
 
 

Delft University of Technology

Unit Commitment: Computational Performance, System Representation and Wind
Uncertainty Management

Morales-Espana, G.

DOI
10.4233/uuid:0eb5f112-4131-44f8-bcaf-3e040239025c
Publication date
2014
Document Version
Final published version
Citation (APA)
Morales-Espana, G. (2014). Unit Commitment: Computational Performance, System Representation and
Wind Uncertainty Management. [Dissertation (TU Delft), Delft University of Technology, KTH Royal Institute
of Technology, Comillas Pontifical University]. https://doi.org/10.4233/uuid:0eb5f112-4131-44f8-bcaf-
3e040239025c
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:0eb5f112-4131-44f8-bcaf-3e040239025c
https://doi.org/10.4233/uuid:0eb5f112-4131-44f8-bcaf-3e040239025c
https://doi.org/10.4233/uuid:0eb5f112-4131-44f8-bcaf-3e040239025c


Doctoral Thesis
Madrid, Spain 2014

Unit Commitment
Computational Performance, System Representation and

Wind Uncertainty Management

Germán Andrés Morales-España



Doctoral Thesis supervisors:

Prof.dr. Andrés Ramos, Universidad Pontificia Comillas, director
Dr. Javier García-González, Universidad Pontificia Comillas, co-director
Prof.dr.ir. Lennart Söder, Kungliga Tekniska Högskolan, supervisor
Prof.dr.ir. Paulien M. Herder, Technische Universiteit Delft, promotor

Members of the Examination Committee:

Prof.dr.ir. Francisco J. Prieto, Universidad Carlos III de Madrid, chairman
Dr. Mohammad R. Hesamzadeh, Kungliga Tekniska Högskolan
Dr. Efraim Centeno, Universidad Pontificia Comillas
Dr.ir. Laurens J. de Vries, Technische Universiteit Delft
Prof.dr.ir. Benjamin F. Hobbs, Johns Hopkins University

This research was funded by the European Commission through the Erasmus Mundus
Joint Doctorate Program, and also partially supported by the Institute for Research
in Technology at Universidad Pontificia Comillas and the Cátedra Iberdrola de En-
ergía e Innovación.

TRITA-EE 2014:041
ISSN 1653-5146
ISBN 978-84-697-1230-6

Copyright © 2014 by G. Morales-España.

Printed in Spain



Unit Commitment
Computational Performance, System Representation and

Wind Uncertainty Management

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op woensdag 8 oktober 2014 om 13:00 uur

door

Germán Andrés MORALES-ESPAÑA

geboren te Florencia, Colombia
in 1982



Dit proefschrift is goedgekeurd door de promotoren:

Prof.dr. Andrés Ramos, Universidad Pontificia Comillas, director
Dr. Javier García-González, Universidad Pontificia Comillas, co-director
Prof.dr.ir. Lennart Söder, Kungliga Tekniska Högskolan, supervisor
Prof.dr.ir. Paulien M. Herder, Technische Universiteit Delft, promotor

Samenstelling promotiecommissie:

Prof.dr.ir. Francisco J. Prieto, Universidad Carlos III de Madrid, voorzitter
Dr. Mohammad R. Hesamzadeh, Kungliga Tekniska Högskolan
Dr. Efraim Centeno, Universidad Pontificia Comillas
Dr.ir. Laurens J. de Vries, Technische Universiteit Delft
Prof.dr.ir. Benjamin F. Hobbs, Johns Hopkins University

ISBN 978-84-697-1230-6

Copyright © 2014 by G. Morales-España. Madrid, Spain. All rights reserved. No
part of the material protected by this copyright notice may be reproduced or uti-
lized in any form or by any means, electronic or mechanical, including photocopying,
recording or by any information storage and retrieval system, without written per-
mission from the author.

Printed in Spain



SETS Joint Doctorate

The Erasmus Mundus Joint Doctorate in Sustainable Energy Technologies and
Strategies, SETS Joint Doctorate, is an international programme run by six insti-
tutions in cooperation:

• Comillas Pontifical University, Madrid, Spain

• Delft University of Technology, Delft, the Netherlands

• Florence School of Regulation, Florence, Italy

• Johns Hopkins University, Baltimore, USA

• KTH Royal Institute of Technology, Stockholm, Sweden

• University Paris-Sud 11, Paris, France

The Doctoral Degrees issued upon completion of the programme are issued by Comil-
las Pontifical University, Delft University of Technology, and KTH Royal Institute
of Technology.

The Degree Certificates are giving reference to the joint programme. The doctoral
candidates are jointly supervised, and must pass a joint examination procedure set
up by the three institutions issuing the degrees.

This Thesis is a part of the examination for the doctoral degree.

The invested degrees are official in Spain, the Netherlands and Sweden respectively.

SETS Joint Doctorate was awarded the Erasmus Mundus excellence label by the
European Commission in year 2010, and the European Commission’s Education,
Audiovisual and Culture Executive Agency, EACEA, has supported the fund-
ing of this programme.

The EACEA is not to be held responsible for contents of the Thesis.





A Sandra Kemperman
por estar a mi lado y ser mi apoyo,

gracias por darme la estabilidad mental
que hizo posible esta tesis





Summary

In recent years, high penetration of variable generating sources, such as wind power, has
challenged independent system operators (ISO) in maintaining cheap and reliable power
system operation. Any deviation between expected and real wind production must be
absorbed by the power system resources (reserves), which must be available and ready to
be deployed in real time. To guarantee this resource availability, the system resources must
be committed in advance, usually day-ahead, by solving the so-called unit commitment
(UC) problem. If the quantity of committed resources is too low, there can be devastating
and costly consequences for the system, such as significant load shedding. On the other
hand, if this quantity is too high, the system operation will be excessively expensive,
mainly because facilities will not be fully exploited.

This thesis proposes computationally efficient models for optimal day-ahead planning in
(thermal) power systems to adequately manage stochastic wind production in the real-time
system operation. The models can support ISOs to face the new challenges in short-term
planning as uncertainty increases dramatically in managing the integration of variable
generating resources. This thesis then tackles the following aspects of the UC problem:

• Power system representation: This thesis identifies drawbacks of the traditional
energy-block scheduling approach, which make it unable to adequately prepare the
power system to face deterministic and perfectly known events. To overcome those
drawbacks, we propose the ramp-based scheduling approach which more accurately
describes the system operation, thus better exploiting system flexibility.

• UC computational performance: Developing more accurate models would be point-
less if these models considerably increase the computational burden of the UC prob-
lem, which is already a complex integer and non-convex problem. We then devise
simultaneously tight and compact formulations under the mixed-integer program-
ming (MIP) approach. This improves convergence speed by reducing the search
space (tightness) and simultaneously increasing the speed (compactness) with which
solvers explore that reduced space.

• Uncertainty management in UC : By putting together the improvements in the previ-
ous two aspects, this thesis contributes to a better management of wind uncertainty
in UC, even though these two aspects are in conflict and improving one often means
harming the other. If compared with a traditional energy-block UC model under
the stochastic (deterministic) paradigm, a stochastic (deterministic) ramp-based UC
model: 1) leads to more economic operation, due to a better and more detailed sys-
tem representation, while 2) being solved significantly faster, because the core of
the model is built upon simultaneously tight and compact MIP formulations.

• To further improve the uncertainty management in the proposed ramp-based UC, we
extend the formulation to a network-constrained UC with robust reserve modelling.
Based on robust optimization insights, the UC solution guarantees feasibility for
any realization of the uncertain wind production, within the considered uncertainty
ranges. This final model remains a pure linear MIP problem whose size does not
depend on the uncertainty representation, thus avoiding the inherent computational
complications of the stochastic and robust UCs commonly found in the literature.
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Dissertation

This doctoral thesis includes an analysis of the unit commitment (UC) problem
with emphasis on three different aspects: computational performance, power system
representation and wind uncertainty management. This thesis is based on the work
of the following (JCR) journal papers [53, 91, 95, 97, 99, 100] which are included at
the end of this document (labelled Article I–VI) and listed as follows. The list of
papers is separated on the different aspects of the thesis, but some of the papers fit
in more than one. Further details of the thesis structure and roadmap are given in
section 1.3.

Power System Representation

Article I G. Morales-España, J. M. Latorre, and A. Ramos, “Tight and compact
MILP formulation of start-up and shut-down ramping in unit commitment,”
IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1288–1296. May
2013.

Article II G. Morales-España, A. Ramos, and J. García-González, “An MIP For-
mulation for Joint Market-Clearing of Energy and Reserves Based on Ramp
Scheduling,” IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 476–
488, Jan. 2014.

UC Computational Performance

Article III G. Morales-España, J. M. Latorre, and A. Ramos, “Tight and compact
MILP formulation for the thermal unit commitment problem,” IEEE Trans-
actions on Power Systems, vol. 28, no. 4, pp. 4897–4908. Nov. 2013.

Article IV C. Gentile, G. Morales-España, and A. Ramos, “A Tight MIP For-
mulation of the Unit Commitment Problem with Start-up and Shut-down
Constraints,” EURO Journal on Computational Optimization (EJCO), 2014,
paper under review.

Article V G. Morales-Espana, C. Gentile, and A. Ramos, “Tight MIP Formulations
of the Power-Based Unit Commitment Problem,” OR Spectrum, 2014, paper
accepted for publication.
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Wind Uncertainty Management

Article VI G. Morales-Espana, R. Baldick, J. García-González, and A. Ramos,
“Power-Capacity and Ramp-Capability Reserves for Wind Integration in Power-
Based UC,” IEEE Transactions on Sustainable Energy, 2014, paper under
review.

The following two working papers are also result of this PhD research:
Article VII “Comparison of Energy-Block and Ramp-Based Scheduling Approaches,”

Targeted Journal: IEEE Transactions on Power Systems. See chapter 3.
Article VIII “The Worst-case Wind Scenario for Adaptive Robust Unit Commit-

ment Problems,” Targeted Journal: IEEE Transactions on Power Systems.
See Appendix A.

Apart from this, during my four years as a PhD student I presented the relevant
results in several conferences [87–90, 92–94, 98, 114, 115] and I also co-authored
three other (JCR) journal papers [85, 96, 122].
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1. Introduction

Contents
1.1. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1. Main Objective . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2. Specific Objectives . . . . . . . . . . . . . . . . . . . . . . 5

1.3. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . 6

This Chapter introduces the context of this thesis, defines its main objectives, and
presents the structure of the document.

1.1. Context

Renewable energy plays a key role in tackling the challenges of global warming.
The electricity sector, which significantly contributes to greenhouse emissions, has
been shifting toward a stronger presence of renewable energy sources. Wind power
production is the leading renewable technology in the electricity sector and it has
been firmly penetrating current power systems worldwide1. This is mainly due to
technological maturity, zero emissions, costless fuel resource and widespread avail-
ability.
Wind electricity production cannot be dispatched in a traditional manner because
of its inherent randomness caused by the intrinsic chaotic nature of weather. Wind
is considered an intermittent resource due to its limited-controllable variability and
uncertainty. As a result, wind generation constitutes a source of uncertainty in the
planning and operation of power systems. Power systems can accommodate some
amount of intermittent generation with the current planning and operation practices.
However, high penetration levels of intermittent generation considerably alter the
usual system conditions which may endanger the security of the energy supply.
Therefore, new procedures to plan and operate power systems are required in order
to deal with high penetration levels of intermittent generation, while maintaining
the security and reliability of the bulk power system [63, 104].

1In some power systems, hydropower is the leading renewable technology; however, its availability
is not as widespread as wind.
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Chapter 1 Introduction

The wind (un)predictability affects the power systems in different ways depending
on the time span. For example:

1. In long-term (years to decades) planning, the adequacy of the system is affected
because wind predictability influences the investments in generation capacity
and thus the transmission (expansion) network capacity. The firm capacity
of the system is the main factor that determines the adequacy level of the
system. Wind power has been considered as an energy source rather than a
capacity source [83], and the capacity credit of wind power plants is directly
affected by its (un)predictability [3].

2. In medium-term (months to years) planning, the adequacy of the system is
also affected because wind power predictability influences the management,
coordination and maintenance of components in power systems [148].

3. In short term (hours to days) planning, the security of the power system is
affected. The variability and uncertainty of wind power output is managed
in short term scheduling, hence wind predictability influences the decision of
which generating units need to be committed to provide the energy and the
extra capacity (reserves) available to respond to unforeseen wind production
changes [126].

4. In real-time (seconds to minutes) operation, the security of the power system is
directly affected. In real time, a perfect balance between supply and demand
is always required to prevent the power system from collapsing. To avoid
devastating and costly consequences, any deviation between expected and real
wind production must be absorbed by the power system resources (reserves),
which must be available in real time.

To adequately face real-time wind uncertainty, enough system resources must be
available and ready to be deployed. To guarantee this availability for real-time
operations, these system resources must be scheduled and committed in advance,
because a significant part of them may take few hours (or even days) to be brought
online [128]. The day-ahead Unit Commitment (UC) is the short-term planning
process that is commonly used to commit resources at minimum cost, while oper-
ating the system and units within secure technical limits [60, 123]. These resources
must be enough to face expected (e.g., forecasted demand) and unexpected (e.g.,
unforeseen wind) events.
On the one hand, if the quantity of committed resources is extremely low, there
will be devastating and costly consequences in the system, such as significant load
shedding or startup of expensive fast-start units. For example, large industrial and
commercial electricity consumers were disconnected in Texas in February 2008 [41,
79], due to an unexpected ramp-down of 1700 MW of wind generation that occurred
within three hours. On the other hand, if the quantity of committed resources is
extremely high, the system operation will be excessively expensive, mainly because
facilities will not be fully exploited, and there may also be an excessive curtailment
of wind power that would lead to high fuel costs [31, 101].

2



1.1 Context

This thesis focuses on the short-term planning problem in thermal power systems,
specifically on optimally preparing the power system, through day-ahead planning,
to face the stochastic nature of wind production in the real-time operation. This
can be done by committing an optimal amount of system resources through a
network-constrained UC2, using uncertainty-oriented optimization paradigms such
as stochastic or robust optimization [12, 48, 112]. To achieve this, the thesis tackles
the UC problem in three different aspects: power system representation, the UC
computational performance, and wind uncertainty management, see Figure 1.1.

Figure 1.1.: Thesis Structure

First, for the power system representation, we start by questioning the standard
UC formulations found in the literature. In particular, we investigate if current UC
approaches effectively deal with completely known (certain) events. All predictable
events must be directly included in the scheduling stage; otherwise, the actual sys-
tem flexibility is not exploited adequately, and this can even endanger the power
system security. We show that the traditional energy-block scheduling approach is
unable to adequately prepare the power system to face perfectly known system con-
ditions. This thesis then proposes the ramp-based scheduling approach to overcome
the drawbacks of the traditional energy-block approach. The following example il-
lustrates one of the main reasons why a change of scheduling approach is required.
Figure 1.2 shows two power demand profiles that present the same energy profile.
Notice that the two power profiles present very different ramp requirements, even
though the hourly energy requirements are identical. For example: 1) between hours
8 and 10, the ramp requirement of one power demand profile is twice the other; and
2) during hours 6-7 and 10-11, the ramp requirement is 0 for the power demand
profile D2 and 250 MW/h for D1.
One energy profile has infinite potential power profiles; therefore, even though the
traditional energy-block approach could provide a given energy profile, it cannot
guarantee that all possible resulting power profiles can be supplied. Moreover, the
proposed ramp-based approach schedules one power profile which has a unique en-
ergy profile, thus satisfying both the ramp and energy demand requirements.

2Network-constrained UC refers to a UC that includes network constraints, that is, the UC also
solves an optimal power flow problem respecting all transmission capacity limits [123].

3



Chapter 1 Introduction

Time [h]

P
ow

er
 [M

W
]

 

 

6 7 8 9 10 11 12 13 14 15 16 17
3000

3500

4000

4500

5000

5500
D1&D2 [MWh]
D1 [MW]
D2 [MW]

Figure 1.2.: Two power demand profiles D1 and D2 with the same energy profile

Second, special attention must be paid to computational burden of UC problems.
Developing more accurate models would be pointless if the models cannot be solved
efficiently enough3 in the first place. The UC problem is an integer and non-convex
problem which is difficult to solve efficiently, especially for large-scale problems.
Mixed-integer (linear) programming (MIP) has become a very popular approach to
solve UC problems due to significant improvements in MIP solvers over the last
two decades [69]. Despite this significant breakthrough in MIP solving, the time
required to solve UC problems continues to be a critical limitation that restricts
their size and scope. Therefore, we devise computationally efficient MIP models,
by developing simultaneously “tight” and “compact” formulations so they present a
much lower computational burden compared with UC formulations commonly found
in the literature.

By improving either of the two previous aspects in the UC, an uncertainty-oriented
UC is indirectly improved. For example, a stochastic UC including a better (more
realistic and acurate) system representation will lead to a more economic operation;
and UCs with lower computational burden leads to faster stochastic UCs. However,
these two aspects are in conflict and improving one often means harming the other.
That is, a more accurate UC usually implies increasing its computational burden.
On the other hand, simplifications are usually needed (e.g., removing network con-
straints) to obtain faster UCs.

Finally, to improve the uncertainty management in UC, we put together the devel-
opments in the previous two aspects (which were achieved in this thesis). Therefore,
we develop new deterministic and stochastic UC formulations, whose objective is to
lower operating costs while being solved significantly faster when compared with

3A model is considered to be solved efficiently enough (or within rational time) if it can be solved
within the required time using the available computing power. For example, if a UC needs to
be carried out every hour, then the UC is required to be solved in much less than an hour.

4



1.2 Objectives

traditional UC models. In addition, based on robust optimization insights and
taking into account the wind generation flexibility, i.e., curtailment, we propose a
network-constrained UC formulation with robust reserve modelling. Similarly to the
stochastic and robust approaches, the proposed network-constrained UC formula-
tion seeks to provide commitment (first-stage) decisions that give flexibility to the
power system to face wind uncertainty. This flexibility is provided by units and
wind dispatch (second-stage). This final proposed model remains as a pure linear
MIP problem, whose size does not depend on the uncertainty wind representation,
unlike stochastic UCs whose size directly depends on of the quantity of scenarios
considered. In comparison, the traditional robust UCs available in the literature
requires solving an MIP together with a bilinear program, making the final problem
considerably more complex to solve than a pure linear MIP.

In summary, this thesis proposes computationally efficient tools to optimally commit
the required power-system resources to face wind uncertainty in real time, hence
allowing power systems to deal with high penetration levels of wind production in
an efficient manner. These tools can support ISOs to face the new challenges in
day-ahead planning as uncertainty increases dramatically due to the integration of
variable and uncertain generation resources, such as wind and solar power.

1.2. Objectives

1.2.1. Main Objective

The main objective of this research is to propose computationally efficient models
for day-ahead planning in power systems to adequately prepare the system to face
the stochastic nature of wind production in the real-time operation.

1.2.2. Specific Objectives

The main objective can be broken down in the following specific objectives:

Obj1. To develop new day-ahead UC formulations that are able to describe more
accurately the system’s real-time operation.

Obj2. To devise computationally efficient UC formulations under the MIP approach,
by identifying and taking into account the key features that affects the com-
putational burden of MIP formulations.

Obj3. To propose network-constrained UC formulations to optimally schedule gen-
erating resources to deal with the stochastic nature of wind production.
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Chapter 1 Introduction

1.3. Thesis Outline

This section presents the roadmap of the thesis. This roadmap or outline is based
on a partition into three parts, one part for each specific objective. The thesis is
mainly based on a collection of papers. We separate the papers on the different
parts, but some of the following papers fit in more than one, as shown in Figure 1.3.

Figure 1.3.: Contributions of this thesis (ARO: Adaptive Robust Optimization;
and SU & SD: startup and shutdown)

The structure of this thesis is then described as follows:
Chapter II: This chapter provides a basic background to the thesis area. We give

a short introduction of the short-term planning and operating process in the
electricity sector. Next, we discuss the capabilities of current power system
operating practices to deal with perfectly known system conditions. That
is, are the current scheduling practices able to cope with completely known
events? Since MIP is the leading approach to solve UC problems, we then
introduce the key aspects that define the performance of MIP formulations.
Finally, we shortly describe the main optimization paradigms that have been
applied to UCs to deal with wind uncertainty.

Power System Representation

Article I: This paper presents an MIP formulation of startup and shutdown power
trajectories of thermal units. Multiple startup power-trajectories and costs
are modelled according to how long the unit has been offline. The proposed
formulation significantly reduces the computational burden in comparison with
others commonly found in the literature. This is because the formulation is
1) tighter, i.e., the relaxed solution is nearer to the optimal integer solution;
and 2) more compact, i.e., it needs fewer constraints, variables and nonzero
elements in the constraint matrix. For illustration, the self-unit commitment

6
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problem faced by a thermal unit is employed. We provide computational
results comparing the proposed formulation with others found in the literature.

Article II: In this paper, we propose the ramp-based UC scheduling approach,
which draws a clear distinction between power and energy. Demand and gen-
eration are modelled as hourly piecewise-linear functions representing their
instantaneous power trajectories. The schedule of generating units’ output is
no longer a stepwise function, but a smoother function that respects all ramp
constraints. The formulation represents in detail the operating reserves (online
and offline), their time deployment limits (e.g., 15 min), their potential sub-
stitution, and their limits according to the actual ramp schedule. The startup
and shutdown power trajectories presented in Article I are also included in the
ramp-based UC model, thus obtaining a more efficient scheduling of ramp, en-
ergy and reserves. The model is formulated as an MIP problem, and is tested
with a 10-unit and 100-unit system in which its computational performance is
compared with a traditional UC formulation.

UC Computational Performance

Article III: This paper presents an MIP reformulation of the traditional energy-
block UC problem. The proposed formulation is simultaneously tight and com-
pact. The tighter characteristic reduces the search space and the more compact
characteristic increases the searching speed with which solvers explore that re-
duced space. Therefore, as a natural consequence, the proposed formulation
significantly reduces the computational burden in comparison with analogous
MIP-based UC formulations. We provide computational results comparing the
proposed formulation with two others which have been recognized as compu-
tationally efficient in the literature. The experiments are carried out on 40
different power system mixes and sizes, running from 28 to 1870 generating
units.

Article IV: This paper further improves the work in Article III by providing the
convex hull description for the following basic operating constraints of a single
generation unit energy-block UC problems: 1) generation limits, 2) startup
and shutdown capabilities, and 3) minimum up and down times. Although
the model does not consider some crucial constraints, such as ramping, the
proposed constraints can be used as the core of any energy-block UC formula-
tion, thus tightening the final UC model. We provide evidence that dramatic
improvements in computational time are obtained by solving a self-UC prob-
lem for different case studies.

Article V: This paper is an extension of the MIP model of a single unit operation
under the ramp-based scheduling approach presented in Article II. This paper
provides the convex hull description for the basic operation of slow- and quick-
start units in ramp-based UC problems. The basic operating constraints that
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are modelled for both types of units are: 1) generation limits and 2) minimum
up and down times. Apart from this, the startup and shutdown processes
are also included, by using 3) startup and shutdown power trajectories for
slow-start units, and 4) startup and shutdown ramps for quick-start units.
The proposed constraints can be used as the core of any ramp-based UC
formulation, thus tightening the final MIP problem. We provide evidence
that dramatic improvements in computational time are obtained by solving a
self-UC problem for different case studies.

Wind Uncertainty Management

Article VI: This paper proposes a robust reserve-based network-constrained UC
formulation as an alternative to traditional robust and stochastic UC formu-
lations under wind generation uncertainty. The formulation draws a clear
distinction between power-capacity and ramp-capability reserves to deal with
wind production uncertainty. These power and ramp requirements can be
obtained from wind forecast information. Using the solution of the worst-
case wind scenario (see Appendix A) the formulation guarantees feasibility for
any realization of the wind uncertainty. The model is formulated under the
ramp-based scheduling approach ( Article II), this allows a correct represent-
ation of unit’s ramp schedule which define their ramp availability for reserves.
The core of the proposed MIP formulation is built upon 1) the convex hull
description of slow- and quick-start units ( Article V), and 2) the tight and
compact formulation for multiple startup power-trajectories and costs ( Art-
icle I), thus taking advantage of their mathematical properties. Furthermore,
the proposed formulation significantly decreases operation costs if compared to
traditional deterministic and stochastic UC formulations while simultaneously
lowering the computational burden. The operation cost comparison is made
through 5-min economic dispatch simulation under hundreds of out-of-sample
wind-power scenarios.

Chapter III: This chapter presents case studies where the traditional energy-block
scheduling approach is compared with the ramp-based one proposed in this
thesis. We compare the different commitment policies using a 5-min economic
dispatch simulation. We assess the performance of the two approaches un-
der certain and uncertain events. To observe how the approaches deal with
certainty, we compare the two approaches using completely known demand
profiles. To assess the performance of the two approaches under uncertainty,
the two scheduling approaches are implemented under different uncertainty-
oriented optimization paradigms (e.g., deterministic, stochastic) and they are
compared through an out-of-sample evaluation stage.
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Chapter IV: In this, the last chapter of the thesis, conclusions are drawn and
guidelines for future work are outlined.
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This chapter presents the basic theoretical background of the thesis research topics.
We first provide an overview of the short-term planning process in the electricity
sector. Next, we discuss the capabilities of current power system operating practices
to deal with perfectly known system conditions. We then introduce the key aspects
that define the performance of MIP formulations. Last, we shortly describe the main
optimization paradigms that have been applied to UCs to deal with wind uncertainty.

2.1. Short-Term Planning in the Electricity Sector

In recent years, large-scale integration of wind generation in power systems has
challenged system operators in keeping a reliable power system operation, due to
the unpredictable and highly variable pattern of wind. Uncertainty in power system
operations is commonly classified in discrete and continuous disturbances. Discrete
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disturbances are mainly due to transmission and generation outages. Continuous
disturbances mostly result from stochastic fluctuations in electricity demand and
renewable energy sources, such as wind and solar energy production.

The appearance of these disturbances in real-time operation results in an imbalance
between supply and demand. A perfect balance between supply and demand is
always required in real time to prevent the power system from collapsing. Any
imbalance must be absorbed by the power system resources (reserves), which must
be available and ready to be deployed in real time. To guarantee this availability, the
system resources must be committed in advance, usually the day-ahead, by solving
the so-called unit commitment (UC) problem.

In many electricity markets, the market operator or Independent System Operator
(ISO) is in charge of performing the market clearing in order to determine the set
of accepted bids (supply and demand), and the prices to be used in the resulting
economic transactions. The electricity market is usually structured as day-ahead
markets (DAM) and a sequence of real-time markets (RTM), or intra-day markets.
There are many electricity markets, such as those in USA, where the DAM is based
on UC formulations, then commitment decisions and market clearing prices for the
next 24 hours are computed by solving an UC problem. The objective of this UC
is to make the unit’s on/off (commitment) decisions to ensure that enough units
are online to meet the demand at minimum cost. In RTM, the clearing prices and
quantities are commonly obtained by using an optimal economic dispatch (ED).
The objective of the ED is to optimally manage the online units to meet demand
at minimum cost. The market settlement is usually based on deviations between
DAM and RTM [136]. As stated in chapter 1, this thesis is focused on scheduling
quantities, and the problem of determining the prices that will allow generators to
recover their non-convex costs is beyond the scope of this work.

Although DAM and RTM are the market-driven practices in power systems to meet
demand at minimum cost, there are other planning and operating practices that
are carried out to maintain the reliability of the system. Figure 2.1 shows com-
mon short-term planning and operating practices in power systems. The specific
time schedules shown in Figure 2.1 are those followed by the ISO of Texas ERCOT
[43–45], other ISOs follow similar schedules [20, 116, 117]. The ISO commonly per-
forms a reliability unit commitment (RUC) to ensure the system reliability1. Most
ISOs perform the RUC after the DAM, day-ahead RUC (DRUC), and at least once
every hour, hourly RUC (HRUC) [20, 43]. The DRUC checks if the DAM com-
mitted enough resources in the right location to reliably serve the forecasted load
taking into account wind uncertainty [43, 136]. As a result of DRUC, the ISO may
change the commitment schedule of DAM to ensure that enough system resources
are committed to serve the expected wind and load. Similarly, the rolling HRUC is

1Reliability or residual UC (RUC) is used to ensure that enough resource capacity, in addition
to ancillary service capacity, is committed in the right locations to reliably serve the forecasted
net load [25, 43, 47].
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performed with updated demand and wind power forecasts to provide more accur-
ate information, thus permanently checking and ensuring that enough resources are
available to face demand and wind uncertainties in real time.

Figure 2.1.: Short-term planning and operating practices in power systems.

Apart from the day-ahead (DAM and DRUC) and hourly scheduling practices
(HRUC) the ED is usually executed every 5 minutes to economically dispatch the
units. Finally, in even shorter time frames, a load frequency control (LFC) keeps
the supply and load balance in real time, by maintaining the system frequency on
its nominal value through control strategies without cost optimization functions
[37, 106]. These control strategies are usually composed 1) by an Automatic Gen-
eration Control (AGC), whose response is between seconds and minutes; and 2)
by a primary frequency control, whose response is within few seconds. The former
control mainly responds to smooth changes and the latter to more sudden changes
of frequency.

It is important to highlight that the ED and LFC are the strategies that finally
matches demand and supply. However, they only manage the committed resources
that are available in real time. If there are not enough resources available, the
ISO needs to take expensive emergency actions to maintain system security and
avoid devastating consequences (e.g. blackout). These emergency actions include
dispatching fast-start units, voltage reduction, or load shedding [37, 106]. To avoid
these emergency actions, ISOs frequently monitor the system condition by using
rolling DRUC and HRUC, thus ensuring that enough system resources are always
committed to face unexpected events in real time.

2.1.1. Generic Formulation of the UC Problem

Efficient resource scheduling is necessary in power systems to achieve an economical
and reliable energy production and system operation, either under centralized or
competitive environments. This can be achieved by solving the UC problem, as
discussed above.
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The UC main objective is to meet demand at minimum cost while operating the
system and units within secure technical limits [61, 111, 127, 149]. Here, we present
a compact matrix formulation:

min
x,p,w

(
b>x+ c>p+ d>w

)
s.t. Fx ≤ f , x is binary (2.1)

Hp+ Jw ≤ h (2.2)
Ax+ Bp+ Cw ≤ g (2.3)
w ≤W (2.4)

where x,p and w are decision variables. The binary variable x is a vector of
commitment related decisions (e.g., on/off and startup/shutdown) of each generation
unit for each time interval over the planning horizon. The continuous variable p is a
vector of each unit dispatch decision for each time interval. The continuous variable
w is a vector of wind dispatch decision for each time interval at each node where
wind is injected.

The objective function is to minimize the sum of the commitment cost b>x (includ-
ing non-load, start-up and shut-down costs), dispatch cost c>p and wind dispatch
cost d>w over the planning horizon. Wind dispatch cost is usually considered to
be zero. However, the parameter d is explicitly included to consider the possibility
where this cost is different than zero (in some power systems, this cost can even be
negative reflecting opportunity costs, e.g., -40 $/MWh in ERCOT [7])

Constraint (Equation 2.1) involves only commitment-related variables, e.g., min-
imum up and down times, startup and shutdown constraints, variable startup costs.
Constraint (Equation 2.2) contains dispatch-related constraints, e.g., energy balance
(equality can always be written as two opposite inequalities), reserve requirements,
transmission limits, ramping constraints. Constraint (Equation 2.3) couples the
commitment and dispatch decisions. e.g., minimum and maximum generation capa-
city constraints. Constraint (Equation 2.4) empathizes that wind dispatch cannot
exceed its forecasted values W. The reader is referred to [61], Morales-Espana et al.
[91, 99] and Appendix B for more detailed UC formulations.

2.2. Power System Representation: Dealing with
Certainty

This section illustrates how the traditional energy-block scheduling approach is un-
able to adequately prepare the power system to face perfectly known system condi-
tions. This section is mainly based on the work in Morales-Espana et al. [88].

14



2.2 Power System Representation: Dealing with Certainty

2.2.1. Energy-Block: Scheduling vs. Real-time-operation

An inherent problem of markets that are physically cleared on an hourly (or half-
hourly) basis is that they make an (stepwise) hourly energy balance between sup-
ply and demand rather than matching the instantaneous generating power profiles
with the power demand profile. In these kind of markets, such as those in Europe
[116, 117], generators are penalized if they deviate from their hourly energy schedule.
Therefore, units operate by trying to match their power profile with the stepwise
energy blocks [34, 39, 49, 71, 107, 138]. This stepwise behaviour creates large gener-
ation gradients at the beginning and at the end of every trading hour, causing large
frequency deviations during these time intervals [34, 103].
Figure 2.2 shows a power demand curve2 and the hourly energy blocks which are
needed to satisfy that hourly energy demand. Assuming that the stepwise energy
profile can be exactly reproduced by the generation side, there is still an imbalance
between generation and demand, see the lower part of Figure 2.2. Since generation
and load must be always in balance, the resulting imbalances are compensated by
the operating reserves.
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Figure 2.2.: Upper figure shows a power demand profile and its energy-block sched-
ule. Lower figure shows the power deviation between them.

Note that the example presented in Figure 2.2 does not have any uncertain event
and yet there is a significant amount of reserves that is needed to balance generation
and load all the time. Power reserves are a costly commodity but needed to provide
security to the power system under unforeseen events [71]. Furthermore, the worst
consequence to the power system, is the high frequency deviation due to significant
generating gradients caused by generators in order to follow their scheduled energy

2The demand curve corresponds to the real demand in the Spanish power system at 17/01/2012
www.ree.es
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blocks. Such frequency deviations have been observed in the Continental Europe
(CE) power system, see in Figure 2.3.
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Figure 2.3.: Average frequency profiles of the CE grid, winters 2003 to 2008
(November to March - Monday to Friday). Source: [34]

Stable power systems are designed to operate within a small deviation from the
nominal frequency. CE system, for example, must operate between 50Hz±50mHz.
A generation outage of 1300 MW will usually lead to a frequency drop around 50
mHz [34]. Figure 2.3 shows the evening average frequency profiles of the CE grid
for the years 2003 to 2008. Evidently, the CE system is operating outside the secure
limits, and this happens many times every day, for around 10 minutes every hour.
These frequency deviations also arise due to large schedule steps at certain half hour
shifts [39]. The frequency swings due to market behaviour have been reported in
different power grids, for example the USA [103] and Nordic countries [107].

The severity of these events can be observed as follows: In 2010, if the market
induced imbalances did not occur, the probability for the CE system to black out3

would be less than once in 190 years compared to once in 19.3 years with the real
frequency data [36]. That is, the market-induced imbalances have increased the
probability to black by 10 times. These frequency swings have been increasing with
time [34, 40, 71]. In 2012, the peak-to-peak values went up to 150 mHz [40]

2.2.1.1. Consequences

As a consequence, even in the absence of uncertainty, the energy-block-based market
operation endangers the system security and increases the operation costs, because
a significant quantity of operating reserves need to be deployed in real time to
maintain the supply-demand balance. The reports [34, 36, 38, 39, 103] present

3This would happen if the CE system runs out of Frequency Containment Reserve (FCR) (3000
MW), which is also commonly known as primary reserve [38] and it is based on primary fre-
quency control [37, 105]
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detailed consequences of the frequency swings. We summarize and classify them as
follows:

Operational risks

• Insufficient primary reserve leaves the power system unprotected to face gen-
eration and demand outages. This endangers the security supply.

• Frequency oscillations can lead into uncontrollable operational situation, which
may cause the loss of generation or demand units. This may cause a snowball
effect leading to a blackout.

• Power flow variations cause overload which may lead to tripping in systems
operating close to their limits. As the previous consequence, this may also
lead to a blackout.

Economic impact

• Unnecessary use of primary reserves, which is repeatedly used during a day,
results in higher power plant stress. This has a direct impact on the lifetime of
the units and inevitably increases the cost of providing this reserve. Besides,
more primary reserve must be scheduled for not leaving the system unprotected
during the inter-hour periods.

• Unnecessary use of secondary reserves, which are needed to restore the primary
reserves, hence increasing the operation costs of the system. In addition, more
reserves must then be scheduled to deal with this issue. For example, the costs
associated to the overuse of secondary reserves due to the block scheduled in
Spain in 2010 was calculated on 17.5 millions of Euros4 [33].

• Generators following the stepwise energy profiles and also providing reserves
present a high ramp use during the changing hours, for around 10 minutes,
and thus decreasing their possibility to provide reserves [118].

2.2.1.2. Actions to take

Many measures have been proposed to diminish the previously mentioned con-
sequences [33, 34, 39, 40, 49, 71, 103, 107, 138], from an extremely centralized point
of view, e.g. unilateral control of the generation output by ISOs; to very decent-
ralized one, e.g. generation unit must incorporate the ramping costs then avoiding
sudden output changes. Here, we summarize some of the outstanding measures.

4Egido et al. [33] presented that savings of about 14.5 millions of Euros, for Spain in 2010, could
have been obtained by changing the dispatch of units to a half an hour basis and following
piecewise power patterns even thought the scheduling was stepwise-based.
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• Implement shorter trading periods. The shorter the periods, the smaller the
impact on frequency. This is because the resulting energy blocks will be more
similar to the smoother continuous demand profile. This will inevitably in-
crease transaction costs.

• Imposing maximum ramp rates on generators during short time periods (minutes).
That way, their power profiles will be smoother. This measure constrains the
freedom and technical flexibility of generators.

• Dispatching with smooth profiles although the scheduling is made in hourly
blocks. This measure is similar to the previous one, with the difference that
a constant ramp rate must be followed during the operation stage. The main
disadvantage of this solution is that once the energy blocks are fixed, the
plausible power profiles of generators may oscillate, besides generators not
having the incentives to do so. This problem can be diminished by considering
shorter trading periods.

All these measures to diminish these deterministic frequency deviations keep the
energy-block paradigm. As proposed in Morales-Espana et al. [88], a change to
a ramp-scheduling paradigm ( Article II) might deal with this problem. In other
words, changing the stepwise energy schedule for a piecewise power schedule. Even
though the energy profiles of the two scheduling types are identical, the resulting
power profile of the ramp-scheduling will be very similar to the smooth demand
profile; therefore, decreasing the impact on the operating reserves.
Under the ramp-scheduling approach, the units should be penalized if they deviate
from their ramp schedule5, instead of penalizing any deviation from the stepwise
energy profile. This will then give units the incentive to follow the smooth power
demand profile instead of the stepwise energy profile. Figure 2.4 shows the imbal-
ance differences between the hourly energy-block vs. the ramp-scheduling profiles,
assuming that units perfectly follow their schedule. For this example, the ramp-
based schedule decreases the need of reserves (energy needed to compensate the
imbalances) by more than 80%, and also diminishes dramatically the sudden gen-
eration changes, thus avoiding the unnecessary high frequency deviations that risk
the power system security.

2.2.2. Infeasible Power Delivery

Conventional UC formulations fail to deal with ramp capabilities appropriately.
Inefficient ramp management arises from applying ramp-constraints to energy levels

5Although the market follows hourly trading periods, measurements for shorter periods are needed
to follow the units’ ramp, and thus being able to penalize them if deviate from their ramp
schedule. For example, energy measurements every few minutes (around 5-10) would be enough
to follow the ramp profiles. Actually, these measurements are currently available and needed by
the secondary reserve control to work adequately (AGC uses continuous measurements around
each 10 seconds [35]).
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Figure 2.4.: Energy-blocks vs. ramp scheduling and their impact on reserves. Up-
per figure shows a power demand profile and its energy-block/ramp-based sched-
ules. Lower figure shows the power deviation between the schedules and the
demand.

or (hourly) averaged generation levels, which is a standard practice in traditional
UC models [28, 51, 60, 123]. As a result, energy schedules may not be feasible [57].

To illustrate this problem, consider the following scheduling example for one gen-
erating unit. This example assumes that the minimum and maximum generation
outputs of the unit are 100 MW and 300 MW, respectively, and that the maximum
ramp rate is 200 MW/h. As shown in Figure 2.5a, if the unit ramps up at its
maximum capability and has been producing 100 MW during the first hour, then
the expected hourly energy level for the second hour will be 300 MWh. This would
be a natural energy schedule resulting from the traditional UC formulations, which
are based on the energy scheduling approach. However, the unit is just physically
capable of reaching its maximum output at the end of the second hour due to its
limited ramp rate, as shown in Figure 2.5b. Consequently, the solution obtained in
Figure 2.5a is not feasible. In fact, the unit requires an infinite ramping capability
to be able to reproduce the energy schedule presented in Figure 2.5a. Note that rep-
resenting the generation in a stepwise fashion (energy blocks) may lead to misleading
estimations of a system’s ramp availability. This in turn could leave the system un-
prepared to face real-time uncertainties [99]. There are plenty of examples reported
in the literature showing that the resulting schedule of the traditional UC, based on
energy schedules, may not be feasible, see for example [57, 58] and Morales-Espana
et al. [88, 99].

Although Guan et al. [56], [57] proved that delivering the energy schedule obtained
from these energy-block formulations may not be feasible, insufficient attention has
been paid to this issue. Formulations drawing a clear distinction between power and
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(a) Traditional Energy Sched-
ule

(b) Actual Deployment

Figure 2.5.: Scheduling vs. Deployment

energy have been proposed, guaranteeing that stepwise energy schedules can be real-
ized [26, 52, 58, 144, 150]. Guan et al. [58] proposes a smooth nonlinear programming
problem which does not take into account discrete decisions (e.g. commitment). Wu
et al. [144] presents a formulation with feasible energy delivery constraints, which
is further extended in Yang et al. [150], where a sub-hourly UC is formulated. The
work in [26, 52] use power profiles to guarantee that the scheduled energy can be
provided. These formulations are focused on feasible energy schedules rather than
on matching generation and demand power profiles. In fact, these formulations
supply hourly energy demand with power profiles that vary from stepwise [150] to
oscillating power trajectories [26, 52, 118], which are far from matching the instant-
aneous power demand forecast. This indiscriminate use of ramping resources from
the scheduling stage does not permit the effective management of the system ramp
capabilities to face real-time uncertainties.

2.2.3. Startup and Shutdown Power Trajectories

Conventional UC formulations assume that units start/end their production at their
minimum output [60, 111, 143, 149]. Ignoring the inherent startup and shutdown
power trajectories of generating units is a common simplification that is being used
for the sake of saving computational effort in solving the UC problem. However, this
implies ignoring the energy production during the startup and shutdown processes
which is inevitably present in the real-time operation. Consequently, there is an
increasing amount of energy that is not being allocated by day-ahead scheduling
approaches because, first, units provide energy (and ramp) during the startup and
shutdown processes, affecting the total load balance; and second, thermal units are
being shut down and started up more often due to the increasing penetration of
variable generation [130].

To observe the impact of ignoring the inherent startup and shutdown trajectories
of generating units, consider the following illustrative example. Figure 2.6 shows
the scheduling (Figure 2.6a) and actual real-time operation (Figure 2.6b) stages
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of two power generating units, where the objective is to meet a required demand
(see solid line in Figure 2.6) and at least 50 MW of up and down reserves. The two
units are identical and their technical characteristics are: 1) 100 MW of minimum
output, 2) 300 MW of maximum output, 3) 100 MW/h as maximum up/down
ramping capability, and 4) 2 hours are needed to achieve the minimum output after
the unit is synchronized to the system (see the startup power trajectory of unit G2
in Figure 2.6b). Figure 2.6 shows that, from the scheduling stage, the demand is
satisfied with the instant power at the end of each period, but the energy cannot be
completely satisfied due to the discontinuities introduced by the startup process of
G2, which was ignored in this scheduling stage.

(a) Generation scheduling (b) Actual real-time operation

Figure 2.6.: Scheduling vs. real-time operation example. From the bottom to the
top, power output of unit G1, power output of unit G2, and power output of G1
and G2 matching the electric demand.

Figure 2.6a shows the UC scheduling for two generating units, ignoring the startup
and shutdown power trajectories. From this scheduling stage, the total up reserve
capacity of the power system that is expected to be available is: 50 MW for periods
p4 and p5, and 100 MW for the others, see Figure 2.6a. Similarly, the expected
down reserve available is 100 MW for periods p1 to p4 and 150 MW for p5 and p6:
100 MW that G1 can provide all the time and 50 MW that G2 can provide for
periods p5 and p6.
Let us observe what would happen in the real-time operation stage, where the
commitment decisions are fixed and the units are dispatched to match the actual
demand. From the scheduling stage, unit G2 must start to operate at its minimum
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output at the end of p4, then, the unit must be synchronized to the system from the
end of p2 due to its inherent startup process. Hence, in order to match generation
and load all the time, unit G1 has to change its scheduled output, by using down
reserves, and thus accommodate the startup power trajectory of G2, as shown in
Figure 2.6b. Two important situations can be observed:

1. The down reserves were used (in p3 and p4), even though this was not expected
from the scheduling stage.

2. The system ran out of up reserves for period p4, because G1 needs to ramp
up at its maximum capability to accommodate the startup power trajectory
of G2.

As a result, in order to maintain the balance between supply and demand, there
is an inefficient deployment of resources in real-time operations in order to accom-
modate the inherent units’ startup and shutdown power trajectories, which were
ignored in the scheduling stage. This inefficient use of resources is unnecessary
and can be easily avoided by including the units’ startup and shutdown trajector-
ies in the scheduling stage, thus obtaining better commitment decisions, as shown
in Figure 2.7. Furthermore, as discussed in Morales-Espana et al. [100], ignoring
these power trajectories can significantly change commitment decisions, which in
turn increases operating costs.

Figure 2.7.: Units’ schedule including their startup and shutdown power traject-
ories

Although some recent works are aware of the importance of including the startup and
shutdown processes in UC problems [26, 42, 52, 82] and there are models available in
the literature [6, 125, 133], these power trajectories continue being ignored because
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the resulting model would considerably increase the complexity of the UC problem
and hence its computational intensity.

An adequate day-ahead schedule not only must take into account these startup and
shutdown power trajectories, but also must optimally schedule them to avoid the
aforementioned drawbacks.

2.3. Performance of MIP Formulations

Mixed-integer (linear) programming (MIP) has become a very popular approach
to solving UC problems due to significant improvements in off-the-shelf MIP solv-
ers, based on the branch-and-cut algorithm. The combination of pure algorithmic
speedup and the progress in computer machinery has meant that solving MIPs has
become 100 million times faster over the last 20 years [69]. Recently, the world’s
largest competitive wholesale market, PJM, changed from Lagrangian Relaxation
to MIP to tackle its UC-based scheduling problems [46, 110]. There is extensive
literature comparing the pros and cons of MIP with its competitors, see for example
[61] and [72].

Despite the significant improvements in MIP solving, the time required to solve UC
problems continues to be a critical limitation that restricts the size and scope of
UC models. Nevertheless, improving an MIP formulation can dramatically reduce
its computational burden and so allow the implementation of more advanced and
computationally demanding problems, such as stochastic formulations [22, 23, 112],
accurate modelling of different types of (online and offline) reserves Morales-Espana
et al. [99], transmission switching [59], or detailed modelling of combined-cycle gen-
erating units [24, 72, 74, 78].

2.3.1. Good and Ideal MIP formulations

Figure 2.8 shows three different linear programming (LP) formulations (LP1, LP2
and LP3) of the same integer programming (IP) problem. Geometrically we can
observe that there is actually an infinite number of LP formulations for the same in-
teger problem, so the next question that could be raised: which of these formulations
is the most computationally efficient?

Formulation LP3 (solid line in Figure 2.8) is ideal, because each vertex is an integer
so the optimal LP solution (which lies in a vertex) is optimal for the corresponding
IP. In general, for every MIP problem there is only one ideal formulation called
convex hull, defined as the smallest convex feasible region containing all the feasible
integer points [142]. Each vertex of this unique formulation is a point satisfying the
integrality constraints, hence it allows solving the IP (non-convex) problem as an
LP (convex-problem).
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Figure 2.8.: The ideal MIP formulation

Unfortunately, in many practical problems there is an enormous number of inequal-
ities needed to describe the convex hull, and the effort required to obtain them
outweighs the computation needed to solve the original formulation of the MIP
problem [139, 142]. Furthermore, there is usually no simple characterization of
these inequalities.

For an MIP problem, however, it is possible to tighten the feasible region of the
relaxed LP problem, consequently obtaining dramatic improvements in computation
[102, 139, 140, 142]. An MIP formulation can be considerably tightened by providing
the convex hull (or tight) description of some set of constraints. Even though other
constraints in the problem might add some fractional vertices, this LP solution
should be nearer to the IP optimal solution than would be the original model, hence
faster to find by branch-and-cut solvers [139, 142].

Therefore, given two formulations F1 and F2 for the same MIP problem, the tighter
(nearer to the convex hull) one would be more computationally efficient. If the
feasible region of F1 is contained inside the feasible region of F2, then F1 is a
tighter formulation than F2, and thus the lower bound (in a minimization problem)
provided by the LP relaxation of F1 is always greater than or equal to that provided
by F2 [75, 142]. That is, F1 provides stronger lower bounds and the optimal solution
of its LP relaxation is nearer to the optimal integer solution.

