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Abstract: Modelling fracture in concrete or masonry is known to be problematic regarding the 
robustness of iterative solution procedures and, the use of non-iterative methods (or that minimize 
the use of iterations) in quasi-brittle materials is now under strong development, due to the necessity 
to obtain effective results in finite element analysis [1, 2] where strong non-linearities emerge that 
are otherwise unwieldy to model. 
 In the proposed lecture, two new methods designated as Non-Iterative Energy based Method 
(NIEM) and Automatic presented in [1, 3] are applied with extension to modelling damage-plastic 
behaviour. The new methods combine an incremental-total procedure with the preferential use of 
incremental steps, switching to the total approach only at critical bifurcation points. The 
development of the load-unloading abilities is allowed by these incremental/total methods, which 
take advantage of keeping the material’s stress/strain memory due to the preferential use of an 
incremental procedure. A new approach to the unload-load cycles is used in the scope of a non-
iterative procedure, which will mitigate the numerical difficulties inherent to cyclic loading. 
 The formulation for both methods for structures with both softening and hardening behaviour is 
presented and a structural example where the numerical results are compared with experimental 
results. 
 

1 INTRODUCTION 
 The use of total approaches based on a 
secant stiffness allows for the correct 
modelling of concrete and masonry structures 

under monotonic solicitation [2]. However, in 
the total approach only secant unloading is 
assumed (path 4 in Figure 1) and reloading 
will recover the position on the material 
envelope using the same secant stiffness. This 
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is a simplification of the real behaviour, since 
there is no evaluation of the residual strains or 
crack openings.  
 In fact, modelling the behaviour of 
structures under reversed loading, such as 
cyclic actions or a load decrease on a given 
structural member, is not correctly simulated 
by the secant unloading-reloading (damage) 
constitutive law; instead, plastic, plastic-
damage (Figure 2) or hysteretic laws should be 
adopted. 

 
Figure 1: Stress-displacement paths 

 In Figure 2, 1D representations of the three 
types of unloading-reloading laws adopted 
with the new non-iterative methods are 
presented for softening. In this figure, d refers 
to an isotropic damage parameter, that easily 
translates the current stiffness coefficient of 
any integration point i as a function of the 
initial elastic stiffness De:  
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with, 

 0 1id   
 And is used to define the material 
stress/strain history. The plastic-damage 
parameter dh  (Figure 2 c)), is a numerical 
parameter that takes into account the residual 
strain/displacement jump (dh ≤ d).  
 The unloading-reloading cycles are 
approximated with a linear branch, initially 
defined by the elastic stiffness, with the 
possibility of evolving according to the plastic-
damage dh function. In the following, D refers 

to the tangent constitutive modulus whereas K 
is the secant modulus. 
 Experimentally, steel reinforcement 
exhibits unloading-reloading behaviour which 
is modelled by means of an elastic branch, 
since the reinforcing steel is assumed as an 
elastic-plastic material. 
 As for concrete, this assumption consists on 
a simplification in both the compressive and 
the tensile stress states, since the unloading-
reloading cycle is associated with an increase 
in damage. Under compression, this 
simplification is possible on low levels of 
post-peak damage and for slow unloading-
reloading cycles, since damage increase also 
depends on these factors. Another 
simplification is to substitute the hysteretic 
cycles by linear elastic-damage branches like 
the examples in Figure 3. 
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a) Damage       b) plastic           c) plastic-

damage 

Figure 2: Unloading behaviour 

 All above referred models, simplified or 
not, cannot be implemented in a pure total 
approach. Nevertheless, the introduction of 
new methods combining an incremental 
procedure with a total approach opened the 
possibility of modelling the unloading 
behaviour taking into account residual 
deformations. 

 
 

a) tensile test b) compressive test 

Figure 3: Experimental cyclic loading results and 

damage branch simplification (adapted from [4]) 
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2  NON-ITERATIVE PROCEDURES 
 The new non-iterative procedures proposed 
in [1] use the combined incremental and total 
approaches. This combined procedure allows 
for the proper tracking of the material loading 
history, conversely to purely total methods. 
Furthermore, information obtained from the 
previous incremental solution is used to 
predict the constitutive law adopted in the total 
approach. In this way: i) there is no need to 
adjust the material parameters to ensure mesh 
objectivity; and ii) the consistency condition is 
satisfied.  

