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Chapter 11 )
Implementation of Slow Coherency ki
Based Controlled Islanding Using

DIgSILENT PowerFactory

and MATLAB

I. Tyuryukanov, M. Nagli¢, M. Popov
and M. A. M. M. van der Meijden

Abstract Intentional controlled islanding is a novel emergency control technique to
mitigate wide-area instabilities by intelligently separating the power network into a set
of self-sustainable islands. During the last decades, it has gained an increased attention
due to the recent severe blackouts all over the world. Moreover, the increasing
uncertainties in power system operation and planning put more requirements on the
performance of the emergency control and stimulate the development of advanced
System Integrity Protection Schemes (SIPS). As compared to the traditional SIPS, such
as out-of-step protection, ICI is an adaptive online emergency control algorithm that
aims to consider multiple objectives when separating the network. This chapter illus-
trates a basic ICI algorithm implemented in PowerFactory. It utilises the slow coherency
theory and constrained graph partitioning in order to promote transient stability and
create islands with a reasonable power balance. The algorithm is also capable to exclude
specified network branches from the search space. The implementation is based on the
coupling of Python and MATLAB program codes. It relies on the PowerFactory
support of the Python scripting language (introduced in version 15.1) and the
MATLAB Engine for Python (introduced in release 8.4). The chapter also provides a
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case study to illustrate the application of the presented ICI algorithm for wide-area
instability mitigation in the PST 16 benchmark system.

Keywords Intentional controlled islanding - Controlled network separation
Generator coherency + Graph partitioning - Python scripting - DIgSILENT
PowerFactory to MATLAB interface via Python

11.1 Introduction

Due to the electrical industry deregulation and massive grid integration of renew-
able energy sources, electric power systems (EPSs) are expected to operate close to
their stability limits. Several large-scale blackouts during the recent decades [1, 2]
have demonstrated the increased vulnerability of existing electric power grids. Due
to these reasons, blackout prevention has become a topic of great importance for the
operation of future EPS.

Intentional controlled islanding (ICI) is an adaptive wide-area protection algo-
rithm belonging to the class of System Integrity Protection Schemes (SIPS) [3]. The
basic idea is to define in an existing network a set of islands so that the initial
disturbance, which could lead to a system collapse, remains confined within one of
the islands. Studies of historical blackouts (e.g. [4]) show that a proper system
islanding combined with load shedding and generator dropping has the potential to
prevent wide-area blackouts. Compared to traditional SIPS, such as out-of-step
protection, ICI is a real-time control technique which in general aims to consider
multiple objectives, e.g. load-generation balance, generator coherency, transmission
line availability, thermal limits, voltage stability and transient stability [5, 6]. Due to
this highly adaptive and sophisticated nature, the design of ICI algorithms is cur-
rently an active research area. To enable a near real-time situational awareness, an
ICI algorithm requires access to Wide-Area Measurement Systems (WAMSs) data.

An ICI method should be used as the last measure to rescue the power grid from
a dangerous instability. Consequently, the overall ICI problem is commonly sub-
divided into two stages: when to island and how to island [7]. The first stage aims to
promptly determine the “point of no return” after which only ICI can save the grid.
The second stage aims to split the network in a way that results in a stable islanded
operation with all restoration constraints satisfied. In this chapter, some important
considerations regarding the second global challenge are presented, together with
the implementation of a simple ICI algorithm using PowerFactory and MATLAB.

Among the multiple ICI objectives listed above, only the following ones will be
considered in the simplified algorithm presented in this chapter, namely: generator
coherency, transmission line availability, load-generation balance (in an indirect
way) and transient stability (in an indirect way). The resulting solution promotes
transient stability of islands by putting only coherent generators into each island and
by reducing the changes in generators’ electric power through cutting transmission
lines with a small active power flow. At the same time, the opening of transmission
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lines with a small active power flow turns out to reduce the MW interdependency
between islands, thus promoting load-generation balance. Finally, the algorithm is
capable of restricting the splitting cutset only to the lines equipped with
synchro-check relays, as only these lines can be reconnected during the restoration
process (see the transmission line availability constraint in [5]). However, it should
be noted that a practical ICI algorithm requires many additional factors to be taken
into account. Including all relevant aspects would require significantly more space.
Therefore, the presented ICI implementation in PowerFactory is a basic algorithm
which may serve as an illustration of the concept.