2.3.2. Tightness vs. Compactness

Apart from the tightness, the computational performance of an MIP formulation
is also influenced by its compactness (quantity of data to process when solving the
problem). The compactness of an MIP formulation refers to its size. Although,
the number of constraints is considered to be the best simple predictor of the LP
models’ difficulty [18, 139], the number of nonzeros also has a significant impact on
solution times [16]. Therefore, formulation F1 is considered more compact than F2
if F1 presents simultaneously fewer constraints and nonzeros than F2.
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The branch-and-cut algorithm solves MIP problems by solving a sequence of LP
relaxations. The LP relaxation of a MIP problem is obtained by relaxing its integ-
rality requirements. During the solving process (branching), upper bounds (feasible
integer solutions) and lower bounds (LP relaxations) are computed. The quality of
a feasible integer solution is measured with the optimality tolerance, which is the
difference between upper and lower bounds. In order to reduce this difference, upper
bounds are decreased by finding better integer solutions (e.g. by using heuristics)
and lower bounds are increased by strengthening the LP relaxation (e.g. by adding
cutting planes) [16]. Providing an MIP formulation with strong lower bounds (LP
relaxation near to the optimal integer solution) can dramatically reduce the length
of the search for optimality [102, 132, 139, 142]. In addition, strong lower bounds
effectively guide the search for better upper bounds (i.e. heuristics explore the
neighbourhood of the LP relaxation to find potentially better integer solutions).

In short, the tightness of an MIP formulation defines the search space (relaxed
feasible region) that the solver needs to explore in order to find the (optimal integer)
solution. On the other hand, the compactness of an MIP formulation refers to its
size and defines the searching speed that the solver takes to find the optimal solution,
since during the process many LP relaxations are repeatedly solved.

Off-the-shelf MIP solvers fully exploit tightening and compacting strategies. Even
though solvers’ breakthrough is due to the synergy between different strategies (e.g.
heuristics, cuts, node presolve), introducing cutting planes has been recognized as
the most effective strategy, followed by root presolve [16, 17, 19, 119]. The former
strategy dynamically tightens the formulation around the integer feasible solution
point. The latter makes the initial problem formulation more compact (by removing
redundant variables and constraints) and also tighter (by strengthening constraints
and variable bounds).

Research on improving MIP formulations is usually focused on tightening rather than
on compacting. An MIP formulation is typically tightened by adding a huge number
of constraints, which increases the problem size [64, 109]. Although this tightening
reduces the search space, solvers may take more time exploring it because they are
now required to repeatedly solve larger LPs. Consequently, when a formulation is
tightened while significantly affecting its compactness, a more compact and less tight
formulation may be solved faster, because the solver is able to explore the larger
feasible region more rapidly [64]. On the other hand, compact formulations usually
provide weak (not strong) lower bounds.

In conclusion, creating tight or compact computationally efficient formulations is a
non trivial task because the obvious formulations are very weak (not tight) or very
large, and trying to improve the tightness (compactness) usually means harming the
compactness (tightness).
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2.3.3. Improving UC formulations

Improving MIP formulations, especially the tightness, has been widely researched.
In fact, all the cutting plane theory, which has meant the breakthrough in MIP
solving, is about tightening the formulations [16, 17, 69, 140, 140, 141]. In the
case of UC problems, there have been efforts affecting single sets of constraints
[48, 70, 109, 113]. Lee et al. [70] and Rajan and Takriti [113] describe the convex
hull of the minimum up/down time constraints for the 1-binary (only modelling
commitment binary variables) and 3-binary format (modelling commitment, startup
and shutdown binary variables), respectively. Although both formulations are ideal
in terms of tightness, the formulation in [113] is considerably more compact which
results in a much lower computational burden.

Apart from convex hulls, some contributions seek to find stronger MIP formulations.
Frangioni et al. [48] proposes a tighter linear approximation for quadratic generation
costs; Ostrowski et al. [109] presents a new class of valid inequalities (cuts) to tighten
ramping constraints.

2.4. Modelling Wind Uncertainty

The high penetration of uncertain generation sources, such as wind and solar power,
in power systems have posed new challenges to the UC process. The deviation
between expected and real wind production must be absorbed by the power system
resources (reserves), which must be available and ready to be deployed in real time.
To guarantee that enough system resources are available to face real-time uncer-
tainty, the system resources must be committed in advance, usually the day-ahead,
by solving the so-called UC problem. It is imperative for ISOs to have an adequate
methodology to schedule an efficient amount of system resources (reserves) to face
the increasing amount of real-time uncertainty.

The short-term decision process for power systems operations (see section 2.1) is
conceptually a two-stage problem [143]. In the first-stage, the unit commitment
decision takes places hours to days ahead of the actual operation, where units are
committed to meet an expected power demand for each hour, based on the units’
costs and constraints. In the second-stage, after the uncertainty (e.g. wind) has
been realized, the power outputs of committed units are decided to meet the real-
time load. These dispatch decisions take place between minutes to seconds ahead
of the time implementation.

Let us consider the second-stage of the UC optimization problem (Equation 2.1)-
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(Equation 2.4), which is obtained by fixing the first-stage variable x:

min
p,w

c>p+ d>w

s.t. Hp+ Jw ≤ h (2.5)
Bp+ Cw ≤ g̃ (2.6)
w ≤W (2.7)

where g̃ = g−Ax.

The optimal solution of this LP problem will always be at a vertex of the feasible
region, because the objective function is linear and the feasible region is convex.
Therefore, the optimal solution is always at the very boundary of the feasible region,
which is also the boundary of feasibility. This solution is then by nature not designed
to be robust against perturbations in the feasible region.

In fact, Ben-Tal and Nemirovski [9],[10] reported that for many real LP problems,
the optimal solutions presented more than 50% violations of some of the constraints
due to small perturbations (0.01%) of uncertain data. These “optimal” solutions
become meaningless, especially if the constraints of the optimization problem are
hard constraints that cannot be violated. Similarly, under the stochastic paradigm,
it has been observed that using a single deterministic value (usually the mean value)
instead of uncertain parameters lead to very poor solutions (see, e.g., [15, 124]).

A reasonable strategy to overcome this problem is then to find a solution away from
the boundary (of feasibility), sacrificing optimality for some robustness. This can be
achieved by modifying the optimization problem to somehow consider a given level of
uncertainty. There are different strategies for modelling uncertainty in optimization
problems. These strategies define how much and where to move in the interior of
the feasible region.

For the case of the UC problem, there are mainly three different paradigms for
modelling uncertainty: deterministic, stochastic and robust. In the deterministic
paradigm, reserve levels must be given and they define how much the solution must
be away from the boundary of some constraints (usually the units’ generation lim-
its). The other two paradigms rely on uncertainty-oriented optimization techniques,
stochastic and robust programming, and they optimize the reserve levels endogen-
ously. In order to ensure feasibility, the stochastic and robust paradigms may move
the solution away from the boundary of all constraints if necessary.

The following three subsections provide an overview of all three paradigms. For
other methodologies, like chance-constrained optimization, the reader is referred to
[128] and references therein.
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2.4.1. Deterministic Paradigm

The deterministic paradigm has been the most common practice used for dealing
with uncertainty in the power industry, and it has been widely studied in the UC
literature, see for example [60, 123], Morales-Espana et al. [91, 99] and references
therein. A deterministic UC solves the problem (Equation 2.1)-(Equation 2.4), thus
committing and dispatching generating units to meet a deterministic expected load.
The uncertainty is handled by including (capacity) reserve constraints that impose
given reserve levels, e.g., the total capacity of committed units exceed the forecasted
load.

The reserve sizing is usually based on deterministic rule-of-thumb criteria. A com-
mon practice is to determine the level of reserve to cover the loss of the largest
generator, known as the N − 1 criterion, or a fraction of the hourly demand [116].
To consider different sources of uncertainty, the N − 1 criterion is commonly mixed
with a number of standard deviations of the error in uncertainty introduced by load
and wind. Some ISOs require enough power reserves to cover at least three times the
standard deviation of the net-load (forecast load minus forecast wind generation)
error prediction [54, 62]. Although probabilistic methods have been proposed to size
the level of reserves [2, 5, 32, 81, 108], the deterministic rule-of-thumb criteria are
still very popular in the electricity sector due to their simplicity.

The deterministic paradigm remains the most common paradigm in the power in-
dustry, because it is easy to implement in practice. However, the deterministic
paradigm usually leads to an over-scheduling of resources resulting in an econom-
ically inefficient way to handle uncertainty, especially when the reserve sizing is
determined by rule-of-thumb rules. This can be illustrated with the following ex-
ample. Suppose that an ISO wants to schedule enough reserves to cope with the
uncertainty range of a wind farm. This uncertainty range is between 100 and 200
MW, hence 100 MW of reserves (up and down together) is then required. Now,
suppose that the wind farm is only connected to a power line with transmission ca-
pacity of 75 MW, then a maximum wind production of 75 MW can be dispatched,
regardless of the possible realization of uncertainty. Consequently, the actual reserve
requirement is zero due to the transmission limit.

Although for this illustrative example it was easy to readjust the reserve levels, real
power systems are considerably more complex and it is not possible to perform this
reserve adjustment a priori. Furthermore, since a deterministic UC only considers
one expected deterministic condition, even with enough reserve levels, the power
system may not be able to deploy the reserves if the real-time condition deviates
significantly from the expected value. This has been confirmed by ISO’s operational
experience [84] as well as by numerical simulations shown in [12], [95] and chapter 3.

Uncertainty-oriented optimization methods, such as stochastic and robust program-
ming, seek to overcome these weaknesses, as described in the following sections.
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2.4.2. Stochastic Paradigm

Stochastic optimization has gained substantial popularity for UC optimization under
parameter uncertainty. In the stochastic optimization approach, different (stochastic)
conditions can be considered through an explicit description of scenarios and their
associated probability [112, 121, 124].
Here, we provide an overview of the generic two-stage stochastic UC problem. Much
work has been done in various aspects of stochastic optimization. The reader is
referred to [15, 68, 124] and references therein for a more comprehensive picture of
stochastic optimization (including multi-stage stochastic problems).
In the two-stage stochastic problem, the uncertainty is realized after the first-stage
decisions must be implemented, but before the implementation of the second-stage
decisions. Thus, the second-stage decisions are the actions implemented to face the
unexpected realization of the uncertainty.
The two-stage UC problem (Equation 2.1)-(Equation 2.4) under the stochastic paradigm,
only considering wind uncertainty, can be represented as follows:

min
x,pς ,wς

(
b>x+ E

[
c>pς + d>wς

])
s.t. Fx ≤ f , x is binary (2.8)

Hpς + Jwς ≤ h, ∀ς ∈ Z (2.9)
Ax+ Bpς + Cwς ≤ g, ∀ς ∈ Z (2.10)
wς ≤Wς , ∀ς ∈ Z (2.11)

where the objective is usually to minimize the expected generation cost considering
the occurrence probability of each scenario. The variables x represent the first-stage
decisions, pς and wς the second-stage decisions, Wς the uncertain wind realization
for scenario ς, and Z the set of scenarios. The operating constraints involving the
second-stage variables (Equation 2.9)-(Equation 2.11) are enforced for all scenarios.
Much research along the stochastic UC has been done. Takriti et al. [129] pro-
poses one of the first UC under the stochastic paradigm, where uncertain demand
was considered. Bouffard et al. [22],[23] introduces uncertain generation outages.
Wu et al. [145] models outages of generation units and transmission lines as well
as uncertain demand. Ruiz et al. [120] also incorporates two different sources of
uncertainty, generation unreliability and deviations from the load forecast. Some
other works have focused on modelling wind generation uncertainty, see for example
[21, 86, 112, 131, 134].
Although the stochastic paradigm overcomes the main drawbacks of the determin-
istic paradigm, it presents however some practical limitations: 1) a large number of
scenario samples is required to obtain robust solutions (i.e. feasible solutions for any
wind uncertainty realization), which results in a computationally intensive problem
(often intractable); and 2) it may be difficult to obtain an accurate probability dis-
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tribution of the uncertainty, this could considerably affect the efficiency of the final
decisions [14].

2.4.3. Robust Paradigm

Here we present the two-stage adaptive robust UC problem. For adaptive-multi-
stage and static robust problems as well as details about different uncertainty sets,
the reader is referred to [10, 14, 27] and references therein.

The two-stage adaptive UC problem, only considering wind uncertainty, can be
represented as follows:

min
x

(
b>x+ max

ξ∈Ξ
min
p(·)

(
c>p (ξ) + d>w

))
s.t. Fx ≤ f , x is binary (2.12)

Hp (ξ) + Jw ≤ h, ∀ξ ∈ Ξ (2.13)
Ax+ Bp (ξ) + Cw ≤ g, ∀ξ ∈ Ξ (2.14)
w = ξ, ∀ξ ∈ Ξ (2.15)

where the objective function is to minimize the sum of commitment cost b>x and
worst-case dispatch cost (max-min expression) maxξ∈Ξ minp

(
c>p+ d>w

)
over the

planning horizon. Notice that max-min form for the worst-case dispatch cost seeks
to minimize the economic dispatch cost for a fixed commitment x and wind nodal
injection ξ, which is then maximized under the uncertainty set Ξ.

Note that only the right hand side of (Equation 2.15) have an explicit dependence
on the uncertain parameter ξ (equal to w), while the vectors b, c,d, f ,g, and h
together with matrices A,B,C,F,H and J are taken to be deterministically and
exactly known. On the other hand, the second-stage variables p (ξ) are a function
of the uncertain parameter ξ, hence fully adaptive to any uncertain realization of
the uncertainty.

The robust paradigm is attractive in several aspects 1) it requires moderate in-
formation about the underlying uncertainty, such as the mean and the range of the
uncertain data; and 2) it immunizes the solution against all realizations of the un-
certain data within a deterministic uncertainty range. There have been recent works
addressing wind uncertainty in the adaptive robust UC problem [12, 65, 151, 152].
Bertsimas et al. [12] presents a two-stage adaptive UC, where wind uncertainty is
modelled as a continuous bounded range (polyhedral uncertainty set). Zhao et al.
[152] takes into account demand-response and wind uncertainties simultaneously.
Zhao and Guan [151] mixes robust and stochastic optimization with the objective
to achieve lower expected total costs while ensuring the system robustness. Hu et al.
[65] elaborates an uncertainty set that takes into account the correlation between
wind and demand.
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Although the robust paradigm partly overcomes the disadvantages of the stochastic
paradigm, it presents two main drawbacks, one related with its computational intens-
ity and the other with its over-conservatism. The computational burden of adaptive
robust UC does not depend on the number of scenarios, but it requires solving an
MIP problem together with a bilinear program to obtain the worst-case scenario
[12, 151–153]. This problem is considerably more complex to solve than a pure MIP,
requiring ad-hoc solving strategies [12, 151], and only local optimum is guaranteed,
in contrast with the boundedly close to global optimum that is guaranteed by the
MIP.

The over-conservatism in the robust paradigm is a natural consequence of protecting
the solution against each uncertainty realization within the uncertainty set, regard-
less of its probability. The solution is especially protected against the worst case
scenario which may be fictitious and very unlikely to occur. To deal with the over-
conservatism, parameters (like the budget-of-uncertainty [13]) are introduced in the
optimization problem to control the level of conservatism of the robust solution
[12, 65, 151, 152]. However, tuning these parameters is a far from trivial task [128]
and highly dependent on the specific study case [12, 151].

In addition, and to the best of our knowledge, all the work introducing wind uncer-
tainty into adaptive robust UCs does not allow wind to have any flexibility because
(Equation 2.15) imposes that w takes a fixed wind realization. However, wind has
some flexibility because it can be curtailed. Therefore, what is uncertain is not the
wind production range but rather the upper bound of the possible wind dispatch.

2.5. Conclusions

The traditional energy-block scheduling approach is unable to adequately prepare
the power system to face perfectly known system conditions. We identified three
main drawbacks of the traditional energy-block scheduling approach that lead to an
unnecessary and inefficient use of system resources (reserves) and can even comprom-
ise the power system security. These drawbacks can be overcome 1) by scheduling
the power generation in a piecewise-linear fashion to follow a forecasted smooth
power demand profile; 2) by modelling the ramp constraints, in UCs, based on
power production instead of energy, then respecting all ramping constraints; and
3) by explicitly scheduling the intrinsic startup and shutdown power trajectories of
generating units, i.e., introducing these constraints in the UC formulations. Con-
sequently, it is imperative to develop more adequate and accurate models.

Developing more accurate models would be pointless if the models cannot be solved
efficiently enough in the first place. The UC problem is an integer and non-convex
problem which is difficult to solve efficiently, especially for large-scale problems.
Mixed-integer (linear) programming (MIP) has become a very popular approach to
solve UC problems due to significant improvements in MIP solvers over the last

31



Chapter 2 Background

two decades. Despite this significant breakthrough, the time required to solve UC
problems continues to be a critical limitation that restricts its size and scope. This
chapter identified the key features that affects the computational burden of MIP
formulations: the tightness and compactness. Therefore, to develop computationally
efficient MIP models, it is neccesary to devise tight and preferably simultaneously
compact MIP formulations. This is, however, a non trivial task because the obvious
formulations are very weak (not tight) or very large, and trying to improve the
tightness (compactness) usually means harming the compactness (tightness).
UC formulations can be further extended to deal with uncertainty. This chapter also
gave an overview of the the three main paradigms used to deal with wind uncertainty
in UC problems: deterministic, stochastic and robust. The deterministic paradigm,
based on reserve levels, is the most common in the power industry because it is
easy to implement in practice and it is not as computationally intensive as the other
paradigms. However, the deterministic paradigm usually leads to an over-scheduling
of resources resulting in an economically inefficient way to handle uncertainty. Fur-
thermore, a deterministic UC only considers one expected deterministic condition,
even with enough reserve levels, the power system may not be able to deploy the
reserves if the real-time condition deviates significantly from the expected value.
Uncertainty-oriented optimization methods, such as stochastic and robust program-
ming, seek to overcome the weaknesses of the deterministic paradigm. However,
there is a price to pay in order to better tackle uncertainty:

• The stochastic approach presents some practical limitations: 1) a large number
of scenario samples is required to obtain robust solutions, which results in
a computationally intensive problem (often intractable); and 2) it may be
difficult to obtain an accurate probability distribution of the uncertainty.

• Although the robust paradigm partly overcomes the disadvantages of the
stochastic one, it presents two main drawbacks: 1) it requires solving an MIP
problem together with a bilinear program to obtain the worst-case scenario,
this problem is considerably more complex to solve than a pure MIP. 2) The
over-conservatism in the robust paradigm is a natural consequence of protect-
ing the solution against each uncertainty realization within the uncertainty
set, regardless of its probability. The solution is especially protected against
the worst-case scenario which may be fictitious and very unlikely to occur.
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This Chapter presents a comparison between the traditional energy-block scheduling
approach and the ramp-based scheduling approach proposed in this thesis. In the first
section, we introduce the two approaches and the models used to represent them, and
we also present the power system used to perform the comparisons. Then, we describe
the procedure used to assess their performance. The last two sections analyse the
cases where scheduling is performed under certain and uncertain system conditions,
where the latter only considers wind uncertainty.
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3.1. UC approaches and Power System

3.1.1. UC approaches

Two different network-constrained scheduling approaches are implemented. The
traditional energy-block approach, labelled as EnSch, and the ramp-based scheduling
approach, labelled as RmpSch. All models are implemented as MIP formulations.

Conventional EnSch UC seek to provide an energy demand profile at minimum cost.
The energy demand is represented using energy levels, hourly averaged generation, in
a stepwise fashion. All constraints involving generation levels, e.g., ramp-constraints,
are applied to these energy levels. For this study, we use the MIP-based network-
constrained unit commitment (UC) formulation in [47] to represent EnSch, which is
quite standard in the UC literature [51, 60, 109, 123].

The RmpSch approach proposed in [99], draws a clear distinction between power
and energy. Demand and generation are modelled as hourly piecewise-linear func-
tions representing their instantaneous power trajectories. The schedule of generating
unit output is no longer a stepwise function, but a smoother function that respects
all ramp constraints. In addition, RmpSch also includes the inherent startup and
shutdown power trajectories of generating units, thus avoiding power discontinuities
in the scheduling stage. The network-constrained formulation used in this study is
the MIP-based UC proposed in [99] (see Appendix B), which core is built upon the
convex hull formulation in [97].

3.1.2. Power System

To evaluate the performance of different network-constrained UC approaches, we use
the modified IEEE 118-bus test system described in Appendix C for a time span of
24 hours. The system has 118 buses; 186 transmission lines; 54 thermal units; 91
loads, with average and maximum levels of 3991 MW and 5592 MW, respectively;
and three wind units, with aggregated average and maximum production of 867 MW
and 1333 MW, respectively, for the nominal wind case (see Figure 3.3).

All tests were carried out using CPLEX 12.6 [1] on an Intel-i7 (64-bit) 3.4-GHz
personal computer with 16 GB of RAM memory. The problems are solved until
they hit a time limit of 24 hours or until they reach an optimality tolerance of
0.05%.
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Figure 3.1.: Scheduling and Evaluation Stages

3.2. UC Approach Analysis

3.2.1. Scheduling and Evaluation Stages

To compare the performance of the different network-constrained UC approaches,
we make a clear difference between the scheduling stage and the evaluation stage.
Here, we analyse the cases where scheduling is performed to deal with certain and
uncertain system conditions, where the latter only considers wind uncertainty. The
computational experiments proceed as follows, see Figure 3.1.

1. Scheduling stage: solve the different network-constrained UC models and ob-
tain the hourly commitment policy (first-stage decisions), using a small rep-
resentative number of wind scenarios for the wind units.

2. Out-of-sample evaluation stage: for each commitment policy, solve a 5-min
network-constrained economic dispatch problem repetitively for a large set of
new wind scenarios in order to obtain an accurate estimate of the expected
performance of each UC policy.

In order to mimic the high costs due to corrective actions in real time operations,
we introduce penalty costs for the violation of some constraints in the 5-min eco-
nomic dispatch. The penalty costs are set to 10000 $/MWh and 5000 $/MWh for
demand-balance and transmission-limits violations, respectively, as suggested in [47]
(similarly to [12, 151]). These penalty costs represent the expensive real-time cor-
rective actions that an independent system operator (ISO) needs to take in the event
that the actual system condition significantly deviates from the expected condition,
such as dispatching fast-start units, voltage reduction or load shedding.

To represent the degree of flexibility that generating units have during the statup
and shutdown time, the 5-min simulation allows the units to shutdown and startup
around ±30 min from the exact hourly commitment that resulted from the day-
ahead UC. This flexibility is introduced to mimic real-time operation actions which
occur in real power systems with 5-min real-time markets [80].
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The 5-min network-constrained economic dispatch (ED) model used for the evalu-
ation stage is an approximation of a more complex architecture of real-time markets
[29, 45]. Figure 3.2 shows how the generation is generally dispatched in 5-min real-
time markets. A snapshot of the power system state is taken 1 min prior to the
beginning of the 5-min balancing interval. Next, an ED is used to match the ex-
pected demand for the next 5 min, thus obtaining the base point of all generating
units. Generation must ramp from the previous to the next base point in 4-min and
stay at the new base point for 1 min, where the new snapshot of the system is taken
and the next ED is solved. For the sake of simplicity, in the simulation stage, the
generating units are dispatched to ramp linearly from one base point to the next, see
dashed line in Figure 3.2. The 5-min network-constrained economic dispatch model
is then based on [99] (see Appendix B).

Figure 3.2.: Simulated generation dispatch

To generate scenarios for the uncertain wind power production, we use Latin Hyper-
cube Sampling (LHS). We assume that the wind production follows a multivariate
normal distribution with predicted nominal value and volatility matrix [151]. The
idea in applying LHS is to optimally distribute the samples to explore the whole area
in the experimental region, avoiding the creation of scenarios that are too similar
(clusters) [55].

3.2.2. Performance Metrics

We assess the performance of the UC scheduling approaches in eight aspects, two
related with the scheduling stage and six with the evaluation stage. These aspects
are described as follows.
Scheduling stage: 1) the fixed production costs (FxdCost [k$]), including non-load,
startup and shutdown costs; and 2) the number of startups (# SU). These two
aspects indicate the commitment decisions that were needed by each approach to
prepare the system to deal with the given wind uncertainty.
Evaluation stage: 3) the average dispatch costs (Average [k$]), indicates the eco-
nomic efficiency of the UC decision; 4) the volatility of these costs represented by
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the standard deviation of dispatch costs (Std [k$]), which indicates the reliability of
the real-time dispatch operation under the UC decision; 5) the dispatch cost of the
worst-case scenario (Worst [k$]), indicates how robust the UC decision is against
the worst-case scenario (from the full set of out-of-sample scenarios); 6) number
of scenarios where there were violations in either demand-balance or transmission-
limits constraints (# Sc); 7) total number of these violations (# Tot); and 8) total
accumulated energy that could not be accommodated, demand-balance violations
(MWh). The last three aspects also indicate how robust the UC decision is against
different wind scenarios.

3.3. Dealing with “Certainty”

Before assessing the performance of the different network-constrained UC approaches
under uncertainty, we evaluate them under completely known and expected system
conditions. For this case study, then, wind is not considered and the objective is
to find the cheapest schedule for two deterministic and completely known power
demand profiles. We assume that the power demand profiles are perfectly known
and that no uncertain events will happen. Therefore, there should be no need for
operating reserves and hence they are taken into account (i.e., they are set to zero).
Although this situation is hypothetical, it helps to evaluate and compare the two
scheduling approaches.
Table 3.1 shows the two power demand profiles D1 and D2, which present the same
energy profile (DE in Table 3.1) but different ramp requirements.

Table 3.1.: Power and Energy Demand Profiles

Hour 0 1 2 3 4 5 6 7 8 9 10 11 12

D1∗ 1500 1750 2250 2750 3000 3500 3750 4000 4500 5000 5250 5500 5000

D2∗ 1625 1625 2375 2625 3125 3375 3875 3875 4625 4875 5375 5375 5125

DE† 1625 1625 2000 2500 2875 3250 3625 3875 4250 4750 5125 5375 5250

Hour 13 14 15 16 17 18 19 20 21 22 23 24

D1∗ 4500 4000 3250 3000 3500 4000 5000 4500 3500 2500 2000 1500

D2∗ 4375 4125 3125 3125 3375 4125 4875 4625 3375 2625 1875 1625

DE† 4750 4250 3625 3125 3250 3750 4500 4750 4000 3000 2250 1750
∗Power [MW] at the end of the hour †Total Energy [MWh] for the hour

Table 3.2 shows the optimal solutions found by RmpSch and EnSch to supply D1
and D2. The optimal schedules obtained by each approach for all 54 generating
units are listed in Appendix D. Note in Table 3.2 that EnSch provides the same
optimal scheduling solution for D1 and D2 because they present the same energy
profile. On the other hand, RmpSch provides different optimal scheduling for D1
and D2, although both scheduling solutions satisfy the same total energy demand.
Notice that the FxdCost of RmpSch are higher than those of EnSch, because: 1)
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RmpSch needs to satisfy both specific power and energy profiles, unlike EnSch which
just seeks to satisfy an energy profile at minimum cost; and 2) EnSch overestimates
the units’ ramp capability, that is, EnSch may produce energy schedules requiring
fewer units than are actually needed (this is one reason why these energy schedules
are usually infeasible [99]).

Table 3.2.: Scheduling results for the different approaches for demand D1 and D2

Approach Demand FxdCost [k$] Dispatch [k$] # SU

RmpSch D1 51.352 901.908 16
D2 49.618 907.425 19

EnSch D1 & D2 34.724 930.185 11

Table 3.3 and Table 3.4 show the ramp requirements of the power demand profiles
D1 and D2, respectively, and the ramp that was scheduled for both scheduling
approaches. The ramp requirements can be easily calculated from the power demand
Dt as Dt − Dt−1. The ramp schedule of every approach is calculated as the total
ramp available of all committed units. The positive and negative values refer to
upward and downward ramps, respectively. Numbers between parenthesis stand for
the cases where the scheduled ramp of RmpSch or EnSch is lower than the required
ramp imposed by the demand.
We can observe that RmpSch always schedule enough ramp capabilities to supply
the ramp demand. On the other hand, the EnSch schedule does not provide enough
ramp resources for three periods for the case of D1, see Table 3.3, and for two
periods for the case of D2, see Table 3.4. This is because EnSch presents the same
ramp schedule for D1 and D2, because they have the same energy profile. One power
profile has a unique energy profile and hence satisfying a power profile automatically
satisfies the energy profile. However, one energy profile has infinite possible power
profiles [57, 99, 118]; therefore, even though EnSch could provide a given energy
profile, it cannot guarantee that all possible resulting power profiles can be supplied
[88, 99].

Table 3.3.: Ramp Profiles for demand D1 (MW/h)

Hour 1 2 3 4 5 6 7 8 9 10 11 12

D1∗ 250 500 500 250 500 250 250 500 500 250 250 -500

RmpSch† 935.6 960.6 552.5 696.75 981.75 994.25 1006.75 1033 1103 1138 1138 -1138

EnSch† 1045.6 727.5 900.5 923 1058 1058 1083 1083 1098 1098 1098 -1098

Hour 13 14 15 16 17 18 19 20 21 22 23 24

D1∗ -500 -500 -750 -250 500 500 1000 -500 -1000 -1000 -500 -500

RmpSch† -1138 -1143 -1128 -1078 1078 1078 1078 -1078 -1088 -1063 -983 -808

EnSch† -1098 -1108 -1073 -998 998 998 (998) -998 (-998) (-983) -983 -958
∗ Ramp Requirement †Ramp Available
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Table 3.4.: Ramp Profiles for demand D2 (MW/h)

Hour 1 2 3 4 5 6 7 8 9 10 11 12

D2∗ 0 750 250 500 250 500 0 750 250 500 0 -250

RmpSch† 1045.6 1070.6 612.5 763 1010.5 1029.3 1041.8 1081.8 1089.3 1138 1138 -1138

EnSch† 1045.6 (727.5) 900.5 923 1058 1058 1083 1083 1098 1098 1098 -1098

Hour 13 14 15 16 17 18 19 20 21 22 23 24

D2∗ -750 -250 -1000 0 250 750 750 -250 -1250 -750 -750 -250

RmpSch† -1143 -1118 -1118 1130.5 1130.5 1145.5 1130.5 -1213 -1258 -1038 -933 -758

EnSch† -1098 -1108 -1073 998 998 998 998 -998 (-998) -983 -983 -958
∗ Ramp Requirement †Ramp Available

Table 3.5 shows the results from the evaluation stage for the different approaches,
where once the commitment decisions are obtained, the deterministic demand must
be supplied through a 5-min economic dispatch, as described in subsection 3.2.1.
The ramp-based scheduling approach RmpSch was able to supply both demand
profiles without incurring any constraint violation. In fact, the dispatch cost in the
evaluation stage is lower than that in the scheduling stage (see Table 3.2). This
is because the 5-min optimal dispatch provides more flexibility than the 1-hour
dispatch used in the scheduling stage.

Table 3.5.: Evaluation Stage: 5-min economic dispatch

Approach Demand Dispatch Costs Violations
[k$] # Tot MWh

RmpSch D1 899.641 0 0
D2 905.472 0 0

EnSch D1 1501.029 47 58.189
D2 2036.099 22 111.599

On the other hand, the traditional energy-block scheduling approach EnSch could
not satisfy any of the demand profiles. The high dispatch costs are due to violations
of the demand-balance constraint (58 MWh and 111 MWh for D1 and D2, respect-
ively). These demand violations are mainly due to ramp scarcity, infeasible energy
delivery, capacity scarcity, and deterministic unplanned events:

1. Ramp Scarcity: As discussed above, planning one unique energy profile does
not guarantee that the system can satisfy the potential infinite power profiles.

2. Infeasible Energy Delivery: Applying ramp-constraints to energy levels or
(hourly) averaged generation levels, instead of power, results in energy sched-
ules that are not feasible [57]. That is, the energy-block schedule approach
does not guarantee that the commitment decisions can actually provide the
resulting energy schedule, as widely reported in the literature, see for example
[57, 58, 88, 99, 144, 150].
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3. Capacity Scarcity: The demand peak of D1 is 5500 MW and occurs at the end
of hour 11. Note that EnSch scheduled 21 units for this hour (see Table D.5
and Table D.6 in Appendix D) having a total production capacity of 5390 MW.
This is in contrast to RmpSch, which committed 24 units, for a total capacity
of 5690 MW, at hour 11 (see Table D.1 and Table D.2 in Appendix D) to
satisfy the peak demand of D1. This capacity scarcity event has been also
reported in [99], and they appear because the maximum power in one period
is always greater than or equal to the energy level for that period (because the
energy is the average power), as shown in Figure 1.2 in chapter 1. Therefore,
modelling only energy levels ignores the possible power peaks.

4. Deterministic Unplanned Events: The traditional energy-based scheduling ap-
proach usually ignores the intrinsic startup and shutdown power trajectories
of thermal units. Consequently, there may be a significant amount of energy
that is not being allocated, affecting the total load balance. As a result, there
is an unplanned and inefficient deployment of resources in real time that is
required to accommodate these power trajectories [88].

3.4. Dealing with Uncertainty

This section compares the performance of five different UC formulations that deal
with uncertainty: four resulting from applying the deterministic and stochastic
paradigms to both EnSch and RmpSch approaches, and one from the robust mod-
elling of reserves under the RmpSch approach [95].

To compare the performance of the different network-constrained UC approaches,
we implement the scheduling and the evaluation stages described in section 3.2:

1. Scheduling stage: solve the different network-constrained UC models and ob-
tain the hourly commitment policy (first-stage decisions), using 20 wind scen-
arios for each of the three wind units presented in Table C.6, Table C.7 and
Table C.8 in Appendix C. Figure 3.3 shows the aggregated wind production
of these wind scenarios.

2. Out-of-sample evaluation stage: for each commitment policy, solve a 5-min
network-constrained ED problem repetitively for a set of 200 new wind scen-
arios in order to obtain an accurate estimate of the expected performance
of each UC policy. It is important to highlight that more than the 20% of
these out-of-sample scenarios fall outside (in at least one hour) the uncertainty
bounds shown in Figure 3.3.

We assume that the 20 scenarios of the scheduling stage (see Figure 3.3) are the
only information available to obtain the commitment decisions. Therefore, we use
these data to describe the different wind uncertainty representation required by
the different optimization paradigms. The deterministic paradigm (Det) uses the
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Figure 3.3.: Representation of wind uncertainty over time, 20 scenarios and envel-
opes

nominal wind production and two hourly reserves, upwards and downwards which
are defined as the nominal wind production minus the minimum wind envelope
and the maximum wind envelope minus the nominal wind production, respectively
(see Figure 3.3). The stochastic paradigm (Stch) uses all 20 scenarios. Finally, the
robust (Rob) paradigm uses the nominal wind production together with minimum
and maximum envelopes of power-capacity and ramp-capability, which are obtained
from this set of 20 scenarios.

3.4.1. Out-of-sample Evaluation

Table 3.6 compares the performance of the different UC approaches under differ-
ent optimization paradigms. This comparison is made through 200 out-of sample
wind scenarios, as described above. From the scheduling stage, we can observe that
the deterministic paradigm, for both scheduling approaches, commits the largest
quantity of resources (higher FxdCost), because this is the only approach that can-
not readjust (optimize) the given level of reserves by considering wind curtailment.
That is, the reserve requirements for the deterministic paradigm results in a larger
quantity of committed resources. For the RmpSch approach, Rob presents lower
FxdCost than Stch, but Rob started two more units. This difference is because
Rob schedule more flexible units (higher ramps) which usually present lower fixed
cost but higher variable cost. This difference also indicates that the uncertainty in-
formation required by these two paradigms leads to different commitment strategies,
where Rob seeks to guarantee feasibility to the given uncertainty ranges, and Stch
seeks to minimize the expected costs of the given scenarios.
From the evaluation stage in Table 3.6, we can observe the following:

1. Stch vs. Det: Despite the scheduling approach used, Stch presents signific-
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Table 3.6.: Comparison Between the Deterministic, Stochastic and Proposed Ro-
bust Paradigms Under 200 Out-of-Sample Wind Scenarios

Scheduling Evaluation: 5-min Economic Dispatch
Hourly Dispatch Costs [k$] Violations

FxdCost [k$] # SU Average Std Worst # Sc # Tot MWh

EnSch
Det 33.977 10 1223.191 509.703 4818.712 200 2089 8630.74
Stch 33.728 10 1051.266 147.652 2568.092 200 1159 5187.56

RmpSch
Det 55.492 16 795.559 148.442 2234.517 29 252 594.13
Stch 54.765 12 784.030 124.964 2192.011 13 126 392.25
Rob 51.986 14 769.072 14.520 812.844 0 0 0

antly lower Average, Std and Worst-case dispatch costs than Det. This clearly
shows the advantages of the stochastic paradigm over the deterministic one,
as expected.

2. Robustness of Det: Det committed the largest quantity of resources, but it
is the least robust despite the scheduling approach. This is mainly because,
under the deterministic paradigm, most of the constraints, e.g., the network
constraints, are only modelled for the nominal case and this cannot guarantee
that the committed reserves can be deployed through the network. This is
in contrast to Rob and Stch, where generating units are committed taking
into account that power must (and can) be delivered to specific places in the
network where the uncertainty appears. In short, since Det only considers
one expected deterministic condition, even with enough reserve levels, the
power system may not be able to deploy the reserves if the real-time condition
deviates significantly from the expected value. This has been confirmed by
ISO’s operational experience [84] as well as by numerical simulations shown
here and in [12, 95].

3. Det-RmpSch vs. Stch-EnSch: The Average and Worst-case dispatch cost of
Stch-EnSch are around 32% and 15% higher than Det-RmpSch, respectively.
This cost difference is mainly due to the penalty costs of the energy-balance
constraint violations. For Stch-EnSch, the total number of violations and the
total energy that could not be accommodated is more than 4.5 and 8.7 times
higher than Det-RmpSch, respectively. This very surprising efficiency that
the deterministic RmpSch exhibits over the stochastic EnSch is due to the
adequate system representation of the RmpSch approach (see section 3.3). It
would be misleading to expect that the stochastic EnSch would produce much
better results dealing with uncertainty when, actually, this traditional EnSch
approach is not even able to adequately deal with certainty, as widely discussed
in section 3.3 and section 2.2.

4. Stch-RmpSch vs. Rob-RmpSch: The Average dispatch cost of Stch-RmpSch
is around 2% higher than Rob-RmpSch. The Std and Worst-case dispatch
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costs for Stch-RmpSch are more than 8.6 and 2.6 times higher, respectively.
These significant costs differences is because Stch-RmpSch incurred in some
constraint violations, unlike Rob-RmpSch.

In summary, for this case study, the RmpSch approach outperforms EnSch due to an
adequate system representation. Furthermore, a deterministic formulation using this
adequate system representation can outperform a stochastic formulation that uses
an “inadequate” representation. In addition, the performance of the Det-RmpSch
can be further improved by dealing with uncertainty under Stch and Rob paradigms.

3.4.2. In-sample Evaluation

To observe the performance of the Rob and Det paradigms compared with a “per-
fect” Stch paradigm, we carried out the 5-min economic-dispatch evaluation stage
using the same (in-sample) scenarios that were used by the Stch formulations in the
scheduling stage.

Table 3.7 shows the performance of the different UC approaches under the 20 (in-
sample) scheduling scenarios. In general the results follow the same behaviour of
those found in the out-of-sample evaluation presented in subsection 3.4.1, hence
similar conclusions can be drawn. However, in this specific in-sample case, the
Average and Worst-case dispatch costs of Stch-Rmp are slightly lower than Rob-
Rmp (around 0.6 and 0.5%, respectively), because 1) Stch-Rmp did not present any
constraint violation in the evaluation stage, and 2) Stch-Rmp is the optimal schedule
for the 20 in-sample wind scenarios, unlike Rob-Rmp that optimizes over a nominal
scenario.

Table 3.7.: Comparison Between the Deterministic, Stochastic and Proposed Ro-
bust Paradigms Under the 20 In-Sample Wind Scenarios

Scheduling Evaluation: 5-min Economic Dispatch
Hourly Dispatch Costs [k$] Violations

FxdCost [k$] # SU Average Std Worst # Sc # Tot MWh

EnSch
Det 33.977 10 1165.768 385.561 2501.214 20 162 750.21
Stch 33.728 10 1027.414 18.267 1088.448 20 108 471.14

RmpSch
Det 55.492 16 770.707 29.597 887.280 2 15 9.6
Stch 54.765 12 764.406 12.879 790.333 0 0 0
Rob 51.986 14 769.037 12.517 794.039 0 0 0
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3.5. Computational Performance

3.5.1. EnSch vs. RmpSch

Table 3.8 shows a comparison of problem size between the different models. The
deterministic and stochastic models based on the EnSch approach present a larger
number of constraints and nonzero elements than the models based on the RmpSch
approach, even though RmpSch models the units’ shutdown and variable-startup
power trajectories, unlike EnSch. This is because RmpSch is built upon tight and
compact formulations [97, 100]. However, RmpSch presents a larger number of con-
tinuous and binary variables, where the extra binary variables are used to model
the variable startup costs, depending on how long the units have been offline [100].
Notice that, actually, both formulations EnSch and RmpSch only require the com-
mitment variables to be defined as binary, because the other variables (e.g., startup
and shutdown) take binary variables even if they are defined as continuous. This is
widely discussed in [109] and specially in [91]. Note however that both references
claimed that it is convenient to define these variables as binary to fully exploit the
solver’s strategies.

Table 3.8.: Problem Size of The Different Approaches

Constraints
Nonzero Continuous Binary
elements variables variables

EnSch
Det 33969 467329 9720 3888
Stch 217689 5559883 117936 3888

RmpSch
Det 18093 315424 11016 6376
Stch 199221 5497707 143856 6376
Rob 36141 1074712 21096 6520

It is interesting to highlight the difference between Rob-RmpSch and Det-EnSch.
Regarding the number of constraints, Rob-RmpSch is larger, but it is around twice
the size of Det-EnSch in terms of nonzero elements, continuous and binary variables.
This is an insignificant problem-size increase considering the fact that Rob-RmpSch
includes the inherent startup and shutdown power trajectories of generating units,
and a robust modelling of power-capacity and ramp-capability reserves (in compar-
ison, Det-EnSch only models power-capacity reserves in a very simplistic fashion
[47]).
Although the size of an MIP formulation influence its computational burden, the
tradeoff between the problem size (compactness) and tightness is what finally defines
the computational performance [91, 139, 141], as detailed in subsection 2.3.2 in
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chapter 2. The tightness of an MIP formulation defines the search space (relaxed
feasible region) that the solver needs to explore in order to find the (optimal integer)
solution. The tightness of an MIP formulation can be measured with the integrality
gap [91, 109, 139], which is defined as the relative distance between the relaxed and
integer solutions. Although the integrality gap of the two formulations which are
not modelling exactly the same problem should not be directly compared, these gaps
provide an indication of the strength of each formulation.
Table 3.9 shows the computational performance of the different models. RmpSch for-
mulations are tighter than EnSch formulations, and the integrality gaps of RmpSch
are around half the ones of EnSch. This roughly means that before starting the
branch-and-cut process to find the integer solution, RmpSch is already half way
nearer than EnSch. Consequently, RmpSch formulations find the integer optimal
solutions considerably faster than EnSch (within the required optimality tolerance).

Table 3.9.: Computational Burden of The Different Approaches

Integrality MIP* LP Nodes
Gap [%] Time [s] Time [s] explored

EnSch
Det 1.205 766.2 1.86 60756
Stch 1.267 (0.22%) 246.76 79192

RmpSch
Det 0.721 8.75 0.67 29
Stch 0.737 867.88 38.13 819
Rob 0.416 90.45 16.77 250
*(·)shows the final optimality tolerance if the time limit is reached

Although all models deal with uncertainty, the problem size and computational
burden of those under the stochastic paradigm directly depend on the quantity of
scenarios modelled.
Finally, it is interesting to note that Rob-RmpSch is almost an order of magnitude
faster (around 8.5x) than Det-EnSch, and Rob-RmpSch solved the MIP problem
above 2.7 faster than the time required by Stch-EnSch to solve the LP relaxation.

3.5.2. Tight and Compact EnSch

As described in section 3.1, the mathematical formulation in [47] was used in this
study to represent EnSch, because this formulation is quite standard in the UC
literature [51, 60, 109, 123]. However, this thesis proposes a tight and compact
formulation for EnSch, see Article III.
Table 3.10 and Table 3.11 shows the problem size and computational performance
of this tight and compact formulation, labelled as TCEnSch. The formulation
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TCEnSch is above two orders of magnitude faster than EnSch. Furthermore, the
stochastic version of TCEnSch solved the MIP problem around 1.2x faster than the
time required by the Stch-EnSch to solve the LP relaxation.

Table 3.10.: Problem Size of The Different Approaches

Constraints
Nonzero Continuous Binary
elements variables variables

TCEnSch
Det 17199 536359 8424 6390
Stch 182367 9994075 116640 6390

Table 3.11.: Computational Burden of The Different Approaches

Integrality MIP LP Nodes
Gap [%] Time [s] Time [s] explored

TCEnSch
Det 0.504 4.54 0.34 121
Stch 0.577 206.47 22.03 100

A detailed comparison between formulations TCEnSch and EmSch can be found
in Article III (where these formulations are labelled as P2 and 3bin, respectively).
Here, it is important to highlight that building more elaborated models, such as
RmpSch, upon tight and compact formulations [53, 91, 97, 100] lead to computa-
tionally efficient models.

3.6. Conclusions

In this chapter, we presented numerical results comparing the performance of two
different network-constrained scheduling approaches: the traditional energy-block
approach and the ramp-based scheduling approach proposed in this thesis. The
comparison is carried out under certain and uncertain system conditions, where
the latter only considers wind uncertainty. Numerical results reflected that the
consequences of theoretical problems of the traditional energy-block scheduling ap-
proach. The ramp-based scheduling approach outperformed the traditional energy-
block approach due to an adequate system representation; hence to efficiently deal
with uncertainty, it is imperative to adequately deal with certainty. Furthermore,
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numerical results showed that a deterministic formulation using this adequate sys-
tem representation can outperform a stochastic formulation that uses an “inad-
equate” representation. In addition, the performance of the deterministic ramp-
based scheduling approach was further improved by dealing with uncertainty under
stochastic and robust paradigms.

47





4. Conclusions, Contributions and
Future Work

Contents
4.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1. Power System Representation . . . . . . . . . . . . . . . . 50
4.1.2. UC Computational Performance . . . . . . . . . . . . . . 51
4.1.3. Wind Uncertainty Management . . . . . . . . . . . . . . . 52

4.2. Scientific Contributions . . . . . . . . . . . . . . . . . . . . 54
4.2.1. Power System Representation . . . . . . . . . . . . . . . . 54
4.2.2. UC Computational Performance . . . . . . . . . . . . . . 55
4.2.3. Wind uncertainty Management . . . . . . . . . . . . . . . 55

4.3. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1. Power system representation . . . . . . . . . . . . . . . . 56
4.3.2. UC computational performance . . . . . . . . . . . . . . . 57
4.3.3. Uncertainty Management . . . . . . . . . . . . . . . . . . 57
4.3.4. Analysis of Case Studies . . . . . . . . . . . . . . . . . . . 58
4.3.5. Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

In this last chapter of the thesis, the main conclusions are drawn, the most relevant
contributions are presented, and some guidelines for future work are outlined.

4.1. Conclusions

This thesis proposes computationally efficient models for day-ahead planning in
thermal power systems to adequately face the stochastic nature of wind production
in the real-time system operation. These models can support ISOs to face the new
challenges in day-ahead planning as uncertainty increases dramatically due to the
integration of variable and uncertain generation resources, such as wind and solar
power.
The following subsections expose the conclusions in three parts: power system rep-
resentation, UC computational performance, and wind uncertainty management. A
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list of specific contributions for each of these parts can be found in section 4.2 in
chapter 1.

4.1.1. Power System Representation

Even in the absence of uncertainty, current day-ahead scheduling practices do not
exploit the real flexibility of power systems, this increases operation costs and may
even endanger the power system security. In this thesis, we identified four main
drawbacks of current energy-block scheduling practices that lead to an unnecessary
and inefficient use of system resources (reserves):

1. In markets that are physically cleared on an hourly (or half-hourly) basis, such
as those in Europe, generators are penalized if they deviate from their hourly
energy schedule. In practice, units operate by trying to match their power
profile with the stepwise energy blocks. This stepwise behaviour creates large
generation gradients at the beginning and at the end of every trading hour,
causing large frequency deviations during these time intervals.

2. In the traditional energy-block UC formulations, generation production levels
are taken as stepwise energy blocks and ramp constraints are then applied
to the inter-hour changes between these energy blocks. Although it has been
proven that the energy delivery obtained from these energy-block formulations
may not be feasible, insufficient attention has been paid to this issue in the
literature. Consequently, generating units cannot follow their scheduled power
profile causing an overuse of other system resources to supply the demand.

3. Traditional UC formulations do not consider the intrinsic startup and shut-
down power trajectories of thermal units. Ignoring these trajectories at the
scheduling stage inevitably leads to an unnecessary deployment of resources in
real-time, which are needed to accommodate the energy produced by the units
during their startup and shutdown processes. Although some recent works are
aware of this problem, these power trajectories continue being ignored mainly
because the resulting model would considerably increase the complexity of the
problem and hence its computational intensity.

4. Traditional short-term scheduling approaches seek to supply an energy-block
(stepwise) demand profile. One energy profile has infinite possible power pro-
files; therefore, even though the traditional energy-block scheduling approach
could provide a given energy profile, it cannot guarantee that the final profile
can be supplied.

