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Abstract

We discuss a competitive alternative to stochastic local volatility models, namely the
Collocating Local Volatility (CLV) model, introduced in [21]. The CLV model consists
of two elements, a ‘kernel process’ which can be efficiently evaluated and a local volatil-
ity function. The latter, based on stochastic collocation [2, 16, 39, 40, 40], connects the
kernel process to the market and allows the CLV model to be perfectly calibrated to
European-type options. In this article we consider three different kernel process choices:
the Ornstein-Uhlenbeck (OU) and Cox-Ingersoll-Ross (CIR) processes and the Heston
model. The kernel process controls the forward smile and allows for an accurate and effi-
cient calibration to exotic options, while the perfect calibration to liquid market quotes is
preserved. We confirm this by numerical experiments, in which we calibrate the OU-CLV,
CIR-CLV and Heston-CLV models to FX barrier options.

Keywords: Collocating Local Volatility, stochastic local volatility, Monte Carlo, stochas-
tic collocation, calibration, forward volatility, barrier options.

1 Introduction

In the last decade, the class of stochastic local volatility (SLV) models – e.g. [9, 26, 27, 31,
33, 36, 37] – has been given a lot of attention. According to Lipton et al., SLV models are
the de facto standard for pricing FX options in practice [28]. They combine the desirable
features of the standard Local Volatility model [10, 12] – an almost perfect calibration to
liquid European-type options – and well-established stochastic volatility models such as the
Heston model [24] and the SABR model [23], which often yield realistic forward smiles and
prices of exotics. However, SLV models involve some conditional expectation that is non-
trivial and may be expensive to evaluate.

In this article we consider an alternative to SLV models, namely the Collocating Local
Volatility (CLV) model, introduced in [21]. The CLV model is composed of a kernel process
and a local volatility function, which is constructed based on stochastic collocation [2, 5, 30,
35, 40] and, as a consequence, admits a perfect calibration to arbitrage-free European-type
option prices. The kernel process can be any stochastic process – in the case however that the
moments of the kernel variable exist and are numerically stable, optimal collocation points
can be determined by which the local volatility function is defined [20].

The CLV model allows for flexibility regarding the forward smile. The forward smile is
governed by the kernel process and reflects the transition densities between future states of
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the underlying, which determine the price of a path-dependent product [3]. By an appropriate
choice of the kernel process and its parameter values, the CLV model is well-capable of pricing
exotic options, while maintaining a fit to liquid European-style options. In this article we
consider three different kernel processes: the Ornstein-Uhlenbeck (OU) and Cox-Ingersoll-
Ross (CIR) processes and the Heston model.

Another advantageous property of the CLV model is the fact that the local volatility
function only needs to be evaluated at the time-points of interest. In addition, the kernel
process typically allows for large time-steps in a simulation. This particularly holds if an
analytical solution is available (as for e.g. the OU and CIR kernel processes), however also
for other processes efficient simulation schemes exist, e.g. the Heston model can be efficiently
simulated by Andersen’s QE scheme [1].

The CLV model, by its flexibility in controlling the forward smile and its rapid Monte
Carlo evaluation, allows for an efficient Monte Carlo calibration to exotic options, while the
fit to European-type options is preserved.

The present article is organized as follows. In Section 2 we present the CLV model
and elaborate on its advantageous properties. We establish the corresponding pricing PDE
along the lines of the derivation of the Black-Scholes pricing PDE – we employ the notion
of martingales. Also, for application purposes we describe the evaluation steps of the CLV
model in a Monte Carlo simulation framework. Subsequently, in Section 3 we consider three
choices for the kernel process, namely OU and CIR dynamics and the Heston model; we
describe the characteristics and consider the effect of the kernel parameters on the shape of
the forward smile. Based on this analysis, in Section 4 we calibrate the OU, CIR and Heston
kernel processes to FX barrier options. Last, Section 5 concludes.

2 The Collocating Local Volatility Model

In this section we discuss the main characteristics of the Collocating Local Volatility (CLV)
model [21]. Also, we write the model in a standard form and derive its pricing PDE.

The CLV model is represented by the following equations, under the risk-neutral Q-
measure:

S(t) = gN (t,X(t)), (2.1)

dX(t) = µQ(t,X(t))dt+ σ(t,X(t))dWQ(t), X(t0) = X0. (2.2)

The model consists of two elements that are evaluated separately. The first building block is
the kernel process X(·) in (2.2). The second building block is the CLV element (2.1), which
connects the kernel process to liquid market quotes via the local volatility function gN (t, x),
which is based on the stochastic collocation method [2, 5, 30,35,40].

An advantageous property of the CLV model is that, by construction, function gN (·, ·)
guarantees an almost perfect calibration to arbitrage-free European-type option prices, inde-
pendently of the kernel parameter values. Basically this function, given liquid market quotes
for expiries T1, . . . , TM , yields a highly accurate interpolation through the pairs (xi,j , si,j),
i = 1, . . . ,M, j = 1, . . . , N , with xi,1, . . . , xi,N and si,1, . . . , si,N representing the collocation
points and collocation values corresponding to Ti, respectively. The collocation points may
be established based on the moments of the kernel variable (see Remark 2.1). The collocation
values are computed by

si,j = F−1
S(Ti)

(FX(Ti)(xi,j)),

where the cumulative distribution function of S(Ti) under the risk-neutral measure is speci-
fied by equation (2.3) in Lemma 2.1.

The function gN (·, ·) is an interpolation through the si,j-values, given particular t and
X(·) values. Choosing gN (·, ·) in the Lagrange form is well-accepted in the field of Uncertainty
Quantification, see e.g. [34]. However, this choice does not guarantee monotonicity in the
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strike direction, which is a desirable property. We therefore choose a piecewise cubic Hermite
interpolation, which is guaranteed to be monotonic and continuously differentiable, see e.g.
[15].

Lemma 2.1 (Market-implied CDF of S(·) under the risk-neutral measure). The market-
implied CDF of S(T ) under the risk-neutral Q-measure is given by

FS(T )(x) = 1 + erT
∂V mkt(T,K)

∂K

∣∣∣∣
K=x

, (2.3)

with V mkt(T,K) denoting today’s arbitrage-free price of a European call option with strike
K and expiry T and r denotes a constant interest rate.

Proof. In general, the discounted value of a standard European option with an expiry T and
strike K at time t under the risk-neutral Q-measure is

V (T,K) = M(t)EQ
[

(S(T )−K)+

M(T )

∣∣∣∣F(t)

]
,

where S(·) is the underlying and M(·) stands for the money account, determined by dM(t) =
rM(t)dt with a constant interest rate r. The discounted value of the option is given by
(suppressing the filtration notation):

V (T,K) = e−rTEQ [(S(T )−K)+] = e−rT
∫ ∞
K

(x−K)fS(T )(x)dx, (2.4)

where fS(T )(·) is the market-implied PDF of S(T ) under the Q-measure. Differentiating and
applying Leibniz’ integration rule gives

erT
∂V (T,K)

∂K
= −1 + FS(T )(K),

which we write for an arbitrary argument x as:

FS(T )(x) = 1 + erT
∂V mkt(T,K)

∂K

∣∣∣∣
K=x

,

where we added the ‘mkt’ superscript to emphasize that we obtain the CDF from the market
quotes. This concludes the proof of Lemma 2.1.

Remark 2.1 (Optimal collocation points). Optimal collocation points xi,1, . . . , xi,N can be
calculated based on the first 2N moments of the underlying kernel variable at Ti, X(Ti) [20].
In this case the collocation points are zeros of the orthogonal polynomial corresponding to
(the probability density function of) the kernel variable and can be computed by an eigen-
value method. By choosing optimal collocation points, the stochastic collocation method can
be connected to the computation of integrals by Gauss quadrature. See Appendix A for more
details on optimal collocation points. In [2], in an elliptic PDE framework, a rigorous conver-
gence analysis of the stochastic collocation method is provided, where exponential convergence
with respect to the number of “Gauss points” is proven.

Remark 2.2 (Relation between X(t) and S(t)). Ideally, for a given t, the relation between
the distribution of the kernel variable and the market-implied distribution is approximately
linear or, stated differently, the densities of X(t) and S(t) resemble each other. This yields
a small approximation error [20] and optimal results.

Besides for its almost perfect calibration, a second beneficial property of the CLV model
is the fact that, in e.g. a Monte Carlo simulation framework, we do not need to evaluate
gN (·, ·) at each time-step, which is the case for the standard Local Volatility model [11, 12].
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For example, for pricing a European-type option we simulate the kernel process (2.2) up
to the option’s maturity T and subsequently compute gN (T,X(T )) (2.1). In the case that
the time-points of interest are specified on a coarse grid, we prefer a simulation method for
the kernel variable which is low-biased for large time-steps1. Moreover, in the case that the
kernel process has an analytical solution (e.g. the Ornstein-Uhlenbeck and Cox-Ingersoll-
Ross processes), it allows for an exact simulation method with large time-steps.

A third advantageous characteristic of the CLV model is its flexibility in controlling
the forward smile, while maintaining an almost perfect fit to European-type options by
construction. It is a well-known property of the standard Local Volatility model that it
produces a flattening forward smile, which may be not in line with market observations [37].
This may lead to a mispricing of products that are sensitive to the forward smile, like
cliquets and barrier options. Regarding the CLV model, however, as discussed in [21], the
autocorrelation of the kernel process affects the forward smile. As such, the choice of kernel
process and the kernel parameter values determine the forward smile generated by the CLV
model, without affecting the almost perfect calibration to European-type options. The payoff
of a path-dependent product is determined by the evolution of the underlying through time,
i.e. its price depends on the transition densities from one future state to another [3].

