Rigid Body (rb) modes the methods yield equal results.

4.3.5 Time complexity

Van der Sanden and Philips [78], aiming at extracting the most relevant shapes
from a snapshot matrix of a system’s temperature responses for use in sensor
placement, stated that “Performing the decomposition using the POD algorithm
is very hard if not practically impossible in terms of computation time and memory
requirements if the temperature identification matrix is large, as in our case ≈ 50000
× 3500.” They used a snapshot matrix with NP = 50000 target points and
ND = 3500 snapshots to finally estimate using NM = 6 sensors, probably using
shape fitting.

The authors are, presumably, referring to the time complexity of calculating
the full pod. The pod is in practice calculated using the Singular Value
Decomposition (svd). Algorithms for obtaining the full svd have typically a
time complexity of O

(
k1N2

PND + k213N3
D
)

[79], which grows fast for increasing
dimensions of the snapshot matrix. However, as only a small subset of the
most prominent poms is needed for estimation, faster algorithms can be utilised.
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Example 4.4: Regularisation of the snapshot-based LS estimator

This example is based on the two DoFs system of Example 4.3. The
slope bls is calculated with the ls technique and is optimal for the given
snapshot matrix W =

[
w1 w2

]
. If the measurement of x contains,

however, sensor noise ε, the sensor noise multiplied by b adds up to the
estimate ŷ (figure below). Thus, the standard deviation of the error on
ŷ due to noise is σ2,noise = blsσε. To decrease the influence of the sensor
noise on the estimate, the slope bls should be deceased. This leads to a
biased estimator with a higher methodical error. The regularised least
squares technique calculates the slope bls,reg that leads to the optimal
trade-off between methodical and sensor noise.

x

y
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For example, Matlab’s iterative algorithm svds calculates the 15 most prominent
poms from a 50000×3500 snapshot matrix with standard Gaussian distributed
entries in 1400 seconds on a laptop with a clock speed of 1.6 GHz.

Both the pom technique and the ls technique calculate the estimator using
least squares. The ls technique has typically a large number of fitting shapes, as
it fits all snapshots in the snapshot matrix. But also for the ls technique the least
squares calculation is relatively fast. Calculation of B = ΦΦᵀ

m
(
ΦmΦᵀ

m
)−1 with

NP = 50000, ND = 3500 and NM = 6 takes 0.4 seconds on a laptop with a clock
speed of 1.6 GHz. Thus the time complexity of the pom technique, including the
calculation of the relevant poms, is much larger than the one of the ls technique,
although by no means prohibitive for off-line calculation of the estimator.

4.4 Numerical study of the snapshot techniques in
the wafer chuck

In the following, a numerical study will be presented based on the estimation
problem of a wafer chuck’s deformation. The geometries, boundary conditions
and load cases of an actual wafer chuck are highly complex. These were
simplified to keep the study tractable and to not distract from the results
regarding estimator performance.

4.4.1 Wafer chuck model

The core of the model is a finite element model of the wafer chuck. The wafer
chuck and the wafer on top of it are modelled as a single entity, a square zerodur
plate of 0.55 m × 0.55 m × 0.014 m made out of plate finite elements with
free boundary conditions (Figure 4.1a). A wafer chucks is kept in place by a
control system with sensors and actuators. This was modelled by selecting four
actuator positions and choosing actuation force magnitudes such that the net
forces and moments, including any applied external loads, on the plate stay
zero, see Figure 4.1c. This can be regarded as an ideal control action that fully
prevents rb displacement. The hand-picked sensor configuration of Section 2.4.3
with eight position sensors placed at the corners and the centres of the edges
was used (Figure 4.1a). This sensor configuration is, presumably, sub-optimal.
Approaches to sensor placement for the estimation problem are presented in
[75, 80]. Automated sensor placement is studied in Chapter 6.

4.4.2 Load cases

In immersion lithography a fluid layer is applied between the lens and the wafer
to the numerical aperture of the lens column. Turbulence in this fluid layer
lead to disturbance forces that act onto the wafer chuck. Actually, those forces
account for the major part of the wafer chuck’s low frequency disturbances, so
that the disturbance forces may be assumed to act solely in the exposure area, a
circle with a diameter of 0.10 m.
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wafer

wafer
chuck

position
sensor (8x)

lens column

exposure
area (ø 0.10 m)

(a) The wafer chuck including the wafer were mod-
elled as a single plate with free boundary conditions.
The eight red circles indicate the chosen sensor posi-
tions.

 y

x
(b) The wafer chuck’s top surface was discretised in
a grid of 51×51 points. Disturbances were assumed
to only act at the points in the exposure area. For
clarity a smaller discretisation grid is shown, with only
5 disturbance locations in the exposure area; in the
numerical experiments 68 disturbance points per lens
position (x, y) were used.

(c) Example of a load case corresponding to one
disturbance position. A load case was composed
from a disturbance force (the green arrow) and
four actuator forces (the black arrows) that mimic
an ideal controller action by balancing the external
forces.

Figure 4.1: Modelling steps for the numerical study of the wafer chuck.
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Figure 4.2: Average deformation of the wafer chuck over the exposure area as function of
the lens position (x, y).

The wafer chuck’s top surface was descretised in a grid of 51×51 points
(Figure 4.1b). This discretisation was used both to describe the possible different
lens positions (x, y) and the possible positions of disturbance forces. In total
1313 lens positions were studied, i.e. all positions in the 450 mm diameter wafer
area. Per lens location the 68 points in the 100 mm diameter exposure area were
used as the disturbance locations.

A simple disturbance model was adopted based on the assumption that the
total surface integral of the disturbance pressure over the exposure area is 1
N rms. It was assumed that the disturbances are not spatially correlated, so
that the forces at the disturbance positions are normally distributed with a zero
mean and a variance of 1/68 · 1 N2. All disturbance forces combined with the
corresponding actuator forces lead to a total of 68 load cases per lens position.

4.4.3 Snapshot matrix construction and estimator calculation

The deformed shapes corresponding to the load cases were calculated using the
finite element model. As the disturbance forces are assumed to be typically
low frequency and well below the lowest eigenfrequency of the wafer chuck,
static analysis sufficed. Per lens position the NF = 68 deformation shapes
corresponding to the relevant load cases were combined into a 512× 68 snapshot
matrix W . Figure 4.2 shows the average deformation over the exposure area as
function of the lens’s position (x, y). The weighing of the load cases was uniform,
so that σ2

α = 1/68. A rms noise level of 0.1 · 10−9 m was assumed for all sensors,
so that σ2

ε = 1.0 · 10−20 m2. Using these choices, matrix B was calculated for any
of the following scenarios based on the different estimation technique.

1. pom (full field): The full field of target points were included in the
calculation of the pod.

2. pom (exposure area): Only the target points corresponding to the exposure
area were included in the calculation of the pod.



4

62 Chapter 4. Snapshot matrix based techniques for shape fitting

0 100 200 300
0

2

4

6

x 10
−10

68

M
et

h
o

d
ic

al
 e

rr
o

r 
[m

]

lens
postion

Number of disturbance points

(a) Methodical error.

0 100 200 300
0

1

2

x 10
−9

Number of disturbance points
68E

rr
o

r 
d

u
e 

to
 s

en
so

r 
n

o
is

e 
[m

]

(b) Error due to sensor noise.

Figure 4.3: The methodical error and the error due to sensor noise as function of the
number of disturbance points used in the analysis. The results converge for a large
enough number of disturbance points. For the grid of 68 disturbance points, as used in
the rest of work, the errors have nearly converged.

3. ls (standard): The ls technique was applied according to Eq. (4.10).

4. ls (reduced basis): The inversion of Eq. (4.10) was calculated using the
singular value decomposition with a limited number of singular values
NT, according to Eq. (4.13), such that the estimation error for the respective
lens position was minimised.

5. ls (regularised): The regularised ls technique was applied.

4.4.4 Estimation error

After applying the different estimation techniques, the standard deviation of
the estimation error at each target point in the exposure area was calculated.
To obtain a single indicator of the error for each lens position, the standard
deviations of the target points were averaged. Those averaged were stacked
according to their lens positions (x, y) in an error matrix Etotal. In a comparable
way Emeth (methodical estimation error) and Enoise (estimation error due to
noise) were found.

To validate the convergence of the analysis, for a single, arbitrary lens loca-
tion the simulation was carried out multiple times. The number of disturbance
and target points below the lens was varied between 1 and 280. Figure shows
the results in terms of the methodical error and the error due to sensor noise as
a function of the number of points in the lens area. The dotted lines indicate 68
points, as was used in the simulations in this chapter. The figures show that both
errors stabilise for a large enough number of points. For 68 points, the method
is nearly stabilised.

4.4.5 Estimation results and discussion

Table 4.1 shows the estimator performance as function of the lens position for
the different scenarios. The left three columns show the error contributions and
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Table 4.1: Estimator performance as function of the lens position for different pom and
ls based scenarios. † Note that Enoiseand Etotal for the standard ls technique contain
relatively high values; those saturate on the given colour scale.

Scenario
Methodical
estimation

error (Emeth)

Estimation
error due to

noise
(Enoise)

Total
estimation

error (Etotal)

Truncation
number
(Npom or

NT)

pom

(full field)

Average: 4.21·10−10 m Average: 2.05·10−10 m Average: 4.79·10−10 m Average: 6.7

pom

(exposure
area)

Average: 4.85·10−10 m Average: 1.80·10−10 m Average: 5.24·10−10 m Average: 6.0

ls

(standard)

Average: 2.98·10−10 m Average: 8.92·10−10 m

†

Average: 9.71·10−10 m

†

not applicable

ls

(truncated)

Average: 3.94·10−10 m Average: 2.20·10−10 m Average: 4.61·10−10 m Average: 6.9

ls

(regularised)

Average: 2.80·10−10 m Average: 2.12·10−10 m Average: 4.40·10−10 m

not applicable

·10−10 [m]4 6 8 10 122 4 6 85 7
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the total error. The fourth column shows for the pom scenarios the number of
poms that led to the lowest estimation error and for the truncated ls scenario the
number of singular values that led to the lowest estimation error.

From a comparison between the plots of the truncation number and the plots
of the estimation error the effect of the truncation can be identified. Passing a
border to a lower truncation number, the methodical error decreases, whereas
the error due to noise increases. This shows the regularising effects of using a
smaller set of poms or singular vectors.

Then, we compare the results of the scenarios. First of all, the pom scenarios
show different results, which is expected, as the estimation depends on the
choice of the target point subset. The pom for the subset of points at the exposure
area performs less well than the pom for the full field. This is remarkable, as the
smaller subset seems to be more tailored to the actual exposure area of interest.
This may be explained by the fact that the full field contains more information
of the sensor points because of the neighbouring points that are also considered.
For the pom of the exposure area solely the actual 8 measurement points are
considered, so that less sensor information is preserved in the calculation of the
poms.

The standard ls scenario leads, as expected, to the lowest methodical
estimation error. Noise, on the other hand, leads to large errors, so that the total
estimation error is relatively large. This is caused by the lack of regularisation
of the estimator. The truncated ls scenario is better regularised; it leads to
somewhat larger methodical errors but a considerably smaller noise influence
and thus a smaller total estimation error. The total estimation error is also
smaller than for the pom scenarios. Finally, it is observed that the regularised ls

scenario, as expected from theory, leads to the smallest total estimation error by
adequately balancing between methodical error and error due to noise.

The performance of the different estimation scenarios depends on the noise
level. Figure 4.4 shows for two lens positions the average error in the exposure
area as function of the sensor noise. For low noise, the total error is dominated
by methodical error and stays constant; for high noise the total error grows
proportionally to the sensor noise, which is then dominating. The full field pom

and truncated ls show clearly the effect of the regularisation via truncation. At
certain points the influence of sensor noise is such large that one step further
truncation leads to better results. The methodical error is then again limiting.
The regularised ls scenario follows the other ls scenarios smoothly, always with
the lowest estimation error.

In the preceding, the snapshot matrix W was perfect, in the sense that it did
not contain noise and fully reflected the behaviour of the actual system. Indeed,
if the snapshot matrix is generated using measurements, noise might influence
the estimation’s performance. This effect must be reduced by acquiring enough
samples to average out the effect of the sensor noise. If the sensors that are used
for acquiring the snapshot-matrix are the same as the ones that are used for
estimation, or if they have at least the same noise level, this would directly lead
to the desired regularisation, as

E((Wmα + ε)(Wmα + ε)ᵀ) = E
(
WmααᵀWᵀ

m + εεᵀ
)
= WmΣαWᵀ

m + Σε. (4.17)
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Figure 4.4: Estimation error as function of the noise level of the sensors for the five
estimation techniques. The error is the average over the exposure area for the lens position
indicated by the blue circle in the inset. The noise level of 0.1 · 10−9 m, as used for the
results in Table 4.1, is indicated in the plots.
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If the snapshot matrix is obtained using a model, like in the numerical study, it
does not suffer from measurement noise, but modelling inaccuracies may be a
problem. It is, therefore, important that the model accurately reflects the actual
system, which may be achieved through grey box identification methods.

4.5 Conclusions

This chapter compared the pom and the ls technique, which are used for the
calculation of the sf estimator. A fundamental difference between the pom and
ls technique is that the latter optimises for each target point separately, whereas
the actual estimation performance of the pom technique depends on the other
included target points. Therefore, the selection of output points in the pom is
not trivial, as was illustrated by the numerical study.

Both pom and ls allow including foreknowledge on the problem’s physics
and typical disturbances, which is essential for optimising estimation perform-
ance. This foreknowledge is included via a snapshot matrix of the system’s
output response to typical, Gaussian disturbances. The pom technique extracts
the most prominent shapes from the snapshot matrix and uses those for
performing shape fitting. The less prominent patterns may, however, cause
spillover, leading to the methodical estimation error. The ls technique uses the
full snapshot matrix for shape fitting and optimises, by definition, for minimum
methodical error.

Not only the methodical error but also sensor noise may lead to a significant
estimation error. Both the pom and the ls techniques allow for regularisation in
order to reduce the influence of sensor noise. This can in the pom technique
be achieved by truncation of the number of prominent poms and in the ls

technique by truncation of the number of singular vectors. Truncation, however,
leads to a loss of information about the original snapshot matrix resulting in a
higher methodical error. There is a trade-off between methodical error and noise
error in order to attain minimum total estimation error. It is proposed to use a
regularised ls technique, which directly optimises for lowest total estimation
error.



Chapter 5

Shape fitting in presence of
rigid body dynamics

The formulations of Shape Fitting (sf) in literature do not account for the
Rigid Body (rb) motion of a system. For this reason, the sf method was in
the previous chapter applied to a wafer chuck model with highly simplified
boundary conditions. An ideal control action was assumed, so that the wafer
chuck did not experience rb motion.

In reality, the wafer chuck experiences rb motion, as the control action is
not ideal. The controller typically has a bandwidth below the first resonance
frequency of the mechanical structure, leading to dynamic behaviour in the
frequency region that was previously considered quasi-static. The sf method
needs to be adapted to deal with rb motion. This chapter further develops the
sf method to make it applicable to dynamic systems with rb motion.

Section 5.1 shows to what extent a system with rb motion and a position con-
troller behaves quasi-statically. Two approaches for shape fitting are proposed
and one of them is selected for further study. Section 5.2 introduces how the rb

and the flexible modes can be decoupled, yielding a flexible residue that can be
used for shape fitting. Section 5.3 describes how the snapshot matrix-based Least
Squares (ls) technique can be adapted, to also function optimally in the presence
of dynamic effects. Section 5.4 presents numerical results of a wafer chuck model
with a rb controller. The results show shape fitting is still effective for systems
that do not behave solely quasi-static. Section 5.5 introduces a hybrid estimation
method based on a both sf estimation and double integration of acceleration.

5.1 Shape fitting in presence of position control

Shape fitting is normally applied to systems that purely undergo deformation
and no rb motion, due to their stiff connection to the fixed world. The wafer
chuck, however, is not connected to the outside world in a passive way, but
actively using a position controller. Section 2.1.3 introduced the position control
of the wafer chuck. The position of the wafer chuck with respect to the
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Figure 5.1: The closed-loop transfer function from force to displacement of a fully free
plate with rb control. The controller bandwidth is about 90 Hz. The system does not
behave quasi-statically below its first eigenfrequency, as the magnitude and phase of its
response are not constant.

metrology frame is controlled by controller C(s). An ideal controller with infinite
bandwidth would respond instantaneously to the disturbances, such that the
net forces and moments on the wafer chuck are fully in equilibrium with the
disturbances. Thus, the wafer chuck would not experience rb motion. Chapters
3 and 4 assumed such an ideal controller.

The controller has in reality, however, a limited bandwidth, leading to rb

motion and dynamic effects in the frequency band below the wafer chuck’s
lowest eigenfrequency, which was in the previous presumed quasi-static. Figure
5.1 illustrates this effect by the transfer function of a free-floating plate that is
suspended using a rb controller. The controller bandwidth is around 90 Hz,
leading to a non-constant magnitude and phase below the first eigenfrequency.

To be able to apply the traditional shape fitting to systems that have rb

motion, different approaches are possible. In the following, two approaches
are introduced for shape fitting of the actively suspended wafer chuck.

The first approach makes use the knowledge of the actuation forces for the
estimation and splits the response due to the known actuation and the unknown
disturbance forces. In the other approach the wafer chuck and its controller
are treated as a black box system, of which only the outputs are used. The
sf estimator is then only fed with these outputs, i.e. the measurements of the
displacement of the wafer chuck or related measurands.
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Figure 5.2: The contribution of the first nine eigenmodes to the closed-loop transfer
function of the rb controlled plate (Figure 5.1). In contrast to the rb eigenmodes, the
flexible eigenmodes behave approximately quasi-static for frequencies up to the controller
bandwidth (90 Hz).
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5.1.1 Black box approach

The wafer chuck and its controller can be regarded as a single system with
disturbance inputs and displacement outputs. The controller forces are in that
case not used, as they are considered internal forces, hence the name ‘black box’
approach.

Figure 5.2 shows the modal response of a plate with closed-loop rb control.
The rb coordinates (z, θx and θy, Figure 5.2a) behave dynamically, as they do
not show a flat magnitude or a flat phase response. The flexible eigenmodes
(Figure 5.2b), however, do show approximately quasi-static behaviour up to the
controller’s bandwidth around 90 Hz. Thus, the response of the system up to the
controller bandwidth is a combined effect of rb dynamics and flexible quasi-statics
[81]. Around and above the controller bandwidth, the response of the flexible
eigenmodes behaves dynamically.

5.1.2 Split approach

The split approach divides the closed-loop response of the wafer chuck to its
disturbances into two parts, namely, the part that is directly caused by the
disturbances and the part caused by the actuator forces, which are known. The
following shows that it is indeed possible to divide the response into those parts.

Figure 5.3a shows a block diagram of the system’s closed-loop transfer
function from the disturbance forces, f dist, to the system’s displacements, w.
This figure is similar to Figure 2.3a, with G(s) the matrix of the wafer chuck’s
transfer functions from the external forces to the displacements, w. The feed-
forward path has been omitted to simplify the figure. The matrices Tact, Tdist
and Tm that select the relevant inputs and outputs of G, are shown explicitly.
Matrices Tact and Tdist are defined such that GTact and GTdist describe the
transfer functions of respectively the actuator and the disturbance forces to
w. In a similar way, matrix Tm selects the outputs of G corresponding to the
sensors. Like in Figure 2.3a, Matrix Tu translates the forces in rb coordinates
into the actuator forces, Ty translates the displacement at the sensors into rb

displacements. The closed-loop transfer function from f dist to w can be written
as:

Hw, f dist(s) = G
(

I + TactTuCTyTmG
)−1, (5.1)

The block diagram that is presented in Figure 5.3b is equivalent to the one of
Figure 5.3a. The displacements of the wafer chuck, w, is a result of the response
the disturbance forces, f dist, the actuation forces, f act, and the initial conditions
of the wafer chuck, G. As the system is assumed to be linear, the displacement,
w, can be decomposed into two parts, the displacements wdist caused by the
disturbances forces and the displacements wact caused by the actuators.

This decomposition can be expressed in terms of transfer functions. The
transfer function Hw, f dist(s) is split into the following two parts:

Hw, f dist = Hdist
w, f dist + Hact

w, f dist, (5.2)
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(a) Similar depiction of the system’s transfer function Hw, f dist as in Figure 2.3a.
Here the matrices Tact, Tdist and Tm have been added and the feedforward path
has been removed for clarity.
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Figure 5.3: Two equivalent ways of depicting the closed-loop transfer function Hw, f dist of
the out-of-plane motion control system, illustrating the definition of Hdist

w, f dist and Hact
w, f dist.
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where Hdist
w, f dist denotes the direct open-loop transfer functions from the disturb-

ances to the displacements,

Hdist
w, f dist = GTdist, (5.3)

and Hact
w, f dist the part of the response of G that is solely caused by the actuator

forces, which in turn result from the closed-loop response to the disturbances,
H f act, f dist(s), so that

Hact
w, f dist = GTdist = GTactH f act, f dist, (5.4)

with
H f act, f dist = −TuCTyTmG

(
I + TactTuCTyTmG

)−1Tdist. (5.5)

As the actuation forces f act are known and assuming that it is possible
to obtain wact based upon them, the contributions wdist of the disturbance
forces to the displacements w can be found at the sensor locations and are
then be used for shape fitting. The open-loop part due to disturbances forces
(transfer function Hdist

w, f dist) only involves the wafer chuck and not the control
loop. Thus, the quasi-static frequency band extends up to the wafer chuck’s first
eigenfrequency, regardless of the controller’s bandwidth.

A difficulty of the split approach is, however, that the response to the
actuation forces (transfer function Hact

w, f dist) needs to be known with sufficient
accuracy. This is, however, not trivial, as the system’s initial states are not known
and that the model that is used for finding the response might not fully equal the
real system. For the black box approach, on the other hand, a system model is
not necessarily required, as long as the output behaviour of the system is known
in the form of a snapshot matrix.

In this thesis it is chosen to develop further with the black box approach,
as it extends in a straightforward way the standard sf method that is used for
systems without rb motion and a controller. The split approach is left as an
alternative that needs further study regarding theoretical feasibility and practical
performance.

5.2 Decoupling rigid body and flexible modes

In a system that exhibits rb motion it is necessary to decouple the position
contributions of the rb modes and flexible modes, as the rb modes typically
behave dynamically. This section shows how the rb positions of the points of
the object can be found, or rather estimated, and how the estimate contribution
of the flexible modes, the flexible residues, can be obtained. Finally, it is shown
how the flexible residues can be applied for shape fitting.