To overcome all these drawbacks and to better exploit the power system flexibility,
this thesis proposes the ramp-based scheduling approach. Demand and generation
are modelled as hourly piecewise-linear functions representing their instantaneous
power trajectories. The schedule of generating units output is no longer a step-
wise function, but a smoother function that respects all ramp constraints. As a
consequence:
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• The first two drawbacks are then overcome by scheduling the power genera-
tion in a piecewise-linear fashion to follow a forecasted smooth power demand
profile.

• The third drawback is tackled by explicitly scheduling the startup and shut-
down power trajectories of generating units. That is, these trajectories are
included in the ramp-based UC formulation.

• The last drawback is overcome by directly scheduling a power profile, which
automatically satisfies the energy profile (since one power profile only has an
unique energy profile).

4.1.2. UC Computational Performance

Developing more accurate models would be pointless if the models cannot be solved
within rational time1. The UC problem is an integer and non-convex problem which
is difficult to solve efficiently, especially for large-scale problems. Mixed-integer (lin-
ear) programming (MIP) has become a very popular approach to solve UC problems
due to significant improvements in MIP solvers over the last two decades. Despite
this significant breakthrough in MIP solving, the time required to solve UC problems
continues to be a critical limitation that restricts its size and scope.

This thesis identifies and takes into account the key features that affects the com-
putational burden of MIP formulations. These key features are the tightness and
the compactness: the tightness of an MIP problem defines the search space that the
solver needs to explore in order to find the optimal (integer) solution; the compact-
ness of an MIP problem refers to its size and defines the searching speed that the
solver takes to find the optimal solution. Creating tight or compact computationally
efficient formulations is a nontrivial task because the obvious formulations are very
weak (not tight) or very large, and trying to improve the tightness (compactness)
usually means harming the compactness (tightness).

Although much work has been done in developing tight generic constraints, especially
to improve MIP solvers, little has been done in improving the computational burden
of UC formulations. This thesis also contributes to improving the performance of
MIP-based UC formulations. We provide the convex hulls descriptions for the basic
operating constraints (without ramp constraints) of slow- and quick-start units, for
both the energy-block and ramp-based scheduling approaches. Using these convex
hulls as the core of energy-block or ramp-based UC models lead to simultaneously
tight and compact MIP formulations. This simultaneous characteristic reinforces
the convergence speed by reducing the search space (tightness) and at the same

1As stated in chapter 1, a model is considered to be solved within rational time (or efficiently
enough) if it can be solved within the required time using the available computing power. For
example, if an UC needs to be carried out every hour, then the UC is required to be solved in
much less than an hour.
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time by increasing the searching speed (compactness) with which solvers explore
that reduced space.
As a consequence, although the proposed ramp-based UC model contains more
detailed features than a traditional energy-block UC model, it solves significantly
faster, because it is based on tight and compact MIP formulations.

4.1.3. Wind Uncertainty Management

Introducing uncertainty management to a given UC model inevitably increases its
computational burden. There are three main paradigms to deal with wind uncer-
tainty in UC:

1. The deterministic paradigm, based on reserve levels, is the most common
practice in the power industry nowadays, because it is simple and presents a
low computational burden. However, it is one of the least robust paradigms
and it usually needs an over-dimension of reserve requirements to improve
its robustness, this over-dimension increases operating costs. Furthermore,
since a deterministic UC only considers one expected deterministic condition,
even with enough reserve levels, the power system may not be able to deploy
the reserves if the real-time condition deviates significantly from the expected
value.

2. The stochastic paradigm overcomes the disadvantages of the deterministic
paradigm. Unfortunately, there is a “price to pay” for this. The stochastic
paradigm presents some practical limitations: 1) it may be difficult to obtain
an accurate probability distribution of the uncertainty; and 2) a large number
of scenarios is required to obtain robust solutions, which results in a computa-
tionally intensive problem (often intractable). Therefore, many simplifications
are usually employed to make the problem tractable, e.g., fewer scenarios are
considered and many crucial constraints (e.g., network constraints) are usually
neglected.

3. The robust optimization paradigm partly overcomes these disadvantages 1) by
requiring moderate information about the underlying uncertainty, such as the
mean and the range of the uncertain data; and 2) by immunizing the solution
against all realizations of the data within the uncertainty range. However, this
paradigm may be too conservative, since the objective function is to minimize
the worst-case cost scenario, which may be fictitious and never be realized in
practice. Although a robust UC may not be as computationally intensive as
a stochastic one, it requires solving an MIP problem together with a bilin-
ear problem. This is considerably more complex to solve than a pure MIP,
requiring ad-hoc solving strategies, and only local optimum is guaranteed.

Although the main objective of this thesis is wind uncertainty management in UC
models, we first focused on dealing adequately with certainty (power system repres-
entation) and the UC computational performance. These two aspects are in conflict
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and improving one usually means harming the other. By putting together improve-
ments in the previous two aspects, this thesis contributes to a better management
of wind uncertainty in UC. Therefore, as a natural consequence, if compared with a
traditional energy-block UC model under the stochastic (deterministic) paradigm, a
stochastic (deterministic) ramp-based UC model 1) leads to more economic opera-
tion, due to a better and more detailed system representation, while 2) being solved
significantly faster, because the core of the model is built upon simultaneously tight
and compact MIP formulations.
This thesis also proposes a methodology to assess the performance of a given UC
solution, which helps to perform comparisons between different commitment strategies.
We then make a clear difference between the scheduling stage and the evaluation
stage, where the commitment decisions obtained from the scheduling stage, are eval-
uated using a 5-min optimal dispatch simulation. This evaluation stage mimics the
actual real-time system operation where generating units are dispatched to supply
the demand every instant. To the best of our knowledge, there are previous works
that only uses hourly simulation as evaluation procedure. In this thesis, we propose
to increase the granularity of the simulation stage up to 5 min in order to mimic
the actual real-time system operation. Consequently, as shown in the different case
studies, this 5-min evaluation stage helped to unveil drawbacks of traditional energy-
block UC approaches, which are not possible to be identified by using 1-hour period
simulation.
In addition, based on robust optimization insights and taking into account the wind
generation flexibility (i.e., curtailment), we propose a network-constrained UC for-
mulation with robust reserve modelling, which main characteristics as listed as fol-
lows:

• The model is formulated under the ramp-based scheduling approach and built
upon thigh and compact MIP formulations, hence taking complete advant-
age of putting together the improvements in these two aspects (power system
representation and UC computational performance).

• To guarantee that the UC solution is feasible for any realization of the un-
certain wind production within the considered uncertainty ranges, the model
includes the worst-case wind power scenario provided by the adaptive robust
optimization problem. We show that by allowing wind curtailment, the worst-
case scenario can be obtained a priori, and thus the robust UC becomes a
single-scenario UC. That is, the final proposed model remains as a pure MIP
problem.

• To correctly represent wind uncertainty, the model distinguishes between power-
capacity and ramp-capability reserve requirements. This is aligned with a
current trend of defining new products in electricity markets to increase its
flexibility in real-time operation.

• The final UC model remains as a pure MIP problem, which size does not
depend on the uncertainty wind representation. Therefore, overcoming the
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computational drawbacks of both the robust and stochastic UCs commonly
found in the literature.

If compared with the traditional deterministic and stochastic UCs through out-
of-sample simulation, the proposed UC significantly decreases operation costs while
simultaneously lowering the computational burden. Furthermore, it presents similar
optimal solutions when compared to a “perfect” stochastic ramp-based UC (evalu-
ation made through an in-sample simulation).
In summary, before trying to tackle uncertainty, we must be able to deal adequately
with certainty. In this way, and at least in the cases analysed in this thesis, we can
conclude the following:

1. An adequate deterministic UC can outperform an inadequate stochastic one.
2. An adequate stochastic UC certainly outperforms an inadequate stochastic

one.
3. An adequate robust reserve-based UC overcomes the disadvantages of an ad-

equate stochastic UC.

4.2. Scientific Contributions

To summarize, the main contributions of the work presented in this thesis are the
following ones, which are classified in three main areas, as shown in Figure 4.1.

Figure 4.1.: Contributions of this thesis (ARO: Adaptive Robust Optimization;
and SU & SD: startup and shutdown)

4.2.1. Power System Representation

1. A model of startup and shutdown power trajectories of generating units ( Art-
icle I).
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2. A ramp-based scheduling approach ( Article II), which schedules piecewise
power profiles instead of the traditional stepwise energy blocks.

3. Ramp-based models for slow- and quick-start units ( Article V), including
different operating reserves (online and offline) and their time deployment
limits, e.g., 15 min, (section II-B and II-C in Article II).

4.2.2. UC Computational Performance

1. Convex hull of the energy-block scheduling approach for quick-start units ( Art-
icle IV). To model slow-start units, the startup and shutdown energy traject-
ories presented in Article V (see equation (10) in section 3.2) can be added to
the convex hull in Article IV where the resulting enlarged formulation is still
a convex hull. This is because the startup and shutdown energy trajectories
in Article V are equalities that add new variables, so they do not add any
fractional vertex to the previous formulation (see Lemma 7 in Article IV). Us-
ing these convex hulls as the core of any energy-block UC formulation yields
simultaneously tight and compact formulations, as presented in Article III.

2. Convex hull of the proposed ramp-based scheduling approach for both slow-
and quick-start units ( Article V). When used as the core of any UC problem
modelling startup and shutdown power trajectories, the proposed model con-
siderably outperforms other analogous formulations (section II-B in Article I).
If compared with simpler energy-block UC formulations commonly found in
the literature, which do not include these startup and shutdown power tra-
jectories, the proposed model still reduces the computational burden (section
II-C in Article II, section 5 in Article V, and section 3.5 in chapter 3).

3. Tight and compact MIP formulation for variable startup costs (section II-A-2
in Article III), according to how long a unit has been offline. This formulation
allows a straightforward introduction of different startup power trajectories
into UC models (section II-A-5 in Article II, and section II-A-7 in Article I).

4.2.3. Wind uncertainty Management

1. Using the ramp-based approach, we produce deterministic and stochastic UC
formulations to deal with wind uncertainty. If compared with traditional
energy-block UCs commonly found in the literature, the proposed ramp-based
formulations: 1) lower operating costs due to a better system representation;
while 2) being solved significantly faster, because the models are built upon
tight and compact MIP formulations ( Article VI and chapter 3).

2. A linear MIP formulation for the worst-case wind power scenario for adaptive
robust UC problems (Appendix A).
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3. A robust network-constrained UC formulation based on the ramp-based schedul-
ing approach ( Article VI). The model distinguishes between power-capacity
and ramp-capability reserve requirements to correctly represent wind uncer-
tainty ( Article VI). In addition, by including the worst-case wind scenario
(Appendix A), the formulation ensures feasibility for any wind uncertainty
realization. If compared with a traditional energy-block stochastic UC, the
proposed approach lowers operating costs while being solved significantly faster
(chapter 3).

4. To assess the performance of the different UC approaches, this thesis also
proposes to make a clear difference between the scheduling and the evaluation
stages (Section III-A in Article VI and section 3.2 in chapter 3). The commit-
ment decisions, obtained from the scheduling stage, are evaluated through a 5-
min optimal dispatch simulation. To the best of our knowledge, there are works
that uses hourly simulation as evaluation stage, but not a more detailed 5-min
simulation to mimic the actual real-time system operation (where generating
units are dispatched to supply the demand at every instant). Consequently,
this evaluation stage helped to unveil drawbacks of traditional energy-block
UC approaches, which are not possible to be identified by just using an hourly
simulation.

4.3. Future Work

The main work presented in this thesis is a novel scheduling approach to better
represent and exploit the power system flexibility. This opens many new questions
and possible steps for further research, some of which are listed below:

4.3.1. Power system representation

The proposed ramp-based scheduling approach implies that all technologies that
provide (or consume) power must be modelled using piecewise power trajectories,
instead of the traditional stepwise energy blocks. This thesis has only modelled
thermal units. Although many technologies can be formulated in a similar way, they
must be carefully modelled respecting all their technical characteristics. Therefore,
all technologies that have been already modelled using the traditional energy-block
approach should now be modelled under the ramp-based scheduling approach, mak-
ing a clear distinction between their power and energy production levels.
Some of the technologies that need to be modelled following the ramp-based schedul-
ing approach, which were not included in this thesis, are: 1) hydropower plants,
with and without pumped storage; 2) plug-in electric vehicles; and 3) multi-mode
combined-cycle units (which present different operating modes or states with differ-
ent technical parameters).
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There are also some specific set of constraints that may apply to different technolo-
gies and should be remodelled under the ramp-scheduling approach, such as dynamic
ramping2.

4.3.2. UC computational performance

The UC problem involves binary variables by definition. Therefore, it will always be
challenging to build MIP-based computationally efficient models. Therefore, much
research is needed in developing “tight” and, if possible, simultaneously “compact”
models so they can be solved within rational time.

The previous section mentioned some of the models that need to be formulated
under the ramp-based scheduling approach, these models should be carefully crafted
to achieve tight and compact MIP formulations. This can be done with the help of
specialized computational software (e.g., PORTA [30]).

Some models, which are already available in the literature, require further improve-
ments, for example:

1. Further tightening the complete UC models under the deterministic, stochastic
and robust paradigms. For example, proposing the convex hull or tighter
formulations for a single unit taking into account the ramping constraints.

2. Developing compact stochastic UCs without loosing accuracy in the solution.
That is, identify or develop dominating constraints that allows removing pos-
sible redundant constraints, especially when introducing network constraints.

3. Proposing tight and compact MIP formulations for cumbersome (energy-based)
UC problems that involve many binary variables, e.g., dynamic ramping,
multi-mode combined-cycle units.

4.3.3. Uncertainty Management

As widely discussed in this thesis, any improvement in either of the two previous
fields will naturally yield to UC models that can better deal with uncertainty. On
the one hand, by better representing the power system, lower operating costs will
be expected when dealing with uncertainty, since the deterministic and completely
known events will be optimally scheduled. On the other hand, by improving the
computational performance of UC models, stochastic and robust UCs will be solved
faster then less simplifications will be needed.

This thesis proposes a linear MIP formulation for the worst-case adaptive-robust
UC problem. Although this worst-case scenario ensures feasibility, further research

2Dynamic ramping refers to the unit’s variable ramp capability, which numerical value depends
on the unit’s production level.
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is needed to obtain deterministic formulations that control the level of conservat-
ism of the adaptive-robust optimal solution, avoiding the bilinear problem and its
associated disadvantages.
This thesis focused on dealing with wind uncertainty and introducing of any source of
uncertainty that can be curtailed is straightforward, but other sources of uncertainty
should be included in the future, such as demand-response, hydro inflows, generators
and line outages. Furthermore, possible correlations (e.g. temporal and spacial
correlations) should also be considered.
We proposed a deterministic ramp-based approach that includes different types of
reserves depending on their time-deployment requirements (e.g., 15 mins, 30 mins).
The robust reserve-based approach proposed in this thesis can be further exten-
ded to consider these different time-dependent reserves, thus dealing simultaneously
with inter- and intra-hourly wind power fluctuations (which have different stochastic
characteristics).

4.3.4. Analysis of Case Studies

One of the main objectives of this thesis was to propose new formulations to deal
with wind uncertainty. The case studies were carried out for illustrative purposes;
they were not based on real power systems, but rather based on benchmark study
cases widely used in the UC literature. Much more work can be done in this vein,
for example:

• The experiments performed in this thesis can be replicated in real and larger
power systems. By using a specific real power systems, we can observe to
what extend the proposed formulation can further improve the current oper-
ating practices in that system, so conclusions and advice for the specific power
systems can be outlined.

• Many studies have been performed for integrating renewable energy sources in
power systems, using the traditional energy-block approach. Similar studies
can be done using the proposed ramp-based scheduling approach and perhaps
different conclusions could be achieved.

• Different commitment strategies can be implemented, e.g., multi-stage or rolling
UC, and they can be evaluated using more detailed real-time simulations of
power systems. These real-time simulations can be tailored considering specific
characteristics of different real power systems.

Other case studies can be carried out focused on markets that are physically cleared
on an hourly (or half-hourly) basis, such as those in Europe. These markets are
presenting large deterministic frequency deviations. A change of market approach
from the energy-block to the ramp-based scheduling may contribute to diminish this
problem. Generators should be penalized if they deviate from their power sched-
ule, which satisfies the energy and ramp schedule. Although these markets follow
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hourly trading periods, measurements for shorter periods are needed to measure
the ramp, and thus being able to penalize deviations from the power schedule. En-
ergy measurements every few minutes (around 5-10) would be enough to monitor
the ramp profiles. Actually, these measurements are usually available and needed
by the secondary reserve control to work adequately (AGC usually uses continu-
ous measurements every few seconds). Consequently, generators would have the
incentive to follow their smooth power profile, thus considerably diminishing these
deterministic frequency deviations.

4.3.5. Pricing

The ramp-based scheduling approach proposed in this thesis should be further ex-
tended to obtain a complete UC-based market-clearing mechanism. So apart from
using this approach to schedule optimal quantities, as done in this thesis, it could
be also used to determine the prices that allows the different parties to recover their
production costs.
As a possible starting point, one can use the pricing mechanisms implemented by
the current UC-based markets (e.g., those in USA). However, the proposed approach
provides a power price $/MW (which is the dimension of the shadow price of the
demand-balance constraint) instead of the traditional energy price $/MWh. This
power price needs to be completely understood since it reflects the need of a given
energy profile together with a given power profile, hence a unique ramp profile. In
comparison, the energy price that results from the traditional energy-block approach
just reflects an energy requirement, but not a ramp requirement, then the pure
energy pricing cannot provide the right signal to avoid ramping scarcity events.
Furthermore, to introduce price-sensitive demand, a new trading product must be
defined since the traditional energy-block bidding from the demand side is not valid
under the proposed ramp-scheduling approach. Therefore, extending the ideas of
the piecewise-linear formulation to the demand side would require a deeper analysis
and further research. One possible solution could be to change from the squared
energy blocks to piecewise-linear (or triangular shape) functions, which reflects both
the energy and ramping requirements. That is, the demand can be modelled as a
generator, so it can be included in the demand power-balance equation as if it were a
negative generator, and the energy payment can be added in the objective function
having only variable cost (the price assigned to each one of the energy blocks).
Apart from this, many questions have not been (completely) answered about pricing
the stochastic paradigm yet, which also apply to the proposed robust reserve-based
paradigm. If a stochastic UC is used as a market-clearing mechanism, how should
the prices be calculated? Because a stochastic UC produces as part of its solution
many shadow prices (e.g., one per energy-balance constraint scenario), instead of
the traditional single set of deterministic shadow prices for energy at each location.
Perhaps, a multi-price commodity can then be derived, similar to those traditional
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joint reserve-energy markets (based on the deterministic paradigm). In those joint
markets, the reserve price compensates the units for not exploiting their maximum
capacity in the energy market, thus guaranteeing that the units have some reserve
available in case it is needed later.
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This appendix presents a simple deterministic formulation for the unit commitment
(UC) problem under the adaptive robust optimization (ARO) paradigm for the case
of wind production uncertainty. We show that the worst-case wind power scenario
can be obtained before solving the UC. This way the ARO-UC problem becomes a
simple single-scenario deterministic UC, avoiding the bilinear optimization problem
associated with the second-stage dispatch actions in traditional ARO formulations.

A.1. Obtaining the Worst-case Wind Scenario

The two-stage adaptive robust UC seeks to minimize the worst-case dispatch cost
considering any possible realization of wind nodal injection ξ within the determ-
inistic uncertainty set Ξ (or uncertainty range). In the adaptive robust UC, the
first-stage commitment decisions and the second-stage dispatch decisions are robust
against all uncertain wind nodal injection realizations. Furthermore, the second-
stage dispatch solutions are fully adaptable to the uncertainty [8, 10, 12]. Here, we
present a compact matrix formulation:

min
x

(
b>x+ max

ξ∈Ξ
min

p(·),w(·)

(
c>p (ξ) + d>w (ξ)

))
s.t. Fx ≤ f , x is binary (A.1)

Hp (ξ) + Jw (ξ) ≤ h, ∀ξ ∈ Ξ (A.2)
Ax+ Bp (ξ) + Cw (ξ) ≤ g, ∀ξ ∈ Ξ (A.3)
w (ξ) ≤ ξ, ∀ξ ∈ Ξ (A.4)
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where x,p and w are variables. The binary variable x is a vector of commitment
related decisions (e.g., on/off and startup/shutdown) of each generation unit for each
time interval over the planning horizon. The continuous variable p is a vector of each
unit dispatch decision for each time interval. The continuous variable w is a vector
of each wind production dispatch decision for each node and for each time interval.
The parameter ξ is a vector of each uncertain maximum wind nodal injection for
each time interval, and the set of uncertainty Ξ is defined by the continuous interval
ξbt = [wbt,wbt] for all t ∈ T , b ∈ Bw, where t is the time index in the planning
horizon T , b is the index representing buses and Bw is the set of buses that have
uncertain wind power injections.

Constraint (Equation A.1) involves only commitment-related constraints, e.g., min-
imum up and down. Constraint (Equation A.2) contains dispatch-related con-
straints, e.g., energy balance (equality can always be written as two opposite inequal-
ities), transmission limit constraints, ramping constraints. Constraint (Equation A.3)
couples the commitment and dispatch decisions, e.g., minimum and maximum gen-
eration capacity constraints. Finally, (Equation A.14) guarantees that the wind
dispatch cannot exceed the available wind power. The reader is referred to [91] for
a detailed UC formulation.

Note that only the right hand side of (Equation A.4) have an explicit dependence
on the uncertain parameter ξ, while the vectors b, c,d, f ,h, and g together with
matrices A,B,C,F,H and J are taken to be deterministically and exactly known.
On the other hand, the second-stage variables p (ξ) and w (ξ) are a function of the
uncertain parameter ξ, hence fully adaptive to any realization of the uncertainty.

Wind dispatch cost is usually considered to be zero. However, the parameter d is
explicitly included to consider the possibility where this cost is different than zero
(in some power systems, this cost can even be negative, e.g. -40 $/MWh in ERCOT
[7]). Defining negative values for parameter d is equivalent to penalize curtailments
in the objective function.

The objective function is to minimize the sum of commitment cost b>x and worst-
case dispatch cost (max-min expression) maxξ∈Ξ miny,w

(
c>p+ d>w

)
over the plan-

ning horizon. Notice that the max-min form for the worst-case dispatch cost seeks
to minimize the economic dispatch costs for a fixed commitment x and wind nodal
injection ξ, which is then maximized under the uncertainty set Ξ.

A.1.1. The Second Stage Problem

The second stage optimization problem of (Equation A.1)-(Equation A.4) can be
reformulated as a single stage optimization problem with adaptability. This corres-
ponds to the single-stage problem once the first-stage variables x have been fixed.
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The completely adaptive linear formulation of this second-stage problem is now:

max
ξ∈Ξ

min
p(·),w(·)

c>p (ξ) + d>w (ξ)

s.t. Hp (ξ) + Jw (ξ) ≤ h, ∀ξ ∈ Ξ (A.5)
Bp (ξ) + Cw (ξ) ≤ g̃, ∀ξ ∈ Ξ (A.6)
w (ξ) ≤ ξ, ∀ξ ∈ Ξ (A.7)

where g̃ = g−Ax.

Note that the uncertainty affecting every one of the constraints (Equation A.7)
is independent of each other (i.e., no correlations are considered). As mentioned
before, the uncertainty set Ξ is defined by the continuous interval ξbt = [wbt,wbt]
for all t ∈ T , b ∈ Bw. Due to this special characteristic of the uncertainty set
in LP problems, the adaptive and static (or non-adaptive) robust formulations are
equivalent, as proven in [8] and further discussed in [27]. That is, we can obtain
the solution of the adaptive robust model by finding the static robust formulation
of (Equation A.5)-(Equation A.7).

It can be easily observed that the solution of the adaptive (and static) robust formu-
lation of the LP problem (Equation A.5)-(Equation A.7) can be obtained by solving
the following LP reformulation [10]:

min
p(·),w(·)

c>p+ d>w

s.t. Hp+ Jw ≤ h (A.8)
Bp+ Cw ≤ g̃ (A.9)
w ≤ w (A.10)

notice that (Equation A.10) only includes the lowest bound of the uncertainty set.

To the best of our knowledge, all the ARO UCs models introducing wind uncer-
tainty in the formulation consider (Equation A.4) and (Equation A.7) as equalities.
Therefore, wind production is not allowed to have any flexibility because modelling
(Equation A.4) and (Equation A.7) as equalities impose that w takes a fixed wind
realization. However, wind has some flexibility because it can be curtailed. There-
fore, what is uncertain is not the wind production range but rather the upper bound
of the possible wind dispatch. Furthermore, if (Equation A.4) and (Equation A.7)
are modelled as equalities, the second-stage adaptive problem requires solving a
bilinear problem which further complicate the MIP problem [12, 151].

A.1.2. Adaptive Robust Reformulation

The adaptive robust problem (Equation A.1)-(Equation A.4) can be easily reformu-
lated by replacing the max-min second-stage problem by its LP equivalent (Equation A.8)-
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(Equation A.10):

min
x,p,w

b>x+ c>p+ d>w

s.t. Fx ≤ f , x is binary (A.11)
Hp+ Jw ≤ h (A.12)
Ax+ Bp+ Cw ≤ g (A.13)
w ≤ w (A.14)

Therefore, a two-stage ARO MIP problem presents the same solution as a static
robust problem if 1) the uncertainty affecting every one of the constraints is inde-
pendent of each other, and 2) the second-stage (adaptive) variables are all continu-
ous, i.e., the integer variables only appear as first-stage (non-adjustable) decision
variables [11].
It is important to highlight that this is a deterministic formulation where the only
scenario that is needed to solve the ARO UC problem is the lowest expected bound
of wind w within the uncertainty set Ξ. If this formulation has a feasible optimal
solution w∗ then it guarantees that all other possible wind realizations within the
uncertainty set are feasible. That is, all scenarios can become w∗ by curtailment.
Consequently, all scenarios can be dispatched and, in the worst case, the maximum
quantity of wind that can be dispatched for any scenario would be w∗.
In short, w is the worst-case scenario for the ARO UC problem, which ensures
feasibility, but it may be too conservative because it does not guarantee that wind
scenarios above w can be dispatched.

A.2. Illustrative Example

Not allowing wind curtailment in the ARO UC formulation leads to misleading solu-
tions. To illustrate this, consider the following example for an one-period ARO UC
problem, where a first-stage (binary) commitment decision needs to be taken (this
integer decision only appears in the first-stage). We compare two ARO UC formula-
tions: 1) the traditional ARO-UC, presented in [12, 151], which does not allow cur-
tailment, and 2) the ARO UC formulation that allows curtailment (Equation A.1)-
(Equation A.4). They are labelled as NotCurt. and WithCurt., respectively.
A fixed demand of 45 MWh needs to be supplied by one thermal and one wind
generating units. The thermal unit has 20 and 40 MW as min and max generation
capacity, respectively. The wind production is within the uncertainty range [40, 70]
MWh. To provide the demand, it is necessary to maintain an energy balance.
Figure A.1 shows the demand-balance deviations (shortage/surplus) for every value
of wind within its uncertainty range. Notice that for a given value of wind, the
deviations are always lower if the thermal unit is offline. Following the NotCurt
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ARO approach, where these unbalances are highly penalized [12, 151], the objective
is to minimize the maximum penalization (the worst-case scenario). Consequently,
from Figure A.1, the thermal unit will always be offline for this example. Therefore,
following the NotCurt. formulation, there will always be non-suply energy if the
wind production is bellow 45 MWh, which would not be acceptable in the electricity
sector.
Now, let us study the case taking into account a budget of uncertainty ∆ ∈ [0, 1] [12].
When ∆=0 the wind production corresponds to the nominal deterministic case, 55
MWh, which is usually the mean value of the uncertainty set. As ∆ increases, the
size of the uncertainty set enlarges. Notice that since ARO optimizes the worst-case
scenario, the solution is then always on the solid line shown in Figure A.1. That
is, the solution will always be to have the unit offline, despite the value of ∆. The
optimal minimum worst-case demand-balance deviation is 10 MWh when ∆ = 0 and
linearly increases to 25 MWh when ∆=1. In short, the NotCurt ARO approach
cannot find a satisfactory solution for this example even if we consider a budget of
uncertainty.

Figure A.1.: Demand balance deviations in function of expected wind production.

However, if we consider that wind production can be curtailed, it is easy to see
that the optimal and satisfactory solution for this example is that the thermal unit
produces at its minimum output 20 MWh and the wind production provides 25
MWh, thus matching the demand always. The remaining possible wind production
would be spilled, thus always guaranteeing the energy supply despite any possible
wind uncertainty realization. In fact, this is the solution that would be achieved by
the WithCurt ARO formulation.
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B. Deterministic
Network-Constrained UC
Formulations
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This appendix presents the basic set of constraints for the proposed UC formula-
tions under the traditional-energy-block and the proposed-ramp-based scheduling ap-
proaches.
Here, we present the set of constraints for quick-start units (which can startup
within one hour) and single-startup costs. The proposed formulations also take into
account slow-start units and variable startup costs, which depend on how long the
unit have been offline. The reader is referred to [53, 91, 97, 99, 100] for further
details.

B.1. Nomenclature

Upper-case letters are used for denoting parameters and sets. Lower-case letters
denote variables and indexes.

Indexes and Sets

g ∈ G Generating units, running from 1 to G.
b ∈ B Buses, running from 1 to B.
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l ∈ L Transmission lines, running from 1 to L.

t ∈ T Hourly periods, running from 1 to T hours.

System Parameters

DE
bt Energy demand on bus b for hour t [MWh].

DP
bt Power demand on bus b at the end of hour t [MW].

D−t System requirements for downward reserve for hour t [MW].

D+
t System requirements for upward reserve for hour t [MW].

F l Power flow limit on transmission line l [MW].

Γlb Shift factor for line l associated with bus b [p.u.].

ΓG
lg Shift factor for line l associated with unit g [p.u.].

WE
bt Nominal forecasted wind energy for hour t [MWh].

WP
bt Nominal forecasted wind power at end of hour t [MW].

Unit’s Parameters

CLV
g Linear variable production cost [$/MWh].

CNL
g No-load cost [$/h].

CSD
g Shutdown cost [$].

CSU
g Startup cost [$].

P g Maximum power output [MW].

P g Minimum power output [MW].

RDg Ramp-down capability [MW/h].

RUg Ramp-up capability [MW/h].

SDg Shutdown ramping capability [MW/h].

SUg Startup ramping capability [MW/h].

TDg Minimum down time [h].

TUg Minimum up time [h].
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B.2 Traditional Energy-block UC

Decision Variables

wE
bt Wind energy output for hour t [MWh].

wP
bt Wind power output at the end of hour t [MW].

egt Energy output above minimum output for hour t [MWh].
êgt Total energy output at the end of hour t, including startup and shutdown

trajectories [MWh].
pgt Power output above minimum output at the end of hour t [MW].
p̂gt Total power output at the end of hour t, including startup and shutdown

trajectories [MW].
r−gt Down capacity reserve [MW].
r+

gt Up capacity reserve [MW].
ugt Binary variable which is equal to 1 if the unit is producing above min-

imum output and 0 otherwise.
vgt Binary variable which takes the value of 1 if the unit starts up and 0

otherwise.
zgt Binary variable which takes the value of 1 if the unit shuts down and 0

otherwise.

B.2. Traditional Energy-block UC

In the traditional energy-block UC, energy is considered to be the direct output of
generating units, as shown in Figure B.1.

Figure B.1.: Unit’s operation under the traditional energy-block scheduling ap-
proach.

The UC seeks to minimize all production costs:

min
∑
g∈G

∑
t∈T

[
CLV

g êgt + CNL
g ugt + CSU

g vgt + CSD
g zgt

]
(B.1)
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B.2.1. System-wide Constraints

Energy demand balance for hour t and reserves requirements are guaranteed as
follows:∑

g∈G
êgt =

∑
b∈B

(
DE

bt − wE
bt

)
∀t (B.2)

∑
g∈G

r+
gt ≥ D+

t ∀t (B.3)
∑
g∈G

r−gt ≥ D−t ∀t (B.4)

and power-flow transmission limits are ensured with:

−F l ≤
∑
g∈G

ΓG
lgêgt +

∑
b∈B

Γlb

(
wE

bt −DE
bt

)
≤ F l ∀l, t (B.5)

B.2.2. Individual Unit Constraints

The commitment, startup/shutdown logic and the minimum up/down times are
guaranteed with:

ugt − ug,t−1 = vgt − zgt ∀g, t (B.6)
t∑

i=t−T Ug+1
vgi ≤ ugt ∀g, t ∈ [TUg, T ] (B.7)

t∑
i=t−T Dg+1

zgi ≤ 1− ugt ∀g, t ∈ [TDg, T ] (B.8)

Power production and reserves must be within the power capacity limits:

egt + r+
gt ≤

(
P g − P g

)
ugt −

(
P g − SDg

)
zg,t+1

−max (SDg−SUg, 0) vg,t ∀g∈G1, t (B.9)
egt + r+

gt ≤
(
P g − P g

)
ugt −

(
P g − SUg

)
vgt

−max (SUg−SDg, 0) zg,t+1 ∀g∈G1, t (B.10)
egt + r+

gt ≤
(
P g − P g

)
ugt −

(
P g − SUg

)
vgt

−
(
P g − SDg

)
zg,t+1 ∀g /∈G1, t (B.11)

egt − r−gt ≥ 0 (B.12)

where G1 is defined as the units in G with TUg =1.

70



B.3 Ramp-Based UC

Ramping-capability limits are ensured with:(
egt + r+

gt

)
− eg,t−1 ≤ RUg ∀g, t (B.13)

−
(
egt − r−gt

)
+ eg,t−1 ≤ RDg ∀g, t (B.14)

The total energy production for thermal units and wind are obtained as follows:

êgt = P gugt + egt ∀g, t (B.15)
wE

bt ≤ WE
bt ∀b, t (B.16)

Finally, non-negative constraints for decision variables:

egt, r
+
gt, r

−
gt ≥ 0 ∀g, t (B.17)

wE
bt ≥ 0 ∀b, t (B.18)

It is important to highlight that the set of constraints (Equation B.6)–(Equation B.12)
is the tightest possible representation (convex hull) for a unit operation under the
energy-block scheduling approach, see [53].

B.3. Ramp-Based UC

The proposed ramp-based UC draws a clear distinction between power and energy,
where power is the direct output of generating units and the energy is then obtained
from the power profile, as shown in Figure B.1.

Figure B.2.: Unit’s operation under the traditional ramp-based scheduling ap-
proach.

The UC seeks to minimize all production costs:

min
∑
g∈G

∑
t∈T

[
CLV

g êgt + CNL
g ugt + CSU′

g vgt + CSD′
g zgt

]
(B.19)
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Note that the no-load cost (CNL
g ) in (Equation B.19) ignores the startup and shut-

down periods, see Figure B.2. This is because the CNL
g only multiplies the commit-

ment during the up state ugt. In order to take into account the no-load cost during
the startup and shutdown periods, CSU′ and CSD′ are introduced in (Equation B.19)
and defined as:

CSU′ = CSU + CNL (B.19a)
CSD′ = CSD + CNL (B.19b)

B.3.1. System-wide Constraints

Power demand balance at the end of hour t and reserves requirements are guaranteed
as follows:∑

g∈G
p̂gt =

∑
b∈B

(
DP

bt − wP
bt

)
∀t (B.20)

∑
g∈G

r+
gt ≥ D+

t ∀t (B.21)
∑
g∈G

r−gt ≥ D−t ∀t (B.22)

where (Equation B.20) is a power balance at the end of hour t. Be aware that the
energy balance for the whole hour is automatically achieved by satisfying the power
demand at the beginning and end of each hour, and by considering a piecewise-linear
power profile for demand and generation [99].

Power-flow transmission limits are ensured with:

−F l ≤
∑
g∈G

ΓG
lgp̂gt +

∑
b∈B

Γlb

(
wP

bt −DP
bt

)
≤ F l ∀l, t (B.23)

B.3.2. Individual Unit Constraints

The commitment, startup/shutdown logic and the minimum up/down times are
guaranteed with:

ugt − ug,t−1 = vgt − zgt ∀g, t (B.24)
t∑

i=t−T Ug+1
vgi ≤ ugt ∀g, t ∈ [TUg, T ] (B.25)

t∑
i=t−T Dg+1

zgi ≤ 1− ugt ∀g, t ∈ [TDg, T ] (B.26)
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Power production and reserves must be within the power capacity limits:

pgt + rgt ≤
(
P g − P g

)
ugt −

(
P g − SDg

)
zg,t+1

+
(
SUg − P g

)
vg,t+1 ∀g, t (B.27)

pgt − r−gt ≥ 0 ∀g, t (B.28)

Ramping-capability limits are ensured with:(
pgt + r+

gt

)
− pg,t−1 ≤ RUg ∀g, t (B.29)

−
(
pgt − r−gt

)
+ pg,t−1 ≤ RDg ∀g, t (B.30)

The total power and energy production for thermal units are obtained as follows:

p̂gt = P g (ugt + vg,t+1) + pgt ∀g, t (B.31)

êgt = p̂g,t−1 + p̂gt

2 ∀g, t (B.32)

wP
bt ≤ WP

bt ∀b, t (B.33)

wE
bt =

wP
bt + wP

b,t−1

2 ∀b, t (B.34)

Finally, non-negative constraints for decision variables:

pgt, r
+
gt, r

−
gt ≥ 0 ∀g, t (B.35)

wP
bt ≥ 0 ∀b, t (B.36)

It is interesting to note that even though SUg, SDg ≥ P g (by definition), the result-
ing energy from (Equation B.32) from the ramp-based UC may take values below
P g during the startup and shutdown processes, see Figure B.2, unlike the traditional
energy-block UC.
It is important to highlight that the set of constraints (Equation B.24)–(Equation B.28)
together with (Equation B.31) and (Equation B.32) is the tightest possible repres-
entation (convex hull) for a unit operation under the ramp-based scheduling ap-
proach, see [97].
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C. IEEE-118 Bus System Data

This appendix provides the data of the IEEE-118 bus system used in this thesis.
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One-line Diagram of IEEE 118-bus Test System

IIT Power Group, 2003

System Description:

118 buses
186 branches
91 load sides
54 thermal units

Figure C.1.: IEEE-118 bus system

The IEEE-118 bus system is shown in Figure C.1. The power system data are
based on that in [121] and it was adapted to consider startup and shutdown power
trajectories. This system has been widely used in UC studies, for example [4, 50, 65–
67, 72–74, 76, 77, 121, 123, 134, 135, 137, 145–147, 151, 152]. In this thesis, we used
the modified IEEE 118-bus test system in Article VI and chapter 3 for a time span
of 24 hours.
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The IEEE-118 bus system has 118 buses; 186 transmission lines; 54 thermal units;
91 loads, with average and maximum levels of 3991 MW and 5592 MW, respectively;
and three wind units, with aggregated average and maximum production of 867 MW
and 1333 MW, respectively, for the nominal wind case (see Figure 3.3).

Table C.1 and Table C.2 provide the generator data. Table C.3 and Table C.4 show
the transmission network technical data. The load distribution profile and total
system-wide power demand is given in Table C.6 and Table C.5, respectively. The
20 scenarios for wind power injection in three different buses are given in Table C.6,
Table C.7 and Table C.8. Notice that the demand and wind data are given as
power profiles (in MW) rather than the commonly used energy profiles (in MWh).
However, obtaining the energy profiles is straightforward, for example, the energy
profile for the demand is obtained as DE = DP

t +DP
t−1

2 .

The symbols that appear in the header of Table C.1 to Table C.4 are defined as
follows (in the same order as they appear in the tables):

Generator Data:

P Maximum power output [MW].

P Minimum power output [MW].

P0 Initial power output [MW].

State0 Initial state: hours that the unit has been online (+) or offline (-) prior
to the first period of the time span.

RU Ramp-up capability [MW/h].

RD Ramp-down capability [MW/h].

CNL No-load cost [$/h].

CLV Linear variable production cost [$/MWh].

TU Minimum up time [h].

TD Minimum down time [h].

CSD Shutdown cost [$].

SDD Duration of the shutdown process [h].

CSU
h Hot-startup cost [$].

SUD
h Duration of the hot-startup process[h].

CSU
c Cold-startup cost [$].

SUD
c Duration of the cold-startup process[h].
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T SU
c Time defining the interval limit of the cold startup segment [h]. That is,

the unit has a hot startup if it has been offline for less than T SU
c hours,

and it has a cold startup if it has been offline for more than or equal to
T SU

c hours.
SU Shutdown ramping capability [MW/h].
SD Startup ramping capability [MW/h].

Network Data:

R Resistance of transmission line (per unit).
X Reactance of transmission line (per unit).
F Flow limit on transmission line [MW].
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Appendix C IEEE-118 Bus System Data

Line
From To Circuit R X F

Line
From To Circuit R X F

Bus Bus ID (p.u) (p.u.) [MW] Bus Bus ID (p.u) (p.u.) [MW]

1 1 2 1 0.0303 0.0999 175 48 33 37 1 0.0415 0.142 175

2 1 3 1 0.0129 0.0424 175 49 34 36 1 0.00871 0.0268 175

3 4 5 1 0.00176 0.00798 500 50 34 37 1 0.00256 0.0094 500

4 3 5 1 0.0241 0.108 175 51 38 37 1 0 0.0375 500

5 5 6 1 0.0119 0.054 175 52 37 39 1 0.0321 0.106 175

6 6 7 1 0.00459 0.0208 175 53 37 40 1 0.0593 0.168 175

7 8 9 1 0.00244 0.0305 500 54 30 38 1 0.00464 0.054 175

8 8 5 1 0 0.0267 500 55 39 40 1 0.0184 0.0605 175

9 9 10 1 0.00258 0.0322 500 56 40 41 1 0.0145 0.0487 175

10 4 11 1 0.0209 0.0688 175 57 40 42 1 0.0555 0.183 175

11 5 11 1 0.0203 0.0682 175 58 41 42 1 0.041 0.135 175

12 11 12 1 0.00595 0.0196 175 59 43 44 1 0.0608 0.2454 175

13 2 12 1 0.0187 0.0616 175 60 34 43 1 0.0413 0.1681 175

14 3 12 1 0.0484 0.16 175 61 44 45 1 0.0224 0.0901 175

15 7 12 1 0.00862 0.034 175 62 45 46 1 0.04 0.1356 175

16 11 13 1 0.02225 0.0731 175 63 46 47 1 0.038 0.127 175

17 12 14 1 0.0215 0.0707 175 64 46 48 1 0.0601 0.189 175

18 13 15 1 0.0744 0.2444 175 65 47 49 1 0.0191 0.0625 175

19 14 15 1 0.0595 0.195 175 66 42 49 1 0.0715 0.323 175

20 12 16 1 0.0212 0.0834 175 67 42 49 2 0.0715 0.323 175

21 15 17 1 0.0132 0.0437 500 68 45 49 1 0.0684 0.186 175

22 16 17 1 0.0454 0.1801 175 69 48 49 1 0.0179 0.0505 175

23 17 18 1 0.0123 0.0505 175 70 49 50 1 0.0267 0.0752 175

24 18 19 1 0.01119 0.0493 175 71 49 51 1 0.0486 0.137 175

25 19 20 1 0.0252 0.117 175 72 51 52 1 0.0203 0.0588 175

26 15 19 1 0.012 0.0394 175 73 52 53 1 0.0405 0.1635 175

27 20 21 1 0.0183 0.0849 175 74 53 54 1 0.0263 0.122 175

28 21 22 1 0.0209 0.097 175 75 49 54 1 0.073 0.289 175

29 22 23 1 0.0342 0.159 175 76 49 54 2 0.0869 0.291 175

30 23 24 1 0.0135 0.0492 175 77 54 55 1 0.0169 0.0707 175

31 23 25 1 0.0156 0.08 500 78 54 56 1 0.00275 0.00955 175

32 26 25 1 0 0.0382 500 79 55 56 1 0.00488 0.0151 175

33 25 27 1 0.0318 0.163 500 80 56 57 1 0.0343 0.0966 175

34 27 28 1 0.01913 0.0855 175 81 50 57 1 0.0474 0.134 175

35 28 29 1 0.0237 0.0943 175 82 56 58 1 0.0343 0.0966 175

36 30 17 1 0 0.0388 500 83 51 58 1 0.0255 0.0719 175

37 8 30 1 0.00431 0.0504 175 84 54 59 1 0.0503 0.2293 175

38 26 30 1 0.00799 0.086 500 85 56 59 1 0.0825 0.251 175

39 17 31 1 0.0474 0.1563 175 86 56 59 2 0.0803 0.239 175

40 29 31 1 0.0108 0.0331 175 87 55 59 1 0.04739 0.2158 175

41 23 32 1 0.0317 0.1153 140 88 59 60 1 0.0317 0.145 175

42 31 32 1 0.0298 0.0985 175 89 59 61 1 0.0328 0.15 175

43 27 32 1 0.0229 0.0755 175 90 60 61 1 0.00264 0.0135 500

44 15 33 1 0.038 0.1244 175 91 60 62 1 0.0123 0.0561 175

45 19 34 1 0.0752 0.247 175 92 61 62 1 0.00824 0.0376 175

46 35 36 1 0.00224 0.0102 175 93 63 59 1 0 0.0386 500

47 35 37 1 0.011 0.0497 175 94 63 64 1 0.00172 0.02 500

Table C.3.: Transmission line data (continued on next page)
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IEEE-118 Bus System Data

Line
From To Circuit R X F

Line
From To Circuit R X F

Bus Bus ID (p.u) (p.u.) [MW] Bus Bus ID (p.u) (p.u.) [MW]

95 64 61 1 0 0.0268 500 141 89 92 1 0.0099 0.0505 500

96 38 65 1 0.00901 0.0986 500 142 89 92 2 0.0393 0.1581 500

97 64 65 1 0.00269 0.0302 500 143 91 92 1 0.0387 0.1272 175

98 49 66 1 0.018 0.0919 500 144 92 93 1 0.0258 0.0848 175

99 49 66 2 0.018 0.0919 500 145 92 94 1 0.0481 0.158 175

100 62 66 1 0.0482 0.218 175 146 93 94 1 0.0223 0.0732 175

101 62 67 1 0.0258 0.117 175 147 94 95 1 0.0132 0.0434 175

102 65 66 1 0 0.037 500 148 80 96 1 0.0356 0.182 175

103 66 67 1 0.0224 0.1015 175 149 82 96 1 0.0162 0.053 175

104 65 68 1 0.00138 0.016 500 150 94 96 1 0.0269 0.0869 175

105 47 69 1 0.0844 0.2778 175 151 80 97 1 0.0183 0.0934 175

106 49 69 1 0.0985 0.324 175 152 80 98 1 0.0238 0.108 175

107 68 69 1 0 0.037 500 153 80 99 1 0.0454 0.206 200

108 69 70 1 0.03 0.127 500 154 92 100 1 0.0648 0.295 175

109 24 70 1 0.00221 0.4115 175 155 94 100 1 0.0178 0.058 175

110 70 71 1 0.00882 0.0355 175 156 95 96 1 0.0171 0.0547 175

111 24 72 1 0.0488 0.196 175 157 96 97 1 0.0173 0.0885 175

112 71 72 1 0.0446 0.18 175 158 98 100 1 0.0397 0.179 175

113 71 73 1 0.00866 0.0454 175 159 99 100 1 0.018 0.0813 175

114 70 74 1 0.0401 0.1323 175 160 100 101 1 0.0277 0.1262 175

115 70 75 1 0.0428 0.141 175 161 92 102 1 0.0123 0.0559 175

116 69 75 1 0.0405 0.122 500 162 101 102 1 0.0246 0.112 175

117 74 75 1 0.0123 0.0406 175 163 100 103 1 0.016 0.0525 500

118 76 77 1 0.0444 0.148 175 164 100 104 1 0.0451 0.204 175

119 69 77 1 0.0309 0.101 175 165 103 104 1 0.0466 0.1584 175

120 75 77 1 0.0601 0.1999 175 166 103 105 1 0.0535 0.1625 175

121 77 78 1 0.00376 0.0124 175 167 100 106 1 0.0605 0.229 175

122 78 79 1 0.00546 0.0244 175 168 104 105 1 0.00994 0.0378 175

123 77 80 1 0.017 0.0485 500 169 105 106 1 0.014 0.0547 175

124 77 80 2 0.0294 0.105 500 170 105 107 1 0.053 0.183 175

125 79 80 1 0.0156 0.0704 175 171 105 108 1 0.0261 0.0703 175

126 68 81 1 0.00175 0.0202 500 172 106 107 1 0.053 0.183 175

127 81 80 1 0 0.037 500 173 108 109 1 0.0105 0.0288 175

128 77 82 1 0.0298 0.0853 200 174 103 110 1 0.03906 0.1813 175

129 82 83 1 0.0112 0.03665 200 175 109 110 1 0.0278 0.0762 175

130 83 84 1 0.0625 0.132 175 176 110 111 1 0.022 0.0755 175

131 83 85 1 0.043 0.148 175 177 110 112 1 0.0247 0.064 175

132 84 85 1 0.0302 0.0641 175 178 17 113 1 0.00913 0.0301 175

133 85 86 1 0.035 0.123 500 179 32 113 1 0.0615 0.203 500

134 86 87 1 0.02828 0.2074 500 180 32 114 1 0.0135 0.0612 175

135 85 88 1 0.02 0.102 175 181 27 115 1 0.0164 0.0741 175

136 85 89 1 0.0239 0.173 175 182 114 115 1 0.0023 0.0104 175

137 88 89 1 0.0139 0.0712 500 183 68 116 1 0.00034 0.00405 500

138 89 90 1 0.0518 0.188 500 184 12 117 1 0.0329 0.14 175

139 89 90 2 0.0238 0.0997 500 185 75 118 1 0.0145 0.0481 175

140 90 91 1 0.0254 0.0836 175 186 76 118 1 0.0164 0.0544 175

Table C.4.: Transmission line data
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Appendix C IEEE-118 Bus System Data

