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Path-space moderate deviations for a Curie-Weiss model of

self-organized criticality

Francesca Collet1 Matthias Gorny2 Richard C. Kraaij3

Abstract

The dynamical Curie-Weiss model of self-organized criticality (SOC) was introduced in [15]
and it is derived from the classical generalized Curie-Weiss by imposing a microscopic Marko-
vian evolution having the distribution of the Curie-Weiss model of SOC [5] as unique invariant
measure. In the case of Gaussian single-spin distribution, we analyze the dynamics of moder-
ate fluctuations for the magnetization. We obtain a path-space moderate deviation principle
via a general analytic approach based on convergence of non-linear generators and uniqueness
of viscosity solutions for associated Hamilton-Jacobi equations. Our result shows that, under
a peculiar moderate space-time scaling and without tuning external parameters, the typical
behavior of the magnetization is critical.

Keywords: moderate deviations · interacting particle systems · mean-field interaction · self-
organized criticality · Hamilton–Jacobi equation · perturbation theory for Markov processes

1 Introduction

In their very well-known article [4], Bak, Tang and Wiesenfeld showed that certain large dynam-
ical systems have the tendency to organize themselves into a critical state, without any external
intervention. The amplification of small internal fluctuations can lead to a critical state and cause
a chain reaction leading to a radical change of the system behavior. These systems exhibit the
phenomenon of self-organized criticality (SOC) that since its introduction has been successfully
applied to describe quite a number of natural phenomena (e.g., forest fires, earthquakes, species
evolution). Indeed, it has been conjectured that living systems self-organize by putting themselves
in a state which is close to criticality. In general, features of SOC have been observed empirically
or simulated on a computer in various models; however, the mathematical analysis turns out to
be extremely difficult, even for models whose definition is very simple [3, 19, 22]. Self-organized
criticality has been reviewed in recent works [1, 2, 9, 21, 24].
The simplest models exhibiting SOC are obtained by forcing standard critical transitions into
a self-organized state [23, Sect. 15.4]. The idea is to start with a model presenting a phase
transition and to create a feedback from the configuration to the control parameters in order to
converge towards a critical state. Following this guideline, Cerf and Gorny designed an interacting
particle system exhibiting self-organized criticality that is as simple as possible and is amenable
to a rigorous mathematical analysis: a Curie-Weiss model of SOC [5, 14]. They modified the
equilibrium distribution associated to the generalized Curie-Weiss model (i.e., with real-valued
spins [10]) by implementing an automatic control of the inverse temperature that, in the limit as
the size n goes to infinity, drives the system into criticality without tuning any external parameter.
Under an exponential moment condition and a symmetry assumption on the spin distribution, they
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proved that the magnetization behaves as in the generalized Curie-Weiss model when posed at the

critical point: the fluctuations are of order n
3

4 and have limiting law ν(x) ∝ exp(−x4

12 ) dx.
More recently, Gorny approached the problem from a non-equilibrium viewpoint and constructed
a dynamical Curie-Weiss model of SOC [15]. He considered a Markov process whose unique
invariant distribution is the Curie-Weiss model of SOC and proved, in the case of Gaussian spins,
that the fluctuations evolve on a peculiar space-time scale (orders n

3

4 ,
√
n t) and their limit is the

solution of a “critical” SDE having ν as invariant measure.
The advantage of dealing with Gaussian spins is that it is possible to find a finite-dimensional
order parameter to describe the system. In particular, the problem can be reduced to a bi-
dimensional problem: the Langevin spin dynamics induce a Markovian evolution on the pair
((n−1Sn(t), n

−1Tn(t)), t ≥ 0), with Sn :=
∑n

i=1 Xi and Tn :=
∑n

i=1 X
2
i , Xi’s being the spin

values. Therefore it suffices to analyze the behaviour of the latter observable.

Our purpose is to characterize path-space moderate deviations for the dynamical model of SOC
with Gaussian spins introduced in [15]. A moderate deviation principle is technically a large
deviation principle and consists in a refinement of a central limit theorem, in the sense that it
characterizes the exponential decay of the probability of deviations from the average on a smaller
scale.
We apply the approach to large deviations by Feng-Kurtz [13] to characterize the most likely be-
havior for the trajectories of fluctuations. The techniques are based on the convergence of Hamil-
tonians and well-posedness of a class of Hamilton-Jacobi equations corresponding to a limiting
Hamiltonian H . These techniques have been recently exploited to analyze moderate fluctuations
from equilibrium in the various regimes in the standard [6] and the random-field version [7] of
the Curie-Weiss model. The major difference in comparison to these papers is that now we are
dealing with unbounded spin state space. Nevertheless, we can implement the same strategy as
in [7]. We use the perturbation theory for Markov processes [17,18,20] to formally identify a lim-
iting operator H and we relax our definition of limiting operator to allow for unbounded functions
in the domain. More precisely, we follow [13] and introduce two Hamiltonians H† and H‡, that
are limiting upper and lower bounds for the sequence of Hamiltonians Hn, respectively. We then
characterize H by matching the upper and lower bound.
From a qualitative viewpoint, we derive a projected large deviation principle. Indeed, there is
a natural time-scale separation for the evolutions of the two processes (n−1Sn(t), t ≥ 0) and
(n−1Tn(t), t ≥ 0): n−1Tn is fast and converges exponentially quickly to σ2, the variance of the
single-spin distribution, while n−1Sn is slow and its limiting behavior can be determined after
suitably “averaging out” the dynamics of n−1Tn. Corresponding to this observation, we need to
prove a large deviation principle for the component n−1Sn only. Our main result shows that self-
organized criticality is reflected by moderate deviations, since the rate function for the path-space
moderate deviation principle retains the features of the “critical” evolution derived in [15].

The outline of the paper is as follows: in Section 2.2 we formally introduce the dynamical version
of the Curie-Weiss model of SOC and we state the large deviation principle. The proof is given
in Section 3. Appendix A contains the mathematical tools needed to derive our large deviation
principle via solving a class of associated Hamilton-Jacobi equations and it is included to make
the paper self-contained. A similar version of the appendix appears also in [7].

2 Model and main result

2.1 Notation and definitions

Before starting with the main contents of the paper, we introduce some notation. We start with
the definition of good rate-function and of large deviation principle for a sequence of random
variables.

Definition 2.1. Let (Xn)n∈N∗ be a sequence of random variables on a Polish space X . Further-
more, consider a function I : X → [0,∞] and a sequence (rn)n∈N∗ of positive numbers such that
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rn ↑ ∞. We say that

• the function I is a good rate-function if the set {x | I(x) ≤ c} is compact for every c ≥ 0.

• the sequence (Xn)n∈N∗ is exponentially tight at speed rn if, for every a ≥ 0, there exists a
compact set Ka ⊆ X such that lim supn r

−1
n log P[Xn /∈ Ka] ≤ −a.

• the sequence (Xn)n∈N∗ satisfies the large deviation principle with speed rn and good rate-
function I, denoted by

P[Xn ≈ a] ≍ e−rnI(a),

if, for every closed set A ⊆ X , we have

lim sup
n↑∞

r−1
n logP[Xn ∈ A] ≤ − inf

x∈A
I(x),

and, for every open set U ⊆ X ,

lim inf
n↑∞

r−1
n logP[Xn ∈ U ] ≥ − inf

x∈U
I(x).

Definition 2.2. A curve γ : [0, T ] → R is absolutely continuous if there exists a function

g ∈ L1([0, T ],R) such that for t ∈ [0, T ] we have γ(t) = γ(0) +
∫ t

0
g(s)ds. We write g = γ̇. A

curve γ : R+ → R is absolutely continuous if the restriction to [0, T ] is absolutely continuous for
every T ≥ 0. Throughout the whole paper AC will denote the set of absolutely continuous curves
in R.

To conclude we fix notation for some collections of function-spaces.

Definition 2.3. Let k ≥ 1 and E a closed subset of Rd. We will denote by

• Ck
l (E) (resp. Ck

u(E)) the set of functions that are bounded from below (resp. above) in E
and are k times differentiable on a neighborhood of E in R

d.