5.2.1 The rigid body estimate

For decoupling the rb modes, the rb coordinates, which were introduced
in Section 2.1.3, are used. The positions in the out-of-plane direction ∆z
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can be divided into the contribution of the Nrb rb modeshapes, ∆zrb, and a
displacement contribution due to the flexible modeshapes, wfl:

∆z = ∆zrb + wfl = Φ̆rbqrb + wfl, (5.6)

where Φ̆rb is a NP × Nrb-matrix consisting of the relevant rb modeshapes and
qrb is a vector with the modal amplitudes of the rb modes. The positions only
corresponding to the measurement points read

∆zm = ∆zm,rb + wm,fl = Φ̆m,rbqrb + wm,fl. (5.7)

For obtaining the flexible residues, the rb contributions have to be subtracted
from the measurement signals. First of all, it is important that all rb modes can
be observed at the sensor locations. In order to be able to measure independent
information of all rb modeshapes, the placement of the sensors should be
such that Φ̆m,rb is full column rank. Still, it is not possible to obtain the
exact contribution of the rb modes based on the position measurements, as the
measurements also contain the flexible contribution. Thus, the rb coordinates,
qrb, can not be found exactly, but must be estimated from the displacement
measurements

qrb = T∆zm = TΦ̆m,rbqrb + Twm,fl, (5.8)

where T is a decoupling matrix of size Nrb × NM that is defined in Eq. (5.11).
The estimate rb positions are

∆zrb = Φ̆rbqrb = Φ̆rbT∆zm = Φ̆rbT∆zm,rb + Φ̆rbTwm,fl. (5.9)

5.2.2 The flexible residue

The flexible residues at the point on the object are defined as the difference
between the actual positions and the estimate rb displacement field:

wfl = ∆z− ∆zrb = Φ̆rbqrb + wfl − Φ̆rbTΦ̆m,rbqrb − Φ̆rbTwm,fl

= Φ̆rb
(

I − TΦ̆m,rb
)
qrb + wfl − Φ̆rbTwm,fl. (5.10)

Example 5.1 illustrates the difference between the actual and the estimate rb

coordinates and shows the definition of the flexible residue for a beam with two
measurement points and a single target point.

For use in shape fitting, the flexible residue should be fully independent of
the rb coordinates, qrb. This is the case if decoupling matrix T is chosen such
that TΦ̆m,rb equals I. This is, amongst others, the case if T is the left pseudo-
inverse of a matrix SmrbΦ̆m,rb, i.e.

T = Φ̆
+
m,rb =

(
Φ̆

ᵀ
m,rbSmrbΦ̆m,rb

)−1
Φ̆

ᵀ
m,rbSmrb, (5.11)

where Smrb is a diagonal Nrb × Nrb-matrix with zeros and ones on its diagonal,
which chooses which position sensors are used for estimating the rb coordinates.
Of course, SmrbΦ̆m,rb needs to remain full column rank in order to be able to
collect independent information of all relevant rb modes.
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Example 5.1: Rigid-body decoupling

RB positions
(actual)

CoM

metrology frame

Δzm1,rb
Δzm2,rb

PoI

wm2,flwm1,fl

wPoI,fl

ΔzPoI,rb

RB positions
(estimate)

metrology frame

Δzm1
Δzm2

wPoI,fl

_
PoI

ΔzPoI,rb

_

ΔzPoI

The rb positions of the points on a beam are defined by the position and
orientation of the beam’s centre of mass (left figure). Eq. (5.6) can for this
system be written out as

∆zm1
∆zm2
∆zPoI

 =


∆zm1,rb
∆zm2,rb
∆zPoI,rb

+


wm1,fl
wm2,fl
wPoI,fl

, (5.14)

=

 1 xm1
1 xm2
1 xPoI

{ qrb1
qrb2

}
+


wm1,fl
wm2,fl
wPoI,fl

, (5.15)

where xi is the lateral position of ith point with respect to the beam’s
centre. The first two lines in Eqs. (5.14) and (5.15) correspond to the
measurement point, the last one to the target point, i.e. the PoI.
From position measurements ∆zm1 and ∆zm1 only estimate rb positions
can be found (right figure). The difference between the PoI’s position
∆zPoI and the rb estimate ∆zPoI,rb, the flexible residue wPoI,fl, may contain
rb contributions but is not a function of the rb modal amplitudes.

The flexible residuals at the sensors equal

wm,fl = ∆zm − ∆zm,rb =
(

I − Φ̆m,rbT
)
∆zm (5.12)

Note that if decoupling matrix T is indeed chosen such that TΦ̆m,rb equals I,
the flexible residue (Eq. 5.10) rewrites to

wfl = wfl − Φ̆rbTwm,fl. (5.13)

This formula shows that, although the flexible residue might contain contribu-
tions of rb modeshapes, it is not a function of the rb coordinates, qrb. Thus, the
flexible residue does not contain the dynamic behaviour of the rb modes.

5.2.3 Shape fitting using the flexible residue

The flexible residues are used for shape fitting. To apply shape fitting, the sensor
signals need to be independent. This is not the case any more, however, if part of
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the signal is used to find the estimate rb coordinates. Indeed,
(

I − Φ̆m,rbT
)

is not
full rank but has a rank of NS − Nrb. For this reason, the flexible contributions
need to be remixed by a (NS − Nrb) × NS-transformation matrix Rᵀ, so that
Rᵀ(I − Φ̆m,rbT

)
is full rank. This matrix has to span the null-space of T (TR =

0). After transformation, the recombined flexible residuals become

wR,fl = Rᵀwm,fl = Rᵀ(I − Φ̆m,rbT
)
∆zm. (5.16)

These recombined residuals can then be used as measurement signals for the sf

process in the way described in the previous chapter, so that the estimates of the
flexible residue are

ŵfl = BwR,fl = BRᵀ(I − Φ̆m,rbT
)
∆zm. (5.17)

B is the sf matrix, which is found in the standard way with Eq. (4.16),
substituting snapshot matrix W for a matrix Wfl and Wm for a matrix WR,fl,
so that

B = WflΣαWᵀ
R,fl

(
WR,flΣαWᵀ

R,fl + RᵀΣεR
)−1

, (5.18)

where RᵀΣεR is the covariance matrix of the sensor noise in the recombined
signals. Matrices Wfl and WR,fl consist of sets of vectors wfl and wR,fl,
respectively, which are calculated from a set of snapshot vectors ∆z by treating
them according to Eqs. (5.9), (5.10) and (5.16).

Finally, the position estimates are

∆ẑ = ∆zrb + ŵfl = Φ̆rbT∆zm + BRᵀ(I − Φ̆m,rbT
)
∆zm (5.19)

and the methodic errors with respect to the actual displacements.

ε = ∆ẑ− ∆z = ∆zrb + ŵfl − ∆z = Φ̆rbT∆zm + BRᵀ(I − Φ̆m,rbT
)
∆zm − ∆z.

(5.20)
From diverse numeric experiments it was observed that the methodic error

of the sf method was unaffected by the actual choice of decoupling matrix T .
We do not show a proof but hypothesise that this is true in general.

5.3 Shape fitting in a dynamic system

Shape fitting can equally well be applied to both quasi-static and dynamic
systems. As the magnitude and phase of a dynamic system’s signals depend on
frequency, the estimation error is expected to be higher. This section illustrates
the effect of phase lag on the estimation error and generalises the snapshot
matrix such that it can handle signals with a relative phase effectively.

5.3.1 Magnitude and relative phase of dynamic signals

In a quasi-static system, the different disturbance sources lead to different signal
magnitudes. In a dynamic system, however, the disturbance frequency may lead
to different signal magnitudes. Next to that, in a quasi-static system, all signals
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Example 5.2: 2-DoFs estimation with out-of-phase signals

t

Consider two sinusoidal signals w1(t) and w2(t) with equal frequencies,
but different amplitudes A1 and A2 and phases ϕ1 and ϕ2, so that

w1(t) = A1 sin(ωt + ϕ1), w2(t) = A2 sin(ωt + ϕ2). (5.21)

Let w1(t) be the measured signal, which is used to generate the estimate
ŵ2(t) of w2(t) by multiplication with a constant B so that

ε(t) = w2 − Bw1 = A2 sin(ωt + ϕ2)− BA1 sin(ωt + ϕ1), (5.22)

which has a rms value of

εrms =

√
ω

2π

ˆ 2π
ω

0
ε2(t)dt =

1
4

√
A2

1B2 − A1 A2B cos(ϕ1 − ϕ2) +
1
2

A2
2.

(5.23)
The rms error attains a minimum for

B = arg min
B
|ε|2 =

A2

A1
cos(ϕ1 − ϕ2), (5.24)

with, according to Eq. (5.23), a value of

εrms =
1
4

A2

√
1− cos2(ϕ1 − ϕ2). (5.25)

This result shows that if the signals are in phase or counter-phase (ϕ1 −
ϕ2 = kπ, with k an integer constant), the error is minimum, with B =
A2/A1. If the signals have, on the other hand, a relative phase of π/2, the
best estimate is 0 (with B = 0), leading to the highest possible error for a
fixed signal amplitude A2.
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are in phase, whereas in a dynamic system signals may have different phase,
depending on the frequencies of the disturbances.

Example 5.2 shows a sf estimator for a 2-DoFs system for which a sinusoidal
displacement signal has to be estimated from another sinusoidal displacement
signal with the same frequency but a different phase and amplitude. If both
signals are in phase, the estimation has zero error, but error increases for
increasing phase difference.

The sf method can be applied on dynamic systems in the normal way. To
attain highest possible performance the snapshot matrix should include not
only the snapshots representative to the different disturbance locations and
magnitudes, but also to the frequency content of disturbances.

5.3.2 A complex snapshot matrix

Section 3.5 introduced the snapshot matrix and how it should be constructed to
introduce the knowledge about the system’s mechanics and typical disturbances
into the sf estimator. A snapshot matrix is representative for the behaviour of
a linear system with Gaussian distributed disturbances if the system’s response
can be linearly composed from the snapshots and if the standard deviation of
each snapshot’s magnitude is known.

As described in Section 3.5.2, the snapshot matrix can have different forms.
In the first form, the snapshots are obtained from random excitation of the
disturbances. Such a snapshot matrix naturally includes the magnitude and
phase effects the system.

A snapshot matrix of the second form is obtained from one-by-one excitation
of the disturbances. For quasi-static systems, such a matrix is obtained using
0 Hz or low-frequency disturbances at the individual disturbance locations. If
this form is extended to dynamic systems, the snapshot matrix should include
snapshots at a grid of frequencies in the relevant frequency range. Thus,
the snapshot matrix does not only contain snapshots that correspond to the
disturbance locations, but also to the disturbance frequencies.

To include the relative phase of the signals, multiple snapshots per frequency
point are necessary, at least two per frequency point, obtained at a π rad
phase difference. Alternatively, the snapshots can be constructed using complex
values. The major benefit of a complex snapshot matrix is that just one snapshot
is needed per frequency point to adequately describe relative phase of the
signals. The amplitudes of the sinusoid signals are described by the absolute
values of the complex numbers and the relative phases by the arguments. This is
similar to a Frequency Response Function (frf) and makes it possible to directly
use the frf data for constructing the snapshot matrix.

5.3.3 Estimator calculation using the complex snapshot matrix

Recall the expression of the estimation error (Eq. 3.11), i.e.

ε j(t) =
(

βjWm −wj

)
α + βjεm, (5.26)
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where ε j, α and εm were functions of time with Gaussian distributions elements.
Wm and wj were real numbers.

The equation can be adapted to allow for complex values in the snapshot
matrix W and its subsets Wm and wj. The weighing factors in vector α need
then to be changed to not only describe the amplitude of the snapshot, but
also the phase of the snapshot. The elements αi of α, therefore, need to be
distributed according to <(αi) ∼ N (0, σ2

α,i) and ∠αi ∼ U (0, 2π). This means
that the values αi are random numbers from independent circularly-symmetric
complex random distributions, i.e. αi ∼ CN (0, 2σ2

α,i). The resulting (βjWm −
wjα) is then a complex number, whose real value represents the estimation error
for the given weighing factors α, so that

ε j(t) = <
[(

βjWm −wj

)
α
]
+ βjεm. (5.27)

To be able to calculate the expected value of the total error, Eq. (5.27) is rewritten
as

ε j(t) =
1
2

[(
βjWm −wj

)
α +

(
βjW̄m − w̄j

)
ᾱ
]
+ βjεm, (5.28)

where W̄m and w̄j are the complex conjugates of Wm and wj. The expected
value of the error squared is

E
(

ε2
j

)
=E
(

1
4

[(
βjWm −wj

)
α +

(
βjW̄m − w̄j

)
ᾱ + βjεm

]
×[

αᵀ
(

Wᵀ
mβᵀ

j −wᵀ
j

)
+ α∗

(
W∗

mβᵀ
j −w∗j

)
+ εᵀmβᵀ

j

])
, (5.29)

with α∗, W∗
m, and w∗j the transpose complex conjugates of α, Wm, and wj.

The formula can be simplified by using that E
(
αεᵀm

)
= E

(
ᾱεᵀm

)
= E

(
εᵀmαᵀ

)
=

E
(
εᵀmα∗

)
= 0. Furthermore, for a circularly-symmetric complex random value

a with independent real and imaginary parts a<, a= ∼ N
(
0, σ2) the following

hold

E((a< + a=i)(a< + a=i)) =E
(

a2
< − a2

= + 2a<a=i
)
=σ2 − σ2 = 0 (5.30)

E((a< + a=i)(a< − a=i)) = E
(

a2
< + a2

=
)
=σ2 + σ2 =2σ2 (5.31)

E((a< − a=i)(a< − a=i)) =E
(

a2
< − a2

= + 2a<a=i
)
=σ2 − σ2 = 0, (5.32)

so that E(ααᵀ) = E(ᾱα∗) = 0 and E(αα∗) = 2Σα, with Σα the diagonal covariance
matrix of α. Thus,

E
(

ε2
j

)
= βjWmΣαW∗

mβᵀ
j − βjWmΣαw∗j −wjΣαW∗

mβᵀ
j + wjΣαw∗j + βjΣεβᵀ

j .
(5.33)

The optimal βj is the one that leads to a minimum expected value of the
estimation error, E(ε2

j ). βj is found by setting the gradient of E(ε2
j ) with respect

to βj zero. Now the gradient of the error’s expected value can be taken, using
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the fact that ∇bbᵀAb = (A + Aᵀ)b:

∇βE
(

ε2
j

)
=

(
2WmΣαW∗

mβᵀ
j + 2W̄mΣαWᵀ

mβᵀ
j

)
−

WmΣαw∗j − W̄mΣαwᵀ
j + 2Σεβᵀ

j (5.34)

=
[
WmΣαW∗

m + W̄mΣαWᵀ
m + Σε

]
βᵀ

j −[
WmΣαw∗j + W̄mΣαwᵀ

j

]
= 0, (5.35)

so that

βᵀ
j =

[
WmΣαW∗

m + W̄mΣαWᵀ
m + Σε

]−1
[
WmΣαw∗j + W̄mΣαwᵀ

j

]
= [<(WmΣαW∗

m) + Σε]
−1<

(
WmΣαw∗j

)
(5.36)

and thus
βj = <

(
w∗j ΣαWm

)
[<(WmΣαW∗

m) + Σε]
−1. (5.37)

Example 5.3 illustrates this formula for a 2-DoFs system.

5.4 Numerical study of shape fitting in a dynamic
wafer chuck

The numerical study of the last chapter used a highly simplified model of the
wafer chuck system. The system did not include a realistic controller to keep the
wafer chuck in position, did not undergo rb motion and did not make use of rb

decoupling. The numerical experiments in this section follow on the previous
study. This time a more realistic wafer chuck model that includes rb motion and
a control system is adopted. rb decoupling and shape fitting with a complex
frequency domain snapshot-matrix to include the amplitude and phase of the
signals are included in the analysis.

5.4.1 Method

The method of this numerical study is for the greater part equal to the one of
Section 4.4 and their methods are to a large extent comparable. The current
study only uses the regularised least squares sf technique, as this technique was
shown to yield superior results over the others. As before, a disturbance level
of 1 N rms over the exposure area and a sensor noise level of 0.1 · 10−9 m were
adopted.

Four different scenarios were studied, building up from the scenario with an
ideal controller, no rb decoupling and quasi-static disturbances to the realistic
scenario with a normal controller, rb decoupling and disturbances in a certain
bandwidth.

1. Ideal controller, no rb decoupling, quasi-static: This scenario replicates the
results of Section 4.4.
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Example 5.3: 2-DoFs estimation with out-of-phase signals (2)

Let the two sinusoid signals of Example 5.2 be described by complex
numbers as follows

x = a + bi, y = c + di, (5.38)

where the parameters a, b, c and d are real. Choose A ∼ CN
(
0, 2σ2

A
)
, so

that w1 = <((a + bi)A1) and w2 = <((c + di)A2).

If the signal y needs to be linearly estimated based on signal x, the sf

estimate is
ŷ = B(a + bi), (5.39)

where B is a real number that must be chosen such that the estimation
error is minimal. B is calculated using Eq. (5.37):

B = <(xy∗)[<(xy∗)]−1 =
ac + bd
a2 + b2 . (5.40)

This result corresponds to Eq. (5.24) in Example 5.2. This follows from the
definition of the dot product between x and y, when regarded as vectors
in the complex plane,

√
a2 + b2

√
c2 + d2 cos(ϕ1 − ϕ2) = ac + bd and the

fact that A1 =
√

a2 + b2 and A2 =
√

c2 + d2.

The expected value of the error squared is, according to Eq. (5.37),

E
(

ε2
j

)
= (Bx− y)(x̄B− ȳ)

=

(
(a + bi)

ac + bd
a2 + b2 − (c + di)

)(
(a− bi)

ac + bd
a2 + b2 − (c− di)

)
=

(bc− ad)2

a2 + b2 . (5.41)

Table 5.1: The pid parameters of the rb controllers as used in the numerical study of the
wafer chuck.

rb coordinate z rb coordinate θx rb coordinate θy

kp [N/m] 6 · 106 1 · 106 1 · 106

kd [Ns/m] 1.6 · 103 0.26 · 103 0.26 · 103

kdN [Ns/m] 0.1 · 2π fs 0.1 · 2π fs 0.1 · 2π fs

ki [N/ms] 1 · 108 1 · 108 1 · 108
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2. Normal controller, quasi-static: In this scenario, a normal controller was
applied instead of an ideal controller. This led to rb motion, which needed
to be decoupled from the signals of the position sensors. rb decoupling
was performed according to the method in Section 5.2. All eight position
sensors were used for the decoupling. The disturbance forces were quasi-
static ( fdist = 0 Hz). The three rb controllers were pid controllers of the
form

C(s) = kp +
kds

1
kdN

s + 1
+

ki

s
, (5.42)

with the controller parameters as listed in Table 5.1.

3. Normal controller, 0–100 Hz: This scenario was comparable to the previous
scenario, except that the disturbances were dynamic with a bandwidth
of 0 to 100 Hz. The snapshot matrix was extended to include a grid of
40 frequencies, evenly distributed within the range of 0 to 100 Hz, per
disturbance location. The snapshot matrix was complex, as described in
Section 5.3.

4. Normal controller, 0–100 Hz, rb decoupling corner sensors only: This scenario
was equal to the previous one. The rb decoupling was this time not based
on all eight position sensors, but only on the four sensors at the wafer
chuck’s corners.

5.4.2 Results and discussion

Table 5.2 compares the performance of the rb and the sf estimators in the four
scenarios. The performance is presented in a similar way as in Table 4.1; the
coordinates (x, y) indicate the position of the lens column; the colours indicate
the average of the error’s standard deviation over the lens area. The table’s left
two columns show the estimation errors of the rb estimation, the right two the
estimation error of the sf estimation.

The upper row replicates the main results of the numeric experiments of
Section 4.4.

The table’s second row shows the results for the scenario with the normal
position controller and rb decoupling. The methodical error of the rb estimate
show a somewhat similar distribution as the chuck’s deformation (Figure 4.2).
In fact, the error of the rb estimate would equal the chuck’s deformation if the
rb estimate would be ‘ideal’, i.e. if the rb estimate would equal the actual rb

position. Both the spatial distribution and the magnitude of the methodical
error of the sf estimation differ significantly from the scenario with the ideal
controller: the magnitude increased by a factor of 10, roughly. This can be
explained from the fact that after decoupling the three rb modeshapes only
five flexible residue signals are available, decreasing the amount of available
information about the deformation.

The third row presents the estimation results for disturbances in the band-
width from 0 to 100 Hz. 100 Hz is well below the wafer chuck’s first resonance
frequency, but above the control bandwidth of the rb controller. On average
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Table 5.2: The performance of the rb and sf estimation as function of the lens position
for different scenarios.

Scenario rb estimation sf estimation

Methodical
estimation

error
(Emeth,rb

)

Estimation
error due to

noise
(Enoise,rb)

Methodical
estimation

error
(Emeth,sf

)

Estimation
error due to

noise
(Enoise,sf)

Ideal
controller, no

rb

decoupling,
quasi-static
(Section 4.4)

not applicable not applicable

Average: 2.73·10−10 m

·10−10 [m]
2 864

Average: 1.89·10−10 m

·10−10 [m]
1.5 3.02.0 2.5 3.5

Normal
controller,

quasi-static

Average: 1.97·10−7 m

·10−7 [m]
1.5 2 3.6 3.8 4.0 4.2 4.4 4.6 4.8

Average: 4.26·10−11 m

·10−11 [m]
1.2 1.4 1.6 1.8 2 2.2

Average: 1.95·10−9 m

·10−9 [m]
1.5 2.0 2.5

Average: 1.29·10−10 m

·10−10 [m]

Normal
controller,
0–100 Hz

Average: 4.63·10−7 m

·10−7 [m]
4 6 8

Average: 4.26·10−11 m

·10−11 [m]
4 5 6

Average: 6.50·10−9 m

·10−8 [m]
1 53 42

Average: 2.08·10−10 m

·10−10 [m]
1 32

Normal
controller,
0–100 Hz,

rb

decoupling
corner

sensors only

Average: 7.09·10−7 m

·10−7 [m]
4 6 8

Average: 5.79·10−11 m

·10−11 [m]
4 5 6

Average: 6.50·10−9 m

·10−8 [m]
1 53 42

Average: 1.99·10−10 m

·10−10 [m]
1 32
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the methodical error increases due to the chuck’s larger deformation. Also the
methodical error of the sf estimator increases, on average by a factor of 3, at
maximum by roughly a factor of 25. The distribution of the error changes: the
highest error concentrates in the centre of the wafer chuck.

The results show that it is not enough to only study the quasi-static behaviour
of a controlled system that is dynamically excited, even if the disturbances are
well below the lowest mechanical resonance frequency. It was not studied to
what extent the results depend on the choice of controller parameters (Eq. 5.42).

The last row shows the results for the scenario that decoupling is only
performed using the four displacement sensors at the chuck’s corners. This
leads to a higher methodical error of the rb estimation, as could be expected.
The methodical error of the sf estimation is equal, however, which is in line
with the formulated hypothesis that the standard deviation of this error is not
influenced by the specific choice of the rb decoupling. The sf error due to noise
decreases slightly.

The estimation error due to sensor noise is relatively small compared to the
methodical error, at least a factor of 10 smaller for the given disturbance and
sensor noise levels. This means that sensors with a, say, 12 times higher noise
level might be used without significantly compromising (less than 10 %) the total
estimation error.

5.5 Hybrid shape fitting estimation

Shape fitting estimators perform best if optimised for a small, preferably quasi-
static, bandwidth. Inertia-based absolute position sensors, on the other hand,
have best performance at higher frequencies. Section 2.4.2 introduced absolute
position sensors and showed that in the wafer chuck application absolute
position should be obtained from acceleration. It is proposed to construct a
hybrid estimator that fuses the signal of a sf estimator optimised for lower
frequencies with a double integrated accelerometer signal.

