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1 PSA3, Prinses Margrietlaan 13, 8091 AV, Wezep, The Netherlands 

2 Faculty of Aerospace Engineering, TU Delft, The Netherlands 

 

ABSTRACT 

This paper proposes a fast method for calculating the acoustic time delay between an 

observer and a receiver in a shear flow. This method is applied to an outdoor microphone 

array measurement on a large-scale wind turbine. In such a set-up, a shear flow represents 

the actual wind field better than a uniform flow. Steering vectors for beamforming can be 

obtained by calculating the time delay between each point on a scan grid and each 

microphone. It is argued that omission in the steering vectors of the decay due to 

spherical spreading is preferable. Beamforming images show the benefits of ignoring the 

spherical spreading and of using a shear flow model. It is demonstrated that a shear flow 

model can also be used in combination with rotating source beamforming, again leading 

to beamforming improvements. 

 

1 INTRODUCTION  

Frequency-domain beamforming algorithms for microphone arrays [1] make use of so-

called steering vectors, the elements of which describe the assumed acoustic propagation from 

a potential source to the microphones. Basically, the steering vector elements include the 

phase shift between the sound emitted by the source and the signal recorded by the 

microphone and, optionally, the attenuation caused by spherical spreading with respect to the 

sound level at a reference distance from the source. 

The phase shift between source and microphone is directly related to the acoustic travel 

time between both, i.e., by multiplying the latter with the angular frequency. Thus, an 

accurate estimation of the travel time is indispensable for successful beamforming 

applications.  

For beamforming in quiescent air, the travel time can easily be calculated by dividing the 

source-microphone distance by the speed of sound. If there is a uniform wind flow, as in a 

wind tunnel, the travel time can be calculated directly as well, by considering the distance 

between the microphone and the virtual source, which is displaced in flow direction from the 

true source during the same travel time. 

If the flow is non-uniform, as in an open jet wind tunnel or outdoors, travel time 

calculations become more complicated. For shear flows, an obvious approach is the use of the 

ray tracing differential equations [2] to determine the acoustic path from source to 

microphone. Such a calculation starts with an estimated emission direction from the source, 

and the acoustic path obtained will usually not hit the microphone exactly. Therefore, an 
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iterative process is required to determine the precise path from source to microphone. This 

needs to be done for each potential source of the scan grid and for each microphone of the 

array. All in all, many ray tracing calculations are required, leading to long computation 

times. An interpolation approach proposed by Sarradj [3] leads to a significant acceleration of 

the process, but still the computation time is significant.  

This paper proposes an alternative method for calculating the travel time, which is fully 

compatible with ray tracing but much faster. In this new method, the travel time is directly 

calculated by a numerical integration approach. The method is combined with an efficient 

iteration strategy to quickly determine the correct emission direction from the source. When 

coded in Fortran, the new method can calculate in a relatively short time (seconds rather than 

minutes) the travel times between all points in a typical scan grid and all microphones in a 

typical array. 

In a shear flow the flow direction is constant, but the flow speed may vary in a direction 

perpendicular to the flow. Likewise, the temperature may vary in the same direction. This 

makes the method particularly suitable for outdoor wind turbine array measurements [4]. The 

merits of the method will be discussed using a wind turbine measurement recently carried out 

by Goldwind Asia. 

In Section 2 of this paper the wind turbine test set-up is briefly described. Section 3 

discusses the beamforming essentials and the benefit of ignoring spherical spreading. In 

Section 4 the new time delay integration method is presented and applied to the measurement. 

Section 5 discusses the application to rotating sources. The conclusions are summarised in 

Section 6. 

 

2 TEST SET-UP 

In March 2016, acoustic measurements were performed on a 3-bladed, 2.5 MW wind 

turbine of 90 m nacelle height. The measurements were carried out with an array of 80 

microphones on the ground, at a view angle of approximately 45° towards the nacelle. Both 

upwind and downwind test conditions were considered. 

A sketch of the upwind configuration can be found in Fig. 1. The tower height is 90 m and 

the rotor diameter 121 m. The cone angle of the rotor is 3° and the tilt angle 5°.  

The distance between the centre of the microphone array and the tower axis is 95 m. 