2.1 Solution control 
 In the incremental approach, whenever a 
bifurcation point is reached, the path choice is 
based upon the signal of the particular load 
increment leading to the largest incremental 
energy dissipation. It is assumed that, for a 
load increment applied on a structure, the 
corresponding evolution on the stress-strain 
law of the material point should follow the 
path which would release the largest amount 
of energy. Using an incremental approach, the 
second order energy release in a finite element, 

G , is given by: 
,

d

T T
dG d d

 

        ε σ w t
 

(2) 

 where  is the bulk and d stands for all 
discontinuities,  and  are the strains and the 
stresses in the bulk, respectively, and w and t 
are the jump displacements and the tractions, 
respectively, at the discontinuities. 
 Since multilinear constitutive relations are 
adopted, a critical load factor ( crit ) is first 
evaluated in a trial step, in order to reach the 
nearest material point connecting two linear 
branches. Afterwards, the true step is enforced 
such that: 

, ,true j crit trial jΔP ΔP  (3) 

2.2 Critical bifurcation points 
 When bifurcation points are reached on the 
material law, two possibilities occur: increase 
of damage or unloading. In Figure 4, four 
paths on the uniaxial traction-displacement 

curve are displayed: path 1 corresponds to 
increase of damage, paths 2 and 3 are 
unacceptable since they violate the material 
law, and path 4 corresponds to secant 
unloading. 

t
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Figure 4: 1D representation of possible traction-jump 

paths 

 Whenever a material point undergoes 
unloading, memory is kept until it reloads back 
to the envelope. When the current state is 
unloading this point is never critical except for 
preventing overlapping of crack faces but, 
when reloading occurs, the load factor is 
estimated, similarly to what is done for all 
points that remain on the envelope. When 
several nonlinearities arise during the analysis 
due to the existence of many bifurcation 
points, path searching techniques must be 
applied. If no solution is obtained, i.e., if no 
single admissible path is obtained, a transition 
to the total approach is made. This aspect is 
common to both methods herein presented. 

2.3 Automatic method 
 In the automatic method, whenever a 
critical bifurcation point is reached, it becomes 
impossible to incrementally determine the 
effective path, a total method is adopted in 
which the secant material stiffness is used. 
This secant stiffness is then reduced by a 
predefined factor as done in the Sequentially 
Linear Approach (SLA) developed by Rots[2] 
(Figure 5):  
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Figure 5: 1D example of the Automatic method 
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 where step j is the current (valid) step and 
traction ‘t’ and displacement jumps ‘w’ are 
defined in Figure 5. In the following step j+1 
the secant stiffness is reduced, using the 
standard SLA, such that:  

0t
red j

SL

ft t
N

   
 

(5) 

 where tred is the new stress on the envelope, 
ft0 is the tensile strength and NSL is the 
predefined number of SLA reduction steps. 
The next step is performed similar to the SLA, 
in which usually only one of the points will 
become critical and reaches the original 
envelope. All other points will remain on the 
current secant path. In the following step the 
incremental approach is recovered using the 
tangent stiffness matrix D.  
 Note that the secant stiffness is always 
adopted in the total approach, which has a 
direct correspondence to the adopted envelope. 
In elastoplastic materials it is also possible to 
enforce the correct unloading path using the 
same total approach; in this case, the secant 
stiffness is only adopted to reach new 
equilibrium positions on either: i) the loading 
surface or ii) the unloading surface. More 
details can be found in [1]. 

2.4 Non-Iterative Energy based Method 
(NIEM) 
 In the automatic method the stepwise 
decrease of the secant stiffness must be 

defined a priori, without a clear physical 
meaning. In order to avoid this situation a new 
method, designated NIEM, was introduced, 
which allows for switching between the 
incremental and the total approach without 
imposing a predefined number of reductions of 
the secant stiffness.  
 In the trial step (Figure 6), all non-critical 
points are treated in the usual way, such that a 
critical load factor λcrit is computed. The goal 
of this step is solely to estimate the damage 
level that would be reached if this was a valid 
step; in this way, the secant stiffness update 
for the next step will emerge from this 
prediction. Nevertheless, since on step j some 
integration points would follow invalid paths, 
this step is null. The secant stiffness Kj+1 is 
estimated according to:  

1
1

,

j
j

j trial j

t
K

w w


 
 

 
 

(6) 

 
Figure 6: 1D example of the NIEM 

 Thus, in step j no change occurs; only the 
evaluation of the new secant stiffness is 
performed, which will be adopted in step j+1 
using a total approach. In the following step 
the incremental approach is recovered, similar 
to the automatic method. More details can be 
found in [1]. 