As the CLV model is flexible in controlling the forward smile and can be efficiently
evaluated, it allows for an efficient Monte Carlo calibration to exotic options, while the fit to
European-type options is maintained. In Section 3 we consider the forward smile for three
different choices of the kernel process, and in Section 4 we calibrate the kernel process to FX
barrier options.

Typically, in the field of financial engineering, the dynamics of the underlying S(·) are
presented, as opposed to the non-standard model representation in equations (2.1)-(2.2). We
however can write this model in a more standard way by applying Itô’s lemma. Introducing
the short-hand notation gN := gN (t,X(t)), assuming that X(·) is a one-dimensional kernel
process and that the relevant partial derivatives ∂gN/∂X, ∂2gN/∂X

2 and ∂gN/∂t exist, S(·)
follows an Itô process which is governed by the same Wiener process as X(·), under the
risk-neutral Q-measure:

dS(t) =

(
∂gN
∂t

+ µQ(t,X(t))
∂gN
∂X

+
1

2

∂2gN
∂X2

σ2(t,X(t))

)
dt+

∂gN
∂X

σ(t,X(t))dWQ(t).

Analogous to the derivation of the Black-Scholes pricing PDE, we derive the CLV pricing
PDE. To express the PDE merely in terms of derivatives to X, we define

Ṽ (t,X(t)) := V (t, gN (t,X(t))) = V (t, S(t)),

with V (t, S(t)) representing the value of a European option on the underlying S(·) (‘plain
vanilla contingent claim’).

Lemma 2.2 (CLV pricing PDE). Given the CLV model under the risk-neutral Q-measure
with a general one-dimensional kernel process X(·):

S(t) = gN (t,X(t)),

dX(t) = µQ(t,X(t))dt+ σ(t,X(t))dWQ(t).

Suppose that the partial derivatives of gN := gN (t,X(t)), ∂gN/∂X, ∂2gN/∂X
2 and ∂gN/∂t

exist. Also, assume that the money account M(·) is determined by dM(t) = rM(t)dt, with
r denoting a constant interest rate. Then Ṽ := Ṽ (t,X(t)) is governed by

∂Ṽ

∂t
+ µQ(t,X)

∂Ṽ

∂X
+

1

2
σ2(t,X)

∂2Ṽ

∂X2
− rṼ = 0, (2.5)

1For example, in the case of a Heston kernel process we would simulate X(·) by employing the QE scheme of
Andersen [1], which allows for large time-steps. An alternative would be to make use of the so-called exact
simulation scheme proposed by Broadie and Kaya [6], which is based on acceptance-rejection sampling of the
variance process coupled with certain Fourier inversion computations. As presented in [20], by employing the
Stochastic Collocation Monte Carlo sampler the exact simulation can be performed efficiently and accurately.
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with the final condition
Ṽ (T,X(T )) = Φ(gN (T,X(T ))),

where Φ(·) is a payoff function depending on the final state of gN (·, ·).

Proof. By Itô’s lemma, introducing the short-hand notation Ṽ := Ṽ (t,X(t)), we obtain:

dṼ (t,X(t)) =

(
∂Ṽ

∂t
+ µQ(t,X(t))

∂Ṽ

∂X
+

1

2
σ2(t,X(t))

∂2Ṽ

∂X2

)
dt+ σ(t,X(t))

∂Ṽ

∂X
dWQ(t).

The option value discounted by the money account is a martingale. Based on this, we derive
the PDE followed by Ṽ (t,X(t)). Introducing the short-hand notation

Π(t,X(t)) :=
Ṽ (t,X(t))

M(t)
,

and substituting the dynamics of M := M(t) and Ṽ := Ṽ (t,X(t)), the dynamics of the
discounted option value are given by

dΠ(t,X(t)) =
1

M

(
∂Ṽ

∂t
+ µQ(t,X(t))

∂Ṽ

∂X
+

1

2
σ2(t,X(t))

∂2Ṽ

∂X2
− rṼ

)
dt+

σ(t,X(t))

M

∂Ṽ

∂X
dWQ(t).

As the discounted option value, under the risk-neutral Q-measure, is a martingale, the drift
term is zero, i.e.

∂Ṽ

∂t
+ µQ(t,X)

∂Ṽ

∂X
+

1

2
σ2(t,X)

∂2Ṽ

∂X2
− rṼ = 0.

The final condition on Ṽ (·) is given in terms of the payoff function Φ(·) that depends on the
final state of gN (·, ·):

Ṽ (T,X(T )) = Φ(gN (T,X(T ))).

This concludes the proof of Lemma 2.2.

The PDE (2.5) is solved backwards in time, given the condition at the time to maturity.
It follows from the Feynman-Kac theorem that a solution of (2.5) at an arbitrary time t0 < T
is given by

Ṽ (t0, X(t0))

M(t0)
= EQ

[
Φ(gN (T,X(T )))

M(T )

∣∣∣∣F(t0)

]
.

We employed the notion of martingales to prove Lemma 2.2. An alternative proof is
based on a replicating portfolio approach, see Appendix B. We construct a portfolio that
replicates a European option, i.e. the portfolio and the option produce identical cashflows.
As such, assuming the absence of arbitrage, the values of the portfolio and the option must
be equal. In addition, the portfolio, also referred to as the delta-hedge portfolio, changes
with the same amount in value as the European option, if the underlying changes.

2.1 Martingale property

In the proof of the pricing PDE in Appendix B, we assume that gN (·, ·)/M(·) is a martingale
under the risk-neutral Q-measure. In this section, we numerically confirm that this is case.

The dynamics of gN (·, ·)/M(·) are given by

d

(
gN (t,X(t))

M(t)

)
=

1

M(t)

(
µQ(t,X(t))− rgN (t,X(t))

)
dt+

∂gN
∂X

σ(t,X(t))dWQ(t),

with

µQ(t,X(t)) :=
∂gN
∂t

+ µQ(t,X(t))
∂gN
∂X

+
1

2

∂2gN
∂X2

σ2(t,X(t)). (2.6)
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Taking the expectation of its solution under the risk-neutral Q-measure gives

EQ
[
gN (T,X(T ))

M(T )

]
=

gN (0, X(0))

M(0)
+ EQ

[∫ T

0

1

M(t)

(
µQ(t,X(t))− rgN (t,X(t))

)
dt

]
+EQ

[∫ T

0

∂gN
∂X

σ(t,X(t))dWQ(t)

]
. (2.7)

Trivially, the latter expectation in (2.7) equals 0. In order for gN (·, ·)/M(·) to be a martingale,
the former expectation needs to be 0 as well. We numerically confirm this for X(·) being
governed by an Ornstein-Uhlenbeck process,

dX(t) = κ (θ −X(t)) dt+ γdWQ(t), X(0) = X0,

implying X(t)
d
= N (µX(t), σ2

X(t)), with

µX(t) = X0e−κt + θ
(
1− e−κt

)
, σ2

X(t) =
γ2

2κ

(
1− e−2κt

)
. (2.8)

The first expectation in (2.7), assuming r = 0, is given by

E
[∫ T

0

(
∂gN (t,X(t))

∂t
+ κ (θ −X(t))

∂gN (t,X(t))

∂X
+

1

2
γ2∂

2gN (t,X(t))

∂X2

)
dt

]
. (2.9)

We choose the kernel parameter values X0 = 1, κ = 0.5, γ = 0.5 and θ = 0.1. We assume a
Heston market parameterization with κ = 0.5, γ = 0.5, ρx,v = −0.5, V0 = 0.1 and V = 0.1.
Further, T = 5. We calculate collocation points xi,j := xj(Ti) and corresponding collocation
values si,j := sj(Ti) for expiries Ti typically quoted in the FX market2 and apply Lagrange
interpolation:

s(t) ≈ gN (t, x) :=
N∑
i=1

si(t)`i(t, x), `i(t, x) :=
N∏

j=1, j 6=i

x− xj(t)
xi(t)− xj(t)

,

with (see also [20])
xj(t) = µX(t) + σX(t) · zj , j = 1, . . . , N,

where µX(·) and σX(·) are given in (2.8) and zj are the collocation points corresponding

to Z
d
= N (0, 1). The collocation value sj(·) is obtained by linear interpolation between the

values si,j . For different numbers of collocation points N we compute the absolute value of
(2.9), i.e.

ε :=

∣∣∣∣∫ +∞

−∞

∫ T

0

(
∂gN (t, x)

∂t
+ κ (θ − x)

∂gN (t, x)

∂x
+

1

2
γ2∂

2gN (t, x)

∂x2

)
fX(t)(x)dtdx

∣∣∣∣ . (2.10)

Results are displayed in Figure 2.1. An exponential convergence is observed, which is in line
with [2].

3 The OU-CLV, CIR-CLV and Heston-CLV models

As already mentioned in [21], the kernel process (2.2) can be specified in principle freely.
In the case that its moments are analytically available and numerically stable, the optimal
collocation points can be established (see Remark 2.1 and Appendix A) – however, this is
not a strict requirement.

The choice of an appropriate kernel process is subtle. On one hand, the process should
be evaluated efficiently, e.g. the Monte Carlo simulation may consist of large time-steps.

2Namely the expiries 1/365, 2/365, 3/365, 4/365, 1/52, 2/52, 1/12, 1/6, 1/4, 1/2, 3/4, 1, 2, 3, 4 and 5.
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 w.r.t. number of collocation points

Figure 2.1: The absolute value of the expectation (2.9) for different numbers of collocation
points.

On the other hand, the process should be sufficiently rich to represent realistic dynamics,
implying a realistic forward smile behaviour. According to Clark [9] neither the ‘sticky-delta’
property of stochastic volatility models nor the ‘sticky-strike’ characteristic corresponding to
the local volatility model is in line with the actual smile behaviour in FX markets; the reality
is somewhere between the two and therefore typically a stochastic local volatility model is
used.