The rest of the chapter is organised as follows. Section 11.2 provides a brief
review of the slow coherency theory which is used to determine the coherent groups
of generators (CGG). Section 11.3 explains the graph partitioning approach utilised
to find the lines with a small MW power flow while excluding some unavailable
branches (e.g. lines without synchro-check relays or transformers) and satisfying
the generator coherency constraint. Section 11.4 gives an overview of the ICI
program structure written in Python scripting language for PowerFactory and
MATLAB. Section 11.5 provides a case study of the illustrated ICI method on the
PST 16 benchmark system. Finally, Sect. 11.6 summarises the approach and gives
some concluding remarks.

11.2  Slow Coherency

An important task in the design of an ICI algorithm is to identify the areas in a
power system which should be separated from each other in case of instability.
While the actual borders of the ICI areas may change depending on the loading
condition, it is important to ensure that generators in each area synchronise after the
network is separated in controlled manner. One approach to meet this requirement
is to utilise the slow coherency theory developed in [8—10]. It has been pointed out
in [9] that generators forming a slow coherent group, i.e. generators swinging
together at oscillatory frequencies of slow inter-area modes, have a relatively strong
dynamic coupling between each other. In other words, weak connections in a power
network manifest themselves through slow coherency [9].

Therefore, it is prudent to utilise slow coherency identification approaches in
order to find generators which should be grouped together for the purpose of ICIL
The load buses corresponding to each CGG can be identified by using a graph
partitioning algorithm like one described in Sect. 11.3.

Slow coherency identification approaches [8—10] are model-based methods
suitable for offline computations. They are based on calculation of right eigen-
vectors of the electromechanical model of the power system (see Sect. 11.2.1)
corresponding to the dominant slow modes. The motivations underlying this
approach can be found in [8, 11]. It should be noted that significant changes in the
power system operating condition, such as topology changes or large load steps,
may cause the weakly coherent generators to change their CGG [12]. Therefore,



282 I. Tyuryukanov et al.

signal-based slow coherency approaches, such as [12], are preferable for a practical
ICI implementation in a physical power system.

Given the above considerations, the overall slow coherency grouping approach
can be summarised as follows:

e Formulate the electromechanical model of the studied EPS (see Sect. 11.2.1).

e Linearise the model and find its state-space representation (see Sect. 11.2.2).

e Identify the r slowest electromechanical modes of the linearised model
(see Sect. 11.2.3).

e Compute the right eigenvectors corresponding to the r slowest modes. Combine
the eigenvector columns into a matrix and group its rows based on the grouping
algorithm as described in Sect. 11.2.4. As each row corresponds to a generator,
the resulting grouping will reveal the CGGs.

11.2.1 Electromechanical Modelling

The well-known electromechanical model of an n-machine power system can be
derived given the following assumptions [13]:

The mechanical power input of synchronous generators is constant.
Generator mechanical damping and asynchronous power are negligible.

e Synchronous generators can be represented in the network by the
constant-emf-behind-the-transient-reactance model.

e The generator rotor angle coincides with the angle of the emf behind the tran-
sient reactance.

e Joads can be represented by constant impedances.

Given the assumptions above, the electrical network can be represented as
shown in Fig. 11.1.

The network shown in Fig. 11.1 can be reduced to contain only the generator
internal buses (i.e. the buses behind the transient reactances) by using the procedure
called Kron reduction [13]. The main idea of this procedure is to eliminate the nodal
equations of the original network which have zero current injections. As only the

[
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« | — >
network

Fig. 11.1 Electromechanical
model of a multi-machine
power system

L J=
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Fig. 11.2 Electromechanical
model reduced to internal
nodes of generators

Reduced

network

generator internal buses’ nodal equations have nonzero current injections, the
voltages of the remaining network nodes can be represented as a linear combination
of the internal generator voltages by exploiting the fact the left-hand sides of the
network equations for the remaining nodes are zero. The reduced network obtained
from the Kron reduction contains the equivalent admittances between every pair of
internal generator nodes (i.e. the reduced network represents a full graph). Its
graphical representation is shown in Fig. 11.2.

