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InP colloidal quantum dots for 
visible and near-infrared photonics
Guilherme Almeida     , Reinout F. Ubbink    , Maarten Stam    , Indy du Fossé     & Arjan J. Houtepen     

Abstract

Owing to their tunable band gap, high absorption coefficient, narrow 
emission linewidths and unrestricted composition, InP-based colloidal 
quantum dots (QDs) have become industrially relevant for visible and 
near-infrared photonic technologies. Although their development 
has so far been strongly driven by their suitability for green and red 
light-emitting diodes, the spectrum of applications for this class of 
materials is much broader. This Review covers the multidisciplinary 
field of InP-based QDs from its genesis in the mid-1990s to date, drawing 
on relevant knowledge from other classes of QDs and from III–V 
semiconductors as a whole. We discuss the optoelectronic properties 
of InP QDs, their fabrication, their defects and passivation strategies 
and the design of InP-based QD heterostructures. Finally, we outline the 
technological status of these QDs for various photonic applications.
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characterized by direct transitions from light, heavy and split-off hole 
states32–34, and its absorption coefficient is relatively strong (>104 cm−1 
at 1.4 eV) (Fig. 1b).

Owing to the quantum size effect1–6, the band gap of InP can be 
tuned from the NIR (1.3 eV) up to the violet (approximately 2.7 eV) by 
confining InP to a fraction of its Bohr radius (around 10 nm). The rela-
tionship between band gap and volume for InP QDs35 is reported in 
Fig. 1c. Although the individual band edge shifts are not fully estab-
lished, it has been suggested that the conduction band levels are more 
sensitive to quantum confinement than are the valence levels, based 
on simple effective mass arguments and confirmed by more advanced 
computations (see Table 1 for effective masses)36–38.

At room temperature, luminescence linewidths of approxi-
mately 50 meV have been observed from a single InP QD emitting in 
the red and around 80 meV for smaller green-emitting dots35 (Fig. 1d). 
For applications such as displays, narrow emission linewidths from QD 
ensembles are required. Although the emission linewidth of a single 
QD is size-dependent and limited by ultrafast structural dynamics and 
electron–phonon coupling39–47, which are, in turn, exacerbated by the 
presence of electronic traps48,49, the linewidths of an ensemble of QDs 
are further broadened by its size distribution. Narrower linewidths 
may be obtainable in QDs with higher quantum yields as well as in 
core–shell structures.

We note that in QDs, the electron–hole exchange interaction 
causes the splitting of degenerate electron–hole pair configurations 
into various states50. Briefly, in zinc-blende QDs such as InP, the con-
duction band edge is formed by a double degenerate electron level, 
whereas the valence band edge is formed by a fourfold degenerate hole 
level. Exchange interactions between these levels, combined with shape 
anisotropy, give rise to an exciton fine structure, with an F = ±2 dark 
lowest exciton state, separated by 2–9 meV from an F = ±1 bright state 
(depicted in the inset of Fig. 1d, data from core–shell QDs)50–52. At room 
temperature, the emission comes from the thermally populated high 
energy bright exciton state. In principle, this fine-structure splitting 
is similar to that observed in other tetrahedral binary semiconductors 
such as CdSe. However, it has been shown that the fine structure in InP 
QDs is particularly insensitive to shape anisotropy. This phenomenon 
is attributed to the particular ratio of the light hole over the heavy hole 
effective mass52,53. In InP, this ratio is 0.15, close to the value of 0.14, 
in which the exciton fine structure is predicted to be least sensitive 
to shape anisotropy54. As a consequence, the exciton remains nearly 
isotropic even for prolate or oblate InP QDs. This explains why mixing 
of the low energy dark exciton with the higher energy bright exciton 
does not occur in magnetic fields53, and why the bright exciton is found 
to consist of a doublet in single-particle cryogenic photoluminescence 
measurements52.

The luminescence of QDs is typically limited by electronic traps 
arising from structural defects and also by Auger processes that take 
place in the multi-exciton and charged regimes (of relevance for appli-
cations such as LEDs or lasers)13,55. There has been great progress in 
mitigating trap-related losses in InP QDs but much less so in solving 
Auger losses. Non-radiative Auger processes are extremely relevant as 
InP QDs emitting in the visible exhibit bi-exciton lifetimes of 5–60 ps, 
three to four orders of magnitude shorter than the single exciton 
lifetime35. In addition, Auger processes produce energetic carriers 
that can lead to irreversible redox chemistry and device degradation.

Finally, particular applications (such as coherent single-photon 
emission) require QDs with relatively long coherence times. Although 
it is known that the coherence times of QDs can be limited by 

Introduction
Semiconductor technologies have revolutionized our civilization over 
the past 50 years, in particular through electronic and photonic applica-
tions. A well-known feature of semiconductors is that their electronic 
and optical properties depend not only on their composition and struc-
ture but also on their size and shape when confined to the nanometre 
scale, owing to quantum mechanical effects1–6. By virtue of their tunable 
energy landscapes, quantized signatures and efficient luminescence, 
semiconductor nanostructures (also known as quantum dots (QDs), 
wires or wells) have been widely explored at a fundamental level and 
can be found in electronic and photonic technologies as common as 
transistors or light-emitting diodes (LEDs).

Surfactant-assisted syntheses of colloidal nanocrystals have 
enabled the fabrication of an enormous variety of semiconductor 
nanostructures with remarkable precision in terms of composition, 
structure and morphology and in high yields7–11. Their freestanding 
colloidal form also confers great versatility for further integration 
into devices. As the design, stability, performance and functional-
ity of colloidal QDs, wires and wells have evolved over the past three 
decades, they have become valuable materials for a growing number 
of photonic technologies such as lighting, displays, lasers, quantum 
information, solar energy converters, infrared cameras, security inks 
and theranostics11–25.

InP-based colloidal QDs have raised considerable interest for 
photonic technologies operating in the visible and near-infrared (NIR) 
regions, because of their wide spectral tunability, strong light absorp-
tion, efficient luminescence, high carrier mobility and compliance with 
safety regulations on consumer devices. Advances in their synthesis 
and design have considerably improved their quality26,27. InP-based 
QDs can already be found integrated as down-converting phosphors in 
commercial lamps and displays28,29 and are being considered for other 
applications as their qualities improve and expand, such as for gain 
media or NIR light sources and detectors.

