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sleepers resting on a regular and infinite lattice: semi-analytical 
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aTU Delft, Faculty of Civil Engineering and Geosciences (CiTG), Department of Engineering Structures, Section of Dynamics 
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*corresponding author: J.M.DeOliveiraBarbosa@tudelft.nl

Abstract 
In this work we propose a model for the analysis of the dynamic behaviour of a ballasted track 

that combines discrete and continuous elements. The rail is modelled via an Euler-Bernoulli beam, 
the periodically spaced sleepers are represented with lumped masses, and the ballast is simulated 
using a lattice (regular network of elastically connected lumped masses). All elements are assumed to 
behave linearly, and the lattice can be supported by a flexible or a rigid foundation, simulating soil or 
a hard rock. The equations of motion of each component are presented and the coupled system is 
solved semi-analytically in the frequency domain. The time domain response can be calculated 
afterwards by means of a numerical inverse Fourier transform. Dispersion curves and time responses 
are produced for the case of a ballasted track on a stiff soil. These responses are compared with the 
scenario in which ballast is modelled as lumped supports, and the scenario in which the force is 
applied directly to the ballast (no superstructure). It is observed that the simpler models fail to 
capture the vibration modes in which energy is concentrated in the ballast, and that the 
superstructure significantly alters the response of the track, increasing its critical velocity and 
changing the deformed shape of the ballast. The model herein proposed can be used to assess the 
dynamic characteristics of the track (critical speeds, energy propagation, vehicle-track interaction, 
etc.) and will serve as framework for a development of a tool for assessment of the settlement 
behaviour of ballast. 

Keywords: periodic structures; moving load; infinite beam; infinite lattice. 

1. Introduction
Maintenance work on railway tracks is a substantial part of railway infrastructures budget, it

limits the availability of the tracks and contributes significantly to the ticket’s fares. A considerable 
part of the maintenance tasks correspond to the restoration of the vertical position of the track, 
which changes over time due to soil consolidation and ballast settlement. The issue of differential 
ballast settlement is more pronounced in zones with variations in the support stiffness, as observed 
in track-bridge transition zones and track-tunnel transitions [1–4]. 

In order to propose solutions to reduce the settlement rate of ballast (and in this way, reduce 
maintenance costs), the mechanisms that drive the ballast settlement must be understood. For that 
reason, mathematical models that consider the appropriate behaviour of ballast and other track 
components are desired as they allow assessing how alterations in the track change its response. 

© 2019 Manuscript version made available under CC-BY-NC-ND 4.0 license 
https://creativecommons.org/licenses/by-nc-nd/4.0/
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That is the motivation for this work, in which a model for ballast (plus sub-grade1) and rails is 
presented.  

Physical models focusing on the behaviour of ballast range from simplified linear-continuum 
models to nonlinear discrete models. Linear models are easier to solve at the expense of obtaining 
less accurate predictions, while nonlinear models represent the physics more accurately, though they 
usually require an immense computational effort. Continuum models can be solved using, for 
example, the finite element method (FEM, which can be linear [5–7] or nonlinear [8,9] – the 
nonlinear FEM models allow for plasticity and intend to replicate the settlement behaviour), while 
discrete models are usually solved with discrete element methods (DEM) [10–14]. The method 
proposed in this work falls into the category of discrete models, as it aims at characterizing the 
response of each individual particle in the ballast. However, it is assumed that the ballast particles 
are all equal in size and shape and regularly distributed, and that their ‘connectivity’ is space 
invariant. It is expected that this type of model provides more accurate results than models that 
neglect the discrete character of ballast, and at the same time that it keeps the calculations simpler 
by avoiding the calculation of contact points between particles (like in DEM, for which the geometry 
of each individual particle is of relevance).  

At this phase, the connection between stones is assumed linear and no longitudinal subgrade 
stiffness variations are considered. The objective of this work merely is to introduce the model 
concept and to present the mathematical tools needed to, at a later stage, couple the infinitely long 
model here proposed to a compatible model with finite length, cast in the space-time domain, and in 
which nonlinearities and stiffness variations are present. How to couple the model presented here to 
a finite space-time domain model, and how the introduction of nonlinearities affects the track 
response will be addressed in follow-up papers. 

The model presented in this work is that of an infinite beam periodically supported by 
sleepers, which in turn rest on a lattice. Beams on periodic supports differ from those on continuous 
supports [15] in the sense that the transmission of forces to the foundation happens at localized 
regions instead of continuously along the beam, thus changing the short wavelength (high frequency) 
bending behaviour of the beam. Models of infinite beams on periodic supports have been presented 
and handled analytically in the past. These models are solved with Fourier series expansions [16,17], 
application of the so-called periodicity condition [18,19], or application of the Floquet’s theorem 
[20,21]. The six works mentioned above consider the supports to respond independently of the 
neighbouring ones (either fixed supports or local elastic connections), but other works have also 
been published in which the supports are interconnected through an elastic medium [22–24]. The 
main difference between the model proposed in this work and those proposed in the past resides in 
the type of medium connecting the supports, which in the present case is discrete and periodic, with 
periodicity shorter than that of the supports. To the best of the authors’ knowledge, it is the first 
time that a system consisting of a continuum medium (beam) and a foundation with two distinct 
periodicities (sleepers and lattice) is handled analytically.  

                                                           
1 In the examples presented in this work, the sub-grade is assumed stiff, but it can be made flexible by 

considering a layered lattice with distinct properties for ballast and sub-grade. See Appendix I for the definition 
of layered lattice. 
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The solution method employed in this work differs from those based on the periodicity 
condition in the sense that it does not assume such type of response (thus allowing to calculate the 
response for both moving and non-moving loads) and from those based on Floquet’s theory in the 
sense that the response is not directly based on propagation factors and propagation shapes. 
Instead, the frequency domain response of each component is written as a spatial convolution of 
unknown interaction forces and the Green’s functions of the components (which are known). The 
variables to be convolved are transformed to the wavenumber domain (via the Fourier Transform of 
discrete signals, in some works called Floquet Transform [25]), and from the resulting equations the 
interaction forces (and subsequently the response of each component) can be readily obtained in the 
transformed domain. The transformation back to the space domain is achieved via the inverse 
Fourier transform, which results in an integral over a finite wavenumber region. For the case of 
moving loads, the integral can be evaluated analytically. 

The manuscript is organized as follows. Section 2 describes the model and the solution 
method. In Section 3, the obtained equations are used to calculate the free vibration modes of the 
track. In Section 4, the method is verified by comparing the proposed method with a purely 
numerical one, for the case of loads moving on the beam. In Section 5, the influence of the rails and 
sleepers on the critical speeds of the system is analysed by comparing the results with those 
obtained by other authors who considered a similar model but excluded the superstructure [26]. In 
the last section, Section 6, the work is summarized and final considerations are proffered. 

2. Track model  
The model proposed in this work builds up on the model presented by Suiker and collaborators 

[26,27] in the sense that the superstructure (sleepers and the rails) is also considered. It is a two-
dimensional model, where rails are simulated with an Euler-Bernoulli beam with bending stiffness 

railEI  and mass per unit length railm , sleepers are considered via rigid masses with translational 

inertia sM  and rotational inertia sJ , and ballast (and soil) is modelled via a lattice, i.e., an 

assemblage of rigid masses connected via a regular network of vertical, horizontal and diagonal 
springs (same as Suiker et al.). Rails are connected to the sleepers via the rail pads, which are 
simulated via vertical springs of constant vK  and rotational springs of constant θK . Between 

sleepers and grains of ballast (mass of the lattice network) there are vertical springs of constant uspK  

that simulate under-sleeper pads. It is assumed that there is no transmission of horizontal forces 
from the sleepers to the ballast, i.e., there is a frictionless connection between the two parts: in this 
way, the horizontal motion of the particles at the surface of the ballast is not constrained in any way. 
Figure 1 shows a schematization of the model. 
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Figure 1.  Schematization of the model around the lth sleeper.  

It is assumed that the structure repeats itself periodically, never starting nor ending. The 
contact points between sleepers and ballast are always at the same position relative to the sleeper, 
and so are the free ballast grains between sleepers. The number of contact points between sleepers 
and ballast is defined by N , while the number of free grains between sleepers is defined my M . 

Both are integer numbers. The sleeper distance (and periodicity of the system) is ( )L N M d= + , 

where d  is the spacing between the particles of the lattice. 

The external forces acting on the structure are distributed forces ( )extF x  and distributed 

moments ( )extM x  on the rail ( x  is the longitudinal coordinate, and 0x =  corresponds to the 

centre of sleeper at reference cell 0l = ), and vertical and horizontal forces v,eF  and h,eF  acting on 

ballast particle e  situated at column ei  and row ej  of the lattice network ( 0i =  corresponds to the 

leftmost particle connected to sleeper 0l = ; 0j =  corresponds to the upper surface of the ballast; 

j  increases downwards)2. 

Next, each component is addressed separately, and then coupled so that the full system can 
be solved. The equations are presented in the frequency domain, with each variable assuming a 

temporal variation of the type ( )exp i tω , with ω  being frequency, t  time and i  the imaginary unit. 

If damping is to be considered, then the bending stiffness of the rail and the elastic constants of the 
rail pads and under-sleeper pads shall be complex valued. 

2.1. Ballast (and sub-grade) 
Ballast is modelled as an assemblage of rigid masses interconnected by a regular network of 

horizontal, vertical and diagonal springs. Each mass has horizontal and vertical degrees of freedom, 
and their displacements are represented by , ,x i ju  and , ,z i ju , where the first index corresponds to the 

direction of the displacement ( x  is horizontal and z  vertical), the second index to the column of the 
corresponding mass, and the third index to the row.  

