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A multi-criteria risk-based approach for optimal planning of SuDS solutions in urban 
flood management
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aDepartment of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran; bSchool of Computing and Engineering, 
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Technology (TU Delft), Delft, Netherlands

ABSTRACT
This paper presents a multi-criteria risk-based approach for managing urban flood hazards by using 
a combination of conventional measures and contemporary Sustainable Drainage Systems (SuDS). 
A multi-objective optimisation model coupled with a simulation model of UDS in the SWMM software 
is developed with the three objectives of minimising total costs, the risk of flooding and pollution 
discharged into receiving waters. K-means clustering technique is used to group the optimal solutions. 
A few optimal solutions and individual SuDS solutions are then ranked together by using the compromise 
programming (CP) method. The methodology is demonstrated by its application on a case study of the 
Golestan city UDS in Iran. The results obtained show there are indirect correlations between non- 
dominated solutions that minimise the risk of either flooding or pollution. The results also show the 
selected optimal solutions can provide cost-effective strategies that reduce both flood and pollution risks 
by at least 27% and 50%, respectively.
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1 Introduction

Ever-growing urbanisation involving replacing vegetative and 
open areas with buildings, pavements and roads over the recent 
decades has increased impervious surface areas in urban catch-
ments. All this has resulted in the alteration of natural water 
systems by dramatically increasing surface runoff volume and 
peak flow, decreasing the groundwater resources due to 
decreasing infiltration and percolation rates (Ahiablame and 
Shakya 2016; Brun and Band 2000; Brandes, Cavallo, and Nilson  
2005; Wang, Lyons, and Kanehl 2003), increasing flood risks 
(Konrad 2003) and decreasing water quality by increasing the 
pollution of receiving water bodies (Ahiablame and Shakya  
2016). The excessive runoff in urban areas collects contaminants 
from impervious surface areas and discharges them into receiv-
ing water bodies such as lakes, rivers and wetlands. Hence, the 
conversion of permeable surfaces of open land to impervious 
surfaces and the loss of the water-retaining function of soil in 
urban areas would change the hydrologic cycle (Booth and 
Leavitt 1999). Kim et al. (2016) applied SWAT model to evaluate 
the impacts of land use changes in an urbanised catchment and 
obtained positive and high correlation between intensity of 
developed lands and the amount of surface runoff. The tradi-
tional approach for flood risk management in urban areas is to 
collect and dispose of the flood runoff as soon as possible. This 
approach conveys the surface runoff out of the urban areas using 
structural methods and diversion channels, which generally 
results in the increase of the pollution loads discharged into 
the receiving water bodies as well as high construction costs 
and emission of greenhouse gases (Mikulincer and Shaver 2007).

To overcome both urban flooding and water quality issues, 
Best Management Practices (BMPs) based on the Sustainable 
Drainage Systems (SuDS), Nature Based Solutions (NBS) or Low 
Impact Development (LID) have been well developed in recent 
decades for urban catchments to reduce runoff volume and 
flood risk by increasing the permeability of surface areas and 
storage capacity in the catchments. The concept of SuDS 
embraces a broad range of technologies and activities that 
minimise the impacts of urban development on flow patterns 
(Mustaffa et al. 2016). Recent research works have shown SuDS 
can improve the performance of drainage systems in both rural 
and urban areas (Azari and Tabesh 2018). Abi Aad, Suidan, and 
Shuster (2010) proposed a new method to model rain gardens 
and rain barrels using Storm Water Management Model (SWMM) 
and the cumulative effects of utilising SuDS in urban catchments. 
SuDS are basically strategies to control the runoff volume and 
eliminate certain pollutants from stormwater. In fact, SuDS not 
only decrease total flow and peak runoff, but also improve runoff 
water quality by decreasing pollution of water bodies receiving 
from surface runoff. This is achieved due to eliminating pollu-
tants by evaporation, treatment or infiltration using 
a combination of a series of physical, chemical, and biological 
processes that include detention/retention, settling, absorption, 
infiltration, flocculation, and biological uptake (Jia, Yao, and Yu  
2013). One of the advantages of this modern management 
method compared to conventional water management methods 
is its flexibility. SuDS can also mitigate the urban flood and 
remove the pollutants from the surface runoff before discharging 
into urban drainage systems (UDS). Due to the wide range of 
SuDS and their performance in various conditions, a combination 
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of SuDS may be suitable for the UDS. This combination can be 
selected based on a few assessment criteria to identify the best 
design of SuDS. The assessment criteria can be evaluated by 
using simulation models and can be used in optimisation algo-
rithms to identify the optimal parameters of the SuDS (e.g. site 
location and technical design parameters such as area, size, 
permeability, type of filtering media, roughness of materials 
and etc.) based on the multiple objectives defined in the UDS.

Some research works have developed optimisation algo-
rithms for planning and design of SuDS in the UDS (Alves 
et al. 2018). The common objective functions used in these 
studies in the recent decade include minimisation of flood 
volume (Oraei Zare, Saghafian, and Shamsai 2012; De Paola 
et al. 2018), minimisation of costs (Dong et al. 2020) and max-
imisation of the system reliability (Karamouz and Nazif 2013). 
Various decision variables were also used for the SuDS optimi-
sation problem in the UDS. For example, Azari and Tabesh 
(2018) proposed the optimal design of SuDS for their area 
and site location in the UDS. Some studies developed specific 
objective functions for SuDS optimisation in the UDS. For 
example, Dong et al. (2020) optimised the size and number of 
LIDs using a multi-scale decision-making framework to identify 
cost-effective LID combinations that comply with water quality 
standards in the UDS. McClymont et al. (2020) also developed 
a resilience-driven multi-objective model to find the trade-off 
between flood resilience and water quality resilience through 
SuDS solutions based on the SuDS capital costs applied to 
a case study in Brazil. They also used a Quality of Life index to 
analyse identified solutions for day-to-day social impacts. The 
combination of an optimisation model and a UDS simulation 
model is also common in this field. For example, Saniei, Yazdi, 
and MajdzadehTabatabei (2021) coupled SWMM model with 
NSGA-II optimisation algorithm to obtain the optimal size, type 
and location of LIDs considering the long-term condition of 
rainfalls. Note that LIDs is a general term for SuDS that is mainly 
applied in the North America for a number of techniques such 
as swale, bioretention system, permeable pavement and deten-
tion pond. As shown above, many studies examined the impact 
of SuDS for runoff and pollution controls for designing SuDS.

