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1. Beschouw het duale LP probleem

(LD) max {tTy : ATy+s=c, s >0},

waarin b een m~ en c een n—dimensionale vector is en A een m X n matrix.
We nemen aan dat het inwendige van het toegelaten gebied niet leeg is en
dat de verzameling van optimale oplossingen van (LD) begrensd is. Zij
p(y, #) de Newtonrichting in y voor de logaritmische barriére functie met
parameter p. Zij 6 := 8(y, p) de afstandsmaat van y tot het centrale pad
en §; de afstandsmaat tot de i~de beperking; zie resp. blz. 29 en 115 van
dit proefschrift. Laat (y*,s*) het iteratiepunt zijn na een volle Newton
stap. Er geldt nu dat

) é
2 ) s <t < s, i=1,--,n.
(1 6.-)3'_3"‘(1-*-6;)5 i=1 n

In het bijzonder, als §; > §,i =1,---,n, dan is y* strikt toegelaten.

In samenwerking met Benjamin Jansen.

. Beschouw het volgende programmeringsprobleem

(CP) max {f()(y) : ye ]R'm7 fl(y) .<- 01 i= 1:"""}'

We nemen aan dat het inwendige van het toegelaten gebied begrensd en
niet leeg is, en dat —fo(y) en fi(y), i = 1,---,n, convex en continu dif-
ferentieerbaar zijn over het toegelaten gebied. Beschouw nu de volgende
klasse van (quasi, inverse) barriére functies voor (CP):

n
1 _
6w, 1) = foy) —p Y (=)™ A> -1, A £0.
i=1
Het unieke maximum van deze functie voldoet aan:

Y12V fily) = Vfo(y)
fily) <0,i=1,--,n
(=fiy)Haei=p,i=1,-- n

De unieke oplossing van dit stelsel vergelijkingen noteren we als (z(g), y(g))-

Als p monotoon afneemt, dan neemt de primale doelfunctie fo(y(p))
monotoon toe en de duale doelfunctie fo(y(p))—Y i, zi(u)fi(y(x)) mono-
toon af.

Zie: D. den Hertog, C. Roos en T. Terlaky (1992), On the monotonicity of the
dual objective along barrier paths. COAL Bulletin 20, blz. 2-T.




. Beschouw het Build—-Up Algorithm in [1], met dit verschil dat van alle
beperkingen die voldoen aan s; < 27" alleen de beperking met de kleinste
slack waarde wordt toegevoegd. Als voor de parameter ¢ nu de waarde
L genomen wordt, waarin L de invoerlengte van het LP probleem is, dan
zullen tijdens het iteratie proces alleen beperkingen opgenomen worden
die het toegelaten gebied raken.

[1] D. den Hertog, C. Roos en T. Terlaky (1991), A build~up variant of the
path—following method for LP. Zal verschijnen in Operations Research Letters
12.

. Het is een goed gebruik dat de referees van een artikel anoniem zijn voor
de auteur(s). Voor de objectiviteit is het minstens zo belangrijk dat de
auteur(s) anoniem is (zijn) voor de referees.

. Als wetenschappelijk onderzoek gefinancierd wordt door de maatschappij,
is maatschappelijke relevantie een rechtvaardig beoordelingscriterium.

. Ter wille van de eenvoud is het beter om telwoorden als honderdvieren-
vijftig te veranderen in honderdvijftigenvier.

Vgl.: D.E. Knibbe (1992), Volgorde in tellen. Onze Taal 1, blz. 22.

. In Nederland is het probleem van ongecijferdheid veel groter dan het
probleem van ongeletterdheid. Eén van de belangrijkste oorzaken van dit
probleem is het veelal gebrekkig cijferonderwijs op de basisscholen.

Vgl.: J.A. Paulos (1991), Ongecijferdheid; de gevolgen van wiskundige ongelet-
terdheid. Uitgeverij Bert Bakker, Amsterdam.

. De overwaardering van het verstand ten koste van het hart is een beroeps-
deformatie waaraan weinig beroepsbeoefenaars van de exacte wetenschap-
pen geheel ontkomen.

Zie: A. van den Beukel (1990), De dingen hebben hun geheim; gedachten over
natuurkunde, mens en God. Ten Have, Baarn.

. Aangezien de 97 stellingen die Maarten Luther op 4 september 1517 pu-
bliceerde veel meer gericht waren tegen de theologie en filosofie van zijn
tijd dan de 95 stellingen die hij op 31 oktober 1517 publiceerde, ligt het
voor de hand om Hervormingsdag op 4 september i.p.v. 31 oktober te
vieren.

Vgl.: H.N. Hagoort (1992), Wijsheid van het vlees; over 97 onbekende stellingen
van Maarten Luther. Uitgave van het Reformatorisch Instituut voor Cultuur-
wetenschappen, Gouda.



10.

11.

De Reformatie vormde geen belemmering voor de ontwikkeling van de
moderne natuurwetenschappen. Dat de Reformatie deze ontwikkeling
gestimuleerd zou hebben (these van R. Hooykaas), is tot nog toe niet
voldoende aangetoond.

Zie: C. de Pater (1987), Reformatie en wetenschapsrevolutie. Bijbel en Weten-
schap, nr. 104, blz. 243-248.

O. Pedersen (1981), Science and the Reformation. In: L. Grane (ed.),
University and Reformation, Leiden, blz. 35-62.

Zowel in witlofkwekerijen als in de wiskunde worden wortels getrokken,
met als belangrijkste verschil verteerbaarheid resp. inverteerbaarheid.
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Glossary of symbols and
notations

Z;
.’IJT
X
€

€;

I
Rn
o]

t—th coordinate of the vector z.

transpose of the vector z.

diagonal matrix with the components of z on the diagonal.
vector of all 1’s of appropriate length, i.e. eT = (1,---,1)T.
t-th unit vector of appropriate length.
identity matrix of appropriate dimension.
n-dimensional Euclidean space.

2-norm of the vector z.

v(n) = O(w(n)) means that there exists a constant ¢ > 0 such that, for large

enough n, v(n) < cw(n).

O(w(n)) means that there exist constants ¢; > 0 and ¢; > 0 such that,

for large enough n, cyw(n) < v(n) < cow(n).
means that G — F is positive semi—definite.
binary input length of the linear (or quadratic) programming
problem.

primal linear programming problem.

dual linear programming problem.

primal quadratic programming problem.

dual quadratic programming problem.

primal convex programming problem.

(Wolfe) dual of the convex programming problem.
optimal value.

a lower bound for the optimal value.

an upper bound for the optimal value.

barrier parameter.

initial barrier parameter.

initial lower bound for the optimal value.
logarithmic barrier function.

distance function of Huard.

Karmarkar’s potential function.

9
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z(1), y(p)
z(z), y(2)
6(y, 1)
6(z, p)
o(y,z)
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GLOSSARY

primal-dual potential function of Todd and Ye.
multiplicative potential function.

symmetric multiplicative potential function.
minimizing point for ¢ (primal, dual).
minimizing point for ¢ (primal, dual).
distance measure to y(p).

distance measure to z(u).

distance measure to y(z).

orthogonal projection onto the null-space of the matrix B.
objective function of (CP).

constraint functions of (CP).

search direction.

gradient of ¢p or ¢p.

Hessian of f;(y).

Hessian of ¢ or ¢p.

self-concordancy constant.

feasible region of problem (CP).

interior of F.

intersection of F and the level set fo(y) > z.
interior of F,.

desired accuracy for the final solution.
updating factor for p or z.

steplength.




Chapter 1

Introduction of IPM’s

In this chapter we describe and motivate the subject of this thesis. We start by
describing the previous history of interior point methods. Then, we recall some
complexity issues. Finally, after describing the recent history of interior point
methods, we explain the main goal and contribution of this thesis.

1.1 Prelude

The classical methods for solving the nonlinear constrained optimization problem

max {fo(y): y € R™, fi(y) <0,i=1,---,n}

can roughly be distinguished into two classes: interior and exterior point meth-
ods. The interior point methods operate in the interior of the feasible region,
while exterior point methods try to obtain a solution from outside the feasible
region. So, interior point methods (IPM’s) are not new. In fact, already in
the 1960s some interior point methods for nonlinear programming, e.g. barrier
methods, were proposed and analyzed.

Linear programming (LP) was always considered as distinct from nonlinear pro-
gramming because of its combinatorial character. Dantzig’s simplex method
has always been the unbeaten tool for solving the linear programming problem.
The simplex method explicitly uses the combinatorial structure: it obtains an
optimum by moving along the edges of the feasible region.

In the 1960s and 1970s, due to the fast computer developments, researchers be-
came interested in the complexity of methods. A method was called polynomial if
the number of arithmetic operations required by the method to solve the problem,
is bounded from above by a polynomial in the problem size. Such a polynomial
method was considered to be an efficient method.

11



12 CHAPTER 1. INTRODUCTION OF IPM’S

In 1972, Klee and Minty [72] gave a linear programming example for which the
simplex method, using a certain pivot rule, needs 2" — 1 iterations, whereas the
problem has n variables and 2n constraints. ’Exponential examples’ for other
simplex pivot rules were soon constructed by other researchers!. The practical
performance of the simplex method however is very good; the simplex method
was considered to be the champion forever. Nevertheless, the question arose if it
1s possible to construct a polynomial method for LP.

In 1979, Khachian [70] published the first polynomial algorithm for LP. This el-
lipsoid method was based on some nonlinear programming techniques developed
by Shor [131] and Yudin and Nemirovsky [165]. Contrary to the simplex method,
the ellipsoid method does not use the combinatorial structure of LP. Although
this first polynomial method has many important theoretical consequences, it
soon appeared that in practice this method is hopelessly slow. Consequently, the
quest changed to find a polynomial method for LP also being efficient in practice.

Karmarkar [69] answered this question in an epoch-making work in 1984. He
proposed a new polynomial method and claimed that this so-called projective
method could solve large scale linear programming problems as much as 100 times
faster than the simplex method. This claim was received with much scepticism.
Nowadays, it has become clear that Karmarkar’s work has opened a new research
field, the field of interior point methods, which has yielded many theoretical and
practical jewels.

The last eight years much research has been done in this field, both theoretical
and practical. Inspired by Karmarkar’s publication many other (polynomial)
methods were proposed by researchers, sometimes containing new ideas some-
times containing only slight modifications or embellishments. Through all these
developments one could not see the wood for the trees for a long time. Numerical
results indeed have shown that some interior point methods can solve large linear
programming problems faster than the simplex method.

Another important property of IPM’s is that some of these methods can also be
applied to nonlinear optimization problems. In fact, some of these methods were
developed for these problems in the 1960s already. This leaded to a rebirth of
some old methods: the logarithmic barrier function method of Frisch [36], [37],
and Fiacco and McCormick [34], the center method of Huard [58], and the affine
scaling method of Dikin [30].

In classical barrier methods the objective function and the constraints are com-
bined in a composite function, called the barrier function, such that it contains a
singularity at the boundary. Because of this singularity, all iterates will remain

't is still an open question whether there exists a polynomial-time simplex pivot rule for
linear programming.
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strictly feasible while approaching the optimal solution. The logarithmic barrier
function was originally introduced by Frisch for linear programming [36] and for
convex programming [37]. However, he apparently did not minimize this function
sequentially, but only used the gradient of it to steer away from the boundary.
Parisot [118] further developed the logarithmic barrier method and devised se-
quential unconstrained minimization techniques for linear programming.

Later on Fiacco and McCormick [34] and Lootsma [83] gave a treatment of the
method as a tool for solving nonlinear problems. In this method the logarithmic
barrier function is minimized exactly for decreasing values of the barrier param-
eter. These minima form the so—called central path of the problem, which is a
smooth curve in the interior of the feasible region and ends in an optimal solu-
tion. Nice proofs of asymptotic convergence have been obtained for this method;
see also Fiacco and McCormick [34]. Polak [122] studied more implementable
algorithms in which the minimization of the barrier function need not be exact.
Unfortunately, barrier function algorithms suffer from numerical difficulties in
the limit (e.g. ill conditioning of the Hessian matrix). Due to these difficulties
these classical barrier methods became out-of-date in the 1970s.

The center method was introduced and studied by Huard [58]. As the logarith-
mic barrier function, this method also follows the central path to the optimum.
Only the parameterization is different from the logarithmic barrier method. This
method has attracted less attention in the (old) literature than the logarithmic
barrier method for reasons which will become clear later on.

Dikin [30] proposed his affine scaling algorithm in 1967. This method does not
have such a ’rich’ history as barrier and center methods have. In fact this method
remained unnoticed until recently, when it turned out that it is in fact a natural
simplification of Karmarkar’s projective method.

1.2 Intermezzo: Complexity issues

Since an IPM produces a sequence of interior solutions, a stopping rule that
defines acceptable closeness to optimality is needed. Moreover, in complexity
studies the order of magnitude of the number of computations (iterations, arith-
metic operations, bit operations) needed to find an exact solution of the problem
in the worst possible case is sought. A method is called polynomial if this number
of computations is bounded by a polynomial in the so—called size of the problem.

Khachian [70] gave an explicit expression for the size of a linear problem, when he
proposed the first polynomial algorithm for linear programming. Let us consider
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the primal linear programming problem

min ¢’z

(LP) Az =b

z2>0,

where A is an m X n matrix, and b and ¢ are m-~ and n-dimensional vectors
respectively. It is assumed that the entries of A, b and ¢ are integers. This is
equivalent to assuming that the problem data are rational, since rational values
can be rescaled to integers. The size of the problem (denoted by L) indicates
the amount of information needed to represent an encoding of the problem. It is
easy to verify that?

L = ©(mn + [log, | P[)), (L.1)

where P is the product of all nonzero coefficients in A, b and c (see [117]). A
method is called polynomial if the number of operations (with finite precision)
is bounded from above by a polynomial in L.

Khachian [70] showed that if z is a vertex of the feasible region, then no compo-
nent of z can be in the interval (0,27%). Moreover, if z is a vertex then ¢’z is
either equal to the optimal value or the difference with the optimal value is at
least 272F. (See also Papadimitriou and Steiglitz [117].) In IPM’s Tz —2* < 272
is used as a stopping rule, where 2* is the optimal value. From this point an
O(mn?) rounding procedure (see [117], [80]) can be used to obtain a vertex with
objective value less than or equal to cTz, which must be optimal. We note that
the optimal value need not be known for the stopping rule, since in most IPM’s
dual solutions are generated.