In this Review, we discuss the growing field of InP-based QDs from 
its genesis in the mid-1990s to date, providing a comprehensive but 
concise account of its progress and challenges and drawing on relevant 
knowledge from other types of QDs and from III–V semiconductors 
as a whole for a more complete picture. We cover the electronic and 
optical properties of InP QDs, their synthesis and the occurrence 
and passivation of electronic defects. We also examine the types of QD 
heterostructures on the basis of InP and examine the various photon-
ics applications of these systems. While writing this article it became 
apparent to us, as it will to the reader, that the large body of literature 
on InP QDs is not always coherent, owing to the structural complexity 
that these systems can have. Therefore, we also critically cross-analyse 
the literature to provide structure, clarity and guidance to the field. 
Finally, we highlight the research directions that we believe will advance 
knowledge and applicability of this class of QDs.

General properties of InP
InP is a semiconductor that usually crystallizes in the zinc-blende struc-
ture. It is considered a relatively covalent semiconductor and has a 
direct band gap of approximately 1.35 eV in its bulk form30 (Table 1). 
The band gap is formed between valence orbitals with bonding char-
acter and conduction orbitals with antibonding character. Specifically, 
the valence band edge of InP is characterized by a strong contribution 
from P 3p orbitals, whereas the conduction band edge has a more mixed 
character, with the largest contribution coming from the In 5s orbit-
als, as well as a lower density of states31 (Fig. 1a). Its band structure is 
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structural dynamics and electron–phonon coupling39,41,56,57, and also 
by fine-structure-related transitions50,58–60, no studies of the coherence 
time have been conducted on InP QDs.

Although we discuss the relationship between structure and opto-
electronic properties of InP-based QDs in the following sections, we 
note that this link is not always straightforward to assess. The QDs in 
ensembles are not all exactly the same in terms of size, shape, composi-
tion, structure and surface coverage, which leads to a distribution in 
optoelectronic properties. In addition, there are difficulties inherent 
to physical characterization at such small scales.

Synthesis of colloidal InP QDs
Various protocols have been proposed to synthesize InP QDs61–80. InP 
QDs are generally produced by reacting an In3+ salt with a P3− source in 
a liquid medium and in the presence of ions and/or molecules (termed 
ligands) that bind to the surface of QDs, providing colloidal stability. 
Alternatively, the P3− ion may also be formed in situ by reducing a phos-
phorus compound in a higher oxidation state. Of all the methods, two 
surfactant-assisted syntheses in nonpolar solvents have become the 
most popular and are currently used in industrial-scale manufacturing.

In one synthesis (Fig. 2a, top), indium (III) alkanoates of general 
formula In(RCOO)3 (R = alkylic chain, typically C14–18) are reacted with an 
organic silyl phosphine of general formula P(SiR3)3 (R = alkyl or aryl, typi-
cally CH3) at temperatures up to 300 °C (refs. 64,81–84). This path leads to  
QDs capped by alkanoates (whether SiR3 groups are also present on the 
surface remains unclear)85. When this synthesis is carried out at more 
elevated temperatures, it delivers the most monodisperse InP QDs of 
all methods, and impressively narrow linewidths can be obtained by 
adding trioctylphosphine to the synthesis72–74 (Fig. 2b,c). However, 
this route is prone to several unwanted side reactions. For instance, 
free carboxylic acids left from the preparation of the indium alkanoate 
precursor can react with the formed InP QDs, producing PH3 (ref. 86); 
react with P(SiR3)3, leading to a series of phosphorus precursors of vary-
ing reactivities87,88; or condense into ketones, releasing water molecules 
that can then oxidize the InP QDs and/or react with indium alkanoates 
to form In2O3 particles85,89. These side reactions can be suppressed by 
adding a base (such as trioctylphosphine), keeping the temperature 
low, or purifying the indium alkanoate precursor. Nevertheless, even 
with these adjustments, indium alkanoates themselves may be prone to 

other side reactions90. In addition, the silyl phosphine precursors used 
are pyrophoric, making them hard to handle and expensive.

The other common route (Fig. 2a, middle) is based on the reaction 
of indium (III) halides (typically InCl3) with aminophosphines of general 
formula P(HNR)3 (typically formed in situ by the reaction of primary 
alkyl amines RNH2 with P(NR2)3 precursors). The aminophosphines 
act simultaneously as a P-source (in an oxidation state of +3) and as a 
reducing agent (to reduce P to −3)76–78. This method forms QDs capped 
by halide ions and alkylamines. Alternatively, indium (I) halides and/or 
PX3 (X = Cl, Br or I) may be used as precursors91–93. Compared with the 
first route, this route has been less studied and cannot yet produce 
QDs as monodisperse94, but it is definitely more cost-attractive owing 
to its cheaper precursors.

It is not well understood how the different chemicals used in each 
of these synthetic routes affect the growth mechanism, reaction kinet-
ics or morphology of the resulting InP QDs. Studying the growth 
kinetics has long been complicated by oxidation of InP QDs during 
the synthesis, which was only recently circumvented by using reduc-
ing atmospheres95–97. Nevertheless, it is known that the growth of InP 
QDs using indium carboxylates and P(SiR3)3 precursors proceeds 
through the formation and ripening of cluster intermediates98–104 
whose structure has been identified105 and also that these clusters can 
be used as single-source precursors for synthesizing InP QDs73,99. Other 
noteworthy advances include preliminary studies on the determination 
and control of reaction kinetics using various aminophosphines106, 
the investigation of nucleation and growth through computa-
tional methods107 and the successful development of continuous 
production methods108–114.

Shape-wise, both routes yield InP QDs that appear in electron 
micrographs to adopt a triangular pyramidal shape (Fig. 2d). Large 
InP QDs synthesized by the aminophosphine route have been found to 
derive their eventual tetrahedral shape from smaller, early-stage tetra-
pod InP QDs whose arms are enclosed by (110) facets115. Interestingly, 
the tetrapod shape could be controlled to a certain degree by control-
ling the reaction temperature and amount of precursors. The experi-
mentally observed tetrahedral shape has been rationalized as fulfilling 
the requirement of charge neutrality with common monovalent 
ligands, such that (100) facets are unlikely to be expressed in cation-rich 
InP QDs and a (111) termination is more favourable38. Following this 

Table 1 | Structural, mechanical and optoelectronic properties of selected bulk semiconductors in the zinc-blende 
or wurtzite (w) structure365–370

Material a (A) Eg (eV) EVB (eV) DOS (VB) 
(states per eV)

DOS (CB) 
(states per eV)

me mh  (lh/hh) α (2.5 eV) 
(×105 cm-1)

