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a b s t r a c t

Intentionally blocking the path of fully automated vehicles is an important dimension of
pedestrians’ receptivity towards these vehicles. The monetary value of this behaviour
can be obtained by asking pedestrians about their perception of the ‘‘fine” for blocking
the path of a fully automated vehicle. Econometric modelling of the reported fine can shed
more light on factors influencing pedestrians’ receptivity towards fully automated vehicles.
However, development of such an econometric model is not straightforward due to the
unique characteristics of the dependent variable: it has two fundamentally different states;
it is right-truncated; and it may be fat-tailed. Despite fairly extensive methodological
advancements in econometric modelling of pedestrian behaviour, there is no model that
can adequately explain these characteristics. While a beta distribution in a hurdle setting
has the potential to address the above complexities, its applicability in dealing with limited
dependent variables in transport applications has remained, by and large, unexplored.
This study aims to fill this gap by developing a new beta hurdle regression model that

systematically considers the dual-state of a right-truncated dependent variable represent-
ing the fine associated with intentionally blocking a fully automated vehicle. The hypoth-
esized model is empirically tested using data obtained from a survey administered in
Queensland, Australia, and the results are compared with truncated lognormal, and trun-
cated lognormal hurdle regression models. Results indicate that the hurdle models are
superior to the non-hurdle model. The beta variant of the hurdle model provides a better
statistical fit for the data that are near their right limit. In addition, parametrizing the vari-
ance of the beta distribution captures the additional heterogeneity in the data. Age, gender,
education level, violations, attitudes, behaviours that appease social interactions, and per-
ceived ease or difficulty of interacting with fully automated vehicles influence the likeli-
hood and/or the propensity of the fine and thus are associated with the perceived
monetary value of intentionally blocking the path of a fully automated vehicle.
� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Background

Understanding road users’ receptivity towards fully automated vehicles, is paramount prior to their adoption in urban
transport networks. Many studies have investigated such receptivity by designing hypothetical experiments and applying
psychosocial theories such as the Technology Acceptance Model (Davis, 1985; Davis et al., 1989), the Theory of Planned
Behaviour (Ajzen, 1991), and the Unified Theory of Acceptance and Usage of Technology (Venkatesh et al., 2012) in order
to identify the behavioural factors that are associated with the intention to use fully automated vehicles in the near future.
Some examples of these factors are attitudes (favourable attitudes towards fully automated vehicles), social influence or sub-
jective norms (perceptions that an important other would approve the behaviour), perceived usefulness, and perceived ease
of use (Buckley et al., 2018; Kaye et al., 2020b; Madigan et al., 2017). In addition, many studies have examined public per-
ceptions and preferences towards fully automated vehicles (e.g., Ahmed et al., 2020; Bansal et al., 2016; Haboucha et al.,
2017; Moody et al., 2020; Sheela and Mannering, 2020; Woldeamanuel and Nguyen, 2018). For example, Ahmed et al.
(2020) recruited individuals in the United States and explored their perceptions of safety benefits and concerns of fully auto-
mated vehicles. Their findings revealed that demographics, opinions, and past crash experiences influence public perceptions
towards these vehicles. Further, Bansal et al. (2016) assessed the opinions of another group of respondents in the United
States about connected and fully automated vehicle technologies. They found that while most respondents would like to
drive automated vehicles along freeways or highways, half of the respondents were very worried about equipment or system
failures in these vehicles. They also found that age, gender, number of children, and living in higher-income neighbourhoods
are associated with the willingness to pay more money to add automation in vehicles. In a broader study, Haboucha et al.
(2017) used a sample of individuals in the United States, Canada, and Israel, and found that older respondents and those
who enjoy driving would prefer using their regular vehicle as opposed to an automated vehicle. On the contrary, respondent
with a higher education are more likely to report favouring automated vehicles than their regular vehicle. Finally, Moody
et al. (2020) surveyed a large number of respondents across 51 countries and found that age, gender, education level,
employment status, average household income, and awareness of automated vehicles are associated with safety perceptions
towards these vehicles.

However, most of the above studies have focused on drivers’ intentions for using fully automated vehicles and only
recently has research started to assess pedestrians’ receptivity towards these vehicles (Velasco et al., 2019; Deb et al.,
2017a; Deb et al., 2017b). In doing so, crossing the road in front of a fully automated vehicle has been used as an example
of pedestrians’ behavioural interaction with these vehicles (Kaye et al., 2021). Deb et al. (2017b) proposed a conceptual
model for such behaviour and found that attitudes, social norms, system effectiveness, trust and personal innovativeness sig-
nificantly influence pedestrians’ intentions to cross in front of a fully automated vehicle. Velasco et al. (2019) also found that
pedestrians who reported higher ratings of perceived behavioural control (perceived ease of use) and trust in fully auto-
mated vehicles reported higher crossing intentions. Rothenbücher et al. (2016) and Palmeiro et al. (2018) investigated the
differences in pedestrians’ gap acceptance behaviour in crossing the road in front of a fully automated vehicle with that
of a conventional vehicle. While they found no significant difference in the gap acceptance behaviour of participants against
the two types of vehicles, their findings were significantly influenced by the differences in the appearance of these vehicles.
Finally, Razmi Rad et al. (2020) investigated the yielding behaviour of pedestrians when crossing in front of a fully automated
vehicle and found that the probability of crossing decreases with smaller time gaps.
1.1. Intentionally blocking a fully automated vehicle

While the above studies have provided an initial understanding of the psychosocial factors associated with pedestrians’
receptivity towards fully automated vehicles, much is still unknown about pedestrians’ expectations and behavioural adap-
tation to the presence of these vehicles on the roads. In particular, intentionally crossing the road in front of a fully auto-
mated vehicle is an important dimension of pedestrians’ receptivity that has been relatively unexplored. Fully automated
vehicles will be risk-averse and thus pedestrians will be able to behave with impunity when interacting with these vehicles
due to the secure knowledge that they will yield (Millard-Ball, 2018). This intentional behaviour may represent taking
advantage or oppression towards fully automated vehicles (Liu et al., 2020) and may lead to traffic delays, risky events
(for the pedestrian and for the vehicle), and ultimately results in substantial societal and monetary costs.

In the conventional traffic environment, legislation and enforcement are routinely applied as effective interventions to
deter road users from taking advantage of one another. Legislation communicates the behavioural standards with the road
users, whilst enforcement encourages road users to comply with those standards by applying a penalty for non-compliance
(Oviedo-Trespalacios and Watson, 2021). Despite these interventions, conflicts and interactions often occur between pedes-
trians and motorised vehicles. For example, a pedestrian ‘‘forcing” a vehicle to yield by leaving the kerb and stepping onto
the road. This is a relatively common behaviour on urban roads and is generally not considered a traffic violation in some
jurisdictions. This interaction often involves the exchange of human cues between the driver and the pedestrian, which
may be visual (e.g. gestures, signs) or auditory (e.g. talking, honking). However, these forms of communication may not
be available when interacting with fully automated vehicles without a human driver. The lack of possibility for this type
2
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of ‘‘negotiation” with a fully automated vehicle, also referred to as ‘‘forward incompatibility” (Van Loon and Martens, 2015),
may be one reason that would bring the pedestrian in the position of being ‘‘accountable” for any delays or risk induced by
intentionally blocking the path of the fully automated vehicle. Another reason is the general argument that intentional vio-
lations against normal operation of automation, such as deliberate disengagement of autopilot by a human driver, should not
be expected to be manageable by automation (Noy et al., 2018); intentionally blocking the path of a fully automated vehicle
may be considered as such. However, very little is known about the acceptance of these legislative measures among pedes-
trians in the context of fully automated vehicles.