Note that to prove polynomiality we not only have to prove that the number of
operations to obtain a 2~?!—optimal solution is bounded by a polynomial in L,
but also that all operations can be carried out in finite precision, more precisely,
the number of bits is at most a polynomial in L. This issue is ignored in most
papers on IPM’s. In this thesis we measure the work in the number of arithmetic
operations (X, /, +, —, \/) on real numbers rather than bit operations. (For an
extensive discussion see [69], [124], [146).)

We will derive upper bounds for the number of iterations (or operations) to
obtain an e-optimal solution for several problems and algorithms. (A solution
is called to be e-optimal if its objective function value differs at most ¢ from
the optimal value.) These upper bounds are all bounded by a polynomial in the
problem dimensions and in In %, where ¢ is the initial accuracy. For linear and

2The exact formula for L varies in the literature.
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quadratic programming this immediately implies polynomiality, i.e. the number
of operations to obtain an exact optimal solution is bounded by a polynomial in
L (take € = 272F and ¢, = 20(0)),

The definition of polynomiality given above is suitable for linear and quadratic
programming, but for more complicated problems this definition cannot be used.
Some authors ([116], [165] and [64]) have tried to define generalized polynomiality
for more general optimization problems. In this thesis we will avoid this issue,
we will only use the term polynomiality for linear and quadratic programming.

1.3 Classifying the IPM’s

In this section we will briefly sketch the most important landmarks in the history
of IPM’s after Karmarkar’s publication. A more detailed discussion will be given
in the next chapters,

Soon after Karmarkar’s publication, the original projective potential reduction
method was studied and beautified by many researchers: simplification of the
analysis, studies of limiting behavior, removing the initial assumptions, etc. From
the practical point of view the early results, e.g. [138], were disappointing. Later
more efficient algorithms were developed using better reformulations of the linear
programming problem.

However, the practical merits of IPM’s became clear when several researchers
proposed and implemented the so—called affine scaling method. In each iteration
of the projective potential reduction method a projective transformation is car-
ried out to ’center’ the current iterate. Instead of doing this (rather awkward)
projective transformation, Vanderbei et al. [148] and Barnes [9] proposed to do
a simple affine scaling to center the current iterate. It soon turned out that this
natural simplification of Karmarkar’s method was already proposed by Dikin [30]
in 1967. Several implementations of the primal and dual affine scaling methods
(e.g. [148], [1] and [104}) showed promising results.

Unfortunately, only global convergence under some conditions has been proved
for these affine scaling methods. Due to the work of Megiddo and Shub [94],
this method is believed not to be polynomial. The affine scaling method was
generalized for quadratic programming by Ye and Tse [164] and to problems
with convex objective function and linear constraints by Gonzaga and Carlos
[54].

Soon after Karmarkar published his projective method, researchers became inter-
ested in the classical logarithmic barrier and the center method. As mentioned
before, both methods are called path—following methods, since they follow the
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central path of the problem. We will now describe the main results obtained for
this class of methods.

In 1986, Gill et al. [39] first derived a relationship between Karmarkar’s method
and the logarithmic barrier method for linear programming. They showed that
the search directions used in Karmarkar’s method and in the logarithmic barrier
method were closely related. They also implemented the logarithmic barrier
method, obtaining promising results. However, they did not prove polynomiality
as Karmarkar did. This publication renewed the interest in barrier methods.

Gonzaga [45) was the first who proved polynomiality for a special version of the
logarithmic barrier method for linear programming. In his method the barrier

parameter is reduced by a factor 1 — 9%, which means that only very short

steps are taken. Hence, although he proved that the total complexity is O(n®L),
in practice this method is hopelessly slow. Ben Daya and Shetty {12] extended
this method to quadratic programming. Monteiro and Adler [107], [108] devel-

oped a primal-dual (short-step) path—following method for linear and quadratic
programming,.

Later on, Roos and Vial [128] and Gonzaga [49] independently developed a nat-
ural and more practical version of the logarithmic barrier method for linear pro-
gramming. In this method the barrier parameter may be reduced by an arbitrary
factor between 0 and 1. This means that the iterates need not lie close to the
central path and hence long steps can be taken. They also proved that this
method has an O(nL) iteration bound. In [29] we gave a simple analysis for
the logarithmic barrier method and showed that the overall complexity can be
reduced by a factor y/n, using safeguarded line searches. In fact these recent
developments show that the classical logarithmic barrier method can be made
polynomial by using Newton’s method for the internal minimization and using
certain proximity criteria to stop this minimization.

In [7] we extended our analysis for the long-step analysis, given in [29], to
quadratic programming. Moreover, in [28] we analyzed a natural variant of the
classical logarithmic barrier method for smooth convex programs. Nesterov and
Nemirovsky [116] introduced the concept of self-concordancy and using this no-
tion, short-step barrier methods for smooth convex programming were studied.

Renegar [124] proved in 1987 that a very special version of the center method
for linear programming is polynomial. In fact, this was the first polynomial
path—following method with an O(4/nL) iteration bound. In this method the
relaxation parameter is very small (1317), which means that very short steps
are taken. Although this method for linear programming has an O(y/nL) itera-
tion bound, which is a factor \/n better than the projective potential reduction
method, it is very inefficient in practice. Later on Vaidya [146] reduced the




1.3. CLASSIFYING THE IPM’S 17

total complexity bound to O(n®L), using approximate solutions and rank-one
updates. At this moment this complexity bound is still the best one obtained for
any IPM, although there are more IPM’s with this complexity bound. In [27] we
developed a natural and more practical version of the center method for linear
programming, in which the relaxation factor may be any number between 0 and
1, and line searches are allowed.

Sonnevend [132] suggested a method of centers for general convex programming.
Jarre [65] presented first proofs of convergence for this method when applied to
quadratically constrained convex quadratic programming problems. Later on, he
described in [63] a special implementation of the method for a class of smooth
convex programs. Again the relaxation parameter is very small, '200(—1+1M—)*7"7’
where M is a curvature constant. He proved that the number of iterations to
get an e-optimal solution is polynomial in |log €|, n and M. Similar results were
obtained by Mehrotra and Sun [96] and Nesterov and Nemirovsky [116] in a even
more general setting. Jarre also showed that extrapolation makes the method
much more efficient. In [21] we proposed a more natural implementation of the
classical center method for this class of smooth convex programming problems,
in which the relaxation parameter for updating the lower bound may be any
number between 0 and 1, and line searches are allowed. In that paper nice upper
bounds for the total number of iterations have been obtained too.

After Renegar [124] published his short-step path-following method, and before
an analysis for the long-step path-following method had been given, Ye [159]
showed that the same complexity can be obtained without following the central
path closely, and also allowing line searches. He defined a new so-called po-
tential function, which is a ’surrogate’ function used as a compass for finding
the optimum. He proved that by doing projected gradient steps (after affine
scaling) a constant reduction for the potential function value can be obtained.
This method is called a potential reduction method. Kojima et al. [77] devel-
oped a primal-dual version of this method for linear complementarity problems.
This primal-dual method with some additional tricks (see Mehrotra [95]) showed
excellent practical behavior.

The number of papers on IPM’s is enormous®. At this moment, eight years after
Karmarkar’s publication, it is safe to say that all IPM’s can be categorized in
the following 4 categories (in historical order) :

e Path—following methods;

o Affine scaling methods;

3There are about 2000 papers which deal with IPM’s! (See also Kranich’s [82] bibliography
of IPM papers.)
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e Projective potential reduction methods;

e Affine potential reduction methods.

The differences between these classes are sometimes vague, and we will make
clear in this thesis that all these methods rely on some common notions and
concepts. One can also distinguish whether these algorithms are primal-only
(dual-only) algorithms or primal-dual algorithms.

1.4 Scope of the thesis

The most important issue in this thesis is the complexity of an IPM. Our aim
will be to derive upper bounds for the number of iterations (operations) needed
by IPM’s to obtain an e—optimal solution for a certain problem. In our research
we have focused our attention on path-following methods, more specifically on
logarithmic barrier and center methods. The analysis of these methods can be
nicely extended to convex programming.

We will give a complexity analysis for short—, medium- and long—step logarithmic
barrier and center methods for linear, quadratic and convex programming. As
indicated in the previous section, logarithmic barrier methods (short—, medium-
and long—steps) for linear programming were already analyzed in the literature.
We will simplify and unify the analysis, which also enables us to extend it to the
quadratic and convex case. Moreover, for linear programming we will show how
to reduce the computational load in each iteration. For the center method only a
short—step variant was analyzed in the literature; we will also treat medium- and
long-steps in a similar way as for the logarithmic barrier method and simplify
the analysis for linear programming given in the literature.

The central ideas in the analysis for both the logarithmic barrier and the center
method for linear, quadratic and convex programming are the same. First, the
"Hessian norm’ of the Newton search direction is always used to measure the
distance to the current reference point on the central path. Second, the quadratic
convergence result in the vicinity of the central path enables us to prove many
other basic properties, which are needed for the complexity analysis.

This thesis is in fact an amalgamation of our publications [7], [19]-[21], [24]-[29].
Below we will indicate where these papers are used in this thesis, so that we do
not have to refer to these papers in the sequel.

In Chapter 2 we will deal with the logarithmic barrier method for linear [29],
quadratic [7] and smooth convex programming [28], [25]. We will analyze long-,
medium- and short—step variants. We note that our analysis for smooth convex
programming in [28] is somewhat different from our analysis for linear [29] and
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quadratic programming [7]. The analysis for smooth convex programming given
in this thesis has the same structure as the analysis for linear and quadratic
programming. This unified treatment is based on the notion of self-concordancy.

In Chapter 3 we will deal with the center method for linear [21] and smooth
convex programming [27]. Again, contrary to our analysis in [27], we will treat
both cases in a similar setting. Moreover, we will show the similarities and
differences with the logarithmic barrier method. Due to the relationship between
the logarithmic barrier and center method, many results follow more or less
directly from Chapter 2. Again, we will analyze three variants: long—, medium-
and short-step variants.

In Chapter 4 we will show that using approximate solutions, rank-one updates
and safeguarded line searches, the overall complexity for linear programming can
be reduced by a factor \/n [29]. Moreover, we will show that the amount of work
in each iteration can be reduced by using some kind of column generation and
deletion technique [24], [26].

In Chapter 5 we will give a (short) description of other IPM’s (affine scaling,
projective and affine potential reduction methods), and indicate some open prob-
lems. We will show that all these methods rely on the same notions: they all
use the central path explicitly or implicitly and the search directions used are all
linear combinations of two characteristic vectors [20]. Moreover, we will briefly
discuss some computational results for IPM’s.

Finally, in Chapter 6 we end up with a short summary, some conclusions and
recommendations for future research. The Appendices contain self~concordancy
proofs for some classes of problems [19], and some general technical lemmas which
are used in this thesis. For the notation used in this thesis we refer the reader
to the Glossary.
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Chapter 2

The logarithmic barrier method

In this chapter we analyze the complexity of special variants of the logarithmic
barrier method for some classes of problems. We will deal with so—called long-,
medium— and short—step methods. First, we will give a general framework for
the logarithmic barrier method. Then we look at special cases: linear, convex
quadratic and smooth convex programming problems respectively.

The quadratic convergence result in the vicinity of the central path is used to
derive upper bounds for the differences in barrier function value and objective
value between a point on the central path and a point in its vicinity. The linear
programming problem is stated in inequality form. Using the null-space formu-
lation, we are able to generalize the results to convex quadratic programming.
For a change, we will deal with the quadratic problem in equality form. The
analysis for the convex programming problem is more difficult than the analy-
sis for linear and quadratic programming, but the structures are similar. The
self-concordancy property, introduced by Nesterov and Nemirovsky [116], plays
a key role in this analysis.

2.1 General framework

We consider the primal formulation of the convex programming problem:

max fo(y)
(CP) fi(y)g(), 1=1,---,n
y € R™.

The feasible region is denoted by F, and the interior of this region by F°. We
will assume that:

21
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Assumption 1: the functions — fo(y) and fi(y), 1 < ¢ < n, are convex functions
with continuous first and second order derivatives in F°;

Assumption 2: F° is nonempty;
Assumption 3: F? is bounded.
Wolfe’s [149] formulation of the dual problem associated with this primal problem

1s
min fo(y) — iy zifi(y)
(CD) Y ziVi(y) = Vi(y)
z; > 0.
At the risk of labouring the obvious, we want to point out that (CD) is not

necessarily convex. It is a well-known result (see [149]) that if y is a feasible
solution of (CP) and (¥, z) is a feasible solution of the dual problem (CD), then

foly) < fo(@) — ﬁ:xff,-(y)-

Note that Assumption 2 is in fact a Slater condition. Due to the assumptions,
(CD) has an optimal solution, and the extremal values of (CP) and (CD) are
equal.

The logarithmic barrier function associated with (CP) is

o) = =220 = S 1), (1)

i=1

where p > 0 is the barrier parameter. Because of the singularity of the logarithm
at zero, this barrier function will prevent the iterates from going outside the
feasible region. Therefore the logarithmic barrier function method is called an
interior point method.

For the description of the logarithmic barrier method we need the first and second
order derivatives of ¢s(y, p1):

9y 1) 1= Vu(y, 1) = —Vf;(y) b3 VW)

i=1 _fi(y)

and

n 2 . . T
H(y,u) := V¢a(y,u) = +Z Vf{'(;)) Vf'(i)(j)f;(y) - (22)
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If no confusion is possible we will write, for shortness sake, g and H instead
of g(y, ) and H(y,p). It can be proved that H(y, i) is positive definite on its
domain F?, i.e. ¢g(y,p) is strictly convex (see Jarre [63], p. 14).

We will use the measure ||. ||z to measure distances between points. The definition
of this measure is as follows:

|zl = V2THz.

Because H is positive definite, |||z defines a norm. We emphasize that this
norm depends on y, since H = H(y, u) depends on y.

Since @5(y,p) is strictly convex on its bounded domain F° and takes infinite
values on the boundary of F, this function achieves the minimal value in its
domain (for fixed u) at a unique point, which is denoted by y(u), and called the
p—center. The necessary and sufficient Karush~-Kuhn-Tucker conditions for y(u)
are:

fily) <0, 1<i<n
Y zVfily) =Vily), >0 (2.3)
—fily)z: = p, 1<i<n’

Definition of the central path: The primal (dual) central path (or trajectory)
is defined as the set of centers y(u) (z(p),y(x)), where p runs from oo to 0.

