

Delft University of Technology

A Simpler Alternative
Minimizing Transition Systems Modulo Alternating Simulation Equivalence
Gleizer, Gabriel De Albuquerque; Madnani, Khushraj; Mazo, Manuel

DOI
10.1145/3501710.3519534
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 25th ACM International Conference on Hybrid Systems (HSCC 2022)

Citation (APA)
Gleizer, G. D. A., Madnani, K., & Mazo, M. (2022). A Simpler Alternative: Minimizing Transition Systems
Modulo Alternating Simulation Equivalence. In Proceedings of the 25th ACM International Conference on
Hybrid Systems (HSCC 2022): Computation and Control, Part of CPS-IoT Week 2022 Article 7 Association
for Computing Machinery (ACM). https://doi.org/10.1145/3501710.3519534
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3501710.3519534
https://doi.org/10.1145/3501710.3519534

A Simpler Alternative: Minimizing Transition
Systems Modulo Alternating Simulation

Equivalence
Gabriel de A. Gleizer

∗

g.gleizer@tudelft.nl

TU Delft

Delft, The Netherlands

Khushraj Madnani
∗

K.N.Madnani-1@tudelft.nl

TU Delft

Delft, The Netherlands

Manuel Mazo Jr.

m.mazo@tudelft.nl

TU Delft

Delft, The Netherlands

ABSTRACT
This paper studies the reduction (abstraction) of finite-state transi-

tion systems for control synthesis problems. We revisit the notion

of alternating simulation equivalence (ASE), a more relaxed con-

dition than alternating bisimulations, to relate systems and their

abstractions. As with alternating bisimulations, ASE preserves the

property that the existence of a controller for the abstraction is nec-

essary and sufficient for a controller to exist for the original system.

Moreover, being a less stringent condition, ASE can reduce systems

further to produce smaller abstractions. We provide an algorithm

that produces minimal AS equivalent abstractions. The theoretical

results are then applied to obtain (un)schedulability certificates of

periodic event-triggered control systems sharing a communication

channel. A numerical example illustrates the results.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Theory of computation → Abstraction; •
Networks → Cyber-physical networks.

KEYWORDS
Alternating Simulation, Minimization, Controller Synthesis, Event

Triggered Control, Scheduling.

ACM Reference Format:
Gabriel de A. Gleizer, Khushraj Madnani, and Manuel Mazo Jr.. 2022. A

Simpler Alternative: Minimizing Transition Systems Modulo Alternating

Simulation Equivalence. In 25th ACM International Conference on Hybrid
Systems: Computation and Control (HSCC ’22), May 4–6, 2022, Milan, Italy.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3501710.3519534

1 INTRODUCTION
Control synthesis for finite transition systems (FTS), the problem

of finding a controller (a strategy) that enforces specifications on a

closed-loop system, is a long investigated problem [29]. Supervi-

sory control, as it is often also referred to, has many applications in

e.g. automation of manufacturing plants, traffic control, scheduling

∗
Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International

4.0 License.

HSCC ’22, May 4–6, 2022, Milan, Italy
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9196-2/22/05.

https://doi.org/10.1145/3501710.3519534

and planning, and control of dynamical and hybrid systems [8, 32].

The clearest advantage of using finite transition systems to model

a control problem is that a large class of control problems in finite

transition systems are decidable, meaning that the controller can

be obtained automatically through an algorithm, or that a defin-

itive answer that no controller can enforce the specifications is

obtained. The disadvantage is often a very practical one: the prob-

lem may be too large to be solved in practice, owing to the large

number of states and transitions the control problem may have.

In particular, this is the case of scheduling the transmissions of

event-triggered control (ETC) systems in a shared network [27],

whose traffic models can be abstracted as FTSs [12]: often it is not

possible to synthesize schedulers for more than a handful of ETC

systems, due to the state explosion of the composed system. This

state-space explosion problem is pervasive, and thus significant

attention has been devoted to reducing transition systems. The

reduction requires a formal relation between original and reduced

system; for verification purposes, the most well-known relation

is that of simulation [5, 28]. Algorithms to reduce systems mod-

ulo simulations soon emerged: the first being a reduction modulo

bisimulation, where algorithms using quotient systems are often

used [5]; later, minimization modulo simulation equivalence was
devised in [7]. Simulation equivalence is a weaker relation than

bisimulation but allows to verify most of the same properties; in

particular, any linear temporal logic (LTL) property that can be

verified on a system also holds for a simulation equivalent system.
1

For control synthesis, reducing the system using mere simulation

notions is not enough. Control synthesis can be seen as a game

over a finite alphabet, where the controller plays against an antag-

onistic environment, and simulations preserve all possible moves

from both players, including moves that are irrational for the game.

The notion that appropriately captures the game aspect of control

synthesis problems is that of alternating simulation, introduced for

multi-agent systems by Alur et al. in [2]. Surprisingly, though, there

has been little investigation of the problem of reducing systems

modulo alternating bisimulations or alternating simulation equiva-
lence. Reducing systems using alternating simulation notions has

many practical benefits: not only the synthesis problems become

smaller, and by extension the obtained controllers, making them

easier to implement in limited hardware; but it becomes even more

important, we argue, when solving control synthesis problems on

a parallel composition of systems, one classic example being sched-

uling. In this case, the size of the game grows exponentially with

1
Larger classes of logic properties can be verified, such ACTL*, ECTL*, ECTL, ACTL

as its sublogics, see [7]. For control, we are typically interested in LTL specifications.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3501710.3519534
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3501710.3519534

HSCC ’22, May 4–6, 2022, Milan, Italy Gabriel de A. Gleizer, Khushraj Madnani, and Manuel Mazo Jr.

the number of systems to be scheduled, hence any reduction on the

individual systems results in an exponential reduction of the size

of the composed game.

In this work we present a novel algorithm to reduce systems

w.r.t. alternating-simulation equivalence (ASE), a different and re-

laxed notion than themore popular relative alternating-bisimulation
relation. ASE is nonetheless stronger than alternating simulation re-

lations, as it guarantees not only that controllers can be transferred

from abstraction (the reduced system) to concrete (the original sys-

tem), but also that non-existence of a controller in the abstraction

implies non-existence of a controller for the concrete system. Hence

the reduction via ASE is sound and complete for control synthesis.

We prove that our algorithm in fact obtains a minimal system that

is alternating-simulation equivalent to the original. The algorithm

is composed of five steps: (i) computing the maximal alternating

simulation relation from the system to itself; (ii) forming the quo-

tient system; (iii) eliminating irrational and/or redundant actions

from the controller; (iv) eliminating irrational transitions from the

environment; and (v) deleting states which are inaccessible from

any of the initial states. The complexity of the algorithm is O(m2),

wherem is the number of transitions in the system to be reduced.

This result is a very interesting theoretical contribution on its own

right, generalizing the results in [7]. Because these simulation rela-

tions are closed under composition, the presented algorithm has

a strong practical relevance for synthesis over composed systems.

We demonstrate these benefits on a case study — one which in fact

motivated the investigation of our problem: scheduling of multiple

periodic event-triggered control (PETC) [4, 18, 31] systems on a

shared channel. The insights from our algorithm allow to prove

that, under some conditions, ETC and self-triggered control (STC,

[3, 26, 33]) are equally schedulable. Additionally, we use our al-

gorithm on a numerical case study, obtaining in the best case a

system 50x smaller than the original one. This resulted in a reduc-

tion in CPU time of the scheduling problem of several orders of

magnitude in some cases. Furthermore, the reduced systems also

provide important insights to the user, as the reduced system indi-

cates somehow the bottlenecks that must be addressed to improve

schedulability.

1.1 Related Work
Algorithms for reducing state space preserving bisimulation using

quotient systems have been extensively studied [22, 24], see [5, 6]

for an overview. For many practical results, simulation equivalence,

a coarser equivalence relation, is preferable. Various algorithms

to obtain quotients based on simulation equivalence have been

proposed,e.g., [19, 30], as well as their associated quotients [10].

However, unlike bisimulation, creating quotients based on simula-

tion equivalence does not result in minimization [7]. Our algorithm

and results are akin to those of [7]; we have here a generalization

of its results, as alternating simulation reduces to simulations if one

of the players has only one choice in every state.

The reduction of systems using alternating simulation equiva-

lence has been addressed in [21, 25]. Different from the current

work, Majumdar et al. propose a semi-algorithm that aims at reduc-

ing infinite systems into finite systems (not necessarily minimal);

instead, here we want to minimize finite systems by reducing the

HSCC ’22, May 4–6, 2022, Milan, Italy Gabriel de A. Gleizer, Khushraj Madnani, and Manuel Mazo Jr.

In this work we present a novel algorithm to reduce systems

w.r.t. alternating-simulation equivalence (ASE), a different and re-

laxed notion than themore popular relative alternating-bisimulation
relation. ASE is nonetheless stronger than alternating simulation re-

lations, as it guarantees not only that controllers can be transferred

from abstraction (the reduced system) to concrete (the original sys-

tem), but also that non-existence of a controller in the abstraction

implies non-existence of a controller for the concrete system. Hence

the reduction via ASE is sound and complete for control synthesis.

We prove that our algorithm in fact obtains a minimal system that

is alternating-simulation equivalent to the original. The algorithm

is composed of five steps: (i) computing the maximal alternating

simulation relation from the system to itself; (ii) forming the quo-

tient system; (iii) eliminating irrational and/or redundant actions

from the controller; (iv) eliminating irrational transitions from the

environment; and (v) deleting states which are inaccessible from

any of the initial states. The complexity of the algorithm is O(m2),

wherem is the number of transitions in the system to be reduced.

This result is a very interesting theoretical contribution on its own

right, generalizing the results in [7]. Because these simulation rela-

tions are closed under composition, the presented algorithm has

a strong practical relevance for synthesis over composed systems.

We demonstrate these benefits on a case study — one which in fact

motivated the investigation of our problem: scheduling of multiple

periodic event-triggered control (PETC) [4, 18, 31] systems on a

shared channel. The insights from our algorithm allow to prove

that, under some conditions, ETC and self-triggered control (STC,

[3, 26, 33]) are equally schedulable. Additionally, we use our al-

gorithm on a numerical case study, obtaining in the best case a

system 50x smaller than the original one. This resulted in a reduc-

tion in CPU time of the scheduling problem of several orders of

magnitude in some cases. Furthermore, the reduced systems also

provide important insights to the user, as the reduced system indi-

cates somehow the bottlenecks that must be addressed to improve

schedulability.

1.1 Related Work
Algorithms for reducing state space preserving bisimulation using

quotient systems have been extensively studied [22, 24], see [5, 6]

for an overview. For many practical results, simulation equivalence,

a coarser equivalence relation, is preferable. Various algorithms

to obtain quotients based on simulation equivalence have been

proposed,e.g., [19, 30], as well as their associated quotients [10].

However, unlike bisimulation, creating quotients based on simula-

tion equivalence does not result in minimization [7]. Our algorithm

and results are akin to those of [7]; we have here a generalization

of its results, as alternating simulation reduces to simulations if one

of the players has only one choice in every state.

The reduction of systems using alternating simulation equiva-

lence has been addressed in [21, 25]. Different from the current

work, Majumdar et al. propose a semi-algorithm that aims at reduc-

ing infinite systems into finite systems (not necessarily minimal);

instead, here we want to minimize finite systems by reducing the

number of states and transitions. These two approaches are compli-

mentary and can be used in combination to obtain minimal finite

q0,1

T
start

q0,2

W

q1,1

T
start

q1,2

W

q1,3

W

q1,4

W

w

s

w, s

w, s

w

s

s

w w

w, s
w, s

Figure 1: A finite LTS representing a PETC trafficmodelwith
scheduler actions. Node labels are states (top) and their out-
puts (bottom), and edge labels are actions.

realizations of certain classes of infinite systems (namely, class 2

systems as per [25]).

Reduction of other types of finite transition systems has been

addressed, as in, e.g., [16] for alternating Büchi automata modulo

different notions of simulations, namely direct, fair, and delayed

simulations. Although such automata also represent games, they

are defined differently than what is usual for control: an alternating

Büchi automaton accepts a word if the controller can ensure it

by playing against the environment; every such word forms the

language of the automaton, and simulations must preserve this

language in some sense. This is fundamentally different than most

control problems, where one is not interested in specific words, but

rather that the set of all words generated by the system satisfies

some specifications. In addition, [16] does not contain results on

minimality.

1.2 Notation
We denote by N0 the set of natural numbers including zero, N B
N0 \ {0}, N≤n B {1, 2, ...,n}. For a relation R ⊆ Xa × Xb , its
inverse is denoted as R−1 = {(xb ,xa) ∈ Xb × Xa | (xa ,xb) ∈ R}.
Every function F : Xa 7→ Xb can be read as a relation, namely

{(xa ,xb) ∈ Xa × Xb | xb = F (xa)}.

2 PRELIMINARIES
2.1 Labelled Transition Systems
A (finite) LTS is a 6-tuple S B (X ,X0,U ,Y ,δ ,H), where X is a

(finite) set of states, X0 ⊆ X is the set of initial states, U is the

(finite) set of edge labels called inputs or actions, Y is the set of

outputs or observations, δ ⊂ X ×U ×X is the set of transitions and

H : X 7→ Y , the output map, maps states to their corresponding

outputs. Figure 1 shows one example of a finite LTS, which is our

running example throughout this paper; its meaning is going to be

explained in Section 4.