In this section we discuss three different choices for the kernel process, namely an
Ornstein-Uhlenbeck (OU), a Cox-Ingersoll-Ross (CIR) and a Heston process. We discuss
the main characteristics of the OU-CLV, CIR-CLV and Heston-CLV models and give special
attention to the forward smiles. More specifically, for each of the kernel processes we consider
the effect of the various kernel parameters on the shape of the forward smile. Based on this
analysis, we calibrate the OU-CLV, CIR-CLV and Heston-CLV models to FX barrier options
in Section 4.

3.1 The OU-CLV model

The OU-CLV model is given by the following equations, under the risk-neutral Q-measure:

S(t) = gN (t,X(t)), (3.1)

dX(t) = κ (θ −X(t)) dt+ γdWQ(t), X(t0) = X0. (3.2)

Remark 3.1 (Specification of X(·)). Given the filtration at t0 = 0, the solution to (3.2)
reads

X(t) = X0e−κt + θ
(
1− e−κt

)
+

γ√
2κ

e−κtWQ (e2κt − 1
)
, (3.3)

which is normally distributed with the mean and variance as in (2.8).

As the moments of X(·) are analytically available and numerically stable, we can calculate
the optimal collocation points [20, 21] resulting in exponential convergence with respect to
the number of collocation points. Also, as the distribution of X(·) is known, for the pricing
of a standard European-type option by the OU-CLV model one time-step is sufficient; in
step 3 of Algorithm 1, X(T ) is generated by sampling M realizations xm, m = 1, . . . ,M
from a normal random variable with mean and variance as in equation (2.8).

For the pricing of exotics though, multiple time-steps are necessary, see e.g. the numerical
experiment in Appendix C where we price a discretely monitored barrier option. Whether
this price is realistic, depends on the forward smile the OU-CLV model implies. We therefore
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consider the smile corresponding to a forward-start option, which provides the holder at a
future time T1 > t0 with a European option with a maturity T2 > T1 and a strike K · S(T1).
At T2 the pay-off of this option of the ‘call type’ is [29]:

VForw.St. = max (S(T2)−K · S(T1), 0) . (3.4)

Numerical experiments make clear that only the mean reversion parameter κ has an
effect on the forward smile corresponding to the OU-CLV model – see Figure3 3.1. On the
right-hand side we display the forward volatility smiles omitting the level effect to make the
curvature effect visible (more precisely, we shift the smile downwards such that its minimum
is at 0). The primary effect of the mean reversion parameter is on the level: an increase in
κ yields an increase in level. A secondary effect is on the curvature, see the right-hand plot
of Figure 3.1. As mentioned in [21], changing κ affects the filtration of the Brownian motion
of the solution of X(·) in (3.3). As such, an OU process with mean reversion parameter κ1

cannot be expressed as a linear combination of an OU process with a different mean reversion
parameter value κ2. Because of this, a change of κ affects the autocorrelation of the paths
of gN (·, ·) and the forward smile. In Table 1 we summarize the kernel parameter effects on
the shape of the forward smile.
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Figure 3.1: Effect of κ on the forward volatility smile for the OU-CLV model, with T1 = 2.5
and T2 = 3. In the right-hand plot all smiles are shifted to zero level to make the curvature
effect more visible. Other OU parameters are: X0 = 1, γ = 0.3, θ = 0.5.

Level Curvature Skewness

κ + - 0

γ 0 0 0

X0 0 0 0

θ 0 0 0

Table 1: Separate effects of the OU kernel parameters on the level, curvature and skewness
of the forward smile implied by the OU-CLV model. A ‘+’/‘-’ represents a higher/lower
volatility smile level, more/less curvature or more/less skewness in the case of increasing a
particular kernel parameter. A ‘0’ stands for no effect.

3We omit the pictures corresponding to the other kernel parameters, as no effect was observed. We assume
a Heston market parameterization with parameters κ = 0.5, γ = 0.3, ρx,v = −0.1, v0 = 0.04 and v = 0.04.
Also, r = 0 and S0 = 1. Further, we use N = 6 collocation points and 2 time-steps per year and 5 ·105 paths
in the Monte Carlo simulation (5 seeds, each seed constitutes 1 · 105 paths).

8



3.2 The CIR-CLV model

The Cox Ingersoll Ross-Collocating Local Volatility (CIR-CLV) model is represented by the
following two equations, under the risk-neutral Q-measure:

S(t) = gN (t,X(t)), (3.5)

dX(t) = κ (θ −X(t)) dt+ γ
√
X(t)dWQ(t), X(t0) = X0. (3.6)

Result 3.1 (Specification of X(·)). Given the filtration at t0 = 0, the solution to (3.6) is
distributed as a scaled non-central chi-square random variable χ2(d, λ(t)) with d degrees of
freedom and non-centrality parameter λ(t), i.e.

X(t)
d
= c(t)Λ(t), with Λ(t)

d
= χ2(d, λ(t)), (3.7)

where

c(t) =
1

4κ
γ2
(
1− e−κt

)
, d =

4κθ

γ2
, λ(t) =

4κX0e−κt

γ2(1− e−κt)
. (3.8)

The nth moment of Λ(t) is given by

E [Λn(t)] = 2n−1(n− 1)!(d+ nλ(t)) +

n−1∑
k=1

(n− 1)!2k−1

(n− k)!
(d+ kλ(t))E

[
Λn−k(t)

]
.

In computing the first moment, the summation term disappears and 0! = 1, resulting in
E [Λ(t)] = d+ λ(t), thus

E [X(t)] = c(t) (d+ λ(t)) .

Generally speaking, we wish to evaluate xj(·) based on the moments of X(·). This ensures
that the collocation points are the zeros of the orthogonal polynomial corresponding to the
distribution of X(·), and we can establish the connection with the computation of integrals
by Gauss quadrature, see Remark 2.1 and Appendix A. However, for X(·) given by (3.7) an
explosion of moments may occur. E.g., for the kernel parameters X0 = 1, θ = 1, κ = 1,
γ = 0.1 we have at t = 1 the values d = 400, λ(1) ≈ 233. Given these values, the 4th

moment of Λ(·) d
= χ2(d, λ(t)) has a value with an order of magnitude of 1011. Due to the

large moment values, numerical instabilities in computing the collocation points may occur4.
As an alternative approach, we use the collocation points zj , j = 1, . . . , N corresponding

to the standard normal random variable Z
d
= N (0, 1) – see Remark 3.2. Given these, we

compute the collocation points corresponding to expiry Ti, i = 1, . . . ,M , as follows:

xi,j := xj(Ti) = F−1
X(Ti)

(FZ(zj)) = c(Ti)F
−1
Λ(Ti)

(FZ(zj)), i = 1, . . . ,M, j = 1, . . . , N.

Note that this implies the collocation values

si,j = F−1
S(Ti)

(
FX(Ti)(xi,j)

)
= F−1

S(Ti)

(
FX(Ti)(F

−1
X(Ti)

(FZ(zj)))
)

= F−1
S(Ti)

(FZ(zj)) , (3.9)

which shows that we do not need the CDF of X(·) for computing the collocation values.

Remark 3.2 (Normal distribution). The reason why we choose a standard normal distri-
bution in the alternative approach is twofold. First, even for a fundamental distribution as
the standard normal results are highly accurate – this is also the case in e.g. [20, 21]. By
choosing a different distribution, results may be further enhanced. Secondly, as mentioned
in [20], choosing the normal distribution is also motivated by the Cameron-Martin Theo-
rem [7], which states that polynomial chaos approximations based on the normal distribution
converge to any distribution.
4For example, for N = 8 we obtain negative collocation points, although the distribution of X(·) does not
allow for negative values.
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Remark 3.3 (Loss of optimality of collocation points). A drawback of the alternative ap-
proach is that the collocation points are not the zeros of the orthogonal polynomial pN (·)
that corresponds to the weight function fX(·), with X denoting the non-central chi-square
distributed random variable – see also Appendix A. As a consequence, the method can not
be connected to Gauss quadrature, see equations (A.1) and (A.2) in Appendix A, as the xi-
values do not correspond to the quadrature weights ωi, which are one-to-one connected to the
weight function fX(·). In fact, there would be a mismatch between the xi and ωi values and
the error is not longer (completely) determined by the quadrature error.

Remark 3.4 (The case γ = 0). In the case γ = 0, the OU and CIR kernel processes (3.2)
and (3.6) are equivalent and deterministic. This is not a relevant case, as the CLV framework
relies on the projection of an ‘expensive’ random variable on a ‘cheaper’ random variable,
which is the essence of stochastic collocation.

3.2.1 Effect of ‘linearization’

As we stated in Remark 2.2, optimal results are established if for a given t the distributions
of X(t) and S(t) approximately resemble each other. For an expiry Ti this implies a close-
to-linear relation between the collocation points xi,j and collocation values si,j , through
which gN (·, ·) interpolates. Given a set of market data and a set of kernel parameters, it
may turn out though that gN (·, ·) is highly non-linear, which may affect the performance of
the stochastic collocation method and the eventual fit of the CLV model to European-type
market prices negatively.

For illustration purposes, suppose that the market data is parameterized by the Heston
model, with parameters given by Case II of Andersen [1]: v0 = v = 0.04, κ = 0.3, γ = 0.9
and ρxv = −0.5. Also, r = 0 and S0 = 1. We choose kernel parameters5 γ = 1.5, κ = 0.5,
θ = 0.5, X0 = 1, and price a European call option with expiry T = 4; results are displayed in
Figure 3.2. To judge the performance of the interpolant gN (t, x), we display the theoretical
function

g(t, x) := F−1
Y (t)

(
FX(t)(x)

)
= F−1

S(t)

(
FΛ(t)

(
x− a(t)

c(t)b(t)

))
,

with a(·) and b(·) denoting grid-stretching coefficients [20] and Y (t) = S(t) representing the

‘expensive’ random variable which we project on the kernel variable X(t)
d
= c(t)Λ(t) with

Λ(t)
d
= χ2(d, λ(t)) (c(t) and λ(t) are specified in (3.8)).