Note that not only y(p) is primal feasible, but also (z(u),y(x)) is dual feasible.
Moreover, the duality gap in (z(u), y(p), s(x)) satisfies

n n

Foly(r)) = D () fily(w)) — foly(w)) = = D zi(w) fi(y(p)) = np. (24)

=1 =1

Since z(x) and y(u) are continuous in g, it holds that y(u) and z(u) will converge
to optimal solutions of (CP) and (CD), if p | 0. This means that the central tra-
jectory ends in an optimal solution of the problem. This central path was studied
by Fiacco and McCormick {34] and McLinden [91] for the general convex case,
and by Megiddo [93], Bayer and Lagarias [11] and Sonnevend [132] for the linear
case. Figure 2.1 shows some central paths for a linear programming problem for
different objective vectors. Note that if the feasible region is bounded then the
central path starts in the unique point where 3", In(— fi(y)) is maximized. This
point is called the analytic center of the feasible region.

The logarithmic barrier function method was introduced by Frisch [36], [37] and
further developed by Fiacco and McCormick [34]. In this method the original
constrained problem (CP) is replaced by a sequence of unconstrained minimiza-
tion problems, i.e. minimizing ¢s(y, 1) successively for a sequence of positive
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Figure 2.1: Central paths for some LP problems with the same feasible region
and different objective vectors.

decreasing values of the barrier parameter p. Loosely speaking, this method
follows the central path approximately to an optimal point.

There are some important elements in the design of such a method:
1. the method used to (approximately) minimize ¢5(y, p);
2. the criterion to terminate this approximate minimization;
3. the updating scheme for the barrier parameter p.

Fiacco and McCormick [34] recommended to do line searches along Newton di-
rections, but did not treat the problem when to terminate the approximate min-
imization; for fixed p the logarithmic barrier function is minimized exactly. The
updating scheme they suggest is simply to reduce y by a constant smaller than
one. This sequential unconstrained minimization technique (SUMT) was imple-
mented in the SUMT-3 and SUMT-4 codes, described in Mylander et al. [114].
Anstreicher [4] obtained, using the analysis in [7] (see also Section 2.3), the sur-
prising result that this algorithm (exactly as implemented in these codes) solves
linear and quadratic programs in O(y/nL In L) iterations, with proper initializa-
tion and choice of parameters.
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The algorithm we will propose and analyze below also does a line search along
the Newton direction. The Newton direction is defined as p = —H™1g. In the
analysis we will see that taking a suitable steplength is already sufficient for the
complexity analysis. The criterion to terminate the approximate minimization
of ¢5(y,n) is ||p|lg < 7 < 1. Note that ||p||g = 0 if and only if y = y(u). This
proximity measure, which is in fact the Hessian norm of the search direction,
will appear to be very appropriate. For linear and quadratic programming we
will develop a nice characterization for this measure, which enables us to prove
quadratic convergence easily. We will analyze several updating schemes for the
barrier parameter.

We now describe the algorithm for finding an e-optimal solution.

Logarithmic Barrier Algorithm

Input:

€ is the accuracy parameter;

T is the proximity parameter;

6 is the reduction parameter, 0 < § < 1;
po is the initial barrier value;

y° is a given interior feasible point such that ||p(¥°, po)llH(youe) < 73

begin
Y 1= Yo; f 1= flo;
while p > £ do
begin (outer step)
pi= (1= 0y
while ||p||z > 7 do
begin (inner step)
& := argmingso {¢s(y + ap, p) 1 y + ap € F°}
y:=y+ap
end (inner step)
end (outer step)
end.

As indicated above, the line search need not be exact; a suitable steplength
will be sufficient for the complexity analysis. For finding an initial point that
satisfies the input assumptions of the algorithm we refer the reader to Renegar
[124], Monteiro and Adler [107] and Giiler et al. [55] for linear programming, Ye
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[155] for quadratic programming, and Jarre [63] and Mehrotra and Sun [96] for
convex programming. Later on the ’centering assumption’ will be alleviated.

We introduce some terminology. We call the algorithm a
e long-step algorithm if ¢ is a constant (0 < 6 < 1), independent of n and
€

¢ medium-step algorithm if § = =, where v > 0 is an arbitrary constant,
possibly large, and independent of n and ¢;

o short—step algorithm if § = =, and v is so small (e.g. 3), that after a
reduction of u one unit Newton step is sufficient to reach the vicinity of
the new p—center.

Figure 2.2 shows some iterations for the long— or medium-step algorithm for a
linear programming example. Figure 2.3 shows some short-step iterations.

In this chapter we will analyze such long-, medium- and short-step algorithms.
Note that the long—step algorithm is the most promising for practical use. How-
ever, we will obtain the remarkable result that the theoretical complexity of the
long-step algorithm is worse than the complexity of short- and medium-step
algorithms.

2.2 Linear programming

2.2.1 Properties on and near the central path
In this section we will deal with the linear programming problem in inequality
form?!:

max bTy
ATy <.

Here A is an m X n matrix, b and ¢ are m— and n— dimensional vectors respec-
tively; the m—dimensional vector y is the variable in which the minimization is
carried out. The slack variable s is defined as s := ¢ — ATy.

The primal problem for (LD) is:

(£LD)

min Lz

(LP) Arxr=b>b
z 2 0.

!Contrary to the formulation of (CP), we call this problem the dual problem, to be consistent
with the LP literature.
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~

Figure 2.2: Some iterations of the long— or medium-step method.

Figure 2.3: Some iterations of the short-step method.

27
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The analysis which we will give in this section can also be applied to (LP) (see
[29]). We will not do this here, instead in the next section we will treat the
convex quadratic programming problem in equality form.

Without loss of generality we assume that all coefficients are integral. We shall
denote by L the binary length of the input data of (LP); see (1.1). We also
make the standard assumptions that the feasible set of (£D) has a nonempty
interior and that the optimal set is bounded. Note that the last assumption is
weaker than Assumption 3. Furthermore, in order to simplify the analysis, we
shall assume that A has full rank, though this assumption is not essential.

We consider the logarithmic barrier function for (LD)
S -
ba(y, u) = T Y Ins;, (2.5)

i=1

where p is a positive parameter. The first and second order derivatives of ¢5 are
b -1
g = V¢B(y, /‘l’) = _; + AS €,

H := V%¢y(y,n) = AST2AT.

Under the assumptions made above, ¢ achieves a minimum value over F at a
unique point; see e.g. [93]. The necessary and sufficient first order optimality
conditions for this point are (see (2.3)):

Aly4+s=c¢c, s>0
Az = b, z>0 (2.6)
Xs = pe.
It is easy to verify that the necessary and sufficient first order optimality condi-
tions for the minimum of the primal logarithmic barrier function, given by
T n
c'z
4)5(-7:,/4) = Zln.’ll,’,
H =1
are also given by (2.6).

We denote by (z(x), y(p), s(#)), the unique solution of (2.6). The duality gap in
these points satisfies (see (2.4))

z(u)"s(n) = np. (2.7)
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It is well-known that z(x) and y(u) are continuously differentiable (see e.g. [34]
and [93]). Hence, if g | 0 then z(x) and y(u) will converge to optimal primal
and dual solutions respectively. :

The following lemma states that the primal objective decreases along the primal
path and the dual objective increases along the dual path. These results follow
from Fiacco and McCormick [34].

Lemma 2.1 If u decreases then the objective c¥z(u) of the primal problem (LP)
is monotonically decreasing and the objective bTy(u) of the dual problem (LD) is
monotonically increasing.

Proof: Suppose i < p. Since y(g) minimizes ¢p(y, #) and y(i) minimizes
#s(y, it) we obviously have

I T,

=1

and

T
le b

i=1 p’
Adding the two mequahtles gives
_by(w) _ bTy(m) o ¥Ty(E) _ bTy(W)

— - b

p Iz p Iz

le’l si(p).

or equivalently

1N\
(ﬁ ﬂ)w () — y()) < 0.

Since i < p the second part of the lemma follows. The first part of the lemma
can be proved in the same way, since z(yx) is the minimizing point for the primal
logarithmic barrier function ¢%(z, ). o

Roos and Vial [130] introduced the following measure for the distance of an
interior feasible point y to y(p):

St = min {152 - o) 4 =3} 28)

The unique solution of the minimization problem in the definition of é(y, i) is
denoted by z(y, ). It can easily be verified that

y=y(p) <= (y,p) =0,
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and moreover,

6(y, 1) = 0= 2(y, ) = z(n)-
The Newton direction p(y, ) in y with respect to ¢z(y, i) is given by

ply,p) = —H g = (AS7?AT) (% - AS"e) : (2.9)

In the sequel of this section we will also write p instead of p(y,x). The next
lemma. states that there is a close relationship between the é—measure and the
Hessian norm of the Newton direction p(y, p).

Lemma 2.2 For given y and p we have

8(y, 1) = lp(y, w)lla = IS A p(y, w)||.

Proof: The last equality ||p(y, p)llg = [|S~ATp(y, )|| holds by definition. To
prove the first equality we derive from (2.8) an explicit expression for z(y, p):

z(y,p) = pS~e + MS'ZAT(AS""AT)“(S — AS7'e) = pS7le + pST*ATp,

(2.10)
where the last equality follows from (2.9). This means that
SeWH) _ o 14Ty, (2.11)
o
which proves the first equality of the lemma. O
Note that
py = —ATp (2.12)

is the search direction in the s—space. Consequently, the é-measure is in fact
the length of the scaled search direction in the s—space. Moreover, note that the
projected Newton direction and the scaled projected gradient direction associated
with ¢@g coincide.

Now we will prove some fundamental lemmas for nearly centered points. The
following quadratic convergence lemma is due to Roos and Vial [130] and is
illustrated in Figure 2.4.

Lemma 2.3 If§(y,u) < 1, then y* = y +p is a strictly feasible point for (CD).
Moreover,

§(y*, 1) < 8y, p)*.
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Figure 2.4: Quadratic convergence in the vicinity of a u—center.

Proof: The proof is a simplified version of the proof in Roos and Vial [130].
Since st = s + p,, it follows from (2.12) that

ATy++s+=AT(y+p)+s—ATp=c.

Moreover, s* = s + p, = S(e + S~!p,) > 0, since ||S~'p,|| < 1. This proves the
first part of the lemma.

The definition of z(y*, 1) implies the following:
Sta(y*,p Sta(y, u
St ) = | ) g < TR g,

Now using (2.10) and (2.12) and the fact that S* = S + P,, we find
(S + P)(uS~"e — uSp,)

p —e|l = [P.S7"pal| < S7'pull* = 6(y, )"

O

Sy pm) <

The following lemma gives an upper bound for the difference in barrier function
value in a nearly centered point y and the exact p—center y(u).

Lemma 2.4 If§:=6(y,p) <1 then
2

§
Bs(y, 1) — daly(p), ) < &
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Figure 2.5: A sequence of Newton steps converging to the u—center.

Proof: The barrier function ¢g is convex in y, whence
$u(y +ps 1) 2 ¢u(y, 1) + P79
Now using p = —H~!g, we have
pTg=—p Hp = -6, (2.13)
where the last equality follows from Lemma 2.2. Substitution gives
¢s(y, 1) — do(y + p, 1) < 6°. (2.14)

Now let y° := y and let y!,3?,... denote the sequence of points obtained by
repeating Newton steps, starting at y° (see Figure 2.5). By Lemma 2.3 we have

§(y' ) < 8(y° p)* = 6%, (2.15)

So, using (2.14), we may write

oo

sy, 1) = do(y(p)s ) = 3 (du(v' 1) — d(u™, 1)

1=0

$6(4", u)?

=0

IA
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< i 6.2i+1

i=0
52
1—62°

IA

O

The following lemma gives an upper bound for the difference in objective function
value in a nearly centered point y and y(u).

Lemma 2.5 If § := é6(y,p) < 1, then

6Ty — bTy(u)| <

5(11 j;)l‘ VA

Proof: From (2.13) we have pTg = —§%. On the other hand

—plg = pT (E—AS‘le)
u

T
b—I—J —efS51ATp.

So we have
bTP 2 T o—1 4T
7 = 6 +e S A P-
Using the Cauchy-Schwartz inequality, we obtain

|e" ST ATp| < ST AP |le]| = 6v/m,

where the last equality follows from Lemma 2.2. From this we deduce that

6

7-5)”\/5 < 8(1 + 8) uv/n. (2.16)
Again, let y° := y and let y*,y?,--- denote the sequence of points obtained by
repeating Newton steps, starting at y° (see Figure 2.5). Then we have

i G bry,-)l

=0

b7p| < u(6® +6vn) = 6(1 +

BTy (u) — b7yl =

<y 7 p(y", )|

=0

< i 6(y', w)(1 + 6(y', w))uv/n

1=0
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IA

S+ 6 uvn

1=0

(1+8uva 3 s

=0
6(1+6

TIA

where the second inequality follows from (2.16) and the third inequality from
(2.15). O

Note that if §(y, #) = 0 then according to Lemmas 2.4 and 2.5 we have ¢5(y, p) =
és(y(p), p) and bTy = ¥Ty(u), which is obviously true since y = y(u).

2.2.2 Complexity analysis

In this section we will first derive an upper bound for the total number of iter-
ations for the long— and medium-step variants. We will give an upper bound
for the number of outer iterations, i.e. the number of updates of the barrier
parameter. Then we will give an upper bound for the number of inner iterations
during an arbitrary outer iteration. The product of these two bounds is an upper
bound for the total number of iterations for the medium- and long-step variant.
At the end of this section we will treat the short-step variant. In this case one
full Newton step is sufficient to return to the vicinity of the new center.

The following theorem gives an upper bound for the number of outer iterations.
In the Logarithmic Barrier Algorithm we will use 7 = 3.

Theorem 2.1 After at most
1. 4np
-1
8" ¢

outer iterations, the Logarithmic Barrier Algorithm ends up with a dual solution
y such that z* — b7y < e.

Proof: The algorithm stops when px = (1—6)" yo < . Taking logarithms we
require

—Kln(1-6)>In 4"6"".