The fusion of accelerometer and position signals is well-known in literature.
Shaw and Srinivasan [82], for example, showed a method that makes use of
complementary filtering; the double integrated acceleration signal is highpass
filtered and merged with the lowpass filtered position signal. A more advanced
way of filtering and merging signals in order to result a low noise floor is using
Kalman filtering, for example [83, 84].

The fusion an accelerometer signal with a sf estimate was, to the best of our
knowledge, not shown in literature before. Section 7.5 implements a hybrid sf

estimator that uses complementary filtering to the experimental setup.

5.6 Conclusions

This chapter studied how shape fitting can be used in a system with rb motion
and position controller. The wafer chuck has free boundary conditions and is
kept in place using a control system. For shape fitting, a black box approach is
adopted, which considers the actuator forces as internal forces that are not used
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for estimation. The rb modes of the closed-loop system behave dynamically and
the flexible modes quasi-statically, at least up to the controller bandwidth.

In order to remove the contributions of the rb modes from the position
measurements, the signals are decoupled into estimate rb positions and flexible
residues. These residues can be used as inputs for shape fitting, together with
internally referenced measurands. The total position estimates are the sum of
the rb estimates and the sf estimates. Numerical results suggested that the
total methodical error is independent of the way in which the rb modes are
decoupled.

Shape fitting can be applied to dynamic systems in the same way as to
quasi-static systems. The snapshot matrix from one-by-one excitation of the
disturbances may be generalised using a grid of frequency points. The snapshot
matrix that is used for estimating the sf estimator can be formulated compactly
using complex numbers. Those complex numbers describe the magnitude and
relative phase of a response.

The sf method and the complex snapshot matrix were used in a numerical
study on the wafer chuck with dynamical signals. The model of the wafer chuck
included a position controller. The estimation error of the sf estimator optimised
for the dynamic signals was significantly larger than the error for the quasi-static
sf estimation, differing by a factor of 3 on average, locally up to a factor of 25.
Still, applying the sf estimator decreases the methodical error by at least a factor
of 30 as compared to the rb estimator. The analysis furthermore showed that
the required noise level of the sensors can be relieved to 1.2 nm rms without
significantly compromising the total estimation error.



Chapter 6

Sensor placement

The previous chapters presented the Shape Fitting (sf) method and adapted it to
make it applicable in the wafer chuck problem. It was shown that shape fitting
in combination with the least squares technique minimises the estimation error
for a given set of sensor locations. It is expected, however, that the estimation
results can be further improved by not only optimising the estimation algorithm
but also the sensor locations.

As the choice of the location of a sensor also influences the performance of
the other sensors, selecting the optimal sensor locations by hand-picking is not
trivial. Therefore, an automated procedure for selecting the sensor locations
is desired. Fields like wireless sensor networks and experimental dynamics
study the automated choice of sensor locations, normally referred to as ‘sensor
placement’, and in these fields many algorithms have been proposed. Still, it
is not known how the algorithms should be integrated into shape fitting and
which of the algorithms perform best. This chapter compares a number of
promising algorithms from literature and presents a procedure that integrates
sensor placement into the sf framework.

Section 6.1 presents a brief literature survey on sensor placement. First an
overview of some performance metrics and some sensor placement algorithms
and their respective optimisation objectives is given. Four promising algorithms
from literature are then chosen for further investigation; they are treated in
more detail and assessed using displacement and strain shapes in Section 6.2.
Section 6.3 presents a method for integrating placement algorithms into the sf

framework. Then, Section 6.4 applies the integration procedure to the wafer
chuck case of last chapter. The thus optimised sensor configuration indeed leads
to a significant decrease of the sf estimation error.

6.1 Selection of sensor placement algorithms for
identifying shapes

This section first defines the goal of sensor placement. Based on this goal,
promising sensor placement algorithms are selected, which are then introduced

85
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in more detail.

6.1.1 The goal of sensor placement

The performance of the sf estimator is measured in terms of the estimation error
at the jth point to be estimated, defined in Eq. (3.11) as

ε j(t) =
(

βjWm −wj

)
α + βjεm,

where βj denotes the jth row of estimation matrix B. For a given sensor
configuration, the optimal βj can be found using the ls technique, presented
in Eq. (4.15) as

βj = wjΣαWᵀ
m
(
WmΣαWᵀ

m + Σε

)−1.

These equations show that ε j depends on the chosen sensor locations, as Wm is a
subset of the rows of W that correspond to the sensor locations. The rows of W
may either correspond to a point that needs to be estimated (a target point), to a
location where a sensor can be placed (a sensor candidate point) or to both. The
goal of sensor placement is to select the subset of sensor locations that minimises
ε j at the relevant target points. A corresponding performance metric J could be
defined as, for example,

J = ∑
j

ε2
j . (6.1)

6.1.2 Evaluation time and convergence

Evaluating the objective function for any sensor configuration, the so-called
‘brute force’ sensor placement, is in practice not feasible. The number of possible
sensor configurations is

NPC =

(
NC

NM

)
=

NC!
(NC − NM)!NM!

. (6.2)

This formula shows that when the number of sensor candidates, NC, is in-
creased, the number of possible sensor configurations, NPC, typically grows very
fast – even if the number of sensors to be placed, NM, is small.

For example, if 8 sensors were to be placed in a grid of 51× 51 candidates,
the number of placement configurations is approximately 5.1 · 1022. For today’s
computers, it is unfeasible to evaluate the performance of all these configura-
tions. Thus, the sensor placement algorithms should have a strategy to reach or
closely reach the global optimum in limited time.

The time constraint is, however, highly relative. If the sensor placement
is incorporated into a larger optimisation, for example, into a topology op-
timisation, the placement algorithm should be as fast as possible. If, on the
other hand, the set of the input parameters is fixed and sensor placement only
needs to be carried out once, then the algorithm may take considerable time,
for example, a week. In that case it should, however, be guaranteed that the
algorithm convergences to a well-performing sensor configuration.
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6.1.3 Placement algorithms in literature

Large number of articles in literature have been devoted to the topic of sensor
placement. Fields in which sensor placement is carried out range from wireless
sensor networks [85] to structural damage detection [86]. The optimisation
goals and accompanying objective functions differ from field to field. Of special
interest for shape fitting are the placement algorithms that aim at distinguishing
and identifying a set of shapes at the sensor locations.

In the field of experimental dynamics several relevant placement algorithms
have been developed. Papadopoulos and Garcia (1998) provided an overview of
sensor placement algorithms for dynamic testing and compared the algorithms
[87]. Sensor placement algorithms can be typically divided into two major types;
the ones that use the inertia and stiffness distribution of a system and the ones
that use a set of modeshapes.

The first type includes algorithms based on Guyan reduction, like the one
proposed by Penny et al. (1994) [88]. The latter algorithm aims at eliminating
the nodes in a fe model for which the inertia forces are small compared to
the stiffness forces. Algorithms that make use of the inertia distribution of the
system are, however, considered of limited interest, as the inertia distribution
in a quasi-statics is not relevant. Especially the second type of algorithms, is of
interest, as they might allow for using fitting shapes instead of modeshapes.

Kammer (1990) introduced the Effective Independence (efi) algorithm that
aims at placing the sensors such that a set of target modeshapes is identified
as independently as possible [89]. The algorithm makes only use of the
modeshapes at the candidate sensor locations. The number of sensors needs
to be at least as big as the number of shapes to be identified. Tasker and Liu
(1995) presented a placement algorithm with a comparable aim as the one of
Kammer [90]. This algorithm is in the following referred to as ‘ta’.

Ranieri et al. (2012) and Ranieri et al. (2014) presented two algorithms that
were specifically developed for shape fitting, the latter was called ‘FrameSense’
[75, 91]. These algorithms will be referred to as ‘ra12’ and ‘fs’.

As the efi, ta, ra12 and fs algorithms are considered promising in the
context of shape fitting, they are selected for further study in this chapter.

6.1.4 Selected shape-based algorithms

This section first describes the assumptions regarding the estimation principles
that the selected sensor placement algorithms have in common. Then the
objective functions and main working principles of the selected algorithms are
introduced.

Assumptions regarding the estimator All studied shape-based placement
algorithms assume that the field to be estimated is build up from a limited
number of shapes and that the number of sensors to be selected equals or
exceeds the number of shapes. In that case, the shape amplitudes can be found
free from error from the sensors values, as long as the shapes are observable
and distinguishable at the sensor locations and the measurements are noiseless.
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In practice, the sensor values do contain noise, so that the amplitudes need to
be estimated. All algorithms assume that the noise of the different sensors is
uncorrelated and identically distributed.

The algorithms aim at finding a sensor configuration with a low estimation
error of the amplitudes. In that case, it would be beneficial to add bias to the
estimator via regularisation, leading to methodical error but a decreased error
due to sensor noise. None of the placement algorithms, however, assumes a
biased estimator.

Under the above assumptions, the estimator and estimation error are found
as follows. Let the total shape at the sensors, wm, be described by a limited
number of shapes, Φm, that are weighed by shape amplitudes, q, i.e.

wm = Φmq. (6.3)

If the sensor configuration is such that all shapes are observable and identifiable,
the shapes’ amplitudes can be estimated free of methodical error, using (amongst
others) the pseudo-inverse

q̃ =
(
Φᵀ

mΦm
)−1

Φᵀ
mw̃m = Φ+

mw̃m, (6.4)

where w̃m = wm + εm is the noise corrupted measurement. The sensor noise,
εm, is assumed to be Gaussian distributed with N (0, σε).

There is, by definition, no methodical error in this case, so that the error of
the estimate shape amplitudes,

εq = q̃− q = Φ+
m(wm + εm)− q = Φ+

mεm, (6.5)

is solely caused by sensor noise, under the assumption that the number of
sensors is equal to or higher than number of shapes. The placement algorithms
aim to find sensor configurations that minimise this error.

Effective independence algorithm (EFI, 1990) Kammer and his co-workers
developed the Effective Independence (efi) algorithm [89, 92], which aims at
finding a sensor configuration that best distinguishes a set of shapes. The
algorithm was presented in the framework of modal identification, but the
algorithm works equally well for other sets of shapes, such as proper orthogonal
modes. The number of shapes must be equal or smaller than the number of
sensors to be placed. The algorithm optimises by, starting with the full set of
candidate sensor locations, one-by-one eliminating the least favourable sensor
candidates until the desired number of sensor is reached.

Kammer [89] reasoned that a good estimator minimises the covariance of the
estimate error [77],

Q = E((q̃− q)(q̃− q)ᵀ) = σ2
ε

(
Φᵀ

mΦm
)−1, (6.6)

and thus maximises the Fisher Information Matrix (fim), which is defined as

1
σ2

ε
Φᵀ

mΦm. (6.7)
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This expression shows that maximising the fim also maximises the spatial
independence of the shapes and the signal strength at the sensors [92].

The sensor placement algorithm aims at maximising the fim in terms of its
determinant. The algorithm starts with the full set of sensor candidates and then
successively removes the sensor candidates that contribute least to the rank of
the fim. The authors showed that the contribution of each of the candidates to
the rank can be simply found from the diagonal of the matrix

E = Φm
(
Φᵀ

mΦm
)−1

Φᵀ
m, (6.8)

where the number of rows of Φm decreases, as in each elimination the row
corresponding to the eliminated sensor is removed. Li et al. showed a fast way
for calculating the diagonal of E, which uses a QR-decomposition to avoid the
time intensive inversion in Eq. (6.8) [93].

Singular value-based algorithm by Tasker and Liu (TA, 1995)

Tasker and Liu (1995) developed a sensor placement algorithm that, like efi,
starts from the covariance of the estimate error (Eq. 6.6) and the fim (Eq. 6.7)
[90]. Tasker and Liu aimed at minimising the trace of Q, i.e. the sum of the
diagonal’s entries, which equals

tr(Q) = E((q̃− q)ᵀ(q̃− q)), (6.9)

which is equal to the sum of the variances of the shape amplitude errors. The
authors showed that the trace of Q decreases by an amount

∆iσ
2 =

ϕᵀ
i QQϕi

1− ϕᵀ
i Qϕi

(6.10)

when eliminating the ith sensor candidate. ϕi denotes the ith column of Φm.
The authors proposed to start with the full set of sensor candidates and to then
eliminate one-by-one the sensor candidate with lowest ∆σ2. Using a singular
value decomposition, ∆iσ

2 can be efficiently calculated for all i out of the
remaining sensor candidates.

Ranieri (RA12, 2012)

Ranieri et al. (2012) introduced a sensor placement algorithm that aims at
best identifying a set of shapes for the estimation of temperature fields [91].
According to the authors, the optimal set of sensor locations is the one that
yields the lowest condition number of matrix Φm

cond(Φm) = σmax/σmin,

where σmax and σmin are the largest and smallest singular value of Φm, respect-
ively. They argued that the condition number can be minimised by removing
one-by-one the sensor candidates that show largest correlation. The algorithm
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first normalises the rows of the initial Φm and then calculates a matrix G with
the dot products of each of the rows of Φm with each of the other rows,

G = ΦmΦᵀ
m − I.

Then one-by-one, the nth sensor candidate corresponding to the lowest dot
product Gn,j is eliminated, where j comprises the set of rows corresponding
to the still available, other sensor candidates. Note that G is not recalculated
during the elimination process.

The authors suggested to find Φm from the proper orthogonal modes using
the pod of the snapshot matrix. As proper orthogonal modes are normal, we
will first normalise the columns of Φm.

FrameSense (FS, 2014)

Ranieri and his co-workers [9, 75] proposed FrameSense (fs), an algorithm for
sensor placement that aims to best identify a set of shapes. They applied the
algorithm to the estimation of temperature fields. Like the efi algorithm, the
number of shapes must be equal or smaller than the number of sensor to be
placed. Also this algorithm starts with a set of candidate sensor locations and
one-by-one eliminates the less favourable candidates until the desired number
of sensors is reached.

The fs algorithm aims at finding a placement that leads to a minimum error
on the estimate of the shape amplitudes. This corresponds to minimising the
expected value of the amplitude estimate error, which the authors called the
Mean Square Error (mse)

MSE = E((q̃− q)ᵀ(q̃− q)) = E
((

Φ+
mεm

)ᵀ
Φ+

mεm

)
= σ2

ε

∥∥Φ+
m
∥∥2

2, (6.11)

According to the authors, directly optimising for low mse is difficult. Therefore,
they suggest a closely related metric, the Frame Potential (fp):

FP(Φm) =
∥∥ΦmΦᵀ

m
∥∥2

2. (6.12)

Their estimation algorithm aims at minimising the frame potential of Φm by
starting with all sensor candidates and eliminating one-by-one the sensor can-
didates that, after being eliminated, yield minimum frame potential. Although
not given as part of the Algorithm 1 in [75], the rows of Φm need to be
normalised before starting the algorithm, which is mentioned later in the paper.
Indeed, we observed that this is essential for the algorithm to yield proper
results.

Maximisation versus minimisation We argue that the fs algorithm as presen-
ted in [9, 75] contains an error, leading to extremely bad sensor configurations.
Ranieri et al. [75] described the elimination procedure of fs as “It is a greedy
“worst-out” algorithm: at each iteration it removes the row of Ψ that maximally
increases the FP. In other words, we define a set of locations S that are not suitable
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for sensing and at each iteration we add to S the row that maximizes the following cost
function:” The authors then defined the cost function

F(S) = FP(Ψ)− FP
(

ΨN\S
)

, (6.13)

where Ψ is the Φm corresponding to the initial sensor candidate set and
N = {1, . . . , N} is the set of initial candidates, so that Ψ = ΨN . However, the
then presented fs algorithm prescribes to eliminate in each step the ith location
that minimises the F(S ∪ i). This is in contradiction with the authors’ previous
description of the procedure. The fs algorithm was also presented in [9, 94],
without a description of the optimisation goal, but only the algorithm, again
with the minimisation.

The author of this thesis argues that F(S ∪ i) should be maximised. F(S ∪ i)
can be understood as the decrease of the fp with respect to the initial fp when
removing the ith sensor location along with the already eliminated locations S .
It can be split up into two parts, as follows,

F(S ∪ i) = FP(Ψ)− FP
(

ΨN\(S∪i)

)
= a + b,

where
a = FP(Ψ)− FP

(
ΨN\S

)
is the decrease of the fp after eliminating the locations S and

b = FP
(

ΨN\S
)
− FP

(
Ψ(N\S)\i

)
the further decrease when eliminating an additional location i. As a does
not depend on i, maximising a + b is equal to maximising b. By eliminating
the i∗th location that maximises the decrease of the fp, the remaining fp is
minimised, which is the aim of the authors. Thus, F(S ∪ i) should be maximised
by eliminating the i∗th location

i∗ = arg max
i

F(S ∪ i). (6.14)

The scaling of the columns of the initial Ψ remains unclear in the papers,
although it can significantly influence the sensor placement. [9] proposes a way
for obtaining Ψ via the pod. As proper orthogonal modes are normal, we will
first normalise the columns of Ψ in studies in this thesis.

Example 6.1 applies fs to a beam, using either a minimisation or a maxim-
isation and with or without the normalisation of the rows of Ψ. The results
support the statement that a maximisation should be used and that the columns
of Ψ should be normalised prior to sensor placement.

6.2 Comparison of the sensor placement algorithms

This section compares the performance of the sensor placement algorithms by
using numerical experiments. To make a fair comparison, the conditions of the
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Example 6.1: FrameSense – optimisation objective and normalisation
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A shape matrix Ψ was composed of K = 6 shapes, ψi, with N = 41 sensor
candidates, as shown in the above figure. The shapes are sinusoidal and
thus, by definition, orthogonal. It was chosen to normalise them, so that
ψᵀ

i ψi = 1.
Two versions of Ψ were calculated, one with normalised and the other
without normalised rows. Then, the fs algorithm, both in its original and
its modified version with the maximisation, was used to find optimised
sensor configurations with L = 10 sensors. To measure the relative
performance of the sensor configurations, their mses (Eq. 6.11) were
calculated.

0 0.2 0.4 0.6 0.8 1
Sensor location

The above figure presents the sensor configurations along with their
respective mses. The configurations found by the fs algorithm with
the minimisation have their sensors placed closely together. Intuitively,
these configurations seem very weak, as the sensor measure relatively
dependent signals. Indeed, in terms of the mses of the configurations
found with the maximisation perform with 758 and 564 much better than
the ones found with the minimisation, which have large mses of 5 · 1013

and 3 · 1015. Furthermore, the results of the maximisation suggest the
normalisation of the rows of Ψ to be beneficial, as the resulting sensor
configuration has a 25 % lower mse.
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experiments will be according to the assumptions of the algorithms in Section
6.1.4; i.e. the number of shapes will be equal or smaller than the number of
sensors and the noise of the sensors is uncorrelated and from equal Gaussian
distributions.

As the relative performance of placement algorithms may depend on the
types of shapes, it is important to test the algorithms with different types of
shapes. The algorithms are first applied to shapes with random entries and then
more specifically to the modeshapes of a plate both in terms of displacement
and strain.

6.2.1 Performance metrics

To asses the performance of the algorithms for quantitative comparison, an
appropriate performance metric needs to be selected. The metric of Eq. (6.1) is
important for shape fitting. However, it is based on a the snapshot matrix, which
normally has more shapes than the number of sensors. Thus, another metric that
fits the assumptions in Section 6.1.4 should be adopted for the comparison.

Different metrics and objective functions have been proposed in literat-
ure. The efi algorithm [89] optimises for a high determinant of the fim,
det
(

1/σ2
ε ·Φᵀ

mΦm
)
. Penny [88] proposed assessment of the sensor configuration

based on the ratio between the maximum and minimum singular value of
Φm, which equals the condition number. Also Ranieri et al. [91] proposed the
condition number of Φm, cond(Φm) = σmax/σmin. Tasker and Liu [90] optimised
for minimum trace, tr

(
σ2

ε (Φᵀ
mΦm)

−1). Ranieri et al. [75] used the mse, σ2
ε

∥∥Φ+
m
∥∥2

2.
The mse is of interest, as it has a direct interpretation in terms of the

estimation error of the shape amplitudes. More specifically, it is proportional to
the expected value of the Root Mean Square (rms) error of the shape amplitudes
estimates. The rms error of the amplitude estimates is defined as

εq,rms =

√
1

Nq
(q̃− q)ᵀ(q̃− q) (6.15)

and, using Eq. (6.5), its expected value can be written as

σ2
q = E

(
ε2

q,rms

)
= E

(
1

Nq

(
Φ+

mεm
)ᵀ

Φ+
mεm

)
=

1
Nq

σ2
ε

∥∥Φ+
m
∥∥2

2, (6.16)

with Nq the number of shapes. Indeed this result equals the mse, apart from the
constant 1/Nq.

In a comparable fashion, an objective function in terms of the error of the
estimates can be defined, which is of more interest in the context of shape fitting.
The error of the estimates is

εw = w̃t −wt = ΦtΦ
+
mεm, (6.17)

where the subscript ‘t’ denotes that only the subset of rows of wt and Φt of
target points is selected, the points that are of direct interest for the estimation.
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The rms value of εw is

εw,rms =

√
1

Nw
εᵀwεw, (6.18)

with Nw the number of target points. The expected value of εw,rms is

σ2
w = E

(
ε2

w,rms

)
= E

(
1

Nw

(
ΦtΦ

+
mεm

)ᵀ
ΦtΦ

+
mεm

)
=

1
Nw

σ2
ε

∥∥ΦtΦ
+
m
∥∥2

2. (6.19)

From this, we define a performance metric called ‘Sensor Noise Amplification’
(sna):

SNA =
σw

σε
=

√
1

Nw

∥∥ΦtΦ
+
m
∥∥2

2. (6.20)

This metric can be understood as the amplification factor with which the sensor
noise level is multiplied when obtaining the estimate from the sensor readings.
The unit of sna depends on the units of σw and σε. For example, if σw and σε are
they are both in terms of displacement, the sna is dimensionless; if they are in
terms of displacement and strain, respectively, the unit of sna is metre. The sna

does not depend on the scaling of the columns of Φ, as opposed to the metric σq
and the mse. This is an advantage, as the sna is, as such, a more objective metric
than the mse.

The sna is tailored to the assumptions of the sensor placement algorithms
under review. When, however, used outside these assumptions, it should be
noted that the sna does not consider the methodical error due to possible spill-
over effects if the number of shapes to be identified exceeds the number of
sensors. Furthermore, as the sna is a measure of the estimate’s noise level caused
by the sensor noise, it should be compared to the quantity to be estimated for
evaluating whether or not the noise level is acceptable.

6.2.2 Placement for random shapes

Ranieri et al. [75] compared the placement performance of their fs algorithm
with the performance of three other sensor placement algorithms and random
placement. The performance was tested with different types of a shape matrices
with random entries. The advantage of random shapes is that the placement
results can be easily reproduced and thus allow for fast comparison.