As we observe in the middle plot of Figure 3.2, the CDF of gN (·, ·) is clearly not in line
with the market-implied CDF. As a result, the implied volatility fit for the lower 2 strikes is
not accurate. The reason for this lies in the highly non-linear behaviour of gN (·, ·) close to
zero. A way to resolve this issue is by adjusting the kernel parameters such that the relation
between S(·) and X(·) is closer to linear. Setting γ = 0.75 results in a better performance of
the CLV method close to x = 0 and implies a more accurate implied volatility fit, see Figure
3.3.

3.2.2 The forward smile

In this section we consider the effect of the CIR kernel parameters on the forward smile
corresponding to the CIR-CLV model by pricing a forward-start option, with a pay-off at T2

given by (3.4). With a ‘positive effect’ we mean that increasing a particular kernel parameter
results in a higher volatility smile level, more curvature or skewness. Results6 are given in

5We use 8 collocation points and make use of grid-stretching with pmin = 1 · 10−3 and pmax = 0.999 – for
more details on grid-stretching, see e.g. [20]. The Monte Carlo simulation constitutes 1 · 105 paths (20 seeds,
each seed constitutes 5 · 103 paths) and 1 time-step per year.

6We assume a Heston market parameterization with parameters κ = 0.5, γ = 0.3, ρx,v = −0.1, v0 = 0.04
and v = 0.04. Also, r = 0 and S0 = 1. Further, we use N = 8 collocation points, apply grid-stretching with
pmin = 1 ·10−3 and pmax = 0.999 and the Monte Carlo simulation consists of 2 time-steps per year and 5 ·105

10
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Figure 3.2: Results for the case described in Section 3.2.1, with γ = 1.5. With ‘CDF Smar(T)’
we denote the market-implied CDF specified in equation (2.3).

Figures 3.4 and 3.5. We clearly observe that the volatility of variance has a positive effect
on both the level and the curvature of the forward smile. The speed of mean reversion has
mainly a positive level effect, but also a negative curvature effect, i.e. a larger value of κ
implies less curvature. Further, X0 only has a negative level effect. Last, θ has a positive
level effect and a slightly negative curvature effect.

Some effects may be quite difficult to observe due to the level effect. As such, in Appendix
D we display Figures 3.4 and 3.5, but without the level effect. In Table 2 we summarize the
effects of the CIR parameters on the forward smile.

Level Curvature Skewness

γ + + 0

κ + – 0

X0 – 0 0

θ + – 0

Table 2: Separate effects of the CIR kernel parameters on the level, curvature and skewness
of the forward smile implied by the CIR-CLV model. A ‘+’/‘-’ represents a higher/lower
volatility smile level, more/less curvature or more/less skewness in the case of increasing a
particular kernel parameter. A ‘0’ stands for no effect.

3.3 The Heston-CLV model

The Heston-CLV model is defined as follows:

S(t) = gN (t,X(t)),

dX(t) = rX(t)dt+
√
v(t)X(t)dWx(t), X(0) = X0,

dv(t) = κ (v − v(t)) dt+ γ
√
v(t)dWv(t), v(0) = v0,

with dWx(t)dWv(t) = ρx,vdt and where κ, γ, v and ρx,v are the rate of mean reversion, the
volatility of variance, the long-term variance and the correlation, respectively. According to
[25], the Heston model stands out from the class of stochastic volatility models mainly for two
reasons. First, the volatility process is non-negative and mean-reverting, which is typically

paths (5 seeds, each seed constitutes 1 · 105 paths).
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Figure 3.3: Results for the case described in Section 3.2.1, with γ = 0.75. With ‘CDF
Smar(T)’ we denote the market-implied CDF specified in equation (2.3).

observed in the markets. Secondly, a fast and easily implemented semi-analytical solution for
the pricing of European-type options is available. In particular, efficient numerical Fourier-
based techniques exist, which allow for a fast calibration.

3.3.1 Establishing xi,j and si,j

From the characteristic function of X̂(·) := log(X(·)) (see e.g. [13]), which is defined as

φ
X̂(t)

(u) := E
[

eiuX̂(t)
∣∣∣F(t0)

]
,

we may compute the kth moment of X(t) as follows (we suppress the condition on F(t0) for
notation purposes):

φ
X̂(t)

(−ki) = E
[
ekX̂(t)

]
= E

[
ek log(X(t))

]
= E

[
Xk(t)

]
.

From the moments ofX(·) we obtain the collocation points xi,j , i = 1, 2, . . . ,M, j = 1, 2, . . . , N .

There is a drawback to this approach though. One element of the characteristic function
of the Heston model is

√
(κ− γρx,viu)2 + (u2 + iu)γ2. When an imaginary argument u is

used, it cannot be guaranteed that the expression below the square root is non-negative,
which may result in inaccurate numerical moment values.

As an alternative approach, similar to the CIR-CLV model, we use the collocation points

zj , j = 1, . . . , N corresponding to the standard normal random variable Z
d
= N (0, 1) – see

also Remark 3.2. Given these, we compute the collocation points corresponding to expiry
Ti, i = 1, . . . ,M , according to

xi,j := xj(Ti) = F−1
X(Ti)

(FZ(zj)), (3.10)

and the collocation values as in (3.9).

To compute the collocation points according to (3.10), we define X̂(·) := log(X(·)) and
note

FX(Ti)(xi,j) = F
X̂(Ti)

(x̂i,j).
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Figure 3.4: Effect of γ (left) and κ (right) on the forward volatility smile for the CIR-CLV
model, with T1 = 2.5 and T2 = 3. The ‘base case’ CIR parameters (if not varied) are:
γ = 0.3, κ = 0.5, θ = 0.5 and X0 = 1.

The CDF of X̂(·) can be obtained efficiently in a ‘COS-like’ fashion, see [13]. Given the
approximation for its PDF7

f
X̂(t)

(x) ≈
N−1∑′

k=0

Fk cos

(
kπ
x− a
b− a

)
, Fk =

2

b− a
Re

{
φ
X̂(t)

(
kπ

b− a

)
· exp

(
−i kaπ
b− a

)}
,

with N denoting the number of terms8, we obtain the CDF of X̂(·) as follows:

F
X̂(t)

(x) =

N−1∑′

k=0

2

b− a
Re

{
φ
X̂(t)

(
kπ

b− a

)
· exp

(
−i kaπ
b− a

)}
ψk(a, b, x),

with

ψ(a, b, x) =

{
b−a
kπ sin

(
kπ x−ab−a

)
, if k = 1, 2, . . . , N − 1,

x− a, if k = 0.

Given the CDF, we obtain x̂i,j = F−1

X̂(Ti)
(FZ(zj)) and xi,j = ex̂i,j .

3.3.2 Choice of X0 and r

An initial calibration of the Heston kernel parameters may enhance the performance of the
CLV model, in particular of the stochastic collocation method, as a pre-calibration may
‘linearize’ the relationship between S(·) and the kernel parameter X(·) – see Remark 2.2
and Section 3.2.1. Essentially, this means that we prefer that X(·) and S(·) are similar in
a distributional sense, which yields a small approximation error [20] and a more optimal
performance of the stochastic collocation method.

A first ‘calibration’ step is by determining values for certain kernel process parameters
such that the following condition holds (‘first moment matching’):

EQ [X(t)] = F (0, t), for all t ∈ [0, T ], (3.11)

7Note that
∑′N−1

k=0
represents a summation where the first term (k = 0) is multiplied by 1/2.

8In our numerical experiments we typically use N = 212, a = −10 and b = 10.
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Figure 3.5: Effect of X0 (left) and θ (right) on the forward volatility smile for the CIR-CLV
model, with T1 = 2.5 and T2 = 3. The ‘base case’ CIR parameters (if not varied) are:
γ = 0.3, κ = 0.5, θ = 0.5 and X0 = 1.

where the initial forward (in an FX context) is given by

F (0, t) = S0
Pf (0, t)

Pd(0, t)
= S0e(rd−rf )t,

with Pf (0, t) and Pd(0, t) denoting the foreign and domestic zero-coupon bond prices, respec-
tively, extracted from the market quotes. For the Heston kernel process (assuming constant
interest rate r) a standard result is

EQ
[
X(t)

M(t)

]
= EQ

[
X(t)

M0ert

]
=
X0

M0
.

Assuming M0 = 1 without loss of generality, the previous equation implies

EQ [X(t)] = X0M(t) = X0ert. (3.12)

From the result in (3.12) we easily see that the condition in (3.11) is satisfied by the kernel
process parameter choices X0 = S0, r = rd − rf , for arbitrary time t and arbitrary values of
the other kernel parameters κ, γ, v and v0.

3.3.3 The forward smile

In this section we consider the effect of the Heston kernel parameters on the forward smile
corresponding to the Heston-CLV model by pricing a forward-start option, with a pay-off at
T2 given by (3.4). We use the Quadratic Exponential (QE) scheme of Andersen [1]. Results9

are given in Figures 3.6, 3.7 and 3.8.

Increasing γ yields a more pronounced implied volatility smile; the curvature increases.
For the parameter κ this effect is opposite; a higher value of κ implies less curvature. The
correlation parameter ρx,v yields a rotation of the smile; varying the parameter from −1
to +1 yields a counterclockwise rotation, i.e. less skewness. Besides for that, ρx,v also has
some positive level effect. Further, the long-run variance v and the initial variance v0 mainly
have a level effect – note that a larger value of v0 yields a lower level. X0 does not have

9We assume a Heston market parameterization with parameters κ = 0.5, γ = 0.3, ρx,v = −0.1, v0 = 0.04
and v = 0.04. Also, r = 0 and S0 = 1. Further, we use N = 6 collocation points and the Monte Carlo
simulation consists of 32 time-steps per year and 5 · 105 paths (5 seeds, each seed constitutes 1 · 105 paths).
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Figure 3.6: Effect of γ (left) and κ (right) on the forward volatility smile for the Heston-CLV
model, with T1 = 2.5 and T2 = 3. The ‘base case’ Heston parameters (if not varied) are:
κ = 0.5, γ = 0.3, ρx,v = 0, v = 0.2, v0 = 0.2 and X0 = 1.