TD (K) Bs (GPa) PI

InN (w) 3.53/5.69 2 6.43 5.3 × 1019 9.0 × 1017 0.11 0.27/1.63 1.21 660 140

GaP 5.45 2.26 5.51 1.9 × 1019 1.8 × 1019 1.12/0.22 0.14/0.79 0.01 445 88 0.33

InP 5.87 1.34 5.17 1.1 × 1019 5.7 × 1017 0.08 0.6/0.089 1.30 425 71 0.42

GaAs 5.65 1.42 4.98 9.0 × 1017 4.7 × 1017 0.063 0.51/0.082 0.99 360 75 0.31

InAs 6.06 0.35 4.69 6.6 × 1018 8.7 × 1016 0.023 0.41/0.026 4.53 280 58 0.36

CdSe 4.30 1.7 4.75 0.13 0.45 1.21 0.70

ZnSe 5.67 2.82 5.98 0.14 0.6 − 0.63

ZnS 5.41 3.68 6.53 0.28 − − 0.62

Lattice constant (a), band gap (Eg), valence band energy (EVB) versus vacuum, effective density of states (DOS) at the valence band (VB) and conduction band (CB), effective mass of electrons 
(me) and holes (mh), absorption coefficient (α) at 2.50 eV, Debye temperature (TD), bulk modulus (Bs) and the Phillips iconicity (PI, a larger or smaller value characterizes a more ionic or more 
covalent lattice, respectively). For GaP, two me values are given (longitudinal and transversal) because the surfaces of equal energies are ellipsoids. lh, light hole; hh, heavy hole.
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line of reasoning, other possible shapes include truncated pyramids 
and small-sized cuboctahedrons with (100), (111) and (−111) facets. 
Density-functional theory calculations also show that both bare and 
ligand-terminated (111) facets exhibit a lower surface energy than 
(100) facets116.

Ga-substituted and As-substituted alloys of InP QDs can also 
be synthesized using variations of the aforementioned routes117–121. 
However, control over morphology and structure of InP-based 
QDs through direct synthesis remain a challenge122. Nonetheless, 
morphology-controlled InP QDs can still be prepared indirectly, by 
transforming (cation-exchanging) other metal phosphide nanocrys-
tals into InP QDs while preserving the original phase and morphol-
ogy (Fig. 2a, bottom). In this way, hexagonal (wurtzite) InP platelets 
(Fig. 2e) and InP rods could be successfully prepared from their Cu3P 
analogues123–126. Control over the exchange rate is important to ensure 
that single crystalline InP QDs are obtained124.

Surface ligands have a key role not only in the synthesis, colloi-
dal stability and self-assembly of QDs but also in many of their opto-
electronic properties (such as trap passivation, electron–phonon 
coupling, carrier delocalization and film conductivity). Ligands also 
enable post-synthetic surface functionalization. In fact, surface-ligand 
engineering of QDs has been intensely investigated121,127,128 and 
reviewed10,129–131.

Defects and trap passivation
As-synthesized InP QDs typically exhibit weak luminescence 
efficiencies, of a few percent at most (often <1%). Defect passivation 
and shelling approaches allow QDs to be prepared with near-unity effi-
ciencies. Various types of defects are possible in InP materials in general 

(including QDs and thin films), but can be passivated and mitigated 
with several strategies (Fig. 3).

Oxidation and etching
III–V semiconductors, including InP, are prone to oxidation, which 
limits their growth and luminescence efficiency74,96,132–140. Oxygen is 
known to adsorb dissociatively on (bulk) InP surfaces141–144, and at room 
temperature In-O-P and POx species (x > 1) form at oxygen pressures 
as low as 5 µbar and 5 mbar, respectively, highlighting the strong reac-
tivity of the phosphide anion towards oxidation. Further structural 
trans formations occur at higher temperatures, including the bridging 
of POx units at around 200 °C and the development of a thick indium 
oxide layer above 300 °C, underlining the diffusion of oxygen143,145. 
Water also appears to adsorb dissociatively143,146 and to lead to In-O-P 
and POx species on mild heating (100 °C). In-O-In species can also form, 
more likely on exposure to oxygen than to water143.

This tendency to oxidize poses difficulties for the synthesis 
(and shelling) of InP QDs87,89,95,147,148, and indeed hydroxyl groups149 and 
oxidized phosphorus have been identified on these QDs85,135,136,138,150,151 
(Fig. 3, 1–4). The sources of oxidation and types of oxidative defects 
are likely various, and their impacts on the electronic structure of InP 
QDs remain unclear. The absence of oxidized species often appears 
to be correlated with increased luminescence efficiency74,136–138,140,152, 
although opposite results have also been observed147,153–159.

Computational studies are especially suitable to elucidate the 
effects of oxidation, even though research has mainly been limited to 
flat (001) surfaces without ligands142,145,160–164. Some of these studies 
report the appearance of trap states upon oxidation142,145,160,164,165, but 
the underlying mechanisms that lead to trap formation are not entirely 
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Fig. 1 | Optoelectronic properties of InP. a, Bulk 
density of states. The inset shows the zinc-blende 
unit cell. b, Absorption coefficients of bulk InP and of 
InP colloidal quantum dots (CQDs) with edge lengths 
ranging from 1.5 nm to 4.0 nm. The inset shows the 
simplified band structure. c, Band gap versus QD 
volume. The inset illustrates the shift of the band 
edge levels of InP with quantum confinement. 
d, Room-temperature photoluminescence spectra 
of single InP QD emitting in the red and in the green 
exhibiting full widths at half maximum (FWHM) of 
approximately 58 meV and 83 meV, respectively. 
The inset shows fine structure splitting at 4 K. lh, 
light hole; hh, heavy hole; soh, split-off hole. Panel a 
adapted from ref. 31, Springer Nature Limited. Panels 
b–d adapted with permission from ref. 35. Copyright 
2023 American Chemical Society. Inset in panel d 
adapted with permission from ref. 51, ACS.
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understood. For example, one study reported that only substitutional 
oxygen atoms, but not In-O-P and In-O-In moieties formed by oxygen 
adsorption, produced trap states142. By contrast, another study found 
that strained In-O-In moieties can give rise to hole traps and that In-O-In, 
In-[OH]-In and In-In yield electron traps if the In atoms have unsatu-
rated bonds160. In-O-P bridges are generally believed not to lead to trap 
states160,163, although an increased number of levels near the valence 
band edge has been observed160. This collection of results indicates 
that trap formation is highly dependent on the exact configuration of 
the oxidized species. Indeed, computations on ligand-passivated QD 
models found that hole traps are formed by PO2 moieties, but not by 
PO3 and PO4 (ref. 86). The effect of polyphosphates remained uncer-
tain owing to their unclear oxidation state (leading to n-doping of the 
QDs) and to the large number of possible surface reconstructions. 
In addition, an investigation of the effect of various metal oxide shells 
around InP QDs found evidence for localized defect-like states near 
their surface in InP/InO, InP/GaO and InP/AlO core–shell systems but 
not in InP/CdO and InP/ZnO166. Although these results do not cover the 
entire range of possible oxidated species, they do show that oxidation 
does not necessarily have detrimental effects, which may explain the 
seemingly contradictory reports on the effects of InP oxidation.

