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DYNAMIC RESPONSE OF TWO INTERACTING EXTENSIBLE BARS
IN FRICTIONAL CONTACT

Timo Molenkamp1, Athanasios Tsetas1, Apostolos Tsouvalas1 and Andrei V. Metrikine1

1 TU Delft
Faculty of Civil Engineering
Stevinweg 1, 2628 CN Delft

T.Molenkamp@tudelft.nl
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Abstract. In this paper, a new model is developed to describe the nonlinear dynamics of two
axially deformable bars sliding relative to each other in which the interaction is governed by
friction. The first bar is fixed at one end and is subjected to a distributed normal force perpen-
dicular to its axis to activate friction at the common interface, while the second bar is allowed to
slide relative to the fixed one. A semi-analytical solution method is developed in which only the
nonlinear interaction is addressed numerically. The dynamic behaviour of the bars is expressed
as a summation of vibration modes including the necessary rigid body mode to allow for the
permanent sliding of one bar relative to the other. This results in a computationally efficient
scheme without compromising the accuracy of the solutions. The developed model can be used
in pile driveability studies. In this case the fixed bar resembles the soil column while the second
bar describes the dynamics of the driven pile.
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1 INTRODUCTION

In many engineering fields, including the field of pile driving, friction plays an important

role. For example, accurate prediction of underwater noise generated in the seawater during the

process of pile driving with vibratory devices requires the simultaneous prediction of the pile

progression into the soil and, thus, the incorporation of a proper frictional model to describe

the pile-soil slip behaviour. State of the art models in underwater noise prediction for impact

pile driving all assume perfect contact between pile and soil [1, 2]. Problems including high

frequency bands solved with a fixed FE-mesh, need both a fine spatial and time discretization to

describe the propagating waves. This results in enormous computational efforts upto insolvable

problems [2]. As a first step towards the development of a computational efficient model that

predicts noise during vibratory pile driving including slippage of the pile, the dynamics of two

elastic bars in frictional contact is studied in this paper.

The inclusion of friction complicates the problem, as it introduces a strong nonlinearity. To

describe the forces at a frictional interface an appropriate frictional law should be chosen [3].

Since the focus herein is on noise generated during the driving process of piles with vibratory

devices, the interest is in a straightforward frictional model that can describe the sliding be-

tween pile and soil. The most common frictional model is based on the Coulomb friction law.

Coulomb’s friction can be applied in many fields such as in a simplified model for belt driv-

ing mechanics, in which the Coulomb’s friction law represents the dry friction between belt and

support [4]. Variations on Coulomb’s friction for multi-body mechanicals systems are described

for example by Marques et al. [5]. The Coulomb friction, which is multivalued at zero velocity,

can be approximated by alternative methods which deviate from Coulomb’s friction below a

certain velocity threshold and have a finite slope at zero velocity, e.g. linear velocity-dependent

friction at low velocities and an approximation by a hyperbolic tangent [5]. Another alternative

is introduced by Threlfall, the method avoids the discontinuity in the transition between positive

and negative and it has a higher resemblance with the Coulomb friction law at velocities below

a certain threshold [6]. This last friction law fits the problem of vibratory pile driving since it is

smooth and the pile is assumed to slide continuously to the soil, while sticking can be neglected.

The model discussed in this work can be seen as a predecessor of a three-dimensional model

to be used in pile driving noise prediction including the effect of pile-soil slip. In section 2,

the problem statement is explained, including the equations of motions, boundary conditions

and Threlfall’s friction law. Hereafter, the solution method is described. The solution approach

is largely analytical; a numerical scheme is used only to evaluate standard integrals. Section

3 describes the limitations of the method in terms of convergence, including criteria for the

truncation of the number of modes that are used in this work. Section 4 shows results for the

case of an impact load represented by a block function and a harmonic load. Finally, section 5

contains conclusions regarding the model performance.