The reduced electromechanical model can be described by (11.1a) and (11.1b);
see [9, 13].

o =wolw;—1), i=1,...n (11.1a)

2Hid)i = — Z E:E;Blj sin(5,» — 51) — Z E{EJ/GZJ COS(&,’ — 51)

" "
] ] (11.1b)
J#i J#I
—Di(w; — 1)+ Py —EG;, i=1,...n
where ¢, is the rotor angle of generator i in rad, w; is the rotor speed of generator i
per unit, H; is the inertia constant of generator i in s, D; is the damping coefficient of
generator i per unit, P,,; is the mechanical power of generator i per unit, E’ is the
constant voltage behind the transient reactance per unit, G;; and B;; are the real and

imaginary components of the (i, ])'h entry of the admittance matrix of the reduced
network (see Fig. 11.2) per unit and wy is the base frequency in rad s~ .

11.2.2 Linearised Model

The coherency behaviour of the generators can be more easily understood from the
linearised electromechanical model. Equations (11.1a) and (11.1b) can be linearised
about an equilibrium 6; = J; and w; = 1, where J; is the equilibrium rotor angle
of the ith generator. The equilibrium rotor angles of all generators can be obtained
in a convenient fashion by calculating the power flow solution for the original



284 I. Tyuryukanov et al.

electromechanical model in Fig. 11.1 for the loading condition of interest. The
details of this procedure in PowerFactory are given in Sect. 11.4.

The resulting linearised model derived from (11.1a) and (11.1b) is described by
(11.2a) and (11.2b); see [8, 9].

AS; = woAw;, i=1,...n (11.2a)

2H;Ad; = —DiAw; — > kiAd;, i=1,...,n (11.2b)
j=1

where Ad; = 6; — 0;0 , Aw; = w; — 1 are the small perturbations of the rotor angles
and speeds around their equilibrium values and the terms k; are according to
(11.3a) and (11.3b).

kij = —E:EJI[B,J COS(&Z',() — 5j,0) — G,’j Sil’l(&,"o — 51"0)}, ] 7é i (1133)
ki=— Y ki (11.3b)

j=1

J#i

Equations (11.2a) and (11.2b) can be written in the matrix form as (11.4).

[ Aél i r a)o O “ e O T Aél T
Aéz 0 wy - 0 A52
ASn B : : .o AS,
Ady ~1HK —1HD Afo.z

_Ad),l_ - - _Awn i

where

H-= diag(Hl,Hz, - .,H,,)
D= diag(Dl,Dz, .. .,Dn)
K = [k;]

By expressing Aw; = ﬁ)‘z" and neglecting damping, it is possible to reduce (11.4)

and (11.5), which is the common form of the power system electromechanical
model used for slow coherency analysis [8, 9]. The motivation to represent syn-
chronous generators by simplified 2nd order models and to neglect damping is
based on the observation that the CGGs do not depend significantly on the level of
detail used in modelling the generating units [8, 11].
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. 1
Ad = —EH’lwoKAé (11.5)

The properties of the linearised dynamic models (11.4) and (11.5) can be
analysed by studying the eigenvalues and eigenvectors of their state matrices. In
particular, the standard small-signal stability analysis [14, 15] can be performed for
the model described by (11.4) in order to extract mode shapes corresponding to the
electromechanical state variables Ad and Aw. It should be noted that Eq. (11.5)
fully describes the properties of the complete state-space model (11.4), given that
the damping is neglected in (11.4). In particular, if /; is an eigenvalue of the state
matrix of (11.5), then ++/7; are the eigenvalues of the state matrix of (11.4) with all
damping constants set to zero [9].

Despite the fact that the model (11.5) is commonly used in the literature to
analyse slow coherency, the standard state-space model (11.4) is better suitable for
the slow coherency analysis with PowerFactory, as it is the model that is readily
available through the Modal Analysis Toolbox of PowerFactory.

As the complete state-space model (11.4) is being utilised, it may be useful to
review the difference between the terms mode and eigenvalue. A real eigenvalue
corresponds to a non-oscillatory mode, while a complex conjugate eigenvalue pair
corresponds to an oscillatory mode in the time-domain response of the linearised
power system model [14].

11.2.3 Selection of Number of Slowest Modes

Slow coherency is defined as coherency with respect to the slowest modes of a
system [9]. Although there are algorithms available to group generators in a power
system with respect to the r slowest modes, where r is a predefined integer, the
optimal value of r is not always known. Several references, e.g. [9], use the
eigengap heuristic (11.6) in order to determine the point of separation between slow
and fast electromechanical modes.

& = [Im(isn)| — Im(4)|, k=3,5...2n—3, i=12,...n—1 (11.6)

where /; is the kth complex conjugate eigenvalue of the state matrix of Eq. (11.4),
and all 4; have been sorted in the increasing order or their imaginary parts. Given
such ordering of eigenvalues, their counting starts at 3, because the state matrix of
(11.4) has one zero eigenvalue and one small negative eigenvalue as the only real
eigenvalues. All further eigenvalues come in complex conjugate pairs, and only the
eigengaps between the slowest oscillatory modes are of interest.