Level Curvature Skewness

γ 0 + 0

κ 0 – 0

ρx,v + 0 –

v + – +

v0 – 0 0

X0 0 0 0

Table 3: Separate effects of the Heston kernel parameters on the level, curvature and skewness
of the forward smile. A ‘+’/‘-’ represents a higher/lower volatility smile level, more/less
curvature or more/less skewness in the case of increasing a particular kernel parameter. More
skewness represents a more negative slope of the forward smile, i.e. a clockwise rotation. A
‘0’ stands for no effect.

any effect, which implies that a parallel shift of the kernel variable distribution is ‘ignored’
by the mapping between the distribution of the kernel variable X and the market-implied
distribution. We summarize the effect of the kernel parameters on the shape of the forward
smile in Table 3. To observe the curvature and skewness effects more clearly, in Appendix E
we display Figures 3.6, 3.7 and 3.8 without the level effect.

The effects of the Heston kernel parameters in the Heston-CLV model can be compared to
the effects of the parameters in the standard Heston model – see e.g. [38]. In both the Heston-
CLV model and the Heston model the volatility of variance γ (mainly) has a positive effect
on the curvature of the smile10. For both models the initial variance v0 and the long-term
variance v have a level effect, although for the Heston-CLV model v0 has a negative effect
on the level, whereas in the Heston model this is positive. In both the Heston-CLV model
and the Heston model the mean reversion parameter κ has a negative curvature effect. In
both models the correlation parameter ρx,v (mainly) accounts for the skewness (‘steepness’)
of the smile – in both models a more negative correlation implies a more negative slope, i.e.
more skewness. For the Heston-CLV model though ρx,v also has some level effect.

10In this short paragraph on the qualitative effects of the Heston model parameters we make use of [38], which
merely mentions the first-order effects. It may be possible that the parameters have second-order effects,
which is the case for e.g. the Heston-Displaced Diffusion model, see [32].
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Figure 3.7: Effect of ρx,v (left) and v (right, denoted by θ) on the forward volatility smile
for the Heston-CLV model, with T1 = 2.5 and T2 = 3. The ‘base case’ Heston parameters (if
not varied) are: κ = 0.5, γ = 0.3, ρx,v = 0, v = 0.2, v0 = 0.2 and X0 = 1.

4 Calibration to FX barrier options

The CLV model, by its flexibility in controlling the forward smile and its rapid Monte Carlo
evaluation, allows for an efficient Monte Carlo calibration to exotic options, while the fit to
European-type options is preserved. In this section we calibrate the OU-CLV, CIR-CLV and
Heston-CLV models to FX barrier options by Monte Carlo simulation.

The transition densities between future states are reflected by the forward smile a model
implies. As a consequence, in the calibration of the CLV model to barrier options we should
calibrate the kernel parameters which affect the forward smile. Moreover, ideally, given
particular kernel dynamics, to achieve the most accurate calibration we should calibrate
kernel parameters which affect different characteristics of the shape of the forward smile,
namely its level, curvature and skewness.

If the distribution of the kernel variable is analytically known, one time-step is sufficient
to price back European-type options – this e.g. holds for the OU-CLV and CIR-CLV models.
In the case of a discretely monitored barrier option, for these models the kernel process only
needs to be simulated on a time grid consisting of the monitoring dates, see e.g. the numerical
example in Appendix C.

In the case of a continuously monitored barrier option, the kernel process needs to be
simulated on a dense time-grid – the barrier option is typically monitored on a daily ba-
sis, which implies 250 time-steps (business days) per year. To accelerate the Monte Carlo
calibration procedure of the kernel parameters to continuously monitored barrier options,
we employ Brownian bridge techniques, which we describe in Section 4.2. First however,
in Section 4.1 we describe the general steps of applying the CLV model in a Monte Carlo
simulation framework.

4.1 Monte Carlo simulation framework

In this article we apply the CLV model in a Monte Carlo simulation framework. Its evaluation
basically consists of three parts. First, we compute the collocation points and collocation val-
ues. Subsequently, we simulate the kernel variable and compute the local volatility function
for the time-points of interest. Last, given the local volatility function values, we establish
the price of the relevant financial contract in a standard way. In Algorithm 1 we describe the
steps in more detail. Note that in the calibration to exotics we repeatedly perform steps 2,
3 and 4 for different kernel parameter value ‘candidates’. In Appendix C we present a basic
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Figure 3.8: Effect of v0 (left) and X0 (right) on the forward volatility smile for the Heston-
CLV model, with T1 = 2.5 and T2 = 3. The ‘base case’ Heston parameters (if not varied)
are: κ = 0.5, γ = 0.3, ρx,v = 0, v = 0.2, v0 = 0.2 and X0 = 1.

1 Given liquid European-type option prices V (Ti,K`), i = 1, . . . ,M, ` = 1, . . . , L,
establish for each expiry Ti the market-implied CDF FS(Ti)(x) as given in equation
(2.3), which may be in a parameterized form.

2 For each expiry Ti compute N collocation points xi,1, . . . , xi,N and the corresponding

collocation values si,1, . . . , si,N via si,j = F−1
S(Ti

(FX(Ti)(xi,j)), j = 1, . . . , N .

3 Simulate the kernel variable X(·). At relevant time-points tk, k = 1, . . . ,K in the
simulation, compute gN (tk, xk,m), with xk,m denoting the value of X(tk)
corresponding to the mth path, m = 1, . . . ,M.

4 Compute the price of the relevant financial contract.

Algorithm 1: Applying the CLV model in a Monte Carlo simulation framework.

numerical experiment in which we perform the steps in Algorithm 1 to price a discretely
monitored barrier option.

Remark 4.1 (Evaluation of the market-implied CDF). Regarding the market-implied CDF in
step 1 in Algorithm 1, the derivative in (2.3) may be computed by finite differences. However,
this approach may not be arbitrage-free as inter- and extrapolation of market volatilities or
prices needs to be applied. Another possibility is first calibrating a particular parameterization
to the market quotes, enabling us to compute the derivative in (2.3) (semi-)analytically, by
e.g. an arbitrage-free ‘Hagan implied density’ [22] or Fourier-based pricing techniques, see
e.g. [8].

Figure 4.1 provides an illustration of the CLV model in a Monte Carlo simulation frame-
work. The local volatility function gN (·, ·) transforms the original paths of the kernel variable
in such a way that the resulting S(·)-paths yield a perfect calibration to liquid market quotes.

4.2 Pricing barrier options: a Brownian bridge approach

Pricing continuously monitored barrier options by a Monte Carlo simulation implies an
approximation, as we make steps in time and as such monitor on a discrete basis. A way
to reduce the error introduced by this approximation is by making use of Brownian bridge
techniques [4, 18,19], where the conditional hitting probability is taken into account.
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Figure 4.1: The CLV model in a Monte Carlo simulation framework.

We explain the concept in more detail by considering an up-out put option – for other
single barrier products similar results hold. Defining S(·) as the underlying, the price at t0
of an up-out put option with strike K, barrier B, starting time t0 and time to maturity T is
given by:

VUO-Put(t0, T,K) :=
Md(t0)

Md(T )
EQ
[

(K − S(T ))+
1( max
t∈[t0,T ]

S(t) < B)

∣∣∣∣F(t0)

]
, (4.1)

with Md(·) defined as the domestic money account. As for the CLV framework S(t) =
gN (t,X(t)), we have

VUO-Put(t0, T,K) =
Md(t0)

Md(T )
EQ
[

(K − gN (T,X(T )))+
1( max
t∈[t0,T ]

(gN (t,X(t)) < B)

∣∣∣∣F(t0)

]
=

Md(t0)

Md(T )
EQ
[

(K − gN (T,X(T )))+
1( max
t∈[t0,T ]

(X(t) < g−1
N (B))

∣∣∣∣F(t0)

]
,

where we employ the fact that by construction gN (·, ·) is a monotone function.
Defining

B := g−1
N (B),

we write the option value – suppressing the discounting, the Q-superscript and filtration, for
notation purposes – as follows:

VUO-Put(t0, T,K) = E
[
E
[

(K − gN (T,X(T ))+
1( max
t∈[t0,T ]

X(t) < B)

∣∣∣∣X(t0), X(T )

]]
= E

[
(K − gN (T,X(T ))+ ·

(
1−Q

(
max
t∈[t0,T ]

X(t) ≥ B
∣∣∣∣X(t0), X(T )

))]
.

We are interested in the probability

Q
(

max
t∈[t0,T ]

X(t) ≥ B
∣∣∣∣X(t0), X(T )

)
, (4.2)
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i.e. the probability that the maximum of X(·) on [t0, T ] hits or crosses B, given X(t0)
and X(T )11. In the following, we explain how this conditional hitting probability can be
approximated.

Given a general one-dimensional process under the Q-measure:

dX(t) = a(X(t))dt+ b(X(t))dWQ(t), X0 := X(0).

For simulating this process we use the Euler discretization

X̂k+1,m = X̂k,m + a(X̂k,m)∆ + b(X̂k,m)(Wk+1,m −Wk,m), (4.3)

with k = 0, . . . ,K − 1 and m = 1, . . . ,M indicating the time-step and path, respectively,
and ∆ := T/K, X̂0 := X0, X̂k := X̂(tk), with tk = k∆.