Risk assessment is one of the key factors in disaster manage-
ment of urban flood that should also be considered when 
evaluating SuDS in the UDS (Battiston et al. 2021). The risk of 
a flood event is basically calculated by multiplying the prob-
ability of the event by the severity of its consequence e.g. 
financial or human losses. The probability of a flood event is 
a non-zero random variable which depends on the rainfall 
probability but the severity of its effects can be minimised 
through better flood management (Kundzewicz et al. 2016). 
There are also several studies that investigated urban flood 
risk minimisation such as Jiang et al. (2009) that explored 
effective methods for mitigating flood risks in the UDS, espe-
cially reduction of economic losses.

Potential solutions generated by either experts or optimisation 
models may also need to be ranked or prioritised by using a multi- 
criteria decision analyses (MCDA) method. In the water industry, 
these solutions have been ranked by using a few well-known 
MCDA methods such as AHP (Analytical Hierarchy Process) e.g. 
Ardeshir et al. (2014), TOPSIS (The Technique for Order of 

Preference by Similarity to Ideal Solution) Afshar et al. (2011) and 
CP (Compromise Programming) e.g. Zarghami, Abrishamchi, and 
Ardakanian (2008). Among these three methods, the CP method is 
an accurate and simple group decision making method that can be 
easily used for ranking a number of strategies based on multiple 
assessment criteria in urban water systems (Morley et al. 2016a). 
More specifically, Zarghami, Abrishamchi, and Ardakanian (2008) 
used the CP method as a multi-objective decision-making model 
for optimal long-term planning of conjunctive use of surface and 
ground water resources. The objectives analysed in their CP 
method were minimisation of costs and social hazards and max-
imisation of water supply. Fattahi and Fayyaz (2010) proposed the 
CP method for the integrated urban water management covering 
water supply systems with three objectives of minimising water 
distribution cost and leakage and maximising social satisfaction 
level. Behzadian and Kapelan (2015) used the CP model with 
multiple quantitative and qualitative criteria for ranking several 
intervention strategies for long-term planning of integrated urban 
water systems including the urban water supply and drainage 
systems.

As outlined above, multi-objective optimisation methods 
have been broadly used in recent research works for identifying 
optimal parameters of SuDS such as size, location, settings, or 
their composition in the UDS. Various objectives used for opti-
mising SuDS mainly include minimisation of costs, flood 
volume, peak flow and pollution in the UDS. However, to the 
best of authors’ knowledge, none of the above optimisation 
models has considered a risk-based approach in the multi- 
objective optimisation model combined with ranking-based 
multi-criteria decision analysis for prioritising optimal SuDS in 
the UDS. The current research aims to develop a risk-based 
multi-objective optimisation models for long-term planning 
and optimal design of SuDS and prioritise a few optimal solu-
tions based on the CP model. The risk-based approach used in 
this study also aims to minimise the risk of inundation and 
pollution hazards in urban floods using optimal SuDS and 
conventional measures. The paper is structured as follows: 
The flowchart of the methodology followed by the develop-
ment of simulation and optimisation models are first explained. 
The next section presents the case study and model develop-
ment in a real-world application. Then, the results of Pareto 
optimal front obtained from the multi-objective optimisation 
algorithm is presented and discussed followed by ranking sev-
eral optimal solutions based on the CP model. Final remarks 
and conclusions are drawn with some recommendations for 
future works.

2 Methodology

This study adopts a methodology for planning and management 
of urban flood in three main parts as shown in Figure 1. The first 
part involves developing simulation model for the UDS which 
includes data collection for physical components of the UDS and 
hyetograph of rainfall data with specific return periods to build the 
UDS model using the SWMM software. The second part entails 
developing a multi-objective optimisation model by choosing 
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objective functions and decision variables to obtain Pareto- 
optimal solutions by using multi-objective evolutionary algo-
rithms coupled with the UDS simulation model written in the 
MATLAB software. The final part includes clustering Pareto- 
optimal solutions by using k-means clustering technique pro-
posed by Hartigan and Wong (1979) in the SPSS software and 
then selecting a few optimal solutions with proposed strategies 
and finally ranking them using the CP multi-criteria decision ana-
lysis (MCDA) method in Excel platform (Behzadian and Kapelan  
2015). Details of the models used in this paper are described in the 
following.

2.1 Simulation model

Hydrological processes and hydraulic performance of the UDS 
are simulated here by using a model developed in the SWMM 
software. The following input data are required for the hydrau-
lic and water quality simulation in the UDS: Characteristics of 
the area considered for the case study including climate infor-
mation (e.g. precipitation data), land use (residential, commer-
cial, industrial, and undeveloped), physical characteristics of the 
catchment (e.g. slope, area, width, percent of impervious area, 
and depression storage), conduits (e.g. offset height or eleva-
tion above the inlet and outlet node inverts, conduit length, 

Improving performance of urban stormwater control systems 

Data collection and analysis:
- Characteristics of subcatchments such as area, slope, etc.
- Hydrologic data including precipitation hyetograph.
- Characteristics of possible SuDS in urban are.
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Hydrologic and water quality modelling)
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Figure 1. The flowchart of the study for planning optimal SuDS solutions in the UDS.
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Manning’s roughness, cross-sectional geometry, inlet geometry 
code number), outfalls, SuDS controls and water quality para-
meters including TP (Total Phosphorous), TN (Total Nitrogen) 
and TSS (Total Suspended Solids) and pollutant build-up and 
wash-off.