                                                           
2 Even though external moments at the rail and external forces applied directly at the ballast are unlikely 

in railway applications, the response to such excitations is needed for the derivation of absorbing boundaries. 
These absorbing boundaries are needed to expand the model here presented to the case in which there are 
variations in the stiffness of the support, which is the main motivation for the ongoing research (see 
Introduction). The derivation of the absorbing boundaries will be presented in a future publication, which will 
take as framework the equations derived in the present article. 

EIrail, mrail 

Kv, Kθ 
Ms, Js Kusp 

l l – 1 l + 1 

L = (N + M) d d 

x 

i 

j 
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The lattice type is as defined in the works by Suiker et al. [26,27], and a representation of an 
inner mass and its connections to the neighbouring masses is shown in Figure 2. For the horizontal 

and vertical springs, the stiffness constants for longitudinal and shear directions are n
axiK  and s

axiK , 

respectively, and for the diagonal springs the longitudinal and shear stiffness constants are 

( )n n s
diag axi axi 2K K K= −  and s

diag 0K = . These values must be complex valued if damping is to be 

considered. 

 

Figure 2.  Detail  of the interconnections of the lattice model for the ballast .  

The vertical and horizontal distance between particles is the same ( d ) and is representative of 
the characteristic grain size of the particles forming the ballast. The mass of each particle ( bm ) and 

the stiffness constants n
axiK  and s

axiK  must be chosen such that the lattice replicates the behaviour of 

ballast. If the ballast is assumed to behave as an elastic continuum, then guidelines for the definition 
of these values can be found in [27]. 

If the support of soil under the ballast is to be considered, then the lattice shall be layered, in 
which the first layer corresponds to ballast and the ones below correspond to each layer of soil 
and/or sub-ballast. The network of masses and springs remains regular and equally spaced (in this 
work we do not consider layered systems with different spacings, but in principle that is possible), 
but the properties to be assigned to each mass/spring depend on the properties of the specific layer 
that the part of the lattice refers to. 

For the model depicted in Figure 1, besides the external forces v,eF  and h,eF  (not shown in the 

figure), the lattice is acted upon by forces usp
,l nF  that are transmitted from the sleeper l  to the 

contact points 0... 1n N= − , with the superscript usp  standing for under-sleeper pad (see Figure 3). 

A positive force usp
,l nF  points upwards, which is the case when the under-sleeper spring is being 

stretched. For this combination of external and internal loads, the displacements , ,x i ju  and , ,z i ju  in 

the horizontal and vertical degrees of freedom of the generic mass at column i  row j  are calculated 

as 

 ( )

1
* usp * *

, , , , , , h, , , , v,, , ,0
0

e e e e

N

x i j l n xx i i j j e xz i i j j exz i l N M n j
l n e e

u u F u F u F
∞ −

− −− + −
=−∞ =

= + +∑∑ ∑ ∑  (1) 

 ( )

1
* usp * *

, , , , , , h, , , , v,, , ,0
0

e e e e

N

z i j l n zx i i j j e zz i i j j ezz i l N M n j
l n e e

u u F u F u F
∞ −

− −− + −
=−∞ =

= + +∑∑ ∑ ∑  (2) 

+ + 

(Kaxi) 
n (Kaxi) 

s (Kdiag) 
n 
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where *
, , ,p q ruαβ  is the displacement in the degree of freedom α  of mass at column p  and row q  

due to an unit (oscillating) load in direction β  acting on the mass at column 0 and row r . The 

functions *
, , ,p q ruαβ  are the so called Green’s functions of the lattice, and Suiker et al. [27] explain how 

they can be calculated. For the purpose of this work, and as will be explained later, it is of interest to 
know the Fourier Transform of these discrete functions, which can be found in Appendix A. 

 

Figure 3.  Under-sleeper pad and rail pad forces/moments.  External forces/moments 
acting on the rail  and lattice are not represented.  

2.2. Sleepers 
Sleepers are modelled as rigid masses with two degrees of freedom each, vertical translation 

and rotation ( lu  and lθ ). The generic sleeper l , whose longitudinal position is 

( )lx lL l N M d= = + , is acted upon by forces usp
,l nF  exerted by the ballast via the under-sleeper 

pads, and by force lF  and moment lM  exerted by the rail via the rail pad (Figure 3). Positive values 

of usp
,l nF  force the sleeper downwards, a positive force lF  forces the sleeper upwards (rail pad under 

tension) and a positive moment lM  forces the sleeper to rotate counter clockwise. Under these 

conditions, the vertical motion lu  and rotation motion lθ  of sleeper l  is governed by the following 

two equations: 

 
1

usp
,2

0s

1 N

l l n l
n

u F F
Mω

−

=

 = − − + 
 
∑  (3) 

 ( )
1

usp
,2

0s

1 1 2
N

l l n l
n

F d n N M
J

θ
ω

−

=

 = − − − − +   
 
∑  (4) 

In the expression for lθ , the factor ( )1 2d n N− −    represents the distance of the contact point n  

to the middle of the sleeper. 

Fl – 1, Ml – 1 Fl + 1, Ml + 1 Fl, Ml 

x 
urail(x), θrail(x)  

ul, θl 

ux,i,j 

uz,i,j 

usp Fl,0…N-1 
usp Fl-1,0…N-1 

usp Fl+1,0…N-1 
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2.3. Rail 
The rail is modelled as a continuous Euler-Bernoulli beam. The beam is acted upon by the 

forces lF  (that force the rail downwards if positive) and moments lM  (that force the rail clockwise if 

positive) exerted by the rail pads (Figure 3), and by the external force ( )extF x  and moment ( )extM x  

acting on it. Under these conditions, the vertical displacements ( )railu x , rotations ( )rail xθ , internal 

moment ( )railM x  and internal shear ( )railV x  of the rail are calculated by 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

* *
rail rail,F rail,M

* *
rail,F 0 ext 0 0 rail,M 0 ext 0 0d d

l l l l
l l

u x u x x F u x x M

u x x F x x u x x M x x

+∞ +∞

=−∞ =−∞

+∞ +∞

−∞ −∞

= − − − −

+ − + −

∑ ∑

∫ ∫
 (5) 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

* *
rail rail,F rail,M

* *
rail,F 0 ext 0 0 rail,M 0 ext 0 0d d

l l l l
l l

x x x F x x M

x x F x x x x M x x

θ θ θ

θ θ

+∞ +∞

=−∞ =−∞

+∞ +∞

−∞ −∞

= − − − −

+ − + −

∑ ∑

∫ ∫
 (6) 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

* *
rail rail,F rail,M

* *
rail,F 0 ext 0 0 rail,M 0 ext 0 0d d

l l l l
l l

M x M x x F M x x M

M x x F x x M x x M x x

+∞ +∞

=−∞ =−∞

+∞ +∞

−∞ −∞

= − − − −

+ − + −

∑ ∑

∫ ∫
 (7) 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

* *
rail rail,F rail,M

* *
rail,F 0 ext 0 0 rail,M 0 ext 0 0d d

l l l l
l l

V x V x x F V x x M

V x x F x x V x x M x x

+∞ +∞

=−∞ =−∞

+∞ +∞

−∞ −∞

= − − − −

+ − + −

∑ ∑

∫ ∫
 (8) 

where ( )*
rail,Fu x , ( )*

rail,F xθ , ( )*
rail,FM x  and ( )*

rail,FV x  are the Green’s Functions of the rail (without 

any support) for displacements, rotations, internal moment and internal shear induced by an unit 

(oscillating) force at 0x = , and ( )*
rail,Mu x , ( )*

rail,M xθ , ( )*
rail,MM x  and ( )*

rail,MV x  are the same but 

for an unit moment. Expressions for these functions can be found in many textbooks (e.g. [28]), and 
read 

 ( ) ( )i*
rail,F 3

rail

1 i e e
4

k x k xu x
EI k

− −= − −  (9) 

 ( ) ( ) ( ) ( )
*

irail,F*
rail,F 2

rail

sign
e e

4
k x k xu x x

x
x EI k

θ − −∂
= = − +

∂
 (10) 

 ( ) ( ) ( )
2 *

irail,F*
rail,F rail 2

1 i e e
4

k x k xu x
M x EI

x k
− −∂

= = −
∂

 (11) 



8 

 ( ) ( ) ( ) ( )
3 *

irail,F*
rail,F rail 3

sign
e e

4
k x k xu x x

V x EI
x

− −∂
= = +

∂
 (12) 

 ( ) ( ) ( ) ( )i* *
rail,M rail,F 2

rail

sign
e e

4
k x k xx

u x x
EI k

θ − −= − = −  (13) 

 ( ) ( ) ( )
*

irail,M*
rail,M

rail

1 ie e
4

k x k xu x
x

x EI k
θ − −∂

= = − +
∂

 (14) 

 ( ) ( ) ( ) ( )
2 *

irail,M*
rail,M rail 2

sign
e e

4
k x k xu x x

M x EI
x

− −∂
= = − −

∂
 (15) 

 ( ) ( ) ( )
3 *

irail,M*
rail,M rail 3 ie e

4
k x k xu x kV x EI

x
− −∂

= = +
∂

 (16) 

where 24
rail railk m EIω= . 