3 FORMULATION FOR SOFTENING 
BEHAVIOUR 
 In the following, mode-I fracture is 
assumed, although adaptation for mode-II 
fracture is straightforward.  
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 The modelling of non-secant unloading 
presents no problem in an incremental 
approach as long as no critical bifurcation 
points are attained. However, when a critical 
bifurcation point is found, a transition to the 
total approach is made. This is a consequence 
of the formulation presented in [1], where it 
was noticed that an inversion on the jump 
increment over the softening branch leads to 
an inadmissible path: a null step is adopted 
and a transition to a secant stiffness matrix 
occurs, similarly in both new methods.  
 In Figure 7, this inadmissible path occurs in 
step u, in which an unloading branch is 
defined between points Ou and k, with stiffness 
Du. The initial stiffness D1 is assumed elastic. 
However, in the scope of a discrete crack 
approach, the initial branch usually 
corresponds to a penalty function. In this case, 
D1 is limited to an acceptable maximum value 
(taken as 103 N/mm3 in all the examples 
presented). Next, the unloading stiffness Du is 
defined according to: 

1(1 )u hD d D   (7) 

 where dh is the plastic-damage scalar 
function (dh  d). 

1D
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k

B

uDu+1K

uK



ft0
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OuO  w

1D
A

k

B

uDu+1K

uK



OuO  

a) loading situation b) unloading situation 

Figure 7: Softening curve: definition of the unload 

branch and determination of load situation 

 Similarly to the usual NIEM and Automatic 
formulations, a secant stiffness is defined for 
the following step. In Figure 7, the secant is 
defined by traction update, dividing the tensile 
value by Nu. This reduction parameter Nu will 
correspond to NSL when using the Automatic 
method or a large value (say 50 to 100) when 
using the NIEM. In this way, a non-convergent 
cyclic behaviour is avoided. Furthermore, the 

resulting increase in damage is in agreement 
with the experimental evidence.  
 In the following total step u+1, the 
previously estimated secant stiffness value is 
used and three situations may occur: 
i) the integration point is critical and 

reloads back to the envelope at point A. 
In this situation, in the following steps 
the usual incremental algorithm is 
followed over the original envelope; 

ii) the integration point is not critical and 
is positioned beyond the unloading 
branch (point  in Figure 7 a)), 
meaning that the effective behaviour of 
this integration point is loading and so, 
it will also reload back to the envelope 
at point A in future steps;  

iii) the integration point is not critical and 
lies before the unloading branch (point 
 in Figure 7 b)); in this case, it is 
assumed that an effective unloading 
situation has occurred and a new 
envelope is generated. 

 The new envelope in iii) is defined by the 
intersection of the unloading branch with the 
original envelope, originating a ‘cut’ in the 
abscissa, eliminating the existing original 
surface before point k (Figure 8). In this way, 
the computational algorithm previously 
generated for the two new methods can be 
easily extended to the present formulation by 
supressing the branches before point k and 
adding the new branch. 