A variety of SuDS are available to control flooding and 
pollutant loads in a catchment although some specific SuDS 
may be fitted in the catchment to have the performance of 
interest. Features such as local land use, catchments properties, 
environmental considerations and catchment slope are crucial 
factors when selecting SuDS (Behroozi, Niksokhan, and 
Nazariha 2018). Here, based on the conditions of the area 
(being residential area, the soil type, the amount of space for 
SuDS implementation, the available equipment and etc.), four 
different types of SuDS are analysed in this study including 
detention ponds, porous pavements, infiltration trenches, and 
bioretention tanks.

2.2 Multi-objective optimisation model

A multi-objective optimisation model is developed here to 
identify the best combination of SuDS and traditional measures 
to improve the UDS performance by reducing the risk of both 
urban flooding and surface runoff pollution discharging into 
receiving water bodies. The optimisation model considers the 
following three objective functions: (1) minimisation of the risk 
of flooding in urban areas; (2) minimisation of the risk of pollu-
tion discharged into receiving water bodies; (3) minimisation of 
total construction costs for traditional measures and new SuDS.

2.2.1 Flood risk in urban areas
The risk of urban flood is defined based on the hazard of urban 
flooding caused by rainfall, which can lead to the disruption of 
urban services and economic losses or even human losses. To 
calculate the risk, the occurrence probability of different rain-
falls is multiplied by the severity of consequence of the asso-
ciated flooding which is considered here as the overflow of the 
conduits in the UDS. Hence, the risk of flooding (RF) can be 
calculated as below: 

RF ¼
Xm

i¼1

Xn

j¼1

CijPi (1) 

where Cij = the severity of consequence of the flood event in 
node j due to rainfall i; Pi = the probability of rainfall event 
i; m = the number of analysed rainfalls covering various return 
periods and n = the total number of monitoring nodes in 
the UDS.

The focus of the urban flood management is usually on 
extreme hydrological events with high return periods that 
cause significant economic and human losses while the dis-
charge of the urban surface pollution into the UDS can happen 
more frequently during rainfall events with low return periods. 
Therefore, this study considers the rainfalls with return periods 
of 2, 10, and 100 years to include both extreme and small flood 
events. Considering the rainfall return period of T, the occur-
rence probability of each event (P) can be calculated as: 

P ¼
1
T

(2) 

The severity of consequences caused by a flood event can be 
represented as the magnitude of financial and human losses 
due to the flood occurrence. The flood damage is typically 
proportional with the peak flow rate (or volume) and velocity 
of runoff in urban areas. We can assume that for the cases with 
almost flat area or slight slopes, the effects of runoff velocity 
can be neglected. Hence in this study, we consider the volume 
of flooding caused by overflow in the nodes of the UDS as 
a surrogate for flood damage (Karamouz and Nazif 2013). This 
volume can be obtained through the results of the SWMM 
simulation model.

2.2.2 Pollution risk discharged into receiving water bodies
The consequence of runoff pollutants from urban surfaces such 
as pavements and roads after a rainfall event can be quantified 
by the amount of their loads discharging into the UDS. Hence, 
the pollution risk of urban floods can be calculated as the risk of 
pollution loads discharging into the UDS. Similarly, the risk of 
pollution (RP) can be calculated by multiplying occurrence 
probability of rainfall events by the pollution loads, as below: 

RP ¼
Xm

i¼1

Xn

k¼1

AikPi (3) 

where Aik = the total load of pollutants discharged into outlet 
k and rainfall i; Pi = the probability of occurrence of rainfall/ 
pollution event i; m = the total number of rainfall events cover-
ing various return periods; and n = the total number of outlets 
in the UDS. Note that the severity of consequence for the 
pollution risk is usually calculated by the amount of damage 
caused by pollution in a flood event. The damage here is 
referred to the pollution loads entering the UDS and finally 
the receiving water bodies such as rivers, lakes and wetlands. 
The loads of pollutants can be monitored as kilograms per 
event and are calculated by using the results obtained by the 
SWMM software.

2.2.3 Total construction costs
One of the main barriers to the development of SuDS in urban 
flood management is usually related to the high cost for their 
investment and maintenance. On the other hand, the level of 
investment for construction of flood control techniques has 
a significant effect on the risk of flooding and pollution (Lee 
et al. 2010). Hence, finding the optimal SuDS costs with the best 
performance are crucial for a sustainable and viable urban flood 
management (Alves et al., 2019). Here, the total capital invest-
ment and operational costs is considered as the third objective 
of the optimisation model. In this study, the costs associated 
with traditional measure and new SuDS are taken from the data 
in the literature (Strecker et al. 2010; Karamouz and Nazif 2013). 
Cost estimation is often difficult in the design stage due to the 
lack of valid and accurate construction data, diversification of 
construction locations, and urban and regional differences. The 
cost for runoff control structures includes design, construction, 
probable operation, and maintenance costs. The capital invest-
ment used for the lifetime of the structure can also be an 
assessment indicator. The capital investment (C) can be 
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estimated by the following empirical equation based on the 
size of the structure (EPA 2004): 

C ¼ a Db (4) 

Where D = decision variables (e.g. volume, area or flow), a and 
b = the coefficient and exponent, respectively, determined by 
a regression analysis. Table 1 shows the cost equations for 
capital investment of all types of structure used in this study. 
The table also includes the annual maintenance costs as 
a percentage of the construction cost. Note that these costs 
are calculated as per annual costs with respect to a complete 
lifetime of the structure.