Method

Four types of random matrices were used: matrices with a Gaussian distribu-
tion N (0, 1), matrices with a Gaussian distribution N (0, 1) whose rows were
normalised, matrices with a Gaussian distribution N (0, 1) whose columns were
orthonormalised and matrices with a Bernouilli distribution 1/30B(1, 1/2) (i.e.
having matrix entries with equal probability of 0 or 1/30). The number shapes
was 30, the number of sensor candidates was in all cases 100 and the number of
sensors to be placed was varied between 35 en 60.
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Results

Figure 6.1 shows the performance of the different algorithms applied to the
100×30 matrices with the Gaussian distribution N (0, 1). The results of Figure
6.1a are copied from Ranieri et al. [75]. They investigated four algorithms:
fs, ‘Determinant’, ‘Mutual information’, ‘mse’ and random sensor placement.
Figure 6.1b is from our own experiments with the three other algorithms we
selected, i.e. efi, ta and ra12. Each experiment was carried out 100 times; the
standard deviation is indicated with dashed lines. In a similar way, the results
for the other types of matrices are presented in Figures 6.2, 6.3 and 6.4.

The figures show that the ra12 algorithm performs relatively poor for all
four matrix types. Although their fs algorithm in most cases outperforms the
other algorithms the authors compared it to, our results show that efi and ta

perform at least as good and in most cases better than fs.
ta performs systematically better than the efi algorithm. Interestingly

enough, ta and efi show also good results for the Bernoulli matrices, unlike
the other methods, that not considerably exceed the performance of the random
sensor placement.

6.2.3 (x, y)-placement of position sensors to identify mode-
shapes

This section compares the performance of the sensor placement algorithms for
identifying a set of modeshapes of a square plate.

Method

Figure 6.5 shows the out-of-plane modeshapes of a plate that correspond to the
plate’s lowest eigenfrequencies. Generally speaking, those are the modeshapes
that are most important for describing the plate’s displacement field. It
was chosen to distinguish eight modeshapes, of which three Rigid Body (rb)
modeshapes. The selected sensor placement algorithms had to select 8 position
sensors from a grid of 51×51 sensor candidates.

Results

Figure 6.6 shows the sensor configurations found by the four algorithms. The efi

and ta algorithms yield the same placement configuration as the hand-picked
one in Chapter 2, namely sensors at the chuck’s corners and centres of the
sides. With snas of 1.6 and 1.2, respectively, the performance of the sensor
configurations of ra12 and fs are weaker than the configuration of the others
(SNA = 0.86).

Figure 6.7 plots, as function of position, the order in which the sensor
candidates were eliminated by each of the three algorithms. The efi and ta

algorithm show a relatively smooth elimination order. The elimination orders of
ra12 and fs shows relatively arbitrary patterns, with early and late removed
sensor candidates closely spaced together. This suggests that the objective
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(a) Results of four placement algorithms and
random sensor placement, all adopted from
[75].
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(b) Experimental results of this thesis with fs

and three additional placement algorithms. The
dashed lines show the standard deviation over
100 experiments.

Figure 6.1: The performance of the different sensor placement algorithms and random
sensor placement when applied to matrices with a Gaussian distribution N (0, 1). The
performance is expressed in terms of the mse of the optimised configuration.
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(a) Results adopted from [75].
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(b) Experimental result of this thesis.

Figure 6.2: Results comparable to Figure 6.1, but using matrices with a Gaussian
distribution N (0, 1) whose rows were normalised.



6.2. Comparison of the sensor placement algorithms 97

6

35 40 45 50 55 60
15

20

25

30

35

40

45

Number of sensors

N
o

rm
al

is
ed

 M
S
E

 (
d

B
)

FS

Determinant
Mutual inf.
MSE

random

(a) Results adopted from [75].
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(b) Experimental result of this thesis.

Figure 6.3: Results comparable to Figure 6.1, but using matrices with a Gaussian
distribution N (0, 1) whose columns were orthonormalised.
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Figure 6.4: Results comparable to Figure 6.1, but using matrices with a Bernouilli
distribution 1/30B(1, 1/2).
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rigid-body modeshapes flexible modeshapes

(x,y)-placement of displacement sensors

. . .

(x,y,θ)-placement of strain sensors

Figure 6.5: The placement of the position sensors was optimised for distinguishing three
rb modeshapes and five flexible modeshapes of a square plate. For the placement of the
strain sensors, eight flexible modeshapes had to be distinguished. All mode-shapes were
out-of-plane.

SNA = 0.86

(a) efi algorithm.

SNA = 0.86

(b) ta algorithm.

SNA = 1.6

(c) ra12algorithm.

SNA = 1.2

(d) fs algorithm.

Figure 6.6: The sensor configurations obtained with the four placement algorithms from
literature. The sensor candidate set consisted of a 51 × 51 grid. To performance metric
sna of each configuration, here in terms of displacement over displacement, is indicated.

function of ra12 and fs is less adequate than those of the other algorithms,
which could be a reason for the weaker sensor configurations of ra12 and fs.

6.2.4 (x, y, θ)-placement of strain sensors to identify mode-
shapes

In the last section, the sensor placement algorithms were compared in a case in
which eight position sensors had to distinguish eight modeshapes of a plate. In
this section, a similar comparison is made, this time based on strain sensors. As
strain sensors can not observe rb modes, eight flexible modes were selected to
be distinguished (Figure 6.5).

According to Section 2.4.3, the strain sensors can be arbitrarily placed
over the wafer chuck’s surface. Unlike displacement measurement, strain
measurement is direction dependent. Therefore, the set of sensor candidates
in x- and y-direction has to be extended with the θ-direction, which denotes the
strain sensor’s orientation.
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Figure 6.7: The elimination order of the sensor candidates as function of their position
(x, y) on the plate. The finally obtained sensor locations are indicated with circles. The
shape set for which the placement was performed comprised eight modeshapes of a plate,
including the rb modeshapes, as shown in Figure 6.6.
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As it unknown how the candidate set’s size influences the performance of
different algorithms, candidate sets of different sizes were investigated. Also the
speed of the estimation algorithms is investigated, as candidate sets with three
directions get easily large.

Method

The number of candidates in the plane (x/y-direction) was varied from 12 to 312

and the number of sensor orientation (θ-direction) candidates was varied from 1
to 21. Given a candidate set, a matrix Φm,full consisting of the strain amplitudes
of the sensor candidates was calculated using Eq. (2.19). Then, the placement
algorithms were applied to Φm,full to obtain the optimised sensor configurations,
with both 8 and 24 sensors. Finally, the sna of each sensor configuration was
calculated.

Results

As the performance of the sensor configurations differed highly, the are presen-
ted in two ways. Firstly, the snas are presented as function of the number
of sensor candidates on a linear, saturated scale, allowing a comparison of the
algorithms and the size of the candidate set in terms of the best performing
sensor configurations. Secondly, the results are presented on a logarithmic scale,
allowing comparison of the algorithms in terms of their spread in performance
and outliers.

Table 6.1 shows the performance of the obtained configuration as function
of the size of candidate set. The placement results depend on the number of
sensors that are kept after the candidate elimination process. The first column
of the table corresponds to 8 sensors (equal to the number of shapes to identify),
the second column corresponds to 24 sensors.

The performance is given in terms of the sna, according to Eq. (6.20). As the
snas are in this case in terms of displacement over strain, their unit is metre.
Note that the colour scales are saturated to be able to present high detail, so that
outliers can not be identified in the plots.

Overall, the ta algorithm leads to better placement results than the efi

algorithm, which in turn performs better than the fs and the ra12 algorithm.
To expect good results, the number of candidates in x- and y-direction and in
θ-direction should be larger than 3. The ra12 algorithm performs better for a
larger numbers of x/y-candidates. Surprisingly, the ta and efi algorithm yield
better results when the number of candidates is smaller than when the candidate
set is larger.

Figure 6.8 shows for each algorithm the best configuration of eight strain
sensors that was obtained for the different candidate sets. The configurations
show clear similarities, some sensors are placed at and in parallel to the sides
of the plate, the others are placed under an angle of around 45◦ at the plate’s
diagonals.

Figure 6.9 shows cumulative histograms of the performance of the sensor
configurations, making it possible to study the outliers. The configurations
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Table 6.1: The performance of the strain sensor placement algorithms as function of the
size of the set of sensor candidates. The sets were build up from a grid of candidates in
x/y-direction and a number of orientations of the strain sensors (θ-direction). The table’s
columns correspond to a final sensor configuration of, respectively, 8 and 24 sensors. The
sna is in terms of displacement over strain and has as unit metre.
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SNA = 0.84 m

(a) efi algorithm.

SNA = 0.80 m

(b) ta algorithm.

SNA = 0.99 m

(c) fs algorithm.

Figure 6.8: Optimised configuration of eight strain sensors for identifying eight mode-
shapes of a plate as found by different placement algorithms. The optimised configura-
tions correspond to the best ones of Table 6.1.
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(a) Placement of 8 sensors.
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Figure 6.9: Cumulative histograms of the performance in terms of the sna of the strain
sensor configurations found by the different algorithms. In total 504 configurations are
taken into account. The configurations less than 3 candidates in θ-direction and less than
3× 3 in x/y-direction are omitted in the plots.
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Figure 6.10: The execution time of sensor placement algorithms as function of the
size of the candidate sets. The candidate sets correspond to the ones of Table 6.1.
The efi algorithm was implemented both using its standard formulation and a faster
implementation using a QR decomposition. The algorithms were executed on a laptop
with a clock speed of 1.6 GHz.

with less than 3 candidates in θ-direction and less than 3× 3 in x/y-direction
are omitted, as these correspond to relatively small candidate sets and perform
systematically weak.

The efi and the ta algorithm yield configurations with relatively close snas.
The ta algorithm yielded, however, some outliers with high sna. When placing
8 sensors, the fs algorithm produces relatively many outliers (SNA>10). The
figures show that the ra12 algorithm often produces very weak configurations
(SNA>103). As the range of the snas of the ra12 and fs algorithm are relatively
wide, these algorithms can be said to be less robust in terms of converging to
the optimum than efi and ta.

Based on these observations, a placement strategy is proposed that applies
the ta algorithm on several different smaller candidate sets instead of a single
large set. This increases the chance of good converging and of finding a
high-performing sensor configuration, especially when taking into account that
placement with small sensor candidate sets is much faster than with large
sets. For example, placement with the ta algorithm for a single large set with
31× 31× 21 candidates took 220 s on a laptop with a clock speed of 1.6 GHz.
Placement for all 113 candidate sets with up to 11× 11× 11 candidates took only
142 s.

Execution time The time needed to execute the placement algorithms on a
standard laptop a laptop with a clock speed of 1.6 GHz was monitored. Figure
6.10 shows the execution time as function of the number of candidates. As the
efi algorithm involves inversion of a matrix, it is relatively slow if the number
of candidates exceeds 1000. An implementation using a QR-decomposition, as
described by Li et al. [93], reduces the execution time significantly, so that efi

becomes the fastest algorithm of the three.
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Table 6.2: The performance of the strain sensor placement for as function of the size
of the set of sensor candidates. The sets were build up from a grid of candidates in
x/y-direction and a number of orientations of the strain sensors (θ-direction).
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SNA = 1.86 m

(a) efi algorithm.

SNA = 1.85 m

(b) ta algorithm.

SNA = 5.67 m

(c) fs algorithm.

SNA = 1.67 m

(d) Brute force optimum.

Figure 6.11: Comparison of the optimised sensor configurations found by the placement
algorithms and the brute force optimum. The sensor candidate sets consisted of 4
candidates in x- and y- and 2 in θ-direction.

A speed improvement can be obtained by eliminating more than one sensor
per iteration step. For example, when eliminating 1 % of the sensor candidates
per step with the efi algorithm, the placement performance did not alter
significantly (Table 6.2).

Closeness to the global optimum

The performance of a sensor configuration can be rated using the sna, allowing
to compare the configurations. However, as the globally optimum sensor
configuration is not known, the closeness of an optimised configuration to this
global optimum is also unknown. To get an idea how close the placement
algorithms approach the performance of the best sensor configuration for a given
sensor candidate set, brute force placement was performed on two different
sensor candidate sets.

The first candidate set consisted of 4 × 4 candidates in x/y- and 2 in θ-
direction, leading to a total of 42 · 2 = 32 candidates. Eight sensors had to be
selected out of the candidate sets. For all 10 · 106 possible sensor configurations
the sna was calculated. The same was procedure was carried out with the
second – larger – candidate set, that consisted of 3 instead of 2 candidates
in θ-direction, leading to 42 · 3 = 48 candidates and 377 · 106 possible sensor
configurations.

Figure 6.11 shows the sensor configurations found by the placement al-
gorithms and the sensor configuration corresponding to the globally optimal
sna for the first candidate set and Figure 6.12 the ones for the second candidate
set. Although the configurations differ significantly, they all have a sna within
12 % of the global optimum, except for the sna of fs with the first candidate set.
The configuration found by the ta algorithm approaches the global optimum
snas the closest, to within 11 % for the first and 3 % for the second candidate
set.

For this sensor candidate set, the methods indeed approach the global
optimum closely. Thus, one may hypothesise that this is also the case for larger
candidate sets.
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SNA = 1.09 m

(a) efi algorithm.

SNA = 1.01 m

(b) ta algorithm.

SNA = 1.08 m

(c) fs algorithm.

SNA = 0.98 m

(d) Brute force optimum.

Figure 6.12: Comparison of the optimised sensor configurations found by the placement
algorithms and the brute force optimum. The sensor candidate sets consisted of 4
candidates in x- and y- and 3 in θ-direction.
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Figure 6.13: The steps needed to obtain the sf estimation matrix, Bls. The ls technique
makes use of the optimised sensor locations that are found using sensor placement
algorithms from literature. A procedure extracts from snapshot matrix W the patterns at
the sensor candidates that correspond to the most prominent deformation patterns at the
target points. The resulting shape matrix Φm is then used for sensor placement.

6.3 Integration of sensor placement in shape fitting

In the previous sections sensor placement algorithms were selected and assessed
numerically. This section shows how the placement algorithms can be integrated
into the sf framework.

Figure 6.13 shows the proposed process for obtaining the sf estimation matrix
BLS from snapshot matrix W . The sf estimator is based on both the snapshot
matrix and the optimised sensor configuration. The sensor configuration is
found using a sensor placement algorithm, which also makes use of the snapshot
matrix. However, the snapshot matrix should first be made suitable for applying
the selected sensor placement algorithms. For this purpose a procedure is
developed for obtaining, based upon the snapshot matrix, a shape matrix Φm
which can directly be used as input for the sensor placement algorithms. This
procedure consist of four steps, i.e. 1) the separation of the flexible residues from
the snapshot matrix; 2) conversion to a real snapshot matrix, in case the snapshot
matrix is complex; 3) the extraction of most prominent shapes from the snapshot
matrix; and 4) the addition of the flexible modeshapes.
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Procedure to obtain shape matrix Φm

Separation of the flexible residues The displacements in snapshot matrix W
are build up from rb contributions W rb and flexible contributions Wfl. These
contributions need to be separated, such that the flexible part of the snapshot
matrix, Wfl, is left.

Conversion to a real snapshot matrix If Wfl is complex, here denoted with
W?

fl, the complex values capture both the relative magnitudes and phase of the
signals. The sensor placement algorithms, however, may not be able to deal
with complex numbers, so that the phase relations need to be captured with
real numbers only. This can be achieved by defining a new matrix consisting
of real valued snapshots that are recombinations of the snapshot shapes with
random magnitude and phase. Wfl = <(W?

fl A), with A a N?
D × ND-matrix

consisting of circularly-symmetric complex random elements aij ∼ CN (0, 1).
N?

D is the original number of shapes in the snapshot matrix, W?
fl, and N?

D is the
desired number of shapes in the real valued snapshot matrix W?

fl. ND should be
sufficiently higher than N?

D to capture magnitude and phase distribution of the
original shapes well.

Extraction of most prominent shapes The sensor placement algorithms that
were selected in Section 6.1 are typically tailored to distinguish a number of
shapes that is equal or smaller than the number of sensors (NF ≤ NM). However,
the number of snapshots in the snapshot matrix easily exceeds the number of
sensors and in that case the size of matrix Wfl need to be reduced. This can
be achieved using the Proper Orthogonal Decomposition (pod) [9, 78], which
extracts the most prominent shapes from a matrix (Appendix D).

Obtaining the most prominent shapes is, however, not a trivial step, as the
subset of target points to be estimated is not necessarily equal to the subset
of measurement points. The part of the shape of which the most prominent
patterns need to be identified consists of the target points. Those points need
to be included in the pod. The measurement points, however, are the points for
which sensor placement has to be carried out. Thus, a procedure is needed to
find a matrix Φm,fl that describes the shapes at the sensor points corresponding
to the most prominent shapes at the target points based on snapshot matrix W .

The pod of matrix W t,fl (the subset of rows of Wfl corresponding to the
target points) is calculated, yielding the poms ϕ̌i. The most dominant poms
are collected in a matrix as follows,

Φ̌t,fl =
[

ϕ̌1 · · · ϕ̌NF

]
, (6.21)

where NF needs to be equal to or smaller than the desired number of sensors to
be placed. The rows of matrix Φ̌t,fl correspond to the target points, but the sensor
placement algorithm needs only information of the sensor candidate points. This
can be solved by determining how the columns of Φ̌t,fl can be formed from linear
combinations of W t,fl and then recombining the columns of Wm,fl according to
the thus found weights. The weights are found from the pseudo-inverse of Wm,fl
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multiplied by Φ̌t,fl:

Φ̌m,fl = Wm,flWᵀ
t,fl

(
W t,flWᵀ

t,fl

)−1
Φ̌t,fl. (6.22)

Addition of the flexible modeshapes Matrix Φ̌m,fl consists only of the flexible
contributions to the displacements at the sensor locations. As the rb coordinates
also have to be estimated from the sensor signals, the rb shapes at the sensor
locations, Φ̌m,rb, need to be added to the set of flexible shapes,

Φ̌m =
[

Φ̌m,rb Φ̌m,fl
]
. (6.23)

Shape matrix Φ̌m can then be used as input for the sensor placement algorithm.

In time changing disturbances

Still, an important issue concerning the integration of sensor placement is that
the placement algorithms only optimise for a single set of shapes. However,
in the case in which the disturbances are caused by the immersion film, the
disturbance conditions change as function of time. Thus, also the snapshot
matrix and the optimal sensor configuration change. Therefore, a sensor
configurations needs to be found that, although possibly being suboptimal for
each of the individual disturbance conditions, over time leads to an – on average
– minimum estimation error.

As a solution, the snapshot matrix could be formed based on all disturbances
conditions, neglecting their time dependency, or based on a limited number of
conditions that are expected to lead to the largest estimation error. In both cases,
however, some foreknowledge on the disturbances is lost.

6.4 Sensor placement applied to the numerical study
of the wafer chuck

In Chapters 4 and 5 a case study was presented, in which shape fitting was
applied to the wafer chuck and its main disturbance source, the disturbances
introduced by the immersion layer. The case study used the hand-picked sensor
configuration of Section 2.4.3, which consists of eight position sensors at the
corners and the side centres. This section applies sensor placement to the case
study, using the procedure of Section 6.3 and shows that the estimation error
indeed significantly reduces.

Method Shape matrix Φ̌m was calculated from snapshot matrix W? using the
procedure of last section. As the lens column and its disturbances travel with
respect to the wafer chuck, the snapshot matrix changes as function of PoI’s
location. The first row of Table 6.3 reproduces the estimation results of Chapter
5 that were obtained with the hand-picked sensor configuration. The highest
methodical estimation error of shape fitting is mainly concentrated at the centre
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(a) efi algorithm. (b) ta algorithm.

Figure 6.14: Two new position sensor configurations found with the efi and ta

algorithms. The configurations are optimised for disturbances at the centre of the wafer
chuck.

of the plot, corresponding to the PoI being at the wafer chuck’s centre. For this
reason, it was chosen to avoid the problem of multiple snapshots matrix, by
taking only into account the snapshots corresponding to the centre PoI location.
Thus, W? consisted of in total 6900 shapes (69 spatial points times 100 frequency
points). The sensor candidates were restricted to the sides of the wafer chuck.

From the complex valued W? a real valued snapshot matrix W was generated
consisting of 104 snapshots. After obtaining the shape matrix Φ̌m the efi and
ta sensor placement algorithms were applied. The algorithms were modified
to not eliminate the four sensor candidates at the chuck’s corners. Then in the
same manner as in Chapter 5 the estimation errors were obtained for the two
new sensor configurations.

Results Figure 6.14 shows the two optimised sensor configurations. As
compared to the hand-picked configuration, the efi algorithm displaces one
sensor from its location at the side centre, the ta algorithm two.

The rows of Table 6.3 show the estimation for the different sensor con-
figurations. Although the two new sensor configurations lead to a higher
methodical error of the rb estimator, the methodical error of the sf estimator
decreases. Especially in terms of the maximum error this decrease is significant;
the decrease is are about 20 % and 40 % for the efi and ta algorithm, respectively.
On the other hand, the estimation error of shape fitting due to noise increases,
for the ta algorithm by more than a factor of 2.

6.5 Conclusions

This chapter studied the implementation of automatic sensor placement in
the framework of shape fitting. The algorithms in literature have various
optimisation goals. Four algorithms, efi, ta, ra12 and fs, were selected for
further study. These algorithms place sensors based on a set of shapes, aiming
at finding the amplitudes of the shapes with least error. This goal is related
with, but different from our estimation goal, i.e. finding shape estimates with
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Table 6.3: A comparison between the estimation errors of the rb and the sf estimator
when using different sensor configurations. The error is shown as function of the location
of the lens column. The results are obtained using the standard controller, 8 sensors
for estimation and a disturbance bandwidth of 0–100 Hz. The first row is for clarity
duplicated from Table 5.2.

Scenario rb estimation sf estimation

Methodical
estimation

error
(Emeth,rb

)

Estimation
error due to

noise
(Enoise,rb)

Methodical
estimation

error
(Emeth,sf

)

Estimation
error due to

noise
(Enoise,sf)

Initial sensor
configuration

Average: 4.63·10−7 m Average: 4.26·10−11 m Average: 6.50·10−9 m Average: 2.08·10−10 m 

Sensor
configuration

efi

Average: 5.00·10−7 m Average: 4.26·10−11 m Average: 6.10·10−9 m Average: 3.37·10−10

Sensor
configuration

ta

Average: 5.38·10−7 m Average: 4.27·10−11 m Average: 5.74·10−9 m Average: 3.93·10−10 m

·10−8 [m] 
3 4 5 6 7

·10−11 [m]
4 4.5 5

·10−8 [m] 
1 2 3 4 5

·10−10 [m] 
2 4 6 8
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least error. All four algorithms start with a set of sensor candidates, of which
the less important sensors are removed one-by-one. As such, the algorithms are
fast but none of them can guarantee global optimality.

The placement algorithms were assessed in different ways. They were,
amongst others, applied to sets of randomly distributed shapes. The efi and ta

algorithms performed systematically better than the other selected algorithms,
also the algorithms tested in similar experiments in literature before.