2.4. Compatibility of displacements between components 
The motion of each component of the track has been written in terms of the interaction forces 

between them. In order to solve the coupled system, the displacement between components must 
be made compatible. In this way, the ballast grains under the sleepers must displace the same as the 
sleeper minus the deformation of the under-sleeper pad. For the contact point 'n  of sleeper 'l , this 
is achieved through the relationship 

 ( ) ( ) usp
' ' ', ' usp, ' ',0 ' 1 2 , ' 0... 1l l l nz l M N nu u d n N F K n Nθ+ + = + − − − = −    (17) 

Likewise, the vertical translation and the rotation of the sleepers must match those of the rail minus 
the deformation of the rail pads. For the sleeper 'l , such relations are written by 

 ( )' rail ' ' vl l lu u x F K= −  (18) 

 ( )' rail ' ' θl l lx M Kθ θ= −  (19) 

Eqs. (1)-(6) can be substituted in (17)-(19) such that these are written in terms of the unknown 
interaction forces. The obtained set of equations is 
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( )( ) ( )

( ) ( )

( ) ( )

1
* usp

,, ' ' ,0,0
0

* *
h, v,, ' ' ,0, , ' ' ,0,

1
usp
', '2

0s

1
usp
', '2

0s
usp
', ' usp

1

1' 1 2 1 2

,

e e e e

N

l nzz l l N M n n
l n

e ezx l N M n i j zz l N M n i j
e e

N

l n l
n

N

l n l
n

l n

u F

u F u F

F F
M

d n N F d n N M
J

F K

ω

ω

∞ −

− + + −
=−∞ =

+ + − + + −

−

=

−

=

+ + =

 − − + 
 

 − − − − − − +       
 

−

∑∑

∑ ∑

∑

∑
' 0... 1n N= −

 (20) 

( ) ( )

( ) ( ) ( ) ( )

1
usp * *
', ' rail,F ' rail,M '2

0s

* *
rail,F ' 0 ext 0 0 rail,M ' 0 ext 0 0

' v

1

d d

N

l n l l l l l l l
n l l

l l

l

F F u x x F u x x M
M

u x x F x x u x x M x x

F K

ω

− +∞ +∞

= =−∞ =−∞

+∞ +∞

−∞ −∞

 − − + = − − − − + 
 

+ − + − +

−

∑ ∑ ∑

∫ ∫ (21) 

( )

( ) ( )

( ) ( ) ( ) ( )

1
usp
', '2

0s

* *
rail,F ' rail,M '

* *
rail,F ' 0 ext 0 0 rail,M ' 0 ext 0 0

' θ

1 1 2

d d

N

l n l
n

l l l l l l
l l

l l

l

F d n N M
J

x x F x x M

x x F x x x x M x x

M K

ω

θ θ

θ θ

−

=

+∞ +∞

=−∞ =−∞

+∞ +∞

−∞ −∞

 − − − − + =   
 

− − − − +

+ − + − +

−

∑

∑ ∑

∫ ∫

(22) 

The N  distinct variations of Eq. (20) accounting for all interaction particles ( ' 0... 1n N= − ) can be 
written together with Eqs. (21)-(22) in the more convenient matrix form as 

 ' ' 'l l l l l
l

+∞

−
=−∞

+ =∑ U f E f u  (23) 

where the matrices and vectors have the following structures: 
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{ }

( ) ( ){ } ( ) ( )
( ) ( )

{ }

usp
,lattice lattice

2
Trail rail

2

* *
rail,F rail,Mlattice * ' rail

, ' ,0,0 * *
rail,F rail,M

2
s

, , ,

,

1 1

n

n

n
l n

l N l
l l l l

N l l
l

l ln
l lzz l N M n n

l l

F

F
M

u x u x
u

x x

M

θ θ

ω

×

×

→

+ + −



 ↓
     

= = = =     
      

  

 
= ↓ =  

 

= −

A CU Ο u
U E f u

C BΟ U u

U U

A ( ) ( ){ }

( )

( ) ( )

2
' '

2
s usp

2
s v '

2 2
s s

2
s θ

lattice * *
h, v,, ' ' ,0, , ' ' ,0,

1' 1 2 1 2 diag

1 1 0
' 1 21,

1 10

n

e e e e

n n
NxN

n

l e ezx l N M n i j zz l N M n i j
e

d n N n N
J K

n N dM K
M J

J K

u F u F

ω

ω
ω ω

ω

→→

+ + − + + −

  ↓ − − − − − ↓ +        
  

 − +   − −    = = ↓     − + 
 

= − +∑

B C

u

( )
( )

( )
( )

( )
( )

'

* *
ext 0rail,F 0 rail,M 0rail

0* *
ext 0rail,F 0 rail,M 0

d

', 0... 1

n

e

l l
l

l l

F xu x x u x x
x

M xx x x x

n n N

θ θ

+∞

−∞

  ↓ 
 
   − −

=    − −   
= −

∑

∫u

 (24) 

2.5. Transformation to the wavenumber domain 
System of equations (23) gives an expression relating the interaction forces at each sleeper 

with the external excitation. The equation may be solved as it is for the interaction forces by 
truncating the domain to a certain number of sleepers. That, however, results in an augmented 
system of equations that can become very large, depending on how many sleepers are considered. 
Alternatively, system (23) can be transformed to the wavenumber domain by means of the Fourier 
transform of discrete functions [29] (also called Floquet transform, as in [25]). For the problem at 
hand, the application of the Fourier transform leads to 

 ( ) ( ) ( )k k k + = U E f u

  (25) 

where 

 ( ) ie lk x
l

l
k

+∞

=−∞

= ∑U U  (26) 

 ( ) ( )
( )

lattice lattice
i

rail rail e lk xl

l l

k
k

k

+∞

=−∞

   
= =   

  
∑

u u
u

u u






 (27) 

 ( )
( ){ }
( )
( )

{ }usp usp
,

ie l

n n
n l n

k x
l

l
l

F k F

k F k F
M k M

+∞

=−∞

   ↓ ↓
   

= =   
   
     

∑f



 



 (28) 
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2.5.1. Evaluation of Ũrail(k) and Ũlattice(k) 
Due to the structure of lU , the infinite sum needed to calculate matrix ( )kU  can be 

evaluated analytically. Starting with the submatrix rail
lU , its Fourier transform is 

 ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 2

2

i i , , i , ,

irail rail

i , , i i , ,
rail

1e
4

l

a k k a k k b k k b k k

k kk x
l b k k b k k a k k a k k

l
kk

k
EI

− − −
+∞

− + − +
=−∞

 
 = =
 
 

∑U U  (29) 

where k  is as defined below Eq. (16) and where 

 ( )
( ) ( )

( )( )
2 1 2 1

1 2

1 2 1 2

i i
i

1 2 i i

e e, e e
e e e e

l l

k k L k k L
k x k x

k L k L k L k L
l

a k k
− ++∞

−

−
=−∞

−
= =

− −
∑  (30) 

 ( ) ( )
( ) ( )

( )( ) ( )
1 2 1 2

1 2

1 2 1 2

+i i
i

1 2 2 1i i

e e, sign e e i , i
e e e e

l l

k k L k k L
k x k x

l k L k L k L k L
l

b k k x a k k
−+∞

−

−
=−∞

−
= = = − −

− −
∑  (31) 

The sums in Eqs. (30)-(31) represent convergent infinite geometric series, and were evaluated with 
the help of Wolfram|Alpha [30]. 

Regarding the submatrix lattice
lU , formed by the lattice Green’s functions ( ) ( )

*
, ' ,0,0zz l N M n nu + + − , its 

Fourier transform latticeU  is composed by the components ( )*
'n nu k  (the first index refers to the row, 

while the second index refers to the column of latticeU ) calculated with  

 
( ) ( ) ( )

( ) ( )

i* *
' , ' ,0,0

1
i '*

,0,0
0

e

1 e

l

m

k x
n n zz l N M n n

l
M N

d n n
zz m

m

u k u

u
M N

kk

+∞

+ + −
=−∞

+ −
− −

=

= =

+

∑

∑



 (32) 

where 2 m
m Lk πk = −  is the lattice wavenumber and ( )*

, ,zz p q mu k  is the vertical response of the lattice 

at its elevation p  due to a vertical load at elevation q  in the wavenumber domain. Appendix A 

explains how to calculate these wavenumber domain Green’s functions. The second statement in 
(32) comes after the down sampling (decimation) and shift properties of the Fourier transform of 
discrete signals [29], and even though mk  and k  have the same dimensions, they are associated 

with signals with different sampling periods, the former with periodicity d , and the latter with 

periodicity ( )L M N d= + . 

2.5.2. Evaluation of ũlattice(k) 
The missing term for the calculation of the unknown forces ( )kf  in Eq. (25) is the 

displacement field ( )ku  induced by the external forces. The expression for its calculation is given in 

Eq. (27). There are two components for the displacements ( )ku : the displacement field induced by 
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the external forces acting on the lattice, ( )lattice ku , and those induced by external forces/moments 

at the rail, ( )rail ku . The component 'n  of ( )lattice ku , ( )lattice
'nu k , is calculated with 

 ( ) ( )

( )

T *
, ' ,0,h, ilattice

' *
v, , ' ,0,

e e el

e e

zx l N M n i je k x
n

e le zz l N M n i j

uF
u k

F u

+∞
+ + −

=−∞ + + −

  
 = −  
    

∑ ∑  (33) 

and after taking into account the down sampling and shift properties also used in Eq. (32), ( )lattice
'nu k  

simplifies to 

 ( )
( )
( )

( )
T *1

,0,h, i 'lattice
' *

0v, ,0,

1 ee m e

e

M N
zx j me d n i

n
e me zz j m

uF
u k

FM N u
kk

k

+ −
− −

=

  
= −   +     

∑ ∑  (34) 

Again, 2 m
m Lk πk = −  and ( )*

, ,zx p q mu k  and ( )*
, ,zz p q mu k  are the wavenumber domain Green’s 

functions of the lattice. 