• Ck
c (E) the set of functions that are constant outside some compact set in E and are k times

continuously differentiable on a neighborhood ofE in R
d. Finally, we set C∞

c (E) :=
⋂

k C
k
c (E).

2.2 Description of the model and main result

Let ρ be a symmetric probability measure on R, with variance σ2, and such that we have
∫

R
exp(az2)dρ(z) < ∞, for every a ≥ 0. The generalized Curie-Weiss model associated with ρ

and inverse temperature β > 0 is an infinite triangular array of real-valued spin random variables
(Xk

n)1≤k≤n having joint distribution

dµCW
n,ρ,β(z1, . . . , zn) =

1

Zn(β)
exp

(

β

2

(z1 + · · ·+ zn)
2

n

) n
∏

i=1

dρ(zi), (2.1)

where Zn(β) is a normalizing constant. For any n ≥ 1, set Sn := X1
n + · · · + Xn

n . We have the
following results for the asymptotics of Sn (cf. [10]):

• If β < 1
σ2 , then the fluctuations of Sn are of order

√
n and, in particular, Sn√

n
converges in

law to a centered Gaussian random variable with variance σ2

1−βσ2 .

• The point β = 1
σ2 is the critical point for the system. The fluctuations of Sn become of

higher order and their limit is no more Gaussian. Indeed, there exist k ∈ N \ {0, 1} and
λ > 0 (both depending on ρ), such that

Sn

n1−1/2k

L−−−−→
n↑∞

Ck,λ exp

(

−λ
s2k

(2k)!

)

ds, (2.2)

where Ck,λ is a normalizing constant.
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In [5] the authors modified the distribution (2.1) so as to build a system of interacting random
variables that exhibits a phenomenon of self-organized criticality. In other words, they constructed
a spin system converging to the critical state of (2.1) (corresponding to β = 1

σ2 ) without tuning
any external parameter. Based on the observation that if the spins were independent the quantity
n(z21 + · · ·+ z2n)

−1 would be a good estimator for 1
σ2 by strong law of large numbers, they decided

to replace the inverse temperature β in (2.1) with n(z21 + · · ·+ z2n)
−1, obtaining

dµSOC
n,ρ (z1, . . . , zn) =

1

Zn
exp

(

1

2

(z1 + · · ·+ zn)
2

z21 + · · ·+ z2n

) n
∏

i=1

dρ(zi), (2.3)

where Zn is a normalizing constant. An infinite triangular array of real-valued spins (Xk
n)1≤k≤n

having joint distribution (2.3) is a Curie-Weiss model of self-organized criticality and it indeed
evolves spontaneously towards criticality. The fluctuations of Sn, under (2.3), have the same
asymptotics as the critical generalized Curie-Weiss model, in the sense that they obey the same
result as (2.2) with a universal exponent k = 2.
In [15] a dynamical version of the Curie-Weiss model of SOC was introduced. It consists in a
Markov process, defined through a system of n interacting Langevin diffusions, whose unique
invariant distribution is

dµ̃SOC
n,ρ (z1, . . . , zn) =

1

Zn
exp

(

1

2

(z1 + · · ·+ zn)
2

z21 + · · ·+ z2n + 1

) n
∏

i=1

dρ(zi), (2.4)

where Zn is a normalizing constant. Observe that (2.4) is a slight modification of (2.3) aimed
at avoiding technical difficulties due to ill-definition of the distribution at the origin and to the
non-Lipschitzianity of the coefficients of the associated Langevin diffusions. Nevertheless the
distributions (2.3) and (2.4) provide two equivalent formulations for a Curie-Weiss model of SOC
(see [15] and references therein for further details). Now we come to the description of the dynamics
we are interested in.
Let ϕ : R → R be an even function of class C2 such that exp(2ϕ) is integrable over R. Moreover,
suppose that there exists a positive constant c such that, for any z ∈ R, zϕ′(z) ≤ c(1 + z2). We
define ρ to be the probability measure having density

ρ(z) = exp(2ϕ(z))

(
∫

R

exp(2ϕ(w)) dw

)−1

,

with respect to the Lebesgue measure on R. The dynamical counterpart of the Curie-Weiss model
of SOC (2.4) is an infinite triangular array of stochastic processes (Xk

n(t), t ≥ 0)1≤k≤n such that,
for all n ≥ 1,

(

(X1
n(t), . . . , X

n
n (t)), t ≥ 0

)

is the unique solution of the following system of stochastic
differential equations:

dXj
n(t) =

1

2

[

2ϕ′ (Xj
n(t)

)

+
Sn(t)

Tn(t) + 1
−Xj

n(t)

(

Sn(t)

Tn(t) + 1

)2
]

dt+dBj(t), (j = 1, . . . , n) (2.5)

where

• for every t ≥ 0,

Sn(t) := X1
n(t) + · · ·+Xn

n (t) and Tn(t) =
(

X1
n(t)

)2
+ · · ·+ (Xn

n (t))
2
;

• the process ((B1(t), . . . , Bn(t)), t ≥ 0) is a standard n-dimensional Brownian motion.

The solution
(

(X1
n(t), . . . , X

n
n (t)), t ≥ 0

)

of (2.5) is a Markov diffusion process on R
n. For any

f ∈ C2(Rn) and z ∈ R
n, it evolves with infinitesimal generator

Lnf(z) =
1

2

n
∑

j=1

∂2f(z)

∂z2j
+

1

2

n
∑

j=1

[

2ϕ′(zj) +
Sn[z]

Tn[z] + 1
− zj

(

Sn[z]

Tn[z] + 1

)2
]

∂f(z)

∂zj
, (2.6)
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with Sn[z] :=
∑n

i=1 zi and Tn[z] :=
∑n

i=1 z
2
i . We recall once more that the measure (2.4) is the

unique invariant distribution for Ln.

Our main aim is to describe the limiting behavior of moderate fluctuations for the evolution (2.4);
the technical difficulties arising have not allowed us to obtained the desired results under the
present assumptions, in particular with no requirements on the function ϕ (except evenness and
exponential integrability). Thus we find it preferable to make the following assumption at this
point:

(A) ϕ(z) = − z2

4σ2
, for some σ > 0.

Assumption (A) corresponds to choosing the Gaussian probability density as reference measure
ρ for the spin variables. Under assumption (A), the process

(

(n−1Sn(t), n
−1Tn(t)), t ≥ 0

)

is a
sufficient statistics for our model. Indeed, the dynamics (2.6) on the configurations induce a
Markovian dynamics on R

2 for the process
(

(n−1Sn(t), n
−1Tn(t)− σ2), t ≥ 0

)

that evolves with
generator

Anf(x, y) =
1

2n

∂2f

∂x2
(x, y) +

2x

n

∂2f

∂x∂y
(x, y) +

2(y + σ2)

n

∂2f

∂y2
(x, y)

+
1

2

[

− n2x3

(ny + nσ2 + 1)2
+

nx

ny + nσ2 + 1
− x

σ2

]

∂f

∂x
(x, y)

+

[

nx2

(ny + nσ2 + 1)2
− y

σ2

]

∂f

∂y
(x, y). (2.7)

The derivation of the previous formula from (2.4) is omitted, since it is tedious and rather standard.
We refer to [15, Sect. 3, Prop. 6] for the detailed derivation of a similar result (the main difference
being the space-time scaling the process is subject to).
As a consequence of (2.7), the task of characterizing the time-evolution of the fluctuation flow

(

1

n

n
∑

k=1

δXk
n(t)

− dρ(z)

)

t≥0

turns into analyzing the path-space deviations of
((

n−1Sn(t), n
−1Tn(t)− σ2

)

, t ≥ 0
)

. From being
infinite dimensional, the problem reduces to a two dimensional problem.