2.2.4 Decision variables
Decision variables forming the solutions of the optimisation 
model include the design parameters of the UDS infrastructure 
related to SuDS and traditional measures for expansion of the 
UDS. These design parameters are type and area of SuDS, 
roughness and width of conduit, and storage capacity of 
SuDS (See also Figure 2 and Table 2). More specifically, tradi-
tional measures analysed here include increasing the capacity 
of existing conduits through either (1) increasing the cross- 

sectional area of conduits or (2) improving the roughness of 
conduits (i.e. decreasing the Manning roughness coefficients of 
conduits). The SuDS analysed here include (1) detention ponds, 
(2) porous pavements, (3) infiltration trenches, and (4) bioreten-
tion tanks. Figure 2 shows the structure of the decision vari-
ables covering three main components of the UDS: 
subcatchments, conduits, and junctions. The total number of 
decision variables (NDV) in a solution is calculated as below: 

NDV ¼ ns � SuDSs þ nc � SuDSc þ nj � SuDSj (5) 

where ns,nc, and nj = the number of subcatchments, conduits, 
and junctions, respectively; and SuDSs,SuDSc and SuDSj = the 
number of decision variables for subcatchments, conduits and 
junctions. The detail of decision variables for each type is given 
in Table 2. More specifically, each subcatchment has two deci-
sion variables including the type and the total area of SuDS. 
Three types of SuDS considered for subcatchments are porous 
pavements, infiltration trenches and bioretention tanks. Two 
decision variables assumed for each conduit are the new width 
and the new Manning roughness coefficient. Finally, each 
junction the decision variable assumed for each junction is 
the surface area of a detention pond. SWMM is used as the 

Table 1. Capital investment for SuDS and UDS rehabilitation used in the study.

Type of measure

Construction 
cost 

(US$)

Annual operating and 
maintenance cost 

(% of construction cost) References Note

Detention pond C ¼ 24:5V0:71 3%-6% (Strecker et al. 2010) The values estimated in December 2002, without 
considering the land cost 

V = volume (cubic ft) and 
A = area (square ft)

Infiltration trench C ¼ 173V0:63 5%-20% (Strecker et al. 2010)
Bioretention tank C ¼ 2 � 3ð ÞA 5%-7% (Strecker et al. 2010)
Porous pavement C ¼ 3 � 4ð ÞA 0 (Strecker et al. 2010)
Change of Manning roughness 

coefficient
C ¼ 27Δn � L 5% (Karamouz and Nazif  

2013)
Δn = change of Manning coefficient of conduits, 
ΔA = change of conduit cross-section area (m2) 
L = Conduit length (m)Change of conduit dimensions C ¼ 270ΔA � L 0.5% (Karamouz and Nazif  

2013)

Subcatchment 1

Type 
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SuDS 1

Area of 
SuDS 1

Subcatchment 2

Type 
of 

SuDS 2

Area of 
SuDS 2

...
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SuDS i
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of 

SuDS s
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SuDS s

Conduit 1
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i
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(a) Subcatchments

(b) Conduits
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Figure 2. Decision variables of solutions for (a) subcatchments (b) conduits (c) junctions in the optimisation model.
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hydraulic simulation model in the simulation-optimisation 
scheme connected to the optimisation model in the MATLAB 
software. The decision variables are the input of the simulation 
model and the outputs (results) of the simulation model are 
the input for the optimisation model. This procedure is itera-
tively repeated until the final stopping criteria of the optimisa-
tion model are met and Pareto optimal solutions are obtained 
as a set of optimal solutions.

2.2.5 Optimisation method
The above optimisation problem is solved here using the multi- 
objective optimisation algorithm of NSGA-II (Deb et al. 2002). 
This optimisation method has been widely used for solving 
multi-objective optimisation problems especially in similar 
research works in urban water systems such as water supply 
systems (Behzadian et al. 2009) and urban drainage systems 
(Karamouz and Nazif 2013). NSGA-II has a few optimisation 
parameters such as probability of crossover, probability of 
mutation and population size that will be adjusted within 
several trial runs before the main runs.

2.3 K-means clustering and the CP method

Once a set of optimal solutions is obtained by the multi- 
objective optimisation model, the multiple optimal solutions 
are narrowed down by using k-means clustering method such 
that a few optimal solutions can be selected by decision makers 

for comparing and ranking with other available solutions by 
using the CP method.

The k-means method is a clustering algorithm used to create 
a small set of groups from relatively entities based on subset of 
variables. This algorithm categorises data sets as a certain num-
ber of predefined clusters, i.e. k, and attempts to estimate the 
following items: (1) determining cluster centre points as the 
mean value for the set of points in each cluster; (2) assigning 
each data sample to a cluster in which its centre point is the 
nearest one to the data value (Meyers, Gamst, and Guarino  
2013). Generally, the analysis is conducted to make a small 
number of clusters (e.g. between three and five). This algorithm 
has been previously applied to research works in the water 
industry such as pipeline failure predictions in water distribu-
tion networks (Kakoudakis et al. 2017) and peak outflow pre-
dictions in dam failure analysis (Eghbali et al. 2017).

This paper adopts the compromise programming (CP) as 
a MCDA technique for ranking the selected solutions based 
on a few assessment criteria. This method was chosen here 
due to its simple application for group decision making when 
a number of assessment criteria are analysed for ranking a list of 
alternative options in urban water systems (Morley et al.  
2016b). The basic idea of the CP method is to determine a set 
of efficient solutions nearest to an ideal point, for which all the 
solutions are optimised. The corresponding overall distance 
function (Lp) is defined by p-metrics for each solution. The 
basic equation of the CP model is given as below: 

min LP;
Xq

i¼1

wi f �i � fi xð Þ
� �

f �i � fi�

� �P" #1
P

;
Xq

i¼1
widið Þ

P
h i1

P
(6) 

di;
wi f�i � fi xð Þ
� �

f�i � fi�
x 2 X 

where x is the vector of decision variables; X indicates the 
possible set. fi xð Þ is the mathematical expression for the i th 
criterion (i 2 1; . . . ; qf g); f �;f �1 xð Þ; . . . ; f �i xð Þ; . . . ; f �q xð Þ
indicates the vector of ideal point; 
f�;f1� xð Þ; . . . ; fi� xð Þ; . . . ; fq� xð Þ indicates the vector of anti- 
ideal point; di stands for the degree of discrepancy for the 
i th criterion; wi is the weight attached to the i th criterion 
(i 2 1; . . . ; qf g) and P is the topological metric that is the 
real number in the closed interval 1;1½ � (André and Romero  
2008). More specifically, P can balance between the group 
utility/average achievement of all the criteria (maximised for 
P = 1) and the maximum discrepancy/individual regret (mini-
mised for P = 1). In other words, P can be reflective of 
decision makers’ concern based on the maximum deviation 
that is minimum for P = 1 or maximum for P =1 (Fattahi 
and Fayyaz 2010). This paper used an excel-based platform 
of the CP method that has been applied to urban water 
systems (Behzadian et al. 2014; Behzadian and Kapelan  
2015).