2.5.3. Evaluation of ũrail(k) – non-moving load 
For loads ( )extF x  and moments ( )extM x  with arbitrary distribution, vector rail

lu  resulting 

from the integral in Eq. (24) cannot be evaluated analytically. However, for the particular cases of 
non-moving point disturbances or harmonic disturbances moving with constant speed, the integrals 
can be evaluated analytically in closed-form expressions. For the non-moving case, in which 

( ) ( )ext p pF x F x xδ= −  and ( ) ( )ext p pM x M x xδ= − , where ( )xδ  is the Dirac delta function, pF  

and pM  are the force and moment amplitudes, and px  is the coordinate of the loaded point, the 

component rail
lu  simplifies to 

 
( )
( )

( )
( )

* *
rail,F rail,Mrail

* *
rail,F rail,M

l p l p p
l

pl p l p

u x x u x x F
Mx x x xθ θ

 − −   =   − −   
u  (35) 

and its Fourier transform ( )rail ku , according to Eq. (27), is 

 ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
3 2

2

i i , , , , i , , , ,

rail

i , , , , i i , , , ,
rail

1
4

p p p p

p p p p

c k k x c k k x d k k x d k k x

pk k

d k k x d k k x c k k x c k k x p
kk

F
k

MEI

− − −

− + − +

    =       

u  (36) 

where 

 ( ) ( )
( ) ( )1 1

1 22

1 2 1 2

i 1i
1 2 i i

e e, , e e e
e e e e

l l

k x XL k x XL
k x x k L Xk x

k L k L k L k L
l

c k k x
− − −+∞

− − +
−

=−∞

 
= = −  − − 
∑  (37) 

 ( ) ( ) ( )
( ) ( )1 1

1 22

1 2 1 2

i 1i
1 2 i i

e e, , sign e e e
e e e e

l l

k x XL k x XL
k x x k L Xk x

l k L k L k L k L
l

d k k x x x
− − −+∞

− − +
−

=−∞

 
= − = +  − − 
∑  (38) 
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In Eqs. (37)-(38), X  is the rounding off of x
L  to its nearest integer towards minus infinity. 

2.5.4. Evaluation of ũrail(k) –moving load with constant speed 
For point disturbances moving with speed V , oscillating with frequency 0ω , and with 

amplitudes 0F  and 0M , i.e., ( ) ( ) ( )0 0, exp iF x t F t x Vtω δ= −  and 

( ) ( ) ( )0 0, exp iM x t M t x Vtω δ= − , the corresponding frequency domain forces are 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

00

00

ii 0
ext 0

ii 0
ext 0

e d e

e d e

x
t V

x
t V

FF x F x Vt t
V

MM x M x Vt t
V

ω ωω ω

ω ωω ω

δ

δ

+∞
−−

−∞

+∞
−−

−∞

= − =

= − =

∫

∫
 (39) 

For these load types, the integral in (24) results in (see Appendix B) 

 

( ) ( )
( ) ( )

( )
( )

( ) ( )

0 0

0 00

* *
ext 0rail,F 0 rail,M 0rail

0* *
ext 0rail,F 0 rail,M 0

i
0

24 2 0
rail rail

d

1 ie
i

l

l l
l

l l

x
V V

V VV

F xu x x u x x
x

M xx x x x

F
MV EI m

ω ω ω ω

ω ω ω ωω ω

θ θ

ω

+∞

−∞

− −−

− −−

   − −
=    − −   

    =     −  −    

∫u

 (40) 

and its Fourier transform, according to (27), is 

( )
( ) ( ) ( )

0

0

0 00

0rail 2
24 2 0

rail rail

1 i1 2
i

V
h

V L
hV VV

F
k k

M LV EI m

ω ω

ω ω π
ω ω ω ωω ω

π δ
ω

−
+∞

−

− −− =−∞

    = − −    −  −    

∑u  (41) 

2.6. Transformation back to the space domain 

2.6.1. Response of the sleepers 
From Eq. (25), ( )kf  can be readily available, and from there the vector force lf  at reference 

cell l  can be calculated via  

 ( )
ref

ref

ie d
2

L

l

L

k
k x

l
k

L k k
π

ππ

+
−

−

= ∫f f  (42) 

where refk  can be any real wavenumber. Eq. (42) implies a wavenumber integration over a single 

Brillouin zone [31]: it is the inverse of the forward transform specified in Eq. (28). 

For a generic external excitation composed of forces applied at the lattice and at the rail, the 
integral in Eq. (42) has to be evaluated numerically. For the specific case in which only moving 
disturbances at the rail are applied, the integral can be evaluated analytically (due to the presence of 
the Dirac functions). That case is addressed in Section 4. 
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After evaluating Eq. (42), the response of the sleepers can be readily available by substituting 
the obtained forces lf  in the equations of motion of the sleeper, Eqs. (3) and (4). Likewise, the 

translations and rotations of the rail at the contact points with the sleepers can be obtained by 
satisfying the compatibility conditions specified in Eqs. (18) and (19), for which sleeper motions and 
interaction forces (rail pad forces) are already known. 

2.6.2. Response of the rail 
If the response of the rail at positions other than the sleeper positions is of interest, then its 

response must be calculated from Eqs. (5)-(8). There are two components contributing to the 
response: the one induced by the external forces (moving or non-moving) and the one induced by 
the rail pad forces ( lF  and lM ). For the case of stationary external disturbances, the contribution of 

the first component is given by 

 ( )
( )
( )

( )
( )

( )
( )

* *rail
rail,F rail,Mrail

rail * *
rail,F rail,M

p p

p p

p p

p pF M p
F M

pF M p p

u x x u x xu x F
x

Mx x x x xθ θ θ

⊕

⊕
⊕

   − −    = =     − −     
u  (43) 

 ( )
( )
( )

( )
( )

( )
( )

* *rail
rail,F rail,Mrail

rail * *
rail,F rail,M

p p

p p

p p

p pF M p
F M

pF M p p

M x x M x xM x F
x

MV x V x x V x x
⊕

⊕
⊕

   − −    = =     − −     
s  (44) 

and for the case of moving disturbances, the contribution is given by 

 ( )
( )
( ) ( ) ( )

0 0

0 0

0 0 0 00
0 0

irail
0rail

2rail 4 2 0
rail rail

1 ie
i

x
V VF M

F M
F M V VV

u x F
x

Mx V EI m

ω ω ω ω

ω ω ω ωω ωθ ω

− −−
⊕

⊕ − −−
⊕

     = =      −    −     

u  (45) 

 ( )
( )
( ) ( )

( ) ( )
( ) ( )

0 0 0

0 0

0 0
0 0 0

0 0

2 3
irail

0rail
rail 4 3 42 0

rail rail

ie

i

x
V V VF M

F M
F M V V V

M x F
x

MV x V EI m

ω ω ω ω ω ω

ω ω ω ω ω ωω

− − −−
⊕

⊕
− − −

⊕

 − −    = =         − −       

s  (46) 

The symbol ⊕  is used to indicate that the response is the combined action of the forces and 
moments. 

The evaluation of the contribution of the second component ( rail
rpu , rp standing for rail pad 

forces) requires calculating an infinite sum, i.e., 

 ( ) ( )
( )

( )
( )

( )
( )

rail * *
rp rail,F rail,Mrail

rp rail * *
rp rail,F rail,M

ll l

l ll l

Fu x u x x u x x
x

Mx x x x xθ θ θ

+∞

=−∞

   − −  
= = −     − −     

∑u  (47) 

 ( ) ( )
( )

( )
( )

( )
( )

rail * *
rp rail,F rail,Mrail

sp rail * *
rp rail,F rail,M

ll l

l ll l

FM x M x x M x x
x

MV x V x x V x x

+∞

=−∞

   − −  
= = −     − −     

∑s  (48) 
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The rail pad forces lF  and lM  are obtained by the integral (42), and if that integral is inserted in Eqs. 

(47)-(48), then the infinite summation can be replaced by a finite integral: 

 

( ) ( )
( )

( )
( )

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ref

ref

3 2

2

* *
rail,F rail,M irail

rp * *
rail,F rail,M

i i , , , , i , , , ,

i , , , , i i , , , ,
rail

e d
2

8

L

l

L

k
l l k x

l l lk

c k k x c k k x d k k x d k k x

k k

d k k x d k k x c k k x c k k x

kk

u x x u x x F kLx k
x x x x M k

L
EI

π

π θ θπ

π

+ +∞
−

=−∞−

− − − − − − −

− − + − − − + −

  − −
= −   − −   


= −



∑∫u




( )
( )

ref

ref

d
L

L

k

k

F k
k

M k

π

π

+

−

      
∫





 (49) 

 

( ) ( )
( )

( )
( )

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ref

ref

3 2

2

* *
rail,F rail,M irail

rp * *
rail,F rail,M

i i , , , , i , , , ,
2

i , , , , i i , , , ,

e d
2

8

L

l

L

k
l l k x

l l lk

c k k x c k k x d k k x d k k x

k k

d k k x d k k x c k k x c k k x

kk

M x x M x x F kLx k
V x x V x x M k

FL k

π

ππ

π

+ +∞
−

=−∞−

− − − − − − −

− + − − + −

  − −
= −   − −   

 
 = −
 
 

∑∫s




 ( )
( )

ref

ref

d
L

L

k

k

k
k

M k

π

π

+

−

 
 
 

∫


 (50) 

2.6.3. Response of the lattice 
As in the case of the rail response, there are two sources contributing to the total response of 

the lattice: the externally applied forces ( h,eF , v,eF ) and the interaction forces between sleepers and 

lattice (under-sleeper pad forces, usp
,l nF ) – see Eqs. (1) and (2). The contribution ext

, ,i juα  of the external 

forces to the displacements of the generic mass ,i j  in direction α  is calculated with 

 
( ) ( ) ( )

ext * *
, , , , , h, , , , v,

h, i* *
, , , ,

v,

e d
2

e e e e

ref d

e

e e

ref d

i j x i i j j e z i i j j e
e e

e i i d
x j j z j j

e e

u u F u F

Fd u u
F

π

π

α α α

k
k

α α
k

k k k
π

− −

+
− −

−

= +

 
 =   

 

∑ ∑

∑ ∫
 (51) 

where ( )*
, ,p quαβ k  ( , ,x zα β =  ) are the lattice Green’s functions in the wavenumber domain and as 

explained in Appendix A. Note that the integration in Eq. (51) is over one Brillouin region defined 
based on the lattice periodicity ( d ), which is different from that in Eq. (42). 