Therefore, using a Cartesian coordinate system ( , , )x y z , with its origin in the array centre, the 

tower axis is at ( , ) ( 95,0)x y   . The distance between the tower centre line and the rotor 

plane is approximately 3 m. Hence, the distance between rotor and array centre is 

approximately 92 m in upwind configuration and 98 m in downwind configuration. 

Here we consider a typical upwind measurement. The wind speed and temperature 

measured at the nacelle were 13.2 m/s (in negative x-direction) and 17.9 °C, respectively. The 

rotation speed was 13.5 RPM. The trailing edges of the blades were equipped with serrations. 

The microphone array was 8 m long and 4 m wide and consisted of 80 MEMS 

microphones, arranged in concentric ellipses (see Fig. 2). The array was stretched in the x-

direction to compensate for the fact that both the array and the rotor plane were at an angle of 

approximately 45° to the line of sight between the array centre and the nacelle. This should 

minimize the deformation of the beamforming main lobes, when the rotor plane is scanned. 

Array measurements were done using a 65536 Hz sampling rate. The acquisition time was 

10 s. 
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3 FREQUENCY DOMAIN BEAMFORMING 

3.1 General expressions 

Frequency-domain beamforming is usually done by averaging microphone signals that are 

corrected for phase delay and spherical spreading with respect to points in a scan grid. For 

example, in a uniform flow xUe  the acoustic response in ( , , )x x y z  to a source of unit 

strength in a scan point ( , , )     can be expressed as [1]: 

  
1

1
( , ) exp ( , )

4 ( , )
G x i x

r x
  

 
  ,  (1) 

where   is the angular frequency and ( , )x   is the time delay: 

 
 

1

2

( ) ( , )
( , )

1

M x r x
x

c M

 
 

  



. (2) 

Further, c is the sound speed, M is the Mach number: 

 M U c   (3) 

and 

        
2 2 22

1 1r x M y z         
 

. (4) 

Source amplitudes ( )a   can be obtained by “Delay-and-Sum” beamforming: 

  1

1 ref

( , )1
( ) ( ) exp ( , )

N
n

n n

n

r x
a p i x

N R


   



  ,  (5) 

where nx  are the positions of the microphones, N is the number of microphones, ( )np   are 

the Fourier-transformed pressures and refR  is a reference distance. Another, more often used 

method is “Conventional Beamforming” [1]: 

 

 ref

1 1

2

ref

2
1 1

( ) exp ( , )
( , )

( )

( , )

N

n n

n n

N

n n

R
p i x

r x
a

R

r x

  















. (6) 

Final beamforming results are obtained by squaring and averaging Eq. (5) or Eq. (6), yielding 

double summations featuring cross-spectra: 

 
1

( ) ( ) ( )
2

mn m nC p p   ,  (7) 

where the brackets stand for time averaging. Auto-spectra ( )nnC   are often omitted from the 

double summation, as they can contain relatively much incoherent noise. This is also done in 

the present study. 
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3.2 Omission of spherical spreading 

Results obtained with Conventional Beamforming, at a series of 1/3 octave band 

frequencies, are shown in Fig. 3. The reference distance refR  was equal to the distance 

between the rotor hub and the array centre. The scan plane consisted of 6221 points on a disc 

of 140 m diameter. The grid resolution (distance between neighbouring grid points) was 

approximately 1.5 m. The disc geometry was adjusted to the cone and the tilt angle of the 

rotor blades.  

A uniform flow was assumed at 7/8th of the wind speed at nacelle height (13.2 m/s). This is 

the average flow speed between the ground and the nacelle, when the standard 1/7th power 

law is used to describe the relation between wind speed and altitude. 

At the lowest frequencies, the beamforming peak levels seem to be located above the rotor 

plane, which is not physical. The reason for this is the correction for spherical spreading made 

in Eq. (6). This causes the beamforming levels to increase when the scan point moves 

upwards from the true source positions, since the effect of correction for spherical spreading 

is larger than the effect of source mismatch. 

When the aim is to locate sources in a set-up like discussed in this paper (scan plane 

perpendicular to array plane), it is better to omit the correction for spherical spreading. That 

is: 1( , )nr x   in Eqs. (6) and (7) should be replaced by refR . In either case, the following 

beamforming expression remains:  

  
1

1
( ) ( )exp ( , )

N

n n

n

a p i x
N

   


  . (8) 

With this beamforming expression, the results must be interpreted as “as measured by the 

array”.  