Nevertheless, it is possible to prepare oxide-free InP QDs either 
under strictly anhydrous and oxygen-free reaction conditions or by 
using a hydrogen atmosphere96,97. Post-synthetic treatments can also 
remove oxidative defects. A popular post-synthetic treatment is etch-
ing with hydrogen fluoride (HF) (Fig. 3, 5 and 6). HF etching was used to 

clean and expose the surface of InP thin films as early as the 1960s167 and 
was later shown to produce a completely oxide-free InP surface that was 
unachievable with other etching agents168. The first report of HF treat-
ment to InP QDs observed a post-treatment increase in luminescence, 
which was attributed to fluoride ions filling phosphorus vacancies 
on the surface and replacing oxygen in the oxide layer134. Since then, 
different mechanisms have been proposed for trap passivation by 
HF. One possible mechanism for the increased luminescence after HF 
treatment under illumination is through removal of the phosphor as 
PF3, leaving an indium-rich surface that could be better passivated by 
ligands169,170; elimination of phosphorous dangling bonds by fluoride 
was also supported by transient absorption results139. Alternatively, 
the increased quantum yield has been ascribed to the passivation of 
indium dangling bonds. This explanation is supported by observations 
that after HF treatment, carboxylate ligands exchange for fluoride ions 
and indium (oxo)hydroxides on the nanocrystal surface are removed171. 
Other studies have suggested that HF removes oxygen as POx spe-
cies, rather than as indium hydroxides74,172. Recently, it was found that 
anhydrous HF reacts with InP to form InF3 (a z-type ligand) and PH3 
and breaks up polyphosphate species into smaller PO4 and PO3 units. 
Although removal of polyphosphates was correlated with a higher 
luminescence efficiency, PO4 and PO3 species remained present on 
the surface of highly luminescent HF-treated samples, indicating that 
only some oxidized species form traps86. Given these varied results, it 
remains an open question as to which types of oxides can be removed 
by HF treatment, and in what ways their removal affects the optical 
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generic monovalent anion such as Cl−, RCO2

−, etc.) with (top) an organic 
silyl phosphine P(SiR3)3 or with (middle) an aminophosphine P(HNR)3 
in the presence of a reducing agent (such as the aminophosphine 
itself). Alternatively, InP QDs can also be prepared by transforming 
(cation exchanging) other metal phosphide nanocrystals into InP 
QDs (bottom). b,c, Photograph (under UV light) of samples prepared 
within our group (panel b) and absorption spectra of monodisperse 
InP QDs with band gaps spanning the visible range prepared using silyl 
phosphines (panel c). d,e, Electron micrographs of zinc-blende InP QDs 
with tetrahedral shape (panel d) and of wurtzite InP QDs in the form of 
platelets (panel e). Panel b image courtesy of L. van der Poll. Panel c  
adapted from ref. 74, Springer Nature Limited, and with permission 
from ref. 90, copyright 2021 American Chemical Society. Panel d 
reprinted with permission from ref. 77, Wiley. Panel e reprinted with 
permission from ref. 123, ACS.
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properties of nanoscale InP. HF treatment does have downsides: InP 
itself can be etched, causing unwanted spectral changes, and there are 
inherent dangers associated with using HF.

Because HF is hazardous, alternative fluorination strategies have 
also been proposed. Adding fluoride-rich ionic liquids either during 
the synthesis under microwave illumination, or post-synthetically, can 
strongly improve the quantum yield of the particles173,174. This effect has 
been ascribed to the passivation of electron traps when fluoride binds 
dangling indium bonds.

Surface states and z-type passivation
The main suspect for trap states in QDs has always been dan-
gling bonds — that is, under-coordinated atoms at the surface of 
nanocrystals. Early theoretical calculations175, later corroborated 
experimentally176, predicted the existence of both electron and hole 

traps on the surface of InP QDs as a result of In and P dangling bonds, 
respectively. The traps appear to become ‘deeper’ as the QD size is 
reduced, owing to the shift of the band edges. Additionally, it has been 
shown that the formation of trap states owing to undercoordinated 
surface atoms depends on the shape of the QD38. In this work, cuboc-
tahedral and In(111)-terminated tetrahedral models were deprived of a 
surface-capping moiety to simulate undercoordinated surface atoms. 
For cuboctahedrons, surface reconstruction prevents, in most cases, 
the formation of hole and electron traps. However, tetrahedral-shaped 
models are prone to form localized trap states within the band gap, 
resulting from undercoordinated In and P atoms.

Surface anions can be passivated by treating the particles with 
metal salts, also known as z-type ligands152,174,177–179 (Fig. 3, 9). Treat-
ment of InP with various z-type ligands has been shown to increase 
quantum yield (to 19% for Zn carboxylates and 49% for Cd oleate177 
or 11% for CdCl2 (ref. 178)), which has been attributed to the passiva-
tion of dangling phosphor bonds. However, there is also evidence 
that cadmium carboxylate z-type ligands can bind both to phosphor 
and to phosphate present on the (sub)surface of InP nanoparticles 179 
(Fig. 3, 8). More recently, it was shown that simple z-type passivation 
with InF3 can increase quantum yields to 50–80% if the QDs are free of 
oxidized phosphorus species, specifically polyphosphates35,86. In addi-
tion, it was also observed that Cd2+ or Zn2+ can also replace surface 
In3+ ions (z-type exchange, Fig. 3, 10), relieving steric pressure on the 
surface and allowing for a more complete passivation, thus reducing 
trap states174. This exchange mechanism was supported by isothermal 
titration calorimetry experiments monitoring the treatment of InP 
with metal halides152. These results suggest that the z-type passivation 
mechanism may be more involved than previously thought.

Surface reconstructions may also have an important role in the 
creation or removal of surface states. In bulk solid state physics, it is well 
known that surfaces directly obtained from cleaving the bulk material 
are often not stable and will reconstruct180. For example, studies on 
GaAs surfaces have shown that the Ga-terminated (111) facet will recon-
struct by creating Ga vacancies181. As-terminated (−1–1–1) facets are 
more complicated, and different reconstructions based on vacancies182 
or As-trimers have been proposed183. Although these reconstructions 
are relatively well understood for bulk surfaces, it is currently unclear 
whether they also take place on the QD surface. One study on CdSe QDs 
has shown that surface vacancies are necessary for the delocalization 
of the highest occupied molecular orbital and lowest unoccupied 
molecular orbital levels184, highlighting the need for further studies 
on QD surfaces.