3 Case study

The proposed methodology is demonstrated here by its appli-
cation on the real-world case study of the UDS for the Golestan 

Table 2. Main features of the solutions and decision variables in the UDS.

UDS 
components

Conceptual 
solution Decision variable

Range/ type of 
decision variables

Subcatchments Decreasing the 
volume of 
surface runoff 
discharged into 
UDS by 
increasing 
infiltration/ 
storage 
capacity of 
subcatchments 
through adding 
SuDS

Selection of SuDS: 
porous 
pavements, 
infiltration 
trenches and 
bioretention 
tanks 

The total area of 
SuDS

Integer value 
between 0* and 
3 for the three 
SuDS 

Real-value 
between 10% 
and 20% of the 
subcatchment 
area

Conduits Increasing the 
existing 
capacity of 
conduits

A new width for 
conduits 

Decreasing 
Manning 
roughness 
coefficient of 
conduits

Real value for 
increasing the 
existing widths 
by 0*, 60, 65, 70, 
75, 80, 85, 90 cm 

Real value for 
decreasing the 
existing 
Manning 
roughness 
coefficients by 
0*, 20, 40, 60, 
80%

Junctions Increasing the 
storage 
capacity at 
junctions

Construction of 
new detention 
ponds at 
junctions

Real value for the 
surface area of 
the detention 
pond equal to 
0*, 10, 12, 14, 16, 
18, 20 m2 and 
2 m height

*Note that 0 in all cases indicates ‘do nothing’ for the existing component or no 
new SuDS.
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city located in the southern part of the Tehran province in Iran 
as shown in Figure 3. The average altitude of the city is 1,046 m 
above sea level and the height difference between the highest 
and lowest points of the city is 27.2 m. The general direction of 
the slope is from northern regions to south boundaries and the 
average value for the slope in urban areas is in the range of 0.5 
to 3%.

This study used synthetic design storms for the rainfall 
simulation in the UDS. Note that continuous simulation by 
using actual historic data of long-term rainfall record can pro-
vide more accurate and robust comparison of the long-term 
water balance and hydrologic performance of alternative 
stormwater management options. However, synthetic design 
storms were selected here as they are typically used for design-
ing the UDS and use of actual historic rainfall requires a long- 
term rainfall record (e.g. 30–50 years) with high time resolution 
(e.g. 5–10 minutes) that access to this level of data was not 
possible for the case study. Hence, the Intensity-Duration- 
Frequency (IDF) curves of the rainfall of the closest weather 
station (i.e. the Mehrabad station) to the project site were 
selected. Each IDF curve represents the relationship between 
rainfall intensity and duration for a specific frequency (i.e. 
inverse of return period) of the rainfall. The analysis of rainfalls 
with various intensities and durations in the IDF curves shows 
rainfalls with a 6-hour duration are the most critical condition 
corresponding to the maximum surface runoff in the UDS 
(Karami, Ardeshir, and Behzadian 2016). Therefore, rainfalls 
with return periods of 2, 10 and 100 years (that are typical 
return periods for the UDS design in the local standards) and 
a duration of 6 hours are considered here to evaluate risk 
assessment of flooding and surface runoff pollution. The corre-
sponding average intensity of rainfall obtained from the IDF 
curves of the case study are 1.94 mm/hr for 2 years, 3.04 mm/hr 
for 10 years and 5.94 mm/hr for 100 years. Moreover, the basic 
hyetograph suggested by Yen and Chow (1980) was used here 
to generate the temporal distribution of rainfall due to its 
simplicity. This hyetograph is represented by a triangular 

shape with the time to peak intensity approximately 0.375 
times rainfall duration and the peak intensity estimated as 
a function of total rainfall depth, duration and peak intensity.

To build a simulation model, a digital elevation map of the 
case study with scale of 1:2,000 was provided and subcatch-
ments were created based on topography, the slope of streets, 
the routes for runoff movement, layout of the UDS, and the 
outlets of surface runoff. The surface runoff of all subcatch-
ments is discharged into two rivers, i.e. Shadchay and Siah-Ab 
(Figure 4). The outlet of these rivers is considered as the point of 
discharge into receiving water bodies. As a result, the simula-
tion model was built SWMM using 33 subcatchments as shown 
in Figure 4.

The Manning coefficients recommended by the SWMM were                        

Figure 3. Overall layout of the case-study for (a) area of the Golestan city and (b) Tehran province in Iran.

Output node

Figure 4. The simulation model built in SWMM for subcatchments and conduits 
of the UDS.
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used here as 0.1 for permeable surfaces and 0.014 for imperme-
able surfaces including concrete conduits (Rossman 2015). The 
model simulates the hydrological process of rainfall-runoff con-
version in the UDS catchments as well as hydraulic flow routing 
in the UDS conduits by using the kinematic wave method. The 
dynamic wave and one-dimensional Saint-Venant equation 
were chosen in the flow routing due to their high accuracy. 
The Horton method with the parameters recommended by the 
SWMM user’s manual (Rossman 2015) was used for infiltration 
modelling due to its simplicity and the fact that it requires 
fewer data and acceptable accuracy. In the case study area, 
the hydraulic conductivity of the soil is 44 mm/hr. The pollu-
tants modelled here include TSS, TP, and TN. The saturation 
function was also used in the model to calculate the pollutant 
build-up which is a function of the number of preceding dry 
weather days (Rossman 2015). Similarly, the experimental func-
tion was also considered for the pollution wash-off which 
occurs during wet weather periods. The type of build-up and 
wash-off equations and their coefficients were also selected 
based on the recommendations of the SWMM user’s manual 
and previous calibrated models for the hydraulic and water 
quality model of the UDS (Rossman 2015; Karami, Ardeshir, 
and Behzadian 2016; Soleimani, Behzadian, and Ardeshir  
2016). Specific water quality parameters used in this study is 
given in Appendix A. Note that the most uncertain parameters 
in the UDS modelling were calibrated in this study that include 
the conduits roughness coefficients and perviousness of sub-
catchments for the hydraulic model and the coefficients of 
built-up and wash-off equations for the water quality model.