The size of an LTS, denoted by |S|, is the triplet (|X |, |X0 |,

|δ |). This induces a partial order amongst systems sizes using

the natural extension of ≤ on numbers, i.e., |(X ,X0,U ,Y ,δ ,H)| ≤

|(X ′,X ′
0,U

′,Y ′,δ ′,H ′)| iff |X | <= |X ′ |, |X0 | ≤ |X ′
0 |, and |δ | ≤

|δ ′ |. For any u ∈ U and x ,x ′ ∈ X , We use x u
−→ x ′ to denote

the fact that (x ,u,x ′) ∈ δ . We denote by U (x) B {u ∈ U |

Figure 1: A finite LTS representing a PETC trafficmodelwith
scheduler actions. Node labels are states (top) and their out-
puts (bottom), and edge labels are actions.

number of states and transitions. These two approaches are compli-

mentary and can be used in combination to obtain minimal finite

realizations of certain classes of infinite systems (namely, class 2

systems as per [25]).

Reduction of other types of finite transition systems has been

addressed, as in, e.g., [16] for alternating Büchi automata modulo

different notions of simulations, namely direct, fair, and delayed

simulations. Although such automata also represent games, they

are defined differently than what is usual for control: an alternating

Büchi automaton accepts a word if the controller can ensure it

by playing against the environment; every such word forms the

language of the automaton, and simulations must preserve this

language in some sense. This is fundamentally different than most

control problems, where one is not interested in specific words, but

rather that the set of all words generated by the system satisfies

some specifications. In addition, [16] does not contain results on

minimality.

1.2 Notation
We denote by N0 the set of natural numbers including zero, N :=

N0 \ {0}, N≤n := {1, 2, ...,n}. For a relation R ⊆ Xa × Xb , its
inverse is denoted as R−1 = {(xb ,xa) ∈ Xb × Xa | (xa ,xb) ∈ R}.
Every function F : Xa 7→ Xb can be read as a relation, namely

{(xa ,xb) ∈ Xa × Xb | xb = F (xa)}.

2 PRELIMINARIES
2.1 Labelled Transition Systems
A (finite) LTS is a 6-tuple S := (X ,X0,U ,Y ,δ ,H), where X is a

(finite) set of states, X0 ⊆ X is the set of initial states, U is the

(finite) set of edge labels called inputs or actions, Y is the set of

outputs or observations, δ ⊂ X ×U ×X is the set of transitions and

H : X 7→ Y , the output map, maps states to their corresponding

outputs. Figure 1 shows one example of a finite LTS, which is our

running example throughout this paper; its meaning is going to be

explained in Section 4.

The size of an LTS, denoted by |S|, is the triplet (|X |, |X0 |,

|δ |). This induces a partial order amongst systems sizes using

the natural extension of ≤ on numbers, i.e., |(X ,X0,U ,Y ,δ ,H)| ≤

|(X ′,X ′
0
,U ′,Y ′,δ ′,H ′)| iff |X | <= |X ′ |, |X0 | ≤ |X ′

0
|, and |δ | ≤ |δ ′ |.

A Simpler Alternative: Minimizing Transition Systems Modulo Alternating Simulation Equivalence HSCC ’22, May 4–6, 2022, Milan, Italy

For anyu ∈ U and x ,x ′ ∈ X , We use x u
−→ x ′ to denote the fact that

(x ,u,x ′) ∈ δ . We denote byU (x) := {u ∈ U | ∃x ′ ∈ X ,x u
−→ x ′} the

set of input labels available at state x , Post(x ,u) := {x ′ ∈ X | x u
−→

x ′} the set of u-successors of x and Pre(x ,u) := {x ′ ∈ X | x ′ u
−→ x}.

When the system S is not clear from context, we use, respectively,

x u
−→

S
x ′, PostS(x ,u), andU S(x). System S is said to be determin-

istic if for every x ∈ X and u ∈ U (x), we have | Post(x ,u)| = 1. For

a state x ∈ X , we denote by S(x) := {X ,x ,U ,Y ,δ ,H } the system

S initialized at x .
Finite LTSs represent dynamical systems that evolve in discrete

state spaces upon the occurrence of actions or events in U . They

can represent computer programs, machines or factories, but also

infinite dynamical systems through the method of abstractions, see

[32]. The problem of control design in finite LTSs is to design a

controller or strategy that chooses the action inU at any point of the

run r of the system such that a given specificationϕ is satisfied. This

has a game aspect in that the controller must ensure ϕ no matter

what the environment does; hence, one can see the environment,

i.e., the entity that picks transitions in δ given the outbound state x
and the control action u, as antagonist to the controller objectives.

The specification ϕ is typically given in terms of linear temporal

logic (LTL), from which two popular particular cases are safety and

reachability. In our scheduling case study (§4), we have a safety

problem, which is to avoid collisions during transmissions over a

shared communication channel.

2.2 Alternating Simulation and Equivalence
The concept of alternating simulations was first proposed by [2]

for multi-player games on structures called alternating transition

systems. It was later simplified by Tabuada for a two-player game,

where the controller chooses actions inU to meet some specification

against an antagonist environment that chooses the transitions. The
following definition is an adaptation of Tabuada’s [32]:

Definition 2.1 (Alternating simulation (AS)). Consider two sys-

temsSa := (Xa ,Xa0,Ua ,Ya ,δa ,Ha) andSb = (Xb ,Xb0,Ub ,Yb ,δb ,
,Hb). We say that Sb is an alternating simulation of Sa , denoted

by Sa ⪯AS Sb , if there exists a relation R ⊆ Xa × Xb satisfying

following requirements:

(i) ∀xb0 ∈ Xb0 ∃xa0 ∈ Xa0 such that (xa0,xb0) ∈ R;
(ii) ∀(xa ,xb) ∈ R, it holds that H (xa) = H (xb);
(iii) ∀(xa ,xb) ∈ R,∀ua ∈ Ua (xa) ∃ub ∈ Ub (xb) such that ∀x ′b ∈

Post
Sb (xb ,ub), ∃x ′a ∈ Post

Sa (xa ,ua) s.t. (x
′
a ,x

′
b) ∈ R.

We call R an alternating simulation relation (ASR) from Sa to Sb .

When using a specific relation R, we use the notation Sa ⪯R Sb .

It is easy to see that if two relations R1 and R2 satisfy Sa ⪯R1
Sb

and Sa ⪯R2
Sb , then Sa ⪯R1∪R2

Sb . The union of all ASRs from

Sa to Sb is called the maximal alternating simulation relation from

Sa to Sb .

Intuitively, given LTS Sa and Sb , an ASR from an LTS Sa to

Sb , implies that every controller move of Sa can be “replicated”

by the controller of Sb and every environment move of Sb can be

“replicated” by that of Sa . Informally, this means that the controller

of Sb is at least as powerful as that of Sa and the environment

of Sa is at least as powerful as that of Sb . This interpretation is

also behind our modification of the definition w.r.t. [32], where

condition (i) is reversed: in our definition, the “environment” picks

the initial state, so every initial state in Sb must be matched in Sa .
2

The importance of alternating simulations for control stem from

the following fact: given any temporal-logic specification ϕ over

the alphabet Y , if Sa ⪯AS Sb , then the existence of a controller

for Sa such that the closed-loop system satisfies ϕ implies that

there exists a controller for Sb meeting the same specification; in

fact, the strategy for Sa can be refined for Sb . Moreover, for any

specification ϕ, if (x ,x ′) ∈ R and the controller can ensure ϕ from

x , then it can ensure ϕ from x ′; the symmetric notion holds: if the

controller cannot ensure ϕ from x ′, then it cannot ensure it from x .
An additional reason for the importance of AS is that it commutes

with composition, making this notion suitable for control design

of a composition of systems, such as the scheduling problem we

tackle in §4. For a thorough exposition about these facts and how

to synthesize controllers for several types of specifications we refer

the reader to [32]. Here we are interested in reducing a system Sa
preserving an if-and-only-if property; namely, for any specification
there exists a controller for Sa iff there exists a controller for Sb .

The most known notion for this is that of alternating bisimulation:

Definition 2.2 (Alternating bisimulation). Two LTSs Sa and Sb
are said to be alternatingly bisimilar, denoted by Sa �AS Sb , if

there is an ASR R from Sa to Sb such that its inverse R−1 is an ASR

from Sb to Sa .

A relaxed notion w.r.t. bisimulation is that of equivalence:

Definition 2.3 (Alternating simulation equivalence (ASE)). Two
LTSs Sa and Sb are said to be alternating-simulation equivalent,
denoted by Sa ≃AS Sb , if there is an ASR R from Sa to Sb and an

ASR R′
from Sb to Sa .

ASE reduces to bisimulation when R′ = R−1; nevertheless, it
preserves by definition the if-and-only-if property we are interested

in. Moreover, a second relation is an extra degree of freedom to

find a reduced system that is ASE to the original. There is a price

to pay for this freedom: the controller designed for the reduced

system will not be as permissive as the best controller that could
be created by the original system; in other words, it may contain

fewer actions available to pick from at any point in the system’s

run. Nonetheless, this can be regarded as a benefit, considering the

sheer size the strategies for large LTSs can have.

3 MAIN RESULT
In this section, we present our main result:

3
given an LTS S, there

exists a polynomial time algorithm that constructs a minimal LTS

Smin equivalent to S modulo alternating simulation (AS). That is,

Smin ≃AS S and |Smin | ≤ |S′ | for any S′
satisfying S′ ≃AS S.

(i) We first provide an overview of the algorithm to obtain such a

minimal system. (ii) We then provide the details of the each step of

2
Note that Tabuada’s definition and ours are not fundamentally different. In both

cases, one could have a single initial state, and condition (i) of Def. 2.1 would be a

consequence of condition (iii) by adding silent transitions from the initial state to the

“real” initial state set; for Tabuada’s definition, condition (i) would be derived by (iii) if

instead the controller would have a different action for each of these transitions.

3
When a proof is not right after the result statement, please refer to the arXiv preprint

of this paper, arXiv:2203.01672.

HSCC ’22, May 4–6, 2022, Milan, Italy Gabriel de A. Gleizer, Khushraj Madnani, and Manuel Mazo Jr.HSCC ’22, May 4–6, 2022, Milan, Italy Gabriel de A. Gleizer, Khushraj Madnani, and Manuel Mazo Jr.

q0,1 q1,1 q0,2

q1,3

q1,2

q1,4

Figure 2: Maximal alternating simulation relation Rmax for
the system in Fig. 1: q −→ q′ means that (q,q′) ∈ Rmax. Self-
loops and relations implied from transitivity are omitted.

output of the algorithm is indeed the unique minimum LTS (up to

isomorphism) alternating-simulation equivalent to the input LTS S.

This, in turn, implies that for every LTS there is a unique minimum

LTS equivalent modulo AS system that can be constructed using

our algorithm.

3.1 Overview of the algorithm
The algorithm can be summarized as follows. For a system S B
(X ,X0,U ,Y ,δ ,H), we denote by TranSize(S) := |δ | + |X0 |, a mea-

sure for number of transitions in the system
4
. Let |X | = n and

TranSize(S) =m.

Step 0: Construct the maximal alternating simulation re-
lation, denoted byRmax

, fromS to itself. This could be constructed

using fixed-point algorithms as in [2] or themore efficient algorithm

presented in [9], whose complexity is O(m2).

Step 1: Create a quotient systemusing Rmax
ofS by combin-

ing all the equivalent states (and hence all their incoming transitions

and outgoing transitions) to get a quotient of the system modulo

AS. This requires O(n +m) computations given the partition P

(which can be constructed while building Rmax
) as constructing

the quotient transition relation from δ requires taking the union of

all the outgoing transitions from any state in the given partition.

Recall that, if (q,q′) ∈ Rmax
then if the controller can meet a

specification from the state q then it will definitely meet it from

state q′. Moreover, if the controller fails to meet the specification

from q′ it will definitely fail from q. In other words, q′ (resp. q) is
more advantageous position for the controller (resp. environment)

as compared to q (resp. q′). This intuition is central to the next two

steps.

Step 2: Remove irrational choices and redundant choices
for the controller: For every x ∈ X and every a,b ∈ U (x),a , b if

for every xb ∈ Post(x ,b) there exists an xa ∈ Post(x ,a) such that

(xa ,xb) ∈ Rmax
, then delete all transitions from x on a. In other

words, remove a from U (x). This is because, for every possible

environment move on taking an actionb leads to a more (or equally)

advantageous state for the controller as compared to any possible

state the system can end up on action a by controller. To check

this, every transition is compared with every other transition at

most once. Hence, the complexity of this step in the worst case is

bounded by O(m2).

Step 3: Remove sub-optimal irrational choices for the en-
vironment: For every pair x1,x2 ∈ X0, if (x1,x2) ∈ Rmax

, then

4
We add the cardinality of X0 to total number of transitions because in principle the

results we use from [9] assumes that there is a unique initial state. Multiple initial

states can be simulated by adding silent transitions from a dummy initial state to all

the states in X0 which requires |X0 | extra transitions

the choice of environment to start from x2 will be irrational as x1
is more advantageous position for the environment to start with.