Given Eq. (11.6), the number of slowest electromechanical modes to be con-
sidered for generator grouping can be expressed as follows:
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r=argmaxe; + 1 (11.7)
i

where the increment of one in (11.7) is necessary and can be related to the two real
eigenvalues of the state matrix in (11.4) which correspond to the common motion of
the rotor angles and speeds of all generators [9]. In other words, the minimal
number of slowest modes to separate the network is two, whereby the minimal
value of arg max; ¢; is one.

11.2.4 Generator Grouping Algorithm

The r right eigenvectors corresponding to the r slowest modes of the power system
model (11.4) serve as an input for the coherency grouping algorithm. As pairs of
complex conjugate eigenvalues correspond to one oscillation mode, it is only
necessary to take eigenvectors corresponding to one of two complex conjugate
eigenvalues. It is possible to use both eigenvector entries related to rotor angles and
to rotor speeds (i.e. both rotor angle and rotor speed mode shapes), as they show the
same pattern. The rotor speed eigenvector entries are finally adopted for the
analysis.

Among several slow coherency identification algorithms available in the liter-
ature, the so-called tight coherency grouping algorithm [10] is chosen to find CGGs
for the purpose of ICI. It is capable of automatic detection of the number of CGGs.
Moreover, CGGs identified by using this algorithm usually consist of generators
which are electrically close. The generator grouping procedure [10] has several
presteps that are given below.

e Combine the rotor speed mode shapes obtained from the r slowest eigenvectors
into a matrix Vg consisting of n rows and r columns.

e Normalise the columns of the matrix Vg to have the length one.

e Define the slow coherency similarity between machines i and j as the cosine of
the angle between w; and w;, which are the respective rows of the matrix Vj.

wiw]T
dy=—0 (11.8)
il s
where ||-|| represents the vector length, i.e. the Euclidean norm of a vector.

e Define a tolerance y usually ranging from 0.9 to 0.95. If the slow coherency
similarity (11.8) between machines i and j is larger than 7, the machines are said
to be coherent.
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e Define a coherency matrix C as

Gyl = dij = (11.9)

Only the extraction of loose coherent areas from the algorithm [10] is described
below and implemented in MATLAB. The complete algorithm is available in the
MATLAB-based Power System Toolbox (PST) [16], which is available online.
Based on the given presteps, the set of rules to decide on loosely coherent generator
groups can be summarised as follows.

e Machines i and j are coherent if [Cj;] > 0.
e If machines i and j are coherent and machines j and k are coherent, then
machines i and k are also coherent.

It was observed empirically that the above algorithm usually performs well at
identifying generator slow coherency. Higher values of the tolerance parameter y
correspond to smaller and tighter CGGs which tend to be robust even to significant
changes in the power network (e.g. topological changes). Therefore, the value of y
of 0.95 is assumed for the coherency estimation in the subsequent sections.

11.3 Graph Partitioning

The slow coherency method presented in Sect. 11.2 solves the problem of identi-
fying which generators can be grouped together for the purpose of ICI. For the
complete islanding solution, a set of lines to be opened needs to be determined
based on the multiple constraints or a subset of constraints (see Sect. 11.1).

The splitting cutset determination procedure is based on graph partitioning and
aims at identifying the lines carrying the least amount of active power flow (shortly
referred to as MW-flow). Its main steps are summarised below:

e Construct a weighted undirected graph G = (V,E,W) representing the
MW-flows in an electric power network consisting of m buses. The nodes and
edges of G can be denoted as v;eV,i=1,2,....m and
e; €ECVxV,i=1,2,...,m, respectively. The weight w; = W(e;), i =
1,2,...,m of the edge e;; represents the averaged active power flow through the
respective power network branch.

e Reduce the graph G by following the guidelines presented in Sect. 11.3.1, which
are largely based on [17] and [18]. The graph reduction procedure primarily
serves the purpose of incorporation of generator coherency and transmission line
availability constraints into the graph partitioning, but it also increases the
computational efficiency by reducing the size of the problem.

e Apply the spectral clustering method briefly described in Sect. 11.3.2 to the
reduced graph.
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e Post-process the output of spectral clustering as illustrated in Sect. 11.3.3 in
order to identify the resulting islands in the power network.