2 MATHEMATICAL FORMULATION

2.1 Governing equations

The model under consideration is schematized in Fig. 1. It consists of two bars, which can

deform in the axial direction and interact through a frictional interface. The equations of motion
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Figure 1: Schematization of the problem statement

describing the dynamics of the two bars read:

ρ1A1ü1(x, t) = E1A1u
′′
1(x, t)− T1(x, t) + F (t)δ(x) (1)

ρ2A2ü2(z, t) = E2A2u
′′
2(z, t)− T2(z, t) (2)

in which subscript 1 refers to the forced bar and subscript 2 to the constrained bar, hereafter

called bar 1 and 2. The constants ρ, A and E define the density, area and elasticity of the bars

respectively. T1,2(x, t) represents the friction that acts on either bar. The driving force F (t) can

alternatively be included in a time-dependent boundary [7], however, the interest here lies not

in the precise description of the top boundary stresses. A local coordinate system is adopted

for bar 1. The progression of the lower end of bar 1 with respect to the upper end of bar 2 is

characterized by u0(t) as shown in Fig. 1. The prime and dot indicate derivatives with respect

to spatial coordinates and time, respectively. Threlfall’s friction law is adopted, i.e. the signum

function that is smoothed around zero velocity:

T1(x, t) = μN sgn(Δv1(x, t))

(
1− e

−k
Δv1(x,t)

v95

)
H(x− L1 + u0(t)) (3)

T2(z, t) = μN sgn(−Δv2(z, t))

(
1− e

−k
Δv2(z,t)

v95

)
H(u0(t)− z) (4)

with:

Δv1(x, t) = u̇1(x, t)− u̇2(x− L1 + u0(t), t) (5)

Δv2(z, t) = u̇2(z, t)− u̇1(z + L1 − u0(t), t) (6)
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where H is the Heaviside function and v95 is a velocity threshold above which the friction

behaves almost velocity independent, i.e. at Δv = v95: T ≈ 0.95Tmax for k = 3. The velocity

threshold is based on the maximum modal change of velocity amplitude per time step, derived

based on the results of section 2.2 of this paper as:

v95 =
4μNΔt

πρ1A1

(7)

The boundary conditions read:

u′
1(0, t) = u′

1(L1, t) = u′
2(0, t) = u2(L2, t) = 0 (8)

The initial conditions are:

u1(x, t0) = ut0 , u̇1(x, t0) = u̇t0 , u2(x, t0) = wt0 , u̇2(x, t0) = ẇt0 (9)

Eqs. (1) to (9) govern the dynamics of the coupled system in the time domain.

2.2 Solution method

A modal solution approach is adopted, therefore, the displacements are expressed as a sum-

mation of modes:

u1(x, t) =
∞∑
n=1

φn(x)ηn(t), u2(z, t) =
∞∑

m=1

ψm(z)ζm(t) (10)

Bar 1 is allowed to slide with respect to bar 2; the relative motion is governed by the rigid body

motion of bar 1; relative displacement due to deformation of either bar is neglected. Substitution

of Eq. (10) into Eqs. (1) and (2) yields:

∞∑
n=1

φn(x)η̈n(t) + ω2
nφn(x)ηn(t) =

F (t)δ(x)− T1(x, t)

ρ1A1

(11)

∞∑
m=1

ψm(z)ξ̈m(t) + ω2
mψm(z)ξm(t) = −

T2(z, t)

ρ2A2

(12)

with:

φn(x) = cos

(
ωnx

c1

)
, ωn =

nπc1
L1

n = 0, 1, 2, ... (13)

ξm(z) = cos

(
ωmz

c2

)
, ωm =

(2m− 1)πc2
2L2

m = 1, 2, 3, ... (14)

being the spatial eigenfunctions satisfying Eqs. (8). Eqs. (11) and (12) are multiplied by another

mode and integrated over the length of each bar, making use of the orthogonality relation of the

modes. After substituting Eqs. (3) and (4) into Eqs. (11) and (12), one obtains:

η̈n(t) + ω2
nηn(t) =

1

ρ1A1an

(
F (t)− μN

∫ L1

L1−u0(t)

φn(x) sgn(Δv1(x, t))

×
(
1− e

−k
Δv1(x,t)

v95

)
dx

)
(15)

ξ̈m(t) + ω2
mξm(t) = −

μN

ρ1A1am

∫ u0(t)

0

ψm(z) sgn(Δv2(z, t))

(
1− e

−k
Δv2(z,t)

v95

)
dz (16)
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with:

an =

∫ L1

0

φn(x)
2dx =

{
L1 n = 0
1
2
L1 n �= 0

, am =

∫ L2

0

ψm(z)
2dz =

1

2
L2 (17)

To facilitate a computationally efficient solution of Eqs. (15) and (16), a straightforward time-

stepping scheme is chosen, assuming that the relative velocity, Δv1,2(z, t), and the progression

u0(t) are constant during a time step. Under the stated assumptions, Eqs. (15) and (16) act

linear during a time step and the modal amplitudes ηn and ξm can be found using the Duhamel’s

integral for each time step. The closed-form solution to Eq. (15) reads:

ηn(ti+1) = An sin(ωnti+1) +Bn cos(ωnti+1)

+
1

ωnanρ1A1

∫ ti+1

ti

F (τ) sin(ωn(ti+1 − τ))dτ − μN (1− cos(ωnΔt))

ω2
nanρ1A1

×
∫ L1

L1−u0(ti)

φn(x) sgn(Δv1(x, ti))

(
1− e

−k
Δv1(x,ti)

v95

)
dx (18)

in which An and Bn are found by the previous time step:

An =
sin (ωnti)ωnηn(ti) + cos (ωnti) η̇n(ti)

ωn

Bn =
cos (ωnti)ωnηn(ti)− sin (ωnti) η̇n(ti)

ωn

(19)

and in the special case of the initial time step:

ηn(t0) =

∫ L1

0
ut0dx

an
, η̇n(t0) =

∫ L1

0
u̇t0dx

an
(20)

The time derivative of ηn(t) is given as:

η̇n(ti+1) = An(ti)ωn cos(ωnti+1)− Bn(ti)ωn sin(ωnti+1)

+
1

anρ1A1

∫ ti+1

ti

F (τ) cos(ωn(ti+1 − τ))dτ − μN sin(ωnΔt)

ωnanρ1A1

×
∫ L1

L1−u0(ti)

φn(x) sgn(Δv1(x, ti))

(
1− e

−k
Δv1(x,ti)

v95

)
dx (21)

with Δt = ti+1 − ti. Similar procedure for ξm results in:

ξm(ti+1) = Cm(ti) sin(ωmti+1) +Dm(ti) cos(ωmti+1)

− μN (1− cos(ωmΔt))

ω2
mamρ2A2

∫ u0(t0)

0

ψm(z) sgn(Δv2(z, ti))

(
1− e

−k
Δv2(z,ti)

v95

)
dz (22)

ξ̇m(ti+1) = Cm(ti)ωm cos(ωmti+1)−Dm(ti)ωm sin(ωmti+1)

− μN sin(ωmΔt)

ωmamρ2A2

∫ u0(ti)

0

ψm(z) sgn(Δv2(z, ti))

(
1− e

−k
Δv2(z,ti)

v95

)
dz (23)

Where Cm and Dm are found similar to An and Bn. As mentioned earlier, the spatial integrals

including the friction terms need numerical evaluation. The time step needs to be chosen such

that it is smaller than a tenth of the smallest period in the system: Δt < 2π/max(ωi)/10.
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2.3 Linear equivalent model

The model is compared to a fully linear model that is valid for the case of no sliding. The

F(t)

ρ1,
A1,
E1

z = 0

z = L

ρ2,
A2,
E2

ρ3,
A3,
E3

z = L2

z = L1

Figure 2: Schematization of the linear equivalent model

linear equivalent problem is composed of three bars as shown in Fig. 2, where the material

properties of the second bar are based on the weighted averages of bar 1 and 3. The equation of

motion of the whole system for each bar reads:

ρ1A1ü1 − E1A1u
′′
1(z, t) = F (t)δ(z) 0 < z < L1

ρ2A2ü2 − E2A2u
′′
2(z, t) = 0 L1 < z < L2

ρ3A3ü3 − E3A3u
′′
3(z, t) = 0 L2 < z < L

(24)

The top boundary is stress-free since the applied force is accounted for in the equation of motion

and the bottom boundary is fixed, furthermore, the interface conditions describe the continuity

of displacements and stresses. The modes of the system can be found by solving the eigenvalue

problem that is formed after substituting the general solution for each of the bars in the boundary

and interface conditions. The modes are orthogonal with respect to the density and area [8]:∫ L1

0

ρ1A1φm(z)φn(z)dz+

∫ L2

L1

ρ2A2φm(z)φn(z)dz+

∫ L

L2

ρ3A3φm(z)φn(z)dz = anδnm (25)

The modal amplitudes are found analytically by making use of the orthogonality of the modes:

ηn(t) = An sin(ωnt) +Bn cos(ωnt) +
1

ωnan

∫ t

0

F (τ) sin(ωn(t− τ))dτ (26)
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An and Bn are found by the initial conditions at t = 0:

An =
1

anωn

3∑
i=1

∫
Li

ρiAiφn(z)u̇i(z, 0)dz (27)

Bn =
1

an

3∑
i=1

∫
Li

ρiAiφn(z)ui(z, 0)dz (28)

3 RESULTS

Two cases will be examined; the case of a block function load and the case of a high-

frequency harmonic excitation. The two load cases are visualized in both time and frequency

domain in Fig. 3. The material properties are chosen such that the wave speeds in both bars are

(a) Block load (b) Spectrum of the block load

(c) Harmonic load (d) Spectrum of the harmonic load

Figure 3: Load in time and frequency domain (red), and the minimum of frequencies included in the results (blue)

representative for steel and sandy soil. For bar 1 the properties are: ρ1A1 = 1, E1A1 = 50002,
c1 = 5000 and L1 = 20, for bar 2: ρ2A2 = 5, E2A2 = 5002 c2 = 500 and L2 = 20. In the

initial state, the friction interface is half of bar 1, i.e. u0(0) = 10. The duration of the applied

block load is tblock = 0.001. The harmonic load starts at t = 0 with Ω = 1000. The amplitude

of both loads is 10. The influence of the friction coefficient μN is shown in the graphs, where

μN varies from 0.1 to 100μN . μN = 100 is chosen sufficient high to approximate the linear

case, where both bars move together and no sliding occurs. This case serves as validation of

the description of the model with friction. The number of modes that are considered is based

on the eigenfrequencies of the modes. At least frequencies excited by the block load, with an

amplitude higher than 10% of the maximum amplitude or frequencies up to four times the exci-

tation frequency of the harmonic load are included, as indicated with the blue lines in Figures 3b

and 3d. For the block load and harmonic load this result in ωmax = 20.000 and ωmax = 4.000
respectively. This relates to about 25 and 5 flexible modes of bar 1 and about 250 and 50 modes
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(a) Displacement of bar 1

(b) Velocity of bar 1

(c) Displacement of bar 2

(d) Velocity of bar 2

Figure 4: The dynamic response of the bars when bar 1 is subjected to the block load for different values of μN
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(a) Displacement of bar 1

(b) Velocity of bar 1

(c) Displacement of bar 2

(d) Velocity of bar 2

Figure 5: The dynamic response of the bars when bar 1 is subjected to a sinusoidal load for different values of μN
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for bar 2. While the friction force is based on the relative velocity of the bars, the velocities are

preferably described with the same accuracy, i.e. the smallest wavelength of both bars is of the

same order. Since both bars have the same length, the same number of modes are included in

both bars, governed by the highest number required.