Hence, we remove x2 from the initial state set (which is clearly an

irrational move for the environment). Similarly, if (x1,x2) ∈ Rmax
,

then for every a ∈ U if x ′ ∈ Pre(x1,a) ∩ Pre(x2,a), remove tran-

sition (x ′,a,x2) from δ . This is because, if the system is at x ′, and
if the controller chooses an action a, the choice of moving to x2
instead of x1 is irrational for the environment as x1 is more advan-

tageous state for the environment. hence, we delete the transition

(x ′,a,x2). Similarly to step 3, before its deletion (or not), any tran-

sition is compared with all other transitions at most once. Hence,

the worst case complexity is bounded by O(m2).

Step 4: Remove Inaccessible States: Finally remove all the

states that are not accessible from any initial state. This is a routine

step with complexityO(n+m). Note that while it seems that Steps 3

and 4 only remove transitions, this does not mean that they do not

contribute in the reduction of number of states. Due to the removal

of transitions, it could happen that a large fraction of the graph

becomes unreachable. This is the step that cashes in the benefit of

steps 3 and 4 in terms of reduction in state size.

The maximal alternating simulation relation from our working

example (Fig. 1) is depicted in Fig. 2. Figures 3 and 4 illustrate the

successive application of each step 1–4 on it.

3.2 Preserving equivalence Modulo AS:
correctness results

In this section, we formally present the construction/reduction

mentioned in each step 1–4 and show that those reductions preserve

equivalence modulo AS. We also present results on the dimension

reduction resulting from each step. We fix S B (X ,X0,U ,Y ,δ ,H)

for this section as a given LTS and apply our reduction steps. For

any i ∈ {1, 2, 3, 4} the system resulting of applying step i: Si (S) is
the system Si .

Step 1: Creating a quotient system. First, a quotient system

S1 of S is created using Rmax
as follows. Consider the partition

P = {Q1,Q2, . . . ,Qm } of X where each Qi is the maximal subset

of X such that for any states (p,q) ∈ Qi it holds that (p,q) ∈ Rmax

and (q,p) ∈ Rmax
.

Definition 3.1 (Alternating simulation quotient). The systemS1B
(X1,X0,1,U1,δ1,Y ,H1) is called the alternating simulation quotient
of S w.r.t. Rmax

iff X1 = P, X0,1 = {Q | Q ∈ X ∧ ∃q ∈ Q . q ∈ X0},

U1 = U , δ1 = {(Q,u,Q ′) | ∃q ∈ Q . ∃q′ ∈ Q . (q,u,q)′ ∈ δ },
∀Q ∈ X1.H1(Q) = H (q) for any q ∈ Q (H1 is well-defined as

∀q,q′ ∈ Q . H (q) = H (q′)).

This construction is similar to the celebrated quotient systems

used for simulation and bisimulation; here we just make use of the

already existing Rmax
instead of performing a refinement algorithm,

like it has been done for simulation equivalence [7]. Step 1 preserves

equivalence modulo AS:

Lemma 3.2. S ≃AS S1.

Let Part : X 7→ X1 be the function that maps every state to its

corresponding partition, and Rmax
1 ⊆ X1 × X1 be the smallest rela-

tion satisfying (I) ∀(p,q) ∈ Rmax.(Part(p),Part(q)) ∈ Rmax
1 and, (II)

∀(P ,Q) ∈ Rmax
1 .∃p ∈ P .∃q ∈ Q .(p,q) ∈ Rmax

. Note that ∀P ,Q ∈

X1.∃p ∈ P .∃q ∈ Q .(p,q) ∈ Rmax ⇒ ∀p′ ∈ P .∀q′ ∈ Q .(p′,q′) ∈

Figure 2: Maximal alternating simulation relation Rmax for
the system in Fig. 1: q −→ q′ means that (q,q′) ∈ Rmax. Self-
loops and relations implied from transitivity are omitted.

the algorithm and prove its correctness by showing that all steps

preserve alternating simulation equivalence. (iii) We show that the

output of the algorithm is indeed the unique minimum LTS (up to

isomorphism) alternating-simulation equivalent to the input LTS S.

This, in turn, implies that for every LTS there is a unique minimum

LTS equivalent modulo AS system that can be constructed using

our algorithm.

3.1 Overview of the algorithm
The algorithm can be summarized as follows. For a system S :=

(X ,X0,U ,Y ,δ ,H), we denote by TranSize(S) := |δ | + |X0 |, a mea-

sure for number of transitions in the system
4
. Let |X | = n and

TranSize(S) =m.

Step 0: Construct the maximal alternating simulation re-
lation, denoted by Rmax

, fromS to itself. This could be constructed

using fixed-point algorithms as in [2] or themore efficient algorithm

presented in [9], whose complexity is O(m2).

Step 1: Create a quotient system using Rmax
of S by combin-

ing all the equivalent states (and hence all their incoming transitions

and outgoing transitions) to get a quotient of the system modulo

AS. This requires O(n +m) computations given the partition P

(which can be constructed while building Rmax
) as constructing the

quotient transition relation from δ requires taking the union of all

the outgoing transitions from any state in the given partition.

Recall that, if (q,q′) ∈ Rmax
then if the controller can meet a

specification from the state q then it will definitely meet it from

state q′. Moreover, if the controller fails to meet the specification

from q′ it will definitely fail from q. In other words, q′ (resp. q) is
more advantageous position for the controller (resp. environment)

as compared to q (resp. q′). This intuition is central to the next two

steps.

Step 2: Remove irrational choices and redundant choices
for the controller: For every x ∈ X and every a,b ∈ U (x),a , b
if for every xb ∈ Post(x ,b) there exists an xa ∈ Post(x ,a) such that

(xa ,xb) ∈ Rmax
, then delete all transitions from x on a. In other

words, remove a from U (x). This is because, for every possible

environment move on taking an actionb leads to a more (or equally)

advantageous state for the controller as compared to any possible

state the system can end up on action a by controller. To check

this, every transition is compared with every other transition at

most once. Hence, the complexity of this step in the worst case is

bounded by O(m2).

4
We add the cardinality of X0 to total number of transitions because in principle the

results we use from [9] assumes that there is a unique initial state. Multiple initial

states can be simulated by adding silent transitions from a dummy initial state to all

the states in X0 which requires |X0 | extra transitions

Step 3: Remove sub-optimal irrational choices for the en-
vironment: For every pair x1,x2 ∈ X0, if (x1,x2) ∈ Rmax

, then

the choice of environment to start from x2 will be irrational as x1
is more advantageous position for the environment to start with.

Hence, we remove x2 from the initial state set (which is clearly an

irrational move for the environment). Similarly, if (x1,x2) ∈ Rmax
,

then for every a ∈ U if x ′ ∈ Pre(x1,a) ∩ Pre(x2,a), remove transi-

tion (x ′,a,x2) from δ . This is because, if the system is at x ′, and
if the controller chooses an action a, the choice of moving to x2
instead of x1 is irrational for the environment as x1 is more advan-

tageous state for the environment. hence, we delete the transition

(x ′,a,x2). Similarly to step 3, before its deletion (or not), any tran-

sition is compared with all other transitions at most once. Hence,

the worst case complexity is bounded by O(m2).

Step 4: Remove Inaccessible States: Finally remove all the

states that are not accessible from any initial state. This is a routine

step with complexityO(n+m). Note that while it seems that Steps 3

and 4 only remove transitions, this does not mean that they do not

contribute in the reduction of number of states. Due to the removal

of transitions, it could happen that a large fraction of the graph

becomes unreachable. This is the step that cashes in the benefit of

steps 3 and 4 in terms of reduction in state size.

The maximal alternating simulation relation from our working

example (Fig. 1) is depicted in Fig. 2. Figures 3 and 4 illustrate the

successive application of each step 1–4 on it.

3.2 Preserving equivalence Modulo AS:
correctness results

In this section, we formally present the construction/reduction

mentioned in each step 1–4 and show that those reductions preserve

equivalence modulo AS. We also present results on the dimension

reduction resulting from each step. We fix S := (X ,X0,U ,Y ,δ ,H)

for this section as a given LTS and apply our reduction steps. For

any i ∈ {1, 2, 3, 4} the system resulting of applying step i: Si (S) is
the system Si .

Step 1: Creating a quotient system. First, a quotient system

S1 of S is created using Rmax
as follows. Consider the partition

P = {Q1,Q2, . . . ,Qm } of X where each Qi is the maximal subset

of X such that for any states (p,q) ∈ Qi it holds that (p,q) ∈ Rmax

and (q,p) ∈ Rmax
.

Definition 3.1 (Alternating simulation quotient). The systemS1 :=

(X1,X0,1,U1,δ1,Y ,H1) is called the alternating simulation quotient
of S w.r.t. Rmax

iff X1 = P, X0,1 = {Q | Q ∈ X ∧ ∃q ∈ Q . q ∈ X0},

U1 = U , δ1 = {(Q,u,Q ′) | ∃q ∈ Q . ∃q′ ∈ Q . (q,u,q)′ ∈ δ },
∀Q ∈ X1.H1(Q) = H (q) for any q ∈ Q (H1 is well-defined as

∀q,q′ ∈ Q . H (q) = H (q′)).

This construction is similar to the celebrated quotient systems

used for simulation and bisimulation; here we just make use of the

already existing Rmax
instead of performing a refinement algorithm,

like it has been done for simulation equivalence [7]. Step 1 preserves

equivalence modulo AS:

Lemma 3.2. S ≃AS S1.

Let Part : X 7→ X1 be the function that maps every state to

its corresponding partition, and Rmax

1
⊆ X1 × X1 be the smallest

relation satisfying (I) ∀(p,q) ∈ Rmax.(Part(p),Part(q)) ∈ Rmax

1
and,

A Simpler Alternative: Minimizing Transition Systems Modulo Alternating Simulation Equivalence HSCC ’22, May 4–6, 2022, Milan, ItalyA Simpler Alternative: Minimizing Transition Systems Modulo Alternating Simulation Equivalence HSCC ’22, May 4–6, 2022, Milan, Italy

q0,1

T
start

q0,2

W

q1,1

T
start

q1,2

W

Q
W

w

s

w, s

w, s

w

s

s

w

w, s

(a) Step 1: quotient system.

q0,1

T
start

q0,2

W

q1,1

T
start

q1,2

W

Q
W

w

s

s

s

w

s

s

w

s

(b) Step 2: redundant actions removed (af-
fected transitions in red).

q0,1

T
start

q0,2

W

q1,1

T

q1,2

W

Q
W

w

s

s

w

s

s

w

s

(c) Step 3: irrational transitions removed.

Figure 3: System of Fig. 1 after steps 1 (left), 2 (middle) and 3 (right), where Q = {(q1,3), (q1,4)}.

q0,1

T
start

q0,2

W

w

s

s

Figure 4: System of Fig. 1 after step 4. This is a minimal sys-
tem modulo ASE.

Rmax
. This is because every P ,Q ∈ X1 are sets containing states of

S which are equivalent modulo Rmax
. Hence, if any element of P is

related to any element Q with respect to Rmax
, then by transitivity

of Rmax
all elements of P are related to all elements of Q . Hence,

(II) implies (III) ∀(P ,Q) ∈ Rmax
1 .∀p ∈ P .∀q ∈ Q .(p,q) ∈ Rmax

. The

following fact holds:

Lemma 3.3. (1) Rmax
1 is the maximal ASR from S1 to itself. More-

over, (2) Rmax
1 is a partial order.

In fact, if Rmax
is a partial order (i.e., (p,q) ∈ Rmax =⇒ (q,p) <

Rmax
for every p , q), then step 1 does not affect S.

Proposition 3.4. |X1 | ≤ |X | and TranSize(S1) ≤ TranSize(S),
and no pair P ,Q of X1 is equivalent modulo AS. Moreover, if Rmax is
not antisymmetric, then |X1 | < |X |.

Step 2: Removing irrational and redundant controller
choices. We construct S2 B (X2,X0,2,U2,δ2,Y2,H2) from S as

follows. X2 = X , X0,2 = X0, U2 = U , Y2 = Y , H2 = H . Be-

fore defining δ2, we define an ordering ⊑S on elements of X ×U :

(p′,u ′) ⊑S (p,u) ⇐⇒ u ∈ U (p) ∧ ∀(p,u,q) ∈ δ .∃(p′,u ′,q′) ∈

δ .(q′,q) ∈ Rmax
. Note that ⊑ is a transitive relation. We say that

an action u ′ is an irrational move at a state p of an LTS S iff

∃u .(p,u) ⊑S (p,u ′) ∧ ¬((p,u ′) ⊑S (p,u)). State p in this case is

said to have irrational moves. Similarly, we say that u,u ′ are equally
rational at a statep of an LTS iff (p,u) ⊑S (p,u ′)∧((p,u ′) ⊑S (p,u)).
Moreover, if u and u ′ are distinct then the state p, in this case, is

said to have redundant moves. We construct δ2 by removing all the

transitions on irrational actions at p. Followed by this, we make

available only one of the equally rational actions. This procedure

preserves equivalence modulo AS. Let I : X 7→ X be the identity

function.