11.3.1 Graph Reduction

The MW-flow graph G can be reduced in two steps by following the corresponding
steps of the procedure outlined in [17]:

e Collapse the edges of G corresponding to network elements which cannot be
included into an islanding cutset (e.g. transformers and lines without
synchro-check relays; see [5]) to single nodes. Such graph edges are further
referred to as unavailable edges, as the corresponding power network branches
are referred to as unavailable network branches [5].

e In the graph obtained after the reduction of unavailable edges, find subnetworks
corresponding to the previously identified CGGs, e.g. using a shortest path
algorithm as in [17]. Merge the found subnetworks into single nodes. Obtain the
connectivity and weights of the final reduced graph (further referred to as G®) by
following the guidelines presented in [17, 18]. The number of nodes in GX is my.

All cuts of the final reduced graph inherently satisfy the generator coherency and
transmission line availability constraints. It is worth to note that, depending on the
utilised subnetwork construction algorithm, the search for the CGG subnetworks
may require multiple initialisations. However, as the utilised coherency algorithm is
an offline model-based technique, the subnetworks do not need to be produced in an
online fashion. In other words, the graph reduction is essentially an offline proce-
dure; see [17].

11.3.2 Spectral Clustering

Spectral clustering is a well-established clustering technique based on graph rep-
resentation of the input dataset [19]. Since electric power networks can be naturally
represented as graphs, it is appealing to use spectral clustering for the identification
of power network buses which are tightly coupled in terms of active power flow [5,
20]. In order to produce islands of balanced size, the normalised graph Laplacian
matrix L, is preferable for spectral clustering [19, 20]. Given the aforementioned
definition of graph G, it can be computed according to (11.10); see [5, 21].

1, ifi=j
(L] = J;\V/J ifi # jand (i,j) € E (11.10)

0, otherwise
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where d; = ij:l wj; is the weighted degree of the node v;. For the power flow

graphs other than G, the definition (11.10) should be adjusted accordingly. The
normalised Laplacian of the reduced graph GR described in Sect. 11.3.1 is of
interest for the purpose of ICL It is further referred to as Ly g.

With having L, r computed, the next step is to calculate its first r smallest
eigenvalues and the corresponding eigenvectors, where r previously denoted the
number of CGGs in the EPS; see Sect. 11.2. The number of computed eigenvectors
usually corresponds to the desired number of islands [19]. That is, the goal is to
identify a separate island for each CGG. The computed eigenvectors are combined
into the matrix X = R™*". According to [19], each row of the matrix X should be
normalised to have length 1. The row normalisation process results in the matrix
Y = R"™*", the rows of which represent the mp coordinates of points in the r-
dimensional Euclidian space. This so-called spectral r-embedding [5] reveals the
clustering structure of the my reduced power network nodes with respect to active
power flows between them.

11.3.3 Identification of Islands

Spectral embedding does not take the actual interconnections between the nodes in
the input graph into account. In order to overcome this issue, it was recommended
in [21] to define a new metric in spectral embedding which measures the distances
between the points according to their connectivity in the underlying graph GX. This
is essentially equivalent to the creation of a new graph GX. which has the same sets
of nodes and edges as GR, but the edge weights are redefined according to the
Euclidean distances between the respective points in the spectral embedding. Then,
the distance between any two points in the spectral embedding is defined as the
shortest path distance between the respective nodes of GX..

As each show-coherent generator group is represented by a single node in GF
and in the resulting spectral embedding, it is possible to determine the boundaries of
the islands by assigning the remaining load buses to the nearest (in the sense of the
distance metric defined above) CGG. In this way, each identified CGG becomes
assigned to its own partition.

After clusters of nodes have been identified by following the above procedure,
the nodes of each cluster are mapped back to the nodes of the original graph, and
the potential cutset is defined as the edges between the buses belonging to different
clusters. By using the identified cutset, it is possible to separate the CGG which
goes out-of-step with the rest of the network.
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11.4 ICI Program Implementation

The PowerFactory implementation of the presented simplified ICI algorithm is
based on the coupling of the DIgSILENT PowerFactory [22] and MATLAB [23]
software tools through Python. In this way, the advantages of both software
environments can be combined in order to implement more sophisticated algo-
rithms. The mentioned coupling has become possible since releases 15.1 of
PowerFactory and 8.4 (R2014b) of MATLAB. Release 15.1 of PowerFactory has
introduced a dynamic Python module powerfactory.pyd as a means to
interface PowerFactory with Python. Release 8.4 of MATLAB has introduced
MATLAB Engine for Python, which allows to start or connect to MATLAB from
Python.