While the combination of evidence-based legislation and police enforcement, along with supporting public education, can
prevent pedestrians from intentionally blocking the path of fully automated vehicles, it seems difficult to reach a consensus
about the monetary value of this behaviour on a theoretical basis. An alternative approach to solve this dilemma can be to
empirically ask pedestrians about their perception of the ‘‘fine” associated with this behaviour, should these vehicles be on
the roads. This approach has been used in the transport policy literature and behavioural science to provide the value of a
certain illegal behaviour among road users (Sahebi et al., 2019). Econometric modelling of the reported fine in this approach
can then provide deep insight about how pedestrian characteristics influence their behavioural adaptation towards fully
automated vehicles and can help develop well-accepted policies by the community and reduce resistance against the
policies.

1.2. Econometric modelling of the value of fines

In experimental studies of pedestrian behaviour, the dependent variable representing the fine for intentionally blocking
the path of a fully automated vehicle can be derived from a series of questions such as ‘‘do you think the [intentional blocking]
behaviour should be fined?” followed by ‘‘if yes, how much do you think should be the fine?” in a survey. Econometric modelling
of such a dependent variable is, however, confronted with unique complexities as in the following.

First and foremost, the dependent variable extracted from the above questions has two states that are theoretically dif-
ferent: the zero state and the positive state. The zero state is associated with the belief that the intentional behaviour should
not be fined whereas the positive state is associated with the propensity for the monetary value of the fine for that inten-
tional behaviour. As a result, the data generating processes behind these two states are fundamentally different. Hurdle
regression models have been proposed in the statistical literature to address this complexity (Gurmu, 1997). These models
rely on the key assumption that the zero values of a random variable have a separate probability of occurrence than the non-
zero values. As a result, the probability of the zero values is obtained using a binary regression and the probability of non-
zero values is obtained using a separate generalized regression model.

Hurdle regression models have been widely used in the road safety literature, where they are mostly referred to as zero-
inflated models for modelling crash frequency. In this context, zero-inflated models address the implications of excessive
zeros in road crash observations, by assuming that the observations include two different states: a ‘zero’ state (also referred
to as ‘normal operations’, or ‘safe’ state) in which the probability of crash occurrence is very low and thus indistinguishable
from zero, and a ‘non-zero’ (or ‘crash prone’) state with a typical Poisson-family crash data generating process e.g. Poisson or
Negative Binomial distribution (Katrakazas et al., 2020; Malyshkina and Mannering, 2010). In many applications with vary-
ing context-specific formulations, zero-inflated models provide superior statistical fit (Ma et al., 2016; Hong et al., 2019; Yu
et al., 2019; Ma et al., 2019; Dong et al., 2014; Cai et al., 2016); however, they are often criticized for certain theoretical and
statistical shortcomings. First, it is noted that a zero-crashes state cannot exist truly and constantly over time, and introduc-
ing serial correlation among crash observation or random parameters in the model may significantly reduce the probability
of being in the ‘zero’ state (Aguero-Valverde, 2013; Chen et al., 2016). Lord et al. (2005) argue that excessive zero crash obser-
vations may be due to other factors, such as low exposure, small spatial scale, and under-reporting. Second, it is noted that
the superior fit may be a result of over-fitting, since the zero-inflated specification induces a number of additional model
parameters, not always ‘penalized’ by the used goodness-of-fit measures (Washington et al. 2020; Lord et al., 2007).

Despite numerous applications of the hurdle model in crash frequency analysis, only a few studies have adopted this
methodology for crash severity analysis. Malyshkina and Mannering (2009) developed a double state Markov switching
model of crash injury severity in order to account for two unobserved states of roadway safety as a means of accounting
for potential unobserved heterogeneity. They found that the double state model outperforms the single state model in terms
of statistical fit. Xiong et al. (2014) developed a similar model to accommodate time-varying and time-constant unobserved
heterogeneity in crash injury severity analysis and also found that the double state model outperforms the single state
model. Jiang et al. (2013) developed a double state zero-inflated ordered probit model to account for two distinct sources
of injury severity: injury propensity and injury severity. They found that the double state model provides additional insight
about the effects of explanatory variables on the injury severity of crashes.

Nonetheless, a relevant conclusion from the road safety literature is that the use of hurdle models is recommended as
long as there is ‘‘a logical consistency between the dual-state process and the underlying state of causal processes” (Lord
et al., 2007). Therefore, they are well justified for modelling the fines in this study.

Another complexity of modelling the fines extracted from the above questions is related to their probability density in the
positive state. The dependent variable in this state is bounded below a certain limit. This complexity is due to the experi-
mental nature of the study where a limit has to be set to ask participants’ opinion about the fine for the targeted intentional
behaviour. The aim of the study is, however, to make inferences about a larger population (those who would have provided
3
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any non-negative value of the fine) from a sample that is drawn from a distinct subpopulation (those who responded below
the limit defined in the survey). This property which is referred to as truncation in the statistical literature (Greene, 2003)
can result in biased parameter estimates if not accounted for in econometric modelling of the fines. Truncated regression
models (distinguished from censored regression models1) are commonly used to address this complexity by assuming a trun-
cated distribution for the limited dependent variable (Johnson et al., 1995) (more on this will be presented in the next section).
For example, truncated lognormal distribution has been widely used in transport applications for modelling positive limited
dependent variables such as travel time, vehicle speed, and traffic capacity (Wang et al., 2012; Weng and Yan, 2016). However,
the limited dependent variables in the previous applications of this distribution have all been heavy-tailed. Indeed, the lognor-
mal distribution is well suited for the random variables whose probability densities decay as their values increase (Crow and
Shimizu, 1987). However, this assumption may not always hold for truncated dependent variables because truncation, by def-
inition, requires that the data are piled up around the limits. As a result, the distribution of the variable may be ‘‘fat-tailed”
(Ready and Hu, 1995) meaning that the values that are farther from the mean may still have relatively high probability of
occurrence.

Alternatively, beta distribution can be used as the distribution of fines in the positive state. The beta distribution has been
widely used in various disciplines (Gupta and Nadarajah, 2004) for random variables that are proportions and hence are
bounded between zero and one. As such, this distribution has the potential to be used for modelling a limited dependent
variable if it is transformed into a proportion. This transformation can be easily achieved by dividing the variable by the max-
imum value in the experiment. In return and in contrast to the lognormal distribution which has a shape (mean) and a scale
(variance) parameter, the beta distribution has two shape parameters with which its mean and variance are obtained. As a
result, the beta distribution may be more flexible in covering a wider range of values in the data. In addition, the variance of
the beta distribution can be easily parameterized as a function of covariates and in turn can help explain the additional
heterogeneity in the data. In spite of these appealing properties, the applicability of the beta distribution for modelling
non-negative limited random variables in transport applications has been, by and large, unexplored.
1.3. Study objectives

Econometric modelling of the (perceived) fine associated with a pedestrian intentionally blocking the path of a fully auto-
mated vehicle can shed more light on pedestrian interactions with these vehicles in the near future of transport networks.
However, development of such an econometric model is not straightforward because of the unique characteristics of the
dependent variable: (1) it has two fundamentally different states; (2) it is right-truncated; and (3) it may be fat-tailed.
Despite fairly extensive methodological advancements in the econometric modelling of pedestrian behaviour, there is no
model that can adequately explain these characteristics. While a beta distribution in a hurdle setting has the potential to
address the above complexities, its applicability in dealing with limited dependent variables in transport applications has
remained unexplored. This study aims to fill this research gap by developing a new beta hurdle model that systematically
considers the dual-state of a right-truncated dependent variable representing the fine associated with intentionally blocking
the path of fully automated vehicles. The model is specified with random parameters to address unobserved heterogeneity in
data. The hypothesized model is then empirically tested using data obtained from a survey administered in Queensland, Aus-
tralia, and the results are compared with the state-of-the-art econometric models for handling limited dependent variables
including truncated lognormal regression, and truncated lognormal hurdle regression models.