First consider a standard central limit theorem setting and therefore consider the two dimensional
process classically rescaled by

√
n. Computing the formal limit of (2.7) for functions of the

variable x (resp. y) only, we find that, as n ↑ ∞, the process
(

n−1/2Sn(t), t ≥ 0
)

converges weakly

to a standard Brownian motion, whereas
(√

n
(

n−1Tn(t)− σ2
)

, t ≥ 0
)

to the Ornstein-Uhlenbeck
process solution of

dY (t) = −Y (t)

σ2
dt+ 2σ dB1(t), (2.8)

whereB1 is a standard Brownian motion. Thus, the second component of the pair
((

n−1/2Sn(t),
√
n
(

n−1Tn(t)− σ2
))

, t ≥ 0
)

has a confined process as a limit, whereas the first one fluctuates homogeneously in space. In-
deed, in this last case, as shown in [15], a further rescaling allows one to see that the process
(

n−3/4Sn(
√
nt), t ≥ 0

)

converges weakly to the solution of

dX(t) = −X3(t)

2σ4
dt+ dB(t),

with B(t) standard Brownian motion. Under this critical space-time rescaling the process,
(

n−1Tn(t)− σ2, t ≥ 0
)

collapses: at times of order
√
nt the process

(√
n
(

n−1Tn(
√
nt)− σ2

)

, t ≥ 0
)

equilibrates at a Gaus-

sian measure and therefore, when refining the space rescaling, the process
(

n1/4
(

n−1Tn(
√
nt)− σ2

))

equilibrates at δ0. This was proven in [15, Lem. 9].
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We complement the analysis by considering the moderate deviations of n−1Sn(t) around equilib-
rium, under the microscopic dynamics (2.7). As in the weak convergence setting mentioned above,
corresponding to the separation of time-scales for the evolutions of the two processes, we need to
prove a projected path-space large deviation principle, in other words for the component n−1Sn

only. More precisely, we get the following statement.

Theorem 2.4. Let (bn)n∈N∗ be a sequence of positive real numbers such that bn ↑ ∞ and b4nn
−1 ↓ 0.

Suppose that bnn
−1Sn(0) satisfies a large deviation principle with speed nb−4

n on R and rate func-
tion I0. Then, the trajectories

(

bnn
−1Sn(b

2
nt), t ≥ 0

)

satisfy the large deviation principle

P
[(

bnn
−1Sn(b

2
nt), t ≥ 0

)

≈ (γ(t), t ≥ 0)
]

≍ e−nb−4

n I(γ)

on CR(R
+), with good rate function

I(γ) =

{

I0(γ(0)) +
∫ +∞
0 L(γ(s), γ̇(s)) ds if γ ∈ AC,

∞ otherwise,
(2.9)

where

L(x, v) := 1

2

∣

∣

∣

∣

v +
x3

2σ4

∣

∣

∣

∣

2

.

By choosing the sequence bn = nα, with α > 0, we can rephrase Theorem 2.4 in terms of more
familiar moderate scalings involving powers of the system-size. We therefore get estimates for the
probability of a typical trajectory on a scale that is between a law of large numbers and a central
limit theorem. This result extends our understanding of the path-space fluctuations for the Curie-
Weiss model of self-organized criticality, in the case of Gaussian spins. We have stated this result, in
combination with the non-standard central limit theorem in [15, Thm. 1] in Table 1. The displayed
conclusions are drawn under the assumption that in each case the initial condition satisfies a large
deviation principle at the correct speed. Observe that self-organized criticality is reflected by
moderate deviations, since the rate function retains the features of the “critical” evolution (⋆).
To conclude, it is worth to mention that the methods of the papers [6, 7] are not sufficient to
obtain a path-space large deviation principle for the process ((n−1Sn(t), n

−1Tn(t), t ≥ 0) by the
Feng-Kurtz approach. Indeed, the Hamiltonian is not of the standard type dealt with in [6] and
it is not immediately clear how the comparison principle can be treated.

Table 1: Path-space fluctuations for the magnetization of the Curie-Weiss model of self-
organized criticality in the case of Gaussian spins

Scaling

Exponent
Rescaled Process Limiting Theorem

α ∈
(

0, 14
)

(

nα−1 Sn
(

n2αt
)

, t ≥ 0
) LDP at speed n1−4α

with rate function (2.9)

α = 1
4

(

n−3/4 Sn
(

n1/2t
)

, t ≥ 0
)

weak convergence to the unique solution of

dX(t) = −
X3(t)

2σ4
dt + dB(t) (⋆)

with initial condition

X(0) = 0

(see [15, Thm. 1])
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3 Proof

We aim at studying moderate deviations by following the methods in [13]. The techniques are based
on the convergence of Hamiltonians and well-posedness of a class of Hamilton-Jacobi equations
corresponding to a limiting Hamiltonian. These techniques have been applied also in [6–8, 12,
16]. In particular, in [7] moderate deviation principles for projected processes are proved by
combining the perturbation theory for Markov processes with a sophisticated notion of convergence
of Hamiltonians, based on limiting upper and lower bounds. Here we apply those same techniques,
as they allow to take care of unbounded spin state space. We summarize the notions needed for
our result and the abstract machinery used for the proof of a large deviation principle via well-
posedness of Hamilton-Jacobi equations in Appendix A. We rely on Theorem A.9 for which we
must check the following conditions:

• The processes
((

bnn
−1Sn(b

2
nt), bn

(

n−1Tn(b
2
nt)− σ2

))

, t ≥ 0
)

satisfy an appropriate expo-
nential compact containment condition. See Section 3.3.

• There exist two Hamiltonians H† ⊆ Cl(R
2)× Cb(R

2) and H‡ ⊆ Cu(R
2)× Cb(R

2) such that
H† ⊆ ex− subLIMn Hn and H‡ ⊆ ex− superLIMn Hn. This extension allows for unbounded
functions in the domain. See Section 3.2. Moreover, we refer to Definition A.5 for the notions
of subLIM and superLIM.

• There is an operator H ⊆ Cb(R) × Cb(R) such that, for all λ > 0 and h ∈ Cb(R), every
viscosity subsolution to f − λH†f = h is a viscosity subsolution to f − λHf = h and every
viscosity supersolution to f − λH‡f = h is a viscosity supersolution to f − λHf = h. The
operators H† and H‡ should be thought of as upper and lower bounds for the “true” limiting
H of the sequence Hn. See Section 3.2.

• The comparison principle holds for the Hamilton-Jacobi equation f − λHf = h for all
h ∈ Cb(R) and all λ > 0. The proof of this statement is immediate, since the operator H we
will be dealing with is of the type considered in [6].

For the verification of all the open conditions we use the limiting behaviour of the sequence of
Hamiltonians Hn. We then start by deriving an expansion for the Hamiltonians associated to the
re-scaled fluctuation process.

3.1 Expansion of the Hamiltonian

Let (bn)n∈N∗ be a sequence of positive real numbers such that bn ↑ ∞ and b4nn
−1 ↓ 0. The fluc-

tuation process
((

bnn
−1Sn(b

2
nt), bn

(

n−1Tn(b
2
nt)− σ2

))

, t ≥ 0
)

has Markovian evolution on state
space En := R× (−σ2bn,+∞) and its generator Gn can be deduced from (2.7).

Lemma 3.1. Let n ∈ N
∗. The Markov process

((

bnn
−1Sn(b

2
nt), bn

(

n−1Tn(b
2
nt)− σ2

))

, t ≥ 0
)

has
infinitesimal generator Gn that, for any f ∈ C2

c (En), satisfies

Gnf(x, y) =
1

2

(

xb2n
σ2

(hn(y)− 1)− x3

σ4
h2
n(y)

)

∂f

∂x
(x, y) +

(

bnx
2

nσ4
h2
n(y)−

b2ny

σ2

)

∂f

∂y
(x, y)

+
b4n
2n

∂2f

∂x2
(x, y) +

2b3nx

n

∂2f

∂x∂y
(x, y) +

2b4n
n

(

y

bn
+ σ2

)

∂2f

∂y2
(x, y), (3.1)

where the function hn : (−σ2bn,+∞) → R is defined by hn(y) =
(

1 + y
bnσ2 + 1

nσ2

)−1

.