Regarding the contribution usp
, ,i juα  resulting from the under-sleeper pads forces to the motion 

of the mass ,i j  in direction α , in principle it can be obtained by evaluating the infinite summation 

in (1)-(2). That, however, requires the truncation of the number of sleepers to be considered, not to 
mention the great computation effort it entails. A more elegant alternative is to multiply the 
convoluted signals in the wavenumber domain and then transform the solution back to space. In this 

way, usp
, ,i juα  can be calculated with 

 ( ) ( )
ref

ref

usp * usp i
, , , ,0 e d

2

d

d

i d
i j z j

du u F
π

π

k
k

α α
k

k k k
π

+
−

−

= ∫   (52) 
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where ( )uspF k  is the Fourier transform (based on the lattice spacing) of the set of forces 

transmitted by all sleepers to the lattice, calculated as 

 ( ) ( )
1

iusp usp
,

0
e l

N
x n d

l n
l n

F F kk
+∞ −

+

=−∞ =

= ∑∑  (53) 

Though the wavenumbers k  in ( )uspF k  and ( )usp
nF k  – see Eq. (28) – have the same dimensions, 

these variables result from transforming signals with different sampling periodicities, the former with 

periodicity d  and the latter with periodicity ( )L N M d= + . Thus, ( )uspF k  and ( )usp
nF k  are 

related through the time expansion and shift properties of the Fourier transform of discrete signals 
[29]. The relation between the two is 

 ( ) ( )
1

usp usp i

0
e

N
n d

n
n

F F k kk k
−

=

= =∑   (54) 

3. Dispersion of the railway track 
Before verifying the equations obtained in Section 2 by means of an example involving a 

moving load, one first wants to point out that matrix ( )k= +D U E  in Eq. (25) may become singular 

for specific values of k  and ω . These pairs of values represent frequencies and wavenumbers at 
which free waves can exist in the track, propagating or standing. In fact, these values of k  (for a 
given frequency ω ) are used in Floquet’s theory to define the propagation factors from one span to 
the others as [20] 

 ( ) ( ) ie nkLf x nL f x+ =  (55) 

where ( )f x  represents the longitudinal dependence of any variable associated with the system (rail 

displacement/rotation or internal force, support reaction, etc.). Thus, the application of Floquet’s 
theory requires finding these eigenvalues (that can be complex) and associated modal shapes, which 
for the problem at hand is not a trivial task since it involves solving non-algebraic eigenvalue 

problems (observe the exponential functions involving k  in the definition of matrices railU  and 
latticeU ). For the solution method described in Section 2, these eigenpairs are not required, still they 

provide useful information about the dynamic behaviour of the system. For example, real valued 

pairs ( ,kω ) represent guided waves that propagate along the track with phase speed kω . Also, for 

lightly damped systems, for each frequency ω , the eigenvalues k  indicate where sharp peaks may 
be encountered when evaluating the inverse Fourier integrals. The lines connecting the real valued 

pairs ( ,kω ) are termed dispersion lines. 

In what follows, the dispersion lines are calculated for a track whose properties are taken from 
the work by Nordborg [20]: 6 2

rail 1.234 10 N mEI = × ; rail 52 kg/mm = ; s 250 kgM = ; 
6

v 500 10 N/mK = × ;. 6
ballast 42.5 10 N/mK = ×  (lumped ballast). The mass of the sleeper and 

stiffness of the ballast correspond to one half of the track only, since only one rail is modelled. For 
the calculation of the dispersion lines, no damping is considered. In the reference work, the sleeper 
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only responds in the vertical direction; this condition is achieved in this work by setting the stiffness 

θK  to zero and the rotational inertia sJ  to infinity, and by removing from matrix D  the last row 

(associated with the compatibility of rotations between sleepers and rail) and column (associated 
with moments lM ). 

Two situations are considered: one in which the ballast is modelled together with the under-
sleeper pads as a single spring (same situation as in the reference work; lumped ballast), and one in 
which ballast is modelled as a lattice whose depth is 0.6 mH =  and with particle diameter 

0.05 md = . The sleeper spacing is set at 0.6 mL = , and so there are 7N =  contact points 

between sleepers and ballast and 5M =  free ballast particles between sleepers. All masses of the 
lower surface of the lattice are impeded from moving in any direction, thus simulating that the 
ballast rests on a stiff foundation. 

3.1. Ballast as localized springs (lumped) 
For this scenario, the lattice is assumed rigid, and therefore matrices lattice

lU  and their 

transform latticeU  are composed of zeros. Also, the values of the under-sleeper pads uspK  must be 

such that the added stiffness of all N  contact points matches the stiffness ballastK  (which results in 
6

usp 6.07 10 N/mK = × ). For these values, and for wavenumbers k  ranging from 0 to 

5.3 rad/mLπ ≈  (one half of the Brillouin region; the lines are mirrored beyond this value) the first 

four values of ω  that lead to singular matrices D  are calculated and plotted in Figure 4 against the 
values obtained from Eq. (11) of the work by Nordborg [20] (the propagation factor g  used in [20] 

equals ikL ). In principle, there are infinitely many frequencies for each wavenumber, corresponding 
to shorter and shorter wavelength of the beam deflection, but here the focus will be mostly on the 
lower modes. For higher modes (and frequencies), the cross-section deformation starts playing a role 
on the rail dynamics, and thus the Euler-Bernoulli beam loses its applicability. 

 
Figure 4.  Dispersion lines of the system with ballast as localized spring (current work 

vs [20]; see digital version of article for coloured figures).  

Figure 4 shows a perfect match between the dispersion lines obtained in this work and those 
obtained with Eq. (11) of Nordborg, which was expected since the system being modelled is exactly 
the same, even though the derivation differs. This gives a first level of verification to the expressions 
derived in this work. Figure 4 also shows nicely the existence of stop bands, i.e., frequency ranges at 
which waves cannot propagate/be sustained. There are two stop bands for this system, one between 
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150 and 635 Hz, and the other between 672 and 1130 Hz. Stop bands are characteristic of periodic 
systems. 

Figure 5 depicts the four vibration modes of the track for 0k =  and 3 rad/mk = . For 0k = , 

the first mode (Figure 5a) is dominated by the deformation of the ballast springs, the second 
(Figure 5b) by the deformation of the rail pads and some bending of the rail, and the third and fourth 
(Figures 5c-d) by the bending of the rail; the third mode presents the largest rail deflection at the 
connection with the sleeper and at mid-span, while the fourth mode shows the largest deflections at 
one quarter and three quarters of the span; in both cases, the wavelength corresponds to one 
sleeper span. At 0k =  all dispersion lines show zero slope, meaning that those modes represent 
standing waves, i.e., the waves do not move to the right nor to the left. 

For 3 rad/mk = , the first mode (Figure 5e) is dominated by the deformation of the ballast 

spring and by the long wave bending of the rail, the second mode (Figure 5f) is dominated by the 
deformation of the rail pads and bending of the rail (compared to the first mode, the second mode 
shows two characteristic wavelengths in the rail deformation while the first mode simply shows one), 
and the third and fourth modes (Figure 5g-h) represent again the bending of the rails: the 
wavelength for the third mode is about one-and-a-half sleeper spans, while for the fourth, it is about 
three quarters of a sleeper span. The slope of the dispersion line of the third mode is negative (Figure 
4), meaning that the wave travels to the left (negative group velocity) while the slopes of the other 
three modes are positive, meaning that the waves travel to the right (positive group velocity). 

 

Figure 5.  Track modes with ballast as single spring (see digital version of article for 
coloured figures).  (a)  first mode for k = 0 rad/m  (f ≈ 62 Hz) ;  (b) second mode for 

k = 0 rad/m  (f  ≈ 636 Hz) ; (c) third mode for k = 0 rad/m  (f ≈  2690 Hz) ;  (d) fourth mode for 
k = 0 rad/m  (f  ≈ 2840 Hz); (e) first mode for k = 3 rad/m  (f ≈ 93 Hz) ;  (f)  second mode for 

k = 3 rad/m  (f  ≈  627 Hz) ; (g) third mode for k = 3 rad/m  (f ≈ 1540 Hz) ;  (h) fourth mode for 
k = 3 rad/m  (f  ≈ 4485 Hz) .  Download the web material for the time-space representation of 

these modes.  
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3.2. Ballast as a lattice 
The dispersion lines are now calculated for the case in which the ballast is modelled as a 

deformable lattice. The under-sleeper pad is assumed 103 times stiffer than the ballast, aiming at 
reproducing an infinite stiffness (in this way, the contact particles move together with the sleepers). 
A more flexible pad can be used, but since in the reference work no value is provided for the 
flexibility of the pad (it is condensed in the ballast stiffness), then it is assumed to be rigid.  