It is worth emphasizing that while the proposed framework in this study, in and of itself, contributes to empirical
research about pedestrians’ receptivity towards fully automated vehicles, the main focus of the study is methodological
development of a new econometric model. We employ the empirical data which have been originally collected for a more
general purpose, to show the applicability of the proposed beta hurdle model and compare its performance with that of the
other model candidates.
2. Methodology

Let Y be the dependent variable representing the fine associated with intentionally blocking the path of a fully automated
vehicle in this study. This dependent variable is bounded between zero and an upper limit. It is hypothesized that a random
parameters beta hurdle regression model can adequately capture such a bounded dependent variable and its complexities.
This hypothesis will be tested by comparing the performance of this model against empirical data with that of alternative
econometric models in the literature (truncated regression models) but prior to that, the specification details of these models
are presented in the following.
1 Censored regression models are also used to address limited dependent variables in the statistical literature (Greene, 2003). However, these models rely on
the key assumption that there is partial information about the dependent variable in the data (it is known that the variable is bounded beyond certain limits,
but it is not known how far above or below those limits (Koul et al., 1981). However, the dependent variable in this study is not censored because it does not
include any observations that are beyond its limits. As such, censored regression models are not within the scope of this study.
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2.1. Beta hurdle regression model

The hurdle regression model is constructed by using a hurdle between zero and positive values of the dependent variable
and using different probabilities for these two states:
f Y ¼ yjp; hð Þ ¼ 1� p; y ¼ 0
pf yjhð Þ; y > 0

�
ð1Þ
where 0 � p � 1 is the probability that the dependent variable is positive, f yjhð Þ is the probability density of the dependent
variable given that it is positive, and h is the parameters of the model. The log likelihood function of this hurdle model can be
presented in two layers and as the sum of two log likelihood functions with disjoint parameters (Ma et al., 2016):
LL y;p; hð Þ ¼
X
y¼0

log 1� pð Þ þ
X
y>0

pf yjhð Þ ¼
X
y¼0

log 1� pð Þ þ
X
y>0

log pð Þ
" #

þ
X
y>0

f yjhð Þ ¼ LL1 pjyð Þ þ LL2 hjyð Þ ð2Þ
As a result, the hurdle regression model can be estimated by maximizing the two layers individually.
In the first layer, zero values of the dependent variable are treated as one category (zero) and the remaining positive val-

ues are treated as another category (non-zero). A random parameters binary logistic regression model is employed to deter-
mine the probability of positive category in the data. Assuming a logit function between the binary dependent variable and
explanatory variables, the probability of ith observation being positive can be presented as:
p ¼ 1

1þ e� xt
i
bið Þ ð3Þ
where bi is the vector of parameters and xti is the (transposed) vector of explanatory variables. To account for the unobserved
heterogeneity in the effects of explanatory variables on the dependent variable, the parameters of explanatory variables are
allowed to vary across observations and thus are introduced with a probability density function, g bið Þ, across the sample
(Oviedo-Trespalacios et al., 2020). Maximum simulated likelihood estimation is used to estimate the above random param-
eters binary logistic regression model in the first layer (Bhat, 2001).

In the second layer, the observed values of the response variable in the non-zero state of the first layer are used and a
probability density function, f yjhð Þ, is selected based on a distributional assumption for these observed values. In doing
so, the values of the dependent variable are transformed into proportions (out of the maximum value) and thus are assigned
a beta distribution:
f yjhð Þ ¼ C aþ bð Þ y
a�1ð Þ 1� yð Þ b�1ð Þ

C að ÞC bð Þ ð4Þ
where C is the gamma function and a and b are the parameters of the beta distribution. The expectation of beta distribution
is equal to E Yi½ � ¼ l ¼ a

aþb. Using a logit link function, the expectation of the dependent variable can be expressed as a func-
tion of exogenous covariates:
li ¼
1

1þ e� zt
i
kið Þ ð5Þ
where ki is the vector of parameters (also allowed to vary across observations in the same fashion as previously stated) and zti
is the (transposed) vector of covariates. In addition, the variance of the beta distribution VAR Yi½ � ¼ r2 ¼ ab

aþbð Þ2 aþbþ1ð Þ is also

specified as an exponential function of exogenous covariates to help capturing the heterogeneity of variance:
r2 ¼ em
t
i
c ð6Þ
where c is the vector of parameters and mt
i is the vector of covariates. The second layer is also estimated individually using

maximum simulated likelihood estimation approach. The overall model –layer one and layer two– is referred to as the ran-
dom parameters Beta hurdle regression model in this study.

2.2. Truncated lognormal regression model

The truncated regression model can be constructed by assuming a truncated distribution for the dependent variable in a
regular generalized linear regression model. This truncated distribution is, indeed, a part of an untruncated distribution
which is below (and/or above) a certain value. The dependent variable in this study is right-truncated which means that
its corresponding values are less than or equal to a limit –denoted by c. The probability density function of such a right-
truncated dependent variable can be obtained as (Greene, 2003):
f Y ¼ yjy � cð Þ ¼ f y � cð Þ
F cð Þ ð7Þ
5
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where f :ð Þ and F :ð Þ are probability density and cumulative probability density functions of the untrunacted dependent vari-
able, respectively. The dependent variable in this study is non-negative and so lognormal distribution is used to construct a
truncated lognormal regression model. The choice of the lognormal distribution among all non-negative distributions is
motivated by its simplicity in implementation (Embrechts et al., 2013). The probability density function of the lognormal
distribution can be stated as:
f yjhð Þ ¼ 1ffiffiffiffiffiffiffi
2p

p
yr

exp � ln yð Þ � lð Þ2
2r2

" #
ð8Þ
where l and r2 are the mean and the variance of the corresponding normal distribution. Using a linear link function, the
mean can be linked with explanatory variables:
l ¼ xtibi ð9Þ

where bi is the vector of parameters and xti is the (transposed) vector of explanatory variables. The parameters are introduced
with a probability density function, g bð Þ, to account for unobserved heterogeneity in data. Replacing Eq. (9) in Eq. (8), and
then Eq. (8) in Eq. (7), the probability density function of the random parameters right-truncated lognormal model can be
obtained as:
f Y ¼ yjy � cð Þ ¼
1ffiffiffiffi

2p
p

yr exp � ln yð Þ�lð Þ2
2r2

h i
R c
0

1ffiffiffiffi
2p

p
yr exp � ln yð Þ�lð Þ2

2r2

h i
dy

g bð Þ ð10Þ
The log likelihood function of this model can then be expressed as:
LL ¼
X

log
Z

f yjy � cð Þg bð Þdb
� �

ð11Þ
This log likelihood function does not have a closed form either and is estimated using the maximum simulated likelihood
estimation approach. In order to be consistent with the beta hurdle model, the values of the dependent variable in the right-
truncated lognormal model are also transformed into proportions (out of the maximum value) and thus the right limit of the
data is set to one (c ¼ 1) in this model.