3.1 Optimisation model configuration

The UDS comprises 33 subcatchments and 94 conduits and 
hence the 33 possible sites for SuDS and 94 locations for 
conduit rehabilitation including increase in the width or 
change in the roughness. The UDS also considers 6 potential 
sites for detention ponds at the UDS junctions based on the 
predefined locations for detention ponds in this study. 
According to Eq. (5), the total number of decision variables in 
a solution is equal to: 33 × 2 + 94 × 2 + 6 × 1 = 260.

The parameters of the multi-objective evolutionary algo-
rithm were determined after a number of trials with randomly 
generated seeds to achieve the fastest convergence rate for 
optimal solutions. As a result, these parameters include 
a population size of 50, a mutation probability of 0.1 with a two- 
point crossover operator, the probability of incidence of 0.8 and 
the maximum number of generations equal to 4,000 as stop-
ping criterion of the optimisation algorithm. After adjusting the 
optimisation parameters, the model was run several times each 
with a different initial generation to make sure the Pareto- 
optimal solutions are robust. The size of the search space in 
the optimisation model can also be calculated as below: 

33� 12
1

� �� �

� 33� 4
1

� �� �

� 94� 4
1

� �� �

� 94� 5
1

� �� �

� 6� 6
1

� �� �

ffi 3� 1011 

Given such a large search space for the optimisation problem, 
the achievement of global optimal solutions cannot be guar-
anteed, and hence all the solutions are considered as near- 
optimal solutions. Moreover, comparing the large search 
space of solutions with the total number of solutions simulated 
in the optimisation model (i.e. 50 population size � 4,000 
generations = 200,000) can reveal the high capability of the 
optimisation technique in obtaining the near-optimal solutions. 
The optimisation runs were carried out on a computer with the 
following specifications: Intel core i7-3610QM @2.30 GHz with 
6GB of installed memory (RAM). Each loop of the optimisation 
run including the model simulation took almost 2 to 5 second. 
The whole time for one optimisation run took around 3 hours.

4 Results and discussion

Figure 5 shows the projections of the Pareto front of optimal 
solutions with respect to the three objectives of the urban 
flood management. As can be seen, for any solution on the 
Pareto front, there are a set of optimal SuDS and traditional 
measures for subcatchments, conduits and junctions in the 
UDS. Each of these optimal solutions is non-dominated, i.e. 
there is no other solution that can inferior that solution with 
respect to all objective functions. Hence, the decision maker 
can choose any of these optimal solutions based on the pre-
ferences for the above objectives or limitations due to either 
pollution standards, regulations for flood risk management or 
finance for construction. The range of objectives for the opti-
mal solutions in the Pareto front obtained in Figure 5 are: (1) 
the flood risk between 220 and 9,100 m3 of total overflow of 
the conduits per year, (2) the pollution risk between 5.7 to 
13.8 tonnes of total pollutants discharged into receiving water 
bodies per year; and (3) total costs of SuDS construction 
between 195 × 103 and 307 × 103 US$. A comparison of 
these figures can be made with the Business As Usual (BAU) 
scenario, i.e. ‘doing nothing’, which results in flood risk of 
7,060 m3 and a pollution risk of 8.5 tonnes per year. The 
BAU strategy would be dominated by any optimal solution 
selected from the Pareto front. For example, if the purpose is 
to minimise the flood risk while the pollution risk being con-
stant, it is possible to reduce the flood risk to 500 m3 per year. 
Alternatively, if the purpose is to minimise pollution risk while 
flood risk is being constant, a solution with pollution risk equal 
to as minimum as 6.5 tonnes per year can also be suggested.

As can be seen in the Figure 5, there is a relatively indirect 
correlation between the flood risk and pollution risk in the optimal 
solutions, i.e. the more flood risk is reduced, the more pollution 
risk is increased. In other words, when selecting an optimal solu-
tion with minimum flood risk, it can have a high risk of pollution 
discharged into receiving water bodies. This can be attributed to 
the fact that the solutions containing the traditional rehabilitation 
convey any flood to the downstream of the UDS and hence no 
blockage/ flooding can happen in the UDS but instead pollutants 
are more transferred to the receiving water bodies which results in 
a high risk of pollution. On the other hand, solutions containing 
SuDS in subcatchments can maintain and treat pollutants in the 
urban areas instead of discharging them into receiving water 
bodies but this can increase the flood risk due to their limited 
capacity. Therefore, the best approach is to select solutions that 
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have a combination of both types of SuDS and traditional 
measures.

In addition, the same correlation can apply between total 
costs and flood risks which indicates the more investment in 
optimal solutions, the more flood risk is reduced in the UDS. 
However, no apparent direct correlation can be observed 
between total costs and pollution risks. This can be attributed 
to the traditional measures with the largest sizes that need more 
capital investment to transfer or retain more flood but there is 
no guarantee that pollution is minimised simultaneously.

For further investigation of the Pareto front, the optimal solu-
tions are clustered around a few groups to better classify the 
solutions based on their specifications and hence streamline the 
process of decision making. As a result of applying k-means clus-
tering technique, the Pareto-optimal front are divided here into 3 
clusters in Figure 6, as denoted in circle, star and square. The first 
cluster (i.e. circle) denotes the optimal solutions with the low flood 
risk but high costs and a high risk of pollution. On the other hand, 
the third cluster (i.e. square) are those optimal solutions with low 
costs and a low risk of pollution but a high risk of flooding. 
The second cluster (i.e. star) includes the optimal solutions in 
which all three objectives (costs, risks of flooding and pollution) 
are spread between the above clusters. In other words, the solu-
tions in this cluster mainly cover the middle of the Pareto optimal 
front. These clusters can help decision makers to pick up an 
optimal solution from a cluster that is generally closer to objectives 
and limitations of the urban planning.