Furthermore, the algorithms were applied to a set of eight modeshapes of
a plate, which had to be distinguished either using position sensors or strain
sensors. In both cases the ta algorithm obtained superior results over the other
algorithms. In general, sensor placement with a smaller candidate sets has an
equal or even higher chance to yield a well-performing sensor configuration than
placement with a larger candidate set. Convergence to a well-performing sensor
configuration was observed to be not guaranteed, especially with ra12. Based
on these observations, a placement strategy is proposed in which several small
candidate sets are tested, instead of a single larger one.

For two small sensor candidate sets, a brute force evaluation of all sensor
possible sensor configurations was carried out to find the optimal sensor
configuration. The ta algorithm closely approached the performance of the
optimal sensor configuration, to within 11 % and 3 % in terms of the sna.

Finally, a procedure was developed for incorporating the placement al-
gorithms into the sf framework. To be able to use a snapshot matrix as input for
the sensor placement algorithms, the number of shapes need to be reduced and
the rb contributions need to be removed. The procedure starts with calculating
the flexible residues corresponding to the snapshot matrix and extracts from
them the most prominent patterns at the target points using the pod. Then the
most likely patters at measurement points are calculated, which are the shapes
to perform sensor placement with. After sensor placement, the sf estimator
is calculated using the ls technique. The procedure was in combination with
the efi and ta sensor placement algorithms applied in the numerical case
of the wafer chuck. Although the placement procedure does not take into
account a travelling disturbance source, the procedure significantly reduced the
sf estimation error.
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Chapter 7

Experimental verification of
shape fitting

In the previous chapters, the Shape Fitting (sf) method was introduced and fur-
ther developed for use in the wafer chuck application. The method was assessed
using numerical models and simulations. It is important to experimentally verify
the numerical models, as they may not include all relevant physical effects and
boundary conditions and are also prone to programming errors. This chapter
describes the design of an experimental setup and the results obtained with it.

Section 7.1 first defines the purpose and the requirements of the setup. Then,
based on these requirements, the design choices regarding the setup and its
components are presented. Section 7.2 describes the results of the validation
experiments that were performed to prove that the setup operates as desired.
The setup is then utilised in Section 7.3 to verify the numeric model of the
wafer chuck and its controller. Section 7.4 assesses the sf method experimentally.
Section 7.5 shows experimental results of a hybrid estimator that combines shape
fitting with absolute position measurement based on an accelerometer signal.

7.1 Setup design

7.1.1 Purpose of the setup

An experimental setup may be used for many different reasons. Three major
purposes of a setup are 1) the exploration of new physical phenomena; 2) the
verification of model-based expectations and 3) the demonstration in practice of
a method or principle.

The physical principles upon which this thesis builds are considered well-
understood and need no further exploration. In fact, the setup is designed such
that phenomena that are not well-understood are kept non-significant. Verifica-
tion of the models is important because a model may have inherent shortcomings
in describing all relevant physical effects and boundary conditions. Significant
discrepancies might be discovered using experiments with a physical setup.

113
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Furthermore, even if a model is able to describe the physical phenomena, the
model or a derived simulation could contain programming errors, which might
be revealed by experimental verification. Therefore, the main purposes of this
setup are the verification of the models and the demonstration of shape fitting
on a physical setup.

7.1.2 Requirements

The real wafer chuck system is highly complex, but for the setup it is not
necessary to mimic all its aspects. The setup should only contain the physical
principles that are relevant to the research in this thesis. Therefore, the setup
need to have a similar topological architecture, but its parts can be highly
simplified as compared to the actual wafer chuck system.

The wafer chuck is mimicked by a simple plate. Only the out-of-plane motion
of the setup is relevant, so that the plate should be constrained in the in-plane
directions and should be free-floating in the out-of-plane direction. The plate is
kept in position in out-of-plane direction with position sensors, force actuators
and a Rigid Body (rb) control system as described in Section 2.1.3. The setup
should be sufficiently linear.

The purpose of the setup is to verify the models and the sf method, for which
it is important that both rb and flexible behaviour can be measured. This means
that the noise floor of the measurements should be low.

To make the setup usable for different types of experiments the sensors and
the actuators should be easily removed and placed at other locations. The setup
should therefore be modifiable, but in such a way that the measurements remain
repeatable.

7.1.3 Suspension concepts

During design of the setup, the decisions on conceptual and detailed level
were highly interwoven. This section presents the fundamental conceptual
choices regarding the suspension of the chuck and the sensors. The next section
elaborates on the more detailed design decisions.

A reason for choosing a free-floating plate is that the system is then
topologically similar to the wafer chuck system. A free-floating plate setup is,
however, much more complicated than one with a directly supported plate. Yet,
the free-floating plate concept also brings the advantage of a reduced noise floor.

In order to find how large the reduction of the noise floor is, a noise analysis
was performed on three different suspension concepts, as depicted in Figure
7.1. In the first concept the plate is directly supported by the ground and the
sensors and actuators are mounted to the ground. In the second concept the
chuck is free-floating and levitated by a position control system. The sensors
are mounted on the ground. In the third concept, the sensors are mounted on a
metrology frame, a vibration isolation system with a low-stiffness connection to
the ground. To levitate the chuck in the second and third concept, the actuators
apply additional forces for gravity compensation.
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(a) Non-levitated. The chuck is directly supported by the
ground; the sensors are directly mounted to the ground.
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(b) Levitated. The chuck is free-floating using rb control; the
sensors are directly mounted to the ground.
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(c) Levitated/metrology frame. The chuck is free-floating using
rb control; the sensors are connected with low stiffness to
ground.

Figure 7.1: Three possible suspension concepts for the setup. The third concept, the
levitated chuck with the metrology frame, leads to the lowest noise and was chosen for
the setup.
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Table 7.1: Comparison between the noise levels of the three suspension concepts. The
values per noise source are translated into their deformation equivalents and are given
as the peak-to-peak (8σ) values up to 1 kHz.

Noise source Suspension concept

Non-levitated Levitated Levitated/metrology frame

[nm] [nm] [nm]

Floor vibrations 27 20 < 0.20

Reaction forces 19 5.0 < 0.050

Current amplifiers 5.6 5.7 5.7

Sensor noise 27 27 27

Total 43 34 28

Four noise sources were identified, namely floor vibrations, reaction forces
from the actuators, noise of the current amplifiers that feed the actuators and
sensor noise. Their typical signal levels were measured or estimated and
translated into deformation equivalent noise, i.e. the apparent deformation of the
plate due to the noise source. Note that the reaction forces are correlated with
the actuation signals and can not be lowered by averaging multiple experiments,
making this from a different type of noise source than the others.

The floor vibrations, known to be significant in the laboratory in which the
setup was to be build, were measured using geophones (Appendix E). The noise
of the current amplifiers was measured using a current probe, the supplied
current had almost no influence on the noise level. The sensor noise was
measured stably fixated reference. The amplitude of the reaction forces was
estimated to be 1 N.

Table 7.1 lists the the deformation equivalent noise levels for the three
suspension concepts. Note the large reduction of the influence of the floor
vibrations and reaction forces for the levitated concept with a metrology frame.
In this concept the relative motion between the plate and metrology frame is
highly reduced due to the low-stiffness connection between both the plate and
the ground and the metrology frame and the ground.

Clearly, the levitated concept with metrology frame has the lowest total noise.
For this reason and the fact that this concept has a similar topology as the actual
system, it is selected for further development.

7.1.4 Detailed design and component selection

Figure 7.2 shows photo-renders of the setup that was designed and build. The
design of its most important components, which are indicated in the figure, are
further described in this section.
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force frame

metrology frame plate

in-plane suspension string (×4)

vibration isolation payload

force actuator (×5)

position sensor (×9)

chuck

vibration isolator

in-plane suspension plate

kinematic mount (×9)

plate catcher (×4)

Figure 7.2: Photo renders of the setup from different viewing points. Indicated are the
most important components, whose design and selection is described in Section 7.1.4.
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Metrology frame

The metrology frame consists of a vibration isolation payload and a metrology
plate that holds the sensors The metrology frame is connected via a vibration
isolator to the ground. The vibration isolator provides a low-eigenfrequency
suspension which lowpass filters the ground vibrations and the vibrations
caused by the reaction forces. In a small market survey the commercial Minus-
K BM-4 isolator was identified as a well-performing and cost-effective solution
(Appendix G.1). This fully passive system contains a spring with a high positive
and a second with a negative stiffness that in parallel result in a low positive
stiffness in vertical direction. The system allows for eigenfrequencies as low
as 0.5 Hz. To not only reduce the floor noise but also the disturbances that
directly work on the metrology frame and decrease the influence of sensor cable
stiffness, the isolator variant with highest allowed payload was selected for best
performance. Together with a stack of steel plates, a total payload of about 90
kg was installed.

In-plane suspension

The out-of-plane motion need to be kept free, whereas the in-plane direction
must be stiffly suspended. Different concepts were studied, of which a concept
with strings was selected. The three in-plane DoFs are suspended by four strings
with a pretension of 0.1 N. This results in a relatively low out-of-plane stiffness
between about ±2.5 N/m. The in-plane suspension strings are held by an in-
plane-suspension plate, which also comprises four plate catchers, which support
the plate during disassembly.

The in-plane suspension could either be mounted to the ground or to the
metrology frame. The latter option was chosen, as this reduces the influence
of in-plane ground vibration. The influence from the plate’s vibrations on the
metrology frame, on the other hand, is expected to be low, due to the high mass
of the metrology frame.

Plate design

To apply the sf method the chuck’s rb motion and its deformation should
both be measurable with the same sensors. The deformation is typically small
compared to the rb motion. This puts demands on the sensors’ specifications,
as sensors with a large range in combination with small resolution steps are
expensive. Therefore, the ratio between the two needs to be minimised.

To achieve large deformations, the plate’s stiffness should be low. But
from a rb point of view, the plate should be stiff, because this increases its
eigenfrequencies. Higher eigenfrequencies allow for a higher controller stiffness
and, thus, to smaller rb motions. In addition, a higher stiffness controller
with a higher bandwidth is desired, because it increases the frequency band
that is useful for applying shape fitting. After all, performing low-frequency
experiments is difficult, due to thermal drift and long required measurement
time.
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Figure 7.3: The lowest eigenfrequency, f1, of a plate as function of the plate’s dimensions
a and b, according to Eqs. (7.2) and (7.3). The plate has material parameters of aluminium
and a thickness of 3 mm. The dashed line indicates the first eigenfrequency of a beam
(i.e. b � a) according to [95]. The red asterisk indicates a size of 350 mm × 200 mm, the
plate size that was chosen for the setup.

When selecting the chuck’s size, clearly a trade-off has to be made between
the height of the lowest eigenfrequency and the stiffness of the plate. This was
done in a parametric analysis with simple analytic formulas.

The controller stiffness Kp that can be attained is proportional to the plate’s
lowest eigenfrequency, f1, squared:

Kp ∝ f 2
1 . (7.1)

According to Leissa [96], the lowest eigenfrequency of a plate can be expressed
as function of the plate’s geometry and material properties as

f1 = λ1
1

2π
√

12

√
E

ρ(1− ν2)

h
a2 , (7.2)

where a denotes the length, b the width and h the thickness of the plate. λ1 is a
function of the ratio a/b. Leissa supplies λ1 for only four values of a/b. To obtain
a continuous function, the values were fitted with a second order polynomial,
taking into account the fact that b2λ1(a/b) = a2λ1(b/a), yielding

λ1 = −6.06
( a

b

)2
+ 26.2

( a
b

)
− 6.06. (7.3)

with 0.4 ≤ a/b ≤ 2.5. Figure 7.3 shows eigenfrequency f1 as function of the
plate’s dimensions a and b.

To describe the stiffness of the plate, the analytic formula of a beam is used.
A beam with thickness h, length a and width b that is supported with hinges at
its ends has a stiffness

kbeam = 4
Eh3b

a3 . (7.4)

If the plate’s deformation is modelled as two beams in series, one bending in
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Figure 7.4: The bending stiffness of a plate, kplate, is approximated by the stiffness of
two bending beams in series, one bending in the direction of its width the other in the
direction of its length.
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Figure 7.5: The normalised ratio between the actuation stiffness and the bending stiffness,
rk, of a plate as function of its length, a, and width, b. The red asterisk indicates a size of
350 mm × 200 mm, the plate size that was chosen for the setup.

the direction of the width b, the other in the direction of length a, as illustrated
in Figure 7.4, the total stiffness becomes

kplate ≈
4Eh3ab
a4 + b4 . (7.5)

Combining Eqs. (7.1–7.5), the ratio between the bending stiffness and the
controller stiffness, can be expressed as

rk(a, b) ≈
kplate

Kp
∝

ρhab(
− 6.06

b2 + 26.2
ab − 6.06

a2

)2
(a4 + b4)

,

which needs to be minimised. Figure 7.5 shows a normalised rk as function
of the plate’s dimensions. Smaller values of rk are attained for smaller plate
dimensions and higher aspect ratios.

A plate geometry of 350 mm × 200 mm × 3 mm was chosen (indicated with
the red asterisk in Figure 7.5), also based on considerations like the availability
of enough space for the sensors and actuators. A rectangular plate geometry
was chosen instead of a square geometry to remove symmetry from the system,
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Figure 7.6: Initial configuration of the setup’s actuators and sensors. The numbers
indicate the actuator and sensor numbering convention.

thereby avoiding multiplicity of eigenmodes. As the plate needs to be electrically
conductive for measurement reasons aluminium was selected as material.

Control system

A rb coordinate controller (Section 5.2.1) was implemented for levitation of the
chuck. This controller is run on a real-time xPC system with analogue/digital
and digital/analogue converters.

Sensor selection

Different types of positions sensors were compared, mainly based on the ratio
between their range and resolution and their price. The required ratio was
determined using the fe model in combination with the designed controller.
The required sensor range was found from the maximum translation amplitude
of the plate at a frequency below the bandwidth of the system and the required
resolution from the quasi-static deformation caused by a force at the centre of the
plate and the corresponding actuator forces. To be able to measure the amplitude
with high enough resolution, the required ratio, rs, was multiplied by a factor of
100, leading to

rs =
0.01 m/N

5 · 10−6 m/N
· 100 = 2 · 105.

Based on a market survey, Micro-Epsilon CapaNCDT6200 capacitive sensors
with CS1 heads and DL6230 signal conditioners were selected. These allowed for
measuring over a range of 1 mm with a resolution determined by the sensor’s
noise level of 12 nm (1σ, bandwidth 1 kHz).

In total 9 sensors were placed on the locations indicated in Figure 7.6. Sensors
1 to 4 are used for the rb control.

Actuator selection and gravity compensation

Voice coil actuators were selected as actuators because their motor constant
(generated force per applied current) is relatively constant over their stroke. To
minimise the mass that is added to the chuck the compact Moticont lvcm-016-
013-01 actuators were selected, whose magnet housings have a mass of 12 g.
Based upon the information on their datasheet, their stiffness at nominal current
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is at maximum ±300 N/m at the extremes of their range (0 to 6 mm). In practice,
a range of 1 mm is used, so that, if operated around their zero stiffness point, the
maximum stiffness at nominal current is lower, e.g. ±25 N/m. The actuators will
provide the forces needed for gravity compensation. This requires a current of
3.5 times the nominal current of a single actuator. The actuator stiffness should
be multiplied by this value to obtain the maximum stiffness in z-direction.

To avoid wires connected to the chuck and heat loads, the coils were
connected to the force frame and the magnet housings to the chuck. The
housings were connected to the chuck with simple disk magnets that were glued
to the chuck. This construction also allows for in-plane alignment of the magnet
housings with respect to their coils. In total five actuators were placed, four
symmetrically and one in the centre (Figure 7.6).

The sensors and actuators were mounted at opposite sides of the plate to
allow for collocation. The actuators were mounted above the plate to decrease
heat introduction to the plate, which causes thermal deformation. Moreover, the
coils are conductively cooled by there direct connection to the force frame.

Kinematic mounts

To facilitate simple modification and repeatable replacement of the setup’s
parts, kinematic mounts were designed for the connections between the in-
plane suspension, the metrology frame, the force frame and their respective
neighbours (Figure 7.2).

7.2 Setup validation

7.2.1 Suspension stiffness

The stiffness of the plate’s suspension should be low compared to the controller
stiffness. Based upon the setup’s design it is expected that the suspension
stiffness is dominated by the actuator stiffness, which is circa ±100 N/m. The
stiffness caused by the in-plane suspension is expected to be negligible.

An experiment was performed to determine the stiffness in z-direction. First,
the distance between the force frame and the metrology frame with the plate in
a fixed position was manually adapted by changing the height of the vibration
isolator’s platform in order to approach closely the zero-stiffness point of the
actuators. Then the z-setpoint of the controller was modified in a number of
steps from 0.050 mm to 0.950 mm. For each step the controller forces were
recorded. From these measurements, the suspension stiffness in z-direction was
obtained. A maximum stiffness of about ±100 N/m at the extremes of the range
was found, which can be explained well by the actuator stiffness. As the chosen
controller stiffness is typically 104 N/m, the additional stiffness can be considered
low.
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Figure 7.7: Cumulative power spectrum of the flexible residue at the centre sensor (w5,fl).
The flexible residue was calculated based on both the analogue and digital sensor signals.

7.2.2 Noise performance

Vibration isolation A geophone was used to examine the vertical transmiss-
ibility of the Minus-K vibration isolation system. Although the eigenfrequency
of the vertical motion was not tuned to be as low as possible, the measured
transmissibility at the centre of the Minus-K (Appendix G.2) resembles the curve
from the datasheet well. It was observed, however, that the Minus-K has a
relatively high stiffness in the out-of-plane rotation direction, which is caused
by the rubber tilting pad that makes the out-of-plane rotations possible. This
stiffness leads to an almost full transmission of vibrations around 8 Hz at the
corners of the isolator.

Deformation equivalent noise The noise performance of the system as a
result of all unwanted disturbances was validated. As the setup is developed
for evaluating the estimation of deformation, it is important to study the
deformation that is equivalent to the noise. The deformation is expressed in
terms of the flexible residue at the centre sensor, w5,fl. The noise floor has to
be low, typically 50 nm, which is a factor of 100 below the expected desired
deformation amplitudes.

To find the deformation noise level, the signals of the position sensors were
recorded for 20 s while the plate was in closed-loop control and no disturbances
were applied via the actuators. From the recorded signals the flexible residue
at the centre sensor (w5,fl) was calculated. The flexible residue was obtained
from both the analogue signals and the digital signals (EtherCAT) of the sensor
signal conditioners. The analogue signals were digitised using a NI6220 data
acquisition card.

Figure 7.7 shows the Cumulative Power Spectrum (cps) of the flexible
residue. The noise level of the residue obtained with the analogue signals starts
increasing faster than the one obtained with the digital signals. According to the
sensor manufacturer, the digital sensor signals are lowpass filtered with a cutoff
frequency of 400 Hz, but this filter can not explain the discrepancy between
the two spectra. The difference between the spectra below 200 Hz might be
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explained by a white noise with a level of 1.3 · 10−9 m/
√

Hz. Indeed the data
acquisition card produces random noise, but 1.3 · 10−9 m/

√
Hz is still a factor of

2.1 higher than the expected contribution of the noise level of the data acquisition
card to the flexible residue.

The cps of the analogue signals shows a jump around 750 Hz. As the jump
has a width of only one frequency sample it does most probably not stem from
the mechanical but from the electronic domain. The jump was also present
when the current amplifiers of the actuators were turned off and when a single
sensor was read out with an external data acquisition box (NI6211). As the
jump’s frequency changes when the sampling frequency is changed, the noise
component most probably aliases in from a higher frequency. Furthermore, it
was observed that the height of the jump is proportional to the distance between
the sensor and the plate. Thus, it is hypnotised that the peak is caused by the
sensor signal conditioners.

The use of the digital sensor signals leads to a noise level of 7.4 nm (1σ, 1 kHz
bandwidth), which is about a factor of 2 higher than the predicted noise level
of Table 7.1. The analogue readout leads to a noise level of 71 nm, which is
significantly higher than the prediction. This is still a factor of 70 lower than the
typical deformation amplitudes and is, therefore, considered acceptable.

Delay noise The digital sensor outputs have an internal sampling frequency
that is not synchronised with the sampling of the xPC system. This causes
delay and at regular time intervals repetition of the position samples, in that
way adding noise proportional to the slope of the signals. As the effect is not
synchronised amongst all 9 sensor channels, the use of the digital signals leads
to considerable error in the estimation experiments. For this reason the analogue
signals are used in the rest of this chapter.

7.2.3 Parasitic effects of the actuator forces and suspension

For performing valid deformation measurements not only the setup’s noise level
should be low, but also its parasitic deformation. The reaction forces of the
actuators cause vibration of the ground, which is partly transmitted via the
vibration isolator to the metrology frame. Furthermore, the actuator stiffness
couples the motion of the force frame to the chuck and the string suspensions
introduce stiffness between the chuck and the metrology plate. All these effects
lead to a parasitic relative motion between the chuck and the metrology frame.

The control system interprets the parasitic relative motion as a displacement
of the wafer chuck and responds by exerting forces to the wafer chuck. Those
forces lead to parasitic deformation of the wafer chuck.

The parasitic deformations are, as opposed to the deformations due to the
random floor vibrations, correlated with the desired response to the actuator
signals. Thus, the parasitic deformation is easily misinterpreted as part of the
intended response of the wafer chuck. Moreover, the parasitic deformation can
not be reduced by averaging techniques as it is not random.

A validation experiment was carried out to find the level of the parasitic
deformation and to compare it to the level of the desired deformation. The



7.3. Verification of the system model 125

7

10
−1

10
0

10
1

10
2

10
3

10
−12

10
−10

10
−8

10
−6

10
−4

Frequency [Hz]

D
ef

m
et

ro
/

D
ef to

t

Figure 7.8: The ratio between the parasitic deformation and the total deformation of the
wafer chuck due to the centre actuator. The parasitic deformation is insignificant as it is
a factor of 10−4 or smaller for all frequencies.

transfer function of the centre actuator to the position of the metrology frame
was obtained using a geophone. The closed loop transfer function from an
output disturbance on the sensors to the deformation of the plate was obtained
using the system’s model. The two transfer functions were multiplied to find
the full transfer function of the parasitic deformation to the actuator force. This
transfer function was compared to the transfer function of the deformation due
to the actuation forces.

Figure 7.8 compares the transfer functions by showing the ratio between the
parasitic deformation and the total deformation. This ratio stays below 10−4 for
all frequencies. Thus, for a deformation amplitude of 5 · 10−6 m the expected
deformation error is well below 5 · 10−10 m, which is lower than the noise level
of the experimental setup.

7.3 Verification of the system model

To verify the model of the total system, i.e. the finite element model and the
controller in combination with the decoupling matrices (Section 5.2.1), the most
important transfer functions were compared to experimental results. To obtain
the transfer functions of the setup, a block signal with a period of 5 seconds
was applied to the centre actuator. The sensor response was recorded for 120
seconds. From this data, the transfer functions were calculated.

Figure 7.9a shows a Bode plot of the closed-loop transfer from a force at
the disturbance actuator to the rb estimate of the centre PoI. Both the centre
disturbance actuator and PoI sensor were placed at location 5, the centre of the
plate. Figure 7.9b shows a Bode plot of the flexible residue for the same actuator
and sensor pair.