Bus D [%] Bus D [%]

1 1.450280868 57 0.321451245

2 0.568700828 58 0.321451245

3 1.109006796 59 7.420166244

4 0.85318518 60 2.089433094

6 1.478675728 62 2.06264549

7 0.540305968 66 1.044716547

11 1.990586836 67 0.750052906

12 1.336433552 70 1.767981849

13 0.96676462 74 1.821557056

14 0.398063792 75 1.259017377

15 2.559287664 76 1.821557056

16 0.710943004 77 1.63404383

17 0.312879212 78 1.901919868

18 1.706102484 79 1.044716547

19 1.279643832 80 3.48238849

20 0.511911108 82 1.446530603

21 0.398063792 83 0.535752075

22 0.284484352 84 0.294663641

23 0.199031896 85 0.64290249

27 1.76316008 86 0.562539679

28 0.483516248 88 1.285804981

29 0.682548144 90 2.089433094

31 1.222854112 92 1.741194245

32 1.677707624 93 0.321451245

33 0.654153284 94 0.803628113

34 1.677707624 95 1.125079358

35 0.93836976 96 1.017928943

36 0.88158004 97 0.401814057

39 0.723265302 98 0.910778528

40 0.535752075 100 0.991141339

41 0.991141339 101 0.589327283

42 0.991141339 102 0.133938019

43 0.482176868 103 0.616114887

44 0.42860166 104 1.017928943

45 1.419743 105 0.830415717

46 0.750052906 106 1.151866962

47 0.910778528 107 0.750052906

48 0.535752075 108 0.053575208

49 2.330521528 109 0.21430083

50 0.455389264 110 1.044716547

51 0.455389264 112 0.669690094

52 0.482176868 114 0.227426756

53 0.616114887 115 0.625490548

54 3.026999226 117 0.568700828

55 1.687619037 118 0.883990924

56 2.250158717

Table C.5.: Load distribution profile
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2.
56

19
8.
86

19
4.
41

16
9.
24

14
3.
96

21
2.
15

18
7.
96

18
6.
18

19
8.
14

h1
5

46
80
.9
6

18
0.
04

20
8.
68

20
4.
86

17
2.
43

16
8.
04

16
0.
88

17
5.
39

22
9.
66

23
3.
62

16
2.
45

14
9.
53

14
3.
32

19
2.
05

19
1.
08

18
2.
15

13
4.
54

20
6.
34

18
4.
45

19
1.
49

15
2.
85

h1
6

48
32
.8
0

18
8.
70

21
0.
83

21
1.
61

18
0.
23

19
4.
87

14
3.
03

17
8.
60

21
3.
55

24
4.
61

18
5.
33

17
1.
46

15
5.
41

19
6.
04

19
2.
87

18
4.
33

15
2.
66

19
0.
51

18
4.
92

18
0.
98

17
0.
28

h1
7

44
53
.2
0

17
2.
98

17
7.
32

20
1.
23

15
3.
53

21
3.
26

11
9.
35

17
0.
79

18
8.
99

21
2.
00

19
0.
20

14
3.
27

13
7.
19

21
0.
48

18
7.
53

15
6.
21

16
4.
08

19
3.
53

17
6.
76

12
4.
97

16
5.
20

h1
8

47
56
.8
8

15
0.
41

15
5.
56

18
1.
91

12
5.
41

18
8.
92

96
.6
6

14
2.
76

16
1.
34

17
2.
76

15
6.
77

14
3.
86

15
1.
23

21
9.
45

16
5.
82

14
4.
40

18
3.
72

17
8.
74

15
7.
28

11
0.
77

16
1.
34

h1
9

51
36
.4
8

16
8.
07

19
1.
36

19
7.
27

13
3.
39

20
9.
99

10
9.
56

14
0.
05

18
4.
79

16
6.
90

14
9.
03

16
3.
39

16
5.
58

23
5.
62

16
5.
03

17
8.
79

19
4.
20

19
0.
05

17
6.
21

12
6.
47

16
9.
57

h2
0

54
40
.1
6

20
9.
10

23
1.
40

21
3.
58

17
3.
04

25
9.
66

14
0.
33

16
9.
57

23
2.
88

18
7.
42

16
8.
14

19
0.
94

14
8.
07

27
3.
98

21
4.
84

22
2.
41

20
4.
19

21
3.
05

20
7.
20

15
7.
31

17
3.
01

h2
1

55
92
.0
0

22
2.
74

22
6.
62

24
8.
73

15
3.
03

27
2.
61

14
7.
47

20
4.
92

23
4.
41

18
6.
20

17
8.
77

20
7.
86

13
3.
09

28
5.
32

21
9.
29

23
7.
93

20
3.
41

21
7.
04

21
3.
71

14
5.
63

18
1.
73

h2
2

48
32
.8
0

23
7.
36

22
1.
95

27
8.
94

17
4.
34

25
9.
27

19
6.
58

25
5.
22

26
1.
23

19
4.
83

21
9.
54

24
6.
21

13
3.
21

27
7.
87

23
8.
79

28
2.
54

19
0.
40

23
7.
17

22
6.
45

17
5.
85

18
2.
42

h2
3

46
05
.0
4

27
3.
69

25
3.
21

31
9.
88

23
3.
70

27
7.
89

25
3.
52

30
2.
24

28
8.
87

21
8.
20

28
8.
99

30
0.
59

18
1.
14

32
8.
75

29
2.
24

33
9.
08

22
9.
37

27
9.
71

26
1.
52

22
9.
90

22
0.
57

h2
4

42
25
.4
4

30
0.
66

28
1.
72

33
9.
34

28
2.
23

27
6.
11

26
5.
34

31
4.
75

28
6.
24

24
3.
25

33
0.
21

32
3.
10

25
2.
13

34
1.
56

30
5.
10

35
0.
61

25
3.
27

29
1.
67

27
8.
87

26
6.
57

26
9.
60

T
ab

le
C

.6
.:

D
em

an
d
an

d
w
in
d
in
je
ct
io
n
(c
on

tin
ue
d
on

ne
xt

pa
ge
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Appendix C IEEE-118 Bus System Data

W
ind

P
ow

er
Scenarios

at
B

us
77

[M
W

]
sc01

sc02
sc03

sc04
sc05

sc06
sc07

sc08
sc09

sc10
sc11

sc12
sc13

sc14
sc15

sc16
sc17

sc18
sc19

sc20

h00
518.79

518.79
518.79

518.79
518.79

518.79
518.79

518.79
518.79

518.79
518.79

518.79
518.79

518.79
518.79

518.79
518.79

518.79
518.79

518.79

h01
516.23

455.27
551.95

495.37
519.71

493.86
503.73

514.73
585.98

490.75
562.82

503.11
530.53

486.66
541.77

513.88
552.15

467.69
536.75

552.84

h02
502.94

463.11
539.97

487.59
508.59

481.72
508.28

515.09
572.26

505.55
532.46

483.59
524.21

492.37
525.20

512.36
538.53

482.76
533.47

538.37

h03
478.78

472.33
522.24

463.78
470.53

442.52
520.38

470.30
529.31

505.49
502.86

446.88
509.48

495.30
493.03

483.47
518.33

492.72
505.65

502.45

h04
458.94

485.33
483.91

451.46
444.27

413.38
497.84

428.15
503.87

508.48
483.09

436.27
506.18

487.29
474.72

473.09
485.03

492.88
477.86

466.58

h05
422.09

466.38
441.85

406.01
420.68

353.68
453.72

399.10
476.86

512.20
430.56

423.81
480.06

448.30
459.37

463.52
453.41

465.51
448.22

432.19

h06
345.05

366.28
354.56

337.36
352.47

271.06
353.48

315.25
401.99

478.04
340.52

340.41
424.99

376.35
389.40

403.39
378.07

372.50
370.42

343.97

h07
268.87

250.63
276.09

266.31
279.11

167.21
266.55

225.60
311.03

432.59
252.10

248.83
350.27

307.59
320.90

330.82
319.16

267.33
285.79

257.95

h08
196.88

175.94
207.62

169.53
201.10

89.97
195.51

156.05
220.96

350.22
160.86

168.47
293.33

230.58
247.85

250.68
240.04

203.97
211.93

186.34

h09
141.81

145.22
165.40

114.66
155.52

84.59
131.38

83.65
149.24

257.62
114.95

97.38
252.91

178.64
163.92

175.78
174.71

156.33
148.26

112.14

h10
143.37

163.77
159.59

118.75
155.33

131.19
133.57

76.69
169.97

257.75
142.25

95.26
240.95

170.54
143.19

173.94
167.88

166.35
142.92

92.16

h11
195.69

268.47
159.85

133.23
203.46

217.04
212.93

106.14
256.42

328.41
195.03

122.04
290.86

214.69
161.40

236.19
185.55

280.68
188.58

78.26

h12
217.02

314.30
161.32

116.55
243.90

249.23
195.69

123.03
275.22

358.73
199.39

111.87
353.76

235.44
176.46

275.46
199.51

324.20
198.84

56.86

h13
225.00

310.74
148.46

118.09
246.33

238.45
171.17

156.04
284.04

359.29
201.39

137.70
387.60

235.25
212.87

298.47
191.78

327.04
208.78

85.62

h14
226.80

292.83
157.00

151.10
185.73

227.18
202.75

166.72
334.82

373.67
198.68

117.71
379.24

239.56
194.19

289.52
161.36

356.13
238.60

126.53

h15
199.76

240.50
155.67

146.68
149.18

208.34
213.75

133.91
343.87

318.61
173.76

88.56
362.91

214.16
158.00

242.59
119.41

325.59
247.36

138.95

h16
201.66

198.71
163.62

178.61
145.65

240.62
233.87

142.69
353.02

278.23
179.49

148.72
366.06

192.52
169.51

221.25
86.13

291.42
273.59

195.85

h17
198.56

164.66
195.64

191.63
117.20

260.90
256.73

197.44
306.15

243.90
171.98

212.26
337.12

171.01
185.81

190.84
75.11

266.98
280.29

271.93

h18
184.96

158.84
202.69

174.16
123.33

229.58
262.31

164.32
263.08

172.50
164.01

192.61
268.76

158.21
159.84

150.20
91.51

234.15
253.38

247.25

h19
189.54

182.16
197.89

192.40
164.14

158.67
248.11

148.80
241.20

138.05
177.69

160.30
234.52

201.35
175.48

162.20
148.60

219.60
235.01

219.18

h20
235.43

203.65
211.52

246.86
203.43

138.71
315.87

248.97
213.59

171.68
171.57

173.68
256.71

297.23
240.48

211.49
205.02

277.45
272.41

271.62

h21
299.83

220.92
270.64

328.19
276.36

147.70
398.60

356.13
212.12

226.41
204.83

260.87
307.19

388.75
348.47

275.69
291.17

309.93
336.71

374.93

h22
316.88

227.74
308.56

337.09
305.82

156.90
407.36

398.92
188.82

289.93
209.54

280.66
308.44

412.91
379.18

304.28
350.17

312.26
338.41

389.41

h23
299.96

213.87
266.29

319.67
277.75

155.77
395.97

406.73
125.65

300.14
210.93

281.33
258.02

401.29
371.62

291.54
346.57

293.73
287.73

355.27

h24
266.38

163.99
270.52

287.19
237.46

134.06
351.72

339.25
58.67

223.68
215.52

288.42
237.07

347.38
351.11

222.88
323.50

212.47
237.05

348.62

T
able

C
.7.:W

ind
injection
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IEEE-118 Bus System Data

W
in

d
P

ow
er

Sc
en

ar
io

s
at

B
us

69
[M

W
]

sc
01

sc
02

sc
03

sc
04

sc
05

sc
06

sc
07

sc
08

sc
09

sc
10

sc
11

sc
12

sc
13

sc
14

sc
15

sc
16

sc
17

sc
18

sc
19

sc
20

h0
0

50
1.
39

50
1.
39

50
1.
39

50
1.
39

50
1.
39

50
1.
39

50
1.
39

50
1.
39

50
1.
39

50
1.
39

50
1.
39

50
1.
39

50
1.
39

50
1.
39

50
1.
39

50
1.
39

50
1.
39

50
1.
39

50
1.
39

50
1.
39

h0
1

51
4.
28

48
5.
36

51
2.
79

54
5.
44

48
3.
31

49
6.
63

46
6.
48

48
0.
06

54
6.
47

49
9.
62

49
5.
90

50
5.
33

46
9.
90

53
2.
51

48
6.
18

46
6.
75

50
8.
84

51
4.
47

52
5.
38

49
2.
16

h0
2

52
5.
54

48
4.
21

53
5.
89

55
4.
09

49
9.
86

50
1.
40

47
7.
49

49
7.
21

54
5.
73

52
1.
87

49
9.
39

52
9.
81

48
1.
41

53
8.
30

50
5.
41

48
2.
02

52
9.
86

52
9.
90

53
2.
03

51
2.
55

h0
3

52
0.
65

48
7.
80

54
9.
72

53
6.
67

49
9.
44

48
6.
41

48
5.
45

51
3.
80

53
0.
19

52
6.
03

51
0.
47

54
0.
22

47
2.
03

54
3.
60

51
0.
30

49
8.
17

53
8.
37

52
3.
18

51
5.
37

50
7.
76

h0
4

50
1.
93

46
8.
88

52
9.
33

52
3.
95

48
6.
84

45
1.
40

49
3.
40

51
8.
45

50
2.
19

50
9.
37

52
6.
70

49
1.
45

47
8.
57

52
0.
40

49
1.
72

51
9.
37

53
5.
68

51
4.
13

51
2.
30

47
2.
52

h0
5

49
1.
28

45
7.
68

50
5.
32

53
5.
29

47
8.
94

46
0.
33

49
1.
01

51
3.
92

50
9.
60

47
7.
47

48
5.
42

45
8.
55

48
8.
60

49
6.
95

48
0.
11

49
7.
44

51
7.
91

52
6.
17

50
5.
65

45
5.
77

h0
6

48
9.
43

47
6.
34

46
6.
30

53
3.
61

46
7.
82

47
8.
16

46
2.
35

50
7.
42

52
8.
56

48
5.
68

44
0.
25

46
8.
35

47
3.
14

49
7.
41

49
9.
77

47
0.
02

49
3.
51

50
1.
82

49
0.
12

45
7.
12

h0
7

44
8.
81

40
4.
21

38
6.
59

49
8.
42

43
2.
62

43
5.
82

43
5.
19

48
2.
63

48
0.
90

45
8.
12

38
2.
58

44
8.
95

44
6.
22

40
5.
67

44
8.
52

43
4.
92

47
4.
14

44
9.
97

45
2.
69

42
5.
95

h0
8

36
2.
34

31
0.
87

30
7.
52

42
5.
31

35
5.
37

34
1.
81

39
7.
04

37
7.
14

38
0.
63

39
0.
70

28
6.
32

36
0.
91

41
6.
10

29
3.
49

37
7.
88

37
2.
65

40
2.
30

38
3.
79

38
6.
49

37
4.
89

h0
9

29
5.
17

26
2.
59

26
5.
34

32
4.
56

26
9.
13

25
1.
31

35
0.
51

29
1.
85

30
5.
24

35
0.
67

23
2.
36

29
9.
88

36
6.
15

23
6.
03

32
8.
01

32
0.
75

33
2.
52

30
1.
93

32
5.
03

31
1.
00

h1
0

27
7.
37

24
8.
04

23
8.
73

29
1.
34

24
5.
53

25
3.
52

33
5.
29

26
8.
14

27
2.
91

34
8.
75

22
0.
58

26
1.
04

33
4.
82

22
8.
55

31
0.
42

29
6.
95

30
2.
97

27
5.
97

31
5.
43

27
6.
08

h1
1

28
3.
69

23
8.
91

24
1.
87

28
4.
10

28
3.
43

27
6.
16

32
6.
66

26
2.
34

26
9.
34

38
7.
25

22
0.
59

25
2.
68

32
3.
86

23
9.
24

33
1.
69

28
8.
89

29
9.
84

27
5.
69

33
0.
95

30
2.
87

h1
2

28
0.
44

22
7.
68

24
9.
87

30
8.
67

28
7.
15

27
0.
01

31
0.
20

22
9.
52

24
9.
36

36
0.
11

20
9.
99

28
2.
79

32
7.
40

22
6.
62

32
0.
86

28
1.
55

29
8.
97

28
5.
68

31
7.
26

33
9.
22

h1
3

26
5.
38

24
4.
02

22
4.
50

29
2.
85

26
8.
54

24
9.
63

28
3.
21

19
0.
14

23
9.
28

33
3.
98

20
8.
95

26
9.
54

30
8.
72

22
6.
26

30
9.
76

26
9.
18

26
5.
08

25
1.
53

29
5.
79

33
4.
79

h1
4

25
1.
39

23
1.
85

20
4.
71

26
2.
37

26
3.
94

25
3.
42

23
6.
48

19
6.
03

18
3.
80

31
6.
40

22
6.
93

29
7.
03

27
2.
49

21
1.
31

28
9.
07

26
5.
85

25
1.
98

22
0.
38

25
8.
86

32
7.
25

h1
5

25
2.
81

21
1.
78

19
8.
21

23
3.
90

26
0.
91

24
5.
85

26
2.
43

20
3.
98

13
1.
44

28
8.
04

26
6.
31

32
7.
90

28
0.
20

15
9.
94

24
0.
91

29
0.
33

26
8.
36

20
3.
32

24
6.
43

32
2.
66

h1
6

27
1.
07

22
8.
80

22
2.
30

22
6.
18

25
6.
46

23
2.
61

26
9.
26

22
8.
27

12
6.
13

23
9.
56

31
0.
56

37
2.
20

28
7.
52

14
7.
28

20
9.
50

31
6.
52

28
4.
18

20
0.
95

23
0.
39

31
4.
71

h1
7

28
5.
41

27
7.
20

24
4.
62

24
2.
07

26
1.
44

24
0.
14

27
0.
78

21
6.
74

13
1.
96

20
5.
51

31
2.
24

41
2.
58

35
2.
62

14
0.
74

23
0.
99

33
8.
44

27
3.
32

22
0.
28

22
3.
31

35
8.
39

h1
8

30
7.
08

28
8.
48

24
6.
94

26
8.
03

26
2.
80

24
6.
09

30
4.
25

17
2.
92

22
5.
53

23
3.
66

35
6.
30

42
4.
58

36
6.
94

16
3.
88

20
4.
12

31
7.
01

29
0.
92

21
6.
09

29
3.
20

38
8.
41

h1
9

30
9.
61

26
2.
97

25
7.
27

29
9.
68

26
1.
73

22
8.
99

33
6.
38

17
2.
60

29
4.
11

22
7.
98

37
5.
74

41
8.
64

35
6.
88

17
2.
06

16
2.
16

30
0.
00

32
4.
39

23
2.
17

32
6.
37

38
1.
83

h2
0

32
7.
83

25
5.
79

29
5.
77

29
8.
40

24
1.
71

26
6.
95
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D. Optimal Schedules of The
Deterministic Case

This appendix presents the optimal unit schedules of the EnSch and RmpSch ap-
proaches for the deterministic study case presented in section 3.3 in chapter 3.
chapter 3, section 3.3 describes the deterministic case study for two different power
demand profiles D1 and D2 (in MW), which present the same energy profile DE (in
MWh). The IEEE-118 bus system (see Appendix C) is used for this case study,
where we assumed that the power demand profiles are perfectly known and given in
Table 3.1, without uncertain events (i.e., no wind).
Table D.1 and Table D.2 show the optimal power schedules of the RmpSch approach
for D1. Table D.3 and Table D.4 list the optimal power schedules of the RmpSch
approach for D2; and Table D.5 and Table D.6 show the optimal energy schedules
obtained by the EnSch approach for the energy profile DE. Numbers between par-
enthesis indicate that the unit is either starting up or shutting down (productions
which are bellow the unit’s minimum output). Note that all these tables contain
the initial conditions for the case studies.
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Appendix D Optimal Schedules of The Deterministic Case
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Tight and Compact MILP Formulation of Start-Up
and Shut-Down Ramping in Unit Commitment
Germán Morales-España, Student Member, IEEE, Jesus M. Latorre, Member, IEEE, and Andres Ramos

Abstract—This paper presents a mixed-integer linear program-
ming (MILP) formulation of start-up (SU) and shut-down (SD)
power trajectories of thermal units. Multiple SU power-trajecto-
ries and costs are modeled according to how long the unit has been
offline. The proposed formulation significantly reduces the compu-
tational burden in comparison with others commonly found in the
literature. This is because the formulation is 1) tighter, i.e., the re-
laxed solution is nearer to the optimal integer solution; and 2) more
compact, i.e., it needs fewer constraints, variables and nonzero el-
ements in the constraint matrix. For illustration, the self-unit com-
mitment problem faced by a thermal unit is employed. We provide
computational results comparing the proposed formulation with
others found in the literature.

Index Terms—Mixed-integer linear programming, start-up and
shut-down ramps, thermal units, unit commitment.

NOMENCLATURE

The main definitions and notation used are presented in this
section for quick reference. Upper-case letters are used for de-
noting parameters and sets; and lower-case letters for variables
and indexes.

Definitions: The following terminology is used in this
paper to reference the different unit operation states, see Fig. 1.

online Unit is synchronized with the system.

offline Unit is not synchronized with the system.

up Unit is producing above its minimum output.
During the up state, the unit output is
controllable.

down Unit is producing below its minimum output,
when offline, starting up or shutting down.

Indexes and Sets:
Start-up type, running from 1 (hottest) to
(coldest).
Hourly periods, running from 1 to hours.

Variables:
Energy production during period [MWh].

Power output at the end of period ,
production above the minimum output [MW].
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2012, and August 20, 2012; accepted September 29, 2012. Date of publication
November 29, 2012; date of current version April 18, 2013. Paper no. TPWRS-
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Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TPWRS.2012.2222938

Commitment of the unit during period
. Binary variable which is equal to 1

if the unit is up and 0 if it is down, see Fig. 1.
Start-up in period . Continuous
variable which takes the value of 1 if the unit
starts up in period and 0 otherwise, see
Fig. 1.
Shut-down in period . Continuous
variable which takes the value of 1 if the unit
shuts down in period and 0 otherwise, see
Fig. 1.
Start-up type in period . Continuous
variable which takes the value of 1 in the
period where the unit starts up for the start-up
type and 0 otherwise.

Parameters:
Forecasted price of energy in period
[$/MWh].
Linear variable production cost [$/MWh].

No-load cost [$/h].

Shut-down cost [$].

Start-up cost for the start-up type [$].

Maximum power output [MW].

Minimum power output [MW].

Power output at the beginning of the th
interval of the shut-down ramp process
[MW], see Fig. 1.
Power output at the beginning of the th
interval of the start-up ramp process type
[MW], see Fig. 1.
Power output at which the unit is
synchronized for start-up type [MW],

, see Fig. 1.
Duration of the shut-down ramp process [h].

Duration of the start-up type ramp process
[h].
Maximum ramp-down rate [MW/h].

Maximum ramp-up rate [MW/h].

Minimum down time [h].

Minimum up time [h].

Minimum number of periods that the unit
must be down for the start-up type [h].

I. INTRODUCTION

T HE actual operation of power generation units must be
considered in detail in order to rigorouslymodel their gen-

eration schedules. Moreover, with the introduction of competi-

0885-8950/$31.00 © 2012 IEEE
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tion, accurate modeling and solutions for unit commitment (UC)
problems are even more necessary to achieve efficiency and fea-
sibility in energy production [1].
Most of the literature about modeling constraints of thermal

units in UC problems deals with the unit operation above the
minimum output [2], [3]. Units are considered to start/end their
production at the minimum output while the start-up (SU) and
shut-down (SD) ramps (or power trajectories) are ignored. Some
papers are aware of the importance of considering these ramps
in the UC optimization problem. However, they do not include
these ramps because the resulting model will be considerably
more complex, causing prohibitive solving times [4]–[6]. In
addition, due to the increasing penetration of wind generation
nowadays, thermal units are being shut down and started up
more often [7]; therefore, a detailed modeling of the SU and
SD processes in UC is required.
The application of direct mixed-integer linear programming

(MILP) to solving UC is becoming increasingly popular due
to improvements in MILP solvers. For example, PJM has
switched from Lagrangian relaxation (LR) to MILP to solve
the UC-based problems [8]. LR was the dominant optimization
technique for solving UC problems through problem decom-
position, mainly because LR does not present a high memory
requirement as does MILP. However, this problem is being
overcome due to the breakthrough of MILP solvers. Currently,
combination of pure algorithmic speedup and the progress
in computing machinery has meant that solving MILPs has
become around 100 million times faster over the last 20 years
[9]. Furthermore, MILP provides significant advantages over
LR such as the fact that 1) there is a proven global optimal
solution and 2) MILP models are easier to modify, which
enhances modeling capabilities and adaptability, among other
things [1], [10], [11].
The SU and SD ramps are explicitly modeled under the LR

approach in [12] and under the MILP framework in [13] and
[11]. In [12] and [13], only a single power trajectory for the SU
process is modeled, while [11] considers different SU power tra-
jectories depending on the unit’s prior down time. Furthermore,
[11] proposes a complete self-UC formulation which takes into
account different constraints (e.g., power reserves and quadratic
production costs) and is adapted to the Greek market rules.
References [13] and [11] made the important contribution in

proposing the first MILP formulations for single and multiple
SU and SD ramps, respectively. However, their main draw-
back is the creation of large models which greatly increase the
complexity of UC problems, thereby making them unattrac-
tive for practical implementation. These models are large due
to the introduction of many constraints in order to deal with the
power trajectories above and below the minimum output of gen-
erating units. Apart from this, [11] needs many binary variables
to model the different SU power trajectories.
The use of MILP-based UC formulations has increased sig-

nificantly over the last 50 years [14]. As computational and al-
gorithmic power increases, so does the complexity of the MILP
formulations, with the addition of features such as ramping con-
straints, minimum up and down times and exponential SU costs
[2]. The computational burden of UC problems needs to be fur-
ther reduced, by improving the MILP formulations, so that even
more advanced and computationally demanding problems can

be implemented, such as stochastic formulations [15], contin-
gency-constrained models [16], and generation expansion plan-
ning [17].
Improving an MILP formulation allows a faster search for

optimality by tightening (removing inefficient solutions from)
the original feasible region. Tightening requires strong lower
bounds for minimization problems [18]. This means formu-
lating the problem in such a way that the associated linear
programming (LP) relaxation provides a better approximation
of the value of the integer optimal solution. The time required
for providing optimality is often prohibitive because the gap
between the integer optimal solution and its associated LP
relaxation is very large. Furthermore, a poor lower bound
provided by the LP relaxation will not be adequate to guide
the search for good feasible solutions during the solving phase
(branch-and-cut) of standard MILP solvers [19]. MILP formu-
lations are frequently tightened by adding a huge number of
constraints and (sometimes) variables. However, the resulting
expanded model must close the gap enough to be worth the
extra time taken to solve the LP relaxations during the solving
phase [20]. In other words, usually, tightening an MILP for-
mulation comes at the expense of expanding the model which
implies extra time consumption. Therefore, creating tight and
compact MILP formulations is a nontrivial task because the
obvious formulations are commonly either very weak or very
large.
Creating tight (or strong)MILP formulations has been widely

researched [21]. In the case of UC problems, there has been
work in a number of specific areas. In [22], a strong formu-
lation of the minimum up/down time constraints is presented;
in [23], a tighter linear approximation for quadratic generation
costs is proposed; and [24] presents a new class of inequalities
giving a tighter description of the feasible operating schedules
for generators.
The main contribution of this paper is two-fold:
1) A tighter MILP formulation of SU and SD ramps for UC
problems is proposed in order to reduce the computational
burden of analogous existent MILP formulations.

2) This MILP formulation is also compact and hence over-
coming the main disadvantage of previous models [11],
[13]. If a single power trajectory is modeled for the SU
and SD ramps, then there is neither a need to increase
the number of constraints nor a necessity to increase
the number of variables in comparison to a formulation
without the SU and SD ramps. Furthermore, when consid-
ering different SU trajectories, the proposed formulation
requires the introduction of merely continuous variables
compared to [11].

Additionally, this formulation of SU and SD ramps is suitable
for any UC problem, whether under centralized or competitive
environments, and further model expansion will not require the
introduction of numerous terms in the constraints in order to
avoid conflicts between the up and down states, unlike [13] and
[11].
In order to illustrate the effectiveness of the proposed formu-

lation, the self-UC for a price-taker thermal generator is used.
The objective of a thermal generator, in the self-UC, is to max-
imize the profits from selling energy in the day-ahead market,
while satisfying all the technical constraints.
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Fig. 1. Operation states of a thermal unit, including SU and SD ramps.

The remainder of this paper is organized as follows: Section II
presents the formulation of the SU and SD constraints in de-
tail. Section III provides and discusses results from several case
studies, where the impact of neglecting the SU and SD ramps is
shown and a comparison of the proposed formulation with those
in [13] and [11] is made. Finally, some relevant conclusions are
drawn in Section IV.

II. PROPOSED APPROACH

This section presents the mathematical formulation of the SU
and SD power trajectories. With the purpose of illustrating how
this formulation works, the objective function is formulated for
the case of a price taker self-UC problem. This section is di-
vided into two parts: Section II-A details the mathematical for-
mulation and Section II-B shows how the online and offline unit
states can be obtained (see Fig. 1) after the optimization problem
has been solved.
Hourly time intervals are considered, but it should be noted

that the formulation can be easily adapted to handle shorter time
periods. For the sake of simplicity, reserve constraints are not
considered; however, they can be easily introduced in themodel.
The interested reader is referred to [5], [11], and [25].

A. Mathematical Formulation

The different operation states of a thermal unit are presented
in Fig. 1. The up and down states are distinguished from the
online and offline states. During the up period, the unit has the
flexibility to follow any trajectory being bounded between the
maximum and minimum output and by the ramping-rate limits.
On the other hand, the power output when the unit is starting up
or shutting down follows a predefined power trajectory. Unlike
the SD ramp, the SU ramp trajectory depends on the unit’s pre-
vious down time.
1) Up/Down versus Online/Offline States: By considering

the commitment variable as up/down rather than offline/on-
line states, the generation output above and below can be
managed independently. This characteristic makes the proposed
formulation 1) compact, unlike [13] and [11], where most of
the constraints involving contain summations of binary vari-
ables in order to avoid conflicts between the power output above
and below ; and 2) tight where, by considering the generation
output above , the feasible region for is between and
, which is tighter than the region that is usually considered, be-

tween 0 and .

Fig. 2. Start-up costs as a function of the unit’s previous down time.

Fig. 3. Optimal generation scheduling for the Traditional and Improved for-
mulations in the up and bottom part of the figure respectively. The darker gray
area shows the SU and SD energy that the unit will produce in order to follow
the optimal schedule that results from the Traditional formulation (this extra
energy is added after solving the Traditional problem).

The down times are a function of the offline times (see Fig. 1).
For example, the number of periods that the unit must be down
to activate the SU type , , is equal to the SU and SD ramp
durations ( and ) plus the offline time required to ac-
tivate the SU type . Similarly, the down time is expressed
as a function of the minimum offline time (see Section II-A3).
2) Start-Up Type: Different SU types are modeled depending

on how long the unit has been down. The SU type is se-
lected if the unit has been previously down within the interval

, see Fig. 2. Each SU type has a different SU power
trajectory associated to it, where the colder the SU type, the
longer the SU power trajectory duration (see example shown
in Fig. 3 in Section III-A). As in the case of [26] and [11], new
variables are introduced to select the SU type:

(1)

where the right side of (1) is equal to 1 if the unit has been down
within the interval before hour . Therefore,
can only be activated if the unit has previously been
down within this interval.
Note that (1) is not defined for the first hours. Appendix A

details how the first SU types are obtained depending on the
initial conditions of the unit.
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The following constraint ensures that just one SU type is se-
lected when the unit starts up:

(2)

Equation (1) constrains all SU types except the coldest one
. However, constraints (1) and (2) ensure when

the unit starts up , and has been down for at least
hours. This is because (1) makes for all and then
(2) forces . In the event that more than one SU type
variable can be activated then (2) together with the
objective function ensure that the hottest, which is the cheapest,
possible option is always selected. Therefore, just one of the
variables is activated (equal to one). That is, these variables take
binary values even though they are modeled as continuous vari-
ables. This is due to the convex (monotonically increasing) char-
acteristic of the exponential SU costs of thermal units [2], see
Fig. 2.
Constraint (1) is made even more compact by taking into

account the minimum down time constraint (see Section II-A3).
The hottest SU must be activated when the unit has been
down within the interval . However, the minimum
down time constraint (4) ensures that the unit cannot be down
for less than hours. Therefore, the hottest SU is only pos-
sible within the interval . By defining ,
see Fig. 2, constraint (1) together with the minimum down time
constraint (4) ensure that the hottest SU can be activated
only when the unit has been down less than hours.
3) Minimum Up/Down Times: Constraints (3) and (4) ensure

the minimum up and down times respectively [22]. This formu-
lation has been compared with others and has shown a better
performance [22], [24]:

(3)

(4)

The minimum down time in (4) is equal to 1) the SD
ramp duration , plus 2) the hottest SU ramp duration

, plus 3) the minimum time that the unit must be offline.
Therefore, (4) is needed to avoid overlapping between the SU
and SD ramps. Appendix A describes how the initial conditions
force the unit to remain up/down during the first hours.
4) Commitment, Start-Up, and Shut-Down: The following

constraint can be found in models published approximately fifty
years ago [14]:

(5)

Once is defined as a binary variable, (5) forces and to
take binary values.
5) Capacity Limits: The generation level in UC problems

is usually expressed as hourly energy blocks; however, it has
been demonstrated that taking a generation level schedule as
an energy delivery schedule may not be realizable [27], [28].

Therefore, a clear difference between power and energy is made
and all technical constraints are then imposed over the power
output variable. The power generation output of the unit above
its minimum output is modeled as

(6)

Constraint (6) ensures that the total power output is equal to
at the beginning and at the end of a continuous up

period. On the other hand, the SU (SD) trajectory ends (begins),
during the down period, at level, thereby making the connec-
tion with the up period that starts (ends) at this level, see Fig. 1.
6) Operating Ramp Constraints: As mentioned in

Section II-A1, the proposed formulation avoids the intro-
duction of many variables in most of the equations, unlike [13]
and [11]. This is the case for the ramping constraints that only
depend on the generation variables between two consecutive
hours:

(7)

7) Energy Production: The total unit’s energy production, in-
cluding the energy produced during the SU and SD processes, is
presented in (8). Note that the energy is obtained for hourly pe-
riods and piecewise-linear power trajectories (see Fig. 1). How-
ever, the conversion to shorter time periods is straightforward:

(8)

The terms of the summations in (8) include the energy produced
during the SU and SD procedures.
Equation (8), together with (1) and (2), make a tight descrip-

tion of the SU and SD ramps in the energy output variable .
This could be observed from the fact that on the one hand, when
the unit is starting up , (1) and (2) will choose the cor-
rect SU type , and then the associated SU energy trajectory
is immediately fixed in (8), while on the other hand, when the
unit is not starting up then (2) forces all SU types to
be zero and thus the SU energy in (8) is immediately
fixed to zero. Similarly, the SD decision will fix the SD en-
ergy trajectory in (8). Besides, the tightness of the formulation
is experimentally checked in Section III, where the integrality
gap of the proposed formulation is lower than those in [13] and
[11].
Note that when just a single SU power trajectory is mod-

eled, there is no need to introduce variables . Therefore, con-
straints (1) and (2) are not needed and the scheduled energy in
(8) must be modified to be directly affected by the SU variable
instead of .
8) Objective Function: The goal of a price-taker producer in

a self-UC is to maximize his profit during the planning period,
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which is the difference between the revenue and the total op-
erating cost (9). For the sake of simplicity, a linear production
cost is used in this paper:

(9)

Note that the no-load cost considered in (9) ignores
the SU and SD periods. This is because the only multiplies
the commitment during the up state . In order to consider the
no-load cost during the SU and SD periods, and are
introduced in (9) and defined as

(9a)

(9b)

B. Final Power Schedule

The complete energy profile, including SU and SD power
trajectories, was presented in (8). Nevertheless, the complete
power output as well as the unit states online/offline have not
yet been obtained. This information can be explicitly modeled
as variables in the optimization problem, which will create a
considerably larger formulation. However, these values can be
obtained after the optimization problem has been solved without
changing the optimal results and then with negligible computa-
tional cost. Furthermore, this also contributes to the compact-
ness of the formulation. The total power output , and on-
line/offline states are presented as follows:

(10)

(11)

Furthermore, analogously to the SU and SD decisions and
which represent the changes between the up and down states,

the turn-on and turn-off decisions representing the
changes between the online and offline states are now obtained
with

(12)

(13)

TABLE I
THERMAL UNIT DATA

III. TEST RESULTS

The proposed formulation is tested for the self-UC of a
price-taker producer. The technical and economic data for the
thermal unit, including five different SU ramps, are presented
in Table I, and the expected electricity prices for a 48-hour time
span are shown in Appendix B. These data are based on infor-
mation presented in [11]. The power outputs for
the SU (SD) power trajectories are obtained as an hourly linear
change from to (0) for a duration of
hours, see Fig. 1. With respect to initial conditions, the unit
has been up for 6 hours before the scheduling horizon and its
initial power output is 200 MW. All tests in this paper were
carried out using CPLEX 12.3 under GAMS [29] on an Intel
i7 2.4-GHz personal computer with 4 GB of RAM memory.
Problems are solved to optimality, more precisely to 1e-6 of
relative optimality tolerance.
This section is divided into two parts. The first part shows

the impact of SU and SD ramps on the unit commitment. The
second part presents a comparison of the proposed formulation
with those presented in [13] and [11].

A. Scheduling and Economic Impact

In order to illustrate how the unit operation is affected if the
SU and SD ramps are considered, the case study has been solved
with and without the ramp trajectories. The formulation with
SU and SD ramps is labeled as Improved and the formulation
considering just the exponential-SU and SD costs is labeled as
Traditional.
Unlike the Traditional formulation, considering the energy

produced during the SU and SD ramps makes the Improved for-
mulation perceive revenues during these ramping processes. To
make a fair comparison between both formulations, the inherent
energy produced during the SU and SD ramps is introduced into
the Traditional formulation after the problem has been solved
(see darker gray area in Fig. 3). That is, even when the Tradi-
tional formulation ignores these ramps in the scheduling stage,
they are inevitably present during the operation stage. Subse-
quently, this energy can be added to the solution and this extra
energy can also be sold. The total revenues for the Traditional
formulation are then obtained by adding the revenues obtained
from the UC solution to the revenues obtained from the energy
produced during the SU and SD processes. These latter revenues



MORALES-ESPAÑA et al.: TIGHT AND COMPACT MILP FORMULATION OF START-UP AND SHUT-DOWN RAMPING IN UNIT COMMITMENT 1293

TABLE II
PRODUCER COSTS AND PROFITS

are calculated by multiplying the electricity price by the energy
produced during the SU and SD ramps.
Fig. 3 and Appendix B show the optimal power and energy

schedules for the Traditional and Improved formulations. Note
the different duration of the SU power trajectories for the Im-
proved formulation in Fig. 3. SU durations of one, two and three
can be observed (starting at hours 16, 6, and 30, respectively)
as a consequence of the different unit’s down (and thus offline)
time durations.
The optimal scheduling decision taken by the Traditional

formulation around hours 15–17 and 39–41 was to produce
at minimum output ( in Fig. 3) even when electricity
prices were lower than the unit’s linear variable production cost

(CLV in Fig. 3). This is a very common behavior, where
producing at generates fewer losses than shutting down and
starting up the unit within a short period. On the other hand,
when SU and SD ramps are considered, the optimal scheduling
decision is to turn off the unit during these hours. The reason
is that the SU and SD costs are offset by the revenues received
from the energy produced during the SU and SD ramping
processes. In short, unlike the Improved formulation, in the
Traditional model, the SU and SD processes are perceived as
pure losses. Therefore, the optimal decision of the Traditional
UC formulation is to not turn off the unit for short periods to
avoid these losses.
The main problem affecting the Traditional formulation is

that revenues during the SU and SD processes are not consid-
ered in the optimization problem. Therefore, there is a tendency
to produce at least at minimum output, even when electricity
prices are lower than , and thus obtain some revenues that
compensate for the losses. This drawback is overcome by con-
sidering the SU and SD power production in the formulation.
Table II shows the difference between costs, revenues and

profits for the solutions of both formulations. As mentioned be-
fore, the total revenue for the Traditional model is obtained by
adding the revenues due to the ramping process ($14 800) to the
revenues obtained from the optimal solution ($602 452). For this
illustrative case, the profits when considering the SU and SD
ramps are around 46% higher than when these ramps are not
taken into account.

B. Comparing Different Formulations

The proposed formulation is compared with those available
in [13] and [11]. Reference [13] proposes a formulation to deal
with a single SU and SD ramp trajectory, whereas [11] deals
with different SU trajectories depending on the unit’s prior
down time. The different SU types, their associated costs and
power-trajectories are inherent characteristics of thermal units
and these data are provided by the manufacturer. However,
in order to compare the different formulations, the proposed
formulation is implemented considering one, three and five

different SU ramp types, and these models are labeled as R1,
R3, and R5, respectively. The single ramp type model R1 can
be directly compared with the single-ramp formulation pro-
posed in [13]. The model presented in [11] was implemented
considering three SU ramp types, and hence it can be directly
compared with R3. Model R5 is presented in order to observe
the extra computational burden which results from considering
extra SU ramp trajectories.
In order to assess the impact of the problem size on the com-

putational performance of the models, several case studies of
different sizes were solved. The price profile of one day (see
Appendix B) has been replicated over different time spans from
4 to 256 days (each case is solved in one step for the complete
time span). The unit data are presented in Table I, where the in-
formation for the single-ramp models (R1 and [13]) is the SU
ramp type 02, the three-ramp models (R3 and [11]) are the first
three SU types, and the five-ramp model (R5) are the five SU
types.

1) Assumptions for the Formulations: In order to compare
all the formulations, [13] and [11] were implemented using the
same objective function and the same set of constraints as the
formulation presented in Section II. Therefore, all the models
are characterizing the same problem; the difference between
them is how the constraints are formulated. In other words, two
models considering the same SU types (R3 and [11], or R1 and
[13]) obtain the same optimal results, e.g., commitments, gen-
erating outputs and profits.
The distinction between power and energy was made when

implementing [13] and [11]. Additionally, as modeled here, the
(usual) power variable is considered to be the power at the end
of the period; and the energy is obtained by applying a piece-
wise-linear power profile. [11] was implemented with the same
minimum up/down constraints presented in Section II-A3 as
those are the constraints they also use. The synchronization time
was set to zero in [11] as we believe this time does not need
to be explicitly modeled, thus making the formulation simpler.
That is to say, the synchronization time can be considered as
a part of the offline time and obtained after the problem has
been solved, without changing the optimal results (similar to
the turn-on state presented in Section II-B). Finally, the other
constraints presented in [11], which are not related to the SU
and SD ramps, were not implemented (e.g., quadratic produc-
tion costs and different power reserves).
Table III presents the optimal solutions for all the models

for different time spans. As expected, the optimal solution for
models R1 and [13] are the same, as well as the solution for
models R3 and [11]. Interestingly, model R5, which considers
five ramp types, also presents the same solution as R3 and [11].
This is because, in R5, ramp types 04 and 05 were never acti-
vated for this example case because the unit was not down for
long enough. As in the case of the difference between R1 and
R3 (see Table III), if the five different ramps had been activated
in R5, this would have decreased the operational costs in com-
parison with R3 because more flexibility is possible (more SU
ramp types).
1) Problem Size: Table III shows the dimension of all the

models for the different case studies. Models R1 and [13] have
the same number of variables, but [13] presents three times as
many binary variables as R1. This is because [13] defines the
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TABLE III
COMPARISON OF DIFFERENT FORMULATIONS

SU and SD variables as binary; however, they can be considered
as continuous variables (see Section II-A4). The formulation in
[13] also requires more than twice the quantity of constraints
and nonzero elements than the proposed formulation R1.
As shown in Table III, [11] presents about 16 times more

binary variables than the proposed formulation R3. Models R3
and R5 have more real variables than [11]. However, the total
number of variables in R3 and R5 is smaller than the number of
binary variables in [11]. R3 and R5 also present less than half
the number of constraints than [11]. Furthermore, [11] presents
up to 4.3 and 3 times more nonzero elements than R3 and R5
respectively. Similarly to [11], [13] needs these extra variables
and nonzero elements to deal with the different SU ramp types
and to avoid conflicts between the up and down states.
Note that model R5 is slightly larger than R3, with respect to

the number of variables and constraints, because R5 considers
two more ramp types than R3. This also shows that the compact
formulation does not increase considerably when considering
more SU types.
2) Computational Performance: Apart from the compact-

ness of the proposed MILP formulation, the tightness has
a significant impact on the computational performance, as
mentioned in the Introduction. In fact, a compact formulation
usually presents a weak LP relaxation that can dramati-
cally increase the MILP resolution time. The tightness of an
MILP can be measured with the integrality gap [24]. The
integrality gap, for a maximization problem, is defined as

, where is the optimal value of
the relaxed LP problem, and is the best integer solution
found after the MILP problem is solved.
Table III shows the integrality gaps for the different formula-

tions. Compared to [13], the proposed single-ramp formulation
R1 has improved (reduced) the integrality gap between 46% and
49%. Similarly, with respect to [11], R3 improves the integrality
gap between 41% and 45%. Table III also shows the nodes ex-
plored during the branch-and-cut phase; these are usually de-
creased with tighter formulations. Note that, for all the different
cases, CPLEXwas able to solve R1 with the required optimality
tolerance without needing to branch, because the nodes were
pruned earlier by the initial heuristics and cuts applied. Apart
from the number of nodes, the performance of an MILP formu-

Fig. 4. Convergence evolution until low optimality tolerances for the different
formulations.

lation is dramatically affected by the use of heuristics and cuts,
and all of these are influenced by the tightness of the formula-
tion [19]. Therefore, we will only comment about CPU times
which offer a more complete view of the model’s performance.
The CPU times for the different case studies are presented in

Table III, where R1 and R3 are up to 22.4 and 10.1 times faster
than [13] and [11], respectively. This significant speed up is due
to the simultaneous tightness and compactness of the proposed
formulation. It is interesting to note that the formulation in [13],
which models a single ramp trajectory and does not take into
account exponential SU costs, is a larger model (presents more
constraints and nonzero elements) and also requires more time
to solve the problem than R5, which considers five different SU
ramps and also exponential SU costs.
Finally, Fig. 4 shows the convergence evolution for the dif-

ferent formulations to small optimality tolerances for the case
study of 256 days. The proposed formulation converges sig-
nificantly faster than [13] and [11]. This is mainly due to its
tightness.

IV. CONCLUSIONS

This paper presented an MILP formulation of the SU and
SD power trajectories of thermal units. This formulation is si-
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TABLE IV
PRICE DATA AND OPTIMAL GENERATION SCHEDULE

multaneously tighter and more compact than equivalent formu-
lations found in the literature. Consequently, the computation
time is dramatically reduced. The proposed MILP formulation
was analyzed in the context of a price taker self-unit commit-
ment problem. However, its application to any unit commitment
problem is straightforward, either under centralized or compet-
itive environments. Several case studies were analyzed to show
the improvements of this formulation with respect to others
available in the literature. Although SU and SD ramps are usu-
ally not considered, mainly because of the computation com-
plexity, simulation results showed that ignoring them changes
the commitment decisions causing a negative economic impact.

APPENDIX

A. Initial Conditions

The following parameters are needed to deal with the unit
state during the first periods:

Initial commitment state {0,1}.

Number of hours that the unit has been up before
the scheduling horizon.

Number of hours that the unit has been down before
the scheduling horizon.

1) Initial Minimum Up/Down Times: The following con-
dition must be satisfied if :

(14)

where and are the number of initial hours during
which the unit must remain up or down at the beginning of the
scheduling horizon. and are defined as follows:

(14a)

(14b)

2) Initial Start-Up Type: Equation (15a) complements (1)
taking into account the initial conditions if :

(15a)

Finally, the following equation guarantees that the SU is
not activated before the SU ramp duration :

(15b)

In other words, this condition ensures that if the unit is turned
on in the first hour, the power output above is produced after
the ramp duration .