Another reason for omitting the correction for spherical spreading is that it assumes 

acoustic sources with omnidirectional radiation, whereas true wind turbine aeroacoustic 

sources are not omnidirectional at all. Moreover, the source directivity depends on blade 

modifications aiming at reducing the noise emission, such as trailing edge serrations. 

Results of beamforming without correction for spherical spreading are shown in Fig. 4. 

Now the peak level locations are all within the rotor disc. This is confirmed by Fig. 5, which 

shows the radial peak level locations. 

In the remaining part of this paper, all beamforming results are without correction for 

spherical spreading. 

 

4 CORRECTION FOR SHEAR FLOW 

4.1 Shear flow effects 

In the previous chapter, beamforming was done under the assumption of a uniform flow 

with speed 11.55 m/s, which is 7/8th of the wind speed at the nacelle. Assuming a 1/7th power 

law, the actual wind speed at the highest rotor location (150 m) is 14.20 m/s. So, for 

beamforming on points at that altitude, a uniform flow speed of 12.42 m/s (7/8×14.20) would 

have been more appropriate. Thus, an error of 0.87 m/s is made. The acoustic time delay to 

the centre of the array is 0.515 s, which corresponds to an error of 0.45 m in the virtual source 

position. The corresponding source location error on the array plane is (150/92)×0.45 = 
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0.73 m. Likewise, at the lowest rotor location (30 m), the source location error on the array 

plane is approximately 0.15 m, but in the other direction. 

Although the location errors made with the assumption of uniform flow are not very large, 

and within the spatial resolution of the scan grid, it can be beneficial to include the altitude-

dependency of the wind speed in the calculation of the time delay from scan point to 

microphone. This can be done by using the ray tracing differential equations [2]. However, 

this is rather time-consuming [3], even in combination with an interpolation method.  

Therefore, a different approach is followed here, featuring a combination of a direct 

calculation of the time delay and an efficient shooting strategy. These two aspects are detailed 

in the following sections. 

4.2 Time delay calculation 

Suppose that the acoustic path from a source location   to a microphone location x  is 

described by  

  ( ) ( ), ( ),s h f h g h h ,  (9) 

with 

 
 

 

( ) ( ), ( ), ,

( ) ( ), ( ), .

s f g

x s z f z g z z

      


 

  (10) 

Using this parametrisation of the acoustic path, we will derive an integral to calculate the time 

delay. The integration parameter h (the height) runs from h   to h z . Note that 0dh   

when the source location is above the microphone.  

In a uniform flow xUe  the time delay from a source location   to a microphone location 

x  is given by Eqs. (2) and (4): 

 
 

       
2 2 22

2

1
( ) 1

1
M x x M y z

c M
    

              
. (11) 

Likewise, in a small layer of height dh , the time delay from ( )s h  to ( )s h dh  is 

 
 

   2 2 2

2
( ) ( ) 1 ( ) 1

1

dh
d Mf h f h M g h

c M
        


, (12) 

where   is the sign of dh. Thus, the total time delay in a non-uniform shear flow is given by 

 
 

   2 2 2

2

1
( , ) ( ) ( ) ( ) 1 ( ) ( ) 1

( ) 1 ( )

z

T f g M h f h f h M h g h dh
c h M h

       


 . (13) 

The functions f and g should describe the fastest path from   to x , which means that  

 ( , ) ( , ) 0T f g T f g     ,  (14) 

for all infinitesimally small and continuously differentiable functions   and   with 

 ( ) ( ) ( ) ( ) 0z z         . (15) 

Insertion of Eq. (14) in Eq. (13) yields 
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 

 

  

2

2 2 2 2

( ) ( ) 1 ( ) ( ) ( )1
( ) ( ) 0

( ) 1 ( ) ( ) 1 ( ) ( ) 1

z f h h M h g h h
M h h dh

c h M h f h M h g h

 
 

     
   
      
 

 . (16) 

Integration by parts, while using Eq. (15), gives 

 

    

 
 

  

2 2 2 2

2

2 2 2 2

1 ( )
( ) ( )

( ) 1 ( ) ( ) 1 ( ) ( ) 1

1 ( ) ( )1
( ) 0.