Two parameters were adapted to obtain better agreement between the model
and setup. Firstly, the motor constants were multiplied by about 1.6, leading
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(a) Transfer function from the centre actuator to the rb estimate at the centre sensor.
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sensor.

Figure 7.9: Bode plots of the transfer functions of the centre actuator to the rb estimate
and the flexible residue at the centre position sensor. The improved model contains a
lowpass filter and a delay and closely resembles the measurement.
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to equal rb estimate at low frequency, but a 13 % larger deformation than
modelled. Secondly, the modal damping constant of the model was fitted to
the measurements. Figures 7.9a and 7.9b show the transfer functions obtained
from the model in dotted red lines.

For low-frequencies, the most important differences between the experi-
mental results and the model are found around the controller bandwidth, which
is at 20 Hz for the translation and at 10 Hz for the rotations. These differences
are primarily caused by a Butterworth lowpass filter with a cutoff frequency of
200 Hz. This filter was used to reduce the noise component at 750 Hz (Section
7.2.2), which led to instability of the motion controller. At higher frequency,
delay causes the setup to show more phase lag than the model. Figures 7.9a and
7.9b show the transfer functions of the improved model with the added lowpass
filter and a delay in solid red lines. The transfer functions of the improved model
and the setup show close resemblance. It can, therefore, be concluded that the
model of the fe model in combination with the control system describes the rb

controlled plate system well.

7.4 Demonstration of the shape fitting method

To verify the sf method and to demonstrate its practical applicability it was
implemented on the experimental setup. The setup has five actuators that can
be used to apply disturbance forces and eight sensors for estimation. Thus,
the number of disturbance locations is relatively limited. For this reason it was
chosen to not use more disturbance locations than the number of estimation
sensors to obtain more snapshots than estimation sensors, but instead to use
grids of frequencies to obtain the snapshots. The results of different frequency
bands are compared. This section starts by assessing shape fitting in the time
domain and then studies the shape fitting performance in the frequency domain.

7.4.1 Comparison estimators in the time domain

Method

In the experiments a single actuator was used as a disturbance source, namely
the centre actuator (position 5, Figure 7.6). The centre position sensor (position
5) was selected as the target point (the PoI). The displacement of the target point
was estimated both with the rb estimator and the sf estimator. All sensors,
except the PoI sensor, – in total 8 sensors – were used for estimation.

Estimation was performed for noise signals with two frequency bands, one
from 0.1 to 80 Hz and the other from 0.1 to 150 Hz. The band 0.1 – 150 Hz
includes the first resonance frequency of the plate.

The experimental procedure consisted of two steps, first a calibration step,
then an estimation step.

Calibration step A square wave signal with a period of 5 seconds was applied
to the disturbance actuator. The sensor response was recorded for 120 seconds.
The data of all sensors, including the PoI sensor, was used to generate a complex
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(b) Detail (0.44 s) of the displacement measure-
ment of the reference sensor and its estimates.

Figure 7.10: Results of the time domain experiment with a disturbance signal in the
frequency band 0.1 – 80 Hz.

frequency-domain snapshot matrix (cf. Section 5.3), according to the frequency
band for which the sf estimator was optimised. For each band the corresponding
sensor influence matrix B was calculated according to Eq. (5.37).

Estimation step Two random signals with frequency content corresponding
to the band for which the estimator was optimised were constructed. The
signals consisted of a high number of frequency components linearly distributed
through the frequency band, each component having a Gaussian distributed
amplitude and an uniformly distributed phase. Figures 7.10a and 7.11a show
details of the disturbance signals. The signals were applied with the disturbance
actuator and the responses of the position sensors were recorded.

The signals were highpass filtered using a cutoff frequency of 0.1 Hz to
remove the sensor offset and the drift of the plate’s shape due to thermal effects.
Then shape fitting was used performed with the signals to estimate the PoI’s
position as function of time.

Results

Figures 7.10b and 7.11b show details of the displacement measurement of the
reference sensor and the rb and sf estimates for the frequency bands from 0.1 to
80 Hz and 0.1 to 150 Hz, respectively. Especially at the disturbance bandwidth
0.1 – 150 Hz the rb estimator performs

Table 7.2 lists the rms values of the reference sensor and the estimation errors.
The level of the displacement measured at the reference sensor is equal in the
two experiments. The error of the rb estimation equals – by definition – the
flexible residue. As expected, the sf method performs better than the estimation
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(b) Detail (0.21 s) of the displacement measure-
ment of the reference sensor and its estimates.

Figure 7.11: Results of the time domain experiment with a disturbance signal in the
frequency band 0.1 – 150 Hz.

error of the rb method. The level of rb estimation error is for the disturbance
band 0.1 – 150 Hz more than ten times larger than for the band 0.1 – 80 Hz,
most likely due to the modeshape corresponding to the plate’s lowest resonance
frequency. The level of the sf estimation error increases only by about a factor
of 1.4, indicating that the sf estimator can deal well with the modeshape.

7.4.2 Comparison estimators in the frequency domain

The previous section studied the estimation performance in the time domain.
The results showed that the estimator performance depends on the frequency
band of the disturbances. This section studies the performance of the estimators
further in the frequency domain.

Table 7.2: A comparison of shape fitting in the time domain in terms of the rms values of
the estimation error.

Disturbance bandwidth

0.1 – 80 Hz 0.1 – 150 Hz

rms value [m] rms value [m]

Reference position sensor 28 · 10−6 28 · 10−6

Flexible residue 1.3 · 10−6 19 · 10−6

Error rb estimation 1.3 · 10−6 19 · 10−6

Error sf estimation 0.36 · 10−6 0.49 · 10−6
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Method

In the previous section, the estimator performance was studied for two fre-
quency bands. In the experiments of this section four frequency bands were
selected, all starting at 0.1 Hz and extending to, respectively, 1, 10, 80 and 150 Hz.
In the bands 0.1 – 1 Hz and 0.1 – 10 Hz the deformation of the system is expected
to be mostly quasi-static. In the band 0.1 – 80 Hz also dynamic effects due to the
system’s bandwidth are included. In the band 1 – 150 Hz is next to that also the
first resonance frequency of the plate included.

As in the previous section, the experimental procedure consisted of a
calibration step followed by an estimation step. The calibration was performed
in the same manner and with the same measurement data as in Section 7.4.1.
For each of the four frequency bands a sensor influence matrix B was optimised.

In the estimation step, the same measurement data was used as in the
calibration step.

Results and discussion

Figures 7.12 up to 7.15 show the behaviour of the rb and sf estimators for
the different frequency bands and compare them to the actual displacement.
The figures have linear instead of logarithmic frequency axes, which allows
easier interpretation of the results if the disturbances can be assumed uniformly
distributed over the frequency band.

The upper figures show Bode plots of the transfer functions from the actual
to the estimate displacement. The transfer function from actual displacement
to the rb estimate is equal for all figures, as the rb estimator does not use
foreknowledge on the typical disturbances – in this case the frequency content
of the disturbances. An ideal estimator has a magnitude equal to 1 and a
phase of 0◦ for all frequencies. All transfer functions start relatively good with
magnitudes close to 1 and phases close to 0◦. The transfer function of the sf

estimator seems to have in general both a better magnitude and phase behaviour.
The lower figures show the transfer from actuation force to estimation

error. For most frequencies in the frequency band the sf estimator performs
significantly better then the rb estimator. This is often even the case outside the
frequency band that was optimised for.

The rms values of the estimation errors are indicated above the lower
figures. The values correspond to disturbance signals that are white within the
respective frequency band and have a rms value of 1 N. Note that the frequency
components of the error contributions need to be squared when calculating the
total estimation error caused by the noise frequency band.

7.5 Hybrid estimation using shape fitting and an
accelerometer

Section 5.5 proposed a hybrid method for estimating position using a com-
bination of shape fitting and an absolute position measurement. This section
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Figure 7.12: Optimisation for disturbances in the frequency band 0.1 – 1 Hz.
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Figure 7.13: Optimisation for disturbances in the frequency band 0.1 – 10 Hz.
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Figure 7.14: Optimisation for disturbances in the frequency band 0.1 – 80 Hz.
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Figure 7.15: Optimisation for disturbances in the frequency band 0.1 – 150 Hz.
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Figure 7.16: Configuration of the actuators and sensors used for the double integration
of acceleration experiments. As compared to the initial sensor configuration (Figure 7.6),
the centre position sensor was moved so that the accelerometer could be placed above it.

implements the hybrid method on the experimental setup. The absolute position
is obtained from an accelerometer. First, the method is presented and then
experimental results are shown.

7.5.1 Method

An accelerometer was added to the setup. The accelerometer had to be low-noise
and light-weight and was selected based on an overview of high-performance
commercial accelerometers (Appendix E). It was observed that the noise level
of the accelerometers is inversely proportional with their mass. Based on a
comparison, the capacitive mems accelerometer 2220-2 of SiliconDesigns (similar
to Dytran 7500A3) was selected. This sensor has a mass of 10 g, a flat noise level
of 80 · 10−6 ms−2/

√
Hz and a measurement range from 0 to 400 Hz.

The accelerometer was used to obtain a position signal by double integration.
The accelerometer was placed in line with the centre position sensor, which was
used as a reference sensor. The sensors were placed according to Figure 7.16,
they were moved away from the centre of the chuck to avoid interference of the
accelerometer with the actuator.

Construction of the hybrid estimate The hybrid signal is constructed from
the double integrated accelerometer signal and the sf estimate. After double
integration, the accelerometer signal was filtered using a third-order Butterworth
filter. This filter order is sufficiently high as to remove a double integrated
constant acceleration signal. The position signals were lowpass filtered using
the filter complementary to this third-order Butterworth filter. They were then
used for shape fitting. Finally, the sf estimate was combined with the double
integrated accelerometer signal to yield the hybrid estimate. As the two filters
by definition add up to a magnitude of 1 and a phase of 0, this hybrid estimate
is exact if the input signals are also exact (Figure 7.17).

Calibration step First a calibration signal and then the actual signals for
estimation were applied to the setup using the centre actuator. The signals of
the position sensor and the accelerometer were recorded for 20 s. The signals
were highpass filtered with a 0.1 Hz second-order Butterworth filter to remove
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Figure 7.17: Responses of the filters used for the hybrid estimator. The double integrated
acceleration signal was highpass filtered using a third order Butterworth filter (blue). The
sf estimate is filtered with the complement of the Butterworth filter (green). By definition,
the two filters add up to a magnitude of 1 and a phase of 0 (black).

calibration errors and low-frequency drift. All signals were lowpass filtered with
a 1 kHz lowpass Butterworth filter to reduce the noise level of the signals.

The calibration signal was a pseudo-random binary signal. The correspond-
ing sensor signals were recorded. Then, estimation matrix B was calculated
for standard shape fitting. The position signals were lowpass filtered using
the complementary lowpass filter to form a time-domain snapshot matrix
representative for the bandwidth 1 – 50 Hz.

Estimation step Estimation was performed using two measurements, one with
a white noise disturbance signal that was filtered with a sixth-order lowpass
filter with a cutoff frequency of 80 Hz, the other with an unfiltered white noise
disturbance signal. Then the hybrid estimates were calculated.

7.5.2 Results

Figure 7.18 shows the actual PoI displacement and the estimates in a time
interval of 0.125 s. The upper figure shows the results for the lowpass filtered
disturbance signal, the lower figure the results for the fully white noise signal.
The rb and sf estimates contain only low-frequency signal content and deviate
relatively much from the actual PoI displacement. The hybrid signal estimates
better the actual displacement. The actual displacement shows comparable
spikes in both plots, suggesting that these spikes must be attributed to sensor
noise rather than high-frequency displacement. The hybrid estimate for the
lowpass filtered disturbance (upper figure) is, however, smoother than the
one for the white noise disturbance (lower figure), suggesting that the hybrid
estimate contains less noise than the reference sensor.
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Figure 7.18: Comparison between the displacement estimate of the hybrid sf estimator
and the displacement measurement of the reference sensor. The hybrid estimator makes
use of the estimate of a sf estimator that was optimised for the low-frequency part of the
response up to 50 Hz. The higher frequencies are obtained from double integration of
the acceleration signal. For illustration, the rb estimate and the sf estimate up to 50 Hz
are included in the plots.
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Table 7.3: A comparison of the hybrid sf estimation with the standard sf estimate and
the rb estimate. The comparison is in terms of the rms values of the estimation error.

White noise disturbance

lowpass filtered fco = 80 Hz not filtered

rms value [m] rms value [m]

Reference position sensor 1.403 · 10−6 0.864 · 10−6

Flexible residue 0.098 · 10−6 0.158 · 10−6

Error rb estimation 0.098 · 10−6 0.158 · 10−6

Error sf estimation 0.084 · 10−6 0.113 · 10−6

Error rb estimation (up to 50 Hz) 0.188 · 10−6 0.202 · 10−6

Error sf estimation (up to 50 Hz) 0.173 · 10−6 0.180 · 10−6

Error hybrid sf estimation 0.083 · 10−6 0.075 · 10−6

Table 7.3 shows rms values of the signals. The results of the one experiment
can not be compared directly to the other, as the disturbance power of the first
experiment was higher, which can be noted from its higher rms PoI displace-
ment. By definition, the error of the rb estimate equals the flexible residue. The
error of the rb and sf estimates after filtering with the complementary filter
with a cutoff frequency of fco = 50 Hz are higher than the rb and sf estimates as
they are compared to the reference PoI displacement, which is not filtered with
that filter. In the first experiment, with disturbances up to 80 Hz, the hybrid
sf estimate and the standard sf estimate show a comparable error level around
0.084 · 10−6 m. This is, however, close to the noise level of the reference sensor. It
should be noted that the rms noise level of the sensors at a bandwidth of 1 kHz
is around 0.071 · 10−6 m, so that smaller estimation error can not be detected
without averaging techniques. In the second experiment with the unfiltered
white noise disturbance, the hybrid sf estimate is significantly improved with
respect to the standard sf estimate.

7.6 Conclusions

An experimental setup, mimicking the wafer chuck system, was designed, build
and validated. The purpose of the setup was to verify the system model and to
demonstrate shape fitting in a physical setup.

The setup consisted of a plate, fixed in the in-plane directions and position
controlled in the out-of plane direction using position sensors, force actuators
and a rb controller. To be able to measure both the rb motion and the relatively
small deformation of the plate, the position sensors were selected to have a 1 mm
range and a high resolution. Furthermore, a metrology frame with a high mass
and a low eigenfrequency was implemented to minimise the influence of floor
noise and actuator reaction forces on the sensor signals.
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7

The setup validation showed that the setup was suitable for estimation. The
stiffness in out-of-plane direction, originating from the Lorenz actuators and in-
plane suspension, was found to be small, i.e. at least 100 times smaller than the
controller stiffness. The noise floor in terms of deformation equivalent noise was
71 nm (1σ, bandwidth 1000 Hz), which was much higher than expected. This
was primarily caused by a higher sensor noise. Also, the transfer from actuator
reaction force to motion of the metrology frame was examined. The resulting
unwanted parasitic signals proved to be low compared to the real deformations
caused by the actuator forces, at least a factor of 104 smaller.

The setup was used to verify the system model by comparing its transfer
function to the one of the model. The Bode plots of the model’s transfer from
the centre disturbance actuator to the rb displacement and deformation were
shown to closely resemble the ones of the setup.

Finally, the setup was used for the demonstration of shape fitting. This was
done for a case with one disturbance actuator and five flexible residuals. First,
a calibration experiment was performed to be able to calculate the estimation
matrix and the expected estimation error. Then, the actual estimation was
carried out using this estimation matrix. To be able to reach the expected
small estimation errors it proved to be important to remove the static and low-
frequency deformation content. For a bandwidth from 0.1 to 150 Hz, a sf error
of 0.49 · 10−6 m (1σ) was obtained, which is almost a factor of 40 smaller than the
error of the rb method. The results for different disturbance bands show that
the sf estimation error increases for an increasing upper frequency of the band.

A hybrid estimator combines the low-frequency signal content of a sf

estimate with the high-frequency content of a double integrated acceleration
signal. This allows to optimise the sf estimator for a relatively narrow frequency
band and on the other hand to use the double integrated acceleration with a
lower noise level, leading to a low total noise level. For the response to a white
noise disturbance, the hybrid estimator yielded an error of 0.075 · 10−6 m (1σ,
bandwidth 1000 Hz), which is close to the noise level of the reference sensor,
showing the effectiveness of the hybrid estimator.
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Chapter 8

Conclusions and outlook

The goal of this thesis is to develop an estimation methodology for wafer
chuck deformation, based on shape fitting principles, considering the aim for
low estimation error and the specific requirements related to the wafer chuck
application. The thesis shows that the estimation can be performed effectively
using the relatively simple shape fitting method. It is a promising method for
the estimation of wafer chuck deformation and can be one of the steps forward
in the transition to larger wafers and, ultimately, cheaper and more powerful
electronic chips.

Shape fitting estimates the positions of the target points using the measure-
ment signals of the position or other measurands at the measurement points.
The Shape Fitting (sf) estimator makes use of the correlation between the
measurements and the quantity to be estimated. The estimate is found from a
linear combination of the measurements. The method does not take into account
the measurement signals’ history and is, as such, of particular interest for quasi-
static or stiffness-governed problems.

To meet the goal of the thesis several research steps were carried out.
Existing sf methods in literature were collected, reviewed and compared. The
requirements and boundary conditions of the wafer chuck application were
studied and the sf method was developed further to make it applicable in the
application. The sf method was applied in a numerical study with a simplified
wafer chuck model and to an experimental setup.

This chapter presents the conclusions that are drawn from the results in this
thesis. Furthermore, the recommendations based on the work are presented.

8.1 Conclusions

Constructing the shape fitting estimator using a snapshot matrix

• To obtain high estimation performance it is important to include the → Sct. 2.1

relevant foreknowledge on the wafer chuck’s mechanics and its typical
disturbances when constructing the estimator. In the wafer chuck system
it is known that the majority of the disturbances in immersion lithography
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machines is concentrated in the exposure area and that frequencies of the
disturbance are typically well below the lowest mechanical eigenfrequency
of the wafer chuck.

• Different types of shapes can be used for shape fitting. Traditionally,→ Sct. 3.3

shape fitting is used in combination with modeshapes. This is a sensible
choice if no specific information about the disturbances is known. In that
case it may be assumed that the eigenmodes corresponding to the lowest
eigenfrequencies are excited around their eigenfrequencies and form, as
such, the major contribution to the deformation.
However, in a system that is excited with frequencies well below the lowest
mechanical eigenfrequency relatively many modeshapes contribute to the
deformation. If strain is chosen as a measurand, modeshapes are especially
inefficient, as a relatively many modeshapes are needed to describe the
strain profile of a static deformation shape. It is, therefore, better to use
the deformation shapes that correspond to the disturbances that typically
work at the system.

• The typical deformation shapes form together the so-called snapshot→ Sct. 3.5

matrix. From this matrix the sf estimator is calculated, thus including
the foreknowledge on the system’s mechanics and its typical disturbances.
A good snapshot matrix describes the typical deformations of the system
well, such that the system’s response can be described as a linear combi-
nation of the snapshots.
The snapshot-matrix can be obtained from measurements or from a model,
but neither possibility is trivial. The model of the system’s mechanics and
disturbances might not fully match the actual system, whereas measure-
ment of the system’s full response, including the PoI’s response in case of
the wafer chuck, is not available under the actual disturbance conditions.

Techniques for the calculation of the shape fitting estimator

• The sf estimator can be calculated based on the snapshot matrix using→ Sct. 3.5

the pom and the ls technique. The pom technique is known in the field
of temperature estimation in high-precision machines and cpus. The ls

technique is often used in the field of shape estimation based on strain
measurements.
A fundamental difference between the Proper Orthogonal Mode (pom) and→ Sct. 4.3

Least Squares (ls) technique is that the latter optimises for each target point
separately. The estimation performance of the pom technique, however,
depends also on the other included target points, as was illustrated in the
numerical study. For this reason the selection of target points in the pom

is not trivial.

• The pom technique extracts the most prominent shapes from the snapshot→ Sct. 4.3

matrix and uses them to perform shape fitting. The less prominent patterns
may, however, cause spillover, leading to the methodical estimation error.
The ls technique uses the full snapshot matrix for shape fitting, by
definition leading to a minimum methodical error.
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• Not only the methodical error but also sensor noise may lead to significant → Sct. 3.5

estimation error. An estimation matrix B was defined, whose columns
correspond to the applied sensors and whose rows correspond to the target
degrees of freedom. This matrix is helpful in assessing the estimation error
due to sensor noise.
Both the pom and the ls techniques allow for regularisation in order to → Sct. 4.3

reduce the influence of sensor noise, the pom technique by truncating the
number of prominent shapes, the ls technique by truncating the number
of singular vectors. The truncation, however, leads to a loss of information
on the original snapshot matrix, resulting in a higher methodical error. To
attain minimum total estimation error, a trade-off has to be made between
methodical error and noise error. It is proposed to use a regularised ls

technique, which optimises directly for lowest total estimation error.

Measurands and feasible sensor configurations

• The position of the wafer chuck in out-of-plane direction is in immersion → Sct. 2.4

lithography systems found from four position sensors at the chuck’s
corners. The deformation on top of the Rigid Body (rb) position can be
estimated using shape fitting. To do this, additional position sensors or
sensors that measure measurands proportional to deformation, such as
strain and curvature, can be placed. Strain sensors may be placed at will
at the wafer chuck’s surface.

• Position measurements need to be performed with respect to a stable → Sct. 2.4

reference, i.e. the metrology frame in lithography machines. The met-
rology frame is located above the wafer chuck, around the lens column.
Position sensors can not be mounted at the wafer area of the chuck and
preferably not too close to the wafer area. Thus, the possibility for position
measurements is limited to the sides of the wafer chuck.
Absolute position can be measured using inertia-based sensors. Examples → Sct. 2.4

include the position measurement with respect to a decoupling mass,
like a geophone, or the double integration of an accelerometer signal.
The inertia-based sensor have the advantage of not needing an external
reference but suffer from relatively large noise at lower frequency.

Shape fitting in a system with a position controller

• The wafer chuck is virtually connected to the metrology frame by a → Sct. 5.1

position control system. The controller introduces forces to the system, as a
response to the wafer chuck’s displacement and deformation. Shape fitting
using the black box approach generalises the shape fitting in a simple way
to such a position controlled system. It performs estimation directly based
on the sensor signals, without using the applied actuation signals.

• The positions of the measurement and target point can be expressed as → Sct. 5.2

a combination of rb modeshapes weighed by the rb coordinates and
the flexible modeshapes weighed by the flexible coordinates. The rb
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coordinates of the closed-loop controlled wafer chuck behave dynamically,
also in the frequency band up to the wafer chuck’s lowest mechanical
eigenfrequency. The flexible coordinates, on the other hand, show only
limited dynamic behaviour, although they do not behave fully quasi-
statically – especially near the controller bandwidth – in the frequency
band up to the lowest mechanical eigenfrequency.