2.3. Measures of statistical Goodness-of-Fit

To test the performance of the above models, their statistical fit to empirical data is evaluated and compared with one
another. For models that have the same likelihood structure (variants of the hurdle model or variants of the truncated
model), Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are employed to compare their statis-
tical fit (Washington et al., 2020):
AIC ¼ �2LLþ 2P ð12Þ

BIC ¼ �2LLþ Pln Nð Þ ð13Þ

where LL is the log-likelihood of the estimated model at convergence, P is the number of estimated parameters, and N is the
number of observations or sample size. The model with lower AIC and BIC is regarded as a superior model in terms of sta-
tistical fit. However, AIC and BIC are not comparable between the models that have different likelihood structures (hurdle
versus truncated models). As such, Mean Absolute Deviance (MAD) and Mean Squared Predictive Error (MSPE) are used

to compare the performance of the latter models. Suppose, Yi and bYi are the observed and the predicted values of the depen-
dent variable for respondent i. The MAD and MSPE are calculated as (Washington et al., 2020):
MAD ¼ 1
N

XN
i¼1

jYi � bYi j ð14Þ

MSPE ¼ 1
N � P

XN
i¼1

Yi � bYi

� �2
ð15Þ
where N is the sample size and P is the number of estimated parameters. The model with smaller MAD and MSPE is usually
preferred over the other models.

2.4. Principal component analysis

In estimating all of the above models, many behavioural variables are used to predict pedestrians’ receptivity towards
fully automated vehicles. However, these variables may have high autocorrelation with one another as previously shown
6
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in the statistical analysis of behavioural data (Huitema, 1986; Huitema and McKean, 1991). Principal Component Analysis
(PCA) is a common approach used in the statistical literature (Tipping and Bishop, 1999) to summarize data and overcome
this problem (Henry and Hidy, 1979). The PCA creates a set of new variables, referred to as principal components (PC), each of
which is a linear and orthogonal combination of the original variables in such a way that each orthogonal combination cap-
tures the maximum variability in the original set of variables and has the minimum autocorrelation with other linear com-
binations. The principal components can be obtained by applying the orthogonal transformation and finding the
Eigenvectors and Eigenvalues of the Spearman correlation matrix of the original set of explanatory variables. The principal
components are then arranged based on their decreasing contribution to the total variance of the original set of explanatory
variables: the first principal component explains the highest variability in the explanatory variables; the second principal
component explains the second highest variability in the explanatory variables, and so forth (the cumulative contribution
of all principal components is equal to 1). These principal components can then be used in the analysis as representatives
of the original set of variables. The number of principal components to be used in the model depends on the specific research
objective, though the common practice is to use all principal components with Eigenvalues greater than one (Tipping and
Bishop, 1999). However, in the context of this study, the first principal component is selected as the most appropriate rep-
resentative of all items within each category of behavioural variables.
3. Empirical data

To test the applicability of the proposed model, empirical data were collected for pedestrians in this study through an
online survey administered in Queensland, Australia. The target population was pedestrians aging 18 years or older and
residing in Australia. Screening questions (age and residential country) were asked before they started the survey so that
the collected sample align with the target population. Participants were asked about their prior knowledge of automated
vehicles before they started answering questions related to them. The collected data included participants’ demographics,
past behaviour on roads, their receptivity towards fully automated vehicles and their perception of fine for intentionally
blocking the path of a fully automated vehicle.

The demographic questions included age, gender, education level, walking time and past crash experience. The behaviour
questions were adopted from the Pedestrian Behaviour Questionnaire (Deb et al., 2017a) to measure pedestrians’ violations
(4 items), errors (4 items), lapses (4 items), aggressive behaviours (4 items) and positive behaviours –those behaviours that
appease social interactions (4 items). These items were all answered on a 6-point Likert scale, where 1 = ‘‘very infrequently
or never”, 2 = ‘‘quite infrequently”, 3 = ‘‘infrequently”, 4 = ‘‘frequently”, 5 = ‘‘quite frequently”, and 6 = ‘‘very often or always”.
The receptivity questions investigated the participant’s perception about crossing the road in front of a fully automated vehi-
cle. These questions included attitudes (4 items), trust (5 items) and perceived ease of use (2 items). Attitudes is one of the
main components of the Theory of Planned Behaviour (Ajzen, 1991), which measures individual’s overall positive or negative
feelings toward fully automated vehicles. Perceived ease of use is a key construct of the Technology Acceptance Model which
measures the individual’s perception of the extent to which interacting with a fully automated vehicle will be free of effort
(Davis and Venkatesh, 1996). Trust measures the individual’s belief that a fully automated vehicle can perform its intended
task efficiently, and it is identified as an important influencing factor of automation acceptance in the Automation Accep-
tance Model proposed by Ghazizadeh et al. (2012).

Attitudes were measured using a 7-point semantic differential scale (Kaye et al., 2020a) whereas trust and perceived ease
of use were measured using a 7-point Likert scale (1 = ‘‘strongly disagree”, 2 = ‘‘moderately disagree”, 3 = ‘‘somewhat dis-
agree”, 4 = ‘‘neutral”, 5 = ‘‘somewhat agree”, 6 = ‘‘moderately agree”, and 7 = ‘‘Strongly agree”). Lastly, participants were
asked whether they ‘‘think that pedestrians intentionally blocking the path of a fully automated vehicle should be fined
or punished”. If the participants answered ‘‘Yes”, they were asked the following question, ‘‘how much should be the fine?
(from 1 Australian dollars to 1000 Australian dollars)”, and an integer number between 1 and 10002 was required to be
selected. The complete questionnaire is presented in the Appendix.

The questionnaire was created using the Qualtrics online survey design platform (http://www.qualtrics.com). A conve-
nience sampling method was used, and the survey was distributed through multiple channels. A global online market search
firm, Dynata (http://www.dynata.com), was invited to provide survey administration and dissemination, as well as data col-
lection and cleaning services. The online survey was also disseminated using social media (e.g., Facebook, Twitter) and elec-
tronic mail through the university mailing lists. The data were collected from October 2019 to December 2019.

A total of 469 individuals participated and completed the survey. The collected sample includes an even distribution of
males and females. Participants are minimum 18 years and maximum 85 years old and their average age in the sample is
35.4 years. One third of the participants had a bachelor’s degree or higher. More than one third of the participants reported
2 This value was selected as the upper limit in the survey because a fine of 1000 Australian dollars is considered to be high in Australia and is unlikely to be
implemented. Additionally, at the time of the study, the fine for handheld mobile phone use while driving in Australia was set at 1000 Australian dollars
followed by a massive public education campaign. So, we suspected that this value was part of the public discourse already. Although higher values of the fine
could have been considered in the survey, it is very unlikely that those higher values would have been reported because 1000 Australian dollars is already 82%
of the average weekly total earnings of a person in the country. The mean, the standard deviation, and the 97th percentile of the reported fines across the
sample are 185.9, 222.6 and 995.1 Australian dollars, respectively. These descriptive statistics show that reporting a value of fine higher than 1000 Australian
dollars is very unlikely in the sample data in this study.