Doping
Impurities have long been incorporated into III–V semiconductors for 
doping purposes185. The incorporation of cations (other than group III) 
into InP QDs, however, has been pursued for two main reasons: opti-
cal doping (that is, Stokes-shifted emission) or linewidth narrowing. 
For instance, doping with Eu3+ yields multiple emission lines around 
the red spectral region186. Doping with Cu+ yields a broad emission 
in the NIR-I window (with photoluminescence efficiencies up to 80%), 
ascribed to hole localization and to structural relaxation around the 
Cu site187–194.

Zn2+ ions are commonly introduced as additives during the synthe-
sis of InP QDs to obtain QDs with narrower (ensemble) linewidths195–197. 
However, aliovalent impurities such as Zn2+ are known dopants for III–V 
semiconductors198–202 and appear to diffuse and be incorporated into 
InP QDs179,203 (as illustrated in Fig. 3, 7). Various spectroscopic analyses 

Carbon

Indium Phosphorus Fluorine

Zinc

Cadmium

Oxygen defects

2 3
4

5
6HF

HF

1

Dangling bonds and doping

. .. .

7

8
9 10

. .

Tensile strain

Interface defects

11 12

13

Compressive strain

Chlorine

Selenium

Oxygen
Hydrogen

Fig. 3 | Documented structural defects in InP quantum dots and possible 
repair mechanisms. Oxygen defects include (1) In-O-In moieties142,143,160, 
(2) In-O-P moieties142,143,145,146,160,163, (3) POx moieties85,86,135,136,138,143,145,150,151 
and (4) In-OH and In-OOH moieties149,160,171. Several mechanisms have been 
proposed for the passivation of oxygen defects using hydrogen fluoride (HF) 
including (5) the breakage of POx into smaller PO3 and PO4 units86 or (6) the 
replacement of In-bound hydroxide groups by fluoride anions171. (7) Lattice 
doping79,137,179,195,197–201,203,204,208 and (8) incorporation of Cd in surface and 
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have concluded that the incorporation of Zn introduces shallow hole 
states and associated lattice disorder200. Moreover, other results sug-
gest that the incorporation of Zn in the InP core limits the performance 
of core–shell structures137,204. Nevertheless, photoluminescence quan-
tum yields of approximately 90% have been reported for both InP and 
In(Zn)P79,137,159,205–208 QDs shelled with ZnSe1–xSx (where In(Zn)P = InP QDs 
incorporating Zn in the InP lattice).

Several questions about doping remain open, including what 
lattice positions the extrinsic ions occupy, whether electronic dop-
ing occurs or whether there are doping compensation mechanisms 
also at play.

Heterovalent core–shell interfaces
Epitaxial growth of II–VI on III–V semiconductors (including InP QDs) 
has been extensively investigated. The heterovalent nature of such 
interfaces introduces complexity, and it is worthy to highlight insights 
from works on lattice-matched GaAs/ZnSe (001) polar junctions. 
First, we note the efforts to reduce the density of stacking faults in 
the ZnSe overlayers209,210. Second, computational studies have shown 
that an abrupt interface is thermodynamically unstable and that a 
mixed and/or a defected interface is energetically favoured211,212 
(Fig. 3, 12), and experiments also support the existence of mixed and 
defected interfaces in samples with a low density of stacking faults213. 
Furthermore, the composition of stable mixed interfaces is known to 
be orientation-dependent214.

Coating InP QDs with ZnSe1−xSx shells enables highly efficient 
and stable emitters. These III–V/II–VI core–shell systems must have 
a balanced stoichiometry137,204,215,216. In particular, results strongly 
suggest that a InP/(In,Zn)P/ZnSe interface boosts the photolumines-
cence efficiency of InP/ZnSe1−xSx QDs beyond 90%204,217, and that a 
selenium-terminated interface might be important to limit the diffu-
sion of zinc218,219 and sulfur137,216 into the InP cores. Interfaces containing 
oxidized species have also shown to improve the performance of InP 
QDs154,220 (Fig. 3, 13).

Strain
In core–shell QDs, strain can arise from the lattice mismatch between 
core and shell materials, causing several consequences221. It can intro-
duce (strain-relieving) defects222 (Fig. 3, 11), alter band offsets223,224, 
shift vibrational frequencies225, give rise to piezoelectric fields226 or 
even impact the fine structure227–229, electron–phonon coupling230 and 
photon out-coupling231.

However, little is known about strain engineering in InP QDs. In 
bulk InP, a phase transition (to rock salt) closely followed by a direct-to-
indirect transition (as the X band crosses under Γ) occurs at lattice 
contractions of about 3–5% (approximately 10 GPa)232,233, and simi-
lar values are found for InP QDs234–236. In InP/Zn1−xCdxSe core–shell 
systems, strain can be tuned from compressive (InP/ZnSe) to tensile 
(InP/CdSe) with no strain observed at x approximately 0.4 (ref. 237). 
Computations suggest that even a thin ZnSe shell can build consider-
able tensile strain and could lead to a considerable energy shift of the 
highest occupied molecular orbital197. More pronounced effects are 
found with ZnS shells, which could be related to not only its smaller 
lattice constant but also its larger Young modulus238 (see Table 1 for 
mechanical properties). These computational results also point to a 
decrease in band gap with increasing tensile strain. However, experi-
ments have shown the opposite trend — a considerable increase in 
band gap with increasing strain — that could be of potential interest 
for piezochromic applications234,236.

Wavefunction engineering
Control over the energy landscape is fundamental in QD technologies13,14. 
Although tuning the surface ligands might achieve this control to a 
limited extent171,239, shape-control and core–shell structuring are more 
versatile and robust avenues of control. Core–shell structuring, in par-
ticular, has been pivotal to the development of performant and stable 
QDs. For instance, in type I heterostructures, both the electron and 
hole wavefunctions are confined to the core, which allows undesirable 
surface states and reactions to be avoided. In type II heterostructures, 
the electron and hole wavefunctions are spatially separated, which 
allows the radiative lifetimes to be increased and the band gap to be 
reduced. We note that band offset is one of the key parameters in the 
classification and design of semiconductor heterostructures (Fig. 4a,b). 
However, determining the band offsets in QD heterostructures is not 
straightforward because the degree of quantum confinement needs 
to be taken into account, as well as any interface dipoles240. The latter 
is particularly relevant to heterovalent systems such as InP/ZnSe1−xSx 
core–shell structures241.