The optimal solutions obtained from the Pareto front represent 
a combination of different SuDS and traditional measures with 
optimal sizes. For further assessment of optimal solutions, they are 

compared with individual SuDS with a size equal to the maximum 
allowable in the optimisation model. Hence, six optimal solutions 
selected from the second cluster (which is the compromise of the 
optimal solutions) along with five individual SuDS/traditional mea-
sures and the BAU strategy (i.e. ‘do nothing’) are ranked by using 
the CP method based on the three assessment criteria of the multi- 
objective optimisation model. The five individual SuDS /traditional 
measures are defined as below:

(1) Strategy #1 (detention ponds): six detention ponds are 
assumed to be spread in the subcatchments. The total 
area of each pond is 20 m2.
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Figure 5. The projections of the Pareto front of optimal solutions for the three objective functions.

Figure 6. The 3-D Pareto optimal solutions with k-means clustering in three 
groups (circle, star and square).
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(2) Strategy #2 (increasing the size and reducing the 
Manning coefficients of the conduits): the width of all 
existing conduits is increased by 80% and the Manning 
coefficients is decreased by 80%.

(3) Strategy #3 (permeable pavements): 20% of all sub-
catchments are assumed to be covered by permeable 
pavements.

(4) Strategy #4 (bioretention tanks): it is assumed that 20% 
of all subcatchment is used for bioretention tanks.

(5) Strategy #5 (infiltration trenches): this approach similarly 
assumes infiltration trenches are used in 20% of all 
subcatchments.

Moreover, the remaining six strategies (#6-11) are basically 
non-dominated optimal solutions taken from the second clus-
ter of the Pareto front as described above. The 12 strategies 
including the BAU were simulated in the SWMM model for the 
same three assessment criteria used in the optimisation model 
(i.e. flood risk, pollution risk and total costs). As there are no 
specific preferences for the assessment criteria, equal weights 
were used here for the three criteria and hence the distance of 
each criterion and the overall distance of the CP method for 
each strategy can be calculated based on Eq. (6) as shown in 
Figure 7. Note that if there are specific preferences for the 
criteria or for the case of group decision making in which 
various stakeholders with their own viewpoints are involved, 
different weights of stakeholders can be used in the CP method 
(Morley et al. 2016a). Figure 7 also shows the overall distance 
functions (Lp) for the 12 strategies. Strategy #6 which is one of 
the optimal solutions has the lowest overall distance and hence 
is ranked first. This strategy is a compromise for both risks of 
flooding and pollution. In addition, the top six ranked strategies 
(#6—11) are those belonging to the optimal solutions followed 
by the three individual strategies (#5, 4 and 1) that are better 
than the state quo (the BAU). This indicates some strategies (i.e. 

#3 and 2) can even deteriorate the long-term sustainability and 
risk-based performance of the UDS and hence are not recom-
mended for any circumstances.

The configuration of the highest ranked solution (i.e. strat-
egy #6) for the main categories of decision variables is as 
follows: (1) 6 detention ponds (i.e. all potential locations) are 
proposed with a capacity between 20 and 36 m3; (2) conduit 
rehabilitation (i.e. width change) out of 94 as ‘no change’ for 27 
conduits, increase by 50% for 44 conduits and between 50% 
and 100% for remaining conduits; (3) conduit roughness reduc-
tion as ‘no change’ for 23 conduits, by 20% for 21 conduits, by 
40% for 18 conduits, by 60% for 16 conduits and by 80% for 
remaining conduits; (4) Addition of SuDS out of 33 subcatch-
ments as no SuDS for 10 subcatchments, bioretention tanks for 
6 subcatchments, infiltration trenches for 9 subcatchments and 
permeable pavements for 8 subcatchments. Figure 8 shows the 
location of the detention ponds and the area percentage of 
subcatchments covered by SuDS that varies between 0 and 20. 
As can be seen in the figure, although most of the subcatch-
ments with no SuDS seem to be located at the upstream of the 
UDS, this may not be the case for all upstream catchments. This 
can be due to different conditions of subcatchments and shows 
no specific rule and recommendation can be generalised for 
the allocation of SuDS in the UDS but the suggested framework 
through multi-objective optimisation model coupled with 
a MCDA method for prioritising the best strategies can be an 
efficient approach for achieving this.

Figure 9 shows the percentage of solutions of the Pareto 
optimal front for allocating various optimal sizes of the six deten-
tion ponds. As can be seen, some detention ponds e.g. #3 and #4 
were only picked up one optimal size in various optimal solu-
tions. This can facilitate the decision of the size for those ponds if 
they are selected in any planning. In addition, the size for remain-
ing ponds are relatively predominant by one specific size in other 
sites that can streamline the decision making.

Figure 7. The relative distance of the analysed strategies for the three assessment criteria (flood risk, pollution risk and total costs) by using the CP method and 
evaluation of strategies by using CP method; note that values of flood risk, pollution risk and cost are normalised.
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Although the total costs for most of the individual solutions 
(#1-#5) are far smaller than the optimal solutions, the asso-
ciated risks especially flood risks are far low in the optimal 
solutions. It should be noted that if the cost is a limiting factor 
for decision making, strategy#6 could be crossed out from the 
list of eligible solutions and thus only those solutions satisfying 
the minimum allowable costs could be considered to be ana-
lysed by the CP method. Despite a low pollution risk for some 
individual strategies such as #4 and #5, the associated flood 
risks in these strategies are much higher than any optimal 
strategies. The high risk of flooding can be seen in all individual 
strategies except for strategy #2 in which the performance of 
conduits has been improved significantly. However, that strat-
egy causes a high risk of pollution and incurs the highest capital 
investment and was also ranked the worst among all strategies. 
Interestingly, two individual strategies (i.e. #2 and #3) are 
ranked worse than the BAU. More specifically, strategy #2 (i.e. 
improving the conduits size and roughness) is a conventional 
method for increasing the conduits capacity leading to major 

flood risk reduction but it is the most expensive strategy and 
would likely results in the highest pollution loads discharged 
into receiving water bodies. Strategy #3 (i.e. permeable pave-
ment) also has only slight reduction in the pollution risk to 
receiving water bodies while increasing the flood risk com-
pared to the BAU and there is a cost incurred for this strategy. 
Therefore, as shown in Figure 7, the strategies with optimal 
solutions have the best combination of conventional and SuDS 
techniques with optimal size that result in the best trade-off for 
both risks of flooding and pollution and hence recommended 
for the UDS of the case study.