Result 4.1 (Simulation of the maximum). Given the values X̂k,m and X̂k+1,m, the maximum

Xk,m := max
t∈[tk,tk+1]

X̂(t)

can be simulated by

Xk,m =
1

2

(
X̂k+1,m + X̂k,m +

√(
X̂k+1,m − X̂k,m

)2
− 2b2(X̂k,m)∆ log(Uk,m)

)
, (4.4)

with Uk,m
d
= U [0, 1] being independent across the time-steps. A step to arrive at (4.4) is that

{X(t), tk ≤ t ≤ tk+1}

is approximated by an arithmetic Brownian motion with constant parameters a(X̂k,m) and

b(X̂k,m). Conditional on the endpoint X(tk+1), {X(t), tk ≤ t ≤ tk+1} is a Brownian bridge.

Using (4.4) in Result 4.1, one can compute the probability that the discretized process hits
the barrier B in the kth step, conditional on the values of X̂k,m and X̂k+1,m. Straightforward
calculus yields

Q
(
Xk,m ≥ B

∣∣ X̂k,m, X̂k+1,m

)
=

 1 if X̂k,m ≥ B and/or X̂k+1,m ≥ B,

exp

(
− 2

b2(X̂k,m)∆
(X̂k,m −B)(X̂k+1,m −B)

)
if X̂k,m < B and X̂k+1,m < B.

(4.5)

Applying the discretization scheme in (4.3), the conditional hitting probability in (4.2) can
be approximated by

Q
(

max
t∈[t0,T ]

X(t) ≥ B
∣∣∣∣X(t0), X(T )

)
= 1−Q

(
max
t∈[t0,T ]

X(t) < B

∣∣∣∣X(t0), X(T )

)
≈ 1−

K−1∏
k=0

{
1−Q

(
Xk,m ≥ B

∣∣ X̂k,m, X̂k+1,m

)}
,

with Q
(
Xk,m ≥ B

∣∣ X̂k,m, X̂k+1,m

)
given in (4.5). Substituting this result in (4.2) yields:

VUO-Put ≈
Md(t0)

Md(T )
EQ
[
(K − gN (T,X(T )))

+ ·
K−1∏
k=0

{
1−Q

(
Xk ≥ B

∣∣ X̂k, X̂k+1

)}]
=

1

M
Md(t0)

Md(T )

M∑
m=1

[(
K − gN

(
T, X̂K,m

))+ K−1∏
k=0

{
1−Q

(
Xk,m ≥ B

∣∣ X̂k,m, X̂k+1,m

)}]
,(4.6)

with Q
(
Xk,m ≥ B

∣∣ X̂k,m, X̂k+1,m

)
given in (4.5). In the calibration of the CLV model to

continuously monitored barrier options we make use of the expression in equation (4.6).

11Trivially, if X(t0) ≥ B and/or X(T ) ≥ B, this probability is 1.
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4.3 Calibration of the OU-CLV, CIR-CLV and Heston-CLV models to FX
barrier options

In this section we calibrate the OU-CLV, CIR-CLV and Heston-CLV models to continuously
monitored FX barrier option prices. In particular, for these 3 models we perform the following
2 steps:

1. Calibration: given a particular kernel process, calibrate the relevant kernel parame-
ter(s) to market barrier option prices by Monte Carlo simulation12. The Monte Carlo
simulation runs consist of 10 time-steps per year and we employ the Brownian bridge
technique described in Section 4.2 – in particular, we use the result in equation (4.6).

2. Pricing: given the calibrated kernel parameter values, price the up-out put options
by a standard Monte Carlo procedure of the CLV model with 250 time-steps per year
to determine the calibration error, which is defined as

ε :=
N∑
i=1

|Vi − V CLV
i |, (4.7)

with Vi and V CLV
i denoting the mid-market price and the CLV price of the ith up-out

put option, respectively, and N is the number of barrier options we calibrate to.

We consider USD/AUD FX market prices quoted on 12 June 2013 from a market data
vendor. Domestic currency is USD, foreign currency is AUD. Initial spot is S0 = 0.9548.
The dataset consists of 7 expiries, namely 0.5, 0.75, 1, 2, 3, 4 and 5 years. For each expiry
5 implied volatility quotes are given, of which the middle (third) one is the ATM volatility.
We calibrate to 9 continuously monitored up-out put options with different barrier and strike
values, of which the price is given by (4.1).

For all three kernel process choices (OU, CIR and Heston) we compute xi,j and si,j values
for the expiries 1/365, 2/365, 3/365, 4/365, 1/52, 2/52, 1/12, 1/6, 1/4, 1/2, 3/4, 1 and 2,
for which market volatility quotes are available13. In both the calibration and in the pricing
afterwards we use 1 ·104 paths14. The target function is defined as the sum of squared errors
of the 9 barrier options together, where the error is defined as the difference between the
model and mid market prices.

4.3.1 The OU-CLV model

In Section 3.1 we observed that only the mean reversion parameter κ of the OU-CLV model
affects the shape of the forward smile. Therefore, we calibrate κ and the other parameters
are set to X0 = 1, θ = 0.1, γ = 0.25, which were just chosen values in [21]. Further, we
use 6 collocation points. In the calibration we price for 20 ‘κ candidates’ -1, -0.9, . . . , 0.9, 1
(excluding κ = 0) up-out put options by (4.6) in a Monte Carlo simulation.

The calibration results in κ = 0.1 and takes 8 seconds15. Results are displayed
in Table 4. Two barrier option prices are outside the bid-ask spread. By construction, the
OU-CLV model calibrates perfectly to European-type options – in Figure 4.2 we display the
implied volatilities corresponding to 3M, 1Y and 2Y corresponding to the market, market
parameterization and the OU-CLV model.

12The target function value is
∑N

i=1

(
Vi − V CLV

i

)2
, with Vi and V CLV

i denoting the mid-market price and the
CLV price of the ith up-out put option, respectively, and N is the number of barrier options we calibrate
to.

13We use a SABR market parameterization.
14In fact, we use 10 seeds with each seed constituting 103 paths. For the OU-CLV case we apply antithetic

sampling, i.e. per seed we use 5 · 102 paths and 5 · 102 ‘antithetic paths’.
15Processor: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 3601 Mhz, 4 Core(s), 8 Logical Processor(s).

Available Physical Memory is 9.08 GB of in total 16 GB. Simulated with Matlab.
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Figure 4.2: Implied volatilities corresponding to the OU-CLV model with κ = −0.1, X0 =
1, θ = 0.1, γ = 0.25.

4.3.2 The CIR-CLV model

In the CIR-CLV model, parameter γ has the most pronounced curvature effect, see Section
3.2.2. It also has a level effect. We therefore calibrate γ and leave the other parameters fixed,
namely κ = 0.1, θ = 0.1 and X0 = 1. In the calibration we price for 20 ‘γ candidates’ on a
uniform grid between 0.1 and 1 up-out put options by (4.6) in a Monte Carlo simulation.

The calibration results in γ = 0.526 and takes 39 seconds15.16 Results are dis-
played in Table 4. Two barrier option prices are outside bid-ask spread. The calibration
accuracy may be further enhanced by calibrating an additional parameter. Additionally, we
obtain an accurate calibration to the European-type options by construction, similar to the
results in Figure 4.2 for the OU-CLV model.

4.3.3 The Heston-CLV model

As we observed in Section 3.3.3, the mean reversion κ, volatility of variance γ and long-
term variance v have a curvature effect – see also Table 3. As the curvature effect of γ is
most pronounced, we calibrate γ and fix κ and v. Assuming κ to be constant is justified
by observations in [17], where it is argued that the effect on the implied volatility surface of
increasing κ is similar to decreasing γ. Besides for v, the only parameter having a skewness
effect is ρx,v. We therefore also calibrate ρx,v. Last, v0 has a level effect. We can already
achieve an accurate level fit a priori by setting v0 = σ2

mkt(KATM, Tmin), with Tmin = 1/365
and σmkt(K, t) denoting the market implied volatility corresponding to strike K and expiry
t. The other fixed parameter values are κ = 0.3, X0 = 1, v0 = σ2

mkt(KATM, Tmin) = 0.0625,
with Tmin = 1/365 and v = σ2

mkt(KATM, Tmax) = 0.0137, with Tmax = 2. We use N = 6
collocation points.

In the calibration we choose 5 γ and 5 ρx,v candidates uniformly between 0.1 and 1 and
−1 and 0, respectively – so in total we consider 25 (γ, ρx,v)-pairs. For each of the 25 pairs
we price the up-out put options by (4.6) in a Monte Carlo simulation.

The calibration results in γ = 0.1 and ρx,v = 0 and takes 16 seconds15. Results
are displayed in Table 4. One barrier option price is outside bid-ask spread. The total
calibration error (4.7) is smaller than for the OU-CLV and CIR-CLV models. The reason

16This calibration is relatively slow compared to the calibration of the OU-CLV and Heston-CLV models. The
reason is that the Matlab functionality ncx2cdf(x,d,λ) is relatively slow for a large value of x (in fact
we divide by a small c(Ti) value, see (3.8)) and λ(Ti) values, which is the case for the shortest Ti expiries.
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Expiry Barrier Strike OU-CLV CIR-CLV Heston-CLV

3M 1 0.9 97.2 88.8∗ 96.3
3M 1 0.85 36.8 26.0∗ 35.4
3M 0.97 0.9 67.3∗ 60.3 64.3∗

1Y 1 0.8 99.2 92.9 98.7
1Y 1 0.85 161.2 157.9 162.1
1Y 0.97 0.8 50.8 50.8 52.3
2Y 1 0.75 128.4 132.0 147
2Y 1.05 0.7 109.5∗ 121.7 131.1
2Y 0.97 0.75 53.6 61.9 66.4

Calibration error ε 53.9 38.4 33.5

Calibration time15 8s 39s 16s

Table 4: Pricing up-out put options with the OU-CLV, CIR-CLV and Heston-CLV models
after the calibration. The Monte Carlo simulation consists of 104 paths and 250 time-
steps per year. ε is defined as the sum of absolute errors over the 9 barrier options, i.e.
ε :=

∑9
i=1 |Vi − V CLV

i |, with Vi and V CLV
i denoting the mid-market price and the CLV price

of the ith up-out put option, respectively. The red values marked by an asterisk (∗) are not
within bid-ask spread.

is that the Heston kernel process is richer ; compared to the OU-CLV and CIR-CLV model,
the Heston-CLV model is more flexible in capturing the forward smile, and as such in the
calibration to forward volatility sensitive products, like barrier options. The calibration
accuracy may be further enhanced by calibrating an additional parameter.