7

http://www.qualtrics.com
http://www.dynata.com


Table 1
Descriptive statistics of variables used in this study (sample size = 469, number of records with zero fines = 105, number of records with non-zero fines = 364).

Continuous variables Mean
(Zero/Non-Zero)

S. D.
(Zero/Non-Zero)

Min
(Zero/Non-Zero)

Max
(Zero/Non-Zero)

Fine (Australian Dollars) 185.9
(0, 239.6)

222.6
(0, 225.9)

0
(0, 1)

1000
(0, 1000)

Age (Years) 35.4
(35.095, 35.485)

16.4
(16.049, 16.517)

18
(18, 18)

85
(80, 85)

Pedestrian behaviour on road
Violations (4 items) (6-Point likert scale)* 2.447

(2.700, 2.374)
1.106

(1.203, 1.067)
1

(1, 1)
6
(6, 6)

Errors (4 items) (6-Point likert scale) 1.707
(1.919, 1.646)

0.734
(0.872, 0.678)

1
(1, 1)

5.25
(5.25, 5.25)

Laps (4 items) 6-Point likert scale) 1.386
(1.445, 1.369)

0.702
(0.758, 0.686)

1
(1, 1)

5
(4.25, 5)

Aggressive behaviours (4 items) (6-point likert scale) 1.421
(1.507, 1.396)

0.654
(0.758, 0.619)

1
(1, 1)

5.25
(4.5, 5.25)

Positive behaviour (4 items) (6-Point likert scale) 4.139
(3.888, 4.211)

1.007
(1.086, 0.973)

1
(1, 1)

6
(6, 6)

pedestrian receptivity towards fav
attitudes (4 items) (7-point semantic differential scale)** 4.437

(3.838, 4.609)
1.645

(1.558, 1.630)
1

(1, 1)
7
(7, 7)

Trust (5 items) (7-point likert scale)** 3.865
(3.539, 3.959)

1.399
(1.413, 1.383)

1
(1, 1)

6.8
(6.6, 6.8)

Perceived ease of use (2 items) (7-point likert scale) 3.956
(3.814, 3.997)

0.744
(0.725, 0.746)

1
(1, 1)

7
(6, 7)

Binary variables Sample Share (Zero/Non-Zero)

Gender (1: male, 0: female) 0.544 (0.562, 0.538)
Education: (1: university or more, 0: otherwise) 0.316 (0.476, 0.393)
Walking time in a week (1: more than 5 h per week, 0: otherwise) 0.209 (0.229, 0.203)
Crash experience in the past two years (1: at least one crash, 0: zero crash) 0.333 (0.324, 0.335)
Have heard the term ‘‘automated vehicles” before? (1: yes, 0: no) 0.921 (0.895, 0.929)

*: 1 = ‘‘very infrequently or never”, 2 = ‘‘quite infrequently”, 3 = ‘‘infrequently”, 4 = ‘‘frequently”, 5 = ‘‘quite frequently”, and 6 = ‘‘very often or always”.
**: 1 = ‘‘strongly disagree”, 2 = ‘‘moderately disagree”, 3 = ‘‘somewhat disagree”, 4 = ‘‘neutral”, 5 = ‘‘somewhat agree”, 6 = ‘‘moderately agree”, and
7 = ‘‘Strongly agree”.
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a hit or a near-hit by a car while walking on the road in the past two years. About 92% of participants reported they had heard
of automated vehicles before while the remaining 8% reported that they had not heard of the term until they joined the
study. In addition, about 25% of responses to the trust questions were missing completely at random (MCAR) and thus were
replaced by their arithmetic means (Afghari et al., 2019). Lastly, 22.4% (105 out of 469) of participants reported that there
should be no fine for intentionally blocking the path of a fully automated vehicle (they responded with a zero fine). The
descriptive statistics of the data used in the study is presented in Table 1.
4. Results and discussion

The beta hurdle regression and the truncated lognormal regression models were estimated against the empirical data and
their performances were compared to assess the suitability of the hurdle setting. In addition, the right-truncated lognormal
distribution was also investigated as the probability density of the positive values of the dependent variable in the second
layer of the hurdle regression model and the performance of the resulting right-truncated lognormal hurdle regression model
was compared with that of the beta hurdle regression model. This comparison can help assess the suitability of the beta dis-
tribution in this study.

In all models, explanatory variables were selected using a stepwise variable selection criterion. In addition, explanatory
variables were tested for multicollinearity by computing the Pearson correlation coefficients, and the variables with unac-
ceptably high (>0.7) correlation coefficients were excluded from the models. The principal component analysis was applied
on the questionnaire items within the same behavioural variable and these items were summarized into orthogonal explana-
tory variables in the models (Afghari et al., 2020). The results of the principal component analysis, the eigenvalues and the
proportion of explained variability are provided in the Appendix Table B1 and B2.

All models were estimated using the maximum simulated likelihood approach with 500 Halton draws. The required num-
ber of Halton draws was selected so that further increasing the number of draws does not change the estimates significantly.
Although normal, lognormal, Weibull and uniform distributions were tested as the distributions of the random parameters
in all of the models, Normal distributions provided a slightly better model performance compared to the other distributions.
The performance of model candidates is assessed from two perspectives: (i) statistical goodness-of-fit, and (ii) parameters
estimates.
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Table 2
Results of goodness-of-fit measures for hurdle regression models versus right-truncated regression model.

Random Parameters Hurdle Regression Model Random Parameters Truncated
Lognormal Regression Model

Beta Truncated Lognormal

N (sample size) 469 469 469
P (number of estimated parameters) 21 15 5
Log likelihood of the null model �156.2 �73.3 428.7
Log likelihood at convergence �106.5 �62.0 446.2
AIC 255.1 154.2 �882.4
BIC 339.1 214.7 �861.7
MAD 0.163 0.159 0.170
MSPE 0.049 0.046 0.051
MADZ 0.075 0.075 0.187
MSPEZ 0.019 0.019 0.037

MADZ: Mean absolute deviance for zero fines.
MSPEZ: Mean squared predictive error for zero fines.
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4.1. Statistical goodness-of-fit

The results of the statistical fit measures for all models are presented in Table 2. Both of the hurdle models have lower
MAD and MSPE compared to the non-hurdle truncated lognormal regression model suggesting that the hurdle setting has
resulted in an improved statistical fit in comparison with the non-hurdle setting. The hurdle models have substantially lower
MAD and MSPE for the zero values of the dependent variable in comparison with the non-hurdle model. This finding is con-
sistent with the primary goal of the hurdle model and confirms our hypothesis that the zero values of the fine are generated
by a separate process than the non-zero values.