Type I InP/ZnSe1−xSx core–shell structures
Type I InP/ZnSe1−xSx core–shell QDs have been widely studied and 
implemented in commercial products. ZnSe and ZnS exhibit com-
plementary properties for shelling InP. On the one hand, ZnSe has a 
small lattice mismatch to InP (3.4%) but does not provide a robust type I 
confinement, especially for smaller InP cores. On the other hand, ZnS 
ensures a robust type I band alignment (regardless of core size) but has 
a large lattice mismatch (7.8%), which appears to broaden the emission 
of the QDs242. Finding a balance between the size of the InP core and 
the composition and structure of the ZnSe1–xSx shell can overcome 
these limitations and obtain highly efficient narrow band emitters 
(Fig. 4c,d). For instance, red-emitting InP/ZnSe/ZnS core–shell–
shell structures with near-unity photoluminescence efficiency and 
linewidths of 110–130 meV have been realized (including non-blinking 
QDs)74,137,172, as have green-emitting InP/ZnSe1−xSx/ZnS (0.5 < x < 0.67) 
heterostructures with efficiencies around 90% and slightly broader 
linewidths (160–210 meV)79,205,206,242. Blue-emitting systems are, so far, 
least performant with efficiencies and linewidths of 45% and 260 meV, 
respectively207,243. It is not yet clear why green-emitting and blue- 
emitting QDs have lower performance than red, but it could be related to 
interfacial defects and strain induced by the increased lattice mismatch 
of the shell and to the fact that strain is more problematic for smaller 
structures as they are less able to relax strain within the material238. 
Interfacial strain can be relieved by alloying the ZnSe1−xSx shell with 
other divalent cations237,244. In addition, the efficiency of green and 
blue emitters could be limited by defects in the shell (stacking faults, 
impurities and so on)217,245–251. The broader linewidths likely arise from 
a combination of synthetic and intrinsic drawbacks inherent to the 
extremely small sizes of the InP cores (such as size distribution require-
ments and increased homogeneous linewidths), but can be made more 
narrow by Zn doping of the cores. Blue-emitting and green-emitting 
In(Zn)P/ZnSe1−xSx core–shell QDs with improved quantum yields and 
narrower linewidths have been demonstrated, although their structures 
remain unclear and might be quite complex79,137,159,205–208.

Despite their generally high efficiencies and stabilities, these QDs 
have room for improvement. For instance, the relatively thick ZnSe1−xSx 
shells make the QDs less compact, which can undermine phosphor and 
lasing applications. Another perhaps more pressing limitation is their 
relatively short bi-exciton lifetimes, preventing efficient operation 
at high exciton density74. For instance, highly efficient red-emitting 
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classified into various types according to the (de)localization of electron and 
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are depicted in red and blue, respectively). c,d, In fact, quantum confinement 
also has an important role in the design, and in InP the conduction levels are 
thought to be more sensitive to it than the valence levels. For instance, type I 

confinement in InP/ZnSexS1−x QDs is achieved by using shells with a large sulfur 
content (panel c) and/or by using larger cores (panel d). e, Photoluminescence 
spectra of selected InP-based core–shell structures emitting in the visible or 
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InP/ZnSe/ZnS core–shell–shell QDs exhibit exciton lifetimes of 13 ns 
but bi-exciton lifetimes of only 50 ps (ref. 74). In this system, the nega-
tive trion is rather long-lived (5.3 ns), owing to the delocalization of the 
electron wavefunction into the thick ZnSe shell (3.5 nm)252, suggesting 
that the short bi-exciton lifetime results from a sharp hole confine-
ment. Smoothing the confinement potential using compositionally 
graded core–shell QDs might be an effective approach to mitigate 
this, as it has found enormous success in II–VI QDs. Graded ZnSe1−xSx 
shells grown on InP QDs have not only extended the negative trion 
lifetimes by approximately four times but also reduced luminescence 
intermittency (blinking) and spectral diffusion as the grey state appears 
to originate from the negative trion itself79,253,254. These types of shells 
should improve the performance and stability of quantum LED (QLEDs) 
as excess electrons often accumulate in the QD layer owing to the imbal-
anced charge injection rates; however, they do not fix the sharp hole 
confinement at the core–shell interface and therefore are unlikely to 
increase bi-exciton lifetimes.

The fact that long bi-exciton lifetimes remain elusive raises the 
question as to whether these types of shells can promote efficient opti-
cal gain. The development of gain in InP/ZnSe QDs has been thoroughly 
studied by transient absorption spectroscopy255. This analysis indicated 
that, at room temperature, gain can be understood as originating from 
state filling of the lowest electron level with a degeneracy of 2 and of the 
lowest hole level with an effective degeneracy of 5–10. This effective 
hole degeneracy is higher than the expected degeneracy of 4, which was 
attributed to the thermal population of higher states in the valence band, 
perhaps arising from the ZnSe shell. In addition, it was also observed 
that optical gain was limited to about 10% of the theoretical maximum 
value, owing to a loss of charge carriers at high exciton density attributed 
to hole trapping. Hole trapping in this system has also been studied in 
other works and has been ascribed to In atoms in the ZnSe shell248,256.

Quest for all-III–V type I core–shell structures
In principle, shelling InP with a III–V semiconductor should enable 
QDs with dipole-free interfaces and the graded core–shell structures 
needed to mitigate Auger-related losses257–262. In fact, lasing quality has 
been demonstrated using vapour-phase grown InP QDs encapsulated 

by AlxGayInzP layers263. However, InP QDs with III–V shells remain rather 
unexplored for a number of reasons. First, the two evident shelling 
materials, In1−xGaxP and In1−xAlxP, are characterized by direct-to-indirect 
crossovers at x = 0.8 and 0.4, respectively, which complicates the predic-
tion of band offsets. Furthermore, it is not clear whether these materials 
can effectively provide a type I confinement to InP QDs264–267. Second, 
owing to their indirect nature, GaP and AlP shells would strongly reduce 
the absorption cross-section of the QDs. Third, similar to InP, these 
materials are prone to oxidation and many Ga precursors appear to 
react with InP QDs to form In1−xGaxP alloys, complicating the growth of 
core–shell structures268–270. The few reports on these structures have 
been limited to InP/GaP core–shells, mostly in combination with ZnS 
outer shells269,271–273. Mixed-anion alloys also remain unexplored but 
could be another avenue to access wide direct gap shelling materi-
als with a type I band alignment. For example, vapour-phase grown 
InP/GaAs0.6P0.4 dot-in-a-well lasers have been demonstrated274.

According to bulk band alignments, InP could also be envisaged 
as a (type I) shell material for infrared emitting InAs QDs. InAs/InP and 
InP1−xAsx/InP core–shell QDs have been developed to emit in the range 
of 600–1,000 nm (refs. 118,275,276). Although their photolumines-
cence efficiencies were initially quite low (<5%), subsequent shelling 
with ZnSe improved them substantially (to around 76%). Similarly, for 
multishell In(Zn)As/In(Zn)P/GaP/ZnS QDs emitting at approximately 
800–1,000 nm (refs. 277,278), the photoluminescence efficiency 
of the In(Zn)As core (2.5%) increased to 33%, 46% and 75% with each 
successive shell.