Regarding the mechanical properties of the ballast, the values n
axiK  and s

axiK  are chosen such 

that the equivalent static stiffness sensed by an isolated sleeper is 6
ballast 42.5 10 N/mK = ×  and 

such that the Poisson’s ratio of the equivalent 2D continuum (the one that approximates the lattice 
in the longwave limit [27]) is 0.2ν = . These conditions lead to the following values: 

n 7
axi 3.03 10 N/mK = ×  and s 6

axi 2.76 10 N/mK = × . The mass bm  is calculated assuming an 

homogenized density of 31800 kg/mρ =  and a ballast width of 2 mW = , resulting in 
2

b 2 4.5 kgm d Wρ= =  (the model is 2D, and so bm  does not represent the mass of a single 

particle, instead it represents the mass of all particles at any specified height and longitudinal 
position). 

Figure 6 shows three plots of the dispersion lines: the first for all dispersion lines below 
5000 Hz, and the second and the third centred around the first two dispersion lines calculated in the 
previous example. Note in Figure 6a that, when compared to the scenario of Section 3.1, there are 
two extra dispersion lines for each lattice mass added to the system. These dispersion lines are 
mostly associated with waves travelling through the lattice, and for the example specified in this 
section are situated below 1000 Hz. Note also that even though ballast is modelled in a very different 
way, the dispersion lines associated with the bending of the rail (third and fourth modes of previous 
example) are not significantly affected. 

In Figure 6b, it can be seen that the first dispersion line has a lower cut-off frequency than that 
of the previous case (red dashed line). This observation is expected because the lattice offers less 
resistance when all the sleepers are pushed down the same amount (case 0k = ) than when only 
one spring is pushed and the others are left free. Recall that the stiffness of the lattice was chosen to 
match the latter case (i.e., assuming no coupling of the sleepers through ballast, as is the case for 
ballast modelled as single springs), not the former. In Figure 6c, no dispersion line (blue solid lines) 
can be directly related to the second mode of the previous case (red dashed line). 
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Figure 6.  Dispersion lines of the system: ballast as lattice vs ballast as localized spring 

(see digital version of article for coloured figures).  (a) all dispersion lines; (b) zoom-in 
around first dispersion line of Figure 4; (c) zoom-in around second dispersion line of 

Figure 4.  

Figure 7 shows the first four vibration modes and the modes that correspond to the third and 
fourth modes of previous example, for 3 rad/mk = . The first mode (Figure 7a) is similar to the one 

obtained in Subsection 3.1 (Figure 5e): the rail bends with a similar wavelength and sleepers 
translate in a similar pattern; in addition, there is a wave travelling on the ballast with the similar 
wavelength as that of the rail. Despite the similarities, the frequency of the first mode is lower than 
that of Subsection 3.1, and the reasons for that are the coupling of sleepers by the lattice (that 
affects the stiffness sensed by the sleepers) and the extra mass that is mobilized due to the waves in 
the ballast. Regarding the modes 2-4, the second (Figure 7b) is governed mostly by shear waves 
travelling in the ballast (and causing little bending of the rail, when compared to the previous mode), 
the third (Figure 7c) by waves travelling in ballast and whose wavelength is half of those in the rail, 
and the fourth (Figure 7d) by coupled horizontal and vertical motion of the ballast. There is no 
counterpart of the second, third and fourth modes in the previous example. The modes in Figure 7e-f 
show a very similar deformation of the rail as those in Figure 5g-h. As in Subsection 3.1, for these 
modes the ballast remains undeformed, and thus the frequencies are very similar. 
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Figure 7.  Track modes with ballast as a lattice (see digital version of article for 
coloured figures).  (a) first mode  for k = 3 rad/m  (f ≈ 72 Hz) ;  (b) second mode for 

k = 3 rad/m  (f ≈ 81 Hz) ; (c) third mode for k = 3 rad/m  (f ≈  117 Hz);  (d) fourth mode for 
k = 3 rad/m  (f ≈ 139 Hz) ; (e) mode corresponding to that of Figure 5g (f ≈ 1556 Hz) ; (f)  

mode corresponding to that of Figure 5h (f ≈  4530 Hz).  Download the web material for the 
time-space representation of these modes. 

After comparing the dispersion lines and modes of Sections 3.1 and 3.2 it can be concluded 
that the features of the rail response are similar in both cases. Nevertheless, modelling ballast as 
localized springs fails (naturally) to account for the waves that travel through it, and thus is 
inadequate to study the energy transmission from rails/sleeper to ballast and the mechanisms 
behind ballast settlement at the particle level. 

4. Response due to a moving load – model verification 

4.1. Response for moving point force 
For the specific case in which the only external excitation is an harmonic force disturbance 

moving on the rail with constant speed, and assuming that 0 0M = , the vector ( )lattice ku  is null 

while the vector ( )rail ku  takes the form (see Eq. (41)) 

 ( )
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4 2

rail rail

1 2
i

h
V L

hVV

Fk k
LV EI m
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 
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∑u  (56) 

Due to the presence of the Dirac delta function in ( )rail ku , and therefore in ( )ku  and ( )kf , the 

integral (42) sums up to the evaluation of the integrand at point 0
Vk ω ω−=  (for convenience, refk is set 

at 0
ref Vk ω ω−= ), i.e., (see also Eq. (25)) 
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The rail pad ( lF  and lM ) and under-sleeper pad ( usp
lnF ) forces can thus be evaluated directly 

without solving numerically any integral, and so can the displacements at the sleepers and at the rails 
at the sleeper positions. In turn, the response of the rail is again composed of two parts, the part 
induced by the external force 0F , given by (Eqs. (45)-(46) with 0 0M = ) 
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and the part induced by the rail pad forces, which is the evaluation of integrals (49)-(50) taking into 
account the presence of the Dirac delta function: 
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with 
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 (62) 

For the calculation of the response of any mass of the lattice, the contribution of external 
forces is null (no external forces at the lattice), while integral (52) can be simplified to 
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where (see also Eq. (54)) 
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The summation over m  in Eq. (63) results from the fact that the periodicity of the lattice is N M+  
times smaller than the periodicity of the sleepers (of the assembled structure). Thus, when assessing 
integral (52), N M+  Dirac functions are found within the region of integration. 

4.2. Time domain response 
In the previous subsection the frequency domain response of all components has been given. 

The time domain response can be obtained afterwards by applying the inverse Fourier transform. 

That is, if ( )f ω  represents any of the variables described earlier (translation, rotation, force, etc.), 

then its time domain counterpart ( )f t  is calculated with 

 ( ) ( ) i1 e d
2

tf t f ωω ω
π

+∞

−∞

= ∫   (65) 

For most cases, the analytical evaluation of integral (65) is impossible. The use of Fast Fourier 
transform techniques is, for these cases, the preferred option. An inspection of all the frequency 

domain variables reveals that all contain one or multiple exponents of the type ( )0exp i V xω ω−−  

where x  is a measure of the longitudinal position. This exponent reflects the moving nature of the 
load, and when transformed to time, results in steady-state deformation pattern that moves with the 
load and oscillates with frequency 0ω . This property allows calculating the time-space responses in 

an efficient manner, in the sense that the inverse Fourier transform only needs to be calculated for 

the time shifted variable t x Vt = − , and not for each position of the sleeper/rail/lattice mass. 

4.3. Verification 
To verify the equations derived in this paper, the results obtained from evaluating expressions 

(56)-(64) are compared with those obtained with a time-space domain method. The track properties 
are the same as defined in Section 3.2, but with a couple of changes: the sleepers are free to rotate 
and have rotational inertia 2

s 3.75 kg.mJ = ; the rotational stiffness of the rail pads is 
6

θ 11.25 10 N.mK = × ; a small amount of stiffness proportional damping is added to the rail and the 

lattice by means of complex stiffnesses of the type ( )rail rail 1 iEI EI ηω= + , ( )n n
axi axi 1 iK K ηω= +  and 

( )s s
axi axi 1 iK K ηω= + , where the damping factor is 0.002 sη = . The amount of damping considered 

in the ballast is of the same order of that considered in [20] ( Ballast BallastC Kη ≈ ). For the calculation 

of the inverse Fourier transform, 10001 equally spaced frequencies between 0 and 1000 Hz are 
considered. 

The time-space domain model is based on standard Finite Elements for the rail and lumped 
masses for sleepers and lattice. The model is made long enough so that the transient effects 
(entrance of the load) and reflection effects (at the fictitious boundaries) do not pollute the response 
of the system. A sensitivity analysis revealed that 300 sleepers are enough to suppress these effects. 
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The Newmark integration algorithm with a time step of 0.0002 s is used to solve system of the 
second order differential equations in time. 

The results to be compared are the time dependent vertical displacements of the rail at the 
connection with the mid sleeper and the time dependent horizontal displacements of the ballast 

particle at column 0i =  and row 6j =  (mid height of ballast). The external force is of the type 

( ) ( ) ( )0 0, cosF x t F t x Vtω δ= − . For comparison purposes, the response of the rail obtained with 

the lumped ballast model of Section 3 (no rotation of sleepers, equivalent to Nordborg [20]) is also 
shown. 

Three excitation scenarios are considered, all with 0 1F =  (the formulation is linear, so it 

suffices to analyse a unit amplitude loading): i) 60 m/sV =  ( 220km/h≈ ) and 0 0ω = , which is 

representative of the gravitational load induced by an intercity train travelling at operational speed in 

some countries; ii) 60 m/sV =  and 0 628 rad/sω =  ( 100 Hz V L≈ = ), which is representative of 

the excitation due to the sleeper periodicity; iii) 400 m/sV =  and 0 0ω = , which represents an 

unrealistic scenario but is shown nonetheless to verify that the model provides the correct results in 
the supersonic case. Figure 8 shows the rail and the ballast responses obtained for these excitation 
parameters. 