Between the two hurdle models, the right-truncated lognormal hurdle model has lower AIC and BIC (154.2 and 214.7,
respectively) and lower MAD andMSPE (0.159 and 0.046, respectively) compared to the beta hurdle model. This finding indi-
cates that the right-truncated lognormal distribution has a better overall performance than the beta distribution for the lim-
ited dependent variable. However, all of the aforementioned measures of fit (AIC, BIC, MAD and MSPE) reflect the overall
goodness-of-fit for a model and do not show the longitudinal model performance (model performance across the values
of the dependent variable). Such an overall comparison may not reveal the main strength of the beta distribution in captur-
ing part of the data that are not well captured by the lognormal distribution (the fat-tail below the right limit). As a result
and to shed more light on the longitudinal performance of the models, kernel densities of fitted values, absolute and squared
residuals of models across the non-zero values of the dependent variable are plotted for all three model candidates (Fig. 1
and Fig. 2).

The density plots in Fig. 1 show that both variants of the hurdle model (the blue and the green curves) are superior to the
non-hurdle truncated model (the red curve) in fitting the histogram of the dependent variable. This finding is consistent with
the previously shown goodness-of-fit results. The new finding, however, is that the kernel density of the beta hurdle model
(the green curve) better fits the histogram of the dependent variable than the kernel density of the truncated lognormal hur-
dle model (the blue curve), particularly within the tail of the histogramwhere the proportion of fines is higher than 0.45. The
Fig. 1. Kernel density plots of the predictions versus histogram of the dependent variable.
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Fig. 2. Residual plots across different values of the dependent variable.
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residual plots in Fig. 2 also show that the beta hurdle model results in lower absolute and squared residuals for the values of
the dependent variable that are near its right limit. This finding is in line with our hypothesis in that the beta distribution is
more flexible to capture the fat-tailed values of the data.

Overall, the results of quantitative measures of fit and visualized residuals indicate that the hurdle setting outperforms
the non-hurdle setting and thus the hurdle models are selected as the preferred models in this study. In addition, the choice
of the hurdle models over the non-hurdle model is primarily driven by the nature of the dependent variable and its dual data
generating process (see Section 1.2).
4.2. Estimated parameters of regression models

It is acknowledged that statistical fit should not be the only criterion for model comparison/selection. As such, the regres-
sion results and parameter estimates of all models are also compared in this subsection. These results are shown in Table 3.

The results show that only a few explanatory variables are statistically significant in the non-hurdle right-truncated log-
normal model. These variables include violations, attitudes, and positive behaviours. The estimated parameters for these
variables indicate that lower scores of violations and higher scores of positive behaviours and attitudes are associated with
higher amounts of fine. While the effects of violations and attitudes are fixed across the sample, the effect of positive beha-
viours varies significantly. These findings are intuitive, but they do not distinguish between factors contributing to the pres-
ence/absence of the fine and those contributing to the propensity of the fine.

In contrast, the first layer of the hurdle models provides insight about the factors contributing to the absence/presence of
the fine, in particular. Age, education level, violations, attitudes, and positive behaviours are all statistically significant vari-
10



Table 3
Results of hurdle regression models versus right-truncated regression model.

Explanatory variable Hurdle models Right-truncated
model

First layer
(binary fines)

Second layer (positive fines) Random parameters
truncated lognormal

Beta Right-truncated
lognormal

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat

Constant 1.606 3.920 – – – – – –

Age 0.051
(0.106)

3.850
(7.390)

�0.017 �8.188 �0.027 �8.845 – –

Gender (male) – – �0.423 �4.205 �0.484 �3.109 –

Education (university or more) �0.029
(6.435)

�0.070
(6.650)

– – – – – –

Hours walking (more than 5 h) – – �0.370 �2.526 �0.466 �2.254 – –

Violations – PC1 �0.593 �4.950 �0.172 �4.444 �0.143 �2.574 �0.572 �3.546

Attitudes – PC1 0.635 5.860 0.036
(0.341)

0.786
(6.986)

– – 0.632 4.532

Positive behaviours – PC1 0.524
(2.370)

4.030
(7.050)

�0.103 �2.273 – – 0.414
(0.927)

1.985
(2.230)

Perceived ease of use – PC1 – – �0.238 �3.531 �0.194 �2.699 – –

Variance function of beta distribution
Constant – – 1.267 11.269 – – – –
Violations – PC1 – – 0.224 3.914 – – – –
Positive behaviours – PC1 – – 0.301 3.372 – – – –
Perceived ease of use – PC1 – – 0.152 2.711 – – – –

Variance of lognormal distribution – – – – 1.331 5.260 1.254 32.795

Numbers inside brackets indicate the estimates for the standard deviation of random parameters.
PC1: First principal component.
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ables influencing the likelihood of reporting a zero fine for intentionally blocking the path of a fully automated vehicle. While
the effects of violations and attitudes are fixed across the sample, the effects of age, education levels and positive behaviours
vary significantly. Additionally, the second layer of the hurdle models provides insight about the factors influencing the
propensity of the fine among those participants who believe there should be a fine for intentionally blocking the path of
a fully automated vehicle. The results of this layer indicate that age, gender, walking hours, violations, and perceived ease
of use are significantly associated with the amount of fine. The beta hurdle regression model, in particular, yields statistically
significant estimates for the parameters of attitudes and positive behaviours too, with the former having a varied effect
across the sample. These findings show that the beta hurdle regression model provides more insight about the effects of
explanatory variables on the dependent variable.

Another interesting finding is that the parameters of age and education level are random in the first layer of the hurdle
model. The means and standard deviations of these two parameters indicate that their effects are positive for some partic-
ipants and negative for the others. Interestingly, the parameter of age is negative and the parameter of education level is not
statistically significant in the second layer of the hurdle model. This finding is intuitive considering that the first layer is esti-
mated on all data whereas the second layer is estimated on part of the data (only the positive fines). In addition, the param-
eters of age and education level are not statistically significant in the non-hurdle right-truncated lognormal model
suggesting that the positive and negative parameters neutralize one another in this single-layer model, and hence reinforc-
ing the advantage of using the hurdle setting for the data in this study.

As a final note, the lognormal distribution (in hurdle and non-hurdle models) has a fixed estimated variance whereas the
beta distribution (in the hurdle model) has a heterogeneous variance linked with statistically significant variables including
violations, positive behaviours and perceived ease of use. The parameters of these variables are positive in the variance func-
tion of the beta distribution. Interestingly, the same variables have negative parameters in the mean function of the beta
distribution. These findings indicate that violations, positive behaviours and perceived ease of use have decreasing effects
on the mean but increasing effects on the variance of the reported fines in the sample. These results show the advantage
of parameterizing the variance of the beta distribution in capturing the additional heterogeneity in the variance of the
dependent variable, which in turn results in a superior statistical fit for a part of the data.

4.3. Model implications

As the results of the goodness-of-fit measures and the parameter estimates do not seem to inform the final model selec-
tion between the two variants of the hurdle model, both of the hurdle models are selected in this sub-section for making
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inferences about the factors associated with the monetary value of pedestrians intentionally blocking the path of fully auto-
mated vehicles.

The results of the first layer in these two models indicate that older participants and those participants with higher edu-
cation levels are, on average, more likely to report that intentionally blocking the path of a fully automated vehicle should be
fined or punished. This finding is consistent with the previous findings in the literature indicating that younger and poten-
tially less educated pedestrians are generally overrepresented in groups with more negative attitudes such as disagreeing
with policy measures and traffic penalties (Papadimitriou et al., 2013). While our findings suggest that the effects of age
and education levels are not homogenous across pedestrians, they imply that younger and less educated pedestrians will
be less likely to accept policy measures to prevent bullying behaviour against fully automated vehicles.