5 Conclusion

In this article we discussed a competitive alternative to stochastic-local volatility models,
namely the Collocation Local Volatility (CLV) model, introduced in [21]. In the CLV model
the local volatility function, based on stochastic collocation [2, 16, 39, 40, 40], connects a
relatively simple and easy to implement kernel process to the market, resulting in a perfect
calibration to liquid market quotes. The local volatility function only needs to be evaluated at
the time-points of interest, e.g. the monitoring dates of a discrete barrier option. Moreover,
efficient simulation schemes for the kernel process exist. Further, a proper choice of the
kernel process allows the CLV model to be flexible to ‘capture’ the forward smile and, as
such, price path-dependent products.

As the CLV model is sufficiently flexible in controlling the forward smile and can be
efficiently evaluated, it allows for a rapid calibration to exotic options, while the fit to
European-type options is preserved. In Section 4 we employ Brownian bridge techniques to
calibrate the kernel process to continuously monitored barrier options in an efficient way;
the calibration of the Heston-CLV model to the barrier options costs 16 seconds.

Based on the calibration results in Section 4, we prefer the Heston-CLV model for the
calibration to continuously monitored path-dependent options. Its calibration is reasonably
fast and yields the smallest calibration error; the reason is that among the kernel processes
considered, the Heston kernel process allows for the most flexibility in capturing the forward
smile. Further, for the Heston model low-bias large time-stepping Monte Carlo schemes
exist, e.g. Andersen’s QE scheme [1], which can be employed for the simulation of the
Heston kernel.

In the case that we are interested in an exotic option monitored on a coarse grid, the
CIR-CLV model may be preferred. Brownian bridge techniques are not needed as the CIR
kernel process allows for large time-steps. For example, for the pricing of forward-start
options in Section 3.2.2 the Monte Carlo simulation merely consists of 2 time-steps per year.
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Additionally, the CIR parameters allow for controlling the level and the curvature of the
forward smile, see Section 3.2.2.

In terms of simplicity and calibration speed (to exotics), the OU-CLV model outperforms
the CIR-CLV and Heston-CLV models. In the OU-CLV model only the mean-reversion
parameter κ has an effect on the forward volatility. As analytical expressions for its moments
are available and the moments are numerically stable, we can compute optimal collocation
points. Similar to the CIR-CLV model, the OU-CLV model allows for large time-steps.
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A Optimal collocation points

One of the relevant theorems with respect to computing optimal collocation points is the
following [14]:

Theorem A.1 (Recurrence in orthogonal polynomials). For any given density function
fX(·), a unique sequence of monic orthogonal polynomials pi(x) exists, with deg(pi(x)) = i,
which can be constructed by

pi+1(x) = (x− αi)pi(x)− βipi−1, i = 0, 1, . . . , N − 1,

with p−1(x) ≡ 0, p0(x) ≡ 1 and the recurrence coefficients

αi =
E
[
Xp2

i (X)
]

E
[
p2
i (X)

] , i = 0, 1, . . . , N − 1, βi =
E
[
p2
i (X)

]
E
[
p2
i−1(X)

] , i = 1, 2, . . . , N − 1,

with β0 = 0.

Proof. For a proof, see [14].

The recurrence coefficients αi and βi can be obtained via the moments of X. In particular,
one can express the first N coefficients in terms of the elements of a lower triangular matrix
R, which is obtained by the Cholesky decomposition of a matrix M = RTR that constitutes
the first 2N moments of X. Given the recurrence coefficients, the optimal collocation points
x1, x2, . . . , xN are the zeros of the orthogonal polynomial pN (x) and can be computed by an
eigenvalue method. Based on this, the only requirement for X to be an appropriate kernel
variable for which we can compute N collocation points, is the existence of the first 2N
moments.

By choosing the collocation points as zeros of the orthogonal polynomial pN (·) – see
Theorem A.1 – the stochastic collocation method can be connected to the computation of
integrals by Gauss quadrature, which for the function Ψ(·) (which is required to be well
approximated by a polynomial function), weight function fX(·) and quadrature weights ωi,
i = 1, 2, . . . , N reads:

E [Ψ(X)] =

∫
R

Ψ(x)fX(x)dx =
N∑
i=1

Ψ(xi)ωi + εN . (A.1)

By choosing Ψ(x) = (g(x)− gN (x))2, with g(·) = F−1
S (FX(·)) and gN (·) the approximating

polynomial function, we have

E
[
(g(X)− gN (X))2

]
=

∫
R

(g(x)− gN (x))2fX(x)dx =
N∑
i=1

(g(xi)− gN (xi))ωi + εN = εN ,

(A.2)
since g(xi) = gN (xi), i = 1, 2, . . . , N . So, in L2 the error is determined by the quadrature
error. Further, when choosing e.g. X to be the standard normal distribution, a simple linear
relation between the stochastic collocation pairs (xi, ωi) and the Gauss-Hermite quadrature
pairs (xHi , ω

H
i ) exists.

B The CLV pricing PDE: alternative proof

In this appendix we provide an alternative proof for Lemma 2.2, which is based on a repli-
cating portfolio approach. To express the PDE merely in terms of derivatives to X, we
define

Ṽ (t,X(t)) := V (t, gN (t,X(t))) = V (t, S(t)), (B.1)

with V (t, S(t)) representing the value of a European option on the underlying S(·) (‘plain
vanilla contingent claim’).
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Lemma B.1 (CLV pricing PDE). Given the CLV model under the risk-neutral Q-measure
with a general one-dimensional kernel process X(·):

S(t) = gN (t,X(t)),

dX(t) = µQ(t,X(t))dt+ σ(t,X(t))dWQ(t).

Suppose that the partial derivatives of gN := gN (t,X(t)), ∂gN/∂X, ∂2gN/∂X
2 and ∂gN/∂t

exist. Also, assume that the money account M(·) is determined by dM(t) = rM(t)dt, with
r denoting a constant interest rate. Then Ṽ := Ṽ (t,X(t)) defined in (B.1) is governed by

∂Ṽ

∂t
+ µQ(t,X)

∂Ṽ

∂X
+

1

2
σ2(t,X)

∂2Ṽ

∂X2
− rṼ = 0,

with the final condition
Ṽ (T,X(T )) = Φ(gN (T,X(T ))),

where Φ(·) is a payoff function depending on the final state of gN (·, ·).

Proof. We start with the CLV model, under the real-world P-measure:

S(t) = gN (t,X(t)),

dX(t) = µP(t,X(t))dt+ σ(t,X(t))dW P(t).

Suppressing the arguments of gN (t,X(t)), assuming that the partial derivatives ∂gN/∂X,
∂2gN/∂X

2 and ∂gN/∂t exist, S(·) follows an Itô process which is governed by the same
Wiener process as X(·) and reads:

dS(t) =

(
∂gN
∂t

+ µP(t,X(t))
∂gN
∂X

+
1

2

∂2gN
∂X2

σ2(t,X(t))

)
dt+

∂gN
∂X

σ(t,X(t))dW P(t).

By Itô’s lemma, introducing the short-hand notation V := V (t, S(t)), we obtain the dynamics
of the European option V (t, S(t)):

dV (t, S(t)) =

[
∂V

∂t
+
∂V

∂S

(
∂gN
∂t

+ µP(t,X(t))
∂gN
∂X

+
1

2

∂2gN
∂X2

σ2(t,X(t))

)
+

1

2

∂2V

∂S2

(
∂gN
∂X

)2

σ2(t,X(t))

]
dt+

∂V

∂S

∂gN
∂X

σ(t,X(t))dW P(t). (B.2)

Analogously to the derivation of the standard Black-Scholes pricing PDE, we construct a
replicating portfolio Π(·), which consists of a(·) stocks with value S(·) and b(·) units of the
riskless bond M(·), which is determined by dM(t) = rM(t)dt, where r is the risk-free rate.
Assuming the portfolio to be self-financing, i.e. the change in the value of the portfolio is
only due to changes in the value of the underlying assets, and not due to inflows or outflows
of funding, we have

dΠ(t) = a(t)dS(t) + b(t)dM(t).

By applying Itô’s lemma, we derive its dynamics:

dΠ(t) =

[
a(t)

(
∂gN
∂t

+ µP(t,X(t))
∂gN
∂X

+
1

2

∂2gN
∂X2

σ2(t,X(t))

)
+ b(t)rM(t)

]
dt

+a(t)
∂gN
∂X

σ(t,X(t))dW P(t). (B.3)

By observing the diffusion terms in equations (B.2) and (B.3), we easily see that a(t) =
∂V/∂S. To determine b(·), we equate the drift terms of the portfolio (left-hand side) and
the option (right-hand side):

∂V

∂S

(
∂gN
∂t

+ µP(t,X(t))
∂gN
∂X

+
1

2

∂2gN
∂X2

σ2(t,X(t))

)
+ b(t)rM(t)

=
∂V

∂t
+
∂V

∂S

(
∂gN
∂t

+ µP(t,X(t))
∂gN
∂X

+
1

2

∂2gN
∂X2

σ2(t,X(t))

)
+

1

2

∂2V

∂S2

(
∂gN
∂X

)2

σ2(t,X(t)).