B. Generator-Schedules and Price-Data

The expected electricity prices and optimal power schedules
mentioned in Section III are shown in Table IV, where super-in-
dexes and refer to the Traditional and Improved formula-
tions. The numbers in parentheses are the power and energy that
were included after the UC problem was solved.
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An MIP Formulation for Joint Market-Clearing of
Energy and Reserves Based on Ramp Scheduling
Germán Morales-España, Student Member, IEEE, Andres Ramos, and Javier García-González, Member, IEEE

Abstract—The day-ahead unit-commitment (UC)-basedmarket-
clearing (MC) is widely acknowledged to be the most economically
efficient mechanism for scheduling resources in power systems.
In conventional UC problems, power schedules are used to rep-
resent the staircase energy schedule. However, the realizability of
this schedule cannot be guaranteed due to the violation of ramping
limits, and hence conventional UC formulations do not manage
the flexibility of generating units efficiently. This paper provides
a UC-based MC formulation, drawing a clear distinction between
power and energy. Demand and generation are modeled as hourly
piecewise-linear functions representing their instantaneous power
trajectories. The schedule of generating unit output is no longer a
staircase function, but a smoother function that respects all ramp
constraints. The formulation represents in detail the operating re-
serves (online and offline), their time deployment limits (e.g., 15
min), their potential substitution, and their limits according to the
actual ramp schedule. Startup and shutdown power trajectories
are also modeled, and thus a more efficient energy and reserves
schedule is obtained. The model is formulated as a mixed-integer
programming (MIP) problem, and was tested with a 10-unit and
100-unit system in which its computational performance was com-
pared with a traditional UC formulation.

Index Terms—Mixed-integer programming, operating reserves,
startup and shutdown ramps, UC-based market-clearing.

NOMENCLATURE

Uppercase letters are used for denoting parameters and sets.
Lowercase letters denote variables and indexes.

Indexes and Sets:

Generating units, running from 1 to .

Startup segments, running from 1 (the hottest)
to (the coldest).

Hourly periods, running from 1 to hours.

Index for reserve type: and for secondary
up and down; and for tertiary up and
down; and for offline tertiary up and
down.

Index for time interval: for 15 min, for
30 min, and for 1 h.
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Parameters:

Linear variable production cost bid [$/MWh].

No-load cost bid [$/h].

Shutdown cost bid [$].

Startup cost bid for starting up at segment .

Cost bid for reserve type MW].

Instantaneous demand at the end of hour [MW].

System requirements for reserve type MW].

Energy capacity bid [MWh].

Maximum power output [MW].

Minimum power output [MW].

Power output at the beginning of the th interval
of the shutdown ramp process [MW]; see Fig. 2.

Power output at the beginning of the th interval
of the startup ramp process type [MW]; see
Fig. 2.

Quick shutdown capability for
[MW].

Quick startup capability for [MW].

Capacity bid for reserve type [MW].

Ramp-down capability for interval [MW/min].

Ramp-up capability for interval [MW/min].

Duration of the shutdown process [h]; see Fig. 2.

Duration of the startup process type [h]; see
Fig. 2.

Time defining the interval limits of the startup
segment , [h].

Minimum down time [h].

Minimum up time [h].

Decision Variables:

Energy schedule for hour , excluding energy
production during the startup and shutdown
processes [MWh].

Power output schedule at the end of hour ,
production above the minimum output [MW].

0885-8950 © 2013 IEEE



MORALES-ESPAÑA et al.: MIP FORMULATION FOR JOINT MARKET-CLEARING OF ENERGY AND RESERVES 477

Total power output schedule at the end of hour
, including startup and shutdown trajectories
[MW].

Reserve type schedule [MW].

Binary variable which is equal to 1 if the unit
is providing up/down offline tertiary reserve
( ) and 0 otherwise.

Binary variable which is equal to 1 if the unit is
producing above and 0 otherwise; see Fig. 2.

Binary variable which takes the value of 1 if the
unit starts up and 0 otherwise; see Fig. 2.

Binary variable which takes the value of 1 if the
unit shuts down and 0 otherwise; see Fig. 2.

Startup type . Binary variable which takes the
value of 1 if the unit starts up and has been
previously down within hours.

I. INTRODUCTION

A. Motivation

D AY-AHEAD market-clearing (MC) is the central mech-
anism in electricity markets, despite the large variety in

market designs across the world. Unit commitment (UC)-based
MC, in which energy and operating reserves are simultaneously
cleared, is widely, if not universally, acknowledged to be the
most economically efficient way to run day-ahead markets [1],
[2]. The UC problem schedules the cheapest resources to supply
the demand, while operating the system and units within se-
cure technical limits [1], [3]. Moreover, simultaneous clearing
avoids uneconomical out-of-merit operation and mitigates po-
tential market power when hierarchical substitution of reserves
is considered [2], [4], [5].
Current day-ahead scheduling practices do not exploit the real

flexibility of power systems and could even endanger security
of supply. This problem is faced bymarkets that are (physically)
cleared on an hourly basis as well as on a sub-hourly one. An
inherent problem of hourly-cleared markets is that they make an
(staircase) hourly energy balance between supply and demand
rather than matching the instantaneous generating power pro-
files with the power demand profile. In these kind of markets,
generators are penalized if they deviate from their hourly en-
ergy schedule. Therefore, units operate by trying to match their
power profile with the staircase energy blocks. This staircase
behavior creates large generation gradients at the beginning and
at the end of every trading hour, causing large frequency devia-
tions during these time intervals [6], [7]. As a consequence, even
in the absence of uncertainty, power system security is being
compromised and a significant quantity of operating reserves
need to be deployed in real time to maintain the supply-demand
balance. A report from The European Network of Transmission
System Operators for Electricity (Entso-e) [8] summarizes the
operational and economic impacts of this phenomenon on the
power system and generating units.
Although sub-hour or real-time markets allow the mitiga-

tion of these problems, an inadequate day-ahead schedule may

Fig. 1. Scheduling versus deployment. (a) Traditional energy schedule. (b) Ac-
tual deployment.

leave real-time markets unprepared to face real-time uncertain-
ties. In fact, some power systems have experienced short-term
scarcity events caused by resources with sufficient power ca-
pacity but insufficient ramp capability [9]. In response, inde-
pendent system operators (ISOs) are developing market-based
ramping products that will be acquired in day-ahead markets in
order to increase real-time dispatch flexibility [9], [10].
In order to better prepare the power system to face real-time

uncertainties, day-ahead scheduling approaches are required to
efficiently manage power system flexibility by adequately uti-
lizing ramping resources.

B. Literature Review

1) Inefficient Ramp Management—Energy versus Power:
Conventional day-ahead UC formulations fail to deal with
ramp capabilities appropriately. Inefficient ramp management
arises from applying ramp-constraints to energy levels or
(hourly) averaged generation levels, which is standard practice
in traditional UC models [1], [3], [5], [11]. As a result, energy
schedules may not be feasible [12]. To illustrate this problem,
consider the following scheduling example for one generating
unit. This example assumes that the minimum and maximum
generation outputs of the unit are 100 MW and 300 MW,
respectively, and that the maximum ramp rate is 100 MW/h.
As shown in Fig. 1(a), if the unit ramps up at its maximum
capability and has been producing 100 MW during the first
hour, then the expected hourly energy levels for the second
and third hours will be 200 MWh and 300 MWh, respectively.
However, the unit cannot reach its maximum output before the
end of the third hour due to its limited ramp rate, as shown in
Fig. 1(b). Consequently, the solution obtained in Fig. 1(a) is not
feasible. In fact, the unit requires a ramping capability of 200
MW/h to be able to produce the energy presented in Fig. 1(a).
Note that representing the generation in a staircase fashion

(energy blocks) may lead to misleading estimations of a
system’s ramp availability. This in turn could leave the system
unprepared to face real-time uncertainties. For example, if
the unit in the previous example were actually scheduled to
produce the energy profile presented in Fig. 1(b) then, since
the first energy increase is 50 MW (half of the unit’s ramp
capability), the unit would be erroneously considered to have
50 MW of remaining upward ramp flexibility.
Although it has been proven that delivering the energy

schedule obtained from these energy-block formulations may
not be feasible [12], insufficient attention has been paid to this
issue. Formulations drawing a clear distinction between power
and energy have been proposed, guaranteeing that staircase
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energy schedules can be realized [13]–[15]. In [13] a smooth
nonlinear programming problem which does not take into
account discrete decisions is proposed (e.g., commitment).
The work in [14] presents a formulation with feasible energy
delivery constraints, which is further extended in [15], where a
sub-hourly UC is formulated. These formulations are focused
on feasible energy schedules rather than on matching gener-
ating and demand power profiles. In fact, these formulations
supply hourly energy demand with power profiles that vary
from staircase [15] to oscillating power trajectories [16], which
are far from matching the instantaneous power demand fore-
cast. This indiscriminate use of ramping resources from the
scheduling stage does not permit the effective management of
the system ramp capabilities to face real-time uncertainties. In
addition, the formulations do not model operating reserves.
2) Startup and Shutdown Power Trajectories: Conventional

day-ahead UC models assume that units start/end their produc-
tion at their minimum output. That is, UC models ignore the
intrinsic startup (SU) and shutdown (SD) power trajectories of
thermal units. Consequently, there is an increasing amount of
energy that is not being allocated by day-ahead scheduling ap-
proaches because, first, units provide energy (and ramp) during
the SU and SD processes, affecting the total load balance; and
second, thermal units are being shut down and started up more
often due to the increasing penetration of variable generation
[17]. As a result, there is an inefficient deployment in real time
of resources that are required to accommodate the power trajec-
tories that were ignored in the day-ahead schedule, so that the
balance between supply and demand is maintained [18]. Fur-
thermore, as discussed in [19], ignoring these power trajectories
can significantly change commitment decisions, which in turn
increases operating costs. Recent papers indicate an awareness
of the importance of the SU and SD processes [20]–[22]. How-
ever, SU and SD power trajectories continue being ignored be-
cause the resulting model will supposedly be considerably more
complex, and thus lead to prohibitive solving times.
An adequate day-ahead schedule not only must take into ac-

count these SU and SD power trajectories, but also must opti-
mally schedule them to avoid the aforementioned drawbacks.
3) Reserve modeling: Another drawback of conventional

UC-based MC formulations is related to the accuracy of reserve
modeling. Reserves must be scheduled on the basis of their
required time deployment (e.g., 15 min) and not as an hourly
requirement, as has been commonly modeled [1], [5], [11]. The
formulations presented in [4], [23], and [24] guarantee possible
reserve deployments in a fewminutes, although thesemodels are
onanhourly-basis.However, theydonotconsider the real reserve
availability of a unit which depends on its actual ramp schedule.
A correct modeling of ramp constraints, which must be ap-

plied to power trajectories, is then required to guarantee the ex-
ecution of the power schedules and correctly represent the real
availability of operating reserves at anymoment within the hour.
For further details of the drawbacks of conventional UC-

based scheduling approaches, the reader is referred to [18].

C. Ramp-Based Scheduling Approach: An Overview

This paper proposes a day-ahead UC-based MC formulation
in which the operating ramping of generators is optimally sched-
uled to supply an instantaneous power demand forecast. In ad-
dition, the formulation guarantees that operating reserves can be

deployed in a given (required) time. The formulation is repre-
sented as a mixed-integer programming (MIP) problem. MIP is
becoming widely used in the electricity sector due to significant
improvements on MIP solvers [25].
The proposed formulation draws a clear distinction between

power and energy. Ramp constraints are thus applied on power
trajectories rather than on energy blocks, which is a common
drawback of conventional UC formulations [1], [3], [5], [11].
Power production and demand are modeled as an hourly piece-
wise-linear function representing their instantaneous power
trajectories. This overcomes the disadvantages of power-based
scheduling models [13]–[15] by having the clear objective
of matching the instantaneous power demand with the total
power generation profile, thus avoiding an indiscriminate use
of ramping resources in the scheduling stage.
Unlike previous works that have modeled reserves [1], [3],

[5], [11], [23], [24], the proposed formulation provides the ac-
tual ramp schedules, and thus defines the available ramp capa-
bility that can be used to provide reserves. Although the for-
mulation is based on time periods of one hour, it also guaran-
tees that reserves can be deployed within the time requirements
(a few minutes) imposed by the reliability authorities (for each
type of reserve) [26].
In addition, the formulation considers SU and SD power tra-

jectories, thus avoiding power discontinuities in the scheduling
stage which result in an inefficient deployment of resources in
the real-time operation.
The proposed formulation would help ISOs to draw up an ef-

ficient day-ahead ramp resources schedule in order to better pre-
pare the system to face real-time uncertainties. For the case of an
hourly-cleared market (such as those in Europe), if the proposed
approach were followed, generating units would be penalized
if they deviated within the hour from the scheduled power tra-
jectory. As a result, in comparison with the staircase approach,
the aggregated generation would better fit the power demand.
This strategy would avoid large frequency deviations at the hour
limits and the unnecessary reserve use caused by the mismatch
between supply and demand. In addition, power systems with
real-time markets would be better prepared to face real-time
if their day-ahead schedules followed piecewise power profiles
rather than staircase energy blocks. This is because, in compar-
ison with the conventional staircase scheduling approach, the
scheduled power profiles would be a better approximation of the
units’ real production and the optimal ramp scheduling would
correctly estimate the ramp availability of power systems.
This paper is focused on scheduling quantities, and the

problem of determining the prices that will allow generators
to recover their non-convex costs, is beyond the scope of this
work. However, a pricing mechanism for a multi-part bidding
with different commodities [27], such as startup and shutdown
costs, can be applied directly. It is important to highlight that
the proposed ramp-based approach presents great challenges
in terms of market design. Both the definition of a proper
pricing mechanism that copes with continuous power profiles
and the consideration of demand bids expressed as continuous
functions are some examples that require further research. Nev-
ertheless, the ideas presented in this paper have potential for
broad applications, such as for reliability UC, which guarantee
the feasibility of the scheduling obtained after forward markets
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have been cleared [9], [10]. Finally, for the sake of simplicity
and without loss of generality, transmission constraints are not
considered in this paper.

D. Contributions

The principal contributions of this paper are as follows:
1) A day-ahead UC-based MC formulation is proposed in
which the total power generation follows the instantaneous
power profile of the demand forecast. This is achieved by
taking into account piecewise-linear power-trajectories in-
stead of staircase energy-blocks, and also scheduling the
SU and SD power trajectories of thermal units.

2) The actual reserve availability is accurately defined, based
on the units’ ramp schedules. The formulation takes into
account different ramp-rate limits, and it guarantees that re-
serves can be deployed within their different time require-
ments. Consequently, the reserve capabilities of a system
are optimally scheduled, taking a better advantage of units’
flexibility.

3) The core of the proposedMIP formulation is built upon the
tight and compact formulations presented in [19] and [28],
thus taking advantage of their mathematical properties.
These formulations reinforce the convergence speed by
reducing the search space (tightness) andat the same timeby
increasing the searching speed with which solvers explore
that reduced space (compactness). That is, the formulations
are simultaneously tight and compact. If compared with a
traditional UC formulation, with no SU and SD ramps and
representing a single reserve type, theproposed formulation
involvesa lowcomputationalburdenandsolving timeswere
even decreased when a large study case was carried out.

E. Paper Organization

The remainder of this paper is organized as follows. Section II
details the mathematical formulation of different operating re-
serves (secondary, tertiary online and tertiary offline) and their
links with the ramp schedules. Section III presents some numer-
ical examples as well as a comparison with a conventional UC.
Finally, concluding remarks are made in Section IV.

II. PROPOSED APPROACH

This section details the mathematical formulation of the pro-
posed UC-based market-clearing approach. This paper models
secondary and tertiary reserves using European standards as a
benchmark [26]. The up/down reserve provided by a generating
unit is defined as the amount of power that the unit can in-
crease/decrease over its scheduled power output within a time
limit. Secondary up and down reserves are pro-
vided by online units that respond to a continuous automatic
generation control (AGC). The secondary reserve must be fully
available within 15 min. Tertiary reserve is composed of on-
line up and down reserves, as well as offline up

and down reserves. The tertiary reserve is man-
ually activated by ISOs and it is used to release the secondary
reserve or prevent its activation. After being called, the tertiary
reserve must be fully available within 30 min. Although the for-
mulation follows these time deployments, the adaptation to U.S.
standards [29] is straightforward. For example, the 10-min spin-
ning reserve can be modeled in the same way as the (15-min)

secondary reserves by simply modifying the parameters estab-
lished for the time deployments.
The formulation takes into account different ramp limits to

model different reserve time deployments. These limits change
depending on the duration of the ramping process, i.e., the
shorter a sustained ramping process, the larger the ramp limits
without shortening the rotor life [30]. For the sake of simplicity
and without loss of generality, ramp-rate limits are considered to
be constant during the unit’s up state; however, the formulation
can be further extended to deal with dynamic ramps [31].
The first part of this section presents the general formulation.

The second part describes how to obtain the ramp-capability
and power-capacity constraints using the proposed ramp-based
scheduling approach. The following two parts are devoted to
modeling the reserve constraints for slow- and quick-start units,
respectively. Finally, the last subsection lists some specific char-
acteristics that make the formulation computationally efficient.

A. General Formulation

In order to obtain computational advantage, the generation
output above and bellow is managed independently [28]. This
also facilitates the inclusion of SU and SD power trajectories in
the model [19]. Therefore, the up and down states are distin-
guished from the online and offline states, as shown in Fig. 2.
The unit is online when providing energy to the system and of-
fline otherwise. During the up period, the unit has the flexibility
to follow any trajectory being limited by its power-capacity and
ramp-capability limits. Consequently, the unit can only provide
reserves when it is up. On the other hand, the unit’s power output
follows a predefined power trajectory when it is starting up or
shutting down. The SU power trajectory depends on the unit’s
previous down time, unlike the SD process.
1) Objective Function: The objective of theMC is to procure

energy and reserves at the minimum cost:

(1)

Note that the startup cost includes the energy spent by two
different actions: first, the energy required to bring the thermal
unit online, which does not result in any MW generation [32];
second, the cost of the energy that is provided to the system
during the SU process, i.e., the energy which is produced until
the unit achieves its minimum output, up state. Both the cost of
bring the unit online and the duration of the SU ramp, depend
on how long the unit has been down [19]. Similarly, the
includes the cost of the energy provided to the system during
the SD ramp process.
2) Power System Requirements: The power system require-

ments for demand and reserves are presented as follows:

(2)

(3)

(4)
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(5)

(6)

The demand balance in (2) is calculated at the end of hour .
Note that the energy balance for the whole hour is automatically
achieved by satisfying the power demand at the beginning and
end of each hour, and by considering a piecewise-linear power
profile for demand and generation. Constraints (3) and (4) rep-
resent the supply of up and down secondary reserves. The con-
straints satisfying the tertiary reserve requirements, (5) and (6),
also consider the substitution of a higher quality reserve for a
lower quality reserve [2], [4], [22], [24]. In other words, the
secondary reserves can technically substitute tertiary reserves
as long as this reduces the total procurement costs.
3) Commitment Logic and Minimum Up/Down Times: The

relation between the commitment, startup and shutdown vari-
ables is presented in (7). Constraints (8) and (9) ensure the min-
imum up and down times, respectively [33]:

(7)

(8)

(9)

where the minimum up/down constraints ensure that a unit
cannot start up and shut down simultaneously. Note that (8)
and (9) guarantee (dominate over) the inequalities
and , respectively, which, combined, become

. In addition, given that is defined as a binary
variable, (7) forces and to take binary values, even if
they are defined as continuous.
4) Selection of SU Type: The SU type and the SU and SD

power trajectories are obtained using the tight and compact for-
mulation proposed in [19], which considerably reduces the com-
putational burden in comparison with analogous formulations
commonly found in the literature. The SU type is selected with

(10)

(11)

where (10) allows that the startup segment can be selected
if the unit has been previously down within
hours. Constraint (11) forces the selection of a

unique SU type if the unit actually starts up.
As discussed in [19] and [28], the variables take binary

values even if they are defined as continuous. This is due to the
tightness characteristic of the startup-cost formulation. Note that
(10) is not defined for the first hours. See [19] for details of how
the initial conditions define for these first hours.
5) Total Power Output: Although all units’ technical con-

straints are applied to the output variable , which is produc-

Fig. 2. Unit operation states, including SU and SD power trajectories.

tion above , the total power production is needed to sat-
isfy the power demand (2).
As presented in [19], the total power output including the SU

and SD power trajectories for slow-start units is obtained with

(12)

For a better understanding of this constraint, we can analyze
how the power trajectory example in Fig. 2 is obtained from the
three different parts in (12):
1) Output when the unit is up: Although the unit is up for five
consecutive hours, there are six total power values, from

to , greater than or equal to (see the squares in
Fig. 2). When , the term in (i) becomes
ensuring (the first) at the beginning of the period,
and the term adds (the remaining five) for

. In addition, adds the power production above
.

2) SD power trajectory: This process lasts for two hours,
; then, the summation term (ii) becomes

, which is equal to for
and for , being zero otherwise. This provides
the SD power trajectory (see the circles in Fig. 2).

3) SU power trajectory: the SU power trajectory can be ob-
tained using a procedure similar to that used in 2) (see the
triangles in Fig. 2). The possible SU trajectory is given by
the chosen segment (see Section II-A4), which depends
on how long the unit has been down.

6) Energy Schedule: The energy produced by a unit during
the up state, following an hourly piecewise-linear power profile,
is obtained with

(13)

This energy is used to represent the unit’s production cost during
the up state in (1). The energy produced during the SU and SD
processes is internalized in the SU and SD costs, as discussed
in Section II-A1. The total energy schedule can easily be calcu-
lated using after the optimization problem is solved.
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Fig. 3. Relation between secondary reserves, power trajectory, and ramps.

7) Operating Ramps: The traditional ramp constraints for
the unit operation are presented as follows:

(14)

B. Obtaining the Reserve Constraints

This subsection is made for illustrative purposes in order to
aid understanding of how the ramping and capacity constraints
are derived. For the sake of simplicity only secondary reserves
are considered here. The complete formulation also taking into
account the tertiary reserves is presented in Sections II-C and
II-D for slow- and quick-start units, respectively. In other words,
the equations (1)–(14) together with (21)–(45) provide the com-
plete formulation that is proposed in this paper. A formula-
tion that only models secondary reserve, ignoring online and
offline tertiary reserves, is described by (1)–(14) together with
(15)–(20).
1) Ramping Limits: The up (down) secondary reserve pro-

vided by a generating unit is the amount of power that the unit
can increase (decrease) over its scheduled power output within
15 minutes. Therefore, as observed in Fig. 3, the segment EB
(BF) defines the up (down) secondary reserve, which is the
power above (below) the scheduled power output level B. The
following constraints ensure that the unit has the ramp capability
to provide up (EB) and down (BF) secondary reserves:

(15)

(16)

As shown in Fig. 3, when the unit is ramping up, the 15-min
ramp excursion resulting from the scheduled power trajectory
(BA) and the down up secondary reserve (EB) cannot exceed the
15-min ramp capability (15). Similarly, when the unit is ramping
down, the 15-min ramp excursion due to the scheduled power
trajectory (AB) plus the down secondary reserve (BF) cannot
exceed the 15-min ramp capability (16).
As shown in Fig. 3, due to the hourly piecewise-linear power

profile, the ramp excursion of the power trajectory during a 15
min period is a quarter of that obtained during an hour.

The reserve that is available within one hour depends directly
on the unit power trajectory during that hour. For example, the
up (down) secondary reserve availability increases (decreases)
if the scheduled power is ramping down. This is the case in
Fig. 3, where the up secondary reserve (EB) can even be greater
than the 15-min ramp rate limit.
2) Capacity Limits: The reserve interval (grey areas in

Fig. 3) must not exceed the unit’s capacity limits at the end of
the hour:

(17)

(18)

Constraint (17) also guarantees that the unit is at the minimum
output at the instant when the SU (SD) power trajectory
finishes (starts), thus connecting the production above with
the SU (SD) power trajectory, as discussed in Section II-A5.
This can be observed in the example presented in Fig. 2, where
(17) makes equal to zero at the end of hours 4
and 9 , which are the beginning and end of the up
state period, respectively.
It is important to note that (17) and (18) do not ensure that the

unit operates within its capacity limits during the whole hour.
When the unit is ramping down (up), the unit can violate its
maximum (minimum) power limit at minute 15, as indicated
with point E (F) in Fig. 3. This problem is avoided by ensuring
that point E is below the maximum power limit (19) and F is
above the minimum (20):

(19)

(20)

In short, secondary reserves can be provided at any time
within the hour by guaranteeing that the reserve interval (grey
areas in Fig. 3) does not exceed the ramp-capability and
power-capacity limits at the end of the hour and at minute 15.

C. Secondary and Tertiary Reserves for Slow-Start Units

The complete formulation for secondary and tertiary reserves
is presented in this subsection. The formulation guarantees a si-
multaneous or independent (either secondary or tertiary) reserve
deployment. All equations are derived in a similar fashion to the
constraints presented in Section II-B.
1) Ramping Limits: The simultaneous deployment of sec-

ondary and tertiary reserves cannot exceed the unit ramping
limits. The following constraints ensure that the unit operates
within its 30-min ramp limits

(21)

(22)
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Fig. 4. Relation between upward reserves, power trajectory, and ramps.

and the operation within the unit’s 15-min ramp limits are en-
sured with

(23)

(24)

As shown in Fig. 4, the 30-min ramp excursion due to the
scheduled power trajectory (JI) plus the up tertiary reserve (MJ)
cannot exceed the 30-min ramp rate limit (21). Similarly, the
15-min ramp excursion due to the scheduled power trajectory
(BA), plus the possible 15-min ramp excursion due to up ter-
tiary reserve (HB), plus the up secondary reserve (EH) cannot
exceed the 15-min ramp rate limit (23). Analogously to these
constraints, down reserve limits, (22) and (24), can be easily
obtained.
Note that if all ramp limits are the same

and , then the 15-min ramp
constraints (23)–(24) dominate over the 30-min (21)–(22) and
one-hour (14) constraints. Consequently, although (21)–(22) and
(14) would not be necessary, these constraints take advantage of
the different units’ ramp limits. To illustrate how this formulation
workswith different ramping limits, ,
wecananalyze theupwards reservedeployment for the following
example. Consider that unit presents a zero ramping excursion
during a givenhour , then and thus (14) is auto-
matically satisfied.Constraint (23) now ensures

, thenwehave the twoextreme feasible solutions
and . The former

solution does not violate the ramp limits, but the latter implies
that the unit may operate 30 min at 15-min ramp rate which
clearly violates the 30-min ramp limit. Therefore, (21) is nec-
essary to ensure that deploying does not violate the unit’s
30-min ramp limit .
2) Capacity Limits: The following constraints ensure that the

reserve intervals remain within the power capacity limits at the
end of the hour:

(25)

(26)

As discussed in Section II-B, these capacity limits at the end
of the hour (25)–(26) do not guarantee that the unit operates

within its capacity limits during the whole hour. Note in Fig. 4
that either the point O or the point E may exceed the maximum
power limit when the unit is ramping down. Therefore, (27) and
(28) are needed to keep the points O and E below the maximum
power limit:

(27)

(28)

Analogously, (29) and (30) ensure that the unit is always pro-
ducing above its minimum:

(29)

(30)

Finally, apart from keeping the units’ energy and reserve
within their technical limits, the formulation must also con-
strain energy and reserves by the bidding limits:

(31)

(32)

where the energy bid should be greater than or equal to ,
so that the unit can be committed.
In conclusion, constraints (14) and (21)–(32) guarantee that

the unit can provide simultaneously (or independently) sec-
ondary and tertiary reserves at any time within the hour without
violating its technical and bidding limits (ramp capability and
power capacity).

D. Secondary and Tertiary Reserves for Quick-Start Units

Unlike the slow-start units, the quick-start units can ramp up
(down) from 0 (more than ) to more than (0) within one
hour. This makes them technically capable of providing offline
tertiary reserves. Similarly to (12), which includes the SU and
SD trajectories for slow-start units, (33) presents the total power
output for quick-start units:

(33)

1) Up and Down Offline Tertiary Reserves: Due to the min-
imum power output , the offline up reserve that is scheduled
must be above and below the 30-min quick-SU power capa-
bility of the unit, as presented in (34). Models commonly found
in the literature fail to capture this technical characteristic
when modeling offline (or non-spinning) reserves. Similarly,
the offline down reserve must be between and the 30-min
quick-SD capability, as is shown in (35). We consider the ter-
tiary offline down reserve as the down reserve that involves the
shut down of the unit:

(34)

(35)
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Constraint (36) ensures that the unit can provide offline up
reserves if the unit is down but not shutting down, and (37)
ensures that the unit must be up but not starting up to provide
the offline down reserve:

(36)

(37)

Although two binary variables are needed to deal with offline
tertiary reserves, one of them is always fixed by . If ,
then (37) implies , andwhen , then (36)makes

.
2) Capacity Limits: To provide the offline down reserve for

a given hour, the unit must be operating below the 30-min SD
capability during that hour. This is ensured by the upper limit
constraints of the unit at the beginning of the hour (38), at the
end (39):

(38)

(39)

and at minute 30 (40) and 15 (41):

(40)

(41)

Finally, the total power output must be greater than the summa-
tion of all downward reserves. This is guaranteed in the lower
limit constraints of the unit at the beginning of the hour (42), at
the end (43):

(42)

(43)

and at minutes 30 (44) and 15 (45):

(44)

(45)

E. Computational Efficiency

The computational performance of an MIP formulation de-
pends mainly on its tightness (distance between relaxed and in-
teger solutions) and compactness (quantity of data to process),
as stated in the literature of integer programming [34], [35]. The
full exploitation of these two characteristics has meant a break-
through in off-the-shelf MIP solvers (through cutting planes and
root presolve) [36], [37].

The core of the proposed MIP formulation is built upon the
tight and compact formulations presented in [19] and [28],
and thus takes advantage of these mathematical properties.
Although detailing the mathematical properties of the proposed
formulation is beyond the scope of this paper, some specific
aspects are worth mentioning to aid the understanding of its
computational efficiency:
1) The number of binary variables is a very poor indicator of
the difficulty of an MIP model [34], [35]. Increasing the
number of binary variables, as in the case of the proposed
formulation, is actually used as a tightening strategy [35].
See [19] and [28] for further details. In addition, the vari-
ables and can be defined as continuous be-
cause the formulation (tightness of the model) forces them
to take binary values. Therefore, declaring these variables
as binary does not increase the combinatorial complexity
and allow MIP solvers to use powerful strategies that ex-
ploit their integrality characteristic [28], [35], [36].

2) The only binary variable that is actually needed for slow-
start units is . On the other hand, the quick-start units re-
quire two extra binary variables and . However,
one of them is always fixed by (see Section II-D1). In
the worst case, they only add the complexity of one-single
binary variable. In any case, and fortunately, quick-start
units are usually a minority in the power system mixes.

3) The modeling of variable SU costs with and (10)–(11)
make a formulation significantly more tight and compact
in comparison with common SU-cost models (e.g., [11]),
as reported in [28]. Apart from taking this computational
advantage, this paper fully exploits the inclusion of to
model the SU power trajectories in 12 [19].

4) Including together with the equations in Section II-C
(Section II-D) further constrains the operation of slow
(quick)-start units. This means that the formulation is
actually being further tightened. A similar conclusion
was drawn in [38], where including ramping constraints
actually improved the MIP formulation.

5) Finally, the variables and are used in this work for
the sake of clarity. However, they are not strictly needed, as
the former could be directly included in (2) and the latter in
(1). Their values can be obtained after solving the problem,
without changing the results.

III. NUMERICAL RESULTS

The following case studies were conducted to illustrate the
proposed market-clearing formulation, given by (1)–(14) to-
gether with (21)–(45). The power system data was based on that
in [11]. This power system was adapted to consider SU and SD
power trajectories. Table I presents the technical and economic
data of the thermal units, including different SU ramps. Units 8
to 10 are quick-start units with hourly SU and SD capabilities
of 55 MW, and 50 MW for the 30-min SU and SD capabilities.
For slow-start units, the power outputs for the SU
(SD) power trajectories are obtained as an hourly linear change
from 0 to (0) for a duration of ( ) hours. The
energy costs due to SU and SD processes are added to the SU
and SD costs shown in Table I.
All tests were carried out using CPLEX 12.4 under GAMS

[39] on an Intel-i7 2.4 GHz with 4 GB of RAM memory. Prob-



484 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 29, NO. 1, JANUARY 2014

TABLE I
GENERATOR DATA

TABLE II
POWER AND ENERGY DEMAND PROFILES (MW)

lems were solved until they hit a CPU time limit of 1000 s or
until they reached optimality (more precisely to of relative
optimality tolerance). Apart from this, CPLEX default values
were used for all the experiments.
This section is divided into three parts. The first part illus-

trates how the formulation deals with the reserves. The second
part compares the difference in commitment schedules between
the proposed formulation and the conventional energy-block
scheduling. The last part compares the computational perfor-
mance of the proposed formulation with a UC formulation com-
monly found in the literature [11].

A. Ramp and Reserve Schedules

For this case study, the previously described power system
must meet the power demand D1, shown in Table II, at the end
of each hour. The up/down secondary and tertiary reserve re-
quirements of 2.5% and 5% of the power demand have to be
met for each hour. The 15- and 30-min ramp capabilities of the
units are assumed to be equal to 150% and 100% of their op-
eration ramp rates, respectively. For simplicity, we assume that
all units offer secondary, tertiary and offline-tertiary reserves at
20%, 10% and 40% of their energy variable cost , respec-
tively. Each unit is considered to have the same bids for upward
and downward reserves. The maximum reserve offered by each
unit is set to the maximum available reserve.
Fig. 6 shows the generation and reserve schedules for each

generation unit. Note the piecewise-linear profiles of power
schedules which follow the instantaneous demand forecast
profile. Reserves are scheduled as constant power availability
for each hour. Note in Fig. 6 (bottom section) that all the sched-
uled offline tertiary reserves are above the units’ minimum

Fig. 5. Examples of units power and upwards reserve schedules. (a) Unit 2
hour 4. (b) Unit 5 hour 19.

output (10 MW for quick-start units 7 to 10). As mentioned in
Section II-D, the units providing offline tertiary reserves cannot
be called to produce below their minimum output.
We will now examine some cases in which the available re-

serve of units were bound by the capacity and ramping limits:
1) Reserves bound by capacity limits: Interestingly, unit 2 is
scheduled to ramp down in hour 4 while the demand is in-
creasing during that hour, as shown in Fig. 6. Unit 2 re-
duces its production during hour 4 in order to provide up-
ward reserves to the system. Fig. 5(a) shows the power
production and upward-reserve schedules for unit 2 during
hour 4. In the event that unit 2 provides all the upward
scheduled reserves, the resulting power trajectory (see the
uppermost solid line in Fig. 5) will ramp up and achieve
the maximum unit capacity output (455 MW) after 30 min.
Note that the capacity limit is only reached if the unit starts
providing all the upward reserves at the beginning of the
hour.

2) Reserves bound by ramping limits: Fig. 5(b) shows the
power production and upward-reserve schedules for unit
5 during hour 19. The unit is scheduled to ramp up at
0.75 MW/min during normal operation. The unit 30-min
ramping limit is 1 MW/min, which means that the
unit has an extra ramp capability of 0.25 MW/min, which
results in 7.5 MW in the reserve that the unit can pro-
vide within 30 min . In addition, the unit has a 15-min
ramping limit of 1.5 MW/min. This means that for
15-min reserve deployment , the unit has an available
ramp capability of 0.5 MW/min, which results in a power
reserve capacity of 7.5 MW that can be provided in 15 min.
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TABLE III
OPTIMAL ENERGY SCHEDULES

Fig. 6. Generation and reserves schedules. For the reserve schedules, positive
and negative values refer to up and down reserves, respectively.

In conclusion, as discussed in Section II, even though the for-
mulation is on an hourly basis, it guarantees that the unit (ca-
pacity and ramping) limits are not violated within the hour when
providing reserves with shorter deployment times.

B. Conventional versus Ramp-Based Scheduling Approaches:
Commitment and Economic Impact

To illustrate the difference in schedules between the conven-
tional and the proposed scheduling approaches, the lowest pro-
duction cost is obtained for two different demand profiles as-
suming full knowledge of system conditions. That is, it is as-
sumed that the power demand profile is known perfectly and
that no uncertain events will happen. Therefore, there should be
no need for operating reserves and hence they are not consid-
ered (i.e., ). Although this situation is hypothet-
ical, it helps to evaluate [40] and compare the two scheduling
approaches.
The proposed ramp-based scheduling formulation, labelled

as PropRmpSch, and the conventional staircase energy ap-
proach, labelled as ConvlEnSch, are used to optimally schedule
the 10-unit system, in Table I, to supply the power demand
profiles and presented in Table II. Note that and
present the same energy profile ( in Table II) but different
ramp requirements. Table III shows the optimal energy sched-
ules found by PropRmpSch and ConvlEnSch to supply and
. While TradEnSch directly provides the energy schedules,

PropRmpSch provides the piecewise-linear power schedules
(see Table IV), and obtaining the resulting energy schedule
is straightforward ( ). Note that in Table III,
ConvlEnSch provides the same optimal scheduling solution
for and because they present the same energy profile.
On the other hand, PropRmpSch provides different optimal
scheduling for and , although both scheduling solutions
satisfy the same total energy demand.
One power profile has a unique energy profile and hence sat-

isfying a power profile automatically satisfies the energy profile.
However, one energy profile has infinite possible power profiles
[12], [14], [16]; therefore, even though ConvlEnSch could pro-
vide a given energy profile, it cannot guarantee that all possible
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TABLE IV
OPTIMAL POWER SCHEDULES

resulting power profiles can be supplied [12]. Moreover, Con-
vlEnSch suffer from the following shortcomings in comparison
with PropRmpSch, due to the inability of ConvlEnSch to per-
ceive a given power profile:
1) Ramp Scarcity: The power demand is ramping at
100 MW/h during hour 4 (see Table II) and the optimal
schedule of ConvlEnSch only provides 60 MW/h of ramp
capability. Note that in Table III only three units are up
during hour four, where units 1 and 2 are producing at their
maximum capacity. Consequently, unit 5 is the only unit
that can ramp up and its ramping capability is 1 MW/min
(see Table I).

2) Capacity Scarcity: The demand peak of is 1500 MW
and occurs at the end of hour 11. Note that ConvlEnSch
scheduled seven units for this hour having a total pro-
duction capacity of 1497 MW. This is in contrast to Pro-
pRmpSch, which committed seven units at hour 11 to sat-
isfy the peak demand of .

3) Infeasible Energy Delivery: There are many hours where
units cannot comply with their scheduled energy profile
provided by ConvlEnSch. For example, unit 5 must pro-
duce at its minimum output (25 MW) during the whole
hour 3 to deliver its scheduled 25 MWh. If the unit ramps
up at its maximum capability (60 MW/h), then the produc-
tion at the end of hour 4 will be 85 MW, providing a max-
imum of 55 MWh for hour 4, and thus failing to deliver
its scheduled energy level of 65 MWh. Similarly, unit 6
must produce 80 MW at the end of hour 12 to provide its
schedule energy for that hour. If the unit ramps down at
its maximum capability, it can provide a minimum of 50
MWh for hour 13, thus failing to deliver its scheduled en-
ergy level of 20 MWh.

Table V shows the comparison of the optimal scheduling
costs where ConvlEnSch presents the highest scheduling costs.
This can be explained as follows: Although both PropRmpSch
and ConvlEnSch consider the cost of the intrinsic energy pro-
duced during the SU and SD processes, ConvlEnSch does not
include this energy in the scheduling stage. As a consequence,
ConvlEnSch cannot accommodate the SU and SD power trajec-
tories, which contribute to satisfying the demand (energy and
ramp). This also causes an inefficient deployment of resources

TABLE V
COMPARISON OF TOTAL OPTIMAL SCHEDULING COSTS

in real time to accommodate these trajectories that were ignored
in the scheduling stage [18], [19].
In short, the conventional energy scheduling approach does

not guarantee that enough resources will be available to satisfy
an expected power profile. Furthermore, ConvlEnSch cannot
even guarantee a feasible energy delivery of its resulting en-
ergy profile, as also previously reported in [12], [14], and [21].
Consequently, ConvlEnSch would require ad-hoc operations in
real time in order to deal with these problems and keep the bal-
ance between supply and demand. However, PropRmpSch over-
comes these problems by an adequate resource scheduling.

C. Computational Performance

In order to assess the computational burden of the proposed
formulation, its computational performance was compared with
the UC model proposed in [11]. The work in [11] presents a
basic formulation that only considers one-single upward reserve
and ignores the SU and SD power trajectories. The model in [11]
is implemented using the case study detailed in Section III-A
and the hourly spinning reserve is assumed to be 10% of the
hourly demand (which is similar to the 5% of the hourly de-
mand assumed for the half-hour tertiary reserve in the proposed
formulation).
Two different problem sizes were simulated: 10-unit (pre-

sented in Table I) and 100-unit power systems, the latter being
the 10-unit power system replicated ten times. This replication
introduces symmetry in the MIP problem which makes it harder
to solve than usual [35]. The load demand was accordingly mul-
tiplied by 10 for the latter power system case.
Table VI shows the model size and computational perfor-

mance of [11] and the proposed formulation, which is labelled as
“Prop”. The proposed model presents around 8% and 5% more
constraints and non-zeros in the constraint matrix than [11]. This
is an insignificant increase taking into account the fact that the
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TABLE VI
COMPARISON OF DIFFERENT FORMULATIONS

Fig. 7. Comparison of convergence evolution to optimal solutions. Values in-
side squares indicate the number of explored nodes by the solver.

proposed formulation includes SU and SD power trajectories
and five types of reserves more than [11]. However, although
the proposed formulation needs around 1.6 and 5.7 times as
many real and binary variables as [11], respectively, this does
not necessarily mean an increase in computational burden. In
fact, increasing the number of binary variables may lower the
complexity of an MIP formulation [35] as in the case of the tight
and compact formulations presented in [19] and [28], which are
the core of the formulation proposed in this paper.
As stated in Section II-E, the computational burden of anMIP

formulationmainly depends on the strength of its linear program
(LP) relaxation, where the LP relaxation of an MIP problem is
obtained by relaxing its integrality requirements. In other words,
the nearer the LP relaxed solution is to its MIP integer solu-
tion, the faster the search for optimality. The strength (or tight-
ness) of a MIP formulation can be measured with the integrality
gap [28], [35] which is defined as , where

and are the optimal values of theMIP and the relaxed
LP, respectively. The integrality gap of the two formulations
which are not modeling exactly the same problem should not be
directly compared; however, these gaps provide an indication
of the strength of each formulation. Note that in Table VI, the
proposed formulation presents a smaller integrality gap (around
5 times lower) in comparison with [11], which indicates that the
proposed formulation is significantly tighter.
Finally, Fig. 7 shows the convergence evolution, for both for-

mulations, for the two different system sizes. The proposed for-
mulation took longer to find an initial feasible solution mainly
due to the greater number of binary variables (In general, a large
number of integer variables complicates the process of finding
initial feasible solutions). For the 10-unit case, the impact is
significant due to the short solving times (less than 10 s). How-
ever, for the 100-unit case, even though the proposed formu-

lation took longer to find an initial feasible solution, the opti-
mality gap achieved by this solution (with zero nodes explored)
is better than all the solutions found by [11] within the time
limit. This evolution of convergence, as well as the quality of
the initial solutions, is mainly due to the tightness of the pro-
posed formulation.

IV. CONCLUSIONS

A UC-based market clearing formulation was proposed using
continuous power trajectories for both generating units and de-
mand instead of the commonly established staircase profile for
energy blocks. The use of an instantaneous power profile allows
the model to efficiently schedule reserve and ramping resources.
In comparison with conventional UC models, the proposed for-
mulation guarantees that, first, energy schedules can be deliv-
ered and, second, that operating reserves (secondary, tertiary on-
line and tertiary offline) can be deployed within their given time
requirements while respecting the ramping and capacity limits
of generating units. In addition, the model takes into account
the normally neglected power trajectories that occur during the
startup and shutdown processes, thus optimally scheduling them
to provide energy (and ramp), which help to satisfy the power
demand. The formulation was tested on a 10-unit and 100-unit
system, where the computational burden was lowered in com-
parison with common UC formulations.
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Tight and Compact MILP Formulation for the
Thermal Unit Commitment Problem

Germán Morales-España, Student Member, IEEE, Jesus M. Latorre, Member, IEEE, and Andres Ramos

Abstract—This paper presents a mixed-integer linear program-
ming (MILP) reformulation of the thermal unit commitment (UC)
problem. The proposed formulation is simultaneously tight and
compact. The tighter characteristic reduces the search space and
themore compact characteristic increases the searching speed with
which solvers explore that reduced space. Therefore, as a natural
consequence, the proposed formulation significantly reduces the
computational burden in comparison with analogous MILP-based
UC formulations.We provide computational results comparing the
proposed formulation with two others which have been recognized
as computationally efficient in the literature. The experiments were
carried out on 40 different power system mixes and sizes, running
from 28 to 1870 generating units.

Index Terms—Mixed-integer linear programming (MILP),
strong lower bounds, thermal units, unit commitment (UC).

NOMENCLATURE

Upper-case letters are used for denoting parameters and sets.
Lower-case letters denote variables and indexes.

A. Indexes and Sets

Generating units, running from 1 to .

Startup segments, running from 1 (hottest) to
(coldest), see Fig. 1.

Hourly periods, running from 1 to hours.

B. Parameters

Linear variable cost of unit ($/MWh).

No-load cost of unit ($/h).

Nonserved energy cost ($/MWh).

Shutdown cost of unit ($).

Coefficients of the startup cost function of unit ,
see Fig. 1 ($).

Load demand in hour (MW).

Maximum power output of unit (MW).
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Minimum power output of unit (MW).

Spinning reserve requirement in hour (MW).

Ramp-down rate of unit (MW/h).

Ramp-up rate of unit (MW/h).

Shutdown capability of unit (MW).

Startup capability of unit (MW).

Minimum downtime of unit (h).

Minimum uptime of unit (h).

Times defining the segment limits,
, of the startup cost function of unit

(h), see Fig. 1.

C. Variables

1) Positive and Continuous Variables:

Nonserved energy in hour (MWh).

Power output at hour of unit , production above
the minimum output (MW).

Spinning reserve provided by unit in hour
(MW)..

3) Binary Variables:

Commitment status of the unit for hour , which
is equal to 1 if the unit is online and 0 offline.

Startup status of unit , which takes the value of 1
if the unit starts up in hour and 0 otherwise.

Shutdown status of unit , which takes the value of
1 if the unit shuts down in hour and 0 otherwise.

Startup-type of unit , which takes the value of
1 in the hour where the unit starts up and has been
previously offline within hours,
see Fig. 1.

I. INTRODUCTION

A. Motivation

E FFICIENT resource scheduling is necessary in power sys-
tems to achieve an economical and reliable energy pro-

duction and system operation, either under centralized or com-
petitive environments. This can be achieved by solving the unit
commitment (UC) problem, of which the main objective is to

0885-8950 © 2013 IEEE
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minimize the total system operational costs while operating the
system and units within secure technical limits [1]–[3].
Mixed-integer linear programming (MILP) has become a

very popular approach to solving UC problems due to signifi-
cant improvements in off-the-shelf MILP solvers, based on the
branch-and-cut algorithm. The combination of pure algorithmic
speedup and the progress in computer machinery has meant
that solving MILPs has become 100 million times faster over
the last 20 years [4]. Recently, the world’s largest competitive
wholesale market, PJM, changed from Lagrangian Relaxation
to MILP to tackle its UC-based scheduling problems [5]. There
is extensive literature comparing the pros and cons of MILP
with its competitors, see, for example, [2] and [6].
Despite the significant improvements in MILP solving, the

time required to solve UC problems continues to be a critical
limitation that restricts the size and scope of UC models. Nev-
ertheless, improving an MILP formulation can dramatically re-
duce its computational burden and thus allow the implementa-
tion of more advanced and computationally demanding prob-
lems, such as stochastic formulations [7], accurate modelling of
different types of (online and offline) reserves [8], or transmis-
sion switching [9].

B. Literature Review

1) Performance of MILP Formulations—Tightness vs.
Compactness: The branch-and-cut algorithm solves MILP by
solving a sequence of linear programming (LP) relaxations. The
LP relaxation of a MILP problem is obtained by relaxing its in-
tegrality requirements. During the solving process (branching),
upper bounds (feasible integer solutions) and lower bounds
(LP relaxations) are computed. The quality of a feasible integer
solution is measured with the optimality tolerance, which is the
difference between upper and lower bounds. In order to reduce
this difference, upper bounds are decreased by finding better
integer solutions (e.g., heuristics), and lower bounds are in-
creased by strengthening the LP relaxation (e.g., adding cutting
planes) [10]. Providing an MILP formulation with strong lower
bounds (LP relaxation near to the optimal integer solution)
can dramatically reduce the length of the search for optimality
[11], [12]. In addition, strong lower bounds effectively guide
the search for better upper bounds (i.e., heuristics explore the
neighborhood of the LP relaxation to find potentially better
integer solutions).
The computational performance of an MILP formulation is

mainly influenced by its tightness (distance between relaxed
and integer solutions) and compactness (quantity of data to
process when solving the problem). These two characteristics
are actually fully exploited by off-the-shelf MILP solvers. Even
though solvers’ breakthrough is due to the synergy between
different strategies (e.g., heuristics, cuts, and node presolve),
introducing cutting planes has been recognized as the most
effective strategy, followed by root presolve [13], [14]. The
former strategy dynamically tightens the formulation around
the integer feasible solution point. The latter makes the initial
problem formulation more compact (by removing redundant
variables and constraints) and also tighter (by strengthening
constraints and variable bounds).