Lemma 3.5. S2 ⪯I S ⪯Rmax S2. Hence, S ≃AS S2.

Proposition 3.6. |X2 | = |X |,TranSize(S2) ≤ TranSize(S), and
for every state q ∈ X2, U2(q) only contains non-redundant rational
actions. Moreover, if there are irrational or redundant actions available
from any state q in S, then TranSize(S2) < TranSize(S).

Step 3: Eliminating Irrational Choices for Environment.
We construct S3 B (X3,X0,3,U3,δ3,Y3,H3) from S as follows.

X3 = X ,U3 = U , Y3 = Y , H3 = H . Before the construction of X0,3

and δ3 we define a new relation amongst transitions: any transition

(p,u,q′) in δ is called a younger sibling of a transition (p,u,q) in
δ with respect to S iff (q,q′) ∈ Rmax ∧ (q′,q) < Rmax

. Similarly,

an initial state q′0 is called a younger sibling of yet another initial

state q0 with respect to S iff (q0,q
′
0) ∈ Rmax ∧ (q′0,q0) < Rmax

.

Then,X0,3 and δ3 are constructed fromX0 and δ by deleting all the

younger siblings. In other words, given any state p and u ∈ U (q), if
there are two transitions (p,u,q′) and (p,u,q) in δ and if q ⪯AS q′

but not vice-versa (i.e., q is strictly more advantageous position

for the environment as compared to q′) then delete the transition

(p,u,q′) from S, as the environment has no reason to choose q′

over q. Note that this definition is similar to the younger brother
definition of [7], but here we need to take the label of the transitions

into account while defining the “sibling” relationship due to the

definition of AS.

Lemma 3.7. S ⪯I S3 ⪯Rmax S. Thus, S3 ≃AS S.

Proposition 3.8. |X3 | = |X |,TranSize(S3) ≤ TranSize(S), and
S3 contains no transitions or initial states that are younger siblings of
another transition or initial state, respectively. Moreover, if there is any
younger sibling transition or initial state in S, then TranSize(S3) <

TranSize(S).

Step 4: Removing states inaccessible from initial state set
X0 inS. LetX∞ be the set of such states inaccessible from any initial

state in X0. Then S4 B (X4,X0,U ,δ4,Y ,H), where X4 = X \ X∞,

δ4 = δ ∩ (X4 ×U4 × X4).

Lemma 3.9. S4 �AS S

Proposition 3.10. |X4 | ≤ |X |, TranSize(S4) ≤ TranSize(S),
and all states in S4 are accessible from X0,4. Moreover, if X∞ is
non-empty then |X4 | < |X |.

The combination of Lemmas 3.2, 3.5, 3.7 and 3.9 gives our main

correctness result:

Figure 3: System of Fig. 1 after steps 1 (left), 2 (middle) and 3 (right), where Q = {(q1,3), (q1,4)}.

A Simpler Alternative: Minimizing Transition Systems Modulo Alternating Simulation Equivalence HSCC ’22, May 4–6, 2022, Milan, Italy

q0,1

T
start

q0,2

W

q1,1

T
start

q1,2

W

Q
W

w

s

w, s

w, s

w

s

s

w

w, s

(a) Step 1: quotient system.

q0,1

T
start

q0,2

W

q1,1

T
start

q1,2

W

Q
W

w

s

s

s

w

s

s

w

s

(b) Step 2: redundant actions removed (af-
fected transitions in red).

q0,1

T
start

q0,2

W

q1,1

T

q1,2

W

Q
W

w

s

s

w

s

s

w

s

(c) Step 3: irrational transitions removed.

Figure 3: System of Fig. 1 after steps 1 (left), 2 (middle) and 3 (right), where Q = {(q1,3), (q1,4)}.

q0,1

T
start

q0,2

W

w

s

s

Figure 4: System of Fig. 1 after step 4. This is a minimal sys-
tem modulo ASE.

Rmax
. This is because every P ,Q ∈ X1 are sets containing states of

S which are equivalent modulo Rmax
. Hence, if any element of P is

related to any element Q with respect to Rmax
, then by transitivity

of Rmax
all elements of P are related to all elements of Q . Hence,

(II) implies (III) ∀(P ,Q) ∈ Rmax
1 .∀p ∈ P .∀q ∈ Q .(p,q) ∈ Rmax

. The

following fact holds:

Lemma 3.3. (1) Rmax
1 is the maximal ASR from S1 to itself. More-

over, (2) Rmax
1 is a partial order.

In fact, if Rmax
is a partial order (i.e., (p,q) ∈ Rmax =⇒ (q,p) <

Rmax
for every p , q), then step 1 does not affect S.

Proposition 3.4. |X1 | ≤ |X | and TranSize(S1) ≤ TranSize(S),
and no pair P ,Q of X1 is equivalent modulo AS. Moreover, if Rmax is
not antisymmetric, then |X1 | < |X |.

Step 2: Removing irrational and redundant controller
choices. We construct S2 B (X2,X0,2,U2,δ2,Y2,H2) from S as

follows. X2 = X , X0,2 = X0, U2 = U , Y2 = Y , H2 = H . Be-

fore defining δ2, we define an ordering ⊑S on elements of X ×U :

(p′,u ′) ⊑S (p,u) ⇐⇒ u ∈ U (p) ∧ ∀(p,u,q) ∈ δ .∃(p′,u ′,q′) ∈

δ .(q′,q) ∈ Rmax
. Note that ⊑ is a transitive relation. We say that

an action u ′ is an irrational move at a state p of an LTS S iff

∃u .(p,u) ⊑S (p,u ′) ∧ ¬((p,u ′) ⊑S (p,u)). State p in this case is

said to have irrational moves. Similarly, we say that u,u ′ are equally
rational at a statep of an LTS iff (p,u) ⊑S (p,u ′)∧((p,u ′) ⊑S (p,u)).
Moreover, if u and u ′ are distinct then the state p, in this case, is

said to have redundant moves. We construct δ2 by removing all the

transitions on irrational actions at p. Followed by this, we make

available only one of the equally rational actions. This procedure

preserves equivalence modulo AS. Let I : X 7→ X be the identity

function.

Lemma 3.5. S2 ⪯I S ⪯Rmax S2. Hence, S ≃AS S2.

Proposition 3.6. |X2 | = |X |,TranSize(S2) ≤ TranSize(S), and
for every state q ∈ X2, U2(q) only contains non-redundant rational
actions. Moreover, if there are irrational or redundant actions available
from any state q in S, then TranSize(S2) < TranSize(S).

Step 3: Eliminating Irrational Choices for Environment.
We construct S3 B (X3,X0,3,U3,δ3,Y3,H3) from S as follows.

X3 = X ,U3 = U , Y3 = Y , H3 = H . Before the construction of X0,3

and δ3 we define a new relation amongst transitions: any transition

(p,u,q′) in δ is called a younger sibling of a transition (p,u,q) in
δ with respect to S iff (q,q′) ∈ Rmax ∧ (q′,q) < Rmax

. Similarly,

an initial state q′0 is called a younger sibling of yet another initial

state q0 with respect to S iff (q0,q
′
0) ∈ Rmax ∧ (q′0,q0) < Rmax

.

Then,X0,3 and δ3 are constructed fromX0 and δ by deleting all the

younger siblings. In other words, given any state p and u ∈ U (q), if
there are two transitions (p,u,q′) and (p,u,q) in δ and if q ⪯AS q′

but not vice-versa (i.e., q is strictly more advantageous position

for the environment as compared to q′) then delete the transition

(p,u,q′) from S, as the environment has no reason to choose q′

over q. Note that this definition is similar to the younger brother
definition of [7], but here we need to take the label of the transitions

into account while defining the “sibling” relationship due to the

definition of AS.

Lemma 3.7. S ⪯I S3 ⪯Rmax S. Thus, S3 ≃AS S.

Proposition 3.8. |X3 | = |X |,TranSize(S3) ≤ TranSize(S), and
S3 contains no transitions or initial states that are younger siblings of
another transition or initial state, respectively. Moreover, if there is any
younger sibling transition or initial state in S, then TranSize(S3) <

TranSize(S).

Step 4: Removing states inaccessible from initial state set
X0 inS. LetX∞ be the set of such states inaccessible from any initial

state in X0. Then S4 B (X4,X0,U ,δ4,Y ,H), where X4 = X \ X∞,

δ4 = δ ∩ (X4 ×U4 × X4).

Lemma 3.9. S4 �AS S

Proposition 3.10. |X4 | ≤ |X |, TranSize(S4) ≤ TranSize(S),
and all states in S4 are accessible from X0,4. Moreover, if X∞ is
non-empty then |X4 | < |X |.

The combination of Lemmas 3.2, 3.5, 3.7 and 3.9 gives our main

correctness result:

Figure 4: System of Fig. 1 after step 4. This is a minimal sys-
tem modulo ASE.

(II) ∀(P ,Q) ∈ Rmax

1
.∃p ∈ P .∃q ∈ Q .(p,q) ∈ Rmax

. Note that ∀P ,Q ∈

X1.∃p ∈ P .∃q ∈ Q .(p,q) ∈ Rmax ⇒ ∀p′ ∈ P .∀q′ ∈ Q .(p′,q′) ∈

Rmax
. This is because every P ,Q ∈ X1 are sets containing states of

S which are equivalent modulo Rmax
. Hence, if any element of P is

related to any element Q with respect to Rmax
, then by transitivity

of Rmax
all elements of P are related to all elements of Q . Hence,

(II) implies (III) ∀(P ,Q) ∈ Rmax

1
.∀p ∈ P .∀q ∈ Q .(p,q) ∈ Rmax

. The

following fact holds:

Lemma 3.3. (1) Rmax

1
is the maximal ASR from S1 to itself. More-

over, (2) Rmax

1
is a partial order.

In fact, if Rmax
is a partial order (i.e., (p,q) ∈ Rmax =⇒ (q,p) <

Rmax
for every p , q), then step 1 does not affect S.

Proposition 3.4. |X1 | ≤ |X | and TranSize(S1) ≤ TranSize(S),
and no pair P ,Q of X1 is equivalent modulo AS. Moreover, if Rmax is
not antisymmetric, then |X1 | < |X |.

Step 2: Removing irrational and redundant controller
choices. We construct S2 := (X2,X0,2,U2,δ2,Y2,H2) from S as

follows. X2 = X , X0,2 = X0, U2 = U , Y2 = Y , H2 = H . Be-

fore defining δ2, we define an ordering ⊑S on elements of X ×U :

(p′,u ′) ⊑S (p,u) ⇐⇒ u ∈ U (p) ∧ ∀(p,u,q) ∈ δ .∃(p′,u ′,q′) ∈

δ .(q′,q) ∈ Rmax
. Note that ⊑ is a transitive relation. We say that

an action u ′ is an irrational move at a state p of an LTS S iff

∃u .(p,u) ⊑S (p,u ′) ∧ ¬((p,u ′) ⊑S (p,u)). State p in this case is

said to have irrational moves. Similarly, we say that u,u ′ are equally
rational at a statep of an LTS iff (p,u) ⊑S (p,u ′)∧((p,u ′) ⊑S (p,u)).
Moreover, if u and u ′ are distinct then the state p, in this case, is

said to have redundant moves. We construct δ2 by removing all the

transitions on irrational actions at p. Followed by this, we make

available only one of the equally rational actions. This procedure

preserves equivalence modulo AS. Let I : X 7→ X be the identity

function.

Lemma 3.5. S2 ⪯I S ⪯Rmax S2. Hence, S ≃AS S2.

Proposition 3.6. |X2 | = |X |, TranSize(S2) ≤ TranSize(S), and
for every state q ∈ X2, U2(q) only contains non-redundant rational
actions. Moreover, if there are irrational or redundant actions available
from any state q in S, then TranSize(S2) < TranSize(S).

Step 3: Eliminating Irrational Choices for Environment.
We constructS3 := (X3,X0,3,U3,δ3,Y3,H3) fromS as follows.X3 =

X , U3 = U , Y3 = Y , H3 = H . Before the construction of X0,3 and

δ3 we define a new relation amongst transitions: any transition

(p,u,q′) in δ is called a younger sibling of a transition (p,u,q) in δ
with respect to S iff (q,q′) ∈ Rmax ∧ (q′,q) < Rmax

. Similarly, an

initial state q′
0
is called a younger sibling of yet another initial state

q0 with respect toS iff (q0,q
′
0
) ∈ Rmax∧(q′

0
,q0) < R

max
. Then,X0,3

and δ3 are constructed from X0 and δ by deleting all the younger

siblings. In other words, given any state p and u ∈ U (q), if there
are two transitions (p,u,q′) and (p,u,q) in δ and if q ⪯AS q′ but
not vice-versa (i.e., q is strictly more advantageous position for the

environment as compared to q′) then delete the transition (p,u,q′)
from S, as the environment has no reason to choose q′ over q. Note
that this definition is similar to the younger brother definition of [7],

but here we need to take the label of the transitions into account

while defining the “sibling” relationship due to the definition of AS.

Lemma 3.7. S ⪯I S3 ⪯Rmax S. Thus, S3 ≃AS S.