Since § < —In(1 — @), this certainly holds if

K> L dnke
0 €
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From (2.7) and Lemma, 2.5 we can derive an upper bound for the gap z* — bTy
after the algorithm has stopped

* " 3 € 3
# = by = 2" = bTy(px) + 6"y (px) = by < px(n+5vn) < -(r+5vn) < e
[

It is well-known that a 272L—optimal dual solution can be rounded to an optimal
solution of (£LD) in O(n3) arithmetic operations. (See e.g. [117].) Consequently,
for this purpose it suffices to take e = 272L,

The following lemma is needed to derive an upper bound for the number of inner
iterations in each outer iteration. It states that at least a constant decrease in
the barrier function value can be obtained by taking a step along the Newton
direction.

Lemma 2.6 Let & := (14 6)"'. Then

Adn = ¢u(y, n) — ds(y + ap,p) > § —In(1 4 6) > 0.

Proof: We write down the Taylor series for ¢z with respect to a:
1 o o]

$(y + op, 1) = $5(y, 1) + ag"p+ 5’ T Hp + 3" i,
=3

where t; denotes the k~th order term in the Taylor series. We will also use the
notation a; for the :—th column of A. Since

we find

[te] < %Z

i=1

So we find, since ¢Tp = —pT Hp = —§?,
1 9 . 0 CYk .
$aly +apu) < ¢aly,p) + (507 — )8” + > =9
k=3
= ¢5(y,p) — ab® —In(1 — ab) — aé.

The last equality holds only if
ab < 1. (2.17)
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Hence

Ads > a(6% + 8) + In(1 — aé). (2.18)

The right-hand side is maximal if « = & = (1 4+ §)~'. This value for « also
satisfies condition (2.17). Substitution of this value finally gives

Ads > §—1In(1 +6).

This proves the lemma. m]
The following theorem gives an upper bound for the number of inner iterations

in each outer iteration.

Theorem 2.2 FEach outer iteration requires at most

110 3 11
TR (0"+§‘/'_‘) 3

inner iterations.

Proof: We denote the barrier parameter value in an arbitrary outer iteration
by i, while the parameter value in the previous outer iteration is denoted by f.
The iterate at the beginning of the outer iteration is denoted by y. Hence y is
centered with respect to y(i) and & = (1 —6)f. Note that because of Lemma 2.6
during each inner iteration the decrease in the barrier function value is at least

1 1 1
A—i—]n(1+§)>1—]

Now let N denote the number of inner iterations during one outer iteration.
Then we have

NA < ¢s(y, ) — ¢a(y(B), i)- (2.19)

Let us call the right-hand side of (2.19) ®5(y, ). According to the Mean Value
Theorem there is a & € (&, i) such that

0y, 1) = #av,) + T ), (2:20)

u=p

Let us now look at %(:L“l. We have from (2.5)

dés(y,p) by
dp pt’
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and, denoting the derivative of y(u) with respect to g by y’,

T T, 1
d¢s(y(p)p) _ by(p) by 4+ T SIATy

- 2

dp p p
bTy(u) ¥y | (Az)Ty'
= ) —_ +

p 7 7

by(n)
pr

where the last two equations follow from (2.6). So
_d®@,p)| Wy by _ IbTy(u) — bTyI
dp u=p p u=p B /‘

where the last inequality follows from the fact that & < i and from Lemma 2.1.
Substituting this into (2.20) gives

Du(y, 1) <

= (y,ﬁ)
K z a

T, =y _ 3T
¢B(y,ﬁ)+W(ﬁ—ﬁ)

Because y is centered with respect to i we have due to Lemma 2.4,

1
QB(y, ) — 3

Now note that due to Lemma 2.5 and é(y, i) < 3

_ 3
by () - b7y| < SAv.
Moreover, because of the monotonicity (Lemma 2.1), we have

bTy(a) —b'y(p) < bTy(E) — cT=(i) + Tz (i) — bTy(p)
n(f — i)
= Onp.

Plugging all these upper bounds in (2.21) gives

- 1 3/n on 0
Taly ) < 3+<1—0+1—0)1—9
1
3

a _0 O (g\/ﬁ + 0n> : (2.22)

+
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The theorem follows by substituting this into (2.19). o

Combining Theorems 2.1 and 2.2, the total number of iterations turns out to be
given by the following theorem.

Theorem 2.3 An upper bound for the total number of Newton iterations is given

by
11 3 11 4dnpg
—  (on+= — .
[(1—0)2 ( nt 2‘/ﬁ) + 39] =

This makes clear that to obtain an e-optimal solution the algorithm needs
e O(nln *2) Newton iterations for the long-step variant (0 < 6 < 1);

e O(y/nln™2) Newton iterations for the medium-step variant (6 = T
v > 0).

To obtain an optimal solution we have to take ¢ = 2=2L. For this value of €

the iteration bounds become O(nL) and O(y/nL) respectively, assuming that
po < 2000,

At the end of each outer iteration we have a dual feasible y such that é6(y, 1) < 1.
The following lemma (due to Roos and Vial [130]) shows that a primal feasible
solution can be obtained by performing a projection.

Lemma 2.7 If § := 6(y,pu) < 1 then z(y,p) is primal feasible. Moreover,

p(n —6y/n) < Ta(y, p) — b7y < p(n + 6v/n).

Proof: By the definition of z(y, 1) we have Az(y,p) = b and

”31(1/,#)

—e| £1.

This implies z(y,p) > 0, so z(y,x) is primal feasible. Moreover, using the
Cauchy—-Schwartz inequality,

sTz(y, Sz(y, Sz(y,
s 2y, 1) _ni = J(M — &) < Jlell ||_Q_/Q —e|| = 8+/n.
p p
Since sTz(y, 1) = cTz(y, ) — bTy the lemma follows. o

We want to point out that a complexity analysis can easily be given for the short-
step path—following method using some of the lemmas given above. Short-step
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Figure 2.6: One short-step iteration.

~

path—following methods start at a nearly centered iterate and after the param-
eter is reduced by a small factor, a unit Newton step is taken. The reduction
parameter is taken sufficiently small, such that the new iterate is again nearly
centered with respect to the new center. Short-step barrier methods for linear
programming have been given by Gonzaga [45] and Roos and Vial [130].

Lemma 2.9 states that if § is small, then we obtain such a short-step path-—
following method. It shows that after a small reduction of the barrier parameter,
one unit Newton step (i.e. the steplength is one) is enough to reach the vicinity
of the new reference point on the central path. Theorem 2.1 gives that this
short-step algorithm requires O(/nln"£2) unit Newton steps. The following
lemma, proved in Roos and Vial [130], is needed in the proof of Lemma 2.9.

Lemma 2.8 Let p* := (1 —0)u. Then §(y,p*) < 25(6(y, p) + 04/n).

Proof: Due to the definition of the §~measure we have

Sz(y,ut
ot = 1B

Sz(y,
< =R g
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_ oL Sy, p) 1
1
which proves the lemma. (]

Lemma 2.9 Let y* :=y+p and pt := (1 — )y, where § = #. Ifé(y,p) <3
then 8(y*, pu*) < 3.

Proof: Due to Lemma 2.8 we have that

1
1_1
5/n

Now we can apply the quadratic convergence result (Lemma 2.3)

1)<11
9

+) < -
6(2’1# )—— —16'

1
(5+

1 1
+ + <6 + 2<__ -,

Figure 2.6 shows the steps in this proof. a

2.3 Convex quadratic programming

2.3.1 Properties on and near the central path
We consider the convex quadratic programming problem in standard form?:

ming(z) = Tz + 127Qx
(QP) ?
Az =b, z > 0.
Here () is a symmetric, positive semi—definite n X n matrix, A is an mxn matrix, b

and ¢ are m— and n— dimensional vectors respectively; the n—dimensional vector
z is the variable in which the minimization is carried out. The dual formulation

to (QP) is:

maxd(z,y) = by — 127Qxz
(@D) (z,y)=by—32°Q
ATy —Qz+s=¢, s>0,

where y is an m—dimensional vector.

2To show how the analysis goes for equality constraints, we will now work with equality
constraints.
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It is well-known that for all z and y feasible for (QP) and (QD) we have
d(z,y) < 2" < q(z),

where 2* denotes the optimal objective value for (QP). Optimality holds if
and only if the complementary slackness relation zTs = 0 is satisfied, and then
q(z) = d(x,y).

Without loss of generality we assume all coeflicients to be integers. We shall
denote by L the length of the input data of (@QP). We make the standard
assumptions that (QP) has a strictly feasible solution, i.e. a feasible solution
z such that z > 0, and that the feasible set of (QP) is bounded. In order
to simplify the analysis we shall also assume that A has full rank, though this
assumption is not essential.

We consider the logarithmic barrier function

Tr+ l:z:TQx n
¢B($7/") = 2 -
J

p > Inazj, (2.23)

vt
where p is a positive parameter. The first and second order derivatives of ¢ will
be denoted by g = g(z,p) and H = H(z, p), respectively. So

c+ Qx

9= V¢B(x’ll’) = - X_le,

1
H=V¢s(z,p) = ;Q + X2

The necessary and suflicient first order optimality conditions for the unique min-
imum of ¢5(z, y) are:

Az = b, >0 (2.24)
Xs = pe,

‘where y and s are m— and n—dimensional vectors respectively.

The unique solution of this system is again denoted by (z(u),y(u), s(x)). The
duality gap in this solution satisfies

() s(p) = np, (2.25)

according to (2.4). It is well-known that z(u) and y(p) are continuously dif-
ferentiable. Hence, if g | 0 then () and (z(p),y(p)) will converge to optimal
primal and dual solutions respectively.
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The following lemma states that the primal objective decreases along the primal
path and the dual objective increases along the dual path. In the proof we will
use the logarithmic barrier function for (QD):

Pa(x,y,p) = —-q%’y—) - ilnsf-

=1

Lemma 2.10 The objective q(z(u)) of the primal problem (QP) is monoton-
ically decreasing and the objective d(x(u),y(p)) of the dual problem (QD) is
monotonically increasing if p decreases.

Proof: The first part is a classical result of Fiacco and McCormick [34] (see
the proof of Lemma 2.1). To prove the second part, first note that ¢2(z,y, u) is
convex. The Karush—-Kuhn-Tucker conditions for a minimizing point are:

ATy —Qz+s=c, s>0
pAS~le = b, >0 (2.26)
Q(x —puS~te) = 0.

It is easy to see that the pair (z(u),y(p)) satisfies these conditions. Hence
(z(p),y(p)) is a minimizer of #¢(z,y,x). The classical result of Fiacco and
McCormick {34] can now be used again to prove the second part of the lemma.
(See also Anstreicher [4].) 0

To measure the distance to the central path of non—centered points, we will in-
troduce three measures. The first is analogous to Roos and Vial’s [130] appealing
measure (2.8) for linear programming

X
6(z, ) = min || (e + Qz — ATy) —ell. (2.27)

In the sequel of this section we will sometimes write § instead of §(z, u) for
briefness’ sake. Loosely speaking, §(z, ) measures the deviation from optimal-
ity condition (2.24). The unique solution of the minimization problem in the
definition of §(x, u) is denoted by y(z, ) and the corresponding slack variable
by s(x,p) (i.e. s(z,u) =c+ Qx — ATy(z,u)). It can easily be verified that

z = z(p) <= §(z,p) =0,

and moreover
§(z,p) =0 = y(z,p) = y(u).
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In the algorithm approximate line searches along projected Newton directions
are carried out to minimize ¢y for fixed g, i.e. the directions correspond to exact
minimization of the quadratic approximation to ¢ on the affine space Az = b.
This means that the Newton direction p = p(z, 1) is determined by solving

g+ Hp=AT§, Ap=0, (2.28)

as a linear system of equations in p and §. Gill et al. [40] give two alternative
(equivalent) forms for this direction:

e the range-space form

- - T( A 7-1 ATN-1 A [T-1\, _ _ 17—2 _1
p(z,p) = —H Y (I - AT(AH'AT ' AH Y9 = -H 2P, yH™7g,

. (2.29)
where PA It denotes the orthogonal projection onto the null-space of
AH _%;

e the null-space form
p(z,p) = —-Z(Z"HZ)'Z7g, - (2-30)

where Z is an n X (n — m) matrix, with independent columns, such that

AZ =0.

The second and third measure for the distance to the central path are || X ~!p(z, y)||
and ||p(z, )| Fr(z,u), Where the latter is defined by

Ip(z, )3z w) = P(2; )T H(z, p)p(2, 1)

Although all of the three measures will be used in the analysis, only ||p||# is
used in the algorithm. We note that ||.||z(z,.) defines a norm, because H(z, p) is
positive definite.

We will work with the null-space form for p, because it facilitates the analysis a
lot. In the analysis we will also assume that (X~'Z)7(X~'Z) = I, hence X~'Z
is orthonormal. In this case we have the following well-known properties:
Property 1. (X~'Z)(X~1Z)7 is the projection onto the null-space of AX;
Property 2. || X71Z)|| = ||A]| for any A;

Property 3. ||(X=*Z)Tv|| < ||v| for any v, with equality if » is in the null-space
of AX.

The following lemma shows that there is a close connection between the three
measures.
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Lemma 2.11 For given z and p, || X 'p||2 < ||p|l% = —pTg < 62
Proof: We may write

Iplfy = 2" Hp = 57(X~ + Q) > IX 5l

This proves the first inequality. The equality of the lemma follows simply from
(2.28)

lpll} = p"Hp = p"(AT§ — g) = —p"g.
So, it remains to prove the last inequality of the lemma. Using the definition of
p, and the fact that X~ Z is orthonormal, it follows that

1 -1
—gTp = ¢7Z (ZTX"2Z+;ZTQZ) ZTq

IA

1 -1
1Z7gl | (1+ ;ZTQZ) ||
1274l

IA

’ -1
where the last inequality follows because the eigenvalues of (I + iZTQZ) are
all less than or equal to 1. Moreover,

ZTg = 7T (ﬂ - X’le)
©
_ AT
7T (%A__y - X“le>

- oz (Beer o),

where the second equality holds for any y, because AZ = 0. Putting y equal
to y(z, 1), it follows from Property 3 that ||Z7g|| < §. Hence it follows that
—~gTp < 6%. This proves the lemma. o

Note that in the LP case, for which ) = 0, the projected Newton direction (2.30)
reduces to p = —ZX~2Z7g, which coincides with the scaled projected gradient
direction. For this case, it is easy to verify that the three measures || X~p||,
|lp|lz and & are equivalent (in Lemma 2.11 equalities hold instead of inequalities;
this is in fact Lemma 2.2). Consequently, if we substitute Q = 0 in the analysis
given below, we will get back the results for LP, given in Section 2.2.