26



From this we obtain

b(t) =
1

rM(t)

[
∂V

∂t
+

1

2

∂2V

∂S2

(
∂gN
∂X

)2

σ2(t,X(t))

]
.

Substituting the values for a(·) and b(·) yields

Π(t) =
∂V

∂S
S(t) +

1

r

[
∂V

∂t
+

1

2

∂2V

∂S2

(
∂gN
∂X

)2

σ2(t,X(t))

]
.

The portfolio Π(·) and the option V (·) have the same cashflows, thus also – assuming the
absence of arbitrage – the same value, implying

∂V

∂t
+
∂V

∂S
rS(t) +

1

2

∂2V

∂S2

(
∂gN
∂X

)2

σ2(t,X)− rV = 0. (B.4)

We observe that the drift-term µP(t,X(t)) has vanished. To proceed, we derive an identity
for rS(t) by considering the dynamics of S(·)/M(·) under the risk-neutral Q-measure:

d

(
S(t)

M(t)

)
=

1

M(t)

(
µQ − rS(t)

)
dt+

∂gN
∂X

σ(t,X(t))dWQ(t),

with

µQ :=
∂gN
∂t

+ µQ(t,X(t))
∂gN
∂X

+
1

2

∂2gN
∂X2

σ2(t,X(t)).

As S(·)/M(·) is a martingale under the risk-neutral Q-measure, the dt-term should be zero,
i.e. µQ − rS(t) = 0, or:

∂gN
∂t

+ µQ(t,X)
∂gN
∂X

+
1

2

∂2gN
∂X2

σ2(t,X)− rgN (t,X) = 0.

By this condition, we write (B.4) as

∂V

∂t
+
∂V

∂S

(
∂gN
∂t

+ µQ(t,X)
∂gN
∂X

+
1

2

∂2gN
∂X2

σ2(t,X)

)
+

1

2

∂2V

∂S2

(
∂gN
∂X

)2

σ2(t,X)− rV = 0. (B.5)

Using the notation (B.1) and the short-hand notations V := V (t, S(t)) and Ṽ := Ṽ (t,X(t)),
we have

∂V

∂S
=
∂Ṽ

∂X

∂X

∂S
(B.6)

and also

∂2V

∂S2
=

∂

∂S

(
∂Ṽ

∂X

∂X

∂S

)
=

(
∂

∂S

∂Ṽ

∂X

)
∂X

∂S
+
∂Ṽ

∂X

∂2X

∂S2
=
∂X

∂S

∂2Ṽ

∂X2

∂X

∂S
+
∂Ṽ

∂X

∂2X

∂S2
,

which we can write as
∂2V

∂S2
=

(
∂X

∂S

)2 ∂2Ṽ

∂X2
+
∂Ṽ

∂X

∂2X

∂S2
. (B.7)

As ∂V/∂t = ∂Ṽ /∂t and substituting the identities (B.6) and (B.7) in the PDE (B.5) yields

∂Ṽ

∂t
+
∂Ṽ

∂X

[
∂X

∂S

∂gN
∂t

+ µQ(t,X) +
1

2
σ2(t,X)

(
∂X

∂S

∂2gN
∂X2

+
∂2X

∂S2

(
∂gN
∂X

)2
)]

+
1

2

∂2Ṽ

∂X2
σ2(t,X)− rṼ = 0.
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The term multiplied by 1
2σ

2(t,X) equals zero, as for X(t) = g−1
N (gN (t,X(t))) holds that:

∂2X

∂S2

(
∂S

∂X

)2

+
∂X

∂S

∂2S

∂X2
=

(
∂

∂X

∂X

∂S

)
∂S

∂X
+
∂X

∂S

∂2S

∂X2
=

∂

∂X

(
∂X

∂S

∂S

∂X

)
= 0.

As such, the pricing PDE is:

∂Ṽ

∂t
+

(
∂X

∂S

∂gN
∂t

+ µQ(t,X)

)
∂Ṽ

∂X
+

1

2
σ2(t,X)

∂2Ṽ

∂X2
− rṼ = 0.

Assuming that the function gN (·, ·) does not explicitly depend on t, we have ∂gN/∂t = 0 and
we obtain the final result:

∂Ṽ

∂t
+ µQ(t,X)

∂Ṽ

∂X
+

1

2
σ2(t,X)

∂2Ṽ

∂X2
− rṼ = 0.

The final condition on Ṽ (·) is given in terms of the payoff function Φ(·) that depends on the
final state of gN (·, ·):

Ṽ (T,X(T )) = Φ(gN (T,X(T ))).

This concludes the proof of Lemma B.1.

C Numerical experiment

We present a numerical experiment in which we perform the steps in Algorithm 1 to price a
discretely monitored up-out call option:

VUO-call(t0, T,K) := EQ
[

(S(T )−K)+

M(T )
1(max

t∈T
S(t) < B)

∣∣∣∣F(t0)

]
,

with B = 1.5, K = 0.5, T = 3 and quarterly monitoring dates, i.e. T = {3M, 6M, . . ., 3Y}.
We use the Ornstein-Uhlenbeck CLV (OU-CLV) model

S(t) = gN (t,X(t)),

dX(t) = κ (θ −X(t)) dt+ γdWQ(t), X(t0) = X0,

with X0 = 1, κ = 1, γ = 0.5 and θ = 0.5. Given the filtration at t0 = 0, the kernel variable
X(·) is normally distributed with mean and variance as in (2.8).

We successively apply the steps of Algorithm 1:

1. We generate synthetic market data by the Heston model with the parameters κ =
0.5, γ = 1, ρx,v = −0.7, v0 = 0.04, v = 0.04, r = 0 and S0 = 1. We assume that liquid
market quotes are available for the expiries 1D, 2D, 3D, 4D, 1W, 2W, 1M, 2M, 3M,
6M, 9M, 1Y, 2Y, 3Y, 4Y and 5Y. In the left-hand plot of Figure C.1 the market-implied
CDF is displayed, obtained by Fourier pricing techniques.

2. We use N = 6 collocation points. Given the optimal collocation points zj , j = 1, . . . , N

of a standard normal random variable Z
d
= N (0, 1) (for N = 6 these are −3, 3243,

−1.8892, −0.6167, 0.6167, 1.8892, 3.3243), the optimal collocation points of X(t) are
given by xj(t) = E [X(t)] +

√
Var[X(t)] · zj [21] and as such

xi,j := xj(Ti) = E [X(Ti)] +
√
Var[X(Ti)] · zj , i = 1, . . . ,M, j = 1, . . . , N.

Given the collocation points, by inversion of the market-implied CDF we obtain the
collocation values si,j = F−1

S(Ti)
(FX(Ti)(xi,j)). In the right-hand plot of Figure C.1 the

triplets (xi,j , Ti, si,j) are displayed.
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3. We simulate the kernel variable with time-steps of 3 months (4 time-steps per year).
The Monte Carlo simulation consists of 1 · 104 paths17. In order to evaluate gN (·, ·) at
time-points that are not part of the market data – so not 0.1, 0.25, 0.5, 1, 2, 3, 4 and 5
years – we interpolate between or extrapolate the si,j values, see e.g. the interpolated
gN (2.5, ·)-values in the right-hand plot of Figure C.1.

4. Last, we price the up-out call option: VUO-call(t0, T,K) = 0.4739. The calibration to
the European-type options is guaranteed to be almost perfect, see Figure C.2.
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Figure C.1: The market-implied CDF (left) and the (xi,j , si,j)-pairs (right) corresponding
to the numerical experiment in Appendix C. The red dashed line indicates the monotone
interpolation at t = 2.5.
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Figure C.2: The implied volatilities for the expiries T = 0.25, T = 1 and T = 3 corresponding
to the numerical experiment in Appendix C.

D Effect of CIR parameters, omitting the level effect

In Figures D.1 and D.2 we display the effect of the CIR kernel parameters on the shape of
the forward smile, see Section 3.2.2, but without the level effect.

17In fact, we use 10 seeds, each seed constitutes 1 · 103.
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Figure D.1: Effect of γ (left) and κ (right) on the forward volatility smile for the CIR-CLV
model, omitting the level effect, with T1 = 2.5 and T2 = 3. The ‘base case’ CIR parameters
(if not varied) are: γ = 0.3, κ = 0.5, θ = 0.5 and X0 = 1.
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Figure D.2: Effect of X0 (left) and θ (right) on the forward volatility smile for the CIR-CLV
model, omitting the level effect, with T1 = 2.5 and T2 = 3. The ‘base case’ CIR parameters
(if not varied) are: γ = 0.3, κ = 0.5, θ = 0.5 and X0 = 1.

E Effect of Heston parameters, omitting the level effect

In Figure E.1 we display the effect of γ and κ on the shape of the forward smile, see Section
3.3.3, but without the level effect. We do not display the effects of all parameters, to save
some space.

30



0.6 0.8 1 1.2 1.4

Strike

0

5

10

15

20

25

F
or

w
ar

d 
vo

la
til

ity
 [%

]

Forward Volatility, T 1 = 2.5, T2 = 3

 = 0.1
 = 0.3
 = 0.6
 = 0.9

0.6 0.8 1 1.2 1.4

Strike

0

5

10

15

F
or

w
ar

d 
vo

la
til

ity
 [%

]
Forward Volatility, T 1 = 2.5, T2 = 3

 = 0.1
 = 0.5
 = 1
 = 1.5

Figure E.1: Effect of γ (left) and κ (right) on the forward volatility smile for the Heston-
CLV model, omitting the level effect, with T1 = 2.5 and T2 = 3. The ‘base case’ Heston
parameters (if not varied) are: κ = 0.5, γ = 0.3, ρx,v = 0, v = 0.2, v0 = 0.2 and X0 = 1.
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