The tightness of an MILP formulation defines the search
space (relaxed feasible region) that the solver needs to explore
in order to find the (optimal integer) solution. A given MILP
problem has many possible formulations. If F1 and F2 are
two formulations for the same MILP problem, and the feasible
region of F1 is contained inside the feasible region of F2,
then F1 is a tighter formulation than F2, and thus the lower
bound provided by the LP relaxation of F1 is always greater
than or equal to that provided by F2 [11], [15], that is, F1
provides stronger lower bounds and the optimal solution of its
LP relaxation is nearer to the optimal integer solution.
The compactness of an MILP formulation refers to its size

and defines the searching speed that the solver takes to find the
optimal solution, since, during the process, many LP relaxations
are repeatedly solved. Although the number of constraints is
considered to be the best simple predictor of the LP models’
difficulty [16], [17], the number of nonzeros also has a signifi-
cant impact on solution times [10]. Therefore, formulation F1 is
considered more compact than F2 if F1 presents simultaneously
fewer constraints and nonzeros than F2.
Research on improvingMILP formulations is usually focused

on tightening rather than on compacting. An MILP formulation
is typically tightened by adding a huge number of constraints,
which increases the problem size [18], [19]. Although this tight-
ening reduces the search space, solvers may take more time
exploring it because they are now required to repeatedly solve
larger LPs. Consequently, when a formulation is tightened while
significantly affecting its compactness, a more compact and less
tight formulation may be solved faster, because the solver is
able to explore the larger feasible region more rapidly [18]. On
the other hand, compact formulations usually provide weak (not
strong) lower bounds. In conclusion, creating tight or compact
computationally efficient formulations is a nontrivial task be-
cause the obvious formulations are very weak (not tight) or very
large, and trying to improve the tightness (compactness) usually
means harming the compactness (tightness).
2) Improving UC Formulations: Improving MILP formula-

tions, especially the tightness, has been widely researched. In
fact, all of the cutting plane theory, which has meant the break-
through in MILP solving, is about tightening the formulations
[4], [10], [14], [20]. In the case of UC problems, there have
been efforts affecting specific aspects. The work in [21] reduced
the number of binary variables, claiming that this speeded up
the search process compared with the three-binary models [2],
[6]. In [22], a strong formulation of the minimum up/down time
constraints is proposed; in [23], a tighter linear approximation
for quadratic generation costs is described; the work in [19]
presents a new class of inequalities giving a tighter description
of the feasible operating schedules for generators; and the work
in [24] proposes a tight and compact formulation for the startup
and shutdown unit’s power trajectories.
From the aforementioned formulations, the work in [21],

[22], and [19] have focused on improving the basic technical
constraints (e.g., ramping limits, generation limits, or minimum
up/down times). As stated in [19], the main disadvantage of
[21] is that avoiding the startup and shutdown variables hinders
the possibility to generate and use strong valid inequalities,
such as the minimum up/down time constraints proposed in
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[22]. In [19], this problem is overcome by using the three-bi-
nary format, thus introducing many additional inequalities
(using all of the binaries) to tighten the UC formulation.
However, the main drawback of [19] is that it creates a huge
model where, in order to obtain a computational advantage,
the additional inequalities need to be appropriately introduced
to the formulation during the solving process (dynamically).
The work in [19] also presents the additional disadvantage of
implementation complexity, where the modeller needs to make
an ad-hoc configuration of the solving strategy of MILP solvers
to dynamically introduce these inequalities.

C. Contributions

This paper presents an alternative UC reformulation that de-
scribes the same basic UC problem as in [21] and [19]. In other
words, we provide a formulation containing the same feasible
integer solutions as those in [21] and [19], and hence obtaining
the same optimal results.
The main contribution of this paper is threefold.
1) A tight MILP formulation for the thermal UC problem is
proposed in order to decrease the computational burden of
analogous MILP formulations [19], [21].

2) The formulation is tightened at the same time as it is made
more compact compared with both [21] and [19], hence
overcoming the main disadvantage of usual tightening
strategies [19]. The simultaneous tight and compact char-
acteristics reinforce the convergence speed by reducing the
search space and at the same time increasing the searching
speed with which solvers explore that reduced space.

3) This reformulation can be used as the core of any UC
problem, whether under centralized or competitive
environments, from self-scheduling to centralized auc-
tion-based market clearing.

Furthermore, given the compactness of the formulation, addi-
tional extensions of the UC model will be less cumbersome. For
example, in the case of a stochastic formulation the compactness
and tightness can be fully exploited given the size and com-
putational complexity of solving a large-scale stochastic UC
problem. That is, a stochastic problem replicates the original de-
terministic structure to represent uncertainty; consequently, any
reformulation will benefit from the characteristics of the deter-
ministic formulation.

D. Paper Organization

The remainder of this paper is organized as follows. Section II
details the UC reformulation. Section III provides and discusses
results from several case studies, where a comparison with two
other UC formulations is made. Finally, some relevant conclu-
sions are drawn in Section IV.

II. MATHEMATICAL FORMULATION

Here, we detail the reformulation of a typical UC. The con-
straints presented here characterize the same UC problem as
those in [21] and [19] (see [25]). Hourly time intervals are con-
sidered, but it should be noted that the formulation can be easily
adapted to handle shorter time periods.

A. Objective Function

The UC problem seeks to minimize the power system oper-
ation costs, which are defined as the sum of: (i) the production
cost; (ii) startup cost; (iii) shutdown cost; and (iv) in order to
take into account situations in which there is a lack of energy,
the nonserved energy cost is also included as follows:

(1)

1) Production Cost: The production cost is usually expressed
as a quadratic function of the power output. Typically, this cost
is modeled as a piecewise-linear function [21]. A tight formu-
lation for this piecewise-linear approximation is given in [23].
This paper focuses on the reformulation of the unit’s technical
constraints as well as of the exponential startup cost. Therefore,
for the sake of simplicity, we represent the production cost as
a linear function. Note in (1) that the linear variable cost mul-
tiplies the total power output, which is the minimum output

plus the production above that minimum .
2) Startup Cost: Fig. 1 shows a typical exponential startup

cost function [26], where is the cost incurred when the
unit has been offline within the interval . This
function is discrete since the time span has also been discretized
into hourly periods. The work in [21] and [19] represent this
startup cost function using the formulation proposed in [27]. We
represent the same cost function using

(2)

(3)

As presented in our previous work [24], the startup-type vari-
able that activates the cost in the objective function
is selected by (2) and (3), where (2) stands for the time passed
since the last shutdown and (3) ensures that only one startup cost
value is selected when the unit actually starts up.
Note that (2) does not bound the coldest startup-type .

However, if the unit starts up at hour and has been offline for at
least hours, then constraints (2) and (3) ensure .
As discussed in [24], the variables take binary values even
if they are defined as continuous variables. This is due to the
convex (monotonically increasing) characteristic of the expo-
nential startup cost function of thermal units [26] (see Fig. 1).
Due to theminimum downtime constraint (see Section II-B2),

the hottest startup-type is only possible within the interval
. Therefore, constraint (2) is made more compact
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Fig. 1. Startup costs as a function of the unit’s previous offline time.

by defining ; see Fig. 1. Note that (2) is not defined
for the first hours. Appendix A details how to obtain for
the first hours depending on the unit’s initial conditions.
An easy way to observe that this startup cost formulation is

tighter than the formulation in [19], [21] and [27] is that (2) and
(3) provide upper bounds to the possible startup-cost values. For
example, if the unit does not start up , then (3) forces
the startup cost to be zero. This is in contrast to [21], which does
not provide upper bounds to the startup cost variable and then
the objective function always has to look for the lowest feasible
value. In addition, the computational results in Section III shows
that the integrality gap of the UC formulation is significantly
lowered when modelling the startup costs using (2) and (3).

B. Power System and Thermal Unit Constraints

1) Power System Requirements: The following constraints
guarantee the balance between generation and load and the pro-
vision of spinning reserve:

(4)

(5)

where the nonserved energy variable is included to take
into account situations of lack of energy. Note in (4) that power
(MW) and energy (MWh) units are mixed, which is numerically
correct in models with hourly time intervals. However, the time-
period duration must be included when considering different
time intervals.
2) Minimum Up and Downtime: The minimum number of

periods that the unit must be online and offline are ensured with
[22]

(6)

(7)

This formulation provides strong lower bounds in compar-
ison with others [9], [19], [22] as also shown in Section III.
Appendix A describes how the initial conditions force the unit
to remain online or offline during the first hours.

3) Logical Constraint: The following equation guarantees
that and take the appropriate values when the unit starts
up or shuts down:

(8)

The minimum up/down constraints ensure that a unit cannot
start up and shut down simultaneously: note that (6) and (7)
guarantee (dominate over) the inequalities and

, respectively, which combined become . In
addition, if is defined as a binary variable, (8) forces and

to take binary values even if they are defined as continuous.
4) Generation Limits: The total unit production is modelled

in two blocks: the minimum power output that is generated
just by being committed and the generation over that minimum
. The generation limits over the power output and the spin-

ning reserve contribution are set as follows:

(9)

(10)

where and are also constrained by the unit startup and
shutdown capabilities.
Note that (9) and (10) are only applied for the subset ,

which is defined as the units in with . For the cases
in which , both constraints can be replaced by a tighter
and more compact formulation

(11)

Constraint (11) is tighter than (9) and (10) because, in the
event that the unit is online for just one period, the right side of
(11) can be negative. Consequently, (11) is not valid for units
with , because this constraint means that it is not fea-
sible to operate the unit for just one online period, that is, (11)
presents a tighter feasible region than (9) and (10) together. In
addition, constraint (11) is also more compact because: 1) the
two constraints (9) and (10) are lowered to one and 2) constraint
(11) introduces five nonzero elements (per unit and per period)
in the constraint matrix in comparison with the eight elements
introduced by (9) and (10) together.
Note that (9) and (10) are valid in both cases when

and when . However, if (11) is used for , the
same solution is obtained at the same time as the formulation
is made more compact and tighter. Hence, the combination of
both groups of constraints is used in this model.
One simple way to observe that the proposed formulation

is tighter than those in [21] and [19] is by checking the upper
bound of the constraints. For example, note that the upper
bounds of (9)–(11) decrease when the binary variables and

are different from zero. This is in contrast to [21] and [19],
where the bounds of the constraints increase if ;
see Appendix B for further details. In fact, the set of constraints
(6)–(11) are the tightest possible representation (convex hull)
for a unit operation without ramp constraints, although the
mathematical proof for this is outside the scope of this paper.
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5) Ramping Limits: The following constraints ensure that the
unit operates within the ramp rate limits:

(12)

(13)

where (12) guarantees that the unit can provide spinning reserve
without violating the upwards ramp limit. The reader is referred
to [8] for a more accurately modelling of different (online and
offline) types of reserves.

III. NUMERICAL RESULTS

This section is divided into four parts. The first part describes
the different UC formulations that were implemented. The dif-
ferent case studies are detailed in the second part. The third part
presents a comparison between all the UC formulations, in terms
of size and computational performance. Finally, the last part as-
sess the impact on computational performance due to different
number of binary variables in the formulations.

A. UC Formulations

To assess the computational burden of the proposed model,
we compare it with those UC formulations in [21] and [19].
These two formulations have been recognized as computation-
ally efficient in the literature [9], [19], [21], [22], [28]. For the
sake of simplicity, the production costs are considered linear for
all the formulations.
The following four formulations are then implemented.
• 1bin: This formulation is presented in [21] and requires a
single set of binary variables (one per unit and per period),
i.e., the startup and shutdown decisions are expressed as a
function of the commitment decision variable.

• 3bin: The minimum up/down time constraints proposed in
[22] (see Section II-B2) are implemented with the three-bi-
nary equivalent formulation of [21]. This formulation is
presented in [19] (see also [25]). Unlike [19], 3bin is im-
plemented without the extra cuts.

• P1: This formulation is the same as 3bin; however,
the exponential startup-cost constraints presented in
Section II-A2 were used instead of that in [27], which is
the formulation used by [21] and [19].

• P2: This is the complete formulation proposed in this
paper.

It is important to note that all of the formulations were imple-
mented using the same objective function and the same set of
constraints as the formulation presented in Section II (see also
[25]). As a result, all of them describe the same mixed-integer
optimization problem. The difference between them is how the
constraints are formulated. In other words, for a given case
study, all of the formulations obtain the same optimal results,
e.g., commitments, generating outputs and operation costs, as
numerically shown in Section III-D.
Note that we define four sets of variables as binary

and . Thus, reducing the computational
burden of the formulations, as discussed in Section III-D.
Although we focus the discussion on the performance of the

proposed formulation P2, P1 is implemented to observe the
improvements in the proposed startup-cost formulation (see

TABLE I
NUMBER OF GENERATORS PER PROBLEM CASE

TABLE II
SETS OF EXPERIMENTS

Section II-A2). Furthermore, when comparing P2 with P1, one
can clearly observe the additional improvements which result
from considering the generation output variable above .

B. Case Studies

1) Set of Experiments: The following case study based on
the power system data in [21] is conducted to assess the compu-
tational performance of the proposed UC formulation. As pre-
sented in [19], an eight-generator data set is replicated to create
larger instances and different power-systems mixes. These gen-
eration mixes, also used in [19], are shown in Table I. The repli-
cation introduces symmetry in the problems which makes them
harder to solve than usual. The spinning reserve requirement of
10% of the power demand has to be met for each hour. The non-
served energy cost is considered to be 1000 $/MWh. For quick
reference, the generator data and power demand can be found
in Appendix C.
Two test-sets are created in order to obtain even larger

instances.
• -day: for the first test-set, the problem is solved with
all of the 20 instances presented in Table I for a time
span of seven days. The demand for the last two days (the
weekend) is considered to be 80% of the demand on a
working day.

• -gen: for the second test-set, the 20 different power-
systemmixes in Table I are replicated ten times with a time
span of one day, that is, the total number of generators for
this test-set goes from 280 up to 1870.

Table II shows the different groups for all 40 cases that are con-
sidered here, where there are small and large cases for the two
previous test-sets.
All tests were carried out using CPLEX 12.4 under GAMS

[29] on a quad-core Intel-i7 2.4-GHz personal computer with
4 GB of RAM memory. The small and large cases, for both
-day and -gen, are solved within 0.1% and 1.0% of

relative optimality tolerance and a CPU time limit of 1 and
10 h, respectively. CPLEX defaults were used for all of the
experiments.
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TABLE III
PROBLEM SIZE (SELECTED INSTANCES)

* P1 is equal to P2 for these cases

2) Performance Metrics: In order to summarize compar-
ison results between formulations, geometric means of ratios
are used since arithmetic means can be quite misleading when
applied to a set of ratios [10], [14], that is, a number of model
characteristics between two formulations, e.g., number of con-
straints or runtimes, are compared using ratios, and the geo-
metric mean over a set of case studies is then used as a per-
formance metric. For example, when comparing solution times
between P1 and 1bin, for each case study, two runtimes are ob-
tained, one for P1 and one for 1bin. Given the set of runtimes,
ratios are computed dividing the runtimes of P1 by the corre-
sponding runtime of 1bin. Finally, the geometric mean is com-
puted over these ratios and multiplied by 100 to obtain percent-
ages. Thus, a geometric mean of ratios lower than 100% means
that P1 is faster. For the sake of brevity, the summary of results
is presented in this paper; however, the different formulations
and the set of statistics are presented in [25].
The formulation 1bin is used as a benchmark to obtain the

ratios. In other words, the formulations P1, P2 and 3bin (in the
numerator) are compared with 1bin (in the denominator) unless
otherwise specified.

C. Comparing Different Formulations

1) Problem Size: Table III shows the dimensions for all of
the formulations for four selected instances. This sample is com-
posed of the smallest and largest instances for the small cases
(cases 01 and 10) and large cases (cases 11 and 20). There are
instances which consist of almost a million constraints, present
millions of nonzero elements in the constraint matrix, and con-
tain real and binary variables.
Table IV summarizes the different model sizes for all 40 in-

stances in comparison with 1bin. This summary is obtained as
a geometric mean of ratios as described in Section III-B2. Note
that 3bin has almost as many constraints and nonzero elements
as 1bin. However, 3bin presents three times more binary vari-
ables due to the explicit modelling of the startup and shutdown
decisions as binary variables.
Although P1 and P2 present around five times as many

binary variables as 1bin does, the number of constraints and
nonzero elements was approximately reduced by two thirds.
Consequently, P2 is considerably more compact than 1bin
and 3bin with respect to the nonzero elements and constraints
(following the definition of compactness provided in the Intro-
duction).

TABLE IV
PROBLEM SIZE SUMMARY COMPARED WITH 1bin (%)

Note in Table IV that the main improvements in compactness
are due to the proposed startup-cost formulation P1. Finally,
P2 further reduces the formulation size by modelling the power
output variable above .
2) Computational Performance: Although the proposed

formulation is more compact than 1bin and 3bin, this does
not necessarily lead to a better computational performance.
In fact, a compact formulation usually presents a weak (not
tight) LP relaxation that can dramatically increase the MILP
resolution time, as mentioned in the Introduction. The tightness
of an MILP can be measured with the integrality gap [19]. The
integrality gap is defined as , where
is the optimal value of the (initial) relaxed LP problem, and

is the optimal integer solution. In practice, the problems
are not solved until optimality but within an optimality toler-
ance. Therefore, for a given case study, is considered
to be the best integer solution that was found among the four
formulations after that case study was solved.
Fig. 2 shows the CPU times and integrality gaps for all of

the formulations and all the instances in comparison with 1bin
(using ratios), where 1bin always represents 100%. The CPU
times and the integrality gaps of 1bin are shown within squares
to give an idea of the different problem magnitudes. The in-
stances that took more than 10 min to solve for P2 can also be
foundwithin squares. The computational performance summary
for the different formulations is presented in Table V for the
small cases, large cases, and all of the cases together. Table V
also shows the final optimality tolerance achieved as well as
nodes explored and iterations.
In short, Fig. 2 and Table V shows that the proposed formula-

tion P2 considerably reduces the computational burden in com-
parison with 1bin and 3binwhile achieving better solution qual-
ities (lower final optimality tolerances) at the same time. Nev-
ertheless, several aspects are worth mentioning:
1) Relationship between integrality gap and runtime:
Fig. 2(b) and (d) shows that P2 always presents the
lowest integrality gaps, followed by P1, 3bin and finally
1bin. Table V shows that the average time taken by the
different formulations presents a similar pattern as to that
of the integrality gaps, with the exception of 3bin for the
-day test-set, which presented a worse performance

than 1bin (on average, 3bin required more than 30% of the
time that 1bin required to solve all of the -day test-set).
This is an unexpected result which can be explained as
follows. In theory, lower integrality gaps lead to faster
solving times when two formulations have similar sizes.
However, in practice, MILP solvers use heuristics and cuts
(among others) that may also dramatically influence per-
formance. In addition, the enumeration tree and branching
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Fig. 2. Improvements in comparison with 1bin (%).White areas correspond to small cases and gray to the large cases. (a) -dayCPU time. (b) -day Integrality
Gap. (c) -gen CPU Time. (d) -gen Integrality Gap.

strategies change completely when formulations with
different integer variables are compared. 1bin presents
fewer binary variables than 3bin, and this is an advantage
for finding integer feasible solutions. In general, a high
number of integer variables complicates the search for
feasible solutions. For the -gen test-set, 3bin showed
a significant improvement over 1bin: 3bin required, on
average, 40.6% of the CPU time needed by 1bin. Note
that, overall, 3bin performs better for the small cases than
for the large cases. A clearer performance dominance of
3bin over 1bin was observed when the experiments were
carried out without the exponential startup cost constraints
(for the sake of brevity, these results are not shown here
but the interested reader is referred to [25]).

2) Overall performance of P2: For 1bin, all of the large
cases (gray area in Fig. 2) took longer than one hour to
solve within the required optimality tolerance. Two of
the instances hit the ten hour time limit. On the other
hand, P2 solved all the tests in less than one hour and
just two of them took more than 20 min. P2 presented
shorter runtimes than 1bin and 3bin for all the instances,
being beaten just once by P1 [instance 17 for the -day
test-set, see Fig. 2(a)]. Note in Fig. 2(a) and (c) that, for
the instances where the proposed formulation showed the
worst performances, P2 required 57.1% and 19.5% of the

CPU time required by 1bin for the -day and -gen
test-sets, respectively. Furthermore, P2 obtained better
solution quality in general (i.e., converged to smaller opti-
mality tolerances) than 1bin, especially for the large cases.
However, 1bin obtained better solution qualities for 5 of
the 40 instances (3 for the -day and 2 for the -gen).

3) Node enumeration versus LP complexity: Table V shows
that, for the -gen test-set, all of the formulations
enumerated more nodes than 1bin to find a solution within
the given optimality tolerance. As mentioned above, for-
mulations with different integer variables lead to different
enumeration tree and branching strategies. By default,
an MILP solver’s objective is to obtain satisfactory fea-
sible solutions quickly using different strategies, such as
branching, cuts and heuristics. The strategy that proves to
be more effective is used more often (e.g., branching) and
the others more seldom so that they do as little harm as
possible [10]. That being said, larger enumerated nodes
in one formulation do not mean longer solving times. In
fact, exploring few nodes for long periods is an indication
of the difficulty of the linear relaxed formulation [30].
Therefore, P2 is able to explore more nodes than 1bin in
even shorter times mainly due to the compactness of the
formulation. Focusing on the number of nodes explored
can lead to misleading conclusions. That is why other
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TABLE V
COMPUTATIONAL PERFORMANCE COMPARED WITH 1bin (%)

TABLE VI
OVERALL SPEEDUPS

works prefer to look at the number of simplex iterations
rather than nodes in order to perform comparisons [15],
[31].

Finally, Table VI presents the overall speedups of the formu-
lations compared with each other. For a given instance, the
speedup of, for example, 3bin over 1bin is obtained by dividing
the runtime of 1bin by the runtime of 3bin, and the results
are summarized using the geometric mean on the speedups
of a group of instances. Both test-sets -day and -gen
are grouped together, and now the instances are separated into
small, large and all cases (see Table II). In general, 3bin is 1.4
times faster than 1bin and presented a better performance for
the small cases. P2 was around 14 and 10 times faster than 1bin
and 3bin, respectively. P2 presented the best performance for
the large cases, where P2 was around 22 and 18 times faster
than 1bin and 3bin, respectively. Note that P1 already presents
significant improvements over 1bin (5.7 times faster) and 3bin
(4.1 times faster). In addition, P2 is a further improvement on
P1, being generally 2.5 times faster.

D. Difficulty of an MILP Versus its Number of Binary Variables

In this part, we present two sets of experiments to assess the
impact on the convergence evolution and solving times due
to the number of binary variables, and the simultaneous tight
and compact characteristic of the proposed formulation. The
UC is solved for the eight-generator power system by 1) pure
branch-and-bound method (BB), for one to three days, and
2) the solver defaults, which is the complete branch-and-cut
method including heuristics , for three to five days.
The eight-generator data and power demand can be found in

Appendix C. The spinning reserve requirement of 5% of the
power demand has to bemet for each hour; the nonserved energy
is not considered (i.e., the variable is removed from all
formulations); and all UC problems are solved until they hit the
time limit of 1 h or until they reach optimality (more precisely
to of relative optimality tolerance).
Five different formulations are now considered. Three of the

formulations described in Section III-A, 1bin, 3bin, and P2. The
other two formulations are the relaxed versions of 3bin and P2,

and they are denoted as R3bin and RP2, respectively. Simi-
larly to 1bin, the commitment variable is the only variable
that is defined as binary for R3bin and RP2. That is, for R3bin
and RP2, the set of variables and are defined as
continuous variables within the interval . As discussed in
Sections II.A.2 and II.B.3, once is defined as binary, the for-
mulations 3bin and P2 allow relaxing the integrality condition
of variables and because the constraints guarantee
that these variables always take binary values.
The problem size for the different formulations, the optimal

solutions, and integrality gaps are shown in Table VII. The
computational performances are presented in Table VIII. which
includes runtimes, nodes explored, iterations, and memory re-
quired to solve the problems until optimality, otherwise the final
optimality tolerance is shown within parentheses. Table VII
shows that all formulations present the same optimal solution
for a given time span. As expected, all formulations obtain the
same integer solutions because they are characterizing the same
integer problem (see Section II).
1) Pure Branch and Bound (BB): To assess the impact on

the computational performance of formulations containing dif-
ferent number of binary variables, the UC is solved by only
using the branch-and-bound method. The cutting planes and
heuristics were then disabled, and CPLEX defaults were used
for all remaining features. Therefore, the solver is forced to ex-
plore all the tree in order to prove optimality [11], [16].
Table VIII shows the computational performance for the

one-, two-, and three-day cases that where solved by pure BB.
Table IX presents the optimal generation schedule, where all of
the formulations obtained the same schedule. All formulations
could prove optimality for the case of one and two days. For
the three-day case, none of the formulations could achieve
optimality because they either exceeded the one-hour time limit
or the 4-GB memory limit. P2, 3bin, RP2 and R3bin hit the
time limit and the final optimality tolerances that they achieved
are shown between parentheses in Table VIII. 1bin hit the
memory limit achieving the worst final optimality tolerance of

after about 500 s.
Although P2 is the formulation with the highest number of

binary variables, P2 explored the least number of nodes and pre-
sented the best computational performance for the two-day case,
in comparison with the other five formulations. On the other
extreme, 1bin, with the least number of binary variables (the
same as R3bin and RP2), explored the highest number of nodes
and presented the worst computational performance, followed
by R3bin and RP2; see Table VIII.
Fig. 3 shows the convergence evolution until optimality of

P2, 3bin and 1bin, for the two-day case. Note that the first value
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TABLE VII
PROBLEM SIZE, OPTIMUM AND INTEGRALITY GAP FOR THE EIGHT-GENERATOR CASE

TABLE VIII
COMPUTATIONAL PERFORMANCE FOR THE EIGHT-GENERATOR CASE

TABLE IX
OPTIMAL GENERATION SCHEDULE FOR THE EIGHT-GENERATOR CASE AND ONE-DAY TIME SPAN (MW)

of the lower bound of P2, which is the LP relaxed solution, was
found sooner (due to the compactness) and nearer to the final in-
teger solution (due to the tightness) than 3bin and 1bin. After 4 s,
P2 presented a better evolution of both lower and upper bounds
and hence faster convergence to optimality in comparison with
3bin and 1bin.
If a model containing binary variables is solved by the pure

BB algorithm, this algorithm could potentially enumerate
nodes to prove optimality. Consequently, one might expect the
solution time to increase exponentially with the number of bi-
nary variables. However, the BB method cuts off large sections
of the potential tree because some expected solutions may be
infeasible or worse than solutions already known. For example,
for the two-day case, P2 potentially presents times
more nodes to explore than 1bin, but the BB algorithm solved
P2 until optimality enumerating 42% of the number of nodes
required to solve 1bin. This very surprising efficiency that the
BB method exhibits over the potential amount of computation
is due to the tightness of the formulation, hence the number of
binary variables is a very poor indicator of the difficulty of an
MILP model [11], [16]. In fact, the BB will solve a problem ex-
ploring zero nodes if the whole model is the tightest possible
(convex hull); that is, the LP relaxation solution will always be
integer [11]. Furthermore, increasing the number of binary vari-
ables is actually a tightening strategy [32].

Fig. 3. Convergence evolution for the optimality tolerance and upper/lower
bounds in the top and bottom parts of the figure, respectively. In the bottom
figure, black lines refer to upper bounds and gray lines to lower bounds.

Increasing the number of binary variables can also provide a
further advantage in the tree search strategy. This is the case of
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formulations involving variables that take binary values even
when these variables are defined as continuous, e.g.,
and . As also stated in [19], declaring all these variables as
binary does not cause extra complexity during the enumeration
process (branching), because when fixing some of the variables,
many others can be immediately obtained due to the high cor-
relation among each other. For example, if the variable is
fixed to 1 then (6) fixes to 1 for the following periods,
then (8) (together with (7)) fixes and to 0 for those
periods, and finally (3) fixes , for all , for the same periods.
2) Branch-and-Cut Heuristics : The UC for the

eight-generator system was solved for three, four and five days
using strategy, which are CPLEX defaults. Similarly to
the results previously obtained in Section III-D1, P2 generally
requires shorter runtimes to solve the problem until optimality
than the other four formulations, see Table VIII. P2 was up to
17 and 2.5 times faster than 1bin and 3bin, respectively. Note
that, in general, the relaxed versions R3bin and RP2 present a
higher computational burden than their analogous formulations
3bin and P2, respectively.
Note that, in Table VIII, the formulations with higher number

of binary variables may keep the tree considerably smaller in
size. For example, for the five-day case, 1bin required around
250 and 110 times more memory to deal with the branch-and-
bound tree than P2 and 3bin, respectively. In order to solve the
five-day case until optimality, P2 potentially presents
times more nodes to explore than 1bin, but the algo-
rithm solved P2 and 3bin by just enumerating around 3% of the
number of nodes required to solve 1bin. Similarly, 3bin required
around the 5% of the nodes enumerated by 1bin, although 3bin
potentially presented times more nodes to explore.
As mentioned before, the tightness and the high correlation be-
tween binary variables of 3bin and P2 considerably reduce the
size of the tree.
In short, the computational burden of a MILP formulation

mainly depends on its tightness and compactness, as stated in
the literature of integer programming [11], [12], [16], [18]. A
further computational advantage can be obtained by defining as
binary those variables that either way take binary values, be-
cause the constraints (and tightness of the model) force them to
do so. In addition, branching on different variables may be more
convenient [10], [19]. MILP solvers employ techniques to ex-
ploit the integrality characteristic of integer variables such as
cutting planes and node presolve [10], [11], [20]. Consequently,
declaring this type of variables as continuous will not allow
the solver to look for opportunities to exploit their integrality
characteristic.

IV. CONCLUSION

This paper presented an MILP reformulation for the thermal
UC problem. The formulation is simultaneously tighter and
more compact than equivalent formulations found in the liter-
ature. This simultaneous characteristic boosts the convergence
speed that solvers take to solve the MILP formulation. This
is done by reducing the search space (tightening) and at the
same time increasing the searching speed (compacting) with
which solvers explore that reduced space. Consequently, the

computation time is dramatically reduced. Several case studies
were analyzed to show the improvements achieved by this
formulation with respect to others available in the literature.
Results showed that the proposed UC formulation consid-
erably reduced the computational burden while achieving
better solution qualities. While the formulation is tested only
on “standard” thermal UC problems, the tight and compact
formulation can be further extended to many other variants of
the UC problem, where analogous results should be expected.

APPENDIX

A. Initial Conditions

The initial behavior of the units is bound by their initial con-
ditions. This is guaranteed by fixing the value of some variables
before running the optimization model. The following parame-
ters are needed to deal with the unit state during the first periods.

Initial commitment status of unit .

Number of hours that the unit has been online
before the scheduling horizon.

Number of hours that the unit has been offline
before the scheduling horizon.

a) Initial Minimum Up/Down Times: The number of hours
during which the units must be initially online or offline

due to their minimum up/down constraints are obtained
as follows:

(13a)

(13b)

Now, the commitment variables for the initial periods where the
units must remain online or offline must
be fixed:

(14)

b) Initial Startup Type: Equation (15) complements (2),
guaranteeing that the appropriate startup type will be chosen,
taking into account the initial conditions. If , then
must be fixed for some initial periods as follows:

(15)

Equations (14) and (15) can also be respectively written as
additional constraints in the optimization problem as follows:

(16)

(17)

However, (14) and (15) are preferred over (16) and (17), be-
cause (14) and (15) turn the involved integer variables into con-
stants before running the optimization problem, thus decreasing
the problem size. Nevertheless, solvers usually provide the op-
tion to treat fixed variables as constants.
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B. Comparing Feasible Regions of the Startup Capability
Constraints

Here, we compare the tightness of the startup capability con-
straint of the proposed formulation with the one presented in
[21]. Similar analysis and conclusions can be made for the shut-
down capability constraint. For notational simplicity, the index
is dropped in this section.
For the following analysis, we consider . Therefore,

the constraint imposing the unit’s startup capability (9) becomes

(18)

and (6) together with (8) imposes , that is, (6) guarantees
, and, if then (8) ensures , thus forcing
. Consequently, (18) can be rewritten as a function of

as

(19)

The analogous constraint from [21, eq. (18)], imposing the
unit’s startup capability, becomes

(20)

when , where is the maximum available power
output at time , which is the total power output plus the spinning
reserve. Thus, in terms of the nomenclature used in this paper,
is equal to . Hence, (20) can be rewritten as

(21)

Now, the tightness of inequalities (19) and (21) can be di-
rectly compared. Note that, if the unit starts up, , both
(19) and (21) impose . Therefore, the fea-
sible integer region of both constraints is the same when the unit
starts up. Be aware, however, that their relaxed feasible regions
are completely different. Whereas the right side of (19) takes its
maximum value when , the right side of (21) actually
takes its minimum value, that is, the term involving in (21)
plays the role of the so-called big-M, so that (21) becomes inac-
tive when . The big-M inequalities considerably harm the
tightness of MILP formulations, so they must be avoided when
possible [12], [16], [18].
Furthermore, if , which is a very common case [19],

[21], [33], then (19) and (21) respectively become

(22)

(23)

Although these two constraints impose , when the
unit starts up , the right side of (23) provides a very poor
upper bound to and when .

C. Power System Data

The eight-unit system data used in [21] and [19] are shown
in Table X and the hourly demand (used in [19]) depending on
the power system’s total capacity is shown in Table XI.
The startup and shutdown rates are assumed equal to the unit

minimum output . For the numerical ex-

TABLE X
GENERATOR DATA

TABLE XI
DEMAND (% OF TOTAL CAPACITY)

periments in Section III-C, the initial power production of units
1 and 2, prior to the first period of the time span, is 455 and 245
MW, respectively. For the experiments in Section III-D, the ini-
tial power production of all units is their minimum output ,
hence the initial states in Table X are considered the same
in magnitude but positive for all units.
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Additional Material: With the help of PORTA [30], all vertices of the polytope
described in this paper were computed for different time spans and different set of
parameters. As expected, since the proposed polytope describes a convex hull, it
only contains integer vertices for all the cases. We also explored the vertices of other
formulations commonly found in the literature and all of them presented plenty of
fractional vertices. The complete set of experiments that were carried out can be
found in http://goo.gl/wHqFMF.
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Abstract

This paper provides the convex hull description for the following basic operating con-
straints of a single thermal generation unit in Unit Commitment (UC) problems: 1)
generation limits, 2) startup and shutdown capabilities, and 3) minimum up and down
times. Although the model does not consider some crucial constraints, such as ramping,
the proposed constraints can be used as the core of any UC formulation, thus tightening
the final UC model. We provide evidence that dramatic improvements in computational
time are obtained by solving a self-UC problem for different case studies.

Keywords: Unit Commitment (UC), Mixed-Integer Programming (MIP),
Facet/Convex hull description.

1. Introduction

The short-term Unit Commitment problem requires to optimally operate a set of
power generation units over a time horizon ranging from a day to a week. Despite the
breakthrough in Mixed-Integer Programming (MIP) solvers, Unit Commitment (UC)
problems remain restricted in size and scope due to the required time that is needed
to solve these problems. However, UC problems could be solved significantly faster by
improving their MIP formulation. This would allow the implementation of more advanced
and computationally demanding problems.

Ideally, an MIP problem can be reformulated so that the feasible region of the corres-
ponding Linear Programming (LP) model becomes the convex hull of the feasible points.
If this is possible, we could solve an MIP as an LP since each vertex is a point satisfying
the integrality constraints and hence there always exists an optimal solution of the LP
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that is optimal for the corresponding MIP [14]. Unfortunately, in many practical prob-
lems there is an enormous number of inequalities needed to describe the convex hull,
and the effort required to obtain them outweighs the computation needed to solve the
original formulation of the MIP problem [14, 13]. For the UC case, however, it is possible
to tighten the feasible region of the relaxed LP problem, consequently obtaining dramatic
improvements in computation [14, 13, 11, 8, 7].

In particular, a UC formulation can be considerably tightened by providing the convex
hull (or tight) description of some set of constraints. Even though other constraints in
the problem might add some fractional vertices, this solution should be nearer to the
optimal solution than would be the original model [14, 13]. Some efforts in tightening
specific set of constraints have been done, such as: the convex hull of the minimum up
and down times [5, 6, 12], cuts to tighten ramping limits [11], tighter approximation
for quadratic generation costs [4], and simultaneously tight and compact description of
thermal units operation [8, 7].

This paper further improves the work in Morales-Espana et al. [7] by providing the
convex hull description for the following set of constraints: generation limits, startup
and shutdown capabilities, and minimum up and down times. In addition, different case
studies for a self-UC were solved as LP obtaining feasible MIP solutions; if compared with
three other MIP formulations, the same optimal results were obtained but significantly
faster.

The remainder of this paper is organized as follows. Section 2 introduces the main
notation used to describe the proposed formulation. Section 3 details the basic operating
constraints of a single generating unit. Section 4 contains the facet inducing and convex
hull proofs for the proposed linear description of the self-UC subproblem. Section 5
provides and discusses results from several case studies, where a comparison with other
three UC formulations is made. Finally, some relevant conclusions are drawn in Section 6.

2. Notation

Here we introduce the main notation used in this paper. Lowercase letters are used
for denoting variables and indexes. Uppercase letters denote parameters.

2.1. Indexes

t Time periods, running from 1 to T hours.

2.2. Unit’s Technical Parameters

P Maximum power output [MW].

P Minimum power output [MW].

SD Shutdown capability [MW].

SU Startup capability [MW].

TD Minimum down time [h].

TU Minimum up time [h].



2.3 Continuous Decision Variables 3

Figure 1: Unit’s operation including its startup and shutdown capabilities

2.3. Continuous Decision Variables

pt Power output of the unit for period t, production above the unit’s minimum
output P [MW].

2.4. Binary Decision Variables

ut Commitment status of the unit for period t, which is equal to 1 if the unit is
online and 0 offline

vt Startup status of the unit, which takes the value of 1 if the unit starts up in
period t and 0 otherwise.

wt Shutdown status of the unit, which takes the value of 1 if the unit shuts down
in period t and 0 otherwise.

3. Modelling the Unit’s Operation

This section describes the mathematical formulation of the basic operation of a single
generating unit in Unit Commitment (UC) problems. The following set of constraints are
modelled: generation limits, minimum up and down times, and startup and shutdown
capabilities. As shown in Figure 1, the startup capability SU is the maximum energy that
a generating unit can produce when it starts up. Similarly, the unit should be producing
bellow its shutdown capability SD when it shuts down. All these constraints are inherent
to units’ operation and they are included in recent Unit Commitment literature, see
[1, 4, 11, 7, 9] and references therein for further details.

The unit’s generation limits taking into account its maximum P and minimum P
production, as well as its startup SU and shutdown SD capabilities are set as follows:

p1 ≤
(
P − P

)
u1 −

(
P − SD

)
w2 (1)

pt ≤
(
P − P

)
ut −

(
P − SU

)
vt

−
(
P − SD

)
wt+1 t ∈ [2, T − 1] (2)

pT ≤
(
P − P

)
uT −

(
P − SU

)
vT (3)

It is important to highlight that the continuous decision variable pt is the generation
over P . The total generation output can be obtained as utP + pt.
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Be aware that (2) may be infeasible in the event that the unit is online for just one
period. That is, vt = wt+1 = 1 and the right side of (2) can be negative. Consequently,
(2) is only valid for units with uptime TU ≥ 2. Therefore, the correct formulation for
units with TU = 1 is given by:

pt ≤
(
P − P

)
ut −

(
P − SD

)
wt+1

−max (SD−SU, 0) vt ∀t ∈ [2, T − 1] (4)

pt ≤
(
P − P

)
ut −

(
P − SU

)
vt

−max (SU−SD, 0)wt+1 ∀t ∈ [2, T − 1] . (5)

Note that if SU =SD then (4)-(5) would be equivalent to the power limit constraints
proposed in [7].

The logical relationship between the decision variables ut, vt and wt; and the minimum
uptime TU and downtime TD limits are ensured with

ut − ut−1 = vt − wt ∀t ∈ [2, T ] (6)
t∑

i=t−TU+1

vi ≤ ut ∀t ∈ [TU + 1, T ] (7)

t∑

i=t−TD+1

wi ≤ 1− ut ∀t ∈ [TD + 1, T ] (8)

where (6)-(8) are the constraints proposed in [12] to describe the convex hull formulation
of the minimum-up and -down time constraints. Finally, the variable bounds are given
by

0 ≤ ut ≤ 1 ∀t (9)
vt ≥ 0, wt ≥ 0 ∀t ∈ [2, T ] (10)

pt ≥ 0 ∀t. (11)

In summary, inequalities (1)-(3) together with (6)-(11) describe the operation for
units with TU ≥ 2; and (1) together with (3)-(11) for the cases in which TU = 1.

4. Strength of the Proposed Inequalities

In this section, we prove that inequalities (1)-(5) and (11) are facet defining.
Note that constraints (6) uniquely define the value of the variables w as a function

of variables u and v. Unless differently specified, in the following, we will consider only
the space defined by the variables u, v, and p. Moreover, we suppose that all constraints
(1)-(5) and (7)-(11) are rewritten by substituting the w variables accordingly.

Definition 1. Let CT

(
TU, TD,P , P , SU, SD

)
be the convex hull of the feasible integer

solution for the problem. That is, for TU ≥ 2, we write

CT (TU ≥ 2, TD, P , P , SU, SD) =
conv{(u, v, p) ∈ {0, 1}2T−1 × RT

+| (u, v, p) satisfy (1)-(3) and (7)-(11)};
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x(1) (1 0 · · · 0 0 0 · · · 0 0 gxt 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 1 · · · 0 0 0 · · · 0 0)
x(2) (1 1 · · · 0 0 0 · · · 0 0 gxt 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0)...

...
...

. . .
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

x(t−1)(1 1 · · · 1 0 0 · · · 0 0 gxt 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0)
x(t) (1 1 · · · 1 1 0 · · · 0 0 gxt 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 1 · · · 0 0)

x(t+1)(1 1 · · · 1 1 1 · · · 0 0 gxt 0 · · · 0 gt 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0)...
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
x(T−1)(1 1 · · · 1 1 1 · · · 1 0 gxt 0 · · · 0 gt 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1)
x(T ) (1 1 · · · 1 1 1 · · · 1 1 gxt 0 · · · 0 gt 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0)
y(1) (1 0 · · · 0 0 0 · · · 0 0 D 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 1 · · · 0 0 0 · · · 0 0)
y(2) (1 1 · · · 0 0 0 · · · 0 0 P D · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0)...

...
...

. . .
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

y(t−1)(1 1 · · · 1 0 0 · · · 0 0 P P · · · D 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0)
y(t) (1 1 · · · 1 1 0 · · · 0 0 P P · · · P D 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 1 · · · 0 0)

y(t+1)(1 1 · · · 1 1 1 · · · 0 0 P P · · · P gyt D · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0)...
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
y(T−1)(1 1 · · · 1 1 1 · · · 1 0 P P · · · P gyt P · · · D 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1)
y(T ) (1 1 · · · 1 1 1 · · · 1 1 P P · · · P gyt P · · · P P 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0)
z(1) (0 1 · · · 1 1 1 · · · 1 1 0 U · · · 0 gt 0 · · · 0 0 1 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0)...

...
...

. . .
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

z(t−2)(0 0 · · · 1 1 1 · · · 1 1 0 0 · · · U gt 0 · · · 0 0 0 · · · 1 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0)
z(t−1)(0 0 · · · 0 1 1 · · · 1 1 0 0 · · · 0 gzt 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0)
z(t) (0 0 · · · 0 0 1 · · · 1 1 0 0 · · · 0 0 U · · · 0 0 0 · · · 0 0 1 · · · 0 0 0 · · · 0 0 0 · · · 0 0)...

...
...

. . .
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...
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q(t) (0 0 · · · 0 1 0 . . . 0 0 0 0 · · · 0 gqt 0 . . . 0 0 0 · · · 0 1 0 . . . 0 0 0 . . . 0 0 1 . . . 0 0)

y(T+1)(1 1 · · · 1 1 1 · · · 1 1 P P · · · P gyt P · · · P 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0)

Figure 2: 3T Affinely independent points for gxt , gt = 0, gyt = P and gzt = U , where U = SU − P ,
D = SD − P and P = P − P .

for TU = 1, we write

CT

(
TU = 1, TD, P , P , SU, SD

)
=

conv
{
(u, v, p) ∈ {0, 1}2T−1 × RT

+| (u, v, p) satisfy (1), (3)-(5), and (7)-(11)}.

For short we write CT for CT

(
TU, TD,P , P , SU, SD

)
, CT (TU ≥ 2) for CT (TU ≥

2, TD, P , P , SU, SD), and CT (TU = 1) for CT (TU = 1, TD, P , P , SU, SD).

In order to simplify the proofs, we introduce the points xi, yi, zi ∈ CT , as shown in
Figure 2. For the sake of brevity, we also introduce two set of parameters. The first set
is U , D, and P which are equivalent to U = SU − P , D = SD − P , and P = P − P ,
respectively. The second set of parameters, gt,gxt , g

y
t , g

z
t and gqt , is used to create different

combinations of affinely independent points from Figure 2, this is done (thorugh this
section) by setting different values to these parameters.

Proposition 2. CT

(
TU, TD,P , P , SU, SD

)
is full-dimensional in terms of u, v and p.

Proof. From Figure 2, it can be easily shown that the 3T points xi, yi, and zi for
i ∈ [1, T ] are affinely independent when gxt = gt = 0, gyt = P , and gzt = U . Note that
in case D = 0 the point y(1) must be replaced by y(T+1), thus keeping the 3T affinely
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independent points. This applies for all the following proofs; but for the sake of brevity,
we assume in the following that D 6= 0.

Proposition 3. The inequalities (2) describe facets of the polytope CT

(
TU ≥ 2

)
.

Proof. We show that (2) describe facets of CT

(
TU ≥ 2

)
by the direct method [14]. We

do so by presenting 3T−1 affinely independent points in CT

(
TU ≥ 2

)
that are tight (i.e.,

that satisfy as an equality) for inequality (2). Note in Figure 2 that the point zT (the
origin) satisfies (1)-(5) and (11) as equality. Therefore, to get 3T −1 affinely independent
points, we need 3T − 2 other linearly independent points.

The following 3T−2 points are linearly independent and tight for the inequality in set
(2) corrisponding to period t when gxt = 0, gt = gyt = P and gzt = U : T − 1 points xi for
i ∈ [1, t− 1]∪[t+ 1, T ], T points yi for i ∈ [1, T ], and T−1 points zi for i ∈ [1, T − 1].

Proposition 4. The inequalities (4) and (5) describe facets of the polytope CT

(
TU = 1

)
.

Proof. As zT (the origin) satisfies both (4) and (5) as equality, it suffices to show 3T − 2
linearly independent points that are tight for (4) and the same for (5). The following
3T−2 points are linearly independent and tight for the inequality in set (4) corrisponding
to period t when gxt = 0, gt = gyt = P : T − 1 points xi for i ∈ [1, t− 1] ∪ [t+ 1, T ], T
points yi for i ∈ [1, T ], T − 2 points zi for i ∈ [1, t− 2] ∪ [t, T − 1], and one point q(t)

where gqt = D if SD ≤ SU and gqt = U if SD ≥ SU .
The following 3T − 2 points are linearly independent and tight for the inequality in

set (5) corrisponding to period t when gxt = 0, gt = gyt = P , and gzt = U : T − 1 points xi

for i ∈ [1, t− 1]∪ [t+ 1, T ], T −1 points yi for i ∈ [1, t− 1]∪ [t+ 1, T ], T −1 points zi for
i ∈ [1, T − 1], and one point q(t) where gqt = D if SD ≤ SU and gqt = U if SD ≥ SU .

Proposition 5. The inequalities (1) and (3) describe facets of the polytope CT .

Proof. As zT (the origin) satisfies both (1) and (3) as equality, it suffices to provide a
set of 3T −2 linearly independent points that are tight for each of the above inequalities.
The following 3T − 2 points are linearly independent and tight for the inequality in set
(1) corresponding to period t when gt = 0, gxt = gyt = P and gzt = U : T − 1 points xi for
i ∈, [2, T ], T points yi for i ∈ [1, T ], and T − 1 points zi for i ∈ [1, T − 1].

The following 3T − 2 points are linearly independent and tight for the inequality in
set (3) corresponding to period t when gxt = 0, gt = gyt = P , and gzt = U : T − 1 points
xi for i ∈ [1, T ], T points yi for i ∈ [1, T ], and T − 1 points zi for i ∈ [1, T − 1].

Proposition 6. The inequality (11) describes a facet of the polytope CT .

Proof. The point zT satisfies the inequality (11) as equality. So, as above discussed,
it suffices to show 3T − 2 linearly independent solutions that are tight for (11). The
following 3T − 2 points are linearly independent and tight for the inequality in set (11)
corresponding to period t when gt = gxt = gyt = gzt = 0: T points xi for i ∈ [1, T ], T − 1
points yi for i ∈ [1, t− 1] ∪ [t+ 1, T ], and T − 1 points zi for i ∈ [1, T − 1].

Summing up (1)-(5) and (11) describe facets of CT . Finally, we prove that the
inequalities (1)-(11) are sufficient to describe the convex hull of the feasible solutions.