• The rb positions at the measurement and target points can be estimated→ Sct. 5.2

from at least three position measurements with respect to the stable
metrology frame. The rb modes are decoupled by subtracting the estimate
rb position from the actual position, yielding the flexible residue. Although
the flexible residue is both composed of rb modeshapes and flexible
modeshapes, it is not a function of the rb coordinates, but solely of the
flexible coordinates. The flexible residue shows, therefore, only limited
dynamic behaviour, at least up to the controller bandwidth, allowing to
apply shape fitting in an effective way.

• If the flexible residue does not behave fully quasi-statically, the response→ Sct. 5.3

at the different frequencies needs to be taken into account. If the snapshot
matrix is obtained from a model, this is possible by sampling a grid of
frequencies in the frequency band that must be optimised for.
A snapshot matrix should, in case of dynamic effects, not only account for
the relative magnitudes of the signals, but also for their relative phase. It is
possible to achieve this by including more snapshots at different phase
angles. We introduced the complex snapshot matrix that includes the
phase behaviour in an efficient way. The regularised ls technique was
adapted to facilitate the use of a complex snapshot matrix.

• The performance of the sf estimator depends on the bandwidth of the→ Sct. 5.3

disturbances. The sf estimator should be optimised for the bandwidth of
the disturbances. A larger bandwidth, however, leads typically to a larger
estimation error. Results from the experimental setup showed that the→ Sct. 7.4

sf estimation can also be performed if the disturbances band includes a
resonance frequency. Although the sf estimation error was higher for such
a large disturbance bandwidth, it was still a factor of 40 smaller than the
rb estimate error.

• A hybrid estimator was developed that fuses the signal of a sf estimator→ Sct. 5.5

with a double integrated acceleration signal. In this way, the sf estimator
can be optimised for a relatively small bandwidth for which it yields a
relatively low error, whereas only the higher frequency part of the double
integrated acceleration signal needs to be used, which has a relatively low
noise level. The hybrid estimator was implemented in the experimental→ Sct. 7.4

setup and showed to be effective, yielding an estimation error close to the
noise level of the reference sensor.

• Numerical experiments were carried out with a plate and a controller→ Sct. 5.4

mimicking the wafer chuck. The sensor configuration with eight position
sensors was used and the disturbances were distributed over the exposure
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area with a rms magnitude of 1 N. The average methodical error of the
sf estimator ranged between 2.0 nm (quasi-static disturbances) and 6.5 nm
(disturbances up to controller bandwidth). The error due to the sensor
noise (0.1 nm rms) ranged between 0.13 nm and 0.21 nm, so that sensor
noise requirements could be relieved by approximately a factor of 12
without a significant increase of the total estimation error.

Sensor placement

• To be able to perform estimation effectively it is important to select an → Sct. 6.1

adequate sensor configuration. Choosing such a configuration is in general
not trivial, especially when placing strain sensors. Therefore, automated
sensor placement algorithms from literature were examined. Especially
the placement algorithms that were developed in the field of experimental
dynamics are of interest in the context of shape fitting, as they aim at
identifying and distinguishing shapes.
The methods of Kammer (efi) and Tasker and Liu (ta) were selected for → Sct. 6.1

further study, along with the methods of Ranieri and his co-workers (ra12

and fs), which were developed directly for shape fitting. All four methods
start with an initial sensor candidate set, of which the least promising
sensors are eliminated one-by-one. The methods aim at finding the sensor
configuration that minimises the estimation error of the amplitudes of a
limited number of shapes. This optimisation goal is not equal, but closely
related to the aim of shape fitting.

• The authors of the fs algorithm showed that fs leads to better placements → Sct. 6.1

than a few other placement methods. We replicated the results of fs for
placement with different types of random shapes and showed that fs is in
most cases outperformed by efi and ta. Next to this, it was shown that the
formulation of the fs algorithm contains an error, which, if not corrected,
leads to extremely poor sensor placements.

• A new performance metric, the Sensor Noise Amplification (sna), was → Sct. 6.2

proposed to evaluate the sensor configurations. The methods were com-
pared in different numerical experiments in which a limited number of
modeshapes had to be distinguished either using position sensors or strain
sensors. When placing eight position sensors, the efi and ta algorithms
yielded the same result, namely a placement with four sensors at the
corners and the other sensors at the centres of the sides, which has a lower
sna than the configurations of ra12 and fs algorithm.

• Also placement of strain sensors was performed. Identifying the mode- → Sct. 6.2

shapes using strain sensors involves not only the determination of the
sensor location but also their orientation. The algorithms were, amongst
others, compared based on their performance in terms of the resulting
snas and the convergence to well performing sensor configurations. The
ta algorithm yielded in general superior results over the other algorithms,
but did not converge for all sensor candidate sets. It was, furthermore,
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observed that a small candidate set can equally well lead to a high
performance sensor configuration as a large candidate set. Thus, given
the fact that calculation time is restricted, sensor placement should be
performed on many small sensor candidate sets rather than a single large
one. This practically eliminates the chance of no convergence and improves
the chance of obtaining a high-performance sensor configuration.

• A procedure was developed to incorporate the placement algorithms in→ Sct. 6.3

the sf framework. This procedure generates the input shapes for the
placement algorithms by extracting the most prominent shapes from the
snapshot matrix using the Proper Orthogonal Decomposition (pod), while
accounting for the fact that the pod does not distinguish measurement and
target points. Still, it is not trivial how sensor placement should be carried
out for the wafer chuck, as the disturbance source travels in time, so that
the sensor configuration should optimise for some average performance.
In a numerical experiment, the sensor configuration was optimised for→ Sct. 6.4

situation in which the lens column is above the centre of the wafer
chuck. Using the ta algorithm, a sensor configuration with eight position
sensors was found that reduced the maximum estimation error by 40 % as
compared to the manually selected sensor configuration.

8.2 Final conclusion and future outlook

• The shape fitting method is a suitable candidate for estimation of the wafer
chuck’s deformation. Traditionally, shape fitting is used in combination
with modeshapes. In combination with the snapshot matrix, however, it
allows for including foreknowledge on the mechanics and the disturban-
ces. The snapshot matrix also allows to incorporate the uncertainty of
the relative magnitude and position of the disturbances. Shape fitting is,
compared to dynamic methods, a relatively simple method and allows the
integration of existing sensor placement methods. The contributions of
methodical error and sensor noise can be compared in a straightforward
manner, making it possible to derive sensor specifications and to decide
whether or not the number of sensors involved in the estimation should be
increased or deceased.

• The experiments with the model and the setup demonstrated the effec-
tiveness of sf estimation. sf estimation for average deformations of
200 nm, caused by quasi-static disturbances in the exposure area, yielded
an average methodic estimation error 2 nm. This result was obtained with
four additional displacement sensors at the chuck’s side centres and a
relatively thin plate mimicking the wafer chuck.
Of course, the performance of a sf estimator depends to a large extent on
the mechanics of the system and the disturbances that work on the system
and their uncertainties. To obtain a better idea of the performance in a
wafer scanner, it is recommended to evaluate the method using a more
realistic model of the wafer chuck and its controller, together with more
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accurate information regarding the disturbance distribution and the noise
levels of the sensors. Of these three, especially the disturbance distribution
is likely to have most influence on the estimation performance.
The numeric wafer chuck cases in this thesis focussed on estimation in
immersion wafer scanners. The new generation of lithography machines
which is currently under development makes use of Extreme Ultraviolet
(euv) light. The euv machines are developed for 300 mm wafers, but also in
those machines a transition to larger wafer seems ultimately unavoidable.
The disturbances work in euv machines at different locations of the wafer
chuck than in immersion machines and may, for example, be related to
actuator noise and cooling system disturbances. Still, there is no reason
why shape fitting could not be applied in these machines.

• The main building blocks for performing shape fitting were presented in
this thesis. The method needs to be further refined to meet some of the
specific properties of the wafer chuck.
For example, the inherent problems of obtaining a snapshot matrix need
to be addressed further. In case the matrix is obtained from a model,
uncertainties in the mechanical model and the disturbance model might
lead to an increased estimation error. The snapshot matrix can, however,
not be fully obtained from measurements, as a direct measurement at
the target points is not possible – at least not in presence of the realistic
disturbances. This can possibly be solved by matching the finite element
model to the real system using measurements, so that the improved model
can be used to generate the snapshot matrix.

• Next to estimation with shape fitting, the wafer chuck’s deformation could
also be estimated using dynamic estimation methods. An example of
such a technique is the unknown input Receding Horizon Input Estimator
(rhie), which is topic of research by a colleague in the same project at
Delft University of Technology. This method was adapted for use in wafer
chuck and, not long ago in a collaborative effort, tests with this method
on the experimental setup (Chapter 7) were initiated. One of the goals
of this research collaboration is the comparison of the performance of the
rhie and the sf estimator, a goal which is of interest for both industry and
academia.



148 Chapter 8. Conclusions and outlook



Appendix A

Wafer chuck scaling properties

This appendix corresponds to the Sections 1.3, 1.4 and 2.4. It illustrates how the
main parameters and properties of the wafer chuck scale when the wafer chuck’s
size is increased, while its stiffness, lowest mechanical eigenfrequency or mass
is kept constant.

If the wafer diameter is increased from 300 mm to 450 mm, the wafer chuck’s
length, l, and width, w, need to scale by a factor of 1.5 (Sl = Sw = 1.5). The
thickness, h, of the chuck is studied, along with the chuck’s mass, m; stiffness, k;
lowest eigenfrequency, f1; required actuator forces, F, and the generated actuator
heat in terms of power, P. Table A.1 summarises the scale factors for the three
scenarios in which the chuck’s stiffness, lowest mechanical eigenfrequency or
mass is kept constant.

Table A.1: Scale factors S of some of the wafer chuck’s parameters and properties in three
scenarios.

Scenario Sl = Sw Sh Sk S f Sm = SF SP

Constant stiffness 1.5 1.3 1 0.67 2.9 8.7

Constant lowest eigenfrequency 1.5 1.7 2.3 1 3.9 15

Constant mass 1.5 0.44 0.039 0.13 1 1

Constant stiffness scenario If the static deformation of the chuck needs to stay
equal, the chuck’s thickness has to increase. The bending stiffness of a plate is
assumed to be comparable to that of a beam (cf Eq. 7.5),

k =
F
δ
=

48E 1
12 bh3

l3 =
4Eh3

l2 , (A.1)

For a constant stiffness it holds that h ∝ 3√l2, so that the chuck’s thickness scales
with a factor Sh = S2/3

l = 1.3.

149



150 Appendix A. Wafer chuck scaling properties

According to Leissa [96] (Eq. 7.2), the lowest eigenfrequency of a square plate
with all sides free depends in the following way on its dimensions:

f1 ∝

√
h3

l2 .

Thus, the lowest eigenfrequency changes a factor S f = S1,5
h S−2

l = 0.67.
The chuck’s mass increases by factor Sm = S2

l Sh = 2.9. If the chuck’s
acceleration a remains unchanged, the actuation forces and the reaction forces
increase, according to F = ma, as SF = Sm = 2.9.

The current through a Lorenz actuator is proportional to the applied forces.
The Joule heating of the actuators, is in turn a function of the actuator current,
with P = I2R, so that SP = S2

F = 8.7.

Constant lowest eigenfrequency scenario If the lowest eigenfrequency is kept
constant, the chuck’s thickness scales, according to 1 = S f = S3/2

h S−2
l , a factor

of Sh = S4/3
l = 1.7. The chuck’s stiffness scales as Sk = S3

hS−2
l = S2

l = 2.3. The
chucks mass scales as Sm = S10/3

l = 3.9 and the heat produced by the actuators
as SP = S20/3

l = 15.

Constant mass scenario In case the chuck’s mass should remain equal, the
chuck’s thickness must decrease as 1 = Sm = SlSwSh, so that Sh = S−2

l =

0.44. The chuck’s stiffness scales as Sk = S3
hS−2

l = S−8
l = 0.039 and its lowest

eigenfrequency as S f = S3/2
h S−2

l = S−5
l = 0.13. The actuator forces and the

produced heat stay equal for constant mass.



Appendix B

Out-of-plane force due to
immersion film dynamics

This appendix corresponds to Section 2.1.4 and derives the forces that work
at the interface of the wafer chuck and the immersion film due damping and
inertia in the film if there is relative motion between the wafer chuck and the
lens column. The analysis makes use of squeeze film assumptions and compares
the resulting equations to an expression from literature.

B.1 Assumptions

Consider the axis-symmetrical immersion film as depicted in Figure B.1. The
layer has a height h(t) and radius R. Coordinates y (− h

2 ≤ y ≤ h
2 ), r and θ

describe the position in the fluid film. The height h(t) of the immersion film is
orders of magnitude smaller than the radius if the immersion layer. It is therefore
acceptable to use squeeze-film assumptions.

Conservation of volume in a cylindrical control volume is described as
follows

h(t)π(r + r̂(r, t))2 = h0πr2, (B.1)
in which r̂ denotes the bulk displacement at position r and h0 the nominal
height, for which there is just no bulk displacement. From this equation the
bulk displacement r̂(r, t) can be found:

r̂(r, t) =
−h(t) +

√
h(t)h0

h(t)
r =

(√
h0

h(t)
− 1

)
r. (B.2)

B.2 Force due to viscous damping

The bulk velocity is defined as the time derivative of bulk displacement

vbulk(r, t) =
d
dt

r̂(r, t) = −
√

h0ḣ(t)
2
√

h3(t)
r. (B.3)
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r

R

h0

lens column

wafer chuck with wafer

wafer chuck with wafer (t = t0)

immersion 
film

Figure B.1: Model of the bulk displacement of the fluid in the immersion film. The
volume of the fluid stays constant of the wafer chuck moves from the initial position h0
with respect to the lens column to its new position h(t). Thus, the radius of a cylindrical
control volume changes by r̂ with respect to its initial radius r.

The flow is assumed to be laminar and to have a parabolic velocity profile
according to

∂u
∂y

= 12
y
h2 vbulk.

Due to the viscosity of the immersion fluid power is dissipated, causing
damping. The power dissipated in a hollow cylinder with an infinitesimal wall
thickness dr is

dPdamping(r, t) = 2πr

[ˆ h
2

− h
2

µ

(
∂u
∂y

)2
dy

]
dr

= 24πµ
v2

bulk
h

rdr. (B.4)

The force difference between inner surface and outer surface of the hollow
cylinder is

dFdamping(r, t) =
24πµ

v2
bulk(r,t)

h(t) rdr

vbulk(r, t)
= 24πµ

vbulk(r, t)
h(t)

rdr, (B.5)

leading to a pressure difference

dpdamping(r, t) =
24πµ

vbulk(r,t)
h(t) rdr

2πr · h(t) = 12µ
vbulk(r, t)

h(t)2 dr. (B.6)
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This result is integrated to obtain the pressure with respect to the ambient (r =
R), assuming that R is not a function of time:

pdamping(r, t) =

ˆ R

r
dp(r, t)

= −3µ

√
h0ḣ(t)√
h7(t)

(
R2 − r2

)
. (B.7)

Finally, the total force is the surface integral of the pressure:

Fdamping(t) =
ˆ R

0

ˆ 2π

0
p(r, t)rdϕdr = −3

2
πµ

√
h0ḣ(t)√
h7(t)

R4. (B.8)

B.2.1 Force due to inertia

The bulk acceleration abulk is found using Eq. (B.3):

abulk =
d2r̂(r, t)

dt2 =
√

h0

[
3
(
ḣ(t)

)2

4
√

h5(t)
− ḧ(t)

2
√

h3(t)

]
r. (B.9)

The force (per unit of length) needed to accelerate a hollow cylinder with
infinitesimal width dr is:

Fdr(r, t) = ρ(h(t) · 2πr · dr)abulk (B.10)

and the corresponding power (per unit of length):

Pdr,inerta(r, t) = ρ(h(t) · 2πr · dr)abulkvbulk

= −ρπh0

[
3
(
ḣ(t)

)2

4h3(t)
− ḧ(t)

2h2(t)

]
ḣ(t)r3dr. (B.11)

Integrating this yields the total power:

Pinerta(t) = −ρπh0

[
3
(
ḣ(t)

)2

16h3(t)
− ḧ(t)

8h2(t)

]
ḣ(t)R4, (B.12)

so that, after division with ḣ(t), the force exerted on the wafer chuck due the
inertia is found:

Finerta(t) = −ρπh0

[
ḧ(t)

8h2(t)
− 3

(
ḣ(t)

)2

16h3(t)

]
R4. (B.13)

B.3 Comparison to literature

The total force that is exerted on the wafer chuck is the sum of Eqs. (B.8) and
(B.13):

Ftotal(t) = Fdamping(t) + Finerta(t) = −
3
2

πµ

√
h0ḣ(t)√
h7(t)

R4.
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Assume that the displacement is a small perturbation around h(t) of the form
h(t) = h0 + A sin ωt, with A � h0. In that case the total force can be rewritten
as:

Ftotal(t) = Fdamping + Finerta = −πR4

[
3µḣ(t)

2h3
0

+
ḧ(t)
8h0
− 3

(
ḣ(t)

)2

16h2
0

]
. (B.14)

When comparing this result to the equation derived by [97],

F = −πR4

[
3µḣ
2h3

0
+

3ρḧ
20h0

− 15ρ
(
ḣ(t)

)2

56h2
0

]
, (B.15)

it is noticed that the first term (the damping term) of both equations is equal and
that the second and the third term have the same form, but a different prefactor.

The prefactors of the second term and the third term of Eq. (B.14) differ by
respectively 17 % and 30 % compared to the prefactors of Eq. (B.15), most likely
due to a different modelling assumption. At the same time, this result shows
that the model developed in this appendix is useful for acquainting qualitative
insight of the damping and inertia effects in the immersion layer. Section 2.1.4
applies the the formula of Kuzma to the wafer chuck application and shows that
the third term is non-significant for the typical parameters in the wafer chuck
application.



Appendix C

Double integration of an
acceleration signal

This appendix corresponds to Section 2.4.2 and derives the variance of the
position signal that is obtained from double integration of an accelerometer
signal. The derivation is formulated in the discrete time domain; the noise of
the acceleration samples is assumed to be uncorrelated.

Assume an accelerometer signal consists of the actual acceleration plus a
noise contribution and a constant due to sensor bias

ã(k) = a(k) + ε(k) + c, (C.1)

where k denotes the discrete time. Velocity and displacement can be found from
the acceleration measurements ã as follows,

ṽ(k) = T
k

∑
i=1

(a(i) + ε(i)) + kTc + v(0) (C.2)

and

z̃(k) = T
k

∑
j=1

(
T

j

∑
i=1

(a(i) + ε(i)) + jTc + v(0)

)
+ z(0)

= T2
k

∑
j=1

j

∑
i=1

a(i) + η(k) +
k2 + k

2
T2c + kTv(0) + z(0) (C.3)

with η(k) the noise sequence of z̃ due to the accelerometer’s noise, being

η(k) = T2([ε(1)] + [ε(1) + ε(2)] + . . . + [ε(1) + . . . + ε(k)])

T2(kε(1) + (k− 1)ε(2) + . . . + ε(k)). (C.4)
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with a variance as function of time

σ2
η (k) = E

(
η(k)2

)
= E

(
T4(kε(1) + (k− 1)ε(2) + . . . + ε(k))

)
= E

(
T4
(

k2ε2(1)k + 2k(k− 1)ε(1)ε(2) + (k− 1)2ε2(2) + . . . + ε2(k)
))

. (C.5)

If the sensor noise ε is Gaussian distributed with standard deviation σε and if
it is white so that there is no correlation between the noise samples, Eq. (C.5)
becomes

σ2
η(k) = T4

(
k2σ2

ε + (k− 1)2σ2
ε + . . . + σ2

ε

)
= T4σ2

ε

(
k3

3
+

k2

2
+

k
6

)
, (C.6)

in which k3/3 + k2/2 + k/6 can be recognised as the ‘square pyramidal number’
[44].



Appendix D

Proper orthogonal
decomposition

This appendix introduces the Proper Orthogonal Decomposition (pod). The
pod is used in the Sections 3.4, 4.1 and 6.3. The pod of a matrix consists a
set of vectors, the Proper Orthogonal Modes (poms), and a set of scalars, the
Proper Orthogonal Values (POVs). The poms corresponding to the highest POVs
describe the most prominent patterns in the columns of the initial matrix.

Assume a NP-DoFs system of which snapshots have been obtained. The
snapshot at the ith time-instant is stored in a vector wi. If we perform multiple
measurements, a matrix W can be combined from the snapshots:

W =
[

w1 · · · wND

]
=




w1,1
...

w1,NP

 · · ·


wND,1

...
wND,NP


. (D.1)

Figure D.1 shows a point cloud of snapshots of a system with two DoFs, w1 and
w2.

Each column of snapshot matrix W can be imagined as a point in a NP-
dimensional space. The full snapshot matrix can then be thought of as a point
cloud consisting of ND points. The pod of a snapshot matrix consists of a set
of orthogonal vectors and their corresponding singular values. The pod can be
obtained in the following way.

The vector with the highest singular value spans the direction in the NP space
that minimises – in a least squares sense – its total distance to the points in the
point cloud:

arg min
ϕ̌1

ND

∑
i=1

m2
i =

ND

∑
i=1

|wi|2 −
(

wᵀ
i ϕ̌1
|ϕ̌1|

)2
, (D.2)

where mi is the distance between the ith point of the snapshot matrix and the
direction span by ϕ̌1. Defining li as the length of the orthogonal projection of wi
onto ϕ̌1, the minimisation problem of Eq. (D.2) is equivalent to the maximisation

157



158 Appendix D. Proper orthogonal decomposition

w1(t)

w2(t)

mi
li

w2

w1

Figure D.1: Point cloud of snapshots of a two DoFs system (w1, w2). The distance between
a snapshot wi and vector ϕ̌1 is called mi and the length of the projection of wi onto
direction ϕ̌1 is called li. The first pom, ϕ̌1, minimises the sum of all mi in a squared
sense, or, equivalently, maximises the sum of all li in a squared sense. Thus, ϕ̌1 spans the
most prominent direction of the point cloud. The second pom, ϕ̌2, optimises for the same
criterion, under the condition that it is orthogonal to the first pom.

problem

arg max
ϕ̌1

ND

∑
i=1

l2
i = arg max

ϕ̌1

ND

∑
i=1

(
wᵀ

i ϕ̌1
|ϕ̌1|

)2

, (D.3)

as l2
i + m2

i = |wi|2 and thus ∑i l2
i + ∑i m2

i = ∑i|wi|2.
Length li can be expressed as

l2
i =

(
wᵀ

i ϕ̌1
)2

|ϕ̌1|2
=

ϕ̌ᵀ
1 wiw

ᵀ
i ϕ̌1

ϕ̌ᵀ
1ϕ̌1

. (D.4)

Let λ1 = ∑ND
i=1 l2

i be the sum of the squared lengths, so that

λ1 =
ND

∑
i=1

ϕ̌ᵀ
1 wiw

ᵀ
i ϕ̌1

ϕ̌ᵀ
1ϕ̌1

, (D.5)

which can be rewritten as follows

λ1ϕ̌ᵀ
1ϕ̌1 =

ND

∑
i=1

ϕ̌ᵀ
1 wiw

ᵀ
i ϕ̌1 (D.6)

= ϕ̌ᵀ
1

ND

∑
i=1

wiw
ᵀ
i ϕ̌1, (D.7)
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0 = ϕ̌ᵀ
1

(
ND

∑
i=1

wiw
ᵀ
i − λ1 I

)
ϕ̌1. (D.8)

For the nontrivial case that ϕ̌1 6= 0(
ND

∑
i=1

wiw
ᵀ
i − λ1 I

)
ϕ̌1 = 0. (D.9)

Note that this result is equivalent to
(

∑ND
i=1 wiw

ᵀ
i − λ1 I

)
ϕ̌1 ⊥ ϕ̌1.