According to what was analysed in this study, infiltration 
trenches have the significant effect on decreasing pollution 
loads. McClymont et al. (2020) also analysed the inclusion of 
various SuDS types including rain barrels, green roofs, bioretention 
tanks, vegetation grass swales and permeable pavements and 
finally showed bioretention tanks and grass swales were more 
effective for improving water quality resilience despite increasing 
considerably the costs. Saniei, Yazdi, and MajdzadehTabatabei 
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Figure 8. The area percentage of subcatchments covered by SuDS and the location of detention ponds in strategy#6.

Figure 9. Percentage of all solutions of the Pareto optimal front for optimal volumes of detention ponds
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(2021) showed the permeable pavement had the most impact for 
reduction in flooding and swale on pollutants reduction. However, 
the result of the current study showed the combination of SuDS in 
subcatchments are the most effective approach for reducing 
pollution loads while there is no need for SuDS in all 
subcatchments.

5 Conclusions

This study presented a risk-based approach to determine the 
optimal combination of both SuDS and traditional measures 
with their optimal size for urban flood management. The meth-
odology was based on hydrological-hydraulic simulation mod-
elling of UDS in SWMM coupled with a multi-objective 
optimisation model to minimise the risk of flood and pollution 
while minimising the total costs of new SuDS and traditional 
measures. It also used the k-means clustering method to divide 
the Pareto optimal front into a few clusters sharing the same 
features of objectives and combinations of SuDS and traditional 
measures. Selection of several optimal solutions from the trade- 
off (i.e. medium) cluster were also compared with individually 
designed SuDS and ranked by using the CP method. The meth-
odology was also demonstrated by its application on a real- 
world case study of the Golestan UDS in Iran.

According to the analysis conducted in this study, the fol-
lowing can be noted:

● Risk-based approach suggested here can provide cost- 
effective solutions that are able to concurrently minimise 
both risks of flood in the UDS and pollution discharged 
into receiving water bodies due to the rainfalls with large 
and small return periods, respectively.

● The optimal solutions in the Pareto optimal front show 
that there are indirect correlations between non- 
dominated solutions that minimise the risk of either flood-
ing or pollution (i.e. those minimising the flood risk have 
a high pollution risk and vice versa). This is due to select-
ing the solutions which mainly convey the flood to down-
stream in addition to pollution to receiving water bodies 
and vice versa.

● K-means clustering and CP methods can be efficient tools 
to select the most appropriate solutions amongst a large 
number of optimal solutions in the Pareto front.

● The ranking of the selected solutions by the CP method 
shows that all optimal solutions are ranked higher than 
the non-optimal (engineering-based design) solutions. 
Even, non-optimal solutions are ranked lower than the 
BAU due to low impact on reducing either the pollution 
risk in the traditional measures or the flood risk in SuDS 
solutions despite the total costs incurred for their con-
struction. For example, applying either porous pavements 
or detention ponds separately can increase the flood risk 
by 4% but bioretention tanks can increase it by 20% while 
infiltration trenches can only reduce the flood risk by 20% 
which is still less than optimal solutions. These solutions 
can also reduce the pollution risk by 20%. However, the 
selected optimal solutions can decrease both flood and 
pollution risks by 27% and 50%, respectively.

The proposed approach can be used by decision makers for 
long-term planning of the most effective combination of both 
traditional and contemporary solutions with optimal sizes 
which can lead to the best performance of the UDS and simul-
taneously reducing the risk of flooding and pollution to an 
acceptable level. While this is an efficient approach to minimise 
the available risks, the most reliable design for these optimal 
solutions should also rely on the further analyse carried out to 
see their robustness against other factors such as climate 
changes and sensitivity of their design parameters under 
those conditions in urban stormwater management.

The flood risk analysed in this study was defined as probability 
of occurrence × severity of consequence. Other risk formulas can 
be considered in the future works. One example for this is to define 
risk = hazard (i.e. probability) × exposure × vulnerability. The 
current study had no inclusion of socio-economic factors but 
vulnerability in the suggested formula can examine these charac-
teristics such as losses due to financial, human and other social 
impacts of the community. The exposure can also refer to flood 
overflow and pollution loads entering the UDS.
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Appendix A

Table A.1 Coefficients used for the build-up equation in the case study

Table A.2 Coefficients used for the wash-off equation in the case study

Build-up 
parameters

Land use
High density residential Low density residential Industrial Undeveloped

C1 C2 C1 C2 C1 C2 C1 C2

TSS 50 2.06 20 0.66 130 6.15 40 1.33
TN 1.2 0.00113 1.4 0.0003 2 0.0026 1.5 0.00045

TP 0.7 0.00012 0.5 0.00003 1 0.00016 0.4 0.00002

Wash-off parameters

Land use
High density residential Low density residential Industrial Undeveloped

C1 C2 C1 C2 C1 C2 C1 C2

TSS 0.7 2.2 0.4 2 0.3 2.5 0.1 1.7
TN 0.3 0.4 0.1 0.7 0.2 0.8 0.02 0.3

TP 0.9 0.09 0.4 0.02 0.6 0.1 0.2 0.04
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