By applying the chain rule to the function exp{nb−4
n f(x, y)}, for f ∈ C2

c (En), it is easy to see
that, at speed nb−4

n , the Hamiltonian

Hnf(x, y) = b4nn
−1e−nb−4

n f(x,y)Gn

(

enb
−4

n f
)

(x, y)
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results in

Hnf(x, y) = Gnf(x, y) +
1

2

(

∂f

∂x
(x, y)

)2

+ 2σ2

(

∂f

∂y
(x, y)

)2

+
2x

bn

∂f

∂x
(x, y)

∂f

∂y
(x, y) +

2y

bn

(

∂f

∂y
(x, y)

)2

, (3.2)

with Gn given by (3.1). We Taylor expand the function hn(y) appearing in the definition of Gn

up to second order:

hn(y) = 1− y

bnσ2
+

y2

b2nσ
4
+

1

b2n
εn(y), (3.3)

where the sequence of functions (εn)n∈N∗ converges to zero, uniformly in n, on compact sets of R.
In what follows we will require a more accurate control on the reminder εn(y). For this reason we
give here the following lemma.

Lemma 3.2. Set Kn = [−σ2 log1/2 b
1/2
n , σ2 log1/2 b

1/2
n ]. There exists a positive constant c, inde-

pendent of n, such that we have

sup
y∈Kn

|εn(y)| ≤ c b−1
n log3/2 b1/2n . (3.4)

Proof. We Taylor expand the function hn(y) up to second order and we express the reminder in
Lagrange’s form. Taking out the highest order terms to obtain (3.3), we find

εn(y) = − b2n
1 + nσ2

− bny

σ2

[

(

1− 1

1 + nσ2

)2

− 1

]

+
y2

σ4

[

(

1− 1

1 + nσ2

)3

− 1

]

− y3

bnσ6

(

1 +
ζ

bnσ2
+

1

nσ2

)−4

,

with |ζ| < |y|. Note that the first three terms on the right-hand side are at most of order b−2
n .

The final term is of order b−1
n log3/2 b

1/2
n , as the fraction that is taken to the fourth power is

asymptotically converging to 1.

Turning back to the expansion of Gn in (3.2), by (3.3) we get

Hnf(x, y) =
1

2

(

−bnxy

σ4
+

xy2

σ6
− x3

σ4

)

∂f

∂x
(x, y)− b2ny

σ2

∂f

∂y
(x, y)

+
1

2

(

∂f

∂x
(x, y)

)2

+ 2σ2

(

∂f

∂y
(x, y)

)2

+Rf
n(x, y) (3.5)

and the remainder

Rf
n(x, y) =

(

xεn(y)

2σ2
− x3

2σ4

(

h2
n(y)− 1

)

)

∂f

∂x
(x, y) +

bnx
2h2

n(y)

nσ4

∂f

∂y
(x, y)

+
b4n
2n

∂2f

∂x2
(x, y) + 2

(

b4nσ
2

n
+

b3ny

n

)

∂2f

∂y2
(x, y) +

2b3nx

n

∂2f

∂x∂y
(x, y)

+
2x

bn

∂f

∂x
(x, y)

∂f

∂y
(x, y) +

2y

bn

(

∂f

∂y
(x, y)

)2

(3.6)

converges to zero, uniformly in n, on compact sets of R2.
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3.2 Perturbative approach and approximating Hamiltonians

Observe that the expansion (3.5) is diverging and, more precisely, is diverging through terms con-
taining the y variable, thus relative to the time-evolution of the process

(

bn
(

n−1Tn(b
2
nt)− σ2

)

, t ≥ 0
)

.

Indeed, the two components of
((

bnn
−1Sn(b

2
nt), bn

(

n−1Tn(b
2
nt)− σ2

))

, t ≥ 0
)

live on two different
time-scales and the asymptotic behavior of (bnn

−1Sn(b
2
nt), t ≥ 0) can be determined after having

averaged out the evolution of
(

bn
(

n−1Tn(b
2
nt)− σ2

)

, t ≥ 0
)

. The “averaging” is obtained through
a perturbative approach leading to a projected large deviation principle. This argument takes
inspiration from the perturbation theory for Markov processes applied in [17, 18, 20] and it was
also used to study path-space moderate deviations for the Curie-Weiss model with random field
in [7].

In the present section we will first give some heuristics about the perturbative method, since it
will provide guideline for getting the approximating Hamiltonians H†, H‡, and then we will make
it rigorous.

Heuristics on perturbation. In the expansion (3.5) the leading term is of order b2n and thus
explodes as n ↑ ∞. We think of b−1

n as a perturbative parameter and we use a second order
perturbation Fn,f of f to introduce some negligible (in the infinite volume limit) terms providing
that the whole expansion does not diverge.
More precisely, given two arbitrary functions Γf ,Λf : R2 → R, we define the perturbation of f as

Fn,f : (x, y) 7−→ f(x) + b−1
n Γf (x, y) + b−2

n Λf (x, y) (3.7)

and then we choose Γf and Λf so that

HnFn,f (x, y) = Hf(x) + remainder,

where Hf(x) is of order 1 with respect to bn and the remainder contains smaller order terms. We
assume that Γf and Λf are at least of class C2 and we compute HnFn,f . Using (3.5) yields

HnFn,f (x, y) = −bnxy

2σ4
f ′(x) +

(

xy2

2σ6
− x3

2σ4

)

f ′(x) +
1

2
(f ′(x))

2

− ybn
σ2

∂Γf

∂y
(x, y)− xy

2σ4

∂Γf

∂x
(x, y)− y

σ2

∂Λf

∂y
(x, y) + remainder.

To eliminate the terms of order bn and of order 1 in the variable y, the functions Γf and Λf must
necessarily verify

∀(x, y) ∈ R
2















− y

σ2

∂Γf

∂y
(x, y)− xy

2σ4
f ′(x) = 0

− y

σ2

∂Λf

∂y
(x, y)− xy

2σ4

∂Γf

∂x
(x, y) +

xy2

2σ6
f ′(x) = 0.

(3.8)

If we take

Γf : (x, y) 7−→ − xy

2σ2
f ′(x) and Λf : (x, y) 7−→ xy2

8σ4
(3f ′(x) + xf ′′(x)), (3.9)

then the conditions (3.8) are satisfied and we obtain

HnFn,f (x, y) = − x3

2σ4
f ′(x) +

1

2
(f ′(x))

2
+ remainder.

Provided we can control the remainder, for any function f in a suitable regularity class, we formally
get the following candidate limiting operator

Hf(x) = − x3

2σ4
f ′(x) +

1

2
(f ′(x))

2
. (3.10)
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To rigorously conclude that the Hamiltonian H is the limit of the sequence (Hn)n∈N∗ , with Hn

given in (3.5), we should prove that H ⊆ LIMn Hn (see Definition A.6). The proof of the latter
assertion would consist in showing that, for every f ∈ C4

c (R), we have LIMn Fn,f = f and
LIMn HnFn,f = Hf . Recall that in our setting (x, y) ∈ En = R × (−σ2bn,+∞). Therefore, the
functions Γf and Λf in (3.9) are unbounded in En, implying in turn that also Fn,f is unbounded
in En. Due to this unboundedness, even if f ∈ C4

c (R), we can not guarantee supn ‖Fn,f‖ < ∞
and thus we can not prove LIMn Fn,f = f .
We apply the same techniques as in [7]. To circumvent the problem and allow for unbounded
functions in the domain, we relax our definition of limiting operator. In particular, we introduce
two limiting Hamiltonians H† and H‡, approximating H from above and below respectively, and
then we characterize H by matching upper and lower bound.

Approximating Hamiltonians and domain extensions. We have seen that the natural
perturbations of our functions f are unbounded. We repair this unboundedness by cutting off the
functions. To this purpose, we introduce a collection of smooth increasing functions χn : R → R

such that

χn(z) =



















−σ2 log b
1/2
n + 1 if z ≤ −σ2 log b

1/2
n

z if − σ2 log b
1/2
n + 2 ≤ z ≤ σ2 log b

1/2
n − 2

σ2 log b
1/2
n − 1 if z ≥ σ2 log b

1/2
n .