Participants who reported more violations are less likely to be in favour of the fine for bullying fully automated vehicles.
This finding is also consistent with the previous findings by Papadimitriou et al. (2013) indicating that pedestrians who
report higher risk-taking behaviours are more likely to disagree with policy measures and penalties. Similarly, Deb et al.
(2017a) found that pedestrians who report higher risky behaviours, whether due to inexperience, stress or aggressiveness,
are also more likely to take advantage of fully automated vehicles. These findings imply that risky pedestrians will be less
likely to accept legislations imposing a fine to their behaviour. On the contrary, participants engaging more in positive beha-
viours are more likely to support the fine for intentionally blocking the path of fully automated vehicles. Previous studies
have also shown that pedestrians with higher positive behaviours are more concerned with traffic rules and regulations
(Deb et al., 2017a).

Another interesting finding from the first layer of the hurdle models is that those participants with more favourable atti-
tudes towards fully automated vehicles are more likely to support the fine for intentionally blocking the path of these vehi-
cles. This finding might indicate that those pedestrians who recognise the potential advantages of fully automated vehicles in
terms of safety and efficiency, also appreciate the importance of the rules and regulations that would facilitate the adoption
of these vehicles. Past research has also shown that negative attitudes towards automated driving, in general, affect inter-
actions with fully automated vehicles (Reig et al., 2018). However, this is the first time that positive attitudes towards fully
automated vehicles have been linked with acceptance of fines targeting pedestrians engaging in bullying behaviours towards
vehicles.

The second layer of the hurdle models provides further insight about the factors influencing the propensity of the fine
among those participants who believe that there should be a fine for intentionally blocking the path of fully automated vehi-
cles. The results of this layer in both models indicate that age, gender, walking hours, violations, and perceived ease of use are
significantly associated with the propensity of the fine. In addition, attitudes and positive behaviours are significantly asso-
ciated with the propensity of the fine in the beta hurdle model.

More specifically, the results of both variants of the hurdle model show that older participants are more likely to select a
lower fine. Note that the first layer showed that this group of participants are more likely to be in favour of the fine. These
findings suggest that while older pedestrians may accept the fine as an intervention strategy, they may not approve just any
value for the fine. These results also indicate that male participants are more likely to select a lower fine. This finding could
be indicative of the higher risk-taking behaviour of males in comparison with females. In an international study of risky
walking behaviours, McIlroy et al. (2019) found that males pedestrians are more likely to engage in risky behaviours such
as ‘‘crossing very slowly to annoy a driver”. These findings imply that male pedestrians may not approve higher fines for
intentionally blocking fully automated vehicles given they are more likely to engage in risky and aggressive walking beha-
viour. Furthermore, the results of both models indicate that participants who walk five hours or more per week are more
likely to prefer a lower fine, implying that pedestrians with more experience and confidence may not consider bully beha-
viour as a major problem on the roads. Another possible explanation could be that more experience and exposure to the road
environment might result in the perception that fining this behaviour may not be very effective. As this study was conducted
in Australia where pedestrians experience a heavy-regulated (King et al., 2009) and car-centric (Flatt and Odinsman, 2015)
environment, future research should further explore the reasons behind these findings.

In addition, the results of both models show that those participants who engage in more violations and thus higher risk-
taking behaviours are more likely to report a lower fine. This finding is intuitive and implies that this group of pedestrians
may not approve high values for the fine. However, the results of the beta hurdle model provides additional insight on the
effects of violations on the propensity of the fine, and show that participants who engage in more violations have higher vari-
ance in their suggested fines too (in comparison with participants engaging in less violations) indicating that they may
belong to heterogeneous groups e.g. groups who under-estimate/over-estimate the fines.

The attitudes towards fully automated vehicles and the positive behaviours are associated with the propensity of the fine
in the beta hurdle model, but are not so in the truncated lognormal hurdle model. The results of the former model indicate
that attitudes have varied effects on the propensity of fines. While some participants with more favourable attitudes are
more likely to report higher fines, others are more likely to be in favour of lower fines. Moreover, the beta hurdle model also
indicates that participants who report higher positive behaviours are more likely to prefer a lower fine.

Finally, the results of both models indicate that participants who report higher perceived ease of use are more likely to
prefer a lower fine. However, the beta hurdle model again provides additional insight about the effects of perceived ease of
use on the propensity of the fine. The result of the variance function of this model indicate that participants who report
higher perceived ease of use have also higher variance in their suggested fines, indicating that they have heterogeneous pref-
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erences. Overall, these findings clearly show that the current behaviour of pedestrians has a significant impact on the value
assigned to bully behaviour towards fully automated vehicles.
5. Conclusions

Intentionally blocking the path of fully automated vehicles is an example of pedestrians’ receptivity towards these vehi-
cles which should be investigated prior to their introduction into our urban transport networks. Such an intentional beha-
viour may represent taking advantage towards fully automated vehicles and may ultimately lead to societal and monetary
costs. One way of investigating the monetary value of this behaviour is to empirically ask pedestrians about their perception
of the fine associated with this behaviour and econometric modelling of their responses. There are, however, important chal-
lenges in modelling this variable including a dual-state data generating process, a truncated and a fat-tailed distribution of
the data. This study proposes a beta hurdle regression model to address these challenges.

From the methodological perspective, our findings show that the hurdle setting is superior to the non-hurdle setting for
the dual-state of the data and provides insight about the factors associated with the two distinct data generating processes.
Moreover, the beta distribution is more flexible than the lognormal distribution for handling truncated data within their fat
tail and below their right limit. While the beta distribution is superior to the lognormal distribution only for part of the data
in this study, it remains as a canonical distribution for the data bounded between zero and one. In addition, parameterizing
the variance of the beta distribution helps decomposing excess variation in the data, captures additional heterogeneity in the
data and contributes to revealing the true effects of explanatory variables on the mean of the dependent variable.

From the empirical perspective, our findings suggest that age, gender, education levels, walking experience, attitudes,
positive behaviours, violations, and perceived ease of use are all associated with pedestrians’ perceived value of intentionally
blocking the path of fully automated vehicles. These factors should be accounted for in the development of future policy
measures such as new educational tools and road safety programs focused on mitigating maladaptive behaviour among
pedestrians. Transport agencies, federal governments and stakeholders should consider these factors when developing adop-
tion strategies that guarantee the safe integration of fully automated vehicles into the urban transport systems. Legislation
alone is likely to be ineffective in the prevention of conflicts between pedestrians and fully automated vehicles.

This study is not without limitations. From the methodological perspective, we only compared the performance of the
beta distribution with that of the lognormal distribution within the positive state of the proposed hurdle model. Future
research should repeat this comparison using other distribution types such as gamma distribution. In addition, we attempted
the variance decomposition through exogenous variables only in the beta hurdle model. Future research should consider a
similar setting for the truncated lognormal approach to make the comparison more fair. We did not include censored regres-
sion models in our study due to the nature of the data, although these models have been widely used in the statistical lit-
erature for limited dependent variables. Comparing the performance of the models in this study with that of censored
regression models with proper empirical data is thus a worthy research direction. Moreover, we assumed that the effects
of explanatory variables on the fine and thus the perceived value of the targeted behaviour is time invariant. However, this
assumption may not be totally accurate because of the availability bias in the external factors such as changes in media cov-
erage, social networks and/or global experiences of pedestrians over time (Mannering, 2018). As a result, future research
should investigate the temporal instability of pedestrians’ receptivity and adaptation towards fully automated vehicles.
Finally, we assumed that the behavioural explanatory variables used in this study are exogenous. However, previous
research has shown that these variables are usually highly endogenous (Afghari et al., 2018) and may influence one another.
Future research should further explore this endogeneity using proper methodological approaches such as latent variable
approaches and simultaneous equation models.