Now we will prove some fundamental lemmas for nearly centered points. The
following lemma shows quadratic convergence in the vicinity of the central path
for all of the three measures.
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Lemma 2.12 If || X7 'p(z,p)|| < 1 then z¥ = z + p(z, p) is a strictly feasible
point for (QP). Moreover,

[(XH)p(at, Wl < llp(z*, )t w) < 8(zF,p) <
< X ple, WP < lp(z, )i < 8z, 1)

Proof:® It is easy to see that Azt = b. Moreover, 2* = = + p > 0, because
|X~'p|| < 1. This proves the first part of the lemma.

Using the definition of §(z*, ) we have
Xt
+ — minll2— +_ AT, _
b(at,m) = min|l= (c+Qz* — ATy) — |
. (X+P
= mymu(#—) (c+Qz+p)— ATy) —ell.  (2.31)

Now using y = gy in (2.31), where 7 is defined by (2.28), it follows that
§(z*, 1) S (X + PY(X7"e = X7%p) —e|| = |[PX*p|| < [ X" p|l".

This proves the middle inequality of the lemma. The rest follows immediately
from Lemma 2.11. m]

The following lemma gives an upper bound for the difference in barrier function
value in a nearly centered point z and the center z(y).

Lemma 2.13 If ||p||laz < 1 then
2
(1) = Bn(a(), ) < TIPUEL
1 —|lpliz
Proof: The barrier function ¢z is convex for fixed px, whence
(. 1) — ds(z +p,p) < ~9g"p = |Ipll, (2.32)

where the equality follows from Lemma 2.11. Now, let z° := z and let z*,z?,---
denote the sequence of points obtained by repeating Newton steps, starting at
z°. Then we may write, using Lemma 2.12

(1) — (o), ) = 3 (8000, 1) — e ) < Sl < P
i=0 i=0 1 —ipll3
0

The following lemma gives an upper bound for the difference in objective value
in a nearly centered point = and the center z(p).

3Thanks are due to M.J. Todd who simplified an earlier version of the proof.
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Lemma 2.14 If ||p||g < 1, then

llpller (L + |lpller)
|q(-'l7) - q(.’l?(/,t))l S 1— ”P”H H /1'\/;".

Proof: Since ¢(z) is convex, we have
Vy(z)"p < g(z +p) — a(z) < Vg(z + p)p. (2.33)

Using that Vq(z) = ¢ + Qx = pg + pX e, we can derive the following lower
bound for the left-hand side of (2.33)

Ve(z)'p=pg"p+petXp > —ullpl}k — ulpllavn
> —|lplla (X + ||plla)pv/n, (2.34)

where the first inequality follows from Lemma 2.11 and the Cauchy—Schwartz
inequality. Now, using (2.28), we derive an upper bound for the right-hand side
expression in (2.33):

Vez+p)Tp = p+p Qz+p) =cp+p (WATG+ pX e —c— pX7p)
= pe’ X7'p— pl|X7'p|* < pe" X'p < pv/nllplla (2.35)
Consequently, substitution of (2.34) and (2.35) into (2.33) yields

lg(z) — q(z + p)| < |Ipllar(l + llplla)pv/n.

The remainder of the proof follows by considering a sequence of Newton steps
initiated at z° := z, as in the proof of Lemma 2.13. (See also Lemma 2.5.) O

Note that the last two lemmas are analogous to Lemmas 2.4 and 2.5 for the
linear case, respectively.

2.3.2 Complexity analysis

In this section we will derive upper bounds for the total number of outer and
inner iterations needed by the Logarithmic Barrier Algorithm. First we derive
upper bounds for the long— and medium-step variants, and finally for the short-
step variant. In the Logarithmic Barrier Algorithm we will take 7 = % (Of
course, some obvious changes have to be made in this algorithm given in Section
2.1, e.g. instead of y we now have z.)

Theorem 2.4 After at most

1, 4npe
Oln €

outer iterations, the Logarithmic Barrier Algorithm ends up with a primal solu-
tion such that g(z) — 2* <e.
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Proof: This is an easy consequence of (2.25) and Lemma 2.14. (See also Theo-
rem 2.1.) O

We note, that this final primal solution can be rounded to an optimal solution
for (@P) in O(n®) arithmetic operations. (See e.g. [117].)

The following lemma is needed to derive an upper bound for the number of
inner iterations in each outer iteration. It states that a sufficient decrease in the
value of the barrier function can be obtained by taking a step along the Newton
direction.

Lemma 2.15 Let & := (1 + ||p|lu)~!. Then

Ads := ¢u(x, p) — da(z + ap, u) 2 ||pllr — In(1 + (|pllx)-

Proof: We write down the Taylor series for ¢5 with respect to a:

1 o0
bo(a +ap, 1) = golz, 1) + agTp + LatpTHp + 3" 4,
k=3
where t; denotes the k—order term in the Taylor series. Since
(——oz)k n (p‘,)k
te=-—2 S (&
k k g ZT; ’
we find, by using Lemma 2.11,
k
af IP: ak n <Pi)2 2 ak 1k ak X
| < — —_ — = —[IX < — .
<23 ()" < c(S(2)) = e < Sisig

Using Lemma 2.11, we have for the linear and quadratic term in the Taylor series

1
apTg+ 501 ’pTHp = (§a2 —a)llpll%.

So we find

¢o(z +ap,pu) < ¢so(a, u)+( o’ —a IIPHH+Z_: "p“H

¢s(x, #) — allpllly —In(1 — allplle) — ollpfla.

Hence
Ads 2 oflipllE + llpllz) +In(1 - «llplla). (2.36)
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The right-hand side is maximal if « = @ = (1 + ||p||#)~". Substitution of this
value finally gives

A¢s 2 pllg — In(1 + ||pllx)-
This proves the lemma. 0

The following theorem gives an upper bound for the total number of inner iter-
ations in each outer iteration.

Theorem 2.5 Fach outer iteration requires at most

116 3 11
(1-6) (0"+§‘/E) t3

inner iterations.

Proof: We denote the barrier parameter value in an arbitrary outer iteration
by &, while the parameter value in the previous outer iteration is denoted by f.
The iterate at the beginning of the outer iteration is denoted by z. Hence z is
centered with respect to z() and g = (1 — 8)zz. Note that because of Lemma
2.15 and ||pllz = } in each inner iteration, we obtain that the decrease in the
barrier function value is at least

1 1 1

in each inner iteration. Now let NV denote the number of inner iterations during
one outer iteration. Then we have

NA < ¢o(z, i) — ¢s(z(i), i)- (2.38)

Let us call the right-hand side of (2.38) ®3(z, ). According to the Mean Value
Theorem there exists a i € (&, z) such that

_ B d ®5(z, -
Bo(2,7) = Oale, ) + L22EH| gy (2.39)
dp w=p

Let us now look at %‘fﬂ. We have from (2.23)
d ¢u(z, 1) _ _g(z)
du g’

and, denoting the derivative of z(g) with respect to p by ',

dnelihr) _ _ae) | Ve g,
du p p
_ _4zw) (et Q)" s
pw 7 I

_a(z(p)
pro’
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where the last two equations follow from (2.24) and from Az’ = 0. So

_ 4% n)| | @) @) _ lelz) —a(=@m)
dp p=i /12 p=h - ﬁz

bl

where the last inequality follows from the fact that i < /i and from Lemma 2.10.
Substituting this into (2.39) gives

Oy (z,

=i

) < wue) + 1B G gy

Qp(z, 1) +
C«w—gumn+quw»;«umv(ﬁ;m.(g@)

Iz i

Because [|p(z, i)||#(z,2 < 3, we have due to Lemma 2.13
1

(I)B(xv p’) S g
Now note that due to Lemma 2.14
_ 3_
lg(x) ~ g(=())| < -2-u\/5-

Moreover, because of the monotonicity property (Lemma 2.10), we have

a(2(i)) — g(z(m) < q(=(p)) — d(z(), y(R)) + d(z(),y(i)) — a(=(R))
(i ~ )
Onji.

Wt

Plugging all these upper bounds in (2.40) gives

+ i/n on 0
1-0 1-6)1-6
6 3
3T a0y (E\/’;”L 0") ‘
The theorem follows by substituting this into (2.38) and using (2.37). o

Combining Theorems 2.4 and 2.5, the total number of iterations turns out to be
given by the following theorem.

QB(JJ’ /_1') S

1
3
1

Theorem 2.6 An upper bound for the total number of Newton iterations is given

by
11 3 11 dnpg
[——(1_0)2 (0n+§\/r_z)+£]ln L
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Note that this upper bound is exactly the same as the upper bound for the
linear case (Theorem 2.3). Theorem 2.6 makes clear that to obtain an e-optimal
solution the algorithm needs

o O(nlIn *£2) Newton iterations for the long-step variant (0 < 6 < 1);

¢ O(y/nIn %) Newton iterations for the medium-step variant (6 = T
v >0).

To obtain an optimal solution we have to take ¢ = 272L, For this value of €

the iteration bounds become O(nL) and O(y/nL) respectively, assuming that
o < 20(0),

At the end of each sequence of inner iterations we have a primal feasible z such
that [|p]lg < 1. The following lemma shows that a dual feasible solution can be
obtained by performing an additional full Newton step, and projection.

Lemma 2.16 Letzt = z+p(z,p). If [lp(z, )o@ < 1 then §:=8(xt, p) <1
and y := y(z%, p) is dual feasible. Moreover, the duality gap satisfies

p(n — 8v/n) < g(z*) — d(z*,y) < p(n + 8v/n).

Proof: By Lemma2.12 we have 6(z%, u) < ||p(z, #)||}(z,sy < 1. By the definition
of s(z,u) = ¢+ Qz — ATy(z, u) we have

Xts(zt, p)

5(a*,u) = | —el <L

This implies s(z*, u) > 0, so y(z*, ) is dual feasible. Moreover,

(z*)"s(z*, 1)
7

—nl|l =

PR ) < e |EERE) o~ 5y

Consequently, using that (z7)Ts(z*, u) = ¢(zt) — d(zt,y)

p(n —6v/n) < q(2*) — d(z*,y) < p(n + 6v/n).

0

Short-step path—following methods start at a nearly centered iterate and take a
unit Newton step after the parameter has been reduced by a small factor. The
reduction parameter is sufficiently small, such that the new iterate is again nearly
centered with respect to the new center. Theorem 2.4 implies that this short-step
algorithm requires O(/n In 2£2) unit Newton steps. Short-step barrier methods
for convex quadratic programming have been given by Ye [155], Goldfarb and
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Liu [43], and Ben Daya and Shetty [12). Lemma 2.18 shows that if 0 is small,
we obtain such a short-step path—following method. The proof is analogous to
the proof for the linear case (Lemma 2.9). The following lemma will be needed

in the proof of Lemma 2.18.
Lemma 2.17 Let pt := (1 — 0)p. Then §(z,ut) < 115(6(z, 1) + 0v/n).
Proof: Due to the definition of our é—measure we have
Xs(z,put
R e |
Xs(z,p) .

< e

< ﬁw(w,u) + 0v/n),

which proves the lemma.

Lemma 2.18 Let ot := z + p(z,4) and p* := (1 — O)p, where § = o=

6(z,p) < § then §(zt,pu*) < 1.
Proof: Due to Lemma 2.17 we have

1 1 1 11
9

Now we can apply the quadratic convergence result (Lemma 2.12)
121

1
+ +< +2< Z.
8z, p) < 6z, 07) < 52 < 5

2.4 Smooth convex programming

if

2.4.1 On the monotonicity of the primal and dual ob-

jectives along the central path
Let us first recall the primal convex programming problem
max fo(y)
(CP) fi(y)so7i=1,"'an
y € R™,
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and its dual problem

min fo(y) — X%, i fi(y)
(CD) Y1z Vi(y) = Violy)
z; 20,

as given in Section 2.1.

Fiacco and McCormick [34] proved that the primal objective is monotonically
increasing along the barrier path. For linear and quadratic programming it
turned out to be easy to prove that the dual objective is decreasing along the
logarithmic barrier path: the dual feasible point z(u) associated with y(p) is
the unique minimum for the dual barrier function, which is also convex. So,
again applying Fiacco and McCormick’s argument for the dual barrier function
directly gives the result. (This idea was used in the proofs of the Lemmas 2.1
and 2.10.) We note that Fiacco and McCormick’s monograph does not deal with
the monotonicity of the dual objective along barrier paths?.

In Den Hertog et al. [28] we proved that the dual objective of a convex program
is decreasing along the central path defined by the logarithmic barrier function.
This was carried out by differentiating the Karush-Kuhn-Tucker conditions and
manipulating these equations. In that proof we needed the objective and con-
straint functions to be twice continuously differentiable.

In this subsection we will prove the same result under weaker assumptions. The
assumptions which we will make in the sequel of this subsection are that the func-
tions — fo(y) and fi(y),? =1,---,n, are convex and continuously differentiable,
and that the feasible region of (CP) is bounded and has a nonempty interior.

We introduce the following function

) = LU LS )+ Yl (=g, @24)
i=1 i=1
which is the logarithmic barrier function for (CD), up to a constant factor.

Lemma 2.19 We have that ¢u(y, 1) > ¢%(z,y, ) for all primal feasible §j and
dual feasible (2,y). Morcover, do(y(s), 1) = 6(x(1), y(k), ).

*On page 101-102 of Fiacco and McCormick’s book [34] only a specific example is given for
which the dual objective is really increasing.
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Proof: Using convexity of —fo(y) and fi(y), : = 1,---,n, and (CD) we may
write

n

——fO )+f0 ‘*‘th fz - )) > —Vfo(y)T(ﬁ—y)+
i=1
5 eV i) (5 v)
=1
= 0.
Using this, we get
i) = i) = POERW) D5

iln( 2 fi@)) = n(1 - Inp)

_%thﬂ(g) Zln 1f1

n(l — In ). (2.42)

v

Now setting the derivatives with respect to z; of the right-hand side equal to
zero, we get

2= —t .
- fi(9)
This choice of z; minimizes the right-hand side of (2.42), since it is convex in z;.
Substituting this into (2.42), we get

¢B(g’p’) - ¢g($1 Y, I‘) 2> 0.