(3.11)

To make sure that the cut-off acts only outside a compact set, we first perturb our function f by
a Lyapunov function ε(y2 + log(1 + x2)). The latter function will indeed play a special role in
establishing the exponential compact containment condition in Section 3.3 below.

Lemma 3.3. Let ε ∈ (0, 1) and f ∈ C4
c (R). Consider the cut-off (3.11) and define the functions

χn

(

Fn,f (x, y)± ε(y2 + Fn,g(x, y))
)

,

with Fn,• as in (3.7), (3.9) and g(x) = log(1 + x2). Then,

(a) For any C > 0 there is an N = N(C) such that, for any n ≥ N , we have

χn

(

Fn,f (x, y)± ε(y2 + Fn,g(x, y))
)

= Fn,f (x, y)± ε(y2 + Fn,g(x, y))

on the set K1 = K1(C) :=
{

(x, y) ∈ R
2
∣

∣ ε(y2 + log(1 + x2)) ≤ C
}

.

(b) Let C be the positive constant defined in (3.12) and set N1 := sup{n ∈ N | ε ≤ 6Cb−2
n }. Then,

for any n > N1, the function χn

(

Fn,f (x, y)±ε(y2+Fn,g(x, y))
)

is constant outside the compact

set K2,n :=
{

(x, y) ∈ R
2
∣

∣

∣
ε(y2 + log(1 + x2)) ≤ 2σ2 log b

1/2
n + 6C

}

.

Proof. We start by proving (a). Recall that f ∈ C4
c (R), so there exists a positive constant M such

that the derivatives of f (and, as a consequence, Γf and Λf ) vanish at x /∈ [−M,M ]. Therefore,
it yields

|f(x)|+ b−1
n |Γf (x, y)|+ b−2

n |Λf(x, y)| ≤ ‖f‖+ M

2σ2
‖f ′‖|y|+ M

8σ4
(3‖f ′‖+M‖f ′′‖)y2,

where ‖ · ‖ denotes the L∞-norm. Moreover, since |xg′(x)| ≤ 1 and |x(3g′(x) + xg′′(x))| ≤ 8 we
also get the bound

ε
(

b−1
n |Γg(x, y)|+ b−2

n |Λg(x, y)|
)

≤ |y|
σ2

+
y2

σ4
.

Setting

C := max

{

‖f‖, 1

2σ2
(M‖f ′‖+ 2),

1

8σ4
(3M‖f ′‖+M2‖f ′′‖+ 8)

}

(3.12)
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and putting the two previous estimates together we obtain

∣

∣Fn,f (x, y)± ε
(

b−1
n Γg(x, y) + b−2

n Λg(x, y)
)
∣

∣ ≤ C
(

1 + b−1
n |y|+ b−2

n y2
)

≤ 3C
(

1 + b−2
n y2

)

, (3.13)

where the last inequality follows from |ab| ≤ 2(a2 + b2), with a, b ∈ R. Consider an arbitrary
C > 0. By (3.13), we find that (x, y) 7→ Fn,f (x, y) ± ε(y2 + Fn,g(x, y)) is bounded uniformly in
n on the set K1. To conclude, simply observe that, since the cut-off is moving to infinity, for
sufficiently large n, we obtain χn ≡ id on K1.
We proceed with the proof of (b). For any n > N1 and any (x, y) /∈ K2,n, we obtain

Fn,f (x, y) + ε(y2 + Fn,g(x, y))

= Fn,f (x, y) + ε
(

b−1
n Γg(x, y) + b−2

n Λg(x, y)
)

+ ε
(

y2 + log(1 + x2)
)

≥ −3C
(

1 + b−2
n y2

)

+
ε

2
y2 +

ε

2

(

y2 + 2 log(1 + x2)
)

≥ −3C +
ε

2
(y2 + 2 log(1 + x2))

> σ2 log b1/2n .

The definition (3.11) of the cut-off leads then to the conclusion. The proof for the function
Fn,f (x, y)− ε(y2 + Fn,g(x, y)) follows similarly.

Before stating the next lemma, we want to make a remark on the notation N⋆ used therein. This
index is an explicit positive integer larger than N1 introduced in Lemma 3.3(b) and it will be
defined precisely in (3.16) at the end of this section.

Lemma 3.4. Let ε ∈ (0, 1) and f ∈ C4
c (R). Consider the cut-off (3.11) and define the functions

f ε,±
n (x, y) :=

{

0 if n ≤ N⋆

χn

(

Fn,f (x, y)± ε(y2 + Fn,g(x, y))
)

if n > N⋆

and
f ε,±(x, y) := f(x)± ε

(

y2 + g(x)
)

,

with Fn,• as in (3.7), (3.9) and g(x) = log(1 + x2). Then, for every ε ∈ (0, 1), the following
properties are satisfied:

(a) f ε,±
n ∈ D(Hn).

(b) f ε,+ ∈ Cl(R
2) and f ε,− ∈ Cu(R

2).

(c) We have
inf
n

inf
(x,y)∈En

f ε,+
n (x, y) > −∞ and sup

n
sup

(x,y)∈En

f ε,−
n (x, y) < ∞.

(d) For every compact set K ⊆ R
2, there exists a positive integer N = N(K) such that, for n ≥ N

and (x, y) ∈ K, we have

f ε,±
n (x, y) = Fn,f (x, y)± ε

(

y2 + Fn,g(x, y)
)

.

(e) For every c ∈ R, we have

LIM
n↑∞

f ε,+
n ∧ c = f ε,+ ∧ c and LIM

n↑∞
f ε,−
n ∨ c = f ε,− ∨ c.

Moreover, it holds
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(f) For every c ∈ R, we have

lim
ε↓0

∣

∣

∣

∣f ε,+ ∧ c− f ∧ c
∣

∣

∣

∣+
∣

∣

∣

∣f ε,− ∨ c− f ∨ c
∣

∣

∣

∣ = 0.

Proof. If n < N⋆ all the statements are trivial. We assume n ≥ N⋆ and we prove all the properties
for the ‘+’ superscript case, the other being similar.

(a) It is clear from the definition (3.16) of N⋆ that N⋆ ≥ N1. Then, as the cut-off (3.11) is
smooth, Lemma 3.3(b) yields f ε,±

n ∈ C∞
c (R2). In addition, the location of the cut-off and

Lemma 3.3(b) make sure that f ε,±
n is constant outside a compact set K ⊂ En, implying

f ε,±
n ∈ D(Gn) and, as a consequence, f ε,±

n ∈ D(Hn). See equations (3.1) and (3.2) for the
definitions of Gn and Hn respectively.

(b) This is immediate from the definitions of f ε,±.

(c) From the estimate (3.13), we deduce (keeping the same notation)

inf
(x,y)∈R2

Fn,f (x, y) + ε
(

y2 + Fn,g(x, y)
)

≥ −3C(1 + b−2
n y2) + ε

(

y2 + log(1 + x2)
)

,

which is bounded from below uniformly in n > N1. The conclusion follows as N⋆ ≥ N1 (cf.
equation (3.16)).

(d) This follows immediately by Lemma 3.3(a).

(e) Fix ε > 0 and c ∈ R. By (c), the sequence (f ε,+
n ∧ c)n∈N∗ is uniformly bounded from below and

then, we obviously get supn∈N∗ ||f ε,+
n ∧ c|| < ∞. Thus, it suffices to prove uniform convergence

on compact sets. Let us consider an arbitrary sequence (xn, yn) converging to (x, y) and prove
limn f

ε,+
n (xn, yn) = f ε,+(x, y). As a converging sequence is bounded, it follows from (d) that,

for sufficiently large n, we have

f ε,+
n (xn, yn) = Fn,f (xn, yn) + ε

(

y2n + Fn,g(xn, yn)
)

,

which indeed converges to f ε,+(x, y) as n ↑ ∞.

(f) This follows similarly as in the proof of (e).