From the empirical perspective, potential bias may exist in the collected sample due to the unitary online data collection
(convenience sampling) method and the data collection source. As such, the results should be interpreted with caution. A
diverse data collection approach such as paper survey dissemination or onsite data collection is recommended in the future
studies to increase the representativeness of the sample. In addition, we provided generic and high-level information about
fully automated vehicles at the beginning of the survey. However, a better briefing of the respondents, especially for the tar-
geted behaviour in this study where there is lack of public exposure, could help them provide a more informed answer about
the value of the fine. Considering that it is quite difficult to provide detailed examples/references for such a behaviour on the
roads, future research should explore alternative ways to improve participants’ briefing.
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Appendix A. Pedestrian questionnaire

Section 1 Demographic questions

1. What is your age?
2. What is your gender? [ ] Male [ ] Female
3. What is the highest level of education that you have completed?

[ ] Less than Year 12
[ ] Completed Year 12
[ ] Certificate or Diploma
[ ] Bachelor’s Degree
[ ] Master’s Degree or higher
[ ] Other (please specify)

4. How many hours do you spend walking on footpaths next to roads in an average week? (Please input the number of
hours)

5. How many times have you been hit or nearly hit by a car as a pedestrian in the past 2 years?

Section 2 Pedestrian behaviour questionnaire

The following questions relate to your behaviour on roads as a pedestrian. Please estimate how often you did the follow-
ing when walking over the past two years.

Violations

[V1] I cross the street even though the pedestrian light is red.
[V2] I cross diagonally to save time.
[V3] I cross outside the pedestrian crossing even if there is one (crosswalk) less than 50 m away.
[V4] I take passageways forbidden to pedestrians to save time.

Errors

[E1] I cross between vehicles stopped on the roadway in traffic jams.
[E2] I cross even if vehicles are coming because I think they will stop for me.
[E3] I walk on cycling paths when I could walk on the sidewalk.
[E4] I run across the street without looking because I am in a hurry.

Lapses

[L1] I realize that I have crossed several streets and intersections without paying attention to traffic.
[L2] I forget to look before crossing because I am thinking about something else.
[L3] I cross without looking because I am talking with someone.
[L4] I forget to look before crossing because I want to join someone on the sidewalk on the other side.

Aggressive behaviours

[A1] I get angry with another road user (pedestrian, driver, cyclist, etc.) and I yell at them.
[A2] I cross very slowly to annoy a driver.
[A3] I get angry with another road user (pedestrian, driver, cyclist, etc.) and I make a hand gesture.
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[A4] I have gotten angry with a driver and hit their vehicle.

Positive behaviours

[P1] I thank a driver who stops to let me cross.
[P2] When I am accompanied by other pedestrians, I walk in single file on narrow sidewalks so as not to bother the pedes-

trians I meet.
[P3] I walk on the left-hand (or right-hand) side of the sidewalk so as not to bother the pedestrians I meet.
[P4] I let a car go by, even if I have the right-of-way, if there is no other vehicle behind it.

Section 3 Pedestrian Receptivity Questionnaire

Before today, have you heard of the term ‘‘automated vehicle”? [] Yes [] No
Automated vehicles can be categorised as Level 0 (no automation) through to Level 5 (full automation). The focus of this

survey is on Level 5: Fully Automated Vehicles (FAVs). Please read the following information on Level 5: Fully Automated
Vehicles before continuing with the survey.

A FAV is driven by technology instead of by a human. A FAV is equipped with radars, cameras, and sensors which can
detect the presence, position, and speed of other vehicles or road-users. With this information, the FAV can then respond
as needed by stopping, decelerating and/or changing direction. A FAV has the potential to reduce road crashes and to
decrease the possibility of severe injuries by controlling the driving task effectively. The following questions relate to your
beliefs and attitude as a pedestrian towards sharing the road with (Level 5) fully FAVs. As a pedestrian, please indicate on the
scale provided the extent to which you agree or disagree with each statement about sharing roads with fully automated
vehicles in the future, when they are commonly available. It does not matter if you feel you do not know too much about
(Level 5) fully automated vehicles, it is your opinion that we are interested in.

Attitudes

As a pedestrian, I would consider crossing the roads in the presence of FAV:
[AT1] Unpleasant [1] [2] [3] [4] [5] [6] [7] Pleasant
[AT2] Unfavourable [1] [2] [3] [4] [5] [6] [7] Favourable
[AT3] Unsafe [1] [2] [3] [4] [5] [6] [7] Safe
[AT4] Negative [1] [2] [3] [4] [5] [6] [7] Positive

Trust

[T1] I would feel comfortable if my child crosses roads in the presence of FAVs.
[T2] I would feel comfortable if my spouse or partner crosses roads in the presence of FAVs.
[T3] I would feel comfortable if my parent(s) crosses roads in the presence of FAVs.
[T4] I would recommend my family and friends to be comfortable while crossing roads in front of FAVs.
[T5] I would feel more comfortable doing other thing (e.g., checking emails on my smartphone, talking to my companions)

while crossing the road in front of FAVs.

Perceived Ease of Use

[PEU1] My interaction with FAVs while crossing the road would be clear and understandable.
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[PEU2] I would find FAVs difficult to interact while crossing the road (reverse-scaled item).

Section 4 Fine of blocking the path of FAV

Do you think that pedestrians intentionally blocking the path of a FAV should be fined or punished?

[ ] Yes [ ] No

If yes, how much should be the fine? (from 1 Australian dollars to 1000 Australian dollars)

Appendix B. Results of Principal Component Analysis (PCA)
Table B1
Factor loadings of questionnaire items for the first principal components in the PCA.

Items Violations Errors Laps Aggressions Positive
behaviour

Trust Perceived ease of use Attitudes

V1 0.527
V2 0.470
V3 0.524
V4 0.476
E1 �0.372
E2 �0.556
E3 �0.536
E4 �0.515
L1 �0.497
L2 �0.518
L3 �0.495
L4 �0.490
A1 �0.477
A2 �0.501
A3 �0.513
A4 �0.508
P1 0.479
P2 0.530
P3 0.508
P4 0.480
T1 �0.450
T2 �0.286
T3 �0.476
T4 �0.498
T5 �0.491
PEU1 0.707
PEU2 0.707
AT1 0.494
AT2 0.505
AT3 0.495
AT4 0.506

Table B2
Eigenvalues and proportion of explained variability by the first principal components in the PCA.

Violations Errors Laps Aggressions Positive
behaviour

Trust Perceived ease
of use

Attitudes

Eigenvalue 2.668 2.322 3.194 2.528 1.913 3.453 1.544 3.504
Proportion of variance in data explained by the first

principal component
0.667 0.581 0.799 0.639 0.478 0.691 0.772 0.876
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