Eq. (D.9) can be rewritten as

λ1ϕ̌1 =
ND

∑
i=1

wiw
ᵀ
i ϕ̌1 (D.10)

= WWᵀϕ̌1, (D.11)

where WWᵀ can be recognised as a matrix proportional to the empirical sample
correlation matrix of snapshot matrix W . This equation has the form of a
standard eigenvalue problem. As the aim is to maximise λ1, the first pom ϕ̌1 is
selected as the eigenvector of WWᵀ with the largest corresponding eigenvalue
λ1.

As WWᵀ is per definition a Hermitian matrix (i.e. equal to its conjugate
transpose), the eigenvectors will be orthogonal. Only in case of degenerate
eigenvalues, eigenvectors may not be orthogonal, but in that case it is always
possible to construct an orthogonal set of eigenvectors from a linear combination
of the degenerate eigenvectors.

When pom ϕ̌1 is found, the second pom ϕ̌2, orthogonal to ϕ̌1 needs to be found.
As the the eigenvectors of WWᵀ are orthogonal ϕ̌2 is the eigenvector of WWᵀ

corresponding to the one-but-largest eigenvalue λ2. In the same way the full set
of poms is found from the eigenvectors and eigenvalues of WWᵀ.



160 Appendix D. Proper orthogonal decomposition



Appendix E

Comparison of commercial
accelerometers

This appendix corresponds to the Sections 2.4.2 and 7.5. In the following a
comparison of high-performance accelerometers is presented, based on their
noise floor, bandwidth and mass, as supplied by the manufacturers.

The fields in which the accelerometers are applicable range from dynamics
and motion control to floor vibrations and seismic measurements. To put the
data in perspective also a few velocity sensors are included, along with floor
vibration criteria and floor vibration measurements at a granite table in the
relatively noisy Mechatronics laboratory at Delft University of Technology.

E.1 Accelerometers

Figure E.1 compares 16 accelerometers based on their noise level. The figure
plots the amplitude density of the noise for the sensor’s measurement band-
width. The mass of the accelerometers is indicated behind the names of the
sensors.

The accelerometers in this comparison include capacitive mems, force feed-
back and piezoelectric accelerometers. The RSensors MTSS-1041A accelerometer
makes use of molecular electronic transfer: a gas moves, as a result of the inertia
forces, through channels in the sensor, thereby transporting charge between
electrodes [98].

All data is obtained from the datasheets supplied by the sensors’ manufactur-
ers. For capacitive mems and force feedback sensors, the noise level is in general
specified by a single value. A flat noise as function of frequency was assumed
for these sensors. The noise level of piezoelectric accelerometers is in most cases
specified at a few frequencies. The noise amplitude density decreases typically
by a factor of 10 if the frequency increases by a factor of 100; if only a single
noise specification was supplied for a piezoelectric accelerometer, a noise level
according to this trend was assumed.

In most cases, multiple frequency ranges are specified for a piezoelectric
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162 Appendix E. Comparison of commercial accelerometers

accelerometer. These correspond to the amount of tolerated deviation from the
sensor’s nominal sensitivity. The bandwidth corresponding to 5 % – 6 % (0.5 dB)
deviation is indicated with squares connected by a solid line, 10 % – 11 % (1 dB)
deviation with a cross and a solid line, and 30 % (3 dB) deviation by a dotted
line without markings.

In the plot the general tendency can be observed that accelerometers with a
lower noise level have higher mass.

Two velocity sensors are included in the plot, the Trillium compact 20 s and
the low-cost geophone GS-11D. Their noise levels were converted to equivalents
in terms of acceleration. The noise level of the GS-11D (which was most likely
limited by the noise level of the NI6211 data acquisition box) was obtained from
measurements.

The noise level of the geophone is between 0.2 Hz and 9 Hz better than the
relatively expensive accelerometer EpiSensor ES-U2, showing that the geophone
is a cost-effective solution for floor vibration measurements.

E.2 Floor vibration criteria and measurements

Figure E.1 also provides measurement results regarding the vertical floor vibra-
tions at a granite table in the Mechatronics laboratory (measurement ‘Granite
table (a)’ and ‘Granite table (b)’) and the noise level at the top of the Minus-
K vibration isolator1. The figure furthermore includes the ISO guidelines and
Vibration Criteria [99, 100].

The measurements at the granite table and the Minus-K vibration isolator
were obtained using a geophone. The measurement can be trusted up to about
150 Hz, from that frequency, the noise level of the geophone becomes dominant
(measurement ‘Granite table (a)’).

The floor noise is highest around 8 Hz. At that frequency, the noise level
is as high as the ISO specification for office floor noise. At the top plate of the
Minus-K vibration isolator, however, the noise level is reduced to below level
VC-D of the vibration criteria.

1Appendix G.2 provides additional information on the Minus-K vibration isolator.
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Figure E.1: The noise level in terms of noise amplitude density for some high-
performance commercial accelerometers. For creating this overview, the specifications
supplied by the manufacturers were used. If the noise-level was specification by a single
value, the noise level was assumed to be comparable to other sensors of the same working
principle. For comparison, the noise level in terms of acceleration of two velocity sensors
were included in the overview (the Trillium compact 20 s and the GS-11D geophone,
the latter from measurement). As a reference, the floor noise level at a granite table in
the Mechatronics laboratory at Delft University of Technology, together with floor noise
requirements for general and laboratory environments according to the ISO guidelines
and Vibration Criteria [99, 100] were included.



164 Appendix E. Comparison of commercial accelerometers



Appendix F

Kalman filtering

This appendix corresponds to Section 3.3. The Kalman filter is introduced and
compared to the shape fitting estimator.

Consider a mechanical system that is described in state-space system as
follows:

x(k + 1) = Ax(k) + Bu(k) + Eb(k) + w(k)
y(k) = Cx(k) + Du(k) + Gb(k) + v(k). (F.1)

This system is represented by the block diagram that is highlighted by the blue
rectangle in Figure F.1. w are the force disturbances and v is the measurement
noise. u are the unknown input forces, i.e. the disturbances. b are the known
input forces, which could be the feed-forward forces, but not the feedback forces,
as those are internal and captured in system matrix A.

A Kalman filter [46] can be constructed for this system as follows:

x̃(k + 1) = Ax̃(k) + Eb(k) + Ke(k) (F.2)
ỹ(k) = Cx̃(k) + Gb(k).

The Kalman filter is highlighted by the red rectangle in Figure F.1. Error e is the
difference between the actual output of the system, y, and the Kalman estimate,
ỹ, and is caused by errors w and v and the possible difference between the
initial state of the actual system, x(0) and the initial state of the Kalman filter,
x̃(0). Next to that, it may also contain error due to discrepancy between the
system matrices of the actual system and the Kalman filter.

The Kalman filter aims at estimating the system’s states x optimally – in a
least squares sense –, given the system’s known inputs b and measured outputs
y [101]. This is achieved by choosing a Kalman gain K that takes into account
the uncertainty of the system’s states w and output y. Often, it is assumed that
the level of these uncertainties have reached steady-state. In that case a constant
Kalman gain can be used. If there is no correlation between the disturbances w
and the measurement noise v, the Kalman gain is calculated from

K = AΣxCᵀ(CΣxCᵀ + Σv)
−1, (F.3)
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Figure F.1: Block diagram of a system and the corresponding Kalman filter. The Kalman
filter estimates the system’s state vector, x, using the known system inputs, b, and
measured outputs, y.

in which Σv is the covariance matrix of the measurement noise and Σx the
covariance matrix of the state vector, which is found by solving the discrete
time Ricatti equation.

The Kalman gain of Eq. (F.3) shows close resemblance to the sf estimation
matrix BLS as obtained via the regularised ls technique (Eq. 4.16). From
the measurements w̃m, the sf estimator that uses the ls technique yields the
following shape amplitudes:

α̂ = ΣαWᵀ
m
(
WmΣαWᵀ

m + Σε

)−1w̃m. (F.4)

Indeed, the Kalman filter is, under certain conditions, equivalent to the sf

estimator. This was previously described by, for example, Kailath [101] and,
more specifically in the application field of shape fitting by Andersson et al.
[11].



Appendix G

Selection and assessment of
the Minus-K vibration isolator

To obtain a low noise level in the experimental setup, it was chosen to
suspend the metrology frame using a vibration isolation system (Section 7.1.3).
This appendix compares some commercially available vibration isolators and
evaluates the transmissibility of the selected Minus-K vibration isolator.

G.1 Comparison of vibration isolators

Table G.1 provides an overview of some commercially available table-top vibra-
tion isolation systems. Both active systems, i.e. using sensors and actuators, and
passive systems are listed. The resonance frequency f1 and the transmissibility
are obtained from the specifications supplied by the manufacturers.

Based on this overview, the Minus-K BM-4 vibration isolator was selected
for use in the experimental setup.1 This isolator is fully passive and thus
avoids possible vibrations induced by sensor noise in an active system. Of the
reviewed systems, the Minus-K obtains the lowest eigenfrequency and lowest
transmissibility in vertical direction. It is also a cost-effective solution compared
to the active systems and does not need supply of air or gas.

G.2 Experimental evaluation of the Minus-K vibra-
tion isolator

The vertical transmissibility of the Minus-K vibration isolation system was
evaluated experimentally. The measurement results showed that the vibration
isolation at the centre of the isolator is according to the manufacturer’s specific-
ation, but also that the vibrations at the corner of the top plate are suppressed

1The choice for the model (Minus-K 200BM-4), which determines the payload range, is further
substantiated in Section 7.1.4.
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isolator

Table G.1: Specifications of some commercially available table-top vibration isolators.

Model Passive/
active∗

f †
1 [Hz] Transmissibility† [1]

at f1 at 1 Hz at 10 Hz

Table Stable 150 Active
(piezo)

1 Hz
1 Hz?

1
1

1
1–1.4

0.01
0.02

TMC TableTop
PZT

Active
(piezo)

n/a
n/a

< 1
< 1

0.3
0.3

0.03
0.03

Minus-K BM-4 Passive 0.5 Hz
0.5 Hz‡

2
3

0.2
1

0.003
0.06

TMC 66 Series
TableTop CSP

Passive
(air supply)

3 Hz
2.3 Hz

10
3

1
1

0.1
0.1

Thorlabs
PTT600600

Passive 3.5 Hz
n/a

16
3

1
1

0.15
0.15

Newport
BenchTop
Compact

Passive (air
supply)

3.2 Hz
3.6 Hz

3.1
3

1
1

0.09
0.09

∗Air supply: Pressurised air or gas supply is required; Piezo: Piezoelectrically
actuated.
† The first line indicates the resonance frequency ( f1) or transmissibility for
the vertical motion direction, the second line the one for the horizontal motion
direction. n/a: specification was not available.
‡ This resonance frequency is payload-dependent.
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(a) First experiment, geophone 2 is placed at the centre of the isolator’s top
plate.
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(b) Second experiment, geophone 2 is placed at the front-left corner of the
isolator’s top plate.

Figure G.1: The power spectral density of the recorded geophone signals in response to
floor vibrations. Up to 30 Hz, the signals are well above the geophones’ noise level.

much less effectively. The latter can be explained by the mechanical construction
of the isolator.

Method A geophone GS-11D was place at the granite table, at about 10 mm
distance from the front-left side of the Minus-K vibration isolation system. A
second geophone was placed at the centre of the isolator’s top plate. No external
excitation was applied, except for the always present ground vibration. The
voltage output of the geophones were recorded for 120 s using a NI611 data
acquisition box. The procedure was repeated after placing the geophone to the
front-left corner of the isolator’s top plate.

Results Figure G.1 compares the Power Spectral Density (psd) of the recorded
geophone signals to the measurements of the noise level of the geophones. The
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Figure G.2: The transmissibility of the Minus-K vibration isolator. The measured
transmissibility from the base of isolator to the centre of its top plate is closely comparable
to the specifications of the manufacturer. The transmissibility to the corner of the top plate
is much higher than specified, however.

transmissibility of the Minus-K isolator can be estimated by dividing the psd of
the geophone placed on the Minus-K by the psd of the geophone at the granite
table next to the base of the Minus-K and taking the square root of the result.
Both should – in terms of power – be at least a factor of five above the noise
floor of the geophones to yield a valid result. For the measurements at the centre
this is the case between 1.2 Hz and 18 Hz; for the measurements at the corner
between 0.5 Hz and 30 Hz. At the lowest frequency point the psd is relatively
high, the reason for this drift is unknown.

Figure G.2 shows the measured transmissibility from the isolator’s base to
the centre and corner of its top plate. The transmissibility of the centre shows
good resemblance with the manufacturer’s specifications. The figure, however,
also shows that the Minus-K suppresses the floor vibrations not as well at the
corner as at the centre.

The lower performance at the corner of the isolator’s table can be explained
by the isolator’s mechanical construction. The table top is connected to the
isolator by a rubber pad, to isolate the vibrations in out-of-plane rotation
direction. The resulting eigenfrequency is still relatively high – around 8 Hz.
The eigenfrequency could be decreased by making the size of the pads smaller,
thereby reducing the stiffness. The vibration isolator would, however, become
more sensitive to the position of the mass at its table top. Alternatively, the
rotational moment of inertia of the table could be increased by redistributing the
payload mass more outward from the centre.



Appendix H

Corrected plate finite element
matrices

The finite element models used for static and dynamic mechanical analyses
throughout this thesis make use of the plate finite element of Kerboua et
al. [29]. This finite element is introduced in Section 2.3 of this thesis. Kerboua
et al. provided the matrices that are needed to implement the finite element,
but those were found to contain errors. This appendix provides the correct
replacements for the erroneous terms. The terms were derived using symbolic
computation, following the approach described by the original authors.

H.1 Matrix R

Matrix R is correct.

H.2 Matrix Q

The following lists only the erroneous entries of the original matrix Q, each
followed by its correct replacement.

Q4,15 = x
A3 ; must be − x

A3 .

Q5,22 = − x3

2A3B2 ; − x3

6A3B2 .

Q5,23 = − x2y
6A2B3 ; − x2y

2A2B3 .

Q5,24 = − x3y
6A2B3 B2

(sic); − x3y
6A3B3 .

Q6,17 = − 2y
A2B ; − 2y

AB2 .
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H.3 Matrix A−1

The following lists only the erroneous entries of the original matrix A−1, each
followed by its correct replacement.

(
A−1)

2,7 = − A
xe

; must be A
xe

.(
A−1)

4,1 = − AB
xeye

; AB
xeye

.(
A−1)

4,7 = AB
xeye

; − AB
xeye

.(
A−1)

4,13 = − AB
xeye

; AB
xeye

.(
A−1)

4,19 = AB
xeye

; − AB
xeye

.(
A−1)

7,20 = − AB
xeye

; B
ye

.(
A−1)

8,2 = AB
xe

*; AB
xeye

.(
A−1)

8,8 = − AB
xe

*; − AB
xeye

.(
A−1)

8,14 = AB
xe

*; AB
xeye

.(
A−1)

8,20 = − AB
xe

*; − AB
xeye

.(
A−1)

14,3 = − 12A3

x2
e

*; − 6B2

y2
e

.

(
A−1)

14,3 = 2B2

ye
* (sic, defined a second

time differently); − 6B2

y2
e

.

(
A−1)

14,5 = 2B2

ye
; − 4B2

ye
.(

A−1)
14,21 = 12A3

x2
e

*; 6B2

y2
e

.(
A−1)

14,23 = B2

ye
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Mathematical notation

<(a) Real part of a.

=(a) Imaginary part of a.

A, a, a Matrix A, vector a, scalar a.

[    
   
   ] Matrix composed of multiple matrices, vectors or scalars.

{  
 
 } Column vector composed of multiple column vectors or scalars.

ai,j The element in the ith row and the jth column of A.

Aᵀ, aᵀ Transpose of A, (idem) a.

Ā, ā, ā Element-by-element complex conjugate of A, (idem) a, complex con-
jugate of a.

A∗, a∗ Complex conjugate matrix of A , (idem) a. (Thus, A∗ = Āᵀ, a∗ = āᵀ) .

‖A‖2 The vector 2-norm of m×n matrix A, so that ‖A‖2 =
√

∑m
i=1 ∑n

j=1 |aij|2.

I Identity matrix of an appropriate size.

E(X) Expected value of random variable X.

B(1, p) Bernoulli distribution with a probability of p for success, and 1− p for
failure.

N
(
µ, σ2) Gaussian distribution with mean µ and standard deviation σ; N (0, 1)

denotes the standard Gaussian distribution.

CN
(
0, 2σ2) Circularly-symmetric complex Gaussian distribution with zero mean

and standard deviation σ.

A+ Pseudo-inverse of matrix A, as defined in Eq. (3.6).

∇a f (a) Gradient of scalar function f (a).
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182 Parameters and variables

Parameters and variables

The following lists a selection of the variables and parameters, which are used
at multiple places in the text. If applicable, the number of the equation in which
the variable or parameter is first introduced is indicated.

α Snapshot weights→ (3.9)

B Estimation matrix (NP × NM)→ (3.7)

βj Row vector from the row of B corresponding to the jth target point→ (3.11)

C(s) Diagonal matrix of rb position controllers C(s)

C(s) rb position controllers→ (5.42)

εm Vector describing the instantaneous sensor noise→ (3.2)

ε j, ε j,meth, ε j,noise The estimation error for the jth target point, the part due to the→ (3.11)

methodical and due to the noise error, respectively

f Vector of input forces on a system→ (3.3)

fco Cutoff frequency of a lowpass or highpass filter

fs Sample frequency

θ Orientation angle of a strain sensor

K Stiffness matrix of a system→ (3.3)

M Mass matrix of a system

MSE Mean square error, i.e. expected value of the amplitude estimate error→ (6.11)

NC Number of sensor candidates→ (6.2)

ND Number of shapes in a snapshot matrix

NF Number of fitting shapes after truncation

NM Number of sensors

NP Number of measurement and target points
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NPC Number of possible sensor placement configurations → (6.2)

Nrb The number of rigid body modeshapes in the out-of-plane direction

Nw The number of target points → (6.18)

q̂ Estimate weights of the fitting shapes in Φ → (3.2)

q̃ Estimate weights of the shapes in Φm, only corrupted by sensor noise → (6.4)

qrb Rigid body coordinates, i.e. modal amplitudes of the rigid body modes → (5.6)

qrb Estimate of the rigid body coordinates → (5.8)

Rᵀ Transformation matrix for recombining the flexible residues ((NS − 3)×→ (5.16)

NS)

Smrb Diagonal matrix weighing the use of the position sensors for estimat- → (5.11)

ing the rigid body coordinates (Nrb × Nrb)

SNA Sensor noise amplification, i.e. expected value of the shape estimate → (6.20)

error

Σα Covariance matrix of the snapshots weights, α → (3.10)

Σε Covariance matrix of the sensor noise, having the sensor noise vari- → (3.2)

ances σ2
ε,i on its diagonal

σε Standard deviation of the the noise of each of the sensors → (6.7)

σε,i Standard deviation of the the noise of the ith sensor → (3.2)

T Decoupling matrix (defined in Eq. 5.11) (Nrb × NM ) → (5.8)

t Time variable

u, v, w Displacement field in respectively x, y and z-direction.

W Snapshot matrix (NP × ND) → (3.9)

w Vector describing the momentaneous displacement field of an object → (3.9)

ŵ Estimate of w

wj Row vector from the row of W corresponding to the jth target point → (3.11)

wfl The contributions of the flexible modeshapes to ∆z → (5.6)

Wfl Matrix with the flexible residues of a position snapshot matrix → (5.18)

wfl The flexible residue, i.e. the difference between the actual displace- → (5.10)

ment field and the estimate rigid body displacement field

Wm Subset of the rows of W corresponding to the sensor locations (NM × → (3.10)

ND)
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wm Subset of the elements of w corresponding to the sensor locations→ (3.1)

wm,fl Subset of the elements of wfl corresponding to the sensor locations

wm,fl Subset of the elements of wfl corresponding to the sensor locations

w̃m The measurement of wm, i.e. corrupted with sensor noise εm→ (3.2)

ŵfl Estimate of wfl→ (5.17)

WR,fl Matrix with the recombined flexible residues of a position snapshot→ (5.18)

matrix

wR,fl The recombined flexible residues→ (5.16)

W t Subset of the rows of W corresponding to the target locations→ (3.10)

wt Subset of the elements of w corresponding to the target locations→ (3.1)

Φ Matrix consisting of the fitting shapes (NP × NF)

Φ̆ Matrix consisting of modeshapes→ (2.8)

Φ̌ Matrix consisting of proper orthogonal modes (NP × NF)→ (4.4)

ϕ̆ Modeshape→ (2.6)

ϕ̌ Proper orthogonal mode (NP × 1)→ (4.1)

Φm Subset of the rows of Φ corresponding to the sensor locations (NM ×
NF)

Φ̆m,rb Subset of the rows of Φ̆rb corresponding to the sensor locations (NM×
Nrb)

Φ̆rb Matrix consisting of rigid body modeshapes (NP × Nrb)

x, y, z Cartesian coordinates, of which z is in out-of-plane direction

∆z The positions in out-of-plane direction of the points on an object with→ (5.6)

respect to a certain reference

∆ẑ Estimate of ∆z→ (5.19)

∆zm,rb Subset of the elements of ∆zrb corresponding to the sensor locations

∆zm,rb Subset of the elements of ∆zrb corresponding to the sensor locations

∆zrb The contribution of the rigid body modeshapes to ∆z→ (5.6)

∆zrb The estimate rigid body displacement field of the points on an object→ (5.9)



Acronyms and abbreviations

CoM Centre of Mass

cps Cumulative Power Spectrum

DoF(s) Degree(s) of Freedom

efi Effective Independence

euv Extreme Ultraviolet

fbg Fibre Bragg Grating

fe Finite Element

ffp Fibre Fabry–Pérot

fp Frame Potential

frf Frequency Response Function

fs Frame Sense

ls Least Squares

mac Modal Assurance Criterion

mems Microelectromechanical system

mse Mean Square Error

pid Proportional, Integral and Derivative

pod Proper Orthogonal Decomposition

PoI Point of Interest

pom Proper Orthogonal Mode

pov Proper Orthogonal Value

psd Power Spectral Density

ra12 Sensor placement algorithm of Ranieri et al. [91]
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186 Acronyms and abbreviations

rb Rigid Body

rhie Receding Horizon Input Estimator

rms Root Mean Square

sf Shape Fitting

siso Single Input/Single Output

sna Sensor Noise Amplification

svd Singular Value Decomposition

ta Sensor placement algorithm of Tasker and Liu [90]
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