Proposition 3.8. |X3 | = |X |, TranSize(S3) ≤ TranSize(S), and
S3 contains no transitions or initial states that are younger siblings of
another transition or initial state, respectively. Moreover, if there is any
younger sibling transition or initial state in S, then TranSize(S3) <

TranSize(S).

Step 4: Removing states inaccessible from initial state set
X0 inS. LetX∞ be the set of such states inaccessible from any initial

state in X0. Then S4 := (X4,X0,U ,δ4,Y ,H), where X4 = X \ X∞,

δ4 = δ ∩ (X4 ×U4 × X4).

Lemma 3.9. S4 �AS S

Proposition 3.10. |X4 | ≤ |X |, TranSize(S4) ≤ TranSize(S), and
all states in S4 are accessible fromX0,4. Moreover, ifX∞ is non-empty
then |X4 | < |X |.

HSCC ’22, May 4–6, 2022, Milan, Italy Gabriel de A. Gleizer, Khushraj Madnani, and Manuel Mazo Jr.

The combination of Lemmas 3.2, 3.5, 3.7 and 3.9 gives our main

correctness result:

Theorem 3.11. S ≃AS S4(S3(S2(S1(S)))).

3.3 Optimality results
Theorem 3.12 (Necessary Condition for Minimal Eqiv-

alent System modulo AS). Given any LTS S, a minimal LTS
Smin := (Xmin ,X0,min ,Uminδmin ,Ymin ,Hmin) equivalent to the
former modulo AS necessarily satisfies the following conditions:

N1 For any p,q ∈ Xmin , (Smin(p) ≃AS Smin(q)) ⇒ p = q. That
is, no two distinct states are equivalent modulo AS to each
other.

N2 For any p ∈ Xmin , p does not have any irrational or redundant
moves.

N3 � t1, t2 ∈ δmin ,x1,x2 ∈ X0,min such that t1 is a younger
sibling of t2 or x1 is a younger sibling of x2.

N4 All the states in Xmin are connected from some x0 ∈ X0,min .

Proof. This theorem is a consequence of Propositions 3.4,3.6,3.8,

3.10. If any condition i ∈ {1, 2, 3, 4} is violated by Smin, Step i can
be applied to get a strictly smaller system preserving equivalence

modulo AS which contradicts that Smin is minimal. □

Lemma 3.13. Sout = S4(S3(S2(S1(S)))), satisfies the necessary
conditions in Theorem 3.12.

By Proposition 3.4, we know that after step 1 we get a S1(S) that
satisfies N1. The proof then shows that after performing each step i ,
we get a system satisfying Ni . Moreover, if the input to the system

satisfied any of the previous properties, theywill continue to respect

it.

We call any LTS satisfying the conditions in Theorem 3.12 as

potentially minimal systems.
In the following we show that the conditions in Theorem 3.12

are also sufficient for minimality modulo ASE. In fact, we prove

something stronger: such aminimal system is unique up to a variant

of isomorphism which we introduce as bijective alternating bisim-

ulation isomorphism (BABI). We show this by proving that any

two potentially minimum systems S1 and S2 such that S1 ≃AS S2

implies that they are BABI to each other. It is important to note that

for two structures to be connected via a BABI implies the existence

of a bijective alternating bisimulation relation, but the converse is

not necessarily true. Hence, the former is stricter than the latter. In

fact, the existence of a bijective alternating bisimulation does not

necessarily preserve the transition size
5
.

Definition 3.14 (Bijective Alternating Bisimulation Isomorphism).
Given any two systems Sj := (X j ,X0, j ,Ujδj ,Yj ,Hj), j ∈ {1, 2}, we

say that S1 �is S2 iff there exists a bijective functionA : X1 7→ X2

such that ∀p ∈ X1.A(p) = q implies:

(1) p ∈ X0,1 ⇐⇒ q ∈ X0,2.

(2) H1(p) = H2(q). Vertex labelling is preserved.

(3) There exists a bijectionGp,q : U1(p) 7→ U2(q) such that ∀a ∈

U1(p). Post
S2 (q,b) = {A(p′) | p′ ∈ Post

S1 (p,a)} where

b = Gp,q (a).

5
Consider single state systems B1, B2 one with self loop on a and other with two self

loops each on a and ã.

Hence, S1 �is S2 implies |X0 | = |X1 | (implied by the existence

of bijection A), |X0,1 | = |X0,2 | (implied by 1 and bijectivity of A),

total number of transitions are equal in both S1,S2 (implied by 3).

Hence, |X1 | = |X2 | ∧ TranSize(S1) = TranSize(S2).

Lemma 3.15. Let S1 and S2 be any potentially minimal systems.
Then, S1 ≃AS S2 implies S1 �is S2.

Proof. Given potentially minimal systems j ∈ 1, 2, Sj := (X j ,

X0, j , ,Uj ,δj ,Yj ,Hj), such that S1 ≃AS S2 we show that S1 �is S2.

As S1 ≃AS S2, denote the maximal ASR from S1 to S2 by Rmax

1

and that from S2 to S1 by R
max

2
. Let A ⊆ X1 × X2 such that A :=

{(p,q) | (p,q) ∈ Rmax

1
∧ (q,p) ∈ Rmax

2
} = Rmax

1
∩ (Rmax

2
)−1. Note

that any pair (p,q) ∈ A iff S1(p) ≃AS S2(q). We prove the result

by showing that A is a bijection satisfying all the 3 conditions of

the Def. 3.14. Condition 2 is straightforward: every pair of states

occurring in A are equivalent modulo Alternating Simulation and

hence have identical labels.

Now let us focus on Condition 3. We show that A is a relation

satisfying condition 3 of Def. 3.14. For that, we construct a relation

Gp,q satisfying condition 3; then we see it is a bijection. Note that

any (p,q) ∈ A implies (C1) (p,q) ∈ Rmax

1
∧ (C2) (q,p) ∈ Rmax

2
.

Construct a candidate relation G ′
p,q satisfying the conse-

quent of condition 3 of Def. 3.14. The former implies (C1.1) for

every a ∈ U1(p) we can choose a b ∈ U2(q) such that for every state

q′ ∈ Post
S2 (q,b) we can find a state p′ ∈ Post

S1 (p,a) such that p′

⪯AS q′ ((p′,q′) ∈ Rmax

1
).

(C2) and (C1.1) together imply (C2.1) for the b chosen in previous

step (C1.1) we can find an a′ ∈ U1(p) such that for every state

p′′ ∈ Post
S1 (p,a′) we can find a state q′′ ∈ Post

S2 (q,b) such that

q′′ ⪯AS p′′ ((q′′,p′′) ∈ Rmax

2
.

Combining (C1.1 and C2.1) we get (C3.1)∀a ∈ U1(p).∃b ∈ U2(q).

∃a′ ∈ U1(p) such that for every state p
′′ ∈ Post

S1 (p,a′) there exists

a state q′′ ∈ Post
S2 (q,b) such that (q′′,p′′) ∈ Rmax

2
. Moreover, for

this q′′ we can find a state p′ ∈ Post
S1 (p,a) such that (p′,q′′) ∈

Rmax

1
(p′ ⪯AS q′′). Hence, by transitivity of alternating simulation

pre-order, for every state p′′ ∈ Post
S1 (p,a′) there exists a state

p′ ∈ Post
S1 (p,a) such that p′′ ⪯AS p′. Hence, (p,a) ⊑S1

(p,a′).
Thus, if a , a′ then a is either redundant or an irrational choice for

the controller at state p in LTS S1. This contradicts the assumption

that S1 satisfies condition N2. Hence, (C4)a = a′.
Thus combining (C3.1) and (C4) we get (C3) for any a ∈ U1(p)

we can find b ∈ U2(q) such that for every state in p′ ∈ Post
S1 (p,a)

we can find q′ ∈ Post
S2 (q,b) such. that q′ ⪯AS p′ ((q′,p′) ∈ Rmax

2
);

at the same time, by (C1.1), for every state q′′ ∈ Post
S2 (q,b) there

exists a state in p′′ ∈ Post
S1 (p,a) such that p′′ ⪯AS q′′ ((p′′,q′′) ∈

Rmax

1
).

Note that (C3) is equivalent to ψ (p,q) := ∀a ∈ U1(p).∃b ∈

U2(q).φ(p,q,a,b), where φ(p,q,a,b) = φ1(p,q,a,b) ∧ φ2(p,q,a,b),

φ1 := ∀p′ ∈ Post
S1 (p,a). ∃q′ ∈ Post

S2 (q,b). (q′,p′) ∈ Rmax

2
and

φ2 := ∀q′′ ∈ Post
S2 (q,b). ∃p′′ ∈ Post

S1 (p,a). (p′′,q′′) ∈ Rmax

1
. Let

G ′
p,q ⊆ U1(p) ×U2(q) such that (a,b)∈G ′

p,q iff φ(p,q,a,b) holds.

Verify that G ′
p,q satisfies the consequent of condition 3.

Note that for every (a,b) ∈ G ′
p,q we have that every state in p′ ∈

Post
S1 (p,a) some state in q′ ∈ Post

S2 (q,b) such that q′ ⪯AS p′

A Simpler Alternative: Minimizing Transition Systems Modulo Alternating Simulation Equivalence HSCC ’22, May 4–6, 2022, Milan, Italy

((q′,p′) ∈ Rmax

2
, due to φ1), which in turn, due to φ2, satisfies

q′ ⪯AS p′′ for some state p′′ ∈ Post
S1 (p,a) (i.e, (p′′,q′) ∈ Rmax

1
).

Now we prove that p′ = p′′ by contradiction. Suppose that

p′ , p′′. Then, by transitivity of alternating simulation, p′ ⪯AS
p′′. Hence, transition (p,a,p′′) is a younger sibling of transition

(p,a,p′) which contradicts the assumption that N3 is satisfied by

S1. Hence (C5) p
′ = p′′

Thus, (C5.1) for any (a,b) ∈ G ′
p,q , for eachp

′ ∈ Post
S1 (p,a) there

is a state q′ ∈ Post
S2 (q,b) such that p′ ⪯AS q′ (by φ1). Moreover,

this q′ is in turn alternately simulates p′ (by C5 and φ2). Hence,
(p′,q′) ∈ A. Now we prove that there is a unique q′ such that

(p′,q′) ∈ A. (C5.2) Suppose there exists a p′ ∈ Post
S1 (p,a) that ⪰

two distinct states q′,q′′ ∈ Post
S2 (q,b), then by (C5.1) (p′,q′) ∈ A

and (p′,q′′) ∈ A. This would imply that q′ and q′′ are equiva-

lent modulo AS. This contradicts the assumption that S2 satis-

fies N1. Hence, for every p′ ∈ Post
S1 (p,a) there exists a unique

q′ ∈ Post
S2 (q,b) such that (p′,q′) ∈ A. By symmetry of condition

φ, for every q′ ∈ Post
S2 (q,b) there exists a unique p′ ∈ Post

S1 (p,a)
such that (p′,q′) ∈ A.

This implies (C6) Post
S2 (q,b) = {q′ | (p′,q′) ∈ A and p′ ∈

Post
S1 (p,a)}. Hence, byψ (p,q) we have (C7) i.e.For any a ∈ U1(p)

we can find b ∈ U2(q) such that (a,b) ∈ G ′
p,q .

By symmetry, repeating all steps starting from (C2), we get (C8)

for any (p,q) ∈ A we can construct a relationG ′′
q,p ⊆ U2(q)×U1(p)

such that Post
S1 (p,a) = {p′ |(q′,p′) ∈ A−1 ∧ q′ ∈ Post

S1 (q,a)},
reading (9) ∀b ∈ U2(q).∃a ∈ U1(p).(b,a) ∈ G ′′

q,p .

Building the bijectionGp,q .Wenowprove thatGp,q := G ′
p,q∩

G ′′−1
q,p is a well-defined bijective function such that for any a ∈

U1(p),b ∈ U2(q), b = Gp,q (a) =⇒ Post
S2 (q,b) = {q′ | (p′,q′) ∈

A and p′ ∈ Post
S1 (p,a)}. This proves that A satisfies the required

condition 3.

(10) ForGp,q to be a well-defined function, we need to show that

for any a ∈ U1(p), there is (A) at least 1 and (B) at most 1 b ∈ U2(q)
such that (a,b) ∈ Gp,q ; (A) is implied by (C7).

For (B), assume that for distinct b1,b2 ∈ U2(q) (a,b1), (a,b2) ∈

Gp,q . By (C6), we get that Post
S2 (q,b1) = {q′ | (p′,q′) ∈ A and p ∈

Post
S1 (p,a)} = Post

S2 (q,b2). But this implies thatb1 is a redundant
controller choice at state q in LTS S2 which contradicts N2 for

system S2. Hence, Gp,q is a well-defined function. Applying the

same reasoning on G−1
q,p = G

−1
p,q ∩G ′′

q,p , we get that G
−1
q,p is also a

well-defined function, proving that Gp,q is a bijection.

AsGp,q contains elements fromG ′
p,q , any (a,b) ∈ Gp,q satisfies

(C6). HenceGp,q is the required bijection for condition 3 in Def. 3.14.