Definition 3.5. Let H ⊆ Cb(R)× Cb(R), with domain D(H) = C∞
c (R), be defined as

Hf(x) = − x3

2σ4
f ′(x) +

1

2
(f ′(x))

2
.

We define the approximating Hamiltonians H† ⊆ Cl(R
2)×Cb(R

2) and H‡ ⊆ Cu(R
2)×Cb(R

2) as

H† :=
{(

f(x) + ε
(

y2 + log(1 + x2)
)

, Hf(x) + ε
2 ||f

′||+ ε2
) ∣

∣

∣
f ∈ C∞

c (R), ε ∈ (0, 1)
}

,

H‡ :=
{(

f(x)− ε
(

y2 + log(1 + x2)
)

, Hf(x)− ε
2 ||f

′|| − ε2
)
∣

∣

∣
f ∈ C∞

c (R), ε ∈ (0, 1)
}

.

Proposition 3.6. Consider notation as in Definitions 3.5 and A.5. We have H† ⊆ ex −
subLIMn Hn and H‡ ⊆ ex− superLIMn Hn.

Proof. We prove only the first statement, i.e. H† ⊆ ex− subLIMn Hn. Fix ε > 0 and f ∈ C4
c (R).

Set fn := f ε,+
n as in Lemma 3.4. We show that (f(x) + ε(y2 + log(1 + x2)), Hf(x) + ε

2 ||f ′||+ ε2)
is approximated by (fn, Hnfn) as in Definition A.5(a). Since (A.1) was proved in Lemma 3.4(e),
we are left to check conditions (A.2) and (A.3).
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(A.2) We start by showing that we can get a uniform (in n) upper bound for the function Hnf
ε,+
n .

To avoid trivialities, we consider the sequence for n ≥ N⋆.

– If |Fn,f (x, y)+ ε
(

y2 + Fn,g(x, y)
)

| ≥ σ2 log b
1/2
n , then the function f ε,+

n is constant and
therefore Hnf

ε,+
n ≡ 0.

– If |Fn,f (x, y) + ε
(

y2 + Fn,g(x, y)
)

| < σ2 log b
1/2
n , the variables x and y are at most of

order b
1/4
n and log1/2 b

1/2
n respectively and we can characterize Hnf

ε,+
n by means of

(3.5), since we can control the remainder term. Indeed,

∗ by Lemma 3.2, we control εn(y) up to y’s of order log1/2 b
1/2
n ;

∗ the function f is constant outside a compact set and thus has zero derivatives
outside such a compact set;

∗ by smoothness of the cut-off (3.11), the derivatives χ′
n and χ′′

n are bounded.

We thus find

Hnf
ε,+
n (x, y) =

[

− x3

2σ4
f ′(x)− ε

(

x4

σ4(1 + x2)
+

2b2ny
2

σ2

)]

χ′
n(−)

+
1

2

[

(f ′(x))
2
+

4ε2x2

(1 + x2)2

]

(χ′
n(−))

2

+ 8ε2σ2y2
[

b4n
n
χ′′
n(−) + (χ′

n(−))
2
]

+Qn(x, y) (3.14)

and sup(x,y) |Qn(x, y)| ≤ c0, for a suitable positive constant c0, independent of n and ε.
Observe that the remainder term Qn(x, y) collects all the smaller order contributions
coming from Fn,f (x, y), Fn,g(x, y) and y2.
We want to show that (3.14) is uniformly bounded from above. The terms involving f
are ok, since f ∈ C4

c (R) implies that there exists a positive constant M such that f ′

vanishes at x /∈ [−M,M ]. The function − x4

σ4(1+x2) is non-positive and the term 2x2

(1+x2)2

is bounded from above by 2. Moreover, if we set

N2 := sup

{

n ∈ N

∣

∣

∣

∣

−2b2n
σ2

+ 8σ2

[

b4n
n
χ′′
n(−) +

(

χ′
n(−)

)2
]

> 0

}

, (3.15)

we obtain that− 2b2ny
2

σ2 +8σ2
[

b4n
n χ′′

n(−) +
(

χ′
n(−)

)2
]

y2 is uniformly bounded from above,

for all n > N2. By definition (3.16), N⋆ ≥ N2. Therefore, we can find a positive con-
stant c1 (dependent on M and σ, but not on n and ε) such that Hnf

ε,+
n (x, y) ≤ c1.

To conclude, observe that, since there exists a positive constant c2 (independent of n) such
that |Hnf

ε,+
n | ≤ c2 b

2
n log bn + c0 (cf. equation (3.14)), choosing the sequence vn := bn leads

to supn v
−1
n log ‖Hnf

ε,+
n ‖ < ∞.

(A.3) Let K be a compact set. Consider an arbitrary converging sequence (xn, yn) ∈ K and let
(x, y) ∈ K be its limit. We want to show lim supn Hnf

ε,+
n (xn, yn) ≤ Hf(x).

As a converging sequence is bounded, by Lemma 3.4(d) we can find a sufficiently large
N = N(K) ∈ N such that, for all n ≥ N , we have

f ε,+
n (xn, yn) = Fn,f (xn, yn) + ε

(

y2n + Fn,g(xn, yn)
)

.

Thus, for any n ≥ N , it yields

Hnf
ε,+
n (xn, yn) ≤ − x3

n

2σ4
f ′(xn) +

1

2
(f ′(xn))

2

+ ε

(

xn

1 + x2
n

f ′(xn)−
x4
n

σ4(1 + x2
n)

− 2b2ny
2
n

σ2

)

+ ε2
(

2x2
n

(1 + x2
n)

2
+ 8σ2y2n

)

+Qn(xn, yn).
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Using that x(1 + x2)−1 ≤ 1/2, we find

Hnf
ε,+
n (xn, yn) ≤ Hf(xn) +

ε

2
||f ′||+ ε2 + εy2n

[

8εσ2 − 2b2n
σ2

]

+Qn(xn, yn),

where the remainder term Qn converges to zero uniformly on compact sets. Since bn ↑ ∞,
the conclusion follows.

At this point we are ready to complete the definition of the sequences {fε,±
n }n∈N∗ by defining the

index N⋆. We set
N⋆ := N1 ∨N2, (3.16)

with N1 and N2 given respectively in Lemma 3.3(b) and in (3.15). To conclude this section we
obtain the Hamiltonian extensions.

Proposition 3.7. Consider notation as in Definition 3.5. Moreover, set Ĥ† := H† ∪ H and

Ĥ‡ := H‡ ∪H. Then Ĥ† is a sub-extension of H† and Ĥ‡ is a super-extension of H‡.

Proof. We prove only that Ĥ† is a sub-extension of H†. We use the first statement of Lemma
A.11. Let f ∈ D(H). We must show that (f,Hf) is appropriately approximated by elements in
the graph of H†.
For any n ∈ N

∗, set ε(n) = n−1 and consider the function fn(x, y) = f(x)+ε(n)
(

y2+log(1+x2)
)

,
with H†fn = Hf + ε

2‖f ′‖+ ε2. From Lemma 3.4(f) we obtain that ||fn ∧ c− f ∧ c|| → 0, for every
c ∈ R. In addition, as Hf ∈ Cb(R), we have ||H†fn −Hf || → 0. This concludes the proof.

3.3 Exponential compact containment

The last open question we must address consists in verifying exponential compact containment for
the fluctuation process. The validity of the compactness condition will be shown in Proposition 3.9
below. We start with an informal discussion on the validity of this property.
Recall that the sequence of processes

(√
n
(

n−1Tn(t)− σ2
)

, t ≥ 0
)

converges weakly to the solution

of (2.8). Thus, speeding up time by a factor b2n, we find that the process
√
n
(

n−1Tn(t)− σ2
)

has
roughly equilibrated as a centered normal random variable with variance 2σ4. This implies that,
for any a > 0, the tail probability P

[

bn
(

n−1Tn(t)− σ2
)

≥ a
]

scales like

∫ ∞

a

1

2σ2
√
π

√
n

bn
e
− n

b2n

y2

4σ4 dy. (3.17)

By Lemma 2 in [11, Sect. 7.1], (3.17) is bounded above by

1

2aσ2
√
π

bn√
n
exp

{

− n

b2n

a2

4σ4

}

,

which is indeed decaying on an exponential scale that is faster than nb−4
n . As a consequence, it is

the dynamics of the process
(

bnn
−1Sn(b

2
nt), t ≥ 0

)

that needs to be properly controlled, as well as
the interplay between the two processes.
To do so, we use a Lyapunov argument based on [13, Lem. 4.22] (included for completeness
as Lemma A.3). We start by proving an auxiliary lemma showing that the function (x, y) 7→
1
2

(

y2 + log(1 + x2)
)

is appropriate for this purpose, whenever we carry out the appropriate per-
turbation and cut-off as in the previous section.