w

k

supressed area of the diagram

new branch

OuO  
Figure 8: Softening curve: example of the insertion of 

an unload branch in a multilinear softening envelope 

 In the steps following step u+1, the new 
envelope is assumed for this integration point 
and several situations may develop until point 
k is again reached (in reloading case), either 
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due to the behaviour of this particular 
integration point alone or by influence of the 
remaining ones. The first situation occurs 
when the current state is short of (point  in 
Figure 8 b)) the intersection between the 
current secant and the unloading branch (point 
B). In this case the secant stiffness is followed 
in both unloading and loading, in the interval 
between the origin O and the limit point B. If 
unloading to the origin occurs, crack closure is 
assumed; conversely, if point B is reached, a 
change in stiffness from ku+1 to Du is adopted 
and the new envelope is assumed. Afterwards, 
when the current stress state is on the 
unloading branch (point  in Figure 9a)), the 
incremental approach is followed similarly to 
the original formulation of the method.  
 Loading and unloading cases are allowed 
on the new first branch of the transformed 
envelope and, in loading cases, the path will be 
followed incrementally until the next vertex on 
the linearised curve is found (Figure 9 a)) or, if 
an unloading situation occurs, the load factor 
is computed towards point Ou. In further total 
steps, until point k is reached, the load factor is 
computed such that the new envelope is aimed 
at the new elastic branch (point C in Figure 9 
b)). The location of point C is estimated using 
the original NIEM algorithm. 

w

k
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
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u

O  

t

w

k

Ou

D=Du

jK

j+1K
 trial,jw

C

O

ft0
NSL

(*)

(**)
B

 

a) unloading/reloadi

ng on the 

unloading branch 

b) reloading 

situation in a total 

step:  

Figure 9: Softening curve: incremental/total algorithm 

with adapted new envelope 

 In the Automatic method the estimation of 
the position of point C is performed by using 
the usual stepwise secant stiffness update. 
Similarly to the first total step after this 
stiffness update, the secant stiffness Kj+1 will 

be followed until intersection with the 
unloading branch occurs. 

4 DAMAGE PARAMETERS 
 If non-secant unloading is assumed, apart 
from the scalar damage value d previously, an 
additional parameter (du) is adopted. Thus, 
throughout the whole process the value of  d is 
fixed, keeping the memory of the envelope 
stress state, whereas du is a temporary variable 
used for the definition of the secant stiffness, 
until full reloading is achieved. After reloading 
back to the envelope, d will then be normally 
updated with damage increase and du will be 
cleared until another unloading cycle occurs. 
This way, in Figure 10, the fixed damage value 
of the unloading point is:  

1 k
k e

k

t
d

D w
   

 

(8) 

 And, the damage of the subsequent total 
step will be: 

, 1 k
u A e

k u

t
d

D w w
 


 

 

(9) 

 with, wu being the jump increase due to 
the enforced secant update. 

D
A

k

B

uD

uK = (1-d) D
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e

AK = K =(1-d    ) DB u,A
e

uw

e

 
Figure 10: Softening curve: evaluation of the damage 

parameters 

 As previously stated, if there is not an 
effective unloading situation, the algorithm is 
abandoned and the original envelope will 
again be followed; for instance, when point A 
is reached, the material damage is made equal 
to the plastic-damage parameter at point A. 
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,u Ad d  (10) 

5 FORMULATION FOR HARDENING 
BEHAVIOUR 
 On Section 2, the formulation used for 
unloading/reloading was presented in the 
scope of the softening behaviour. Now, the 
extension to hardening behaviour is almost 
straightforward. First, in hardening there is no 
need to prevent an overestimated initial 
stiffness value as done in the discrete crack 
approach. Thus, the initial modulus D1 is the 
Young’s modulus (D1 = De). Moreover, the 
secant modulus is not updated by means of 
stepwise stress update, but, by stepwise strain 
increase or stiffness reduction, which are more 
suitable procedures as explained in [1]. The 
reference points previously used in the 
examples are now adapted to hardening curves 
in Figures 11 to 14. 

O

1D

uD

k




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Ou
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1D

uD

k





uK

B
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u+1K

Ou



 

a) loading situation b) unloading 

situation 

Figure 11: Hardening curve: definition of the unload 

branch and determination of load situation 

 The procedure adopted for the definition of 
the new envelope is similar to the previous 
one, supressing the area preceding point k. 

O

k


Ou

of the diagram
supressed area

new branch

 
Figure 12: Hardening curve: example of the insertion of 

an unloading branch in a multilinear softening envelope 

 In Figure 13 the value  is estimated 
according to the additional trial step in the 
NIEM, such as implemented with softening; 
when using the Automatic method it must be 
evaluated by means of stepwise strain increase 
or stiffness reduction, obtaining the associated 
parameters from the linear branch. 