A is a bijection and satisfies condition 1: (C11) First we show
that every initial state is related to a unique initial state. That is,

(C11.1A0 := A∩(X0,1 ×X0,2) is a bijection betweenX0,1 andX0,2.

We first show by contradiction that A0 is a well-defined function.

If it is not, then there exists a state p ∈ X0,1 such that (C11.2) either

p is not related to any state q inA0 or, (C11.3) ∃q,q′ ∈ X0,2.(p,q) ∈
A0∧(p,q′) ∈ A0∧q , q

′
. Note that Rmax

2
is an ASR from S2 to S1,

hence from condition (C11.1) of Def. 2.1,p being an initial state ofS1

implies∃q′.(q′,p) ∈ Rmax

2
. Now, (due to similar restrictions imposed

by condition (C11.1) for Rmax

1
being an ASR from S1 to S2) this q

′
is

related with some initial state p′ of S1. Hence, ∃p′.(p′,q′) ∈ Rmax

1
.

Now note that if p′ = p, then (p,q′) should be in A0 (by definition)

which contradicts the assumption that (C11.2) holds. If p′ , p, we
have S1(p) ⪯AS S2(q

′) ∧ S1(q
′) ⪯AS S2, (p) ∧ p , p′. Hence, by

transitivity of ⪯AS , p ⪯AS p′, p , p′ and both are initial states.

This implies that p is an initial state which is younger sibling of

p′, which contradicts the assumption that S1 satisfies condition N3.

Note that to prove A0 is a bijection, it suffices to show that A−1
0

is a well-defined function, which is a symmetrical proof to that of

A0.

(C12) Now we show that A is a partial function. That is,
every p ∈ X1 is mapped to a unique q ∈ X2 viaA. Suppose it is not,

i.e., there exists a state p ∈ X1 which is related to two distinct states

q,q′ ∈ X2. Hence, (p,q), (p,q
′) ∈ A. By definition of A, we have

that (q,p) ∈ Rmax

2
and (p,q′) ∈ Rmax

1
, implying (by transitivity)

that q ⪯AS q′; symmetrically, (p,q) ∈ Rmax

1
and (q′,p) ∈ Rmax

2
,

implying that q′ ⪯AS q. Thus, q and q′ are equivalent modulo AS

which is a contradiction as S2 satisfies N1. Symmetrically, A−1
is

a partial function relation.

(C13) Note that by (C11) every initial state is mapped to some

initial state. By (C12), every state is mapped to a unique state. Hence,

every initial state can only be mapped to a unique initial state.
We now show that A (and by symmetry A−1) is a well-

defined function.We already showed that A (and A−1
) are par-

tial functions (C12). It remains to be proved that a state in X1 can

be mapped to at least one state in X2 under A (and vice-versa un-

der A−1
). We already showed the latter for states in X0; we now

show it for the remaining states. We prove this using contradic-

tion. Assume that there exists a state in X1 that is not mapped to

any state in X2 under A. Let P be the set of all such states. As X1

is a finite set, so is P. Note that by assumption N4, S1 does not

contain any inaccessible state. Hence, every state in p ∈ X1 can be

reached from some initial state in p0 ∈ X0,1 in |X1 | or less steps.

Let c be the minimum number of steps required to reach the state

p′ ∈ P that is the nearest to the initial state set. That is, no state

in P can be reached in c − 1 or less steps and there is at least 1

state p′ ∈ P that is reachable from initial state in c steps. Consider
a state p ∈ Pre(p′,a) for some a ∈ U1. Because p is reachable in

c − 1 steps, there exists a q ∈ X2 such that (p,q) ∈ A. Now we

recover (C5.2): for every a ∈ U1(p).∃b ∈ U2(q).∀p′′ ∈ Post
S1 (p,a)

there exists a unique q′′ ∈ Post
S2 (q,b) such that (p′′,q′′) ∈ A.

This implies that for p′ too there exists a unique q′ ∈ Post
S2 (q,b)

such that (p′,q′) ∈ A. This leads to the contradiction, thus A is a

well-defined function. By symmetry, the same holds for A−1
. This

implies A is a bijection. □

Lemmas 3.13 and 3.15 imply our main optimality result:

Theorem 3.16. The systemSout = S4(S3(S2(S1(S)))) is the unique
(up to BABI) minimal system that is ASE to S.

4 CASE STUDY: SCHEDULING PETC SYSTEMS
Event-triggered control (ETC) is an aperiodic sampled-data control

paradigm where a plant samples its state and sends it to a controller
upon the occurrence of a designed event. Immediately after, the

controller calculates a control input that is sent to the actuators of

the plant. Despite reducing control-related traffic, ETC’s aperiodic

traffic makes it challenging to accommodate multiple ETC loops

HSCC ’22, May 4–6, 2022, Milan, Italy Gabriel de A. Gleizer, Khushraj Madnani, and Manuel Mazo Jr.

Plant 1

Controller

Network

𝑥"!

𝑢!
request1

Plant 𝑝

𝑥""

𝑢"
request𝑝

𝑢# 𝑥"# request𝑖

…

Figure 5: A network of p ETC systems. Plant i can decide
(based on the event occurrence) when to send its state sam-
ple x̂ i or the controller can request it.

sharing a communication channel: packet collisions are bound

to happen, putting the stability of the controlled plants at risk.

Therefore, a scheduler must be introduced in the system, in order to

adjust the traffic and prevent said collisions, while ensuring stability

and performance of the individual plants.

Figure 5 depicts a networked control system (NCS) with multiple

control loops sharing a single communication channel. The plants

are described by an ordinary differential equation (ODE), and the

controller runs individual control functions for each of the plants,

as follows:

Ûx i (t) = fi (x i (t),ui (t),wi (t)),

ui (t) = дi (x̂ i (t)),
(1)

where x i (t) ∈ Rni is the state of plant i , ui (t) ∈ Rmi
is its control

input, and wi (t) ∈ R
di

represents the external disturbances that

act on it. The variable x̂ represents the sampled-and-held version

of state x , satisfying

x̂ i (t) =

{
x(ti,k), if t ∈ [ti,k , ti,k+1),

0, otherwise,

(2)

where ti,k ∈ R+ represents the k-th communication instant for

the data of plant i . In regular ETC, the communication instants are

dictated by a triggering condition, such as the seminal one proposed

in [31]:

ti,k+1 = t
trigger

i,k+1 := sup{t ∈ hN | t > ti,k and ϕ(x i (t), x̂ i (t)) ≤ 0},

ϕ(x i (t), x̂ i (t)) = |x i (t) − x̂ i (t)| − σi |x i (t)| ,
(3)

where σi ∈ [0, 1) is a design parameter. The parameter h discretizes

the time axis, meaning that events can only take place in multiples

of h. This represents, for simplicity, also the channel occupancy
time, which is the time it takes for a state measurement x̂ i (t) and
the subsequent control action ui (t) to be sent over the network. In

fact, this discretization makes the sampling effectively a periodic

event-triggered control, or PETC [18].

If multiple control systems operate with communication instants

dictated by (3), it is generally impossible to prevent communication

conflicts in the network; hence we introduce a possibility for the

controller to request a state sample for any plant before its event
actually happens. This can prevent collisions, while it is also sound

from a control-systems perspective: in ETC, events are designed to

happen before an underlying Lyapunov function stops decreasing

sufficiently fast, thus ensuring closed-loop stability, see, e.g., [17, 31].

This makes early sampling a safe choice from a control performance

perspective, and this feature has been extensively exploited in the

event-based literature [3, 26], including in the context of scheduling

of ETC systems [12]. Therefore, the sampling times ti,k can either

occur upon triggering of the condition as in (3), or be requested
earlier by the scheduler, satisfying

ti,k+1 ∈ {t ∈ hN | t > ti,k and t ≤ t
trigger

i,k+1 }. (4)

The quantity τi,k := ti,k+1−ti,k is called inter-sample time. When

given these degrees of freedom, the most fundamental question

one needs to answer is whether it is possible for a scheduler to

coordinate the traffic generated by the p PETC loops while avoiding

collisions and ensuring that the communications are timely. We

assume that the device that runs the scheduler is capable of listening

to all traffic, thus having access to the sampled states of all systems.

In fact, this can be the same device that runs the control functions,

which is the case depicted in Fig. 5.

The early-sampling PETC schedulability problem. Consider
a network containing p control-loops (1) and C < p communica-

tion channels with channel occupancy time h. Our main goal is

to determine whether there exists a strategy that, at every time

t ∈ hN, given the available sampled states x̂ i (ti,k),∀i,k such that

ti,k < t , determines which (if any) loops must send their samples

to the controller. The number of loops sending their samples must

be no greater than c , and for each loop i , t ≤ t
trigger

i,k+1 must hold; that

is, no controller can miss its deadline t triggeri,k+1 . If a scheduler can be

found, we also want to retrieve one such scheduling strategy for

real-time implementation.

For simplicity, we assume for the rest of this paper that the time

units are selected such that h = 1.

4.1 PETC traffic models as finite-state
transition systems

The problem described above can be seen as a safety control syn-

thesis problem for a hybrid system, which is in general undecidable

[1, 20]. To deal with decidable problems, the control loops i have
been abstracted as timed-game automata (TGA) in [23], and later

as regular transition systems in [12], by assuming the same dis-

crete nature of sampling instants as we assume here. For details

on how to construct such abstractions, see [12, 13] for linear sys-

tems without disturbance, and [15] for general perturbed nonlinear

systems. In these abstractions, each state q is a different region

Rq ⊂ Rn and associated an interval of possible inter-sample times

{τ lowq ,τ lowq + 1, ...τ
high

q } at which a trigger can occur. The sched-

uler can choose to sample earlier than τ lowq , or sample during the

aforementioned interval as long as a trigger has not yet occurred.

From each state q, the set of possible regions reached depends on

the chosen inter-sample time τ , regardless of whether the sample

is determined by the scheduler or the triggering condition. Hence,

the abstraction process outputs a set of transitions ∆ ⊂ Q ×T ×Q,
where (q, c,q′) ∈ ∆ means that q′ ∈ Q can be reached from q ∈ Q
if the inter-sample time is τ ∈ T . From this, we derive the following

definition of PETC traffic model:

A Simpler Alternative: Minimizing Transition Systems Modulo Alternating Simulation Equivalence HSCC ’22, May 4–6, 2022, Milan, Italy

Definition 4.1 (PETC traffic model). A finite PETC traffic model

with scheduler actions is the transition system SPETC := (X ,X0,

{w, s},δwait ∪ δsched ∪ δtrigger,H) where

• X = {(q, c) | q ∈ Q, c ∈ {1, 2, ...,τ
high

q }},

• δwait = {(q, c), w, (q, c + 1) | (q, c) ∈ X and c < τ
high

q },

• δ
sched

= {(q, c), s, (q′, 0) | (q, c) ∈ X and (q, c,q′) ∈ ∆},

• δtrigger = {(q, c), w, (q′, 0) | (q, c) ∈ X and c ≥ τ lowq
and (q, c,q′) ∈ ∆},

• H (q, c) = T if c = 0, or W otherwise.

The actions w (for wait) and s (for sample) are the scheduler

actions; as the spontaneous trigger of a given loop is out of the con-

trol of the scheduler, these transitions are considered (adversarial)

nondeterminism for the scheduler. This is why the set δtrigger is a
set of sampling transitions, but they occur when the action wait
is chosen. The output T represents when a transmission has just

occurred, whileW means that the loop waited. The initial state

depends on the particularities of the scheduling problem and will

be discussed later.

Our running example, Fig. 1, depicts a simple PETC traffic model

with only two regions. This example contains only two regions R0

and R1, mapped into q0 and q1, respectively, with τ
low

q0 = τ
high

q0 = 2,

and τ lowq1 = 3 and τ
high

q1 = 4. The states (q1, 3) and (q1, 4) represent
the triggering phase of place q1: even if the scheduler decides to

wait, the sampling can occur in any of these states.

4.2 A general result on ETC scheduling
Using the reduction in Section 3, a first general result can be derived

for scheduling of PETC.

Definition 4.2 (Reduced PETC traffic model). A reduced PETC traf-

fic model with scheduler actions is the transition system S′
PETC

:=

(X ′,X0 ∩ X ′, {w, s},δ ′
wait

∪ δ ′
sched
,H) where

• X ′ = {(q, c) | q ∈ Q, c ∈ {1, 2, ...,τ lowq }},

• δ ′
wait
= {(q, c), w, (q, c + 1) | (q, c) ∈ X ′

and c < τ lowq },

• δ ′
sched

= {(q, c), s, (q′, 0) | (q, c) ∈ X ′
and (q, c,q′) ∈ ∆},

• H (q, c) = T if c = 0, or W otherwise.

The difference between Def. 4.2 and Def. 4.1 is that, in the former,

the sampling always happens at most at τ lowq for every q, and that

this point in time it is a scheduled sampling. In other words, there is

no event-based sampling anymore, but the scheduler may decide to

sample at the first moment in which it knows that an event trigger

could occur. This is very similar in spirit to self-triggered control
(STC, see [3, 26]), where the controller chooses the sampling time

by predicting a worst-case situation in which the event-triggered

control would occur. Thus, Def. 4.2 is can also be regarded as a traffic

model for STC systems, again allowing early sampling. Fig. 6 shows

the reduced model from Fig. 1. The interesting fact is that these

two approaches are equivalent from a schedulability perspective:

Proposition 4.3.
6 The PETC traffic model from Def. 4.1 and its

reduced model from Def. 4.2 are alternating-simulation equivalent,
provided X0 ⊆ X ′.