It is easy to verify that equality holds for § = y = y(¢) and =z = z(p). a

As a consequence of Lemma 2.19 we have that (z(p),y(x)) maximizes ¢2(z, y, i)
Now we are ready to give the main result.

Theorem 2.7 The objective function fo(y(n)) of the primal problem (CP) is
monotonically increasing, and the objective function of the dual problem (CD)

n

y(l" Z f.(y

is monotonically decreasing if p decreases, where z(p) and y(u) are defined by

(2.3).
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Proof: The first part of the theorem is a classical result of Fiacco and Mc-
Cormick [34]. (See also the proof of Lemma 2.1.) The proof of the second part
of the theorem follows easily by applying Fiacco and McCormick’s [34] proof to
¢3(x,y, p), since, as a consequence of Lemma 2.19, we have that (z(x),y(x))
maximizes ¢%(z,y, u). o

2.4.2 The self-concordancy condition

In addition to Assumptions 1-3 made in Section 2.1 we assumed an additional
smoothness condition in [28], namely that the Hessian matrix of fi(y),0 < i < n,
fulfils the so—called Relative Lipschitz Condition:

IM >0: Yve R™ Vy,y+ he F°:
[T (V2 fi(y + b) = V2 fi(y))o| < M||k||lav™ V2 fi(y)v. (2.43)

This condition was introduced by Jarre [63]. The reader is referred to this paper
for a motivation of this condition. It is clear that linear and convex quadratic
functions fulfil this condition. In general the condition may be hard to check for
a given problem.

In Nesterov and Nemirovsky [116] a different condition is used®, the so—called
self-concordancy condition, which is defined as follows:

Definition of self-concordancy: A function ¢ : F° — R is called x-self—
concordant on F°, £ > 0, if ¢ is three times continuously differentiable in F°
and for all y € F° and h € R™ the following inequality holds:

V% (3) [, b, B]] < 26 (BT (y)h)?

where V3p(y)[h, k, h] denotes the third differential of ¢ at y and h.

Note that linear and convex quadratic functions are 1-self-concordant. It is
important to observe that this condition relates to the barrier function itself, and
not to the individual problem functions f;(y). Jarre [64] proved the following
interesting result: if a function f; fulfils the Relative Lipschitz Condition for
infinitesimal ||k||, then the logarithmic barrier function ¢(y) := —In(—fi(y)) is
self-concordant with parameter k = 1+ M. The converse is not true. So, besides
the requirement of three times differentiability, the class of problems for which
the logarithmic barrier function fulfils the self-concordancy condition is wider
than the class of problems which satisfy the Relative Lipschitz Condition.

5Thanks are due to Osman Giiler, who explained us monograph [116] in a series of lectures
during his stay at Delft in 1991.
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Since a convex quadratic function fi(y) fulfils the Relative Lipschitz Condition
(with M = 0), and thus —In(—f;(y)) is 1-self-concordant, it immediately fol-
lows from Lemma A.1 that the logarithmic barrier function for quadratically
constrained convex quadratic programming is 1-self~concordant.

For a general problem it might be hard to check whether its logarithmic barrier
function is self-concordant. However, in many cases it is possible to reformulate
the problem such that the logarithmic barrier function for the new problem is
self-concordant. This is in essence what is done by Nesterov and Nemirovsky in
[116], although they describe it as constructing different self-concordant barriers
for different problems. Below we will give many classes of problems for which
the logarithmic barrier function satisfies the self-concordancy condition.

Nesterov and Nemirovsky [116] showed that the logarithmic barrier functions for
the following (reformulated) problems are self-concordant:

e linear and convex quadratic programming with convex quadratic constraints;
¢ primal geometric programming;
e [,~approximation;

e matrix norm minimization;

e maximal inscribed ellipsoid.

We discovered some other important classes of problems, for which the log-
arithmic barrier function (sometimes after a reformulation) satisfies the self-
concordancy condition:

o dual geometric programming;

¢ extended entropy programming;
e primal /,—programming;

e dual /,-programming.

For the precise formulations of these last four problems and for the proofs of
self-concordancy we refer the reader to Appendix A. In most of these cases the
self-concordancy parameter appears to be O(1), but in some cases the number
of inequality constraints is increased due to the reformulation.

Besides the Relative Lipschitz Condition and the self-concordancy condition,
we found two other conditions in the literature, namely the Scaled Lipschitz
Condition, introduced by Zhu [167], and a condition used by Monteiro and Adler
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[107]. These two conditions refer to problems with convex objective function and
linear constraints. In Appendix A we describe these conditions more precise,
and prove that these conditions are covered by the self-concordancy condition
if the objective function is three times continuously differentiable. So, again we
conclude that self-concordancy is the most general condition.

In the remainder of this chapter we will assume that the logarithmic barrier
function for (CP)

) = L0 3 ()

is k-self-concordant. Without loss of generality we will assume that « > 1.

2.4.3 Properties near the central path

In this section we deal with some lemmas which will be needed to obtain an
upper bound for the total number of outer and inner iterations. Lemmas 2.20
and 2.21 are in essence due to Nesterov and Nemirovsky [116]. As established
before, we will denote H = H(y, u) if no confusion is possible.

Lemma 2.20 Letd € R™. If |d||g(,u) < = then y +d € F°.

Proof: In essence, the proof is similar to the proof given in [64], which is a
simplified version of the proof in [116]. Since p is fixed in this lemma we will
write H(y) instead of H(y, ) in this proof for briefness’ sake.

Let 0 < ¢t <1 be such that y + td € F°, and v € R™ arbitrary. We first show
that the norm of v with respect to H(y) and H(y + td) are comparable, i.e.

1
1 —tx||d < < — . 2.44
(1 = telldl)lolls < ol < Tppr=toll.— (240)
To prove these inequalities, we define, for p € [0,1],

and
A(p) = ||vll3rypay = v H(y + pd)v.

Now we want to evaluate how these norms change if p varies. Therefore, we
calculate bounds for the derivatives of ¥ and A with respect to p:

W' (p)] = Vb + pd, )ld, d, d]| < 25|31y = 26%(p)?, (2.45)
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and

[V38s(y + pd, p)[v, 0, d]|
2610131y 4.0y |l Hw400)
26A(p) ¥ (p)?, (2.46)

|A'(p)]

IA

where the inequalities follow from the fact that @5 is k~self-concordant and from
Lemma B.2. From (2.45) we immediately obtain an upper bound for ¥(p)

d

i, [¥(p)3]| = ’%‘P(P)_%‘I"(P) < k.

Consequently,

1 ‘ 1 1
¥(p)F > W(0)F ~ o = —— — pr,
[

or equivalently

Substituting this into (2.46) gives

§(p)) < 2y )

- prlld||x

Now it easily follows that

A(p)" 2x||d||#
InA(p)Y| = < )
It Ale)Y \A(m < T peldln
Using this we obtain
v || (y+ta) 1 A(t)l
n WH @) | 2y, 2
ol 2| A0)
- %IlnA(t)-—lnA(O)|
1 t
= -/ 'd l
5| (na()yds

t klld||lg
< [ /g
= /o 1= pxlldlla "’

= —In(l - pxlld]lz)lo

= In (————1 )
1—tk|d|lg)
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Consequently,
V]l zy+ta) 1
lvllz  — 1—tslldl|a
and
lvll= 1

lollz@+ea) ~ 1 — telld]|la’

which proves (2.44). Since ||d||p < 1, we have from (2.44) that H(y + td) is
bounded for all 0 < ¢t < 1, and thus @s(y + td, 1) is bounded. On the other

hand, ¢; takes infinite values on the boundary of the feasible set. Consequently,
y+de FO )

The following lemma, proved in [116], gives a quadratic convergence result. Re-
call that p = p(y, p) is the Newton direction in y.

Lemma 2.21 Let y* :=y +p. If |p|la < L then y* € F°, and

+ < IS | P
lp(y™, i) mret sy < (1= |p]ln)? llpllz-

Proof: Again, the proof is similar to the proof given in [64], which is a simplified
version of the proof in [116]. Since y is fixed in this lemma, we will write, for
briefness’ sake, g(y), H(y) and p(y) instead of g(y, u), H(y, ) and p(y, 1) in this
proof.

Since ||p||# < %, we have due to Lemma 2.20 that y+ tp € F°,forall0 < t < 1,
and according to (2.44)

1
(1 —txlpllx)?

for arbitrary v € R™. Using the generalized Cauchy-Schwarz inequality of Lem-
ma B.1, we have

T (H(y) — H(y + p)) ] < ( - 1) el

ool -+ )"0 — T H)| = 157 (H(y +tp) — H)ol
1
< (apppy —1) Wl

Note that the left-hand side is the absolute value of the derivative ¢'(t), where

o(t) == g(y + tp) v — (1 — t)g(y) v,
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since p = —H~'g. By integration we obtain an upper bound for |¢(t)|:

o) < ol | (rmomrss = 1) 4

12
lelllel = (247)

For t =1, y* = y + p, this implies

1
lo(1)] = lg(y*)Tv] < cllollalpliz (2.48)

—&|lplla

Now choosing v = p(y*) = ~H(y*) '¢(y*) we finally obtain

T, e < SP@Olalely o slplElp@H)re
ply 9y™) p(y7) < <
” ( )||H(y+) l ( ) ( )l 1— K"P”H (1 _ K”p”HV
where the last inequality follows from (2.44). This proves the lemma. a

For ||p||la < 34'2‘@ this implies that ||p(y*, #)||#(+.s) < ||pll#, and hence conver-
gence of Newton’s method. For ||p[|g < 5= the lemma gives

9
oy )l ) < Zﬁllpllir- (2.49)

Note that for linear and quadratic programming (¥ = 1) the result of Lemma

2.21 reduces to !

+ < 2
”p(y nu)”H(y"’,u) = (1 — "p”H)2 ”p”H’

which is worse than the pure quadratic convergence result

(™ et < Il

obtained in Lemmas 2.3 and 2.12.

The following lemma gives an upper bound for the difference in the barrier func-
tion value of an approximately centered iterate and the exact center.

Lemma 2.22 If ||p||lg < 5= then

ol
¢s(y, 1) — du(y(p),p) £ ———5.
Y, 1 v ) S — (2loln)
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Proof: The barrier function ¢ is convex in y, whence

¢s(y +p, 1) = sy, p) + " 9.

Now using that p = —H~'g, we have

p'g=—p"Hp=—|p|% (2.50)

Substitution gives
#a(y> 1) = daly + 2, 1) < |lpll- (2.51)

Now let y° := y and let y',y?,... denote the sequence of points obtained by
repeating Newton steps, starting at °. Due to Lemma 2.21 this process converges
to y(p). By (2.49) we have

; 9 2°—1 o 5 g \2'-1 .
o iy < () %l = (3%) Dol (252)

So, using (2.51) and (2.52), we may write

o0

$s(y, 1) — du(y(n),p) = _)_:(%(y",u)—%(y‘“,u))

Z I'p(yi7 /-‘)“%J(y‘,u)

1=0 A
o0 9 )2'+1—2 41
“k lpll%
> (3
llpli%
_ My
1 - (3xllpllx)

IA

IA

IA

0

The following lemma gives an upper bound for the difference of the objective
value in the exact center and an approximately centered iterate.

Lemma 2.23 If ||pllu := l|lp(y, b)llm@ww) < 35, then

) el 1+ sliplly ~
oly) = FowlDl S s ol T =l vr-

Proof: Since —fo(y) is convex, we have

Violy +0)p < foly +p) — fo(y) < Vol(y)Tp. (2.53)
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We first derive an upper bound for the right—hand side expression. From (2.50)

we have pTg = —||p||%,. On the other hand
n V ‘
—pTg=p ( fol) Z Z ) : (2.54)
So we have )p
Vfoly Vf: y
TRUL _ ol +57 3 T2 (2:5)

Now let J denote the matrix whose columns are :;—'(%1 It is easy to see that

iy ‘ el < 177pllell < vAlplla, (2.56)

where the last inequality follows since
1J¥pl)* = p"JJTp < p"Hp = |Ipll}-
Using this in (2.55) gives

Vi) < p(llplE + Vrllpla) - (2.57)

Now we derive a lower bound for the left-hand side expression in (2.53). Similar
as in (2.55) we have

Vi+p)'™ v~ VSiy +p)
=t tp ;_ﬁ(ﬁp)- (2.58)

From (2.48) it follows that

£llpl3

T
-pgy+p) 2 ——T—"771—
WD) 2 =1 ol

From (2.44) and using similar arguments as in (2.56) it follows that

Vi y+p) —/n —n llp|l=
Z iy ¥ ) \/_”P"H(Hp,u) 2 \/_1 —xlplla’

Substituting the last two formulas into (2.58) yields

vn + elpll

v +p)Tp>— H
fO(y p) P ,u”p|| 1— "CHPHH

(2.59)
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Combining (2.53), (2.57) and (2.59) gives

ol +p) — fo(w)] < pv/alplsr1+-heli "’H”}:H (2.60)

Again, let y° := y and let y',y?,-- denote the sequence of points obtained by
repeating Newton steps, starting at y°. Then we have

o) — )| =[5 (folw™*) - f (y))\

=0

< 2|fal™) - folo)

=0
(1 + nl|P(yi,ﬂ)||§1(y*,u))
— &llp(y*, ) i

< Z Py )y )

=0
1+lc p
< Lrelely o5 5 e’ Wl
mp AP
1+n||pHH ( )2“‘ "
< w/m Il
LD i

1+ «lply  lplla
< u/n
1—«llpllzl—$«lplla”™ "

where the second inequality follows from (2.60) and the fourth inequality from
(2.52). O

2.4.4 Complexity analysis

Based on the lemmas in the previous section, we will give upper bounds for the
total number of outer and inner iterations for the Logarithmic Barrier Algorithm

applied to (CP). First, the complexity analysis is carried out for the long-— and
medium-step variant, and finally for the short—step variant. We set 7 = i
Theorem 2.8 After at most

1. 4nug
-1
[

outer iterations, the Logarithmic Barrier Algorithm ends up with a solution for

(CP) such that z* — fo(y) < e.