O

k


Ou

D=Du



 

k



B

D=Du

 (*)

jK

j+1K


C

 

a) load/unloading 

over the branch 

b) unloading 

situation 

Figure 13: Hardening curve: incremental/total 

algorithm with adapted new envelope 

 Under hardening behaviour, the variable 
plastic-damage parameter du is estimated 
similarly to the presented before, by using the 
original envelope for evaluation (Figure 14). 
In this case, du is computed from the strain 
variation resulting from the intersection 
between the secant value of the current reload 
situation and the original envelope u. 

O

D

uD

k



B

A

Ou

u

uK = (1-d) De

AK = K =(1-d    ) DB u,A
e

e

 
Figure 14: Hardening curve: Evaluation of the damage 

parameters 

 In Figure 15 a flowchart of the 1D 
algorithm is presented, where the previously 
reference points and indexes are used. The 
scheme is presented using a stress-strain 
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referential but it is easily converted to a 
traction-jump procedure. 

6 STRUCTURAL EXAMPLE 
 In this Section, a structural example is 
presented in order to validate the proposed 
methods and discuss the different options 
introduced for computer analysis. Bilinear 
finite elements are used for the simulation of 
the bulk, whereas cracking is simulated using 
strong embedded discontinuities [5, 6]. Thus, 
cracks are as discontinuities embedded inside 
the finite parent element inserted when the 
tensile strength ft0 is attained. 

Unload
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D=Di
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K     =(1-d    )Du+1 u,A
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Compute 
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step
Incremental

Total step

Box types:

to envelope
Compute 

D     =Ku+1u+2

D  =Duj

 
Figure 15: Flowchart with non-secant 1D unload 

algorithm 

 The displacement jumps are obtained at 
additional degrees of freedom, located at the 
embedded crack. In this model, these degrees 
of freedom are global, giving rise to 
continuous displacement jumps and tractions 
across element boundaries. The use of 

embedded discontinuities allows for the 
simulation of cracking on quasi-brittle 
materials, with the advantage of avoiding 
remeshing. The use of this widespread 
technique has been applied to concrete in 
tension [6], under strong compression and to 
splitting failure. This type of crack simulation 
can also be adopted in other materials, like 
masonry. 
 As for the compressive behaviour of 
concrete, its modelling can become rather 
complex, since nonlinearities are present 
practically from the beginning of the loading 
and the material undergoes softening after 
peak load. Crushing is simulated using a 
simplified elasto-plastic model which limits 
the compressive stresses. It was found in 
previous analyses [7] that the consideration of 
a nonlinear pre-peak relationship does not 
seem particularly important on tests where 
concrete crushing is not the dominant failure 
mode. Nevertheless, the post-peak softening 
response may induce less bearing capacity 
than the assumed perfect plastic behaviour. 
The main reasons why the compressive 
softening behaviour is not adopted here are: 

i) the lack of experimental evidence, 
which supports the definition of a 
fracture energy under compression as a 
material parameter; 

ii) mesh size inobjectivity, which is a 
consequence of modelling softening 
within a continuum, unless 
regularisation approaches are used, 
which lie outside the scope of the 
present analysis. 

 In 2005, a study was presented with 
reinforced concrete beams, applying the (SLA) 
to models where cracking was simulated using 
strong embedded discontinuities. This study 
was summarised in [7]. These models were 
based on a testing campaign, and had the goal 
of simulating the behaviour of several 
experimental tests performed in reinforced 
concrete beams, loaded until a previously 
defined damage level. After this initial 
damage, the existing cracks were repaired by 
epoxy glue injection, with posterior bonding of 
a steel plate consisting of additional external 
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reinforcement. Next, the beams were subjected 
to additional loading until failure. 
 This test campaign, included the testing of a 
reference beam, which was loaded until failure 
with three unloading cycles. The aim of the 
present example is to illustrate the use of the 
unloading-reloading algorithm presented on 
the previous sections. 
 The model is a four point bending 
reinforced concrete beam (Figure 16) 
subjected to circular bending at the central 
span (no shear) and it is composed of concrete 
with fc = 29.67 N/mm2 , ft0 = 2.4 N/mm2, GFI = 
0.056 N/mm. Steel reinforcement is composed 
of two 10 mm bars on the bottom face and two 
6 mm bars on the top face. Stirrups were used 
on the experimental tests, but they were not 
modelled in the finite element mesh. 