6
See the proof in the arXiv preprint of this paper, arXiv:2203.01672.

A Simpler Alternative: Minimizing Transition Systems Modulo Alternating Simulation Equivalence HSCC ’22, May 4–6, 2022, Milan, Italy

• X = {(q, c) | q ∈ Q, c ∈ {1, 2, ...,τ
high
q }},

• δwait = {(q, c), w, (q, c + 1) | (q, c) ∈ X and c < τ
high
q },

• δ
sched

= {(q, c), s, (q′, 0) | (q, c) ∈ X and (q, c,q′) ∈ ∆},
• δtrigger = {(q, c), w, (q′, 0) | (q, c) ∈ X and c ≥ τ lowq

and (q, c,q′) ∈ ∆},
• H (q, c) = T if c = 0, or W otherwise.

The actions w (for wait) and s (for sample) are the scheduler

actions; as the spontaneous trigger of a given loop is out of the con-

trol of the scheduler, these transitions are considered (adversarial)

nondeterminism for the scheduler. This is why the set δtrigger is a
set of sampling transitions, but they occur when the action wait
is chosen. The output T represents when a transmission has just

occurred, whileW means that the loop waited. The initial state

depends on the particularities of the scheduling problem and will

be discussed later.

Our running example, Fig. 1, depicts a simple PETC traffic model

with only two regions. This example contains only two regions R0

andR1, mapped intoq0 andq1, respectively, with τ
low
q0
= τ

high
q0

= 2,

and τ lowq1
= 3 and τ

high
q1

= 4. The states (q1, 3) and (q1, 4) represent
the triggering phase of place q1: even if the scheduler decides to

wait, the sampling can occur in any of these states.

4.2 A general result on ETC scheduling
Using the reduction in Section 3, a first general result can be derived

for scheduling of PETC.

Definition 4.2 (Reduced PETC traffic model). A reduced PETC traf-

fic model with scheduler actions is the transition system S′
PETC

B

(X ′,X0 ∩ X ′, {w, s},δ ′
wait

∪ δ ′
sched
,H) where

• X ′ = {(q, c) | q ∈ Q, c ∈ {1, 2, ...,τ lowq }},

• δ ′
wait
= {(q, c), w, (q, c + 1) | (q, c) ∈ X ′

and c < τ lowq },

• δ ′
sched

= {(q, c), s, (q′, 0) | (q, c) ∈ X ′
and (q, c,q′) ∈ ∆},

• H (q, c) = T if c = 0, or W otherwise.

The difference between Def. 4.2 and Def. 4.1 is that, in the former,

the sampling always happens at most at τ lowq for every q, and that

this point in time it is a scheduled sampling. In other words, there is

no event-based sampling anymore, but the scheduler may decide to

sample at the first moment in which it knows that an event trigger

could occur. This is very similar in spirit to self-triggered control
(STC, see [3, 26]), where the controller chooses the sampling time

by predicting a worst-case situation in which the event-triggered

control would occur. Thus, Def. 4.2 is can also be regarded as a traffic

model for STC systems, again allowing early sampling. Fig. 6 shows

the reduced model from Fig. 1. The interesting fact is that these

two approaches are equivalent from a schedulability perspective:

Proposition 4.3.
6 The PETC traffic model from Def. 4.1 and its

reduced model from Def. 4.2 are alternating-simulation equivalent,
provided X0 ⊆ X ′.

The interpretation of this result is simple: the choice of waiting

at time τ lowq has no advantage over sampling, because in the worst

case the environment may choose to sample anyway. Hence, from

a schedulability perspective, ETC brings no benefit over a STC-like

6
See the proof in the arXiv preprint of this paper, arXiv:2203.01672.

q0,1

T
start

q0,2

W

q1,1

T
start

q1,2

W

q1,3

W

w

s

s

s

w

s

s

w

s

Figure 6: Reduced PETC traffic model of Fig. 1.

Table 1: Size of abstractions before and after minimization,
and CPU time to minimize the system (in all cases |X0 | = 1).

Original Quotient Minimal CPU

|X | |δ | |X | |δ | |X | |δ | time

l
1 153 832 118 571 11 21 657 ms

2 518 1879 405 1566 11 21 8.24 s

3 683 2412 604 2262 587 2126 15 s

sampling strategy that chooses to trigger on the earliest ETC triggering
time. Naturally, this general result does not give the minimal system,

which depends on the structure of the particular abstraction, as

will be illustrated in the next section.

4.3 Numerical example
Consider p two-dimensional open-loop-unstable linear systems,

borrowed from [31], of the form (1) where

fi (x i (t),ui (t),wi (t)) B

[
0 1
−2 3

]
x i (t) =

[
0
1

]
ui (t),

дi (x̂ i (t)) B
[
1 −4

]
x̂ i (t).

(5)

The triggering condition is (3) with σ = 0.7. Since all systems

have the same model, only one traffic abstraction is needed. We

use the abstraction method in [11], where a parameter l ∈ N is

given to define the depth of the abstraction process: the higher l
is, the tighter the simulation relation is w.r.t. the original infinite

system. Denote by ∆l ⊆ Ql ×T ×Ql the transition relation from

the abstraction using depth l , and the resulting PETC traffic model

(Def. 4.1) by Sl .

We consider the problem of scheduling on a single channel. From

a practical perspective, the scheduling problem requires an initial-

ization phase. When the systems are connected to the network,

their states will only be known to the scheduler (and the controller)

after the first sample. Because there is only one channel, the timing

of the initial transmissions have to be decided by the scheduler,

and this timing must be bounded to keep the plant’s state under a

reasonable distance from its initial value. LetT0 be this time bound

(in number of steps). To model this initialization phase, we append

to Sl the states i1, i2, ...iT0
and transitions ik

w
−→ ik+1 for all k < T0

and ik
s
−→ (q, 0) for all k ≤ T0 and q ∈ Ql . The initial set is simply

X0 = {i1}. In this example, T0 was set to 10.

Figure 6: Reduced PETC traffic model of Fig. 1.

The interpretation of this result is simple: the choice of waiting

at time τ lowq has no advantage over sampling, because in the worst

case the environment may choose to sample anyway. Hence, from

a schedulability perspective, ETC brings no benefit over a STC-like
sampling strategy that chooses to trigger on the earliest ETC triggering
time. Naturally, this general result does not give the minimal system,

which depends on the structure of the particular abstraction, as

will be illustrated in the next section.

4.3 Numerical example
Consider p two-dimensional open-loop-unstable linear systems,

borrowed from [31], of the form (1) where

fi (x i (t),ui (t),wi (t)) :=

[
0 1

−2 3

]
x i (t) =

[
0

1

]
ui (t),

дi (x̂ i (t)) :=
[
1 −4

]
x̂ i (t).

(5)

The triggering condition is (3) with σ = 0.7. Since all systems

have the same model, only one traffic abstraction is needed. We

use the abstraction method in [11], where a parameter l ∈ N is

given to define the depth of the abstraction process: the higher l
is, the tighter the simulation relation is w.r.t. the original infinite

system. Denote by ∆l ⊆ Ql ×T ×Ql the transition relation from

the abstraction using depth l , and the resulting PETC traffic model

(Def. 4.1) by Sl .

We consider the problem of scheduling on a single channel. From

a practical perspective, the scheduling problem requires an initial-

ization phase. When the systems are connected to the network,

their states will only be known to the scheduler (and the controller)

after the first sample. Because there is only one channel, the timing

of the initial transmissions have to be decided by the scheduler,

and this timing must be bounded to keep the plant’s state under a

reasonable distance from its initial value. Let T0 be this time bound

(in number of steps). To model this initialization phase, we append

to Sl the states i1, i2, ...iT0 and transitions ik
w
−→ ik+1 for all k < T0

and ik
s
−→ (q, 0) for all k ≤ T0 and q ∈ Ql . The initial set is simply

X0 = {i1}. In this example, T0 was set to 10.

We implemented our minimization algorithm in Python and

performed the minimization on Sl , l = 1, 2, 3. The statistics of

the traffic model before and after minimization modulo ASE are

displayed in Table 1. The additional reduction w.r.t. only step 1

(quotient system) is evident in all cases. The most interesting phe-

nomenon is the striking reduction of the trafficmodels for l = 1, 2 to

HSCC ’22, May 4–6, 2022, Milan, Italy Gabriel de A. Gleizer, Khushraj Madnani, and Manuel Mazo Jr.

Table 1: Size of abstractions before and after minimization,
and CPU time to minimize the system (in all cases |X0 | = 1).

Original Quotient Minimal CPU

|X | |δ | |X | |δ | |X | |δ | time

l
1 153 832 118 571 11 21 657 ms

2 518 1879 405 1566 11 21 8.24 s

3 683 2412 604 2262 587 2126 15 sHSCC ’22, May 4–6, 2022, Milan, Italy Gabriel de A. Gleizer, Khushraj Madnani, and Manuel Mazo Jr.

Wstart W W W W W W W W W T

Figure 7: Minimized system for the numerical example, l ∈
{1, 2}. State labels are their outputs, dashed lines are w ac-
tions and full lines are s actions.

Table 2: Scheduler size and CPU time using BDDs.

Original Minimal

p l Schedule size CPU time Schedule size CPU time

2 1 3 kB 3 ms 894 B 498 µs

3 1 7.6 kB 8 ms 1.9 kB 783 µs

4 1 19 kB 16 ms 4.2 kB 1.4 ms

5 1 47 kB 36 ms 9.5 kB 2.5 ms

6 1 None 7.35 s None 101 ms

6 2 None 15.4 min None 84 ms
6 3 None 35.5 min None 28.1 min

We implemented our minimization algorithm in Python and

performed the minimization on Sl , l = 1, 2, 3. The statistics of

the traffic model before and after minimization modulo ASE are

displayed in Table 1. The additional reduction w.r.t. only step 1

(quotient system) is evident in all cases. The most interesting phe-

nomenon is the striking reduction of the trafficmodels for l = 1, 2 to
a system with only 11 states and 21 transitions, which is depicted in

Fig. 7. Not only this is a massive reduction which greatly simplifies

the scheduling problem, it also informs the user that refining the

traffic model by increasing l from 1 to 2 is irrelevant when it comes
to schedulability. As Fig. 7 suggests, these traffic models reduce to

a single task with recurring deadline of five steps, after the initial

phase. Only with l = 3 more complex behavior can be enforced by

the scheduler, which becomes apparent by the fact that the mini-

mization is not so impactfull: 14% in states and 12% in transitions.

This is to be expected because the original systems we abstract are

deterministic, and higher values of l reduce the nondeterminism

of the abstraction, giving less room for transition elimination in

our algorithm. In all cases, the CPU times are within seconds, with

an approximately quadratic dependence on the size of the original

system. It is worth noting that our Python implementation uses the

naive fixed-point algorithm to get the MAS relation, and this step

dominated the CPU time of the reduction. Since the times were

satisfactory, no performance optimizations were attempted.

Because of the refinement properties of the abstractions Sl
(namely Sl+1 ⪯AS Sl ⪯ Sl+1), scheduling with these abstrac-

tions is sound but not complete: if p ETC plants are detected to be

unschedulable for l , one may still find a schedule using a higher

value of l . Thus, we employed the following scenario: first, set l = 1
and p = 2 and increase p until the systems are unschedulable; then,

increase l and try again. We used the ETCetera tool [14] to solve the

scheduling problem, which has the functionality to create the traffic

models Sl , perform the parallel composition, and solve the safety

game: always avoid a state whose output contains more than one T.
Our first attempt used a Python implementation of the composition

and safety game solution, where the transitions are encoded with

dictionaries. Without minimization and with p = 2, the scheduling
problem took only 801 ms to be concluded, a number close to the

657 ms taken to minimize each system; this is expected, given the

quadratic complexity of the minimization algorithm. However, with

only p = 3 the scheduling problem without reduction crashed due
to memory overflow.7After performing the minimization, we were
able to compute a scheduler for p = 5, a process that took 28.7 min

to conclude. With p = 6, memory overflow also occurred with

the minimal systems. Our second attempt to solve the scheduling

problem used BDDs to encode the transition systems. Table 2 sum-

marizes the results of this experiment. As expected, for all cases

in l ∈ {1, 2} the problem was solved significantly faster with the

minimized systems. The difference is much more significant in the

non-schedulable cases, which is to be expected because it often

requires more iterations in the fixed-point algorithm to detect that

no schedule is viable. The difference is particularly massive for

l = 2, owing to the immense reduction of the system dimensions

in this case. For the case with l = 3 the time reduction was not as

significant as in the aforementioned cases, which is in par with the

smaller system size reduction that was obtained in this case.

5 CONCLUSION AND FUTUREWORK
We have revisited the notion of alternating simulation equivalence,

and argued about the benefits it can bring for size reduction of

finite transition systems in the context of controller synthesis. An

algorithm was devised to produce minimal abstractions modulo

alternating simulation equivalence. The applicability of these theo-

retical developments was then illustrated in the context of schedul-

ing, providing interesting insights for the analysis of schedulability

of event triggered systems.