Reverse core–shell–shell structures
Reverse core–shell–shell structures, also known as quantum shells, 
offer band-gap tunability and room for mitigating Auger losses279–283. 
In this configuration, an InP mid-shell is grown between a core and an 
outer shell of wider gaps, with the band gap determined by the core 
size and the shell thickness. For instance, systems such as ZnSe/InP/
ZnS and CdTe/InP/ZnS QDs have been shown to exhibit tunable and 
efficient emission across the NIR-I284–286. However, these structures 
have not been much explored, and whether they can actually mitigate 
Auger processes remains an open question.
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diodes. In luminescent down-converting devices, 
quantum dots (QDs) convert blue photons into less 
energetic photons (such as green or red), whereas in 
electroluminescent devices QDs convert electrical 
energy into photons (panel a). The high colour purity of 
red InP and green In(Zn)P light-emitting diodes (LEDs) 
is already in close agreement with the requirements 
for a wide colour space of rec2020 standards (the tips 
of the triangle are the coordinates of highly pure red, 
green and red, and D65 represents the coordinates 
for white light) (panel b). At low powers, QDs with 
near-unity photoluminescence efficiencies have been 
successfully implemented in efficient LEDs. However, 
at high powers, the efficiency droop remains a problem. 
This can be clearly seen in the external quantum 
efficiency of an electroluminescent InP-based quantum 
LED (QLED) as a function of brightness (panel c). EQE, 
external quantum efficency; ETL, electron transporting 
layer; HTL, hole transporting layer; RGB, red, green 
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adapted from ref. 74, Springer Nature Limited.
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Type II and quasi-type II structures
Type II and quasi-type II structures allow for spatial delocalization 
and separation of electrons and holes within the dot, which, in turn, 
reduces the band gap and increases the Stokes shift as well as the car-
rier lifetimes287–289. These structures have found interest for photo-
voltaic and photo-electrochemical cells290–292, photocatalysis293, 
down-converters for solar concentrators294 and also gain medium295,296. 
For example, in NIR-emitting InP/CdS core–shell QDs, both the exciton 
and bi-exciton lifetimes increased with increasing shell thickness, with 
values up to 702 ns and 7 ns, respectively297. The charge transfer rate to 
methylviologen298 and the multiple exciton generation quantum yield299 
are also not affected by the quasi-type II band alignment, making these 
QDs interesting for QD-based solar cells. Cd-free alternatives expand 
their potential to biological applications. For instance, InP/ZnTe/ZnSeS 
QDs emitting in the NIR have been realized with exciton lifetimes of 
387 ns (ref. 300). InP/ZnO QDs have also been proposed for LEDs158,301, 
solar concentrators155 and artificial retinas302, although the exciton 
lifetimes in these structures appear to be shorter, around 31 ns. The 
luminescence efficiency of type II QDs can be limited by surface traps, 
but in principle this can be mitigated by efficient surface passivation 
or by growing an outer type I shell158,303.

InP QDs in photonic technologies
RGB phosphors
Cyan, green and red QDs with bright, narrow and stable emission are 
strong contenders for optical down-conversion in display and lightning 
technologies. Down-converting blue light into red or green through a 
QD film is a simple and efficient way to upgrade a blue LED array into 
a full colour display (Fig. 5a). Converting blue into both red and green 
light is also appealing for constructing white emitting diodes using a 
single blue source (Fig. 5a), and it circumvents both the poor efficiency 
of green as well as the high cost of red in the three-diode approach to 
white light generation. In addition, the tunability of QD phosphors 
enables customized spectral outputs.

For QDs to be used as down-converters in high-intensity applica-
tions such as LED lamps, they require strong blue absorptivity, narrow 
emission line (colour purity), near-unity quantum yield and stabil-
ity at high photon fluxes (no droop) and at elevated temperatures. 
Such properties have been obtained for Cd-based type I QDs304, but 
droop remains a major challenge in InP-based dots250. Various design 
strategies can mitigate Auger recombination in InP QDs, such as trap 
passivation139 and incorporation of a thick mid-shell38 or graded shell254. 
In the latter approach, negative trion Auger recombination can be 
strongly reduced through potential smoothing in gradient shells, 

but extended bi-exciton lifetimes remain elusive in these systems. 
Furthermore, the brightness of InP QDs is limited by the relatively 
weak blue absorptivity of thick ZnSe1−xSx shells, so innovative shell 
engineering solutions such as using more compact shells305 or alterna-
tive materials306 may be required. Smaller InP QDs also exhibit wider 
linewidths and lower efficiencies, although incorporating Zn into the 
cores overcomes these limitations205.

Commercial use of InP QDs as blue-down-converters in display 
and lighting technology seems close on the horizon. Red InP QDs have 
already been shown to be a viable on-chip solution for use in white LEDs 
using traditional green-yellow phosphors307. White LEDs composed 
fully of InP QDs were also achieved in an early demonstration by avoid-
ing Förster resonance energy transfer processes between QDs of differ-
ent colours (sizes), in this case red and green308. Furthermore, InP QDs 
are being integrated into up-and-coming µLED displays17,309. Finally, InP 
QDs may be a solution to the growing interest in cyan phosphors for 
healthy lighting310–314 and may be of interest for specialty applications 
such as custom illumination (for example, indoors or in horticulture), 
green-house roofs, security inks and so on.

Electroluminescent QLEDs
Theoretically, electroluminescence is a more efficient way to obtain 
light from QDs compared with down conversion, and there have 
been many attempts to construct InP QD-based LED devices to this 
end17,29,74,137,315–322 (Fig. 5a). Electroluminescent QLEDs are particularly 
appealing for display applications, because the high colour purity 
of red InP and green In(Zn)P QLEDs already closely agrees with 
the requirements for a wide colour space of rec2020 standards28  
(Fig. 5b).

Currently, record efficiencies stand at 22.2% for red172, 16.3% for 
green323 and 2.8% for blue324,325 devices. To construct highly efficient 
LEDs, device structure and materials must be carefully chosen to ensure 
exciton confinement inside the QDs to prevent parasitic or trap emis-
sion in the device (this can be achieved by growing a thick type I shell 
around the InP cores)318 and balanced electron and hole injection cur-
rents. Compared with II–IV materials, the high-lying valence band 
edge of InP QDs makes electron (hole) injection comparatively hard 
(easy)318. Despite the impressive near-limit efficiencies reached in red 
InP/ZnSe1−xSx QLEDs, the efficiency droop at higher operation power 
and the lifetime still need to be improved (Fig. 5c).