Lemma 3.8. Let G ⊆ R
2 be a relatively compact open set. Consider the cut-off introduced in

(3.11) and define

Υn(x, y) = χn

[

1

2

(

y2 + Fn,g(x, y)
)

]

,

14



with Fn,• as in (3.7), (3.9) and g(x) = log(1 + x2). Then, we have

lim sup
n↑∞

sup
(x,y)∈G∩En

HnΥn(x, y) ≤
1

4
.

Proof. This follows immediately from the statement H† ⊆ ex − subLIMn Hn proved in Proposi-
tion 3.6. Namely, one can consider f ≡ 0 and ε = 1

2 .

Proposition 3.9. Assume that the sequence (bnn
−1Sn(0), bn(n

−1Tn(0) − σ2)) is exponentially
tight at speed nb−4

n . Then, the processes

((Xn(t), Yn(t)), t ≥ 0) :=
((

bnn
−1Sn(b

2
nt), bn

(

n−1Tn(b
2
nt)− σ2

))

, t ≥ 0
)

satisfy the exponential compact containment condition at speed nb−4
n . In other words, for ev-

ery compact set K ⊆ R
2, every constant a ≥ 0 and time T ≥ 0, there exists a compact set

K ′ = K ′(K, a, T ) ⊆ R
2 such that

lim sup
n↑∞

sup
(x,y)∈K∩En

b4nn
−1 log P [(Xn(t), Yn(t)) /∈ K ′ for some t ≤ T | (Xn(0), Yn(0)) = (x, y)] ≤ −a.

Proof. The statement follows from Lemmas 3.8 and A.3 by choosing fn ≡ Υn on a fixed, sufficiently
large, compact set of R2. For similar proofs see e.g. [8, Lem. 3.2], [6, Prop. A.15].

3.4 Proof of Theorem 2.4

We check the assumptions of Theorem A.9. We use operators H†, H‡ as in Definition 3.5 and
limiting Hamiltonian H ⊆ Cb(R)×Cb(R), with domain C∞

c (R), of the form Hf(x) = H(x, f ′(x))
where

H(x, p) = − x3

2σ4
p+

1

2
p2.

We first verify Condition A.8: (a) follows from Proposition 3.6, (b) is satisfied by definition and
(c) follows from Proposition 3.7.
The comparison principle for f − λHf = h for h ∈ Cb(R) and λ > 0 has been verified in
e.g. [6, Prop. 3.5]. Two things should be noted. The statement of the latter proposition is valid
for f ∈ C2

c (R), but the result generalizes straightforwardly to class C∞
c (R) as the penalization

and containment functions used in the proof are C∞. In addition, the proposition was stated for
strong viscosity solutions, but the proof of [6, Prop. 3.5] works for our notion of viscosity solutions
as well. See the discussion following [13, Def. 6.1 and Def. 7.1] on the difference of the two notions
of solutions.
Finally, the exponential compact containment condition follows from Proposition 3.9.

A Appendix: path-space large deviations for a projected

process

We turn to the derivation of the large deviation principle. We first introduce our setting.

Assumption A.1. Assume that, for each n ∈ N
∗, we have a Polish subset En ⊆ R

2 such that
for each x ∈ R

2 there are xn ∈ En with xn → x. Let An ⊆ Cb(En) × Cb(En) and existence
and uniqueness holds for the DEn

(R+) martingale problem for (An, µ) for each initial distribution
µ ∈ P(En). Letting P

n
z ∈ P(DEn

(R+)) be the solution to (An, δz), the mapping z 7→ P
n
z is

measurable for the weak topology on P(DEn
(R+)). Let Zn be the solution to the martingale

problem for An and set

Hnf =
1

rn
e−rnfAne

rnf ernf ∈ D(An),

for some sequence of speeds (rn)n∈N∗ , with limn↑∞ rn = ∞.
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Following the strategy of [13], the convergence of Hamiltonians (Hn)n∈N∗ is a major component
in the proof of the large deviation principle. We postpone the discussion on how determining
a limiting Hamiltonian H due to the difficulties that taking the n ↑ ∞ limit introduces in our
particular context. We first focus on exponential tightness, an equally important aspect.

A.1 Compact containment condition

Given the convergence of the Hamiltonians, to have exponential tightness it suffices to establish
an exponential compact containment condition.

Definition A.2. We say that a sequence of processes (Zn(t), t ≥ 0) on En ⊆ R
2 satisfies the

exponential compact containment condition at speed (rn)n∈N∗ , with limn↑∞ rn = ∞, if for all
compact sets K ⊆ R

2, constants a ≥ 0 and times T > 0, there is a compact set K ′ ⊆ R
2 with the

property that

lim sup
n↑∞

sup
z∈K

1

rn
logP [Zn(t) /∈ K ′ for some t ≤ T |Zn(0) = z] ≤ −a.

The exponential compact containment condition can be verified by using approximate Lyapunov
functions and martingale methods. This is summarized in the following lemma. Note that expo-
nential compact containment can be obtained by taking deterministic initial conditions.

Lemma A.3 (Lemma 4.22 in [13]). Suppose Assumption A.1 is satisfied. Let Zn(t) be a solution
of the martingale problem for An and assume that (Zn(0))n∈N∗ is exponentially tight with speed
(rn)n∈N∗ . Consider the compact set K = [a, b] × [c, d] and let G ⊆ R

2 be open and such that
[a, b]× [c, d] ⊆ G. For each n, suppose we have (fn, gn) ∈ Hn. Define

β(q,G) := lim inf
n↑∞

(

inf
(x,y)∈Gc

fn(x, y)− sup
(x,y)∈K

fn(x, y)

)

,

γ(G) := lim sup
n↑∞

sup
(x,y)∈G

gn(x, y).

Then

lim sup
n↑∞

1

rn
logP [Zn(t) /∈ G for some t ≤ T ]

≤ max

{

−β(q,G) + Tγ(G), lim sup
n↑∞

P [Zn(0) /∈ [a, b]× [c, d]]

}

.

A.2 Operator convergence for a projected process

In the papers [6, 8, 16] one of the main steps in proving the large deviation principle was proving
directly the existence of an operator H such that H ⊆ LIMn Hn; in other words, verifying that,
for all (f, g) ∈ H , there are fn ∈ Hn such that LIMn fn = f and LIMn Hnfn = g (the notion
of LIM is introduced in Definition A.4). Here it is hard to follow a similar strategy. We rather
proceed as done in [7].
We are dealing with functions

fn(x, y) = f(x) + b−1
n f1(x, y) + b−2

n f2(x, y) (for suitably chosen f1 and f2)

given in a perturbative fashion and satisfying intuitively fn → f and Hnfn → Hf with Hamil-
tonian H ⊆ Cb(R) × Cb(R) of the form (3.10). The unboundedness of the state space En causes
that for most functions f ∈ C4

c (R): supn ||fn|| = ∞, implying we do not have LIM fn = f . To
circumvent this issue, we relax our definition of limiting operator.
In particular, we will work with two Hamiltonians H† and H‡, that are limiting upper and lower
bounds for the sequence of Hamiltonians Hn, respectively, and thus serve as natural upper and
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lower bounds for H . This extension allows us to consider unbounded functions in the domain and
to argue with inequalities rather than equalities.