P

900

15
17

0
15

2 Ø 10

2 Ø 6

300 P

900

300

 
Figure 16: Unloading-reloading cycles in a reinforced 

concrete beam: structural scheme, load and boundary 

conditions (200 mm width, dimensions in mm) 

 The finite element model is a structured 
mesh (Figure 17), composed of 360 bilinear 
elements, with a mode-I bilinear softening law 
(w1 = 0.029 mm and ft1 = 1.84 N/mm2, wult = 
0.13 mm), Cracking is modelled by a discrete 
crack approach, using strong embedded 
discontinuities [5]. The traction-displacement 
jump relationship is characterised by a mode-I 
bilinear softening law; the shear stiffness is 
reduced proportionally to zero as mode-I 
softening evolves until a stress-free crack is 
obtained. Unloading-reloading cycles in 
softening are modelled by means of a linear 
branch with a stiffness equal to 103 N/mm, and 
the elastic stiffness in hardening. 

 

Figure 17: Unloading-reloading cycles in a reinforced 

concrete beam: finite element mesh 

 A multi-linear behaviour law for concrete 
under compression is adopted, which consists 
of the linearisation of the MC90 [8] concrete 
behaviour function:  

2

1 1 1
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1 1

, for
1 2

ci c c

c c c
c c i c
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c c
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
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  
   

 
  
 

 

 

 

(11) 

where:  

 1cE  is the initial tangent modulus 
(32000 N/mm2);  

  / 0.0022ci cE f ; 

  c  is the compression strain; 

 1 0.0022c    is the strain value 
associated with fc. 

 Conversely to the MC90, no softening 
behaviour is defined after c1. As previously 
stated, this simplification is introduced in 
order to avoid the corresponding mesh size 
dependency. Thus, the adopted envelope 
approximates the MC90 function until the 
strain value c1 is attained, after which, a pure 
plastic behaviour is adopted (Figure 18). 
Unloading-reloading follows the elastic 
branch, parallel to the initial tangent modulus. 

 
Figure 18: MC90 and adopted compression models for 

concrete under compression 

 Steel behaviour is modelled, by means of 
72 Linear elements, with an elasto-plastic law 
(fy  = 510.0 N/mm2, E = 205000 N/mm2). The 
unloading-reloading stiffness is the elastic 
stiffness. Bond-slip is modelled using 72 
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interface elements under mode-II fracture, 
using the MC90 local bond slip model. 
 Experimentally, the beam was loaded until 
failure with 3 cycles; the first one until 
10.0 kN, proceeded with unloading and 
reloaded until the second loading stage of 
15.0 kN. After this second stage, the beam was 
unloaded and reloaded until 19.6 kN, after 
which the load was kept fixed for a certain 
period in which creep developed. Since creep 
is not simulated here, the plateau on the charts 
of Figures 19 and 20 is artificially introduced 
by adding the corresponding displacement. 
 The load-displacement curve, using the 
Automatic method, follows accurately the 
experimental curve, with the two first 
unloading branches slightly less stiff than the 
experimental unload-reload branches. Using 
the NIEM the curves are smoother, with 
similar unloading-reloading behaviour. The 
results of both methods do not simulate the 
damage increase due to the unloading-
reloading loops since they were not modelled. 
However, the good agreement between the 
numerical and the experimental unloading 
branches and the lack of numerical difficulties 
opens the possibility of modelling more 
complex cycles.  

 
Figure 19: Unloading-reloading cycles in a reinforced 

concrete beam: load-displacement curve obtained using 

the Automatic method.  

 The deformed shapes and crack pattern are 
presented in Figures 21 to 23. Crack 
localisation is somewhat different between the 
methods. At failure, a diagonal crack is formed 
due to lack of stirrups, but the deformation 
limit of 12 mm prevented shear failure. On 
these figures the circles represent the location 

of the analysed integration points presented 
below. 

 
Figure 20: Unloading-reloading cycles in a reinforced 

concrete beam: load-displacement curve obtained using 

the NIEM method. 