For the first loading scenario, the vertical deflection of the rail (Figure 8a) is nearly symmetric 
(the response is practically mirrored at 0t = , which is the moment that the load crosses the section 
under analyses), while the longitudinal motion of the ballast (Figure 8b) is anti-symmetric. These 
features are typical of systems excited by constant forces moving at speeds lower than the minimum 
phase velocity of free waves, as discussed in Section 3. For the second scenario (Figure 8c,d), the load 
speed is still below the minimum phase velocity, but the oscillatory nature of the excitation causes 
the frequency of the response to be higher before the load passes than after that (Doppler effect). In 
turn, in the third scenario (Figure 8e,f), because the load moves at a speed higher than the minimum 
phase velocity (supersonic case), the response is practically zero before the load arrives, increases 
sharply when the load is passing, and decays after the load has passed. 

In all three loading scenarios, the results obtained with the expressions derived in this work 
(blue solid lines) match very well with those obtained with the numerical approach (red dashed 
lines), which verifies the correctness of the expressions. Regarding the rail response obtained with 
the equivalent lumped model for the ballast (dotted black lines), it can be observed that it differs 
from the other two in all three loading scenarios: in the first scenario (Figure 8a), the time evolution 
is very similar, but the maximum response is slightly smaller; in the second scenario (Figure 8c), the 
main trends of the time response seem to match, but the amplitudes of the peaks are larger; in the 
third scenario (Figure 8e), the rail response attenuates faster. The mismatch in the results is naturally 
explained by the different levels of detail employed in the description of the ballast. These 
differences support the need of more detailed models for the correct assessment of the dynamic 
behaviour of the track, even for cases in which only the dynamic response of the rail is of interest. 
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Figure 8.  Vertical displacements of the rail (a,c,e) and horizontal displacement of the 

ballast (b,d, f) for different loading scenarios (see digital version of article for coloured 
figures).  (a,b) V = 60 m/s ,  ω0  = 0 rad/s ;  (c,d) V = 60 m/s ,  ω0  = 628 rad/s ;  (e,f)  V = 400 m/s ,  

ω0  = 0 rad/s .   

5. Analysis of lattice response and critical speeds 
As mentioned in the beginning of Section 2, the model proposed in this work is an extension of 

the work by Suiker and collaborators [26,27] in the sense that sleepers and rails are incorporated. 
Suiker and collaborators’ model, which only considers a lattice layer, has been used to analyse the 
lattice response and assess the critical velocities of the system, and the following conclusions have 
been reached (for constant moving loads and low viscous damping in the lattice): i) the response of 
the lattice induced by forces moving at low speed is less local than that for forces moving at higher 
speed; ii) for large particle diameters d , there is a critical speed much lower than the minimum 
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phase velocity of the free waves of the lattice layer (which the authors termed “Rayleigh wave”). 
Whether these observations remain valid when the track is added to the ballast layer is a question 
that still remains. The present section answers this question by means of comparing the responses of 
an isolated lattice layer to that of the model proposed here, when both are acted upon by constant 
moving loads. 

In order to achieve a viscosity in the same order of magnitude as the one considered in [26], 

the damping factor is reduced to 51.2 10 sη −= × , rendering the system practically undamped3. For 

this reason, the contributions of higher harmonics cannot be disregarded, and thus the inverse 
Fourier transform is calculated, in this section, for 10001 frequencies ranging from 0 and 10000Hz. 

To verify the conclusion about the steady-state response of the lattice, the vertical 

displacements at row 2j =  (third row of particles from the top, at the depth 2 0.1 md = ) are 

calculated for a vertical force moving on the rail at the speeds 28 m/sV =  ( )100 km/h≈ , 

56 m/sV =  ( )200 km/h≈ , 84 m/sV =  ( )300 km/h≈  and 98 m/sV = ( )350 km/h≈  and 

compared with those obtained when sleepers and rails are removed and the load is applied directly 
at the surface of the ballast (equations from [26]). The results are depicted in Figure 9. 

The blue solid lines in Figure 9 are in accordance with the findings of Suiker and collaborators: 
as the load speeds increases from 100 km/h to 300 km/h, the length of the disturbed wake behind 
the load is shorter and shorter, thus confirming that for lower speed the response is less local. 
However, for the speed 350 km/h, the wake behind the load broadens again, while the disturbance 
in front of the load shortens. The reason for this finding is that at 350 km/h the load moves at a 
supersonic speed, and thus there is strong radiation of waves behind the load. Suiker and 
collaborators did not report this case because they only analysed subsonic scenarios (the highest 
speed they considered was 500 km/h, while the minimum phase velocity of the system was around 
700 km/h; in this work, the minimum phase velocity of the lattice is around 325 km/h). 

Regarding the red dashed lines in Figure 9, corresponding to the full model, it is observed that 
increasing the load speed does not change significantly the vertical response of the ballast, neither in 
terms of shape nor in terms of amplitude. This suggests that the load speed is still below the first 
critical speed of the system, and also shows that the finding of Suiker and collaborators (that lower 
load speeds do lead to less local responses) no longer applies when the rails and sleepers are added 
to the model. 

 

                                                           
3 The damping considered here is unrealistically low. Such value is solely used to verify whether the 

conclusions obtained in work [26], for the case of very low damping in the ballast, are still applicable. 
Nevertheless, for the current model, a more realistic value of damping (100 times larger) would yield very 
similar results: the asymmetry of the response with respect to the loaded point would be more pronounced 
than in Figure 9 (due to the effect of damping), but the main features of the response would remain. 
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Figure 9.  Vertical displacements of the ballast when considering only lattice (blue solid 
lines) and when considering the full  track model (red dashed lines) for varying load speed 

(see digital version of article for coloured figures).  (a) V = 28  m/s  (100  km/h); 
(b) V = 28  m/s  (200  km/h); (c) V = 84  m/s  (300  km/h); (d) V = 98  m/s  (350  km/h).  

 

To examine how the ballast behaves when a full track is considered and as the load speed 
keeps increasing and exceeds the minimum phase velocity, the vertical response of the lattice at row 

2j =  is calculated for load speeds ranging up to 1500 km/h. Figure 10 shows the results. It can be 

seen that there is a transition in the shape of the ballast response when the load speed steps up from 
350km/h to 500km/h: for the latter speed, the maximum deflection is still under the load but the 
steady-state pattern is no longer quasi symmetric; instead it is predominant behind the load, 
suggesting that the minimum phase speed of free waves in the track is being approached (in 
accordance with Figure 11). Also, the wake behind the load is characterized by a dominant 
wavelength, a feature similar to that reported in Figure 9 for the lattice only (lower right panel, blue 
line). As the load speed keeps increasing, the deformation pattern in the wake of the load further 
changes, showing longer wavelengths for higher load speeds. The deformation pattern in front of the 
load narrows (even) further, suggesting that the critical speed has been far exceeded. 

-5 0 5

   

-2

0

2

4
 

10 -8

Lattice only
Rail+Sleeper+Lattice

(a) 

u z,i
,2
(t 

= 
0)

 (m
) 

Distance to load (id, m) 
-5 0 5

   

-1

0

1

2

3

4

 

10 -8

Lattice only
Rail+Sleeper+Lattice

(b) 

Distance to load (id, m) 

u z,i
,2
(t 

= 
0)

 (m
) 

-5 0 5

   

-5

0

5

10

 

10 -8

Lattice only
Rail+Sleeper+Lattice

(c) 

Distance to load (id, m) 

u z,i
,2
(t 

= 
0)

 (m
) 

-5 0 5

   

-1

-0.5

0

0.5

1

1.5

 

10 -7

Lattice only
Rail+Sleeper+Lattice

(d) 

Distance to load (id, m) 

u z,i
,2
(t 

= 
0)

 (m
) 



28 

 

Figure 10.  Vertical displacements of the ballast when considering the full track model 
for varying load speed (see digital version of article for coloured figures).  

The existence of a critical speed much lower than the minimum phase velocity of the system is 
investigated by calculating the maximum vertical displacement of the ballast (again at the depth 
2 0.1 md = ) for speeds ranging from 1 km/h to 600 km/h. The dependence of the maximum 

displacement on the load speed is plotted in Figure 11. The blue solid line reveals that there is indeed 
a very low load speed (for the parameters used there are actually two, one near 3 km/h and another 
near 10 km/h) that induces an amplified response. However, this is not observed when the rails and 
sleepers are considered (red dashed line). The reason for this difference lies, in the authors’ view, in 
how the load is defined in both cases: while in work [26] the load is a succession of Dirac impulses, 
each applied at a different particle and at a different time instant, in the model proposed here the 
load is continuously transmitted to the lattice via the sleepers; also, in the first scenario, the time 
difference between each impulse increases as the load speed decreases (it takes longer for the load 
to move from one particle to the following), potentially accentuating the transient response due to 
the impact. In addition to the suppression of these lower critical speeds, the inclusion of the rails and 
sleepers increases the minimum phase velocity of the track, in this case from 325 km/h to 530 km/h. 
These differences highlight the need of considering full track models even if the focus of study is on 
the foundation. 

 
Figure 11.  Maximum vertical displacement of ballast as function of load speed. Blue 

solid line: lattice only.  Red dashed line: lattice + rails +sleepers (see digital version of article 
for coloured figures).  
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6. Final considerations 
This paper proposes a model for ballasted railway tracks in which ballast is modelled as a 

lattice, i.e., a regular network of discrete masses connected by (visco)elastic elements. A solution 
procedure is presented in which the periodic geometry of the system is employed in order to obtain 
the frequency domain response of the system in terms of an inverse Fourier integral/transform. The 
solution procedure is verified by comparing the responses thus obtained with the responses obtained 
with a space-time solution procedure, and a perfect match is observed. 