Definition A.4 (Definition 2.5 in [13]). For fn ∈ Cb(En) and f ∈ Cb(R
2), we will write LIM fn =

f if supn ||fn|| < ∞ and, for all compact sets K ⊆ R
2,

lim
n↑∞

sup
(x,y)∈K∩En

|fn(x, y)− f(x, y)| = 0.

Definition A.5 (Condition 7.11 in [13]). Suppose that for each n we have an operator Hn ⊆
Cb(En)× Cb(En). Let (vn)n∈N∗ be a sequence of real numbers such that vn ↑ ∞.

(a) The extended sub-limit, denoted by ex − subLIMn Hn, is defined by the collection (f, g) ∈
Cl(R

2)× Cb(R) for which there exist (fn, gn) ∈ Hn such that

LIM fn ∧ c = f ∧ c, ∀ c ∈ R, (A.1)

sup
n

1

vn
log ||gn|| < ∞, sup

n
sup
x∈R2

gn(x) < ∞, (A.2)

and that, for every compact set K ⊆ R
2 and every sequence zn ∈ K satisfying limn zn = z

and limn fn(zn) = f(z) < ∞,
lim sup
n↑∞

gn(zn) ≤ g(z). (A.3)

(b) The extended super-limit, denoted by ex− superLIMn Hn, is defined by the collection (f, g) ∈
Cu(R

2)× Cb(R) for which there exist (fn, gn) ∈ Hn such that

LIM fn ∨ c = f ∨ c, ∀ c ∈ R, (A.4)

sup
n

1

vn
log ||gn|| < ∞, inf

n
inf
x∈R2

gn(x) > −∞, (A.5)

and that, for every compact set K ⊆ R
2 and every sequence zn ∈ K satisfying limn zn = z

and limn fn(zn) = f(z) > −∞,
lim inf
n↑∞

gn(zn) ≥ g(z). (A.6)

For completeness, we also give the definition of the extended limit.

Definition A.6. Suppose that for each n we have an operator Hn ⊆ Cb(En)×Cb(En). We write
ex−LIMHn for the set of (f, g) ∈ Cb(R

2)×Cb(R
2) for which there exist (fn, gn) ∈ Hn such that

f = LIM fn and g = LIM gn.

Definition A.7 (Viscosity solutions). Let H† ⊆ Cl(R
2)×Cb(R

2) and H‡ ⊆ Cu(R
2)×Cb(R

2) and
let λ > 0 and h ∈ Cb(R

2). Consider the Hamilton-Jacobi equations

f − λH†f = h, (A.7)

f − λH‡f = h. (A.8)

We say that u is a (viscosity) subsolution of equation (A.7) if u is bounded, upper semi-continuous
and if, for every f ∈ D(H†) such that supx u(x)− f(x) < ∞ there exists a sequence xn ∈ R

2 such
that

lim
n↑∞

u(xn)− f(xn) = sup
x

u(x)− f(x),

and
lim
n↑∞

u(xn)− λH†f(xn)− h(xn) ≤ 0.
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We say that v is a (viscosity) supersolution of equation (A.8) if v is bounded, lower semi-continuous
and if, for every f ∈ D(H‡) such that infx v(x)− f(x) > −∞ there exists a sequence xn ∈ R

2 such
that

lim
n↑∞

v(xn)− f(xn) = inf
x
v(x) − f(x),

and
lim
n↑∞

v(xn)− λH‡f(xn)− h(xn) ≥ 0.

We say that u is a (viscosity) solution of equations (A.7) and (A.8) if it is both a subsolution to
(A.7) and a supersolution to (A.8).
We say that (A.7) and (A.8) satisfy the comparison principle if for every subsolution u to (A.7)
and supersolution v to (A.8), we have u ≤ v.

Note that the comparison principle implies uniqueness of viscosity solutions. This in turn implies
that a new Hamiltonian can be constructed based on the set of viscosity solutions.

Condition A.8. Suppose we are in the setting of Assumption A.1. Suppose there are operators
H† ⊆ Cl(R

2) × Cb(R
2), H‡ ⊆ Cu(R

2) × Cb(R
2) and H ⊆ Cb(R) × Cb(R) with the following

properties:

(a) H† ⊆ ex− subLIMn Hn and H‡ ⊆ ex− superLIMn Hn (recall Definition A.5).

(b) The domain D(H) contains C∞
c (R) and, for f ∈ C∞

c (R), we have Hf(x) = H(x,∇f(x)).

(c) For all λ > 0 and h ∈ Cb(R), every subsolution to f−λH†f = h is a subsolution to f−λHf = h
and every supersolution to f − λH‡f = h is a supersolution to f − λHf = h.

Now we are ready to state the main result of this appendix: the large deviation principle for the
projected process. We denote by ηn : En → R the projection map ηn(x, y) = x.

Theorem A.9 (Large deviation principle). Suppose we are in the setting of Assumption A.1 and
Condition A.8 is satisfied. Suppose that for all λ > 0 and h ∈ Cb(R) the comparison principle
holds for f − λHf = h.
Let Zn(t) be the solution to the martingale problem for An. Suppose that the large deviation prin-
ciple at speed (rn)n∈N∗ holds for ηn(Zn(0)) on R with good rate-function I0. Additionally suppose
that the exponential compact containment condition holds at speed (rn)n∈N∗ for the processes Zn(t).
Then the large deviation principle holds with speed (rn)n∈N∗ for (ηn(Zn(t)))n∈N∗ on DR(R

+) with
good rate function I. Additionally, suppose that the map p 7→ H(x, p) is convex and differentiable
for every x and that the map (x, p) 7→ d

dpH(x, p) is continuous. Then the rate function I is given
by

I(γ) =

{

I0(γ(0)) +
∫∞
0 L(γ(s), γ̇(s))ds if γ ∈ AC,

∞ otherwise,

where L : R2 → R is defined by L(x, v) = supp {pv −H(x, p)}.

Proof. The large deviation result follows by [13, Cor. 8.28] with H† and H‡ as in the present
paper and H† = H‡ = H . The verification of the conditions for [13, Thm. 8.27] corresponding to
a Hamiltonian of this type have been carried out in e.g. [13, Sect. 10.3] or [6].

A.3 Relating two sets of Hamiltonians

For Condition A.8, we need to relate the Hamiltonians H† ⊆ Cl(R
2)×Cb(R

2) and H‡ ⊆ Cu(R
2)×

Cb(R
2) to H ⊆ Cb(R)× Cb(R).

Definition A.10. Let H† ⊆ Cl(R
2) × Cb(R

2) and H‡ ⊆ Cu(R
2) × Cb(R

2). We say that Ĥ† ⊆
Cl(R

2)×Cb(R
2) is a viscosity sub-extension ofH† ifH† ⊆ Ĥ† and if for every λ > 0 and h ∈ Cb(R

2)

a viscosity subsolution to f −λH†f = h is also a viscosity subsolution to f −λĤ†f = h. Similarly,

we define a viscosity super-extension Ĥ‡ of H‡.
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The following lemma allows us to obtain viscosity extensions.

Lemma A.11 (Lemma 7.6 in [13]). Let H† ⊆ Ĥ† ⊆ Cl(R
2) × Cb(R

2) and H‡ ⊆ Ĥ‡ ⊆ Cu(R
2)×

Cb(R
2).

Suppose that for each (f, g) ∈ Ĥ† there exist (fn, gn) ∈ H† such that, for every c, d ∈ R, we have

lim
n↑∞

||fn ∧ c− f ∧ c|| = 0

and
lim sup
n↑∞

sup
z:f(γ(z))∨fn(γ(z))≤c

gn(z) ∨ d− g(z) ∨ d ≤ 0.

Then Ĥ† is a sub-extension of H†.

Suppose that for each (f, g) ∈ Ĥ‡ there exist (fn, gn) ∈ H‡ such that, for every c, d ∈ R, we have

lim
n↑∞

||fn ∨ c− f ∨ c|| = 0

and
lim inf
n↑∞

inf
z:f(γ(z))∧fn(γ(z))≥c

gn(z) ∧ d− g(z) ∧ d ≥ 0.

Then Ĥ‡ is a super-extension of H‡.
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