Python is a non-proprietary high-level general-purpose interpreted programming
language, which supports both object-oriented (OOP) and procedural programming
paradigms. Python has been introduced to PowerFactory as an alternative to the
built-in DIgSILENT programming language (DPL). The PowerFactory Python
module provides the equivalents for the majority of functionalities available via
DPL. By importing the PowerFactory Python module inside of a Python script, it is
possible to control PowerFactory from the Python environment in the same way as
it is possible with DPL. Moreover, the rich programming capabilities of Python
become available for processing of data obtained from PowerFactory. Lastly, it
becomes relatively easy to send data obtained from PowerFactory to other appli-
cations which also have an interface with Python (e.g. to MATLAB) and to receive
data back from those applications to PowerFactory. An important additional
advantage of Python scripting over DPL is the possibility to use debugger tools
included into many Python Integrated Development Environments (IDEs).

In order to control PowerFactory via Python, a Python script file needs to be
created externally on the hard drive and linked to PowerFactory via a *. ComPython
object. An important difference between * ComDPL objects for DPL scripts and *
ComPython objects for Python scripts is that the actual script is not stored inside of
the latter ones. It is also possible to control PowerFactory via Python without
creating a * ComPython object. This can be accomplished by running PowerFactory
in engine mode (see the User Manual [22] for more information).

11.4.1 ICI Program Components

The capabilities of Python as a mainstream programming language facilitate more
structured and sophisticated program designs for PowerFactory (as compared to
DPL). In particular, the support of OOP by Python is useful for writing larger
programming projects related to PowerFactory.

The ICI program is a small-scale project written in Python and MATLAB lan-
guages. Its components are designed with the idea of code modularity in mind,
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which is done in order to promote the code reuse. Although the program codes are
too extensive to put them inside of the chapter, it is still possible to describe the
functionalities of the main components of the project.

ICI_PST16.py: This file contains the top-level Python script which is started
from PowerFactory and calls all other Python and MATLAB functions and class
methods.

pypf.py: This file contains a Python class whose attributes link to the relevant
data of the investigated PowerFactory project (e.g. to all network branches, ter-
minals and generators). The class also contains several methods to manipulate the
data contained in its attributes (rename_buses_branches, extract_flows,
insert_ici_events, extract_eig) as well as auxiliary methods to
maintain the class contents.

pyUtils.py: This file contains a Python module with auxiliary functions that
are used inside of the methods of the pypf class.

formEigVecMatr.m: This MATLAB function selects the r eigenvectors
corresponding to the r slowest system modes and returns the matrix V; introduced
in Sect. 11.2.4. The number r can be either predefined or estimated based on (11.6)
and (11.7).

coh_loose.m: This MATLAB function implements the generator coherency
grouping algorithm described in Sect. 11.2.4.

digsi2graph.m: This MATLAB function converts branch power flows
extracted from PowerFactory to the MATLAB representation of the power flow
graph G from Sect. 11.3. The graph G is modelled in MATLAB by its adjacency
and incidence matrices. The function can also convert a list of unavailable edges
extracted from PowerFactory to a MATLAB-compatible representation.

COSC.m: This MATLAB function implements the constrained graph parti-
tioning algorithm described in Sect. 11.3 and returns the resulting cutset to Python.
In order to accomplish this, it makes use of digsi2graph.m as well as about 10
other dedicated MATLAB functions.

11.4.2 Interaction Between Program Components

As the program is comprised of pieces which are largely independent, it is useful to
illustrate the capabilities and behaviour of the separate components on an example
that involves their interaction. The top-level Python script used for the simulation of
the ICI case study in Sect. 11.5 is chosen as such an example. Its flow chart is
depicted in Fig. 11.3. Although the original Python script implements a particular
ICI test case, its flow chart in Fig. 11.3 is more generic and may correspond to a
variety of system instability scenarios followed by ICI. Some comments about the
flow chart steps are given below.

1. A link between the electric network model in PowerFactory and the graph G
defined in Sect. 11.3 needs to be established in order to map the ICI solutions
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Fig. 11.3 Top-level ICI program structure

obtained for the graph G back to the network. As the renaming step is irre-
versible, it is recommended for the purpose of ICI study to create a separate
copy of the investigated project.