Into the infrared
Light sources in the far-red and NIR range are increasingly required 
for applications in biology and medicine326–330, computer vision331 and 
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data transmission at both short and long (fibre) ranges263,332–334. Infra-
red QDs in this range335,336, owing to their small size, tunable surface 
chemistry and processing versatility, extend the application window of 
these light sources to miniaturized devices such as µLEDs or photonic 
chips17,25, nano-imaging337, fluorescent (bio) markers338, optical sensors, 
security inks and so on. In addition, infrared QDs with high absorption 
cross-sections and carrier mobilities are of great interest for infrared 
detection and imaging technologies339 and for photovoltaics340.

In spite of a bulk band gap of 1.35 eV, and most research being con-
ducted on green and red sizes, InP is still in the competition for far-red 
to short-wave infrared (<1 eV) applications. Although the synthesis of 
large-sized InP QDs remains challenging, InP structures emitting in 
this range have been reported, namely, wurtzite QDs125, reverse hetero-
structures, InP1−xAsx alloys118,121, doped QDs and InAs-InP core–shell 
QDs, together with early demonstrations of in vivo imaging118,284,341, 
solar cells342,343, LEDs277,278 and photodetectors344 (Fig. 6). In addi-
tion, InP QDs have been used in efficient (photon) up-converting 
systems345. Large-sized InP QDs are expected to have higher absorp-
tion cross-sections, narrower linewidths, longer bi-exciton lifetimes 
and higher film mobilities (although still limited to <0.5 cm2 V−1 s−1)128 
compared with their smaller counterparts — appealing characteristics 
that continue to motivate their development.

Broadband infrared sources based on InP QDs can also be envis-
aged, either by combining InP QDs emitting at various wavelengths 
(as in the case of the white LED) or by doping InP with elements such 
as Cu. Cu+ doping results in an efficient, broad emission that is spec-
trally tunable with doping concentration187,192. Given their large Stokes 
shift, Cu-doped InP QDs have also raised interest for luminescent solar 
concentrators155,191 (Fig. 6c).

Coherent and quantum light
QDs are promising active materials for optical amplifiers, super lumi-
nescent diodes and lasers19. Optical gain and lasing from QDs have 
been intensely studied over the past two decades19,346, and the develop-
ment of gain in CdSe is now well understood347. Although the physics of 
gain in InP is expected to be similar to that of CdSe given their similar 
electronic structures, it remains much less studied in InP QDs. Gain, 
amplified spontaneous emission and lasing have been observed in InP/
ZnSe1−xSx QDs (Fig. 7a–c), but loss processes such as trapping and Auger 
recombination severely limit gain. In addition, the effective (band edge) 
degeneracies in InP/ZnSe1−xSx QDs remain far from understood255,348.

Highly efficient InP-based QDs with robust optical performance 
in the multi-exciton regime and with well-controlled degeneracies 
are yet to achieved. Further studies on size and shape effects, and on 
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compositionally graded and strain-engineered heterostructures, might 
address this gap227–229,257–262. Alternatively, type II structures allowing for 
single-exciton gain could be envisaged295.

QDs are also promising emitters for single-photon and 
entangled-photon sources23,334,349,350. For efficient generation of 
undistinguishable single photons, the optical coherence time needs 
to approach twice the spontaneous emission lifetime. The genera-
tion of entangled photon pairs, instead, can be achieved through the 
bi-exciton–exciton cascade350–353, known to occur in InAs QDs354,355. 
The development of such light sources using InP QDs is an outstand-
ing challenge, with only few studies observing fast dephasing ascribed 
to phonons356–360, and will require not only improved QD design but 
also optimized device architectures and efficient fabrication meth-
ods. Nevertheless, high-purity single-photon emission was observed 
in InP/ZnSe QDs under intense continuous-wave pumping (Fig. 7d), 
owing to the combination of efficient luminescence and efficient Auger 
recombination of multi-excitons. This result highlights the potential 
of these systems for on-demand (incoherent) single-photon sources 
operating at room temperature361.

Finally, super luminescence from QD arrays is an emerging subject 
of research362,363. Although InP QD arrays, specifically, have not been 
investigated in this regard, super luminescence was observed from a 
single tetrapod-shaped InP QD with long arms and ascribed to excitons 
in different arms interacting through quantum tunnelling364 (Fig. 7e).

Outlook
The quality of InP QDs has improved considerably, especially over the 
past decade. Today, InP QDs emitting in the visible are manufactured 
at industrial scale for the LED market. However, many aspects of their 
quality still lag behind those of II–VI or halide perovskite QDs and do 
not meet expectations for applications, including LEDs. In other words, 
their current commercial appeal still primarily lies in their compli-
ance, in terms of elemental composition, with regulations on consumer 
electronics. Improving the quality of InP-based QDs is therefore key 
to making them more competitive in the technological market. This 
requires advances on multiple fronts.

First, fundamental understanding about the electronic structure 
of InP-based QDs remains scarce, which limits the design of these 
QDs for specific applications. In addition, their rich but often poorly 
controlled structure complicates understanding of their structure–
property relationships and hence their applicability. Specifically, 
further investigations are required to understand how their size, 
shape, phase and composition affect the density of states, exciton 
fine structure, structural dynamics, electron–phonon coupling and 
related quantities such as the fundamental linewidths and coherence 
times, emission lifetimes, Auger recombination of multiple excitons, 
polarization of the emitted light and so on.

To fill this void, ambitious structure–property studies using 
state-of-the-art know-how will be required as well as new synthetic 
methods that produce InP QDs with desired size, shape, phase and com-
position (in the core, at surface, at the core–shell interface and also in 
terms of doping levels). Given the commercial interest of these QDs, 
safe, robust and scalable methods allowing the production of these 
QDs at full reaction yields and at reduced costs would also be highly 
valuable.

The surface of InP QDs also remains largely unexplored and can 
be engineered towards achieving high brightness, improved sta-
bility or highly conductive films. Other functionalities may also be 
incorporated by modifying the surface such as chirality (such as for 

polarization-selective photodetectors) or biological activity (such as 
for theranostics).

The library of core–shell structures must be expanded to sur-
pass current limitations in terms of efficiency, linewidths, brightness, 
compactness, gain, coherence, stability (chemical, electrochemical, 
doping, thermal) and so on. So far, InP/ZnSe1−xSx core–shell QDs have 
attracted the most popularity, but their performance and range remain 
limited. Nevertheless, a wide window of interesting opportunities 
remains rather unexplored, such as all-III–V QDs (including alloys).

Finally, applications beyond visible LEDs should be further 
explored and optimized. These applications include lasers, infrared 
technologies, photocatalysis, piezochromism, solution-processed 
electronics and others.

Published online: 12 October 2023
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