Fig. 4 shows the displacement and velocity of both bars due to a block load, representing

impact pile driving. It can be seen that the block function is well represented by the summation

of modes. Therefore also higher modes are activated along the whole bar. This can be seen in

the amplification of higher modes, ahead of the wave-front in Fig. 4a, especially in case of high

friction forces. Although present, over time these vibrations cancel out and they do not excite

the system. For low friction coefficients, almost no energy dissipates into bar 1. Therefore, the

wave reflects back and forth almost undisturbed.

In case of the response to a harmonic load, shown in Fig. 5, higher frequencies are not

excited from the beginning, therefore, the results are more smooth. In all cases, the highest

friction μN = 100 is in good agreement with the linear results. Both bars converge to the

same displacement and velocity for μN = 100. Contrary, for low friction amplitudes, the

unconstrained bar slides over the constrained bar. Due to that, final displacements are bigger

at t = 0.015, best shown in Fig. 4a. Generally, the model behaves as expected, e.g. the wave-

fronts align for all waves in the first bar upon the moment it starts interacting with the second

bar, then for high friction amplitudes, the wave speed of both bars is based on a weighted

average, whereas for low-frequency amplitudes, the wave-speed is less affected by the second

bar. This is best shown in Figures 4c and 4d, where at t = 0.004, the three different wave-fronts

are visible.

Figure 6: Time-frequency response of bar 2 for μN = 1

Fig. 6 points the importance of including the frictional interface in noise generating models for

vibratory pile driving. The time-frequency plot clearly identifies the presence of the odd higher

order harmonics that are excited in the system due to the presence of the frictional surface.

4 CONVERGENCE

The convergence of the model is satisfied based on displacements and velocities. The model

is not able to describe the stress at the top boundary correctly due to the delta function, but

the exact boundary stress at the top is not of interest, with an increasing number of modes, a

261



Timo Molenkamp, Athanasios Tsetas, Apostolos Tsouvalas and Andrei V. Metrikine

good approximation of the stress close to the boundary can be obtained. Since the time step is

chosen sufficiently small: Δt < 2π/max(ωi)/10, and depends on the number of modes in the

system, the convergence of the solution depends on the truncation of the modes. The truncation

criterion is based on the displacement of the bar at the final time step:

δ(x, timax) =

∣∣∣∑0.9N
n=1 un(x, t)−

∑N
m=1 um(x, t)

∣∣∣∣∣∣∑N
m=1 um(x, t)

∣∣∣ < 1% (29)

where N is the number of modes. It needs to be mentioned that the convergence criterion only

holds at each point from the time moment onwards when the first wave reaches the point, while

before that, the denominator is zero. The convergence over time for the block load case from

section 3 and μN = 10 is studied for both bars. Since the final wavefront just passed half of

bar 2, only the upper half of bar 2 is taken into account. The convergence is checked between

N = 225 and N = 250 modes. Fig. 7 shows that the displacements converge directly after the

(a) δ(x, ti) of bar 1

(b) δ(z, ti) of bar 2

Figure 7: Relative error between 225 and 250 modes for t = 0→ 0.015

first wavefront arrives to δ < 0.1%. It confirms that the number of modes chosen in section 3 is

more than sufficient for the convergence of the displacements.
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5 CONCLUSIONS

The modelling technique presented in this paper is suitable for describing the interaction of

two flexible bars in frictional contact. Although stick is not included in the model, high fric-

tion forces approximate the linear model that corresponds to bars under stick condition. The

accuracy of the solution increases with the number of modes included. The number of modes

included is a trade-off between computational efficiency and accuracy, whereas the length of

the time signal is linearly related to the computation time. More modes need to be included

to approximate sudden jumps in stress or velocity. This is of major importance in impact ex-

citations but since the work focuses on harmonic excitations, sudden jumps are not expected.

Conclusively, the modelling approach seems suitable for the field of application since the ex-

citation is mainly harmonic, the non-linear behaviour of the interface can be included without

compromising the computational time compared to linear models.
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