 
Figure 21: Unloading-reloading cycles in a reinforced 

concrete beam: crack superposition in the deformed 

finite element mesh using the NIEM at the initiation of 

the first unloading stage = 3.06 mm (displacements 

amplified 5 times, crack width amplified 25 times)  

 
Figure 22: Unloading-reloading cycles in a reinforced 

concrete beam: crack superposition in the deformed 

finite element mesh using the NIEM at failure stage = 

12.00 mm (displacements amplified 5 times, crack 

width amplified 25 times)  

 In order to visualize the evolution of the 
concrete behaviour, the obtained stress-strain 
diagrams are plotted in Figure 24 for the bulk 
in the most compressed finite element, 
whereas in Figures 25 and 26 the traction-
jump relations at the tip of the most opened 
crack are presented. For bulk compression the 
plotted envelope is obtained with the NIEM, 
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which is similar to the one obtained with the 
Automatic method.  

 
Figure 23: Unloading-reloading cycles in a reinforced 

concrete beam: crack superposition in the deformed 

finite element mesh using the Automatic method at 

failure stage = 12.00 mm (displacements amplified 5 

times, crack width amplified 25 times)  




unloading stages

 
Figure 24: Unloading-reloading cycles in a reinforced 

concrete beam: material envelope of the most 

compressed concrete element using the NIEM. 

 Similarly, on the tensile softening diagrams, 
the unloading stages are clearly identifiable, 
and due to the low value of the limit traction 
jump, only one or two stages occur on each 
fracture integration points. In the cases 
presented in Figures 25 and 26, the last 
unloading stage occurred after the analysed 
integration reached full softening, thus, the 
unload steps followed the horizontal (zero 
stiffness) branch. The second unloading stage 
led to negative traction values, but no crack 
closure is obtained. 

w

ft0

wult
unloading stages

total steps

incremental steps

 
Figure 25: Unloading-reloading cycles in a reinforced 

concrete beam: material envelope of the most opened 

crack tip element using the Automatic method. 

t

w

ft0

wult
unloading stages

total steps

incremental steps

 
Figure 26: Unloading-reloading cycles in a reinforced 

concrete beam: material envelope of the most opened 

crack tip element using the NIEM. 

 In the steel elements Figure 27, due to the 
use of an elastoplastic behaviour law, the two 
first unloading stages occur while the elastic 
branch is being followed. In this way, it is only 
possible to visualise one unloading branch 
emerging from the plastic horizontal stage. 
Again, the envelope is naturally retrieved after 
reloading.  

unloading stage

 
Figure 27: Unloading-reloading cycles in a reinforced 

concrete beam: material envelope of the most yielded 

steel element using the NIEM method. 
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 It can be concluded that the proposed 
algorithm is valid and satisfactorily depicts the 
real unloading-reloading situations, both in 
hardening and in softening behaviour. 
Moreover, the return to the state previous to 
unloading is guaranteed by means of the 
damage variables defined in Section 3.  
 Since, in total steps, the material points may 
lays on the secant branches temporarily, before 
attaining the unloading/reloading branches, a 
softer unloading behaviour can be obtained. A 
new procedure is now being implemented to 
overcome this issue. 

7 CONCLUSIONS 
 In models in which no critical bifurcation 
points arise, the following conclusions can be 
drawn: i) the use of an incremental approach 
with linearised curves has proven suitable in 
presented example; and ii) the energy solution 
control effectively allows for the correct 
loading path choice. 
 Both new methods led to good result. The 
NIEM shows a good agreement with the 
material laws when compared to the Automatic 
method with an acceptable increase in 
computing time. None of the presented 
methods is mesh-dependent in the scope of 
discrete crack approach[1].  
 The possibility of both methods storing the 
material stress/strain or traction/jump history, 
by means of a damage parameter, allows a 
perfect correlation between total (secant) and 
incremental (tangent) approaches, during a 
complete analysis, thus opening the possibility 
to the modelling of other type of unloading 
paths (other than secant), such as elastic and 
damage-plastic unload or even hysteretic 
cycles, since the coordinates of the return point 
on the surface are easily obtained by means of 
the current damage value. The presented laws, 
effectively model cyclic behaviour on both 
hardening and softening, allowing the use of a 
damage prediction between unloading-
reloading situations. Finally, the two methods 
were capable of good predictions of the 
experimental results, conversely to the classic 
iterative methods which often fail to converge. 
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