The model is also used to assess the natural modes of vibration of the track and compare them 
to those of a track in which ballast is lumped into discretized elastic connections, a simplification 
used often in the literature. It is observed that the two models give similar natural shapes for the 
rails, and that the simpler model fails to capture the modes in which the energy is concentrated in 
the ballast. This is obviously not surprising since the simpler model condenses all the ballast degrees 
of freedom into the ones right below the sleepers.  

The model is further used to assess the critical speeds of the track and to verify the 
observations from a similar work in which ballast is also modelled as a lattice, but in which the 
superstructure (sleepers and rails) is disregarded. It is observed that adding rails and sleepers 
considerably increases the minimum phase velocity of the system, and also that it cancels the very 
low critical speed observed in the mentioned work. Additionally, for subsonic excitations, adding the 
superstructure changes the response of the lattice from being mostly concentrated in the wake of 
load to a practically symmetric steady-state deformation pattern moving with the load. These 
differences point out the need of adding the superstructure even for the cases in which only the 
foundation response is of interest. 

As a final remark, it must be mentioned that even though the model presented here is linear, it 
is in the authors’ plans to replace the connections between particles by nonlinear connections 
defined in such a way that the non-recoverable settling behaviour of the ballast is reproducible. The 
present work thus serves as a launching framework for that task, which will be tackled and reported 
in a future work. Regardless of that, it is appropriate to note that despite not being the main 
motivation for this work, the model here presented can very well be used to asses main features of 
railway tracks, such as critical speeds, energy propagations, vehicle-track interaction, etc.. 

 

Acknowledgments 
This research is supported by the Dutch Technology Foundation TTW (Project 15968), part of 

the Netherlands Organisation for Scientific Research (NWO), and which is partly funded by the 
Ministry of Economic Affairs. 

 

Appendix A - Wavenumber solution of a layered lattice 
In this appendix, it is explained how to calculate the wavenumber Green’s functions of a 

layered lattice. First the equations of motion of one layer are presented and the corresponding 
homogeneous solutions are obtained. Then, the boundary equations are solved based on the 
homogeneous solutions, and after elimination of common variables, the stiffness matrix that relates 
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surface forces with surface displacements (of one layer) is obtained. Finally the stiffness matrices of 
all layers are assembled, and from the assembled system the layered lattice can be solved for the 
exterior forces. Despite the fact that in the main body of the paper only a single layer is considered, 
the solution procedure is explained for layered lattices to make the problem generic, which allows 
studying the influence of subgrade (sub-ballast and soil). 

The lattice type considered in this work is as depicted in Figure 2, with the diagonal springs 
being written as a combination of the non-diagonal longitudinal and shear springs: 

( )n n s
diag axi axi 2K K K= − . The mass of each particle is bm . This lattice type is as proposed in the work 

by Suiker et al. [26,27]. Different lattices types (for example, honeycomb lattices [32]) may require a 
slightly different solution methods, which are not addressed in this work. 

A.1 – Equations of motion and solution type for masses inside a layer of the lattice 
For a lattice layer that is free of any load in its interior, the equations of motion for a mass 

inside the layer (at column i  and row j ) are 

 

( ) ( )
( )
( )

2 n s
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m u K u u u K u u u

K u u u u u

K u u u u u

m

ω
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− − + − + + − +
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− ( ) ( )
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 (A.1) 

which accept solutions of the type 

 ( ), , i

, ,

e zx i j i j d x

z i j z

u A
u A

k k− +   
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  
 (A.2) 

where xA  and zA  are amplitudes of oscillations in the horizontal and vertical directions, k  is the 

horizontal wavenumber and zk  is the vertical wavenumber. For a given pair (k ,ω ), the solutions of 

the type (A.2) are found by solving for zk , xA  and zA  the following eigenvalue problem 

 11 12

2221

0
0

x

z

k k A
k k A
     
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 (A.3) 

where 
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( ) ( )( ) ( )
( ) ( )( )

( ) ( )( ) ( )
( )
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 (A.4) 

The eigenvalue problem (A.3) contains four distinct solutions,  
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 (A.5) 

whose corresponding eigenvectors { }T,xl zlA A  are (do not confound l  used here to describe the 

eigenpair number with the same letter used in the main body of the paper to describe the sleeper 
number) 
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Hence, the displacements , ,i juα  at any point of the lattice can be rewritten in terms of these 

eigenpairs and unknown modal amplitudes lA  as 
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 (A.7) 

The modal amplitudes lA  must be calculated such that the boundary conditions at the top and 

bottom of the lattice layer are satisfied. 

A.2 – Equation for masses at the upper and lower surfaces of the layer 
The motion of a mass at the upper boundary ( 0j = ) of a layer of the lattice is governed by 

the pair of equations 
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where , ,0x iF  and , ,0z iF  are the externally applied forces at the upper boundary. Likewise, the motion 

of a mass at the lower boundary ( j N= ; do not confound N  used here to describe the depth of 

the last particle with the same letter used in the main body of the paper to describe the number of 
particles in contact with the sleepers) of a layer of the lattice is governed by the pair of equations 
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 (A.9) 

where , ,x i NF  and , ,z i NF  are the externally applied forces at the lower boundary. Compared to the 

work of Suiker et al. [27], the boundary conditions (A.8)-(A.9) differ by a factor 1
2  in some of the 

terms, which are marked with a square ( 1
2 ). These modified boundary conditions assure that there 

is no reflection of waves at the interface between two lattice layers with the same properties. 

For external forces of the type 
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the response of the lattice is as defined in Eq. (A.7). After inserting the solution (A.7) and forces 
(A.10) into Eqs. (A.8)-(A.9), one obtains  
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where the 4 1×  vectors js  composing matrix S  are defined as 
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The components of the matrix in Eq. (A.12) are as follows: 
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A.3 – Layer stiffness matrix and layered lattices 
Similarly to the forces, the displacements at the upper surface ( , ,0x iu  and , ,0z iu ) and those of 

the lower surface ( , ,x i Nu  and , ,z i Nu ) can be written as  
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Eqs. (A.11) and (A.15) can be combined in order to eliminate the unknown modal amplitudes lA  and 

to obtain a direct relation between forces applied at the upper and lower surfaces and corresponding 
displacements. This results in  

 ( )
,0 ,0

,0 ,01

, ,

, ,

x x

z z

x N x N

z N z N

u F
u F
u F
u F

−

   
   
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   
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K

S U
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 (A.16) 

The stiffness matrix defined in Eq. (A.16) as 1−=K S U  is very useful in the sense that it allows 

to consider layered lattices in a straightforward manner. For that, it suffices to calculate the matrices 
K  for each layer and assemble them in a global matrix in the same fashion as done in the Finite 
Element Method or in the more similar Stiffness Matrix Method [33]. The resulting global stiffness 
matrix can then be inverted and multiplied by the external forces acting on the layer interfaces, and 
by that the displacements of any surface/interface are obtained in the frequency-wavenumber 

domain. These are the displacements ( )*
, ,p quαβ k  to which Section 2 refers. For displacements/loads 

inside the lattice layers, the best approach is to subdivide the layer into several sublayers, with 
interfaces at the elevations where displacements are required and forces are applied. 

A.4 – Semi-infinite lattice layer 
In some cases, it may be useful to consider the last layer of the layered lattice with infinite 

thickness. That is the case when, for example, lattices are used to describe a layered soil whose bed 
rock is very deep. When this is the case, the procedure to calculate the stiffness matrix changes 
slightly so that the radiation condition at infinity is considered. 

Note that in Eq. (A.5) the vertical eigenvalues zlk  of the lattice come in symmetric pairs, i.e., 

3 1z zk k= −  and 4 2z zk k= − . For real eigenvalues, the positive one represents a wave that is 

propagating downwards while the negative represents a wave propagating upwards. On the other 
hand, for complex valued eigenvalues, the one with negative imaginary component represents a 
wave that decays downwards while its counterpart represents a wave decaying upwards. Only the 
eigenvalue of each pair that respects the radiation condition (wave propagating away from the 
surface, if eigenvalue is real) or decaying condition (decaying away from the surface, if eigenvalue is 
complex) is to be used. Thus, for a lower half-space, the stiffness matrix is calculated with 

 ( ) ( )
( ) ( )
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K s s  (A.17) 

where the 2 1×  vectors ( )
lhs

|a bs  are obtained with 
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The index pair ( )|a b , where 1, 2a =  and 3,4b =  represents the eigenvalue index of the pair zak ,

zbk  that is real and positive or that is complex valued with negative imaginary component. The 

expressions for ijs  are given in Eq. (A.13) and are calculated for the eigenvalue zak  or zbk  that fulfils 

the mentioned conditions. 

It is less often the case that a upper half-space is considered. Nevertheless, its stiffness matrix 
is calculated with 
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where the 2 1×  vectors ( )
uhs

|a bs  are obtained with 
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Contrary to the lower half-space, the eigenvalues to be used in the upper half-space are the negative 
ones (if real) or the ones with positive imaginary component (if complex valued). 

Appendix B 
In this appendix, the identity in Eq. (40) is explained. The integral in (40) is a convolution an 

thus equals to the inverse Fourier transform of the product of the transforms, i.e.,  
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where ( )*
Rail,Fu k , ( )*

Rail,F kθ  , ( )*
Rail,Mu k , ( )*

Rail,M kθ  are the Fourier transforms of ( )*
rail,Fu x , 
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rail,Mu x  and ( )*
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and where ( )extF k  is 
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Insertion of equalities (B.2) and (B.3) in the second integral of Eq. (B.1) results in 
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This is the identity shown in Eq. (40) of the paper. 
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