. Slow coherency is identified based on the electromechanical model of power
system, which implies 2nd order generator models with zero damping and all
generator controls disabled. As actual power networks are rarely modelled with
such assumptions, it is convenient to make a temporary copy of the active
project and to modify it accordingly. Then, the output of the modal analysis
command (*.ComMod) performed on the modified project copy is returned
back to Python. This output is comprised of all eigenvalues and right eigen-
vectors of the electromechanical model (11.4). Finally, the temporary copy of
the project is deleted.
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3. The r right eigenvectors corresponding to the r slowest modes are returned
combined to the matrix V. The number r can be either predefined or identified
based on (11.6) and (11.7).

4. This step implements the identification of loosely coherent generator groups
following the description in Sect. 11.2.4.

5. Usually, some sequence of adverse events precedes a network instability that
causes ICI to operate. This sequence of events can often be reproduced by a
script that changes the default network condition accordingly and, if necessary,
rolls it back upon completion of the main program.

6. For a given instability precondition, a simulation event needs to be created that
actually triggers the instability during the time-domain simulation run. The time
instant of this event is denoted as #y. After the time At following the triggering
event, the instability is detected, which initiates the execution of the ICI
algorithm.

7. Programmatically, it is easier to extract power flows in the network at #y_ (i.e.
nearly at the time of the triggering event, but not including the triggering event)
by first running the RMS-type time-domain simulation until #)_ and then
extracting the resulting power flow variables for each network branch after the
simulation has stopped.

8. This step implements the constrained graph partitioning algorithm outlined in
Sect. 11.3.

9. This step inserts transmission line trip events which are used to separate the
network after the RMS-type time-domain simulation resumes at Step 10. The
time #icy represents an additional time delay related to the calculation of the
islanding cutset and the actual network separation.

10. Resume the RMS simulation at 7y in order to simulate the network separation
and the resulting post-islanding transients.

In the algorithm flow chart in Fig. 11.3, slow coherent generator groups for the
default network configuration are taken as input for islanding. Although it makes
the algorithm less adaptive to the actual operating condition, the offline calculation
and analysis of CGGs are easier to implement. This assumption allows to keep the
ICI implementation at a manageable level. The assumption can be justified by the
fact that slow coherent generator groups represent a fundamental property of the
network related to its topological structure [9, 11] and usually do not experience
significant changes.

11.5 ICI Case Study

This section presents simulation results for the sample ICI algorithm. The
high-level structure of the case study has already been mentioned in Sect. 11.4 in
the form of a flow chart. This section presents a particular scenario, in which the
sample ICI algorithm is applied to mitigate a wide-area instability in the PST 16
benchmark system.
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11.5.1 Test System

The ICI case study is based on the PST 16 benchmark system [24]. It consists of
three meshed areas, 66 buses, 16 generators, 28 transformers and 51 transmission
lines. Due to the unbalanced load and generation in the areas and the presence of
long inter-area tie lines, the PST 16 test system is useful for studies of various
stability problems [24]. The slightly modified version of the PST 16 test system
model is used for the simulations. In particular, the thyristor-controlled series
compensator (TCSC) has been removed, and the tie line between areas A and C is
modelled to have a half of its original impedance (i.e. as a double-circuit line). The
test system is shown in Fig. 11.4 together with the final network separation result.

In the nominal operating condition, all network elements are in service. The
loads were slightly adjusted in order to produce a more distinct and realistic
sequence of events leading to instability. The resulting active load and generation
for each area are summarised in Table 11.1.

As it can be seen, Area A has a significant excess of generation, and it, in fact,
supplies power to the neighbouring areas. At the same time, Area C has a signif-
icant excess of load, while Area B is more balanced. Area C is the main power
consumer, and it is largely supplied from Area A, which leads to a significant power
flow through tie line A—C. This power flow may become especially large if tie line
A-B is disconnected, and power cannot be sent from Area A to Area B directly (cf.
Sect. 11.5.2). Thus, the separation of the areas according to the tie lines can lead to
a poor power balance and large changes in electric power outputs of the generators.

11.5.2 Wide-Area Instability Scenario

The PST 16 test system represents a relatively small power network with a limited
number of realistic scenarios of a wide-area instability. The following instability
scenario has been finally chosen:

e Transmission line C4-C6 is out of service due to maintenance.
Tie line A-B trips due to a sustained short-circuit.
As the consequence of the power flow redistribution, transformer station C8 3T
is disconnected due to a 75% overload.

e The disconnection of transformer C8 3T causes wide-area rotor angle instability
accompanied by low voltages in Area C.