( ) 1 ( ) ( ) 1 ( ) ( ) 1

z
d f h

h M h
dh c h M h f h M h g h

M h g hd
h dh

dh c h M h f h M h g h



 

 

   
                

                 



 (17) 

Since Eq. (17) must be true for any function   and  , we must have 

 
    

  

12 2 2 2

2
2 2 2

1 ( )
( ) ,

( ) 1 ( ) ( ) 1 ( ) ( ) 1

( )
,

( ) ( ) 1 ( ) ( ) 1

f h
M h C

c h M h f h M h g h

g h
C

c h f h M h g h



  
    

         
 


   

 (18) 

which is essentially the continuous version of Snell’s Law. 

The constants 1C  and 2C  in Eq. (18) are obtained by inserting the start value h   and a 

“shoot” vector  ( ), ( ),f g    . For other values of h, ( )f h  and ( )g h  can explicitly be 

derived from Eq. (18), as detailed in Appendix A. Then, the time delay is obtained by 

numerically evaluating Eq. (13), which can be done efficiently using Romberg’s method. The 

endpoint x  is also obtained numerically: 

 

( ) ,

( ) .

z

z

x f h dh

y g h dh










 



  







  (19) 

Note that Romberg’s method assumes the integrands to be infinitely continuously 

differentiable, which means that a power law for the wind speed cannot be applied down to 

0h   (i.e., the ground). Instead, a piecewise linear profile can be used, while integrating 

piece by piece. 

4.3 Shooting procedure 

The endpoint x  obtained by the integration method described in the previous section 

depends on the initial shoot vector  ( ), ( ),f g    . To reach a targeted endpoint 
(0)x  (i.e., 

microphone position), one needs to start with the appropriate shoot vector. This vector can be 

obtained with an iteration procedure, introducing the “shoot direction”: 
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 

 
 

( )
( )

( )

( ), ( ),
  ( ), ( ),

( ), ( ),

i
i

i

z

f g w
w f g

f g w

  
  

  

 
   

 
 (20) 

( ( )i

zw  being the z-component of ( )iw ) and the “view direction” 

 
( )

( )

( )

i
i

i

x
v

x









, (21) 

where 
 i

x  is the most recently found endpoint. Initial values are 

 
(0)

(1) (0)

(0)

x
w v

x






 


. (22) 

At each iteration step the shoot direction is corrected with respect to the previous one by an 

angle equal to the mismatch between the actual view direction 
( )iv  and the desired view 

direction 
(0)v : 

    ( 1) (0) ( ) ( ) (0) ( ) ( )i i i i iw v v w v v w      . (23) 

With this, only a few iterations are required for obtaining a converged solution. 

4.4 Implementation 

The shooting and integration method described in the previous sections was implemented 

in a Fortran routine, and run on a laptop with Intel Core i7 processor @ 2.2 GHz. The 

computation time for calculating the time delays between all 80 microphones and all 6221 

grid points was less than 10 s.  

The 1/7th power law wind profile was approximated by a piecewise linear profile. The 

wind speed was specified at the following altitudes: 2 m, 5 m, 10 m, 20 m, 50 m, 100 m and 

200 m. Results were compared with the traditional ray tracing method [2], yielding exact 

agreement. 

Beamforming images are shown in Fig. 6, which is quite similar to Fig. 4, except that the 

source spots in the upper half of the rotor disc moved a little upward. The extended source 

regions seem to be better aligned with the circles in the rotor disc. Note that the scan grid was 

adjusted somewhat in x-direction, such that maximum beamforming output was found. This 

was also done for the uniform flow case (Fig. 4). There was a 3 m difference in axial scan grid 

location between the uniform and the shear flow case. 

Radial peak level locations, for uniform and shear flow, are shown in Fig. 7. There is not 

much difference between both cases, except that the locations found with shear flow are more 

constant at high frequencies. 

 

5 APPLICATION TO ROTATING SOURCES 

Without much effort, the shear flow time delay results can be applied also to beamforming 

on rotating sources. This can be done by properly arranging the scan grid, namely as a set of 

concentric rings that follow the rotating motion. The scan grid used for the present study was 

arranged this way, see Fig. 8. For such a grid, the time delays only need to be calculated for 

the base scan grid. When the grid points rotate, so their locations become time-dependent, the 

time delay at each point in time can be obtained by linear interpolation using the nearest base 
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grid points on the same ring. Obviously, the grid resolution needs to be fine enough in relation 

to the maximum frequency to be analysed. A grid refinement study confirmed that the present 

scan grid was sufficiently fine for beamforming up to 4000 Hz.  