We need a preliminary lemma.
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Lemma 7. Let P = {x ∈ Rn|Ax ≤ b} be an integral polyhedron, i.e, P = conv(P ∩Zn).
Define Q = {(x, y) ∈ Rn × Rm|x ∈ P, 0 ≤ yi ≤ cix, i = 1, . . . , k, yi = dix, i = k +
1, . . . ,m}, where 1 ≤ k ≤ m, ci, di ∈ Rn, and cix ≥ 0, dix ≥ 0 for i = 1, . . . ,m and for
each x ∈ P . Then every vertex (x̃, ỹ) of Q has the property that x̃ is integral.

Proof. Suppose by contradiction that there exists a vertex (x̃, ỹ) of Q such that x̃ is not
integral. Then x̃ is not a vertex of P and therefore there exist x̄1, x̄2 ∈ P such that
x̃ = 1

2 x̄
1 + 1

2 x̄
2. Moreover, ỹi = cix̃ for i = 1, . . . , k, indeed if there exists r, 1 ≤ r ≤ k,

such that 0 ≤ ỹr < crx̃, then (x̃, ỹ) is a convex combination of the point (x̃, ŷ) and the
point (x̃, y̌), where ŷr = crx̃, y̌r = 0, and ŷi = y̌i = ỹi for 1 ≤ i ≤ m, i 6= r.

For j = 1, 2, let ȳji = cix̄
j for i = 1, . . . , k and ȳji = dix̄

j for i = k + 1, . . . ,m. Then
(x̃, ỹ) = 1

2 (x̄
1, ȳ1) + 1

2 (x̄
2, ȳ2), i.e., (x̃, ỹ) is a convex combination of (x̄1, ȳ1) and (x̄2, ȳ2).

Contradiction.

Theorem 8. Let DT

(
TU, TD,P , P , SU, SD

)
be a polyhedron defined as follows:

• for TU ≥ 2

DT

(
TU ≥ 2, TD, P , P , SU, SD

)
={

(u, v, p) ∈ [0, 1]2T−1 × RT
+| (u, v, p) satisfy (1)-(3) and (7)-(11) } ;

• for TU = 1

DT

(
TU = 1, TD, P , P , SU, SD

)
={

(u, v, p) ∈ [0, 1]2T−1 × RT
+| (u, v, p) satisfy (1), (3)-(5), and (7)-(11) } .

Then CT

(
TU, TD,P , P , SU, SD

)
= DT

(
TU, TD,P , P , SU, SD

)
.

Proof. As for CT , we use short notations DT , DT

(
TU ≥ 2

)
, and DT

(
TU = 1

)
. The

proof for TU ≥ 2 easily follows from Lemma 7. Indeed, DT

(
TU ≥ 2

)
is described by the

inequalities (6)-(10), that describe an integral polyhedron in u and v as proved in [12],
together with inequalities (1)-(3) and (11) satisfying the hypothesis of Lemma 7.

For TU = 1 let us suppose that SU ≥ SD. We follow Approach 8 in [14] (see
Section 9.2.3, Problem 2, Approach 8). We first introduce an extended formulation of
the problem, then we prove that the extended formulation is integral, and finally we prove
that the projection of the new polyhedron correspond to DT

(
TU = 1

)
. To accomplish to

this task we need to prove some preliminary claims. We define the following new binary
variables for t = 2, . . . , T − 1:

• xt = 1 if and only if vt = 1 and wt+1 = 1,

• ṽt = 1 if and only if vt = 1 and wt+1 = 0,

• w̃t+1 = 1 if and only if vt = 0 and wt+1 = 1,

• ũt = 1 if and only if ut = 1, vt = 0, and wt+1 = 0.

Moreover, ũT = 1 if and only if uT = 1 and vT = 0.
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Claim 1. The polyhedron P defined by the points (u, v, w, ũ, ṽ, w̃, x) satisfying the
following inequalities is integral:

vt ≤ ut t = 2, . . . , T (12)
t∑

i=t−TD+1

wi ≤ 1− ut t ∈ [TD + 1, T ] (13)

ut − ut−1 = vt − wt t ∈ [2, T ] (14)
wt+1 = w̃t+1 + xt t ∈ [2, T − 1] (15)

vt = ṽt + xt t ∈ [2, T − 1] (16)
ut = ṽt + w̃t+1 + xt + ũt t ∈ [2, T − 1] (17)

uT = vT + ũT (18)
0 ≤ ut ≤ 1 t ∈ [1, T ] (19)

vt ≥ 0 t ∈ [2, T ] (20)
wt ≥ 0 t ∈ [2, T ] (21)

ṽt, xt ≥ 0 t ∈ [2, T − 1] (22)
w̃t ≥ 0 t ∈ [3, T ] (23)
ũt ≥ 0 t ∈ [2, T ] (24)

Proof of Claim 1. The proof is carried on by showing that the coefficient matrix
associated with the above linear system is totally unimodular.

We exploit this well-known property (proved by Ghouila-Houri, see [10], Chapter
III.1, Theorem 2.7): let A be a {0, 1,−1}-matrix, if each subset J of columns of A can
be partitioned into J1 and J2 such that

∣∣∣∣∣∣
∑

j∈J1

aij −
∑

j∈J2

aij

∣∣∣∣∣∣
≤ 1 (25)

for each row i, then A is totally unimodular. This part of the proof has been inspired
by the proof of Malkin [6] for the polyhedron defined by minimum-up and down-time
constraints.

First we assign the variables wi ∈ J alternatively to J1 and to J2 in lexicographic
order. Then the variables ut ∈ J are assigned either to J1 if wk ∈ J2, where k =
max{i|1 ≤ i ≤ t, wi ∈ J}, or to J2 if wk ∈ J1, or to the same set with respect to ut−1 if
{i|1 ≤ i ≤ t, wi ∈ J} is empty. Thus condition (25) is satisfied for constraints (13).

Variables vt ∈ J are assigned either to J1 if ut ∈ J1, or to J2 if ut ∈ J2, or to the
opposite set with respect to ut−1 if ut /∈ J , or to the same set as wt if both ut−1, ut /∈ J .
This ensures that condition (25) is satisfied for constraints (12) and (14).

If vt, wt+1 ∈ J , then assign ṽt ∈ J to the same subset as vt, xt ∈ J to the opposite set
with respect to ṽt, and w̃t ∈ J to the same subset as wt. These assignments guarantee
that condition (25) is satisfied for constraints (15) and (16) both in the case that vt and
wt+1 are in the same set or in different sets. Moreover, the assignment for ũt can be
chosen to satisfy condition (25) for constraints (17). If one between vt and wt+1 does
not belong to J then proceed as follows: suppose w.l.o.g. that vt /∈ J , then assign wt+1,
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w̃t+1, and ṽt to the same set and xt to the other set, then ũt can be chosen to satisfy
condition (25) for constraints (17). Similar choices can be done if some of the variables
ṽt, w̃t+1, xt, ũt do not belong to J and the claim follows. End of Claim 1.

Then we define the polyhedron Q̃ by adding to the linear system defining P the
following inequalities:

pvt ≤ (SU − P )ṽt t ∈ [2, T − 1] (26)
pxt ≤ (SD − P )xt t ∈ [2, T − 1] (27)

pwt ≤ (SD − P )w̃t+1 t ∈ [2, T − 1] (28)

put ≤ (P − P )ũt t ∈ [2, T ] (29)
pvT ≤ (SU − P )vT (30)

p1 ≤ (P − P )u1 − (P − SD)w2 (31)

where pv, px, pw, pu and p1 are non-negative variables.
Claim 2. The polyhedron Q̃ is integral with respect to variables u, v, w, x, ũ, ṽ, w̃.

End of Claim 2.
The proof of Claim 2 is a direct application of Lemma 7 to the polyhedron P of

Claim 1.
Then we define the polyhedron Q by adding to the linear system defining Q̃ the

following inequalities

pt = pvt + pxt + pwt + put t ∈ [2, . . . , T − 1] (32)
pT = pvT + puT (33)

where pt for t ∈ [2 . . . T ] are non-negative variables.
Claim 3. The polyhedron Q is integral with respect to variables u, v, w, x, ũ, ṽ, w̃.

End of Claim 3.
Claim 3 follows from Claim 2 and by the straightforward extension of Lemma 7, where

the role of P is played by the integral polyhedron Q̃.
Finally we prove that
Claim 4. The projection of Q onto the space of the variables u, v, p is equivalent to

DT .
Proof of Claim 4. We start by eliminating the variables pvt , pxt , pwt , and put by simply

substituting constraints (32)-(33) with the following:

pt ≤(SU − P )ṽt + (SD − P )xt+

+ (SD − P )w̃t+1 + (P − P )ũt t ∈ [2, T − 1] (34)

pT ≤(SU − P )vT + (P − P )ũT , (35)

which are obtained by using constraints (26)-(30).
Now, we replace ũT from (18) in (35) to obtain:

pT ≤
(
P − P

)
uT −

(
P − SU

)
vT (36)

then we eliminate variables in (34) according to the following order

• ũt by using the equation (17);
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• w̃t+1 by using the equation (15);

• ṽt by using the equation (16).

It is not difficult to see that for t ∈ [2, T − 1] we obtain the following constraints:

pt ≤(P − P )ut − (P − SU)vt

− (P − SD)wt+1 + (P − SU)xt (37)
xt ≥0 (38)
xt ≥vt + wt+1 − ut (39)
xt ≤vt (40)
xt ≤wt+1. (41)

Now we can apply Fourier-Motzkin elimination to variables xt by considering the
following pairs of constraints:

• by constraints (40) and (37) we obtain

pt ≤ (P − P )ut − (P − SD)wt+1; (42)

• by constraints (40) and (38) we obtain vt ≥ 0;

• by constraints (40) and (39) we obtain

wt+1 ≤ ut; (43)

• by constraints (41) and (37) we obtain

pt ≤ (P − P )ut − (P − SU)vt − (SU − SD)wt+1; (44)

• by constraints (41) and (38) we obtain wt+1 ≥ 0;

• by constraints (41) and (39) we obtain ut ≥ vt.

By using equation (14), wt+1 ≤ ut is equivalent to vt+1 ≤ ut+1, which is one of the
inequalities (12). We can simply see that the new constraints (42) and (44) coincide with
constraints (4) and (5) for the case SU ≥ SD, respectively; and constraints (31) and
(36) coincide with constraints (1) and (3), respectively. End of Claim 4.

From Claim 4 it follows that DT is integral with respect to the variables u and v.
The proof for SD ≥ SU can be performed in a symmetric way.

5. Numerical Results

To illustrate the computational performance of the Tight and Compact formulation
proposed in this paper, the self-UC problem for a price-taker producer is solved for
different time spans. The self-UC is also associated with the scheduling problem of a
single generation unit [2], which arises when solving UC with decomposition methods
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Table 1: Generator Data
Technical Information Cost Coefficients†

Gen
P P TU/TD SU SD p0* Ste0⋆ CNL CLV CSU

[MW] [MW] [h] [MW] [MW] [MW/h] [h] [$/h] [$/MWh] [$]
1 455 150 8 252 303 150 8 1000 16.19 9000
2 455 150 8 252 303 150 8 970 17.26 10000
3 130 20 5 57 75 20 5 700 16.60 1100
4 130 20 5 57 75 20 5 680 16.50 1120
5 162 25 6 71 94 25 6 450 19.70 1800
6 80 20 3 40 50 20 3 370 22.26 340
7 85 25 3 45 55 25 3 480 27.74 520
8 55 10 1 25 33 10 1 660 25.92 60
9 55 10 1 25 33 10 1 665 27.27 60
10 55 10 1 25 33 10 1 670 27.79 60

* p0 is the unit’s initial production prior to the first period of the time span.

⋆Ste0 is the number of hours that the unit has been online prior to the first period of the time span.
†CNL, CLV and CSU stand for non-load, linear-variable and startup costs, respectively.

Table 2: Energy Price ($/MWh)
t = 1 . . . 12 → 13.0 7.2 4.6 3.3 3.9 5.9 9.8 15.0 22.1 31.3 33.2 24.8
t = 13 . . . 24 → 19.5 16.3 14.3 13.7 15.0 17.6 20.2 29.3 49.5 53.4 30.0 20.2

such as Lagrangian Relaxation [3]. The goal of a price-taker producer is to maximize
his profit (which is the difference between the revenue and the total operating cost [8])
during the planning horizon:

max

N∑

t=1

G∑

g=1

[
πtpgt −

(
CNL

g ugt + CLV
g pgt + CSU

g vgt + CSD
g wgt

)]
(45)

where subindex g stands for generating units and G is the total quantity of units; πt

refers to the energy prices; CNL
g , CLV

g , CSU
g and CSD

g are the non-load, linear-variable,
startup and shutdown costs of unit g, respectively (for this case study CSD

g = 0 for all
units). The 10-unit system data is presented in Table 1 and the energy prices are shown
in Table 2. The power system data are based on information presented in [1, 7]. All tests
were carried out using CPLEX 12.5 on an Intel-i7 3.4-GHz personal computer with 8 GB
of RAM memory. The problems are solved until they hit the time limit of 10000 seconds
or until they reach optimality (more precisely to 10−6 of relative optimality tolerance).

The formulation presented in this paper, labelled as TC, is compared with the previous
Tight and Compact formulation presented in [7], labelled as TC0, and with those in
[1] and [11], labelled as 1bin and 3bin, respectively. It is important to note that the
formulation TC0 uses (46) and (47) instead of (4) and (5) for units with TU = 1.

pt ≤
(
P − P

)
ut −

(
P − SD

)
wt+1 ∀t ∈ [2, T − 1] (46)

pt ≤
(
P − P

)
ut −

(
P − SU

)
vt ∀t ∈ [2, T − 1] (47)
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Table 3: Computational Performance Comparison
Case Optimum IntGap (%) LP time (s) MIP time (s)* Nodes
(days) (M$) TC TC0 3bin 1bin TC TC0 3bin 1bin TC TC0 3bin 1bin TC TC0 3bin 1bin

64 7.259361 0 0.09 0.88 2.57 0.57 0.47 0.80 0.95 0.57 1.92 12.01 13.79 0 0 496 487
128 14.517096 0 0.09 0.87 2.57 1.17 1.20 2.06 2.60 1.17 4.81 45.54 (3.33E-4) 0 0 528 603915
256 29.032567 0 0.09 0.87 2.57 3.16 3.29 5.38 6.88 3.16 7.75 199.18 (5.21E-4) 0 0 533 229035
512 58.063509 0 0.09 0.87 2.57 8.08 8.39 14.29 18.83 8.08 17.29 734.03 (5.35E-4) 0 0 488 136128

* If the time limit is reached then the final optimality tolerance is shown between parentheses

apart from these constraints, TC and TC0 are identical. Note however that (4) and (5)
are needed to describe the convex hull, as proved in Section 4.

Table 3 shows the computational performance for four cases with different time spans.
All formulations achieve the same MIP optimum since all of them model the same MIP
problem. However, they present different LP optimums, the relative distance between
their MIP and LP optimums is measured with the Integrality Gap [13, 7]. Note that the
MIP optimums of TC were achieved by just solving the LP over (1)-(11), IntGap=0,
hence solving the problems in LP time. On the other hand, as usual, the branch-and-cut
method was needed to solve the MIP for TC0, 3bin and 1bin. Table 3 also shows the
MIP time and nodes explored that were required by the different formulations to reach
optimality. It is interesting to note that although TC0 reached optimality exploring
zero nodes, TC0 needed to make use of the solver’s cutting planes strategy because the
relaxed LP solution did not achieve the integer one, IntGap 6=0 (the solver used 227 and
1224 cuts for the smallest and largest case, respectively). This tightening process took
more time than the time required to solve the initial LP relaxation, that is why the MIP
time for TC0 is more than twice its LP relaxation time.

Table 4 shows the dimensions for all of the formulations for four selected instances.
Note that TC and TC0 are more compact, in terms of quantity of constraints and
nonzero elements, than 3bin and 1bin. The formulation 1bin presents a third of binary
variables in comparison with the other formulations, but 3 times more continuous vari-
ables. This is because the work in [1] reformulated the units’ operation model to avoid
the startup and shutdown binary variables, claiming that this would reduce the node
enumeration in the branch-and-bound process. Note however that this reformulation
considerably damaged the strength of 1bin, hence it presented the worst computational
performance, similar results are obtained in [11, 7]. The formulation 1bin presents more
continuous variables than the other formulations because it requires the introduction of
new continuous variables to model the startup and shutdown costs of generating units.

In conclusion, TC presents a dramatic improvement in computation in comparison
with 3bin and 1bin due to its tightness (speedups above 90x and 8500x, respectively);
and it also presents a lower LP burden due to its compactness, see Table 4. Compared
with TC0, the formulation TC is tighter; consequently, TC requires less time to solve
the MIP problem (speedup above 4.1x).
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Table 4: Problem Size Comparison
Case # constraints # nonzero elements # real var # binary var

(days) TC* 3bin 1bin TC TC0 3bin 1bin TC† 1bin TC† 1bin
64 65997 107459 138225 338994 334389 417313 469719 15360 46080 46080 15360
128 132045 214979 276465 678450 669237 835105 939735 30720 92160 92160 30720
256 264141 430019 552945 1357362 1338933 1670689 1879767 61440 184320 184320 61440
512 528333 860099 1105905 2715186 2678325 3341857 3759831 12288 368640 368640 122880

* TC is equal to TC0 for these cases

†TC, TC0 and 3bin are equal for these cases

6. Conclusion

This paper presented the convex hull description of the basic constraints of generating
units for unit commitment (UC) problems. These constraints are: generation limits,
startup and shutdown capabilities, and minimum up and down times. The model does
not include some crucial constraints, such as ramping, but the proposed constraints can
be used as the core of any UC formulation and they can help to tighten the final UC
model. Finally, different case studies for a self-UC were solved as LP obtaining MIP
solutions; if compared with three other formulations, the same optimal results were
obtained but significantly faster.
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Abstract This paper provides the convex hull description for the basic operation of slow- and quick-start
units in power-based unit commitment (UC) problems. The basic operating constraints that are modeled for
both types of units are: 1) generation limits and 2) minimum up and down times. Apart from this, the startup
and shutdown processes are also modeled, using 3) startup and shutdown power trajectories for slow-start
units, and 4) startup and shutdown capabilities for quick-start units. In the conventional UC problem, power
schedules are used to represent the staircase energy schedule; however, this simplification leads to infeasible
energy delivery, as stated in the literature. To overcome this drawback, this paper provides a power-based
UC formulation drawing a clear distinction between power and energy. The proposed constraints can be used
as the core of any power-based UC formulation, thus tightening the final mixed-integer programming UC
problem. We provide evidence that dramatic improvements in computational time are obtained by solving
different case studies, for self-UC and network-constrained UC problems.

Keywords Convex Hull · Unit Commitment (UC) · Mixed-Integer Programming (MIP) · Tight
Formulation · Slow-Start units · Quick-Start Units

1 Introduction

The short-term Unit Commitment (UC) problem is one of the critical tasks that is daily performed by
different actors in the electricity sector. Depending on the purpose, the UC is solved under centralized or
competitive environments, from self-scheduling to centralized auction-based market clearing, over a time
horizon ranging from one day to one week.

In general, the UC main objective is to meet demand at minimum cost while operating the system and
units within secure technical limits [11,22,4]. The UC problem can then be defined as:

min
x,p

b>x + c>p

s.t. Fx ≤ f , x is binary (1)
Hp ≤ h (2)
Ax + Bp ≤ g (3)
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(a) Traditional Energy Schedule (b) Actual Deployment

Fig. 1: Scheduling vs. Deployment

where x and p are decision variables. The binary variable x is a vector of commitment-related decisions
(e.g., on/off and startup/shutdown) of each generation unit for each time interval over the planning horizon.
The continuous variable p is a vector of each unit dispatch decision for each time interval.

The objective function is to minimize the sum of the commitment cost b>x (including non-load,
startup and shutdown costs) and dispatch cost c>p over the planning horizon. Constraint (1) involves
only commitment-related variables, e.g., minimum up and down times, startup and shutdown constraints,
variable startup costs. Constraint (2) contains dispatch-related constraints, e.g., energy balance (equality
can always be written as two opposite inequalities), reserve requirements, transmission limits, ramping
constraints. Constraint (3) couples the commitment and dispatch decisions. e.g., minimum and maximum
generation capacity constraints. The reader is referred to [11,22,21,19,26,16,18,14,23] and references therein
for further details.

Conventional UC formulations, based on energy scheduling [11,22,21,19,26], do not represent the unit
operation adequately, because they fail to guarantee that the resulting energy schedules can be delivered
[10,15]. To illustrate this problem, consider the following scheduling example for one generating unit. This
example assumes that the minimum and maximum generation outputs of the unit are 100 MW and 300
MW, respectively, and that the unit can ramp up from the minimum to the maximum output in one hour,
i.e., 200 MW/h of ramp rate. As shown in Figure 1a, if the unit has been producing 100 MW during the first
hour then the unit can produce at its maximum output (300 MW) for the next hour. This would be a natural
energy schedule resulting from the traditional UC formulations, which are based on the energy scheduling
approach. However, the unit is just physically capable to reach its maximum output before the end of the
second hour due to its limited ramp rate, as shown in Figure 1b. Consequently, the solution obtained in
Figure 1a is not feasible. In fact, the unit requires an infinite ramping capability to be able to reproduce
the energy schedule presented in Figure 1a. More examples about this energy infeasibility problem can be
found in [10,15,14] and references therein.

Another drawback of conventional UC formulations is that generating units are assumed to start/end
their production at their minimum output. That is, their intrinsic startup and shutdown power trajectories
are ignored. As a consequence, there is a high amount of energy that is not allocated by UC but it is
inherently present in real time, thus causing a negative economic impact [17] and also demanding a larger
quantity of operating reserves to the system [14]. Although some recent works are aware of the importance
of including the startup and shutdown processes in UC problems, these power trajectories continue being
ignored because the resulting model is considered to largely increase the complexity of the UC problem
and hence its computational intensity [3,8,13]. For further details of the drawbacks of conventional UC
scheduling approaches, the reader is referred to [15,18] and references therein.

Developing more accurate models would be pointless if they cannot be solved fast enough. Under the
mixed integer programming (MIP) approach, it is important to develop tight formulations to reduce the UC
computational burden. This allows the implementation of more advanced and computationally demanding
problems. Different set of constraints have been proposed to tighten the UC problem [12,20,17,16,9,2] . The
work in [12,20] formulate the convex hull of the minimum up and down times. Cuts to tighten ramping limits
are presented in [2]. A tighter approximation for quadratic generation costs is proposed [7]. Simultaneously
tight and compact MIP formulations for thermal units operation are devised in [17,16,9].

To overcome the drawbacks of conventional UC formulations, the model proposed in this paper draws
a clear difference between power and energy, and it also takes into account the normally neglected power
trajectories that occur during the startup and shutdown processes. Thus, this model adequately represents
the operation of generating units to efficiently exploit their flexibility and to avoid infeasible energy delivery.
This paper further improves the work in [17] by including the operation of quick-start units and providing
the convex hull description for the following set of constraints: generation limits, minimum up and down
times, startup and shutdown power trajectories for slow-start units, and startup and shutdown capabilities
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for quick-start units. Although these convex hulls do not consider some crucial constraints, such as ramping,
the proposed constraints can be used as the core of any power-based UC formulation, thus tightening the
final UC model. In addition, two sets of case studies are carried out: 1) different case studies for a self-UC
problem where we only take into account the constraints proposed in this paper, hence the proposed convex
hulls allow to solve these self-UC (MIP) instances as linear programs (LP); 2) different case studies for a
network-constrained UC problem, where other common constraints are taken into account, such as demand-
balance, reserves, ramping and transmission limits. These numerical experiments show that the proposed
power-based UC formulations solve the MIP problems significantly faster when compared with two other
(energy-based) UC formulations commonly known in the literature.

The remainder of this paper is organized as follows. Section 2 introduces the main nomenclature used in
this paper. Section 3 details the operating constraints of a single slow- and quick-start unit. In Section 4, we
provide a convex hull proof for the power-based UC including the constraints mentioned above. Section 5
provides and discusses results from several case studies, where a computational performance comparison with
other two traditional UC formulations is made. Finally, some relevant conclusions are drawn in Section 6.

2 Nomenclature

Here we introduce the main notation used in this paper. Lowercase letters are used to denote variables and
indexes. Uppercase letters denote parameters.

2.1 Definitions

In this paper, we use the terminology introduced in [17] to reference the different unit operation states, see
Figure 2.

online the unit is synchronized with the system.
offline the unit is not synchronized with the system.
up the unit is producing above its minimum output. During the up state, the unit output is control-

lable.
down the unit is producing below its minimum output: when offline, starting up or shutting down.

2.2 Indexes

t Time periods, running from 1 to T hours.

2.3 Unit’s Technical Parameters

CLV Linear variable cost [$/MWh].
CNL No-load cost [$/h].
CSD Shutdown cost [$].
CSU Startup cost [$].
P Maximum power output [MW].
P Minimum power output [MW].
P SD
i Power output at the beginning of the ith interval of the shutdown ramp process [MW], see Figure 2.
P SU
i Power output at the beginning of the ith interval of the startup ramp process [MW], see Figure 2.
SD Shutdown capability [MW], see Figure 3.
SU Startup capability [MW], see Figure 3.
SDD Duration of the shutdown process [h], see Figure 2.
SUD Duration of the startup process [h], see Figure 2.
TD Minimum down time [h].
TU Minimum up time [h].
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Fig. 2: Operating states including startup and shutdown power trajectories for slow-start units

2.4 Continuous Decision Variables

et Total energy production during period t [MWh].
pt Power output at the end of period t, production above the minimum output P [MW].
p̂t Total power output schedule at the end of period t, including startup and shutdown power tra-

jectories [MW].

2.5 Binary Decision Variables

ut Commitment status of the unit for period t, which is equal to 1 if the unit is up and 0 if it is
down, see Figure 2.

vt Startup status of the unit, which takes the value of 1 if the unit starts up in period t and 0
otherwise, see Figure 2.

wt Shutdown status of the unit, which takes the value of 1 if the unit shuts down in period t and 0
otherwise, see Figure 2.

3 Modeling the Unit’s Operation

The constraints presented here are a further extension of our previous work in [17]. Here we generalize the
formulation by considering quick-start units.

The quick-start units are defined as those that can ramp up from 0 to any value between P and SU
within one period, typically one hour, as shown in Figure 3. Similarly, they can also ramp down from any
value between SD and P to 0 within one period. On the other hand, the slow-start units are defined as
those units that require more than one period to ramp up (down) from 0 (P ) to P (0), see Figure 2.

The up and down states are distinguished from the online and offline states. Figure 2 shows the different
operation states of a thermal unit, as defined in Section 2. During the up period (ut = 1), the unit has
the flexibility to follow any power trajectory being bounded between the maximum and minimum output.
On the other hand, for slow-start units, the power output follows a predefined power trajectory when the
unit is starting up or shutting down. The startup and shutdown power trajectories for quick-start units are
defined by the startup and shutdown capabilities, see Figure 3.

This section first presents the basic operating constraints that applies for both slow- and quick-start
units. However, the total unit’s production output is different for each of them. Section 3.2 and Section 3.3
show how to obtain the total production, power and energy, for slow- and quick-start generating units,
respectively.
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Fig. 3: Startup and shutdown capabilities for quick-start units

3.1 Basic Operating Constraints

The unit’s generation limits taking into account startup SU and shutdown SD capabilities, which are
SU, SD ≥ P by definition, are set as follows, see Figure 3:

pt ≤
(
P − P

)
ut −

(
P − SD

)
wt+1 + (SU − P ) vt+1 t ∈ [1, T − 1] (4)

pT ≤
(
P − P

)
uT (5)

pt ≥0 ∀t (6)

and the logical relationship between the decision variables ut, vt and wt; and the minimum uptime TU and
downtime TD limits are ensured with

ut − ut−1 = vt − wt ∀t ∈ [2, T ] (7)
t∑

i=t−TU+1

vi ≤ ut ∀t ∈ [TU + 1, T ] (8)

t∑

i=t−TD+1

wi ≤ 1− ut ∀t ∈ [TD + 1, T ] (9)

0 ≤ ut ≤ 1 ∀t (10)
0 ≤ vt ≤ 1, 0 ≤ wt ≤ 1 ∀t ∈ [2, T ] (11)

where (7)-(9) describe the convex hull formulation of the minimum up and down time constraints proposed
in [20].

3.2 Slow-Start Units

The slow-start units are assumed to produce P at the beginning and at the end of the up state, see Figure 2.
At those points the startup and shutdown power trajectories are as shown in Figure 2. Consequently,
constraints (4)-(11) describe the operation of slow-start units during the up state when SU, SD = P .

Be aware that the minimum down time TD is function of the minimum offline time, i.e., TD is equal
the startup and shutdown duration processes (SUD +SDD) plus the minimum offline time of the unit. This
then avoids the possible overlapping between the startup and shutdown trajectories. That is, constraint
(9) ensures that the unit is down (ut = 0) for enough time to fit the unit’s startup and shutdown power
trajectories.

As presented in [17], the total power output including the startup and shutdown power trajectories for
slow-start units is obtained with

p̂t = P (ut + vt+1) + pt︸ ︷︷ ︸
(i) Output when being up

+
SUD∑

i=1

P SU
i vt−i+SUD+2

︸ ︷︷ ︸
(iii) SU trajectory

+
SDD+1∑

i=2

P SD
i wt−i+2

︸ ︷︷ ︸
(ii) SD trajectory

∀t (12)

For a better understanding of (12), we can analyze how the power trajectory example in Figure 2 is
obtained from the three different parts in (12):
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(i) Output when the unit is up: Although the unit is up for five consecutive hours, there are six total power
values that are greater than or equal to P , from p̂4 to p̂9 (see the squares in Figure 2). When t=4, the
term vt+1 in (i) becomes v5 ensuring (the first) P at the beginning of the up period, and the term ut
adds (the remaining five) P for t = 5 . . . 9. In addition, pt adds the power production above P .

(ii) Shutdown power trajectory: This process lasts for two hours, SDD=2; then, the summation term (ii)
becomes P SD

2 wt+P
SD
3 wt−1, which is equal to P SD

2 for t=10 and P SD
3 for t=11, being zero otherwise.

This provides the shutdown power trajectory (see the circles in Figure 2).
(iii) Startup power trajectory: the startup power trajectory can be obtained using a procedure similar to

that used in 2) (see the triangles in Figure 2).

Similarly to (12), the total energy production for slow-start units is given by

et =P · ut +
pt+pt−1

2
+

SDD∑

i=1

P SD
i+1+P SD

i

2
wt−i+1 +

SUD∑

i=1

P SU
i+1+P SU

i

2
vt−i+SUD+1 ∀t (13)

3.3 Quick-Start Units

The total power for a quick-start unit is given by

p̂t =P (ut + vt+1) + pt ∀t (14)

and the total energy production is

et =
P (2ut + vt+1 + wt) + pt−1 + pt

2
∀t (15)

It is interesting to note that even though SU, SD ≥ P (by definition), the resulting energy from (15)
may take values below P during the startup and shutdown processes, see Figure 3.

The energy for slow- and quick-start units can also be obtained in function of the total power output
p̂t, et = p̂t+p̂t−1

2 for all t. Bear in mind however that sometimes only the total power, (12) and (14), or the
total energy, (13) and (15), production is needed as a function of p, u, v, w.

Notice that (12)-(15) are defined for all t and they use variables that are outside the scheduling horizon
[1, T ]. Those variables are considered to be equal to zero when their subindex is t < 1 or t > T .

In summary, constraints (4)-(11), when SU, SD = P , together with (12) and (13) describe the techni-
cal operation of slow-start units. Constraints (4)-(11) together with (14) and (15) describe the technical
operation of quick-start units.

3.4 Total Unit Operation Cost

The objective function of any UC problem involves the total unit operation costs of each generating unit
ct, which is defined as follows

ct = CNLut + CLVet + CSU′vt + CSD′wt (16)

Note that the no-load cost (CNL) considered in (16) ignores the startup and shutdown periods. This is
because the CNL only multiplies the commitment during the up state ut. In order to consider the no-load
cost during the startup and shutdown periods, CSU′ and CSD′ are introduced in (16) and defined as:

CSU′ = CSU + CNLSUD (16a)

CSD′ = CSD + CNLSDD (16b)

where SUD, SDD = 1 for quick-start units, see Figure 3.
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Fig. 4: 3T Affinely independent points for gt, gT = 0, gyt = P and gzt = U , where U = SU −P , D = SD−P
and P = P − P .

4 Convex Hull Proof

In this section we first prove that inequalities (4)-(6) are facet defining and then that inequalities (4)-
(11) define an integral polytope. Finally, we also prove that inequalities describing the operation of slow-
start units, (4)-(11) together with equalities (12)-(13), define an integral polytope. Similarly, inequalities
describing the operation of quick-start units, (4)-(11) together with equalities (14)-(15), also define an
integral polytope.

Note that the variables wt are completely determined in terms of ut and vt using (7). Therefore, in
the following we eliminate variables wt and assume that constraints (4), (9), and (11) are reformulated
accordingly.

Definition 1 Let DT

(
TU, TD,P , P , SU, SD

)
=
{

(u, v, p) ∈ R3T−1
+ | (u, v, p) satisfy (4)-(11)}. Let

CT

(
TU, TD,P , P , SU, SD

)
be the convex hull of the points in DT

(
TU, TD,P , P , SU, SD

)
such that u ∈

{0, 1}T , v ∈ {0, 1}T−1.

For short, we denote CT

(
TU, TD,P , P , SU, SD

)
by CT and DT

(
TU, TD,P , P , SU, SD

)
by DT .

To facilitate the proofs, we introduce the points xi, yi, zi ∈ CT , as shown in Figure 4. We also introduce
the parameters U,D and P which are equivalent to U = SU −P , D = SD−P and P = P −P , respectively.

Proposition 1 CT is full-dimensional in terms of u, v and p.

Proof From Figure 4, it can be easily shown that the 3T points xi, yi and zi for i ∈ [1, T ] are affinely
independent when gt, g

T = 0, gyt = P and gzt = U . Note that in case D = 0 the point y(1) must be
removed and the point y(T+1) added, thus keeping the 3T affinely independent points. This applies for all
the following proofs; but for the sake of brevity, we assume from now on that D 6= 0. ut

Theorem 1 The inequalities in (4) describe facets of the polytope CT .

Proof We show that (4) describe facets of CT by the direct method [25]. We do so by presenting 3T − 1
affinely independent points in CT that are tight (satisfy as an equality) for the given inequality. Note
in Figure 4 that the point zT (the origin) satisfies (4)-(6) as equality. Therefore, to get 3T − 1 affinely
independent points, we need only 3T − 2 other linearly independent points.
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The following 3T − 2 points are linearly independent and tight for (4) when gT = 0, gt, g
y
t = P and

gzt = U : T − 1 points xi for i ∈ [1, t− 1] ∪ [t+ 1, T ], T points yi for i ∈ [1, T ], and T − 1 points zi for
i ∈ [1, T − 1]. ut

Theorem 2 The inequality (5) describes a facet of the polytope CT .

Proof As mentioned before, it suffices to show 3T −2 linearly independent points that are tight for (5). The
following 3T − 2 points are linearly independent and tight for (5) when gt = 0, gT , gyt = P and gzt = U : T
points xi for i ∈ [1, T ], T − 1 points yi for i ∈ [1, T − 1], and T − 1 points zi for i ∈ [1, T − 1]. ut

Theorem 3 The inequalities in (6) describe facets of the polytope CT .

Proof The following 3T−2 points are linearly independent and tight for (6) when gt, g
y
t , g

z
t , g

T = 0: T points
xi for i ∈ [1, T ], T − 1 points yi for i ∈ [1, t− 1] ∪ [t+ 1, T ], and T − 1 points zi for i ∈ [1, T − 1]. ut

We may conclude that (4)-(6) describe facets of CT .
Now, we prove that the inequalities (4)-(11) are sufficient to describe the convex hull of the feasible

solutions.
We need a preliminary lemma.

Lemma 1 Let P = {x ∈ Rn|Ax ≤ b} be an integral polyhedron, i.e, P = conv(P∩Zn). Define Q = {(x, y) ∈
Rn × Rm|x ∈ P, 0 ≤ yi ≤ cix, i = 1, . . . , k, yi = dix, i = k + 1, . . . ,m}, where 1 ≤ k ≤ m, ci, di ∈ Rn, and
cix ≥ 0, dix ≥ 0 for i = 1, . . . ,m and for each x ∈ P . Then every vertex (x̃, ỹ) of Q has the property that x̃
is integral.

Proof Suppose by contradiction that there exists a vertex (x̃, ỹ) of Q such that x̃ is not integral. Then x̃
is not a vertex of P and therefore there exist x̄1, x̄2 ∈ P such that x̃ = 1

2 x̄
1 + 1

2 x̄
2. Moreover, ỹi = cix̃ for

i = 1, . . . , k, indeed if there exists r, 1 ≤ r ≤ k, such that 0 ≤ ỹr < crx̃, then (x̃, ỹ) is a convex combination
of the point (x̃, ŷ) and the point (x̃, y̌), where ŷr = crx̃, y̌r = 0, and ŷi = y̌i = ỹi for 1 ≤ i ≤ m, i 6= r.

For j = 1, 2, let ȳji = cix̄
j for i = 1, . . . , k and ȳji = dix̄

j for i = k + 1, . . . ,m. Then (x̃, ỹ) = 1
2 (x̄1, ȳ1) +

1
2 (x̄2, ȳ2), i.e., (x̃, ỹ) is a convex combination of (x̄1, ȳ1) and (x̄2, ȳ2). Contradiction. ut

Theorem 4 The polytopes CT and DT are equal.

Proof The thesis can be proved by showing that DT defines an integral polytope. This easily follows by
applying Lemma 1, considering P as the integer polytope defined by inequalities (8)-(11) (see [20]), pt as
the additional variables and (4)-(6) as the new inequalities. ut

Finally, we prove that inequalities describing the operation of slow- and quick-start units define integral
polytopes.

Definition 2 Let the polytope that describes the operation of slow-start units be
ST

(
TU, TD,P , P , SUD, SDD, P SU

i , P SD
i

)
=
{

(u, v, p, p̂, e) ∈ R5T−1
+ | (u, v, p) satisfy inequalities (4)-(13) for

SU, SD = P }, for short denoted as ST . Let the polytope that describes the operation of quick-start units be
QT

(
TU, TD,P , P , SU, SD,

)
=
{

(u, v, p, p̂, e) ∈ R5T−1
+ | (u, v, p) satisfy inequalities (4)-(11) and (14)-(15)},

for short denoted as QT .

Theorem 5 The polytopes ST and QT define integer polytopes on variables u, v.

Proof This easily follows by applying Lemma 1. For the polytope describing the operation of slow-start
units ST , P is the integer polytope DT (see Theorem 4), p̂t, et are the additional variables, and (12)-(13)
the new equalities. Similarly, for the polytope describing the operation of quick-start units QT , P is the
integer polytope DT , p̂t, et are the additional variables, and (14)-(15) the new equalities. ut

Concluding, the constraints describing the technical operation of both slow- and quick-start units are
convex hulls. These constraints are (4)-(11), when SU, SD = P , together with (12) and (13) for slow-start
units; and (4)-(11) together with (14) and (15) for quick-start units.

In short, the entire formulation (4)-(15) defines an integral polytope.
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Table 1: Generator Data for Quick-start Units

Technical Information Cost Coefficients†

Gen P P TU&TD SU SD p0* Ste0� CNL CLV CSU CSD

[MW] [MW] [h] [MW] [MW] [MW] [h] [$/h] [$/MWh] [$] [$]
1 455 150 8 252 303 150 8 1000 16.19 9000 0
2 455 150 8 252 303 150 8 970 17.26 10000 0
3 130 20 5 57 75 20 5 700 16.60 1100 0
4 130 20 5 57 75 20 5 680 16.50 1120 0
5 162 25 6 71 94 25 6 450 19.70 1800 0
6 80 20 3 40 50 20 3 370 22.26 340 0
7 85 25 3 45 55 25 3 480 27.74 520 0
8 55 10 1 25 33 10 1 660 25.92 60 0
9 55 10 1 25 33 10 1 665 27.74 60 0
10 55 10 1 25 33 10 1 670 27.79 60 0
* p0 is the unit’s initial production prior to the first period of the time span.
� Ste0: hours that the unit has been online prior to the first period of the time span.

5 Numerical Results

To illustrate the computational performance of the formulation proposed in this paper, two sets of case
studies are carried out: one for a self-UC problem and another for a network-constrained UC problem. This
section compares the computational performance of the proposed power-based formulation with two energy-
based formulations, [1] and [4], which have been recognized as computationally efficient in the literature [18,
14,23].

The following three formulations are then implemented:

– Pw : This is the complete formulation proposed in this paper. For the network-constrained UC, we
include other common constraints such as demand-balance, reserves, ramping and transmission limits.
The complete network-constrained power-based UC is presented in Appendix A.

– 1bin: This formulation is presented in [1] and requires a single set of binary variables (per unit and per
period), i.e., the startup and shutdown decisions are expressed as a function of the commitment decision
variables.

– 3bin: The convex hull of the minimum up/down time constraints proposed in [20] (see (8) and (9)) are
implemented with the three-binary equivalent formulation of 1bin. This formulation is presented in [4].

Notice that different set of constraints are used for the self-UC and for the network-constrained UC problems.
For the self-UC problems, 1bin and 3bin are modeled only considering 1) generation limits, 2) minimum up
and down times, and 4) startup and shutdown capabilities; the same set of constraints presented in Section 3.
For the network-constrained UC problems, 1bin and 3bin are modeled taking into account the full set of
constraints presented in [1] and its 3-bin equivalent [4], respectively; in addition, these formulations are
further extended by introducing downwards reserve (which is modeled in the same fashion as the upwards
reserve, see [1,?,14]), transmission limits (see (22) in Appendix A), and wind generation (which is taken
into account in the demand-balance (19) and transmission-limit constraints (22))

It is important to highlight that the energy-based UC formulations 1bin and 3bin represent the same
mixed-integer optimization problem. The difference between them is how the constraints are formulated.
In other words, for a given case study, 1bin and 3bin obtain the same optimal results, e.g., commitments,
generating outputs and operation costs. On the other hand, the power-based formulation obtains different
optimal results, since the constraints are based on power-production variables rather than energy-output
variables. The reader is referred to [18,14] for further and detailed discussions about the differences between
the optimal power-based and energy-based scheduling.

All tests were carried out using CPLEX 12.5 on an Intel-i7 3.4-GHz personal computer with 8 GB of
RAM memory. The problems are solved until they hit the time limit of 10000 seconds or until they reach
optimality (more precisely to 10−6 of relative optimality gap).

5.1 Self-UC

Here, a self-UC problem for a price-taker producer is solved for different time spans. The goal is then to
optimally schedule the generating units to maximize profits (difference between the revenue and the total
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Table 2: Energy Price ($/MWh)

t = 1 . . . 12→ 13.0 7.2 4.6 3.3 3.9 5.9 9.8 15.0 22.1 31.3 33.2 24.8
t = 13 . . . 24→ 19.5 16.3 14.3 13.7 15.0 17.6 20.2 29.3 49.5 53.4 30.0 20.2

Table 3: Generator Data For Slow-start Units

Technical Information

Gen P P TU&TD SU SD SUD SDD p0 Ste0
[MW] [MW] [h] [MW] [MW] [h] [h] [MW] [h]

1 455 150 8 150 150 3 2 150 8
2 455 150 8 150 150 3 2 150 8
3 130 20 5 20 20 2 2 20 5
4 130 20 5 20 20 2 2 20 5
5 162 25 6 25 25 2 2 25 6
6 80 20 3 20 20 1 1 20 3
7 85 25 3 25 25 1 1 25 3

Table 4: Computational Performance of The UC Formulations for Different Time Spans (in days)

IntGap (%) RootDGap (%) LP time (s) MIP time (s)* B&B Nodes
days Pw� 3bin 1bin Pw� 3bin 1bin PwQ† Pw† 3bin 1bin 3bin 1bin Pw� 3bin 1bin
64 0 0.88 2.57 0 0.027 0.063 0.42 0.47 0.80 0.95 12.01 13.79 0 496 487
128 0 0.87 2.57 0 0.026 0.050 1.03 1.22 2.06 2.60 45.54 (0.033) 0 528 603915
256 0 0.87 2.57 0 0.026 0.058 2.62 3.15 5.38 6.88 199.18 (0.052) 0 533 229035
512 0 0.87 2.57 0 0.026 0.056 6.96 8.55 14.29 18.83 734.03 (0.054) 0 488 136128

* (·) shows the final optimality gap in % if the time limit is reached
� PwQ is equal to Pw for these cases
† For these formulations, the LP and MIP times are equal

operating cost [5,17]) during the planning horizon:

max
N∑

t=1

G∑

g=1

[πtegt − cgt (ugt, vgt, wgt, egt)] (17)

where subindex g stands for generating units and G is the total quantity of units; πt refers to the energy
prices, which for these case studies are shown in Table 2; and cgt is the total operating cost per unit g at
period t, which is defined in (16) for the proposed power-based UC formulation. The self-UC problem also
arises when solving UC with decomposition methods such as Lagrangian Relaxation [6].

Two different 10-unit system data are considered, one containing only quick-start units and another
containing both quick- and slow-start units. The 10-unit system data for quick-start units are presented in
Table 1. The power system data are based on information presented in [1,16]. For this system of 10 quick-
start units, we also include a power-based formulation that only models quick-start units (see Section 3),
labeled as PwQ.

Another 10-unit system data including slow-start units is created in order to observe the computational
performance of the formulation for slow-start units. We create this new case study by replacing the first
seven quick-start units from Table 1 by slow-start units. The data for these seven slow-start units is provided
in Table 3. For these slow-start units, the power outputs for the startup (shutdown) power trajectories are
obtained as an hourly linear change from 0 (P ) to P (0) for a duration of SUD (SDD ) hours. Be aware
that 1bin and 3bin are modeled only for quick-start units because: 1) those traditional UC formulations
ignore the units’ startup and shutdown power trajectories and including these trajectories will considerably
increase the models’ computing complexity [17]; and 2) the main purpose of these case studies is to compare
the computational performance of the proposed formulations with the traditional UC formulations (which
ignore the startup and shutdown trajectories).

In short, two different case studies are carried out for the self-UC problem, the first case study models
10 quick-start units (see Table 1) for formulations 3bin, 1bin and PwQ. The second case study models also
10 units, seven slow-start (see Table 3) and three quick-start units (units 8 to 10 in Table 1) and this case
study is solved using the proposed power-based formulation for both slow- and quick-start units, which is
labeled as Pw.

Table 4 shows the computational performance of the self-UC problem (17) subject to the different UC
formulations for different time spans (up to 512 days to consider large case studies). The tightness of each
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Table 5: Problem Size Comparison of The UC Formulations for Different Time Spans (in days)

# constraints # nonzero elements # real var # binary var
days Pw* 3bin 1bin PwQ Pw 3bin 1bin Pw* 3bin 1bin Pw* 3bin 1bin
64 76749 107459 138225 432673 440339 417313 469719 30720 15360 46080 46080 46080 15360
128 153549 214979 276465 865825 881171 835105 939735 61440 30720 92160 92160 92160 30720
256 307149 430019 552945 1732129 1762835 1670689 1879767 122880 61440 184320 184320 184320 61440
512 614349 860099 1105905 3464737 3526163 3341857 3759831 245760 122880 368640 368640 368640 122880

* PwQ is equal to Pw for these cases

formulation is measured with the Integrality Gap (IntGap), and the duality gap in the root node (Root-
DGap). The IntGap is defined as the relative distance between the MIP and LP optimums [24,16], where
the MIP optimum corresponds to the best integer solution that could be found, and the LP optimum cor-
responds to the LP relaxation of the MIP formulation. The RootDGap is obtained as the relative difference
between the upper and lower bounds before the branching process (after the solver applies initial cuts and
heuristics at the root node). Beware that the IntGap of two formulations which are not modeling exactly
the same problem should not be directly compared. Therefore, IntGap together with RootDGap provide a
better indication of the strength of each formulation.

Note that the MIP optimums of PwQ and Pw were achieved by just solving the LP problem, IntGap = 0
(thus RootD=0), hence solving the MIP problems in LP time. On the other hand, as usual, the branch-
and-cut method was needed to solve the MIP for 3bin and 1bin. Table 4 also shows the MIP time and the
branch-and-bound nodes (B&B nodes) that were explored for the different formulations.

Table 5 shows the dimensions for all formulations for the different time spans. Note that PwQ and Pw
are more compact, in terms of quantity of constraints, than 3bin and 1bin. The formulations PwQ and
Pw present the same quantity of binary variables of 3bin, but twice continuous variables. This is because
PwQ and Pw model power and energy as two different variables. The formulation 1bin presents a third of
binary variables in comparison with the other formulations, but it is the formulation presenting the largest
quantity of continuous variables, constraints and nonzero elements in the constraint matrix. This is the
result of reformulating the MIP model to avoid the startup and shutdown binary variables. The work in [1]
claims that this would reduce the node enumeration in the branch-and-bound process. Note however that
this reformulation is the least tight, see IntGap and RootDGap in Table 4, and it is also the largest, hence
presenting the worst computational performance, similar results are obtained in [16].