Proof: See the proof of Theorem 2.1. a

The following lemma states that if we do a line search along the Newton direc-
tion, then a sufficient decrease in the logarithmic barrier function value can be
guaranteed.
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Lemma 2.24 Let & := . Then

1
THAllplln
éo(y, ) — ¢s(y + ap, p) > 7}5 (kllpliar — In(1 + #lpllar)) -

Proof: The proof is a modified version of the proof given in [116]. Let A¢p(a) :=

és(y, 1) — ¢s(y + ap, ). From (2.47) we derive
d a?
Talds(@) = —g(y +ap,u)p 2 (1~ ol — wllplla T — o

Consequently

Adg(a) = Ads(a) — Ads(0)
)
/OE;AQSB(S) ds

> [ (- o = stplfr =) 2

— s&l||plla

]

1
= = (Fllpl}re + sllpllme +1n(l = asllplln)) . (261)

The right-hand side is maximal for @ = mﬁpW' Substituting this value into
(2.61) yields the lemma. o

Note the similarity between this lemma and Lemmas 2.6 and 2.15.

Theorem 2.9 Each outer iteration requires at most

220 5 22
o [ ok? =z ) -
1=0)y (""“Lz'“‘/ﬁ T3

inner tterations.

Proof: We denote the barrier parameter value in an arbitrary outer iteration
by i, while the parameter value in the previous outer iteration is denoted by f.
The iterate at the beginning of the outer iteration is denoted by y. Hence y is
centered with respect to y(ji) and i = (1—-6)j. Note that because of Lemma 2.24
and because ||p||z > 5 during each inner iteration we have that the decrease in
the barrier function value is at least

1 /1 1 1

— (= —-In(1+= :

K2 (3 In(1 + 3)) ” 9252
Now let N denote the number of inner iterations during one outer iteration.
Then we have

s < ba(07) — b (u(A), ). (2:62)
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Let us call the right-hand side of (2.62) ®5(y, ). According to the Mean Value
Theorem there is a &t € (&, i) such that

d ®s(y, 1)

®s(y, i) = ®u(y, i) + i

(i — i): (2.63)
Let us now look at é—q—?&’ﬂ. ‘We have

dés(y,1) _ foly)
dp pr’
and, denoting the derivative of y(x) with respect to p by ¥/,

d ¢s(y(n), 1) foly(w) _ Viholy(e)y' 2": V fily(e))y’

dp ol 7 = —fily(p)
— fO(Zgﬂ)) _ VfO(yL”)) += gx Vf (y(u))T ’
_ foly(w)
pro’

where the last two equations follow from (2.3). So

_ 4%, _ o) - foy)| ow(E) - foly)l
dpu = i ’

p=p o w=i K

where the last inequality follows from the fact that z < fi and from the mono-
tonicity property of the primal objective (Theorem 2.7). Substituting this into
(2.63) gives

| fo(y() = fo(y)l (ﬂ _

q)B(yHl:‘) S (DB(yvﬂ)'{_ ﬁ2 /i)
S q)B(yvﬁ)+
Cﬁ@wg—hwn+ﬁ@@»:n@m»)w:ﬁx@6®
p f Iz

Since ||p(y, &)l H(y,7) < 3=, we have due to Lemma 2.22

P (y, 1 )_3

Now note that due to Lemma 2.23 and |[p(y, i)|| .z <

— 3K’

fow()) — fow)] < EL.

K
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Moreover, because of Lemma 2.7, we have

n

Joly(B) — foly(m)) < Zm ) fi(y(R) = D_ @) fily(R))

=1
n(# #)
= Onp.
Plugging all these upper bounds in (2.64) gives

=y« 1
Ty, ) < 3x? + (2&(1 -9 Tz ) 1

-0
L0 (s
T 3k (1-0)2 '
The theorem follows by substituting this into (2.62). a

Combining Theorems 2.8 and 2.9, the total number of iterations turns out to be
given by the following theorem.

Theorem 2.10 An upper bound for the total number of Newton iterations is

given by
22 22 dnpg
— |0 In )
[(1—9)2 (0s°n+ 3 ”‘f) 30] e

This makes clear that to obtain an e-optimal solution the algorithm needs

¢ O(k*nln ™2) Newton iterations for the long-step variant (0 < 6 < 1);

e O(k*y/nln™2) Newton iterations for the medium-step variant (§ = 7";,
v > 0);

o O(xy/nln™2) Newton iterations for 6 = %=, v > 0.

Note that the last variant, which is a special case of the medium-step variant,
yields the best complexity result.

We want to point out that a complexity analysis for the short-step path—following
method can easily be given by using some of the lemmas given above. Short-step
path—following methods start at a nearly centered iterate and after the param-
eter is reduced by a small factor, a unit Newton step is taken. The reduction
parameter is sufficiently small, such that the new iterate is again nearly centered
with respect to the new center.

Lemma 2.25 is needed for analyzing such a short—step path—following method.
It shows how the distance changes if the barrier parameter p is reduced.
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Lemma 2.25 Let u* := (1 — 0)u. Then

Ip(y, 6 ) ur) < Ti_o (el + 0v/m) .

Proof: Let us first introduce the notation g+, H* and p* for g(y,u%), H(y,pt)
and p(y, ut), respectively. It follows from (2.2) that

0
H+ = H - ﬂ—_‘_VZfo(y)

Since — fo(y) is convex, it follows from Lemma B.3 that
(HHY' < H™L.

Using this result, we obtain for the distance after reducing g the following upper
bound:

ot = /(g*)T(HY)1g*

lg*ll,-

_ H Vfo(y $
W)l

_ VfO y) sz(y
B ”1— ( p +§—f,(y

)
)
(o

IN

> 1 fﬂ % Yfgy; “H-g

i=1

Vfi(y) H )
0
. = - - §+ Z i)l -3
- (” e+ Vf’éy ” ) (2.65)
) - )
Let us now continue by evaluating || 37, _—%((5%”1-1-%:
" Vi) Vily (_szo(y) = V2fi(y)
= i)l -3 (Z f(y)) Iz +; —fiy) *
" Vf,-(y)Vfi(y)T)_l " Vfi(y)
TR ) AW

= eTJT( Violy iwf‘( ) +JJT)- Je,(2.66)
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where J is again defined as the matrix whose columns are —‘Zﬁ% From Lemma
B.3 it follows that the eigenvalues of

v Vily) | & Vi) T>‘1
J ( p +;———f,~(y) + JJ J

are all smaller than or equal to one. Consequently from (2.66) we get

2

= Viily)
Z‘; ~fily)

H-%

Substituting this into (2.65) gives

I e < == (lplle + 0v)

which proves the lemma. a

Theorem 2.11 Let y* := y + p and p* = (1 — O)p, where 0 = 730: - If
Iplle < 55 then

1
”p(y+1 /1'+)”H(y+,u+) < 'é;

Proof: Using Lemma 2.21 and Lemma 2.25, we have

9
“P(Z/+, I‘+)”H(y+ wt) < Zn”p(y’ /u’+)”?{(y,u+)

2
9 1 11
< Sl L (L)
4 [1—@5\/—5 3k 305]

< —
3k’

which proves the theorem. O

Consequently, according to Theorem 2.11, if 8 is small, then one unit Newton
step is sufficient to reach the vicinity of y(u*). With the help of Theorem 2.8
it is easy to see that this short-step algorithm requires O(k+/n1n *2) Newton
iterations.
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2.5 Miscellaneous remarks

Further remarks on the logarithmic barrier method

In each iteration of the logarithmic barrier method one has to calculate (AS~2AT)~!
(for linear programming) or (AH*AT)~! (for quadratic programming), which
costs O(n®) arithmetic operations. Consequently, the overall complexity bound
(counted in arithmetic operations) is O(n*1n 2£2) for the long-step variant and
O(n®y/nIn™2) for the medium- and short-step variant. In Section 4.1 we
will show that for linear programming these figures can be brought down to
O(n®y/nln 22) and O(n®In2£2) respectively, by using approximate solutions
and rank—one updates.

Even though our analysis for quadratic programming is based on the null-space
form (2.30) for the Newton direction, in practice either the null-space or the
range-space form (2.29) can be used. It is obvious that the null-space form is
more efficient when the number of linear constraints is relatively large compared
to the number of variables. The range-space form is efficient when the number of
linear constraints is small compared to the number of variables. In our analysis we
made the assumption that X~'Z is orthonormal. However, the search direction
does not change if Z is any basis for the null-space of A. So, in practice we do
not have to do all the work to find an orthonormal Z in each iteration. We refer
the reader to Gill et al. [40] for the numerical aspects.

Note that there is a discrepancy in the complexity bounds derived in the previous
sections. We would expect the complexity bounds for the long-step version to
be better than for the medium- and short-step version. However, the contrary
is true! One reason for this might be that the derived number of updates in the
barrier parameter is exact, while the upper bound for the number of iterations
needed to return to the vicinity of the central trajectory can be very pessimistic,
since it is allowed to do line searches, and in many inner iterations we will have
Iplin > .

The short-step logarithmic barrier method can be speeded up by solving

min{u ¢ lp(y, Wllrgu < V7Y, (2.67)

instead of simply reducing p by a factor 1 — @. For linear programming, (2.67)
turns out to be equivalent to solving a quadratic equation. For general convex
programming, (2.67) is more complicated, but if we reformulate the problem such
that the objective is linear (which is always possible), it is again equivalent to
solving a quadratic equation.

The results obtained in Section 2.3 for convex quadratic programming are the
same as the corresponding results obtained in Section 2.2 for linear programming.
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Moreover, since for linear and convex quadratic programming problems k = 1,
we have that the complexity results obtained in Section 2.4 for these problems
are the same as those obtained in Sections 2.2 and 2.3.

Linear equalities in (CP)

Note that in the general convex programming problem (CP) there are only in-
equalities. However, a mixture of inequalities (fi(y) < 0) and linear equalities
(Gy = d) can also be handled by the method described in this chapter. One way
to deal with such problems is to split the matrix G into a basis B and a rest
matrix R, and then eliminate the corresponding basis variables:

yg = B™'d — B™'Ryp.

An other way is to use projected Newton directions instead of pure Newton
directions.

Relaxing the initial centering condition

The initial centering condition ||p(y°, po)llr(yo,u) < 7 can be relaxed to

¢Afww—%wmomwso(mmmﬁ?)

for the medium-step version, and to

850", 10) — doly(ko), o) < O (*n1n 722
for the long—step version. This holds because of Lemma 2.24. For example for the
long-step algorithm for (£D) with a bounded feasible region F, with ¢ = 272
and po < 290 it is sufficient to assume that s? > 27°() and bTy(uo) — bTy° <
npoL. This can easily be verified. Since s(uo) is dual feasible, it can be written
as a convex combination of basic feasible solutions. The coordinates s; of each
basic feasible solution satisfy s; < 2L, and hence s;(uo) < 2F. Therefore

T _T,0 n n
B(4°5 o) — o (o), po) = X ZUW S 1 0 4 S nsi(ue) < O(n).

Ko =1 =1

Comparison with other papers

Short—step path—following were proposed and analyzed in Gonzaga [45] and Roos
and Vial [130] for linear programming and in Ye [155], Ben Daya and Shetty [12],
and Goldfarb and Liu [43] for quadratic programming. All these methods require
O(y/nL) iterations.
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It is interesting to compare the §-measure with other measures used in the lit-
erature. Gonzaga [45] showed that in each iteration

|S(k)~"s — e]| <0.015.

Note that this distance measure is not computable since we do not know y(u).
This distance measure is related to the —measure as follows:

15 7%s = efl = 122 — o) < 6y, ),

where the last inequality follows from the definition of é(y, 1) (2.8).

Long-step path—following methods were analyzed in Gonzaga [49] and Roos
and Vial [129] for linear programming and Nesterov and Nemirovsky [116] for
quadratic programming. In [129] only the O(nL) iteration bound (for linear
programming) is obtained for the long-step version. A disadvantage of their
analysis is that, since they use global upper bounds for the slack variables (i.e.
s; < 2L), the iteration bound is O(nL) for all values of the accuracy parameter
€. The iteration bounds obtained by Gonzaga in [49] are the same as obtained
here, but many of our lemmas are sharper and the proofs are simpler, since we
use the quadratic convergence result. E.g. in [49], although carried out in the
primal formulation, similar results as Lemma 2.4 and 2.5 have been obtained
in a different way, for more centered y, namely 6(y, ) < 0.1, while our results
hold for é(y,n) < 1. Moreover, for é(y,p) < 0.1 our Lemma 2.5 is tighter; for
§ < 0.1, we obtain from Lemma 2.5 that |bTy — bTy(p)| < 0.13u+/n, whereas in
[49] |87y — bTy(u)| < 0.20p+/7 is obtained.

In Chapter 5 of their monograph [116], Nesterov and Nemirovsky analyzed cer-
tain long-step barrier methods for linearly constrained convex quadratic pro-
gramming problems. Their analysis is totally different from ours: it is not based
on changes in the barrier function value, for example. From their (very com-
plicated) analysis it can be extracted that the total number of iterations is at
most O((3 + n*67)LInn). Note that the iteration bound given in Theorem 2.6
is better than this one. Our bound is much better if we deal with real long—step
algorithms (i.e. @ is large). For example:

o If we take long-steps then Nesterov and Nemirovsky require O(n*LInn)
iterations. This bound is much worse than our O(nL) iteration bound;

o If we take medium-steps then Nesterov and Nemirovsky require O(y/nL Inn)
iterations. The difference with our O(y/nL) iteration bound is less signifi-
cant in this case.
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Kortanek and Zhu [81] extended the results obtained in Section 2.3 for convex
quadratic programming to linearly constrained convex programming, where the
convex objective function satisfies the so—called Scaled Lipschitz Condition. Us-
ing the analysis of Section 2.3, Anstreicher [4] obtained the interesting result that
the logarithmic barrier method, as implemented in the SUMT-3 and SUMT-4
codes, solves linear and convex quadratic programs in O(y/nLln L) iterations,
with proper initialization and choice of parameters. Anstreicher [5] also analyzed
an efficient way for obtaining finely centered points, i.e. points for which ¢ is
very small.