Beamforming on rotating sources was done with the ROSI method [5], which features a 

straightforward time-domain Delay-and-Sum method to reconstruct source signals ( )t  in 

scan points  . Without atmospheric decay, the Delay-and-Sum method reads 

   
1

1
( ) , ( )

N

n n

n

t t x t
N

   


  . (24) 

where 
n  is the time signal recorded by the nth microphone. Source powers were calculated 

following a procedure similar to ignoring microphone auto-spectra in conventional frequency-

domain beamforming [5].  

Beamforming results with uniform flow are shown in Fig. 9 and with shear flow in Fig. 10. 

With shear flow the levels are slightly higher, indicating a better agreement between 

propagation model and measurement. Nevertheless, the differences are small.  

For both cases, radial peak level locations are shown in Fig. 11. Again, there is not much 

difference, but with shear flow the locations are more constant at high frequencies. 

 

6 CONCLUSIONS 

A fast method is proposed for calculating the acoustic time delay between points in a shear 

flow. With this, improved steering vectors can be obtained for beamforming through a non-

uniform flow. The benefits were demonstrated using an outdoor array measurement on a 

large-scale wind turbine. The shear flow model can also be applied to, and is also beneficial 

for rotating source beamforming. The improvements with respect to uniform flow are 

moderate, but the additional computation time is moderate as well.  
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APPENDIX A: EXPLICIT EXPRESSION FOR TANGENT OF ACOUSTIC PATH 

In this appendix, explicit expressions are derived for ( )f h  and ( )g h , f and g describing 

the acoustic path from   to x , see Eqs. (9) and (10). Starting point is Eq. (18), which is 

rewritten as 

 
  

 

  

2

1
2 2 2

2
2 2 2

( )
( ) ( ) ( ) 1 ( ) ,

( ) 1 ( ) ( ) 1

( )
( ) ( ).

( ) 1 ( ) ( ) 1

f h
A h M h C c h M h

f h M h g h

g h
B h C c h

f h M h g h


       

   


  
    


 (25) 

By squaring these equations, the following linear equations for 2( )f h  and 2( )g h follow: 
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     

    

2 2 2 2 2 2 2

2 2 2 2 2 2 2

1 ( ) ( ) ( ) 1 ( ) ( ) 1 ( ) ( ) ,

( ) ( ) 1 ( ) 1 ( ) ( ) 1 ( ) ( ) .

A h f h A h M h g h M h A h

B h f h B h M h g h M h B h

      



      

 (26) 

The solution of Eq. (26) is 

 

2
2 2

2
2 2

1 ( )
( ) ( ) ,

( )

1 ( )
( ) ( ) ,

( )

M h
f h A h

D h

M h
g h B h

D h

 
 




  


 (27) 

with 

  
  

2
2 2 2

2 2 2
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( ) 1 ( ) 1 ( ) ( )

( ) 1 ( ) ( ) 1

M h
D h A h M h B h

f h M h g h


    

   
. (28) 

From Eq. (25) follows, under the condition that ( ) 0D h  , 

 

2

2

1 ( )
( ) ( ),

( )

1 ( )
( ) ( ).

( )

M h
f h A h

D h

M h
g h B h

D h

 
 





 



 (29) 

Note that Eq. (13) can be simplified into 

 
 2

( )
( , ) ( )

( )( ) 1 ( )

z
f h

T f g M h dh
A hc h M h

  
   

  
 . (30) 
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Fig. 1. Sketch of the measurement set-up. 

Fig. 2. Microphone array lay-out. 
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Fig. 3. Conventional Beamforming images, including corrections for spherical spreading. 

Fig. 4. Conventional Beamforming images, without corrections for spherical spreading. 
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Fig. 5. Radial beamforming peak level locations, with and without correction for spherical spreading. 

Fig. 6. Conventional Beamforming images, obtained with shear flow. 
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Fig. 7. Radial beamforming peak level locations, obtained with uniform and shear flow. 

Fig. 8. Inner part of scan grid. 
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Fig. 9. ROSI beamforming images, obtained with uniform flow. 

Fig. 10. ROSI beamforming images, obtained with shear flow. 
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Fig. 11. ROSI radial peak level locations, obtained with uniform and shear flow. 