This work opens the door to several further investigations, in

particular: (i) extending the ASE notion to weighted transition

systems to produce abstractions preserving quantitative properties;

(ii) extensions of these same ideas to timed games; (iii) designing

on-the-fly versions of the proposed reduction algorithm; and (iv)

implementing symbolically the abstraction algorithm employing

binary decision diagrams.

ACKNOWLEDGMENTS
This work is supported by the European Research Council through

the SENTIENT project, Grant No. ERC-2017-STG #755953 (https:

//cordis.europa.eu/project/id/755953).

REFERENCES
[1] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A Henzinger, P-H

Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. 1995. The

algorithmic analysis of hybrid systems. Theoretical computer science 138, 1 (1995),
3–34.

[2] Rajeev Alur, Thomas A Henzinger, Orna Kupferman, and Moshe Y Vardi. 1998.

Alternating refinement relations. In International Conference on Concurrency
Theory. Springer, 163–178.

[3] Adolfo Anta and Paulo Tabuada. 2008. Self-triggered stabilization of homoge-

neous control systems. In American Control Conference, 2008. IEEE, 4129–4134.

7
The experiments were performed in a Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz with

31 GB RAM.

Figure 7: Minimized system for the numerical example, l ∈
{1, 2}. State labels are their outputs, dashed lines are w ac-
tions and full lines are s actions.

Table 2: Scheduler size and CPU time using BDDs.

Original Minimal

p l Schedule size CPU time Schedule size CPU time

2 1 3 kB 3 ms 894 B 498 µs

3 1 7.6 kB 8 ms 1.9 kB 783 µs

4 1 19 kB 16 ms 4.2 kB 1.4 ms

5 1 47 kB 36 ms 9.5 kB 2.5 ms

6 1 None 7.35 s None 101 ms

6 2 None 15.4 min None 84 ms
6 3 None 35.5 min None 28.1 min

a system with only 11 states and 21 transitions, which is depicted in

Fig. 7. Not only this is a massive reduction which greatly simplifies

the scheduling problem, it also informs the user that refining the

traffic model by increasing l from 1 to 2 is irrelevant when it comes
to schedulability. As Fig. 7 suggests, these traffic models reduce to

a single task with recurring deadline of five steps, after the initial

phase. Only with l = 3 more complex behavior can be enforced by

the scheduler, which becomes apparent by the fact that the mini-

mization is not so impactfull: 14% in states and 12% in transitions.

This is to be expected because the original systems we abstract are

deterministic, and higher values of l reduce the nondeterminism

of the abstraction, giving less room for transition elimination in

our algorithm. In all cases, the CPU times are within seconds, with

an approximately quadratic dependence on the size of the original

system. It is worth noting that our Python implementation uses the

naive fixed-point algorithm to get the MAS relation, and this step

dominated the CPU time of the reduction. Since the times were

satisfactory, no performance optimizations were attempted.

Because of the refinement properties of the abstractions Sl
(namely Sl+1 ⪯AS Sl ⪯ Sl+1), scheduling with these abstrac-

tions is sound but not complete: if p ETC plants are detected to be

unschedulable for l , one may still find a schedule using a higher

value of l . Thus, we employed the following scenario: first, set l = 1

and p = 2 and increase p until the systems are unschedulable; then,

increase l and try again. We used the ETCetera tool [14] to solve the

scheduling problem, which has the functionality to create the traffic

models Sl , perform the parallel composition, and solve the safety

game: always avoid a state whose output contains more than one T.
Our first attempt used a Python implementation of the composition

and safety game solution, where the transitions are encoded with

dictionaries. Without minimization and with p = 2, the scheduling

problem took only 801 ms to be concluded, a number close to the

657 ms taken to minimize each system; this is expected, given the

quadratic complexity of the minimization algorithm. However, with

only p = 3 the scheduling problem without reduction crashed due
to memory overflow.7After performing the minimization, we were
able to compute a scheduler for p = 5, a process that took 28.7 min

to conclude. With p = 6, memory overflow also occurred with

the minimal systems. Our second attempt to solve the scheduling

problem used BDDs to encode the transition systems. Table 2 sum-

marizes the results of this experiment. As expected, for all cases

in l ∈ {1, 2} the problem was solved significantly faster with the

minimized systems. The difference is much more significant in the

non-schedulable cases, which is to be expected because it often

requires more iterations in the fixed-point algorithm to detect that

no schedule is viable. The difference is particularly massive for

l = 2, owing to the immense reduction of the system dimensions

in this case. For the case with l = 3 the time reduction was not as

significant as in the aforementioned cases, which is in par with the

smaller system size reduction that was obtained in this case.

5 CONCLUSION AND FUTUREWORK
We have revisited the notion of alternating simulation equivalence,

and argued about the benefits it can bring for size reduction of

finite transition systems in the context of controller synthesis. An

algorithm was devised to produce minimal abstractions modulo

alternating simulation equivalence. The applicability of these theo-

retical developments was then illustrated in the context of schedul-

ing, providing interesting insights for the analysis of schedulability

of event triggered systems.

This work opens the door to several further investigations, in

particular: (i) extending the ASE notion to weighted transition

systems to produce abstractions preserving quantitative properties;

(ii) extensions of these same ideas to timed games; (iii) designing

on-the-fly versions of the proposed reduction algorithm; and (iv)

implementing symbolically the abstraction algorithm employing

binary decision diagrams.

ACKNOWLEDGMENTS
This work is supported by the European Research Council through

the SENTIENT project, Grant No. ERC-2017-STG #755953 (https:

//cordis.europa.eu/project/id/755953).

REFERENCES
[1] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A Henzinger, P-H

Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. 1995. The

algorithmic analysis of hybrid systems. Theoretical computer science 138, 1 (1995),
3–34.

7
The experiments were performed in a Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz with

31 GB RAM.

https://cordis.europa.eu/project/id/755953
https://cordis.europa.eu/project/id/755953

A Simpler Alternative: Minimizing Transition Systems Modulo Alternating Simulation Equivalence HSCC ’22, May 4–6, 2022, Milan, Italy

[2] Rajeev Alur, Thomas A Henzinger, Orna Kupferman, and Moshe Y Vardi. 1998.

Alternating refinement relations. In International Conference on Concurrency
Theory. Springer, 163–178.

[3] Adolfo Anta and Paulo Tabuada. 2008. Self-triggered stabilization of homoge-

neous control systems. In American Control Conference, 2008. IEEE, 4129–4134.
[4] Karl Johan Åström and Bo Bernhardsson. 2002. Comparison of Riemann and

Lebesgue sampling for first order stochastic systems. In Proceedings of the 41st
IEEE Conference on Decision and Control, 2002, Vol. 2. IEEE, 2011–2016.

[5] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT

press.

[6] Jan A Bergstra, Alban Ponse, and Scott A Smolka. 2001. Handbook of process
algebra. Elsevier.

[7] Doron Bustan and Orna Grumberg. 2003. Simulation-based minimization. ACM
Transactions on Computational Logic (TOCL) 4, 2 (2003), 181–206.

[8] Christos G Cassandras, Stephane Lafortune, et al. 2008. Introduction to discrete
event systems. Vol. 2. Springer.

[9] Krishnendu Chatterjee, Siddhesh Chaubal, and Pritish Kamath. 2012. Faster

Algorithms for Alternating Refinement Relations. Computer Science Logic 2012
(2012), 167.

[10] Rance Cleaveland and Oleg Sokolsky. 2001. Equivalence and preorder checking

for finite-state systems. Handbook of Process Algebra (2001), 391–424.
[11] Gabriel de A. Gleizer, Khushraj Madnani, and Manuel Mazo Jr. 2021. Self-

Triggered Control for Near-Maximal Average Inter-Sample Time. In 60th IEEE
Conference on Decision and Control (accepted).

[12] Gabriel de A. Gleizer and Manuel Mazo Jr. 2020. Scalable traffic models for

scheduling of linear periodic event-triggered controllers. IFAC-PapersOnLine 53,
2 (2020), 2726–2732.

[13] Gabriel de A. Gleizer and M. Mazo Jr. 2021. Computing the sampling performance

of event-triggered control. In Proc. of the 24th Int’l Conf. on Hybrid Systems:
Computation and Control (Nashville, TN, USA) (HSCC ’21). ACM, Article 20,

7 pages.

[14] Giannis Delimpaltadakis, Gabriel de A. Gleizer, Ivo van Stralen, and M. Mazo Jr.

2022. ETCetera: beyond Event-Triggered Control. In Proc. of the 25th Int’l Conf.
on Hybrid Systems: Computation and Control (Milano, Italy) (HSCC ’22). ACM,

11 pages.

[15] Giannis Delimpaltadakis and Manuel Mazo Jr. 2021. Abstracting the Traffic of

Nonlinear Event-Triggered Control Systems. arXiv preprint arXiv:2010.12341,
under review (2021).

[16] Carsten Fritz and Thomas Wilke. 2002. State space reductions for alternating

büchi automata quotienting by simulation equivalences. In International Con-
ference on Foundations of Software Technology and Theoretical Computer Science.
Springer, 157–168.

[17] WPMH Heemels, Karl Henrik Johansson, and Paulo Tabuada. 2012. An introduc-

tion to event-triggered and self-triggered control. In Decision and Control (CDC),
2012 IEEE 51st Annual Conference on. IEEE, 3270–3285.

[18] W. P. M. H. Heemels, M. C. F. Donkers, and Andrew R. Teel. 2013. Periodic

event-triggered control for linear systems. IEEE Trans. Automat. Control 58, 4
(2013), 847–861.

[19] Monika Rauch Henzinger, Thomas A Henzinger, and Peter W Kopke. 1995. Com-

puting simulations on finite and infinite graphs. In Proceedings of IEEE 36th
Annual Foundations of Computer Science. IEEE, 453–462.

[20] Thomas A Henzinger and Peter W Kopke. 1995. Undecidability results for hybrid
systems. Technical Report. Cornell University.

[21] Thomas A Henzinger, Rupak Majumdar, and Jean-François Raskin. 2005. A

classification of symbolic transition systems. ACM Transactions on Computational
Logic (TOCL) 6, 1 (2005), 1–32.

[22] Paris C Kanellakis and Scott A Smolka. 1990. CCS expressions, finite state

processes, and three problems of equivalence. Information and computation 86, 1

(1990), 43–68.

[23] Arman Sharifi Kolarijani and Manuel Mazo Jr. 2015. Traffic Characterization

of LTI Event-triggered Control Systems: a Formal Approach. arXiv preprint
arXiv:1503.05816 (2015).

[24] David Lee and Mihalis Yannakakis. 1992. Online minimization of transition

systems. In Proceedings of the twenty-fourth annual ACM symposium on Theory
of computing. 264–274.

[25] RupakMajumdar. 2003. Symbolic algorithms for verification and control. University
of California, Berkeley.

[26] Manuel Mazo Jr., Adolfo Anta, and Paulo Tabuada. 2010. An ISS self-triggered

implementation of linear controllers. Automatica 46, 8 (2010), 1310–1314.
[27] M Mazo Jr, A Sharifi Kolarijani, D Adzkiya, and C Hop. 2018. Abstracted Models

for Scheduling of Event-Triggered Control Data Traffic. In Control Subject to
Computational and Communication Constraints. Springer, 197–217.

[28] Robin Milner. 1971. An algebraic definition of simulation between programs.

In Proceedings of the 2nd international joint conference on Artificial intelligence.
481–489.

[29] Peter JG Ramadge and W Murray Wonham. 1989. The control of discrete event

systems. Proc. IEEE 77, 1 (1989), 81–98.

[30] Francesco Ranzato and Francesco Tapparo. 2007. A New Efficient Simulation

Equivalence Algorithm. In 22nd Annual IEEE Symposium on Logic in Computer
Science (LICS 2007). 171–180. https://doi.org/10.1109/LICS.2007.8

[31] Paulo Tabuada. 2007. Event-triggered real-time scheduling of stabilizing control

tasks. IEEE Trans. Automat. Control 52, 9 (2007), 1680–1685.
[32] Paulo Tabuada. 2009. Verification and control of hybrid systems: a symbolic ap-

proach. Springer Science & Business Media.

[33] Manel Velasco, Josep Fuertes, and Pau Marti. 2003. The self triggered task model

for real-time control systems. InWork-in-Progress Session of the 24th IEEE Real-
Time Systems Symposium (RTSS03), Vol. 384.

https://doi.org/10.1109/LICS.2007.8

	Abstract
	1 INTRODUCTION
	1.1 Related Work
	1.2 Notation

	2 Preliminaries
	2.1 Labelled Transition Systems
	2.2 Alternating Simulation and Equivalence

	3 Main result
	3.1 Overview of the algorithm
	3.2 Preserving equivalence Modulo AS: correctness results
	3.3 Optimality results

	4 Case Study: scheduling PETC systems
	4.1 PETC traffic models as finite-state transition systems
	4.2 A general result on ETC scheduling
	4.3 Numerical example

	5 Conclusion and Future Work
	Acknowledgments
	References