Controlled islanding should be applied after the disconnection of transformer C8
3T as soon as the instability has been detected. Without loss of generality, an
advanced instability detection mechanism capable of identifying the out-of-step
condition before the angular differences reach 180° is assumed for this case study.
However, as a controlled islanding algorithm may in practice require an additional
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Table 11.1 Load and Active load (MW) Generation (MW)
generation in PST 16 system rea A 2535 5082

Area B 7215 6627

Area C 7833 6051

Total 17,583 17,761

non-negligible amount of time to calculate a solution, it is desirable to predict the
emerging instability straight after the triggering event.

11.5.3 Controlled Islanding

The first step of the ICI algorithm is to perform slow coherency analysis of the PST
16 network for the nominal operating condition. The eigenvalues and right
eigenvectors of the electromechanical model (11.4) are obtained with the built-in
Modal Analysis command of PowerFactory. The 16 smallest eigenvalues are {0,
—0.0548, £3.142j, £3.718j, £5.021j, £5.265j, £5.716j, £5.894j, £6.099j}. As it
can be seen, there is a large gap between the complex eigenvalues +3.718j and
45.021j. Therefore, the number of eigenvectors for slow coherency analysis is
three [8—10], and the generator grouping algorithm of Sect. 11.2.4 is performed
with the eigenvectors corresponding to the eigenvalues {0, 3.142j, 3.718j}. The
resulting grouping for y = 0.95 is presented in Table 11.2.

As it can be seen, four coherent generator groups have been identified. The
tolerance value y for the coherency grouping algorithm has been taken at the highest
recommended value of 0.95, which has resulted in four identified coherent groups.
It is worth noting that the groups would be the same for y equal to 0.9, and in
general the CGGs in Table 11.2 are tight. The boundaries of each coherent gen-
erator group in terms of predisturbance active power flow are determined by the
graph partitioning algorithm described in Sect. 11.3 and represented in Fig. 11.4.

After the disconnection of transformer C8 3T, the resulting unstable transient is
shown in Fig. 11.5. As it can be seen, the actual out-of-step condition involves the
loss of synchronism between CGG-3 and the rest of the network. Therefore, the

Table 11.2 Slow coherent

) Generator group Generator buses
groups of generators in the

PST-16 network CGG-1 AlaG, A1bG, A2aG, A2bG, A3G, A6G
CGG-2 C2G, C7G
CGG-3 C10G, C12G, C14G

CGG-4 B2aG, B2bG, B3G, B10G, BSG
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Fig. 11.6 Time-domain simulation of ICI

cutset between the area of CGG-3 and the rest of the network needs to be tripped.
The resulting transient responses can be observed in Fig. 11.6. The time period Af
from the disconnection of transformer C8 3T to the initiation of the controlled
islanding algorithm is 1 s. The time period #c; to compute and implement islanding
is assumed 0.5 s, which is around the expected time for a controlled islanding
algorithm to return a solution [5].

The resulting islands have a good power balance with their steady-state fre-
quencies close to the nominal frequency of 50 Hz and the maximal voltage devi-
ation not exceeding 0.1 p.u. In certain cases, the initial splitting boundary may also
require a post-processing in order to improve the power balance of the islands.
However, the multiple additional questions arising in the design of adaptive power
network separation schemes are beyond the scope of the chapter.
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11.6 Conclusion

A simplified ICI procedure to adaptively separate the network following a
wide-area instability has been presented in this chapter. The procedure focuses on
grouping the coherent generators together and finding the minimal active power
flow cut. The methodology is applied to the PST 16 benchmark system in order to
show the feasibility of the approach. The algorithm has been implemented by using
the Python scripting language, which is available in PowerFactory since version
15.1. Through Python, PowerFactory could gain access to MATLAB and call the
MATLAB components of the ICI code. Moreover, the Python part of the ICI code
takes advantage of the object-oriented capabilities of the Python programming
language.

It has been mentioned throughout this chapter that the original ICI problem is a
very comprehensive one and includes many additional questions. Among others,
the following issues are not considered: adaptive generator coherency estimation,
voltage stability, equipment thermal limits. However, the demonstrated ICI
methodology in PowerFactory can serve as the basis for the development of more
advanced controlled network separation algorithms. Many of the unaddressed
issues are currently being pursued as future work.
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