5.2 Network-Constrained UC

Here, the modified IEEE 118-bus test system is used for different time spans, from 24 to 60 hours. All system
data can be found in [14]. The IEEE-118 bus system has 118 buses; 186 transmission lines; 54 thermal units
(both quick- and slow-start units); 91 loads, with average and maximum levels of 3991 MW and 5592 MW,
respectively; and three wind units, with aggregated average and maximum production of 867 MW and 1333
MW, respectively, for the nominal wind case. Finally, the upwards and downwards reserve requirement are
set as the 5% of the total nominal wind production for each hour. Bear in mind that the network-constrained
UC problem is considerably more complex than the self-UC problem described in Section 5.1, due to the
new complicating constraints that are now included (into all the formulations), such as demand-balance,
reserves, ramping and transmission limits (see Appendix A).

Table 6 shows the computational performance of the network-constrained UC problem for all formulations
and different time spans (up to 60 hours). On the one hand, the IntGap of Pw is always lower than that
of 1bin but higher than that of 3bin. However, as mentioned above, the IntGap of Pw and 3Bin (or 1bin)
cannot be compared directly because they do not represent the same problem (3bin and 1bin which are
equivalent, thus providing the same optimal results). Hence, based on the IntGap, 3bin seems the tightest
formulation. On the other hand, based on the RootDGap, Pw seems the tightest, up to 18x and 35x tighter
than 3bin a 1bin, respectively. Notice that Pw was the only formulation that solved all the cases within the
time limit (10000 seconds), 3bin could only solve the smallest case and 1bin none of them. For the cases
where 3bin and 1bin could not be solved (time spans equal and above 36 h), Pw could achieve a lower initial
optimality gap (RootDGap) than the final optimality gap achieved by 3bin and 1bin (in 10000 seconds).
Furthermore, Pw could achieve this initial optimality gap in few seconds: 3.82, 10.14, 16.80, 27.87 seconds
for the cases with time spans of 24, 36, 48 and 60 hours, respectively. These times are similar to (and even
lower than) the times required by 1bin and 3bin to solve their LP relaxation. We can then conclude that
Pw is the tightest formulation due to its superiority to solve the MIP problems.
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Table 6: IEEE 118-bus System Results: Computational Performance of The UC Formulations for Different
Time Spans (in hours)

IntGap (%) RootDGap (%) LP time (s) MIP time (s)* B&B Nodes
hours Pw 3bin 1bin Pw 3bin 1bin Pw 3bin 1bin Pw 3bin 1bin Pw 3bin 1bin
24 0.89 1.13 1.75 0.089 0.375 1.052 0.44 2.48 2.9 27.61 585.22 (0.094) 1581 93285 889610
36 1.46 0.98 1.87 0.031 0.393 1.050 1.12 10.28 13.56 34.54 (0.103) (0.179) 1189 534480 137325
48 1.06 0.7 1.37 0.027 0.504 0.943 1.7 17.87 19.19 69.58 (0.095) (0.269) 1673 260545 40115
60 1.37 0.71 1.54 0.034 0.484 0.828 3.53 37.89 40.86 267.23 (0.148) (0.326) 1982 146818 26718

* (·) shows the final optimality gap in % if the time limit is reached

Table 7: IEEE 118-bus System Results: Problem Size Comparison of The UC Formulations for Different
Time Spans (in hours)

# constraints # nonzero elements # real var # binary var
hours Pw* 3bin 1bin Pw 3bin 1bin Pw* 3bin 1bin Pw* 3bin 1bin
64 18093 37803 38141 315424 473791 472969 13518 9720 11016 3888 3888 1296
128 27489 56919 57257 476404 734431 732457 20322 14580 16524 5832 5832 1944
256 36885 76035 76373 637384 995071 991945 27126 19440 22032 7776 7776 2592
512 46281 95151 95489 798364 1255711 1251433 33930 24300 27540 9720 9720 3240

* PwQ is equal to Pw for these cases

Table 5 shows the problem size for all formulations for the different time spans. Similarly to the self-UC
case study (Section 5.1), Pw is more compact than the others, in terms of quantity of constraints and
nonzeros, but Pw has more continuous variables. Also, although 1bin has a third of binary variables in
comparison with the others, it has the largest quantity of constraints and it is the least tight (see IntGap
and RootDGap in Table 4); consequently, presenting the worst computational performance, as also discussed
in Section 5.1.

In conclusion, from both self-UC and network-constrained UC case studies, the proposed formulation
presented a dramatic improvement in computation in comparison with 3bin and 1bin due to its tightness
(speedups above 85x and 8200x, respectively); and it also presents a lower LP burden due to its compactness
(see Table 5 and Table 7).

6 Conclusion

This paper presented the convex hull description of the basic constraints of slow- and quick-start generating
units for power-based unit commitment (UC) problems. These constraints are: generation limits, and min-
imum up and down times, startup and shutdown power trajectories for slow-start units, and startup and
shutdown capabilities for quick-start units. Although the model does not include some crucial constraints,
such as ramping, it can be used as the core of any UC formulation and thus helping to tighten the final UC
model. Finally, two different sets of case studies were carried out, for a self-UC and for a network-constrained
UC, where the proposed formulation was simultaneously tighter and more compact when compared with
two other UC formulations commonly known in the literature; consequently, solving both UC problems
significantly faster.
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A Network-Constrained Power-Based UC Formulation

Here, we present the network-constrained power-based UC formulation, of which core is based on the constraints presented in
Section 3. Although some nomenclature and constraints were introduced before, for the sake of clarity and completeness, this
section provides the complete nomenclature and set of constrains.
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A.1 Nomenclature

A.1.1 Indexes and Sets

g ∈ G Generating units, running from 1 to G.
GQ Set of quick-start generating units in G.
GS Set of slow-start generating units in G.
b ∈ B Buses, running from 1 to B.
l ∈ L Transmission lines, running from 1 to L.
t ∈ T Hourly periods, running from 1 to T hours.

A.1.2 System Parameters

Dbt Power demand on bus b at the end of hour t [MW].
D−t System requirements for downward reserve for hour t [MW].
D+

t System requirements for upward reserve for hour t [MW].
F l Power flow limit on transmission line l [MW].
Γlb Shift factor for line l associated with bus b [p.u.].
ΓG
lg Shift factor for line l associated with unit g [p.u.].
PW
bt Nominal forecasted wind power at end of hour t [MW].

A.1.3 Unit’s Parameters

CLV
g Linear variable production cost [$/MWh].

CNL
g No-load cost [$/h].

CSD
g Shutdown cost [$].

CSU
g Startup cost [$].

P g Maximum power output [MW].
P g Minimum power output [MW].
PSD
gi Power output at the beginning of the ith interval of the shutdown ramp process [MW].
PSU
gi Power output at the beginning of the ith interval of the startup ramp process [MW].
RDg Ramp-down capability [MW/h].
RUg Ramp-up capability [MW/h].
SDg Shutdown capability [MW].
SUg Startup capability [MW].
SDD

g Duration of the shutdown process [h].
SUD

g Duration of the startup process [h].
TDg Minimum down time [h].
TUg Minimum up time [h].

A.1.4 Decision Variables

pWbt Wind power output at the end of hour t [MW].
egt Total Energy output during hour t [MWh].
pgt Power output above minimum output at the end of hour t [MW].
p̂gt Total power output at the end of hour t, including startup and shutdown power trajectories [MW].
r−gt Downwards capacity reserve [MW].
r+gt Upwards capacity reserve [MW].
ugt Binary variable which is equal to 1 if the unit is producing above minimum output and 0 otherwise.
vgt Binary variable which takes the value of 1 if the unit starts up and 0 otherwise.
wgt Binary variable which takes the value of 1 if the unit shuts down and 0 otherwise.

A.2 Objective Function

The UC seeks to minimize all production costs (Section 1):

min
∑

g∈G

∑

t∈T

[
CLV

g egt + CNL
g ugt + CSU′

g vgt + CSD′
g wgt

]
(18)

where CSU′ and CSD′ are defined as (see Section 3.4):

CSU′
g = CSU

g + CNL
g SUD

g ∀g (18a)

CSD′
g = CSD

g + CNL
g SDD

g ∀g (18b)

The proposed formulation also takes into account variable startup costs, which depend on how long the unit have been
offline. The reader is referred to [17] for further details.
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A.3 System-wide Constraints

Power demand balance and reserves requirements are guaranteed as follows:

∑

g∈G
p̂gt =

∑

b∈B

(
Dbt − pWbt

)
∀t (19)

∑

g∈G
r+gt ≥ D+

t ∀t (20)

∑

g∈G
r−gt ≥ D−t ∀t (21)

where (19) is a power balance at the end of hour t. Be aware that the energy balance for the whole hour is automatically
achieved by satisfying the power demand at the beginning and end of each hour, and by considering a piecewise-linear power
profile for demand and generation [18,14].

Power-flow transmission limits are ensured with [21]:

−F l ≤
∑

g∈G
ΓG
lg p̂gt +

∑

b∈B
Γlb

(
pWbt −Dbt

)
≤ F l ∀l, t (22)

A.4 Individual Unit Constraints

The commitment, startup/shutdown logic and the minimum up/down times are guaranteed with:

ugt − ug,t−1 = vgt − wgt ∀g, t (23)
t∑

i=t−TUg+1

vgi ≤ ugt ∀g, t ∈ [TUg , T ] (24)

t∑

i=t−TDg+1

wgi ≤ 1− ugt ∀g, t ∈ [TDg , T ] (25)

The Power production and reserves must be within the power capacity limits:

pgt + r+gt ≤
(
P g − P g

)
ugt −

(
P g − SDg

)
wg,t+1 +

(
SUg − P g

)
vg,t+1 ∀g, t (26)

pgt − r−gt ≥ 0 ∀g, t (27)

Ramping capability limits are ensured with:
(
pgt + r+gt

)
− pg,t−1 ≤ RUg ∀g, t (28)

−
(
pgt − r−gt

)
+ pg,t−1 ≤ RDg ∀g, t (29)

notice that by modeling the generation output pgt above P g , the proposed formulation avoids introducing binary variables
into the ramping constraints (28) and (29). In other words, when the generation output variable is defined between 0 and P g ,
then the ramping constraints should consider the case when a generator’s output level should not be limited by the ramp rate,
when it is starting up or shutting down; such complicating situations are usually tackled by introducing big-M parameters
together with binary variables into the ramping constraints, e.g., [1,4].

The total power and energy production for thermal units are obtained as follows:

p̂gt = P g (ugt + vg,t+1) + pgt ∀g ∈ GQ, t (30)

p̂gt = P g (ugt + vg,t+1) + pt +

SUD
g∑

i=1

PSU
gi vg,t−i+SUD

g +2 +

SDD
g +1∑

i=2

PSD
gi wg,t−i+2 ∀g ∈ GS, t (31)

egt =
p̂g,t−1 + p̂gt

2
∀g, t (32)

Wind production limits are represented by:

pWbt ≤ PW
bt ∀b, t (33)

Finally, non-negative constraints for all decision variables:

pgt, r
+
gt, r

−
gt ≥ 0 ∀g, t (34)

pWbt ≥ 0 ∀b, t (35)
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Abstract—This paper proposes a power-based network-
constrained unit commitment (UC) model as an alternative to
the traditional deterministic UCs to deal with wind generation
uncertainty. The formulation draws a clear distinction between
power-capacity and ramp-capability reserves to deal with wind
production uncertainty. These power and ramp requirements
can be obtained from wind forecast information. The model
is formulated as a power-based UC, which schedules power-
trajectories instead of the traditional energy-blocks andtakes into
account the inherent startup and shutdown power trajectories of
thermal units. These characteristics allow a correct representation
of unit’s ramp schedule which define their ramp availability
for reserves. The proposed formulation significantly decreases
operation costs if compared to traditional deterministic and
stochastic UC formulations while simultaneously loweringthe
computational burden. The operation cost comparison is made
through 5-min economic dispatch simulation under hundredsof
out-of-sample wind generation scenarios.

Index Terms—Mixed-integer programming, operating reserves,
power-capacity reserves, ramp-capability reserves, unitcommit-
ment.

NOMENCLATURE

A. Indexes and Sets

g ∈ G Generating units, running from 1 toG.
b ∈ B Buses, running from 1 toB.
l ∈ L Transmission lines, running from 1 toL.
t ∈ T Hourly periods, running from 1 toT hours.

B. Parameters

Dbt Power demand on busb at the end of hourt [MW].
Γlb Shift factor for linel associated with busb [p.u.].
ΓP
lg Shift factor for linel associated with unitg [p.u.].

F l Flow limit on transmission linel [MW].
P g Maximum power output [MW].
P g Minimum power output [MW].
RDg Ramp-down capability [MW/h].
RUg Ramp-up capability [MW/h].
SDg Startup ramping capability [MW/h].
SUg Shutdown ramping capability [MW/h].
Wbt Nominal forecasted wind power at end of hourt [MW].
W bt Upper bound of the forecasted wind power at the end

of hour t [MW].
W bt Lower bound of the forecasted wind power at the end

of hour t [MW].
WR−

bt Ramp-down forecasted wind requirement for the whole
hour t [MW/h].

WR+
bt Ramp-up forecasted wind requirement for the whole

hour t [MW/h].

C. First-stage Variables

r−gt Down power-capacity reserve scheduled [MW].
r+gt Up power-capacity reserve scheduled [MW].
rR−
gt Down ramp-capability reserve scheduled [MW/h].
rR+
gt Up ramp-capability reserve scheduled [MW/h].

ugt Binary variable which is equal to 1 if the unit is
producing aboveP g and 0 otherwise.

vgt Binary variable which takes the value of 1 if the unit
starts up and 0 otherwise.

zgt Binary variable which takes the value of 1 if the unit
shuts down and 0 otherwise.

D. Second-stage Variables

pgt Power output above minimum output at the end of hour
t [MW].

p̂gt Total power output at the end of hourt, including
startup and shutdown trajectories [MW].

rgt Reserve deployment to provide the upper-wind dispatch
wbt [MW].

rgt Reserve deployment to provide the lower-wind dispatch
wbt [MW].

wbt Wind dispatch for the nominal wind caseWbt [MW].
wbt Wind dispatch for the upper bound windW bt [MW].
wbt Wind dispatch for the lower bound windW bt [MW].

E. Functions

cFgt (·) Fixed production cost [$].
cVgt (·) Variable production cost [$].

I. I NTRODUCTION

I Nrecent years, high penetration of variable generating
sources, such as wind power, has challenged independent

system operators (ISO) in keeping a reliable power system
operation. The deviation between expected and real wind
production must be absorbed by the power system resources
(reserves), which must be available and ready to be deployed
in real time. To guarantee this availability, the system resources
must be committed in advance, usually day-ahead, by solving
the so-called unit commitment (UC) problem.

A. Literature Review

1) Dealing with Uncertainty in UC: Stochastic and ro-
bust optimization have gained substantial popularity for UC
optimization under parameter uncertainty. In the stochastic
optimization approach, the stochasticity can be represented
through an explicit description of scenarios and their asso-
ciated probability [1], [2]. This approach presents however
some practical limitations: 1) it may be difficult to obtain an
accurate probability distribution of the uncertainty; and2) a
large number of scenario samples is required to obtain robust
solutions, which results in a computationally intensive problem
(often intractable).

The robust optimization approach partly overcomes these
disadvantages 1) by requiring moderate information about the
underlying uncertainty, such as the mean and the range of the
uncertain data; and 2) by immunizing the solution against all
realizations of the data within the uncertainty range. However,
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it may be too conservative, since the objective function is to
minimize the worst-case cost scenario, which may never be
realized in practice. To deal with overconservatism, 1) a para-
meter commonly called budget-of-uncertainty is introduced in
the optimization problem to control the conservatism of the
robust solution [3], [4]; and 2) more recently, [4] proposes an
unified stochastic and robust UC model that takes advantage of
both stochastic and robust optimization approaches, wherethe
objective is to achieve a low expected total cost while ensuring
the system robustness.

Although the computational burden of adaptive robust UC
does not depend on the number of scenarios, it requires solving
a mixed integer programming (MIP) problem together with
a bilinear program to obtain the worst-case scenario. This
problem is considerably more complex to solve than a pure
MIP, requires ad-hoc solving strategies [3], [4], and it can
also considerably increase the computational burden of UC
problems.

In short, although stochastic and robust UCs are power-
ful tools to deal with uncertainty, they are computationally
intensive. This is the reason why traditional deterministic
formulations remain valid and widely used by ISOs worldwide.
Therefore, it is needed to develop improved deterministic
formulations that better exploit the flexibility of the power
system and better face wind uncertainty.

2) Power-Capacity and Ramp-Capability Reserves:In or-
der to solve the day-ahead UC it is necessary to take into
account that wind generation is subject to uncertainty. As
the wind power forecasting error can be significant 24 hours
in advance, the range of possible values of wind power for
each hour of the following day can be very broad. As a
consequence, ISOs need to schedule some power-capacity
reserve to guarantee that committed system resources will be
able to cope with any value of wind generation that can be
realised within that range.

When getting closer to the real time, for instance one hour
in advance, the range of possible values for the next hour is
smaller. However, even within such short time interval, wind
generation can increase or decrease its value at a rate that
will require that conventional generators adapt their output
to follow that ramp to keep the demand-supply balance.
Therefore, apart from the day-ahead power-capacity reserve,
it will be necessary to ensure that for any hour, the committed
system resources will be able to cope with the expected
maximum ramp of variation of the wind generation. Thus, a
ramp-capability reserve is also needed.

To illustrate the need of a clear differentiation between
power-capacity and ramp-capability reserves, consider the
following example. Figs.1a and 1b show two different set
of wind scenarios which present the same power-capacity
uncertainty ranges, but completely different ramp uncertainty
ranges. Dealing with the scenarios in Fig.1b requires higher
ramp-capability, although both set of scenarios demand the
same power-capacity requirements. In fact, some power sys-
tems have experienced short-term scarcity events caused by
resources with sufficient power capacity but insufficient ramp
capability [5]. In response, ISOs are developing market-based
ramping products, thus making a clear difference between

(a) Stochastic (low ramp) (b) Stochastic (high ramp)

(c) Traditional Determin-
istic

(d) Proposed Deterministic

Fig. 1: Different approaches to deal with wind uncertainty

power-capacity and ramp-capability requirements [5], [6].

A stochastic UC implicitly captures both reserve require-
ments through scenarios, e.g., see Figs.1aand1b. However, to
correctly represent these reserve requirements, a large number
of scenarios is needed, resulting in a high computational
cost. On the other hand, the traditional deterministic UCs can
only ensure a given power-capacity reserve, see Fig.1d, but
it cannot guarantee different ramping requirements to deal
with either of the scenarios in Figs.1a and 1b. Although
deterministic UCs remains being the ISOs’ dominant practice
nowadays due to the low computational burden, it does not
efficiently exploit the system flexibility to deal with the specific
requirements imposed by wind generation uncertainty.

3) Power-based UC:Conventional day-ahead UC formula-
tions fail to deal with ramp capabilities appropriately. Ineffi-
cient ramp management arises from applying ramp-constraints
to energy levels or (hourly) averaged generation levels; con-
sequently, energy schedules may not be feasible [7]. In addi-
tion, traditional UC models assume that units start/end their
production at their minimum output. That is, the intrinsic
startup and shutdown power trajectories of units are ignored.
As a consequence, there may be a high amount of energy that
is not allocated by UC but it is inherently present in real time,
thus affecting the total load balance and causing a negative
economic impact [8]. For further details of the drawbacks of
conventional UC scheduling approaches, the reader is referred
to [9], [10] and references therein.

To overcome these drawbacks, [10] proposes the power-
based UC (or ramping scheduling) approach. This approach
uses piece-wise linear power trajectories for both generating
units and demand instead of the commonly established stair-
case profile for energy blocks. The use of an instantaneous
power profile allows the model to efficiently schedule reserves
and ramping resources. In comparison with conventional UC
models, the power-based UC approach guarantees that, first,
energy schedules can be delivered and, second, that operating
reserves can be deployed respecting the ramping and capacity
limits of generating units. In addition, the model takes into
account the normally neglected power trajectories that occur
during the startup and shutdown processes, thus optimally
scheduling them to provide energy and ramp, which help to
satisfy the power demand.
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B. Power-Capacity and Ramp-Capability Reserves in Power-
Based UC: An Overview

This paper proposes a power-based network-constrained UC
model as an alternative to the traditional deterministic UCs
to deal with wind generation uncertainty. The proposed UC
gives flexibility to the power system to face wind uncertainty.
This flexibility is provided by drawing a clear distinction
between power-capacity and ramp-capability reserve require-
ments (Fig.1d), and by optimally dispatching wind generating
units. Allowing a different value for ramp-capability reserve
requirements results in a more realistic setting, as discussed
above. Wind dispatch flexibility is modelled by considering
curtailment in the UC formulation. Curtailment may appear
due to either economic reasons or technical reasons, e.g.,
insufficient network capacity. This flexibility helps to reduce
the reserve requirements since part of the uncertainty can
be faced by curtailment, as practiced in ERCOT and MISO.
Introducing other renewable energy sources to the formulation
is straightforward if they can be curtailed.

The model is formulated as a power-based UC, which sched-
ules power-trajectories instead of the traditional energy-blocks,
and it takes into account the inherent startup and shutdown
power trajectories of thermal units. These characteristics allow
a correct representation of unit’s ramp schedule [7], [8] which
define their ramp availability for reserves [10].

The formulation is represented as a mixed integer program-
ming (MIP) problem, which has become the leading approach
in the electricity sector due to significant improvements on
MIP solvers. The core of the proposed MIP formulation is built
upon the convex-hull and the tight-and-compact formulations
presented in [11] and [8], respectively, thus taking advantage
of their mathematical properties. These formulations reinforce
the convergence speed by reducing the search space (tightness)
and at the same time by increasing the searching speed with
which solvers explore that reduced space (compactness).

We present an extensive numerical study on the IEEE 118-
bus test system, where we compare the proposed formulation
with the stochastic and with the deterministic approaches.To
perform comparisons and to obtain an accurate estimate of
the performance of each UC policy, the hourly commitment
obtained from each UC approach is evaluated through a 5-min
economic dispatch for 200 out-of-sample scenarios.

C. Contributions and Paper Organization

The principal contributions of this paper are as follows:

1) The proposed formulation explicitly includes a pre-
specified nodal power-capacity and ramp-capability re-
serve requirements, which can be obtained from wind
forecast information. The formulation explicitly models
the interdependency between the power-capacity and
ramp-capability reserves; i.e., providing ramp-capability
means providing power-capacity, but providing power-
capacity does not necessarily means providing a given
level of ramp-capability.

2) Although the proposed UC formulation optimizes over
a nominal wind scenario, it also includes the worst-case
wind scenario proposed in [12], then the UC solution

guarantees that the system has enough flexibility to
adapt to any wind uncertain realization. The level of
conservatism of the solution is controlled by the reserve
parameters and wind curtailment flexibility. That is, once
the reserve requirements are fixed, the proposed UC
reshape these requirements by considering curtailment.

3) We develop a practical compact mixed-integer program-
ming (MIP) formulation to deal with wind uncertainty.
The complete formulation remains compact since it only
needs two reserve requirements, unlike the stochastic
approach where problem size depends on the number
of considered scenarios.

4) The proposed deterministic UC can be used by ISOs to
ensure that enough power-capacity and ramp-capability
resources are available to deal with wind uncertainty in
real-time operation. ISOs can also adjust the level of
conservatism of the solution by adjusting the reserve
requirements, based on their preferences and on their
available information of wind uncertainty.

The remainder of this paper is organized as follows. SectionII
details the mathematical formulation of the different operating
reserves and their links with the ramp schedules. SectionIII
presents some numerical examples as well as a comparison
with the deterministic and stochastic UC approaches. Finally,
concluding remarks are made in SectionIV.

II. M ATHEMATICAL FORMULATION

This section presents the proposed mathematical formu-
lation of the power-based UC. This section first discusses
the relationship between the wind uncertainty range and the
power system reserve requirements. The next part is devotedto
modelling the reserve constraints for generating units andthe
network constraints. Finally, the objective function is defined.

A. Wind Uncertainty Range and Power System Requirements

The first step to define the level of reserves. In this paper,
the uncertain parameters are the power-capacity and ramp-
capability ranges of wind production, see Fig.1d. The wind
power-capacity uncertainty range of nodeb at time t is
defined by the upper and lower bounds

[
W bt,W bt

]
. The wind

ramp uncertainty range of nodeb at time t is defined by[
WR−

bt ,WR+
bt

]
. The nominal value of wind ramp is defined

by the trajectory of the nominal wind power productionWbt.
In this paper, we consider the nominal value of wind

productionWbt as the middle value of the uncertainty range,
i.e.,

(
W bt +W bt

)
/2. The proposed formulation is general, so

ISOs could define any other nominal wind value, e.g., the
most expected wind production. The only limitation is that
the nominal value of wind production must be defined within
the wind uncertainty range.

The flexibility that brings the fact that wind generation can
be curtailed is taken into account. Thus, the possible dispatched
wind range that results from the UC may (shrink) be different
than the forecasted range, as shown in Fig.2.

To allow curtailment in the formulation, the wind-dispatch
variables are bounded by their associated wind forecast
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(a) Forecasted range (b) Dispatchable range

Fig. 2: Forecasted and dispatchable wind uncertainty ranges

bounds:

0 ≤ wbt ≤ W bt, 0 ≤wbt ≤ Wbt, 0 ≤ wbt ≤ W bt ∀b, t (1)

and we define the variableswR+
bt andwR−

bt as the maximum
ramp up and down range, exceeding wind nominal values, that
can fit within the dispatchable uncertainty range, respectively:

wR+
bt = (wbt − wbt) +

(
wb,t−1 − wb,t−1

)
∀b, t (2)

wR−
bt = (wb,t−1 − wb,t−1) + (wbt − wbt) ∀b, t. (3)

Once the wind uncertainty ranges are defined, the power
system must supply demand and reserves for these ranges:

∑

g∈G
p̂gt =

∑

b∈B
(Dbt − wbt) ∀t (4)

∑

g∈G
r+gt ≥

∑

b∈B
(wbt − wbt) ∀t (5)

∑

g∈G
r−gt ≥

∑

b∈B
(wbt − wbt) ∀t (6)

∑

g∈G
rR+
gt ≥

∑

b∈B
inf

(
W̃R−

bt , wR−
bt

)
∀t (7)

∑

g∈G
rR−
gt ≥

∑

b∈B
inf

(
W̃R+

bt , wR+
bt

)
∀t. (8)

where (4) is a power balance at the end of hourt. Be aware
that the energy balance for the whole hour is automatically
achieved by satisfying the power demand at the beginning and
end of each hour, and by considering a piecewise-linear power
profile for demand and generation [10].

Equality (4) ensures that the system provides the power
and ramp requirements for the wind nominal case. Constraints
(5)-(6) and (7)-(8) guarantee that the system can provide the
maximum power and ramp deviations from the nominal case,
respectively. Parameters̃WR+

bt andW̃R−
bt are the maximum up

and down ramp deviations from the nominal ramp, respect-
ively, and are obtained as follows:

W̃R+
bt = WR+

bt − (Wbt −Wb,t−1) ∀b, t (9)

W̃R−
bt = WR−

bt − (Wb,t−1 −Wbt) ∀b, t (10)

The infimum functions in (7) and (8) guarantee that the
ramp requirement do not exceed the scheduled wind range
by choosing the minimum value between the forecasted ramp
requirement and the maximum possible ramp within the sched-
uled wind range. An MIP equivalent formulation for the
infimum function in (7) and (8) is provided in [13].

B. Individual Unit’s Constraints

This section presents a set of constraints that guarantee that
a unit can provide any power trajectory within its scheduled

Fig. 3: Unit’s operating range

ramp-capabilityrR+
gt , rR−

gt and power-capacityr+gt, r
−
gt reserve

ranges. Fig.3 shows how the nominal case and the power-
capacity reserves define upper and lower envelopes for units’
operation.

1) Commitment Logic:The relation between the commit-
ment, startup and shutdown variables is given by:

ugt − ug,t−1 = vgt − zgt ∀g, t. (11)

Constraints imposing the minimum up/down times and
different startup types are also included, see [10].

2) Total Power Output for The Nominal Production:The
proposed formulation considers slow- and quick-start units. For
the sake of brevity, we present the set of constraints for quick-
start units, which can startup within one hour:

p̂gt = P g (ugt + vg,t+1) + pgt ∀g, t. (12)

The slow-start units are included into the formulation by
only modifying (12), thus including shutdown and different-
startup power trajectories that take longer than one hour. The
reader is referred to [8], [10], [11] for further details.

3) Power-Capacity Reserves:The upper and lower envel-
opes must be within the unit’s capacity limits, see Fig.3:

pgt + r+gt ≤
(
P g − P g

)
ugt −

(
P g − SDg

)
zg,t+1

+
(
SUg − P g

)
vg,t+1 ∀g, t (13)

pgt − r−gt ≥0 ∀g, t (14)

4) Ramp-Capability Reserves:The unit’s nominal produc-
tion defines the ramp-capability that is available in every
period:

pgt − pg,t−1 + rR+
gt ≤ RUgugt +

(
SUg − P g

)
vg,t+1 ∀g, t

(15)

−pgt + pg,t−1 + rR−
gt ≤ RDgugt +

(
SDg − P g

)
zgt ∀g, t

(16)

5) Relationship Between Power-Capacity and Ramp-
Capability Reserves:The following constraints ensure that the
unit operate within the ramp limits on either the upper or lower
envelopes, respectively:

−rR−
gt ≤ r+gt − r+g,t−1 ≤ rR+

gt ∀g, t (17)

−rR−
gt ≤ r−gt − r−g,t−1 ≤ rR+

gt ∀g, t (18)

where (17) and (18) can be obtained from Fig.3, see Ap-
pendixA for further details.

The available up (down) ramp-capabilityrR+
gt (rR−

gt ) is
bounded by the maximum upwards (downwards) power change
that is possible within power-capacity operating range,C→B
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(A→D) in Fig. 3:

rR+
gt ≤ r−g,t−1 + r+gt ∀g, t (19)

rR−
gt ≤ r+g,t−1 + r−gt ∀g, t. (20)

Constraints (19) and (20) guarantee that once the unit
is scheduled to provide ramp-capability reserve, there is a
scheduled power-capacity range that can allow this ramp-
capability deployment.

Finally, all these reserve variables are defined as positive:

r+gt, r
−
gt, r

R+
gt , rR−

gt ≥ 0 ∀g, t. (21)

In summary, constraints (13)-(21) guarantee that the unit
can provide any power trajectory within its scheduled ramp-
capability and power-capacity reserve ranges.

C. Network Constraints

[12] shows that by finding a feasible dispatch for the lowest
expected wind boundwbt, all other possible wind realizations
within the uncertainty range are feasible. That is, all scenarios
can becomewbt by curtailment. Consequently, all scenarios
can be dispatched and, in the worst case, the maximum
quantity of wind that can be dispatched for any scenario would
be wbt. Now, by ensuring a feasible dispatch for the upper
expected wind boundwbt, we guarantee that wind scenarios
up towbt can also be dispatched.

Now, we need to find the units’ reserve deploymentsrgt
and rgt for the upper and lower expected wind bounds,
respectively. These reserve deployments must be within the
scheduled power capacity limits:

−r−gt ≤ rgt, rgt ≤ r+gt ∀g, t (22)

and they must also satisfy ramp limit constraints:

−rR−
gt ≤ rgt − rg,t−1 ≤ rR+

gt ∀g, t (23)

−rR−
gt ≤ rgt − rg,t−1 ≤ rR+

gt ∀g, t. (24)

Finally the transmission capacity constraints are enforced
for both the upper and lower expected wind bounds:

−F l ≤
∑

g∈G
ΓP
lg (p̂gt + rgt) +

∑

b∈B
Γlb (wbt −Dbt) ≤ F l ∀l, t

(25)

−F l ≤
∑

g∈G
ΓP
lg

(
p̂gt + rgt

)
+
∑

b∈B
Γlb (wbt −Dbt) ≤ F l ∀l, t

(26)

The demand balances for these scenarios are guaranteed by (4)
together with:

∑

g∈G
rgt =

∑

b∈B
(wbt − wbt) ∀t (27)

∑

g∈G
rgt =

∑

b∈B
(wbt − wbt) ∀t (28)

and the nominal wind production must be within its upper and
lower wind dispatches:

wbt ≤wbt ≤ wbt ∀b, t. (29)

Notice that total reserve deployment for the upper wind
dispatch (27) is negative, this means that the power system
must decrease its overall generation when wind production
is above the nominal value. Notice in (27) and (28) that the
power-capacity reserve requirements are provided byrgt, rgt
then these variables provide the limits onr−gt, r

+
gt. In other

words, variablesrgt, rgt will be equal to eitherr−gt or r+gt.
Therefore, (23) and (24) are more constrained and dominate
(17) and (18), that is, (17) and (18) are then redundant.

Although (5) and (6) ensure that the units can provide
the required power-capacity reserves, they do not guarantee
that there is transmission capacity available to deploy them.
However, constraints (25)-(29) guarantee that these power-
capacity reserves can be deployed.

D. Objective Function

The proposed UC formulation optimizes over a nominal
value of wind production and some weight can be given to
the upper and lower wind bounds:

min
∑

t∈T

∑

g∈G

[
cFgt (ugt, vgt, zgt)︸ ︷︷ ︸

First stage

+ α1c
V
gt (p̂gt) + α2c

V
gt (p̂gt + rgt) + α3c

V
gt

(
p̂gt + rgt

)
︸ ︷︷ ︸

Second stage

]

(30)

whereα1 + α2 + α3 = 1. Henceforth, we setα2 = α3 = α
2 ,

henceα1 = (1− α). The weightα gives the flexibility to ISOs
to give importance to the limits of the uncertainty range.

Similarly to the robust and stochastic approaches, the first-
stage counts the fixed production costcFgt (·) which is com-
posed by the no-load, shutdown and different startup costs,
depending on how long the unit has been offline [10]. The
second stage counts the variable production costcVgt (·) that is
calculated based on the units’ energy production, which can
be easily obtained from̂pgt [10].

III. N UMERICAL RESULTS

The performance of our proposed approach is evaluated us-
ing the modified IEEE 118-bus test system, available online at
www.iit.upcomillas.es/aramos/IEEE118_SUSD-Ramps.xls, for
a time span of 24 hours. The system has 118 buses, 186
transmission lines, 91 loads, 54 thermal units and three wind
units. The power system data are based on that in [2] and it was
adapted to consider startup and shutdown power trajectories.
All tests were carried out using CPLEX 12.6 [14] on an Intel-
i7 3.4-GHz personal computer with 16 GB of RAM memory.
The problems are solved until they hit a time limit of 7200
seconds or until they reach an optimality tolerance of 0.05%.

In this section, we first show the procedure used to evaluate
the performance of the UC solutions. Then, we perform
sensitivity analysis of the proposed formulation in terms of the
objective weight and uncertainty range. Finally, we compare
the performance of the proposed approach with the traditional
deterministic and stochastic approaches.
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Fig. 4: Representation of wind uncertainty over time, scenarios and bounds

A. Evaluating Approach

The uncertainty model: we use latin hypercube sampling
(LHS) to generate scenarios for the uncertain wind production.
We assume that the wind production follows a multivariate
normal distribution with predicted valueW and volatility
matrix Σ. The idea in applying LHS is to optimally distribute
the samples to explore the whole area in the experimental
region, avoiding the creation of scenarios that are too similar
(clusters) [15].

To compare the performance of the different UC approaches,
we make a clear difference between the scheduling stage and
the validation stage. The computational experiments proceed
as follows.

1) Scheduling stage: solve the different UC models and
obtain the hourly commitment solutions, using 20 wind
scenarios for each of the three wind units. Fig.4 shows
the aggregated wind production of these wind scenarios.

2) Out-of-sample validation stage: for each fixed UC solu-
tion, solve a 5-min economic dispatch problem repetit-
ively for a set of 200 new wind scenarios. Notice that
around the 20% of these out-of-sample scenarios fall
outside the uncertainty bounds shown in Fig.4.

In the 5-min economic dispatch, we introduce penalty costs
for the violation of some constraints to mimic the high costs
due to corrective actions in real time operations. The penalty
costs are set to 10000 and 5000 $/MWh for demand-balance
and transmission-limits violations, respectively, as suggested
in [16] (similarly to [3], [4]). These penalty costs represent
the expensive real-time corrective actions that an ISO needs to
take in the event that the actual system condition significantly
deviates from the expected condition, such as dispatching fast-
start units, voltage reduction or load shedding.

We show the performance of the UC strategies in eight
aspects, two related with the scheduling stage and six with
the validation stage. These aspects, presented in TablesI to
III , are described ass follows. Scheduling stage: 1) the fixed
production costs described in SectionII-D (UC [k$]), and 2)
the number of startups (# SU). These two aspects indicate the
commitment decisions that were needed by each approach to
prepare the system to deal with the given wind uncertainty. Val-
idation stage: 3) the average dispatch costs (Average), indicates
the economic efficiency of the UC decision; 4) the volatility

Table I: SENSITIVITY OF OBJECTIVEWEIGHT α

α
Scheduling Validation: 5-min Economic Dispatch

Hourly Dispatch Costs [k$] Violations
UC [k$] # SU Average Std Worst # Sc # Tot MWh

0 52.026 14 771.115 14.351 814.471 2 2 0.038
0.1 51.986 14 770.823 14.365 814.223 2 2 0.038
0.2 51.949 14 770.970 14.348 814.087 2 2 0.048
0.3 51.986 14 770.806 14.364 814.206 2 2 0.038
0.4 51.961 14 770.928 14.392 814.201 2 2 0.038
0.5 51.351 13 771.642 14.361 814.667 2 2 0.038
0.6 51.259 13 771.822 14.408 815.037 0 0 0.000
0.7 50.446 14 772.659 14.325 815.602 1 1 0.004
0.8 50.623 14 772.657 14.378 816.045 5 5 0.108
0.9 50.435 14 772.725 14.327 815.951 5 5 0.108
1.0 49.824 13 773.503 14.355 816.718 5 5 0.108

of these costs (Std), represented by the standard deviationof
dispatch costs, which indicates the reliability of the real-time
dispatch operation under the UC decision; 5) the dispatch cost
of the worst-case scenario (Worst), indicates how robust the
UC decision is against the worst-case scenario (from the 200
out-of-sample scenarios); 6) number of scenarios where there
were violations in either demand-balance or transmission-
limits constraints (# Sc); 7) total number of these violations
(# Tot); and 8) total accumulated energy that could not be
accommodated, demand-balance violations (MWh). The last
three aspects also indicate how robust the UC decision is
against different wind scenarios.

B. Sensitivity Analysis

1) Changes of Objective Weightα: We test the performance
of the proposed approach under differentα and the results are
shown in TableI. Notice that the performance does not change
considerably. The maximum values of the Average, Std and
Worst-case dispatch cost are 0.6% above the minimum values.
These small changes are because the model guarantee feasibil-
ity through a set of hard constraints; however, the results may
change considerably if we relax some constraints and introduce
penalty-cost violations. Henceforth, we setα = 0.1.

2) Changes of Uncertainty Range:Table II shows the
results in the scheduling and validation stage for different
values of the uncertainty range, from 0 to 100%. The 100%
uncertainty range is defined by the bounds shown in Fig.4,
and the 0% is equivalent to a deterministic UC using only
the nominal wind case. These ranges were equally changed
to the power-capacity and ramp-capability ranges. It can be
clearly observed that the larger the considered uncertainty
range, the UC costs and number of startups increase because
the UC solutions become more conservative. Consequently, the
dispatch costs and violations decreases.

Through different uncertainty ranges, there is a significant
reduction in the Average and Std dispatch costs. This signific-
ant reduction is closely related to the violations reduction and
its associated costs, which represent the expensive emergency
actions that the ISO has to take to maintain system reliability.

Notice that the uncertainty range of 85% presents the lowest
average dispatch costs. This indicates that the uncertainty range
can be slightly reduced without sacrificing the efficiency and
robustness of the UC solution. We can observe in the ranges
(85% and above) presenting few violations that considering
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Table II: SENSITIVITY OF UNCERTAINTY RANGE

%
Scheduling Validation: 5-min Economic Dispatch

Hourly Dispatch Costs [k$] Violations
UC [k$] # SU Average Std Worst # Sc # Tot MWh

0 46.705 10 1067.017 575.205 5479.411 103 1744 5884.536
10 46.906 10 1018.959 505.127 5017.905 101 1492 4928.511
20 46.725 10 966.994 461.833 4797.448 87 1259 3883.190
30 47.443 11 877.291 337.356 3905.236 53 759 2102.645
40 47.941 12 825.176 228.394 3130.061 31 308 1052.421
50 47.973 12 795.862 134.644 2317.292 16 145 460.961
60 48.691 13 780.770 67.952 1617.704 11 77 165.247
70 51.583 13 772.493 26.906 1039.311 6 39 43.814
80 51.442 13 770.863 14.830 831.475 4 12 3.647
85 51.930 14 770.535 14.522 814.291 3 6 2.008
90 51.911 14 770.562 14.384 814.089 2 2 0.038
95 51.934 14 770.740 14.382 814.246 2 2 0.038
100 51.986 14 770.823 14.365 814.223 2 2 0.038

Table III: BETWEEN DIFFERENT UC POLICIES UNDER THE 200 OUT-OF-
SAMPLE WIND SCENARIOS

Scheduling Validation: 5-min Economic Dispatch
Hourly Dispatch Costs [k$] Violations

UC [k$] # SU Average Std Worst # Sc # Tot MWh

ResRPC 51.986 14 770.823 14.365 814.223 2 2 0.038
StchOpt 54.765 12 808.971 200.096 2903.841 28 259 611.473
DetRes 55.492 16 857.199 279.813 3254.877 55 611 1793.881

lower uncertainty levels leads to better economic benefit, but
worse risk performance, which is represented by the standard
deviation of the dispatch cost. Using this information, a proper
tradeoff can be made by decision makers.

Henceforth, we set the uncertainty range to 100%.

C. Comparing the Proposed Approach with the Deterministic
and Stochastic Approaches

The proposed UC formulation (ResRPC), which includes
ramp-capability and power-capacity reserves, is comparedwith
the traditional deterministic-reserve modelling (DetRes) and
the stochastic (StchOpt) UC approaches. All three models are
based on the power-based UC proposed in [10].

To obtain the commitment strategies of all UC approaches,
we use the 20 wind scenarios shown in Fig.4, as de-
scribed in the scheduled stage in SectionIII-A . We assume
these scenarios to be the only information available for the
scheduling stage. Therefore, we use these data to describe
the different wind uncertainty representation required bythe
different UC approaches. The proposed approach ResRPC
uses the nominal wind production together with minimum
and maximum bounds of power-capacity and ramp-capability,
which are obtained from this set of scenarios. The stochastic
approach StchOpt uses all 20 scenarios. Finally, the determ-
inistic approach DetRes uses the nominal wind production
and two hourly reserves, upwards and downwards which are
defined as

∑
b

(
Wbt−W bt

)
and

∑
b

(
W bt−Wbt

)
, respectively.

1) Reliability of Dispatch Operation:Table III compares
the performance of the different UC approaches. From the
scheduling stage, we can observe that DetRes commits the
largest quantity of resources, because this is the only approach
that cannot readjust (optimize) the given level of reservesby
considering wind curtailment. That is, the reserve requirements
for the deterministic approach results in a larger quantityof
committed resources. On the other extreme, StchOpt commits

the smallest quantity of resources (reserves), because it (endo-
genously) optimize the quantity of reserves required basedon
the 20 scheduling scenarios. Somewhere in between, ResRPC
can readjust the level of reserves using the wind curtailment
flexibility, leading to lower FxdCost than DetRes; however,
ResRPC tends to be overconservative, because it takes into
account the worst-case wind scenario, hence scheduling more
resources (higher FxdCost) than StchOpt.

From the validation stage in TableIII , we can observe the
following:

1) The Average and Std dispatch costs of StchOpt are
around 6% and 40% lower than DetRes, respectively.
This clearly shows the advantages of the stochastic
strategy over the deterministic one, as expected.

2) Although DetRes committed the largest quantity of re-
sources, it is the least robust. This is mainly because
the deterministic approach only models the network
constraints for the nominal case and it cannot guarantee
that the committed reserves can be deployed. This is in
contrast to ResRPC and StchOpt, where generating units
are committed taking into account that power must be
delivered to specific places in the network where the
uncertainty appears.

3) The Average dispatch cost of StchOpt is around 5%
higher than ResRPC, and the Std for StchOpt is more
than an order of magnitude higher (13.9 times). Sim-
ilarly, the total quantity of violations and the energy
unbalance of StchOpt is more than two (130 times)
and four (16k times) orders of magnitude higher than
ResRPC, respectively.

In short, the proposed approach ResRPC presents a better
economic-benefit and risk performance than the deterministic
and stochastic approaches for this study case. Consequently,
ResRPC offers more robust commitment decisions which lead
to a better system reliability.

Although we use LHS to represent the space of scenarios
adequately, the performance of StchOpt may be improved by
introducing a larger quantity of scenarios in the scheduling
stage or by a better scenario sampling. To observe the per-
formance of ResRPC and DetRes compared with a “perfect”
stochastic approach, we carried out the economic dispatch
validation using the same scenarios used by StchOpt in the
scheduling stage. TableIII shows the performance of the
different UC approaches under the 20 scheduling scenarios.
For this case, StchOpt presented the lowest Average dispatch
cost, around 0.3% lower than ResRPC, but the Std and the
Worst-case are higher than ResRPC. Notice that StchOpt
presented constraint violations in two scenarios even though
these scenarios were used in the scheduling stage. This is
because the scheduling stage considers a simplified hourly
piece-wise linear approximation of the 5-min smooth power
profile of the set of scenarios shown in Fig.4.

2) Computational Performance:TableV shows a compar-
ison of problem size and computational burden between the
different approaches. Notice that all three formulations have
almost the same quantity of binary variables, but ResRPC
has around 2.2% more than the others. This is due to the
modelling of the infimum function that ResRPC requires, see
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Table IV: BETWEENDIFFERENTUC POLICIESUNDER THE20 SCHEDULING
WIND SCENARIOS

5-min Economic Dispatch Simulation
Dispatch Costs [k$] Violations

Average Std Worst # Sc # Tot MWh

ResRPC 770.863 12.360 795.588 1 1 0.002
StchOpt 768.793 21.888 848.723 2 12 5.729
DetRes 803.457 119.146 1263.678 3 36 71.670

Table V: PROBLEM SIZE AND COMPUTATIONAL BURDEN OF THE DIFFER-
ENT APPROACHES

Problem Size [#] Computational Burden

Constraints
Nonzero Continuous Binary CPU Nodes
elements variables variables Time [s] explored

ResRPC 36141 1074712 21096 6520 90.45 250
StchOpt 225141 5600307 169776 6376 867.88 819
DetRes 18093 315424 11016 6376 8.75 29

SectionII-A .

When comparing the number of constraints, nonzero ele-
ments and continuous variables, ResRPC is around twice
the size of DetRes, and StchOpt is more than 12 and 6
times larger than DetRes and ResRPC, respectively. On the
other hand, the CPU time of ResRPC is around an order of
magnitude higher than that of DetRes, and one lower than that
of StchOpt. Finally, unlike DetRes and ResRPC, the problem
size and computational burden of StchOpt highly depends on
the quantity of scenarios that it considers.

IV. CONCLUSIONS

In this paper, we proposed a power-based network-
constrained UC formulation as an alternative to the traditional
deterministic UC under wind generation uncertainty. The for-
mulation draws a clear distinction between power-capacity
and ramp-capability reserves to deal with wind production
uncertainty. The model is formulated as a power-based UC,
which schedules power-trajectories instead of the traditional
energy-blocks and takes into account the inherent startup and
shutdown power trajectories of thermal units. The formula-
tion is compact since only needs two reserve requirements
then keeping the advantages of deterministic UCs, unlike
the stochastic approach which problem size depends on the
quantity of scenarios. Study cases showed that the proposed
formulation significantly decreases operation costs compared
to traditional deterministic and stochastic UC formulations
while simultaneously lowering the computational burden. The
operation cost comparison was made through 5-min economic
dispatch simulation under hundreds of out-of-sample wind
generation scenarios. As future studies, the performance of the
proposed formulation must be compared with the traditional
stepwise energy-block formulations under both stochasticand
robust approaches for different power systems.

APPENDIX

The ramp-up and -down constraints on the upper envelope,
A → B in Fig. 3, are ensured with

(
pgt + r+gt

)
−
(
pg,t−1 + r+g,t−1

)
≤ RUgt ∀g, t (31)

−
(
pgt + r+gt

)
+
(
pg,t−1 + r+g,t−1

)
≤ RDgt ∀g, t. (32)

On the other hand, (33) is obtained by reorganizing the
ramp-up constraints given in (15) and (17), and (34) by
reorganizing (16) and (17):

r+gt − r+g,t−1 ≤ rR+
gt ≤ RUg − pgt + pg,t−1 ∀g, t (33)

−r+gt + r+g,t−1 ≤ rR−
gt ≤ RDg + pgt − pg,t−1 ∀g, t (34)

where these two constraints are equivalent to (31) and (32),
respectively. Similarly, (15) and (16) together with (18) guar-
antee the ramp-up and -down constraints on the lower envelope
scenario,C → D in Fig. 3.
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