There may be some convex programming problems which satisfy the Relative
Lipschitz Condition (see Section 2.4.2) but do not satisfy the self-concordancy
condition (this only happens if one of the functions involved is not three times
continuously differentiable). For these problems the analysis given in [28] is still
valid. In this paper we obtained an O((1 + M?)nln2£) jteration bound for
the long-step logarithmic barrier method and an O((1+ M?)y/nIn "2} iteration
bound for the medium-step variant, where M is the Relative Lipschitz constant.
In Section 2.4 we even obtained a better complexity, namely O(&+/nln ).

We remark that in [25] we have proved a more general result than Theorem
2.7. There we also proved that the dual objective along the paths defined by
inverse barrier functions is also monotonically increasing. This was proved by
using the 'dual’ function of an inverse barrier function, which is a quasi barrier
function, introduced by Hamala [56]. In [25] we also proved the monotonicity of
the objective function along the paths defined by the quasi barrier functions.

Linear Complementarity Problems

It is well-known (see e.g. Murty [113]) that the Linear Complementarity Problem
(LCP)

= Ro+v, 2,y > 0
(LCP) y=rrmn oy

Ty =0,

where matrix R and vector v are given, is completely equivalent to the following
quadratic programming problem

min zTy

y=Rz+v, z,y>0.
If R is positive semi—definite, then this problem is equivalent to a convex quadrat-
ic programming problem, since xTy = %zTQx + vTz, where Q = R+ RT. Con-

sequently, the algorithm analyzed in Section 2.3 for quadratic programming, can
also be applied to positive semi-definite LCP’s.
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Vector of barrier parameters

The logarithmic barrier function @s(y, #) studied in the previous sections has
only one barrier parameter: to each constraint the same barrier parameter value
is associated. Let us now introduce a different logarithmic barrier function, by
associating a different barrier parameter y; to each constraint:

B(u,1) = —foly) = 3 s In(— i),

=1
where g now denotes the barrier parameter vector.

In the sequel we will concentrate on the linear programming case. Extensions to
convex quadratic and smooth convex programming can also be made.

There are several reasons for using different barrier parameters. First, as we will
see below, given interior solutions for (LP) and (LD) we can define a barrier
parameter vector such that the given dual solution minimizes ¢(y,u). Note
that in the analysis for the logarithmic barrier method we assumed that the
initial point lies close to the initial reference point on the path. This can be
accomplished by a transformation of the original problem (see e.g. {124, 108]),
which increases the dimensions and (in the linear programming case) destroys
the possible special structure of the constraint matrix A. Hence, avoiding such
a transformation is useful.

Another reason for using different barrier parameters, is that this intrinsically
rescales the problem in favour of the constraints with the largest barrier pa-
rameter. Thus, if the user has any prior judgements regarding the likelihood of
particular constraints being active in the optimal solution, this judgement can
be easily and systematically incorporated into the algorithm.

Finally, different barrier parameters can also be used to make the calculations
more stable. Since the central path is an analytic concept (and not geometric), it
can happen that the central path approaches its limit point along the boundary
of the feasible region, which can cause numerical difficulties. Manipulating the
different barrier parameters during the process of the algorithm, we can force the
iterates to approach its limit point more from within.

The necessary first order optimality conditions for the unique minimum of ¢(y, u)
are:

ATy +s=¢, 520
Az = b, z2>0 (2.68)
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Consequently, if we have available an interior primal and dual solution pair
(2°y°), then defining u® = X%s° gives that y° minimizes ¢(y, u°).

Roos and Den Hertog [127] proposed and analyzed a short-step method based on
such barrier vectors. Given the initial value u° for the barrier parameter vector,
they reduce each barrier parameter with the same factor 1 — 8, whereafter a unit
Newton step is carried out to return to the new reference point. It was shown
that after at most

n max; u?

O(wv/nln -———6——-——) (2.69)
iterations an e—optimal solution can be found, where

max; pf

min; pf
This analysis was extended to quadratic programming in (22].

Now we will give another method, which has a better complexity bound®. With-
out loss of generality, we assume that

P S pg < <l )

Before reducing all the barrier parameters with the same factor, we first increase
p? repeatedly with a factor 1+ 6, until we reach the value of 9. Then we increase
both x? and xJ (which are equal at this point) simultaneously, until we reach
©3, and so on. Finally, we end up with the situation that all barrier parameters
are equal to pO. This means that from this point we can start the 'normal’
logarithmic barrier method, since we then have a point in the vicinity of y(u2),
which is on the central path.

Modifying the analysis in Section 2.2, it can be proved that the short— and
medium-step variant need O{y/nlnw) Newton iterations, and the long—step vari-
ant O(nlnw) iterations to obtain a point y such that §(y,4%) < 1. From this

point the normal logarithmic barrier method needs O(y/n In -'%21) and O(nln %gl)
Newton iterations, respectively, to obtain an e-optimal solution. Consequently,
these complexities allow us to start from an initial feasible point for which the co-
ordinates are between O(c) and ©(1), contrary to the complexity bound (2.69)
obtained in [127]. E.g., for € = 272l this means that the algorithm can start
’almost everywhere’.

60sman Giiler learned us that a similar idea is worked out by Mizuno [101] for the primal-
dual path—following method.
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Chapter 3

The center method

In this chapter we analyze the complexity of special variants of the center method
for some classes of convex problems. We will deal with so—called long—, medium—
and short—step methods. First, we will give a general framework for the center
method. Then we will give the complexity analysis for linear programming and
a class of convex programming problems, respectively. The self-concordancy
property introduced by Nesterov and Nemirovsky [116] plays again a key role in
the analysis.

For the complexity analysis of the center method, we can use many of the results
obtained in Chapter 2 for the logarithmic barrier method. For example, the
quadratic convergence property for linear programming is an immediate conse-
quence of Lemma 2.3. Of course there are important differences, especially in
the analysis for obtaining upper bounds for the number of inner and outer iter-
ations. The complexity bounds for the center method, obtained in this chapter,
are comparable with those of the logarithmic barrier method.

3.1 General framework

Recall the convex programming problem (CP) as given in Section 2.1:

max fo(y)
(CP) f:(y)SO, i=1,-~,n
y € R,

75
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and its Wolfe [149] dual problem

min fo(y) — Xis, zifi(y)
(CD) Yz Vii(y) = Vio(y)
z; > 0.

We make the same assumptions as in Section 2.1 (Assumptions 1-3). We asso-
ciate the following distance function with (CP)

bo(y>2) = —an(foy) — 2) — 3 In(—fi(®)), (3.1)

=1
where z is a lower bound for the optimal value z*, and ¢ a given positive integer,
which will be discussed later on. This distance function was introduced by Huard

[58].

It can be proved that ¢p(y, z) is strictly convex on its domain F (see Jarre [63],
p- 8). It also takes infinite values on the boundary of the feasible set. Hence
this distance function achieves the minimal value in its domain (for fixed z) at
a unique point, which is denoted by y(z). The necessary and sufficient Karush-
Kuhn—Tucker conditions for this minimum are:

fily) £0, 1<i<n,
Yt 2V fily) = Violy), =20, (3.2)
—~fily)a: = 2=, 1<i<n,

Comparing this system of equations with (2.3) it is easy to verify that y(z) lies
on the so—called central path of the problem, which was introduced in Section
2.1. To be more precise: from (2.3) and (3.2) it follows that y(z) = y(u) for
g = fi(‘—’iqf)b. Consequently, the logarithmic barrier function (2.1) and the

distance function (3.1) yield two different parameterizations of the same central
path.

We can rewrite ¢p(y, z) as

n+q

¢D(y7z) = - 2 ln(_fi(y))’ (33)

where —fi(y) = fo(y) — z for n +1 < i < n + ¢q. Moreover, we introduce F,
which is the bounded convex region defined by the constraint functions and the
objective constraint fo(y) — z > 0, which is replicated ¢ times. More precisely
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Let F? denote the interior of F,. Now we define the concept of the so—called
analytic center of the bounded convex region F.

Definition: The analytic center of the bounded convex region F, is the point

which maximizes
n+q

=1
the product of the slack values.

This concept was introduced and studied by Sonnevend [132]. Since y(z) maxi-

mizes
n+gq

e~ @) = T (- f(¥)),

i=1

it easily follows that y(z) is the analytic center of F,.

Using this observation, it immediately follows that (3.2) is equivalent to

Y EVi(y) =0, £20 . (3.4)
—fi(y)E: =1, 1<i<n+g.

Note that ¢p(y, z) is in fact the logarithmic barrier function for the following
problem
max {0 : y € F.}.

Hence, for the analysis of the method of centers, we can use many results obtained
for the logarithmic barrier function method in Chapter 2.

It is important to know that the analytic center is an analytic concept and not
a geometric one. As a consequence, the analytic center depends also on the
description of the feasible region. The effect of replicating a constraint on the
position of the analytic center is shown in Figure 3.1. This explains why the
objective constraint is replicated ¢ times, since then the resulting analytic center
is pushed in the direction of the optimum. The complexity bounds will appear
to depend on this ¢, and we will derive the best value from the complexity point
of view.

Loosely speaking, the method of centers works as follows. Given a lower bound
z for the optimal value, we try to reach the vicinity of y(z), the analytic center
of the current feasible region. Then we increase the lower bound, which means
that the g objective constraints are shifted, and we try to reach the vicinity of
the new center. In Figure 3.2 some centers for different values of the lower bound
are shown. Note that they are on the central path.
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Figure 3.1: The effect of replicating a constraint on the position of the analytic
center of a polytope.
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Figure 3.2: Several centers for different values of z.

In the method of centers we need the first and second order derivatives of ¢5(y, z),
which are given by

n+q .
o0.5) 1= Voo(1n2) = 3 T2

and
n+q 27 : : T
H(,2) = V(1) = 1 V_ff.-’((yy)) ¥ vf'(f«,.)(Z)f(y)

If no confusion is possible we will write g and H instead of g(y,z) and H(y, z),
for briefness’ sake. We will use the measure ||.||# to measure distances between
points, and especially the distance to y(z). The definition of this measure is as

follows:
lv||l# = VvTHv.
Because H is positive definite, ||.||z defines a norm.

As for the logarithmic barrier function, there are some important issues. To
find (an iterate close to) the analytic center, which is in fact equivalent to min-
imizing ¢5(y, z), we use again Newton’s method with (approximate) line search
procedures. Note that the Newton direction is given by

p(y,2) = —H(y,z)"'g(y,z) = ~H'g.
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If no confusion is possible we will write, for shortness sake, p instead of p(y, z).
The proximity criterion for this minimizing process is again the Hessian norm
of the search direction. More precisely: we stop the minimizing procedure if
lpllzzr £ 7, where 7 is a certain tolerance. (Note that ||p||lz = 0 if and only if
y = y(2)). If the proximity criterion is satisfied, we update the lower bound z as
follows: z := z + 0(fo(y) — 2), for some 0 < § < 1. Note that 7 is really a lower
bound, because z < fo(y) < 2*.

We now describe the algorithm to find an e—optimal solution.

Center Algorithm

Input:

€ is the accuracy parameter;

7 is the proximity tolerance;

# is the updating factor, 0 < 0 < 1;

2% < fo(y°) is a lower bound for the optimal value;

y° is a given interior feasible point such that ||p(y°, 2%)||g(y,0) < 7;

begin
y=y% z=2% A=4(1+2)
while fo(y) — 2z > % do
begin (outer step)
2= 2+ 8(foly) — 2
while ||p|jz > 7 do
begin (inner step)
& 1= arg Mingso {¢o(y + ap, 2) 1 y + ap € F°}
y:=y-+ap
end (end inner step)
end (end outer step)
end.

In the analysis we will show that taking an appropriate steplength is sufficient
for the complexity analysis. For finding an initial point that satisfies the input
assumptions of the algorithm, we refer the reader to Renegar [124], Monteiro and
Adler [107] and Giiler et al. [55] for linear programming, Ye [155] for quadratic
programming, and Jarre [63] and Mehrotra and Sun [96] for convex programming.
Later on the ’centering assumption’ will be alleviated.

Analogously to Section 2.1, we introduce some terminology. We call the algo-
rithm a
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¢ long—step algorithm if 4 is a constant (0 < § < 1), independent of n and
€
¢ medium-step algorithm if § = %=, where v > 0 is an arbitrary constant,

possibly large, and independent of n and ¢;

o short-step algorithm if 6 = =, and v is so small (e.g. %), that after the
update of z one unit Newton step is sufficient to reach the vicinity of the
new center.

In this chapter we will analyze such long-, medium- and short-step algorithms.

3.2 Linear programming

3.2.1 Properties in and near the centers

Consider the dual linear programming problem (£D) making the same assump-
tions as in Section 2.2. The distance function for this problem is given by

¢o(y,2z) = —qIn(bTy — z) Zlnsn

where ¢ is a (positive) integer.

In Section 3.1 we have shown that ¢,(y,2) achieves a minimum value at a u-
nique point, denoted as y(z). The necessary and sufficient Karush-Kuhn-Tucker
conditions for y(z) are:

ATy +s=¢, s>0

Az = b, z>0 (3.5)

Xs = tlu=ze
q

where z is an n-dimensional vector. The unique solution of this system is denoted

by (z(z),y(z), s(z)). As already mentioned in Section 3.1, y(z) lies on the central

trajectory of problem (LD).

The minimizing point y(z) can be considered as the analytic center of F,, which

is defined as
{y : ATy S c, _bTy S 2, ’a_bTy S _Z}

q times

Note that F, is bounded, since we assumed that the optimal set is bounded.
Now, let matrix A be given by

A = (ala MR SN ¢ S PR aa’n+q)1
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where a; := —b for n +1 <1 < n+ ¢. The components of the diagonal matrix S
are defined as s; for 1 <i < nand bTy—z for n+1 < i < n+4q. The components
of the vector ¢ are defined as ¢; for 1 < ¢ < nand —zforn+1<:i<n+4q.

Consequently,
n+q

#o(y,2)=—> Ing.

i=1

Using this notation, we observe that y(z) is the analytic center of F, = {y
ATy < &}, and (3.5) is equivalent to

ATy+35=¢ 3>0
Az =0, E>0 (3.6)
Xs=e.

The unique solution of this system is denoted by (Z(z), y(2), 3(2)).

The following lemma states that the dual objective bTy(z) increases, the primal
objective cTz(z) and bTy(z) — z decrease, if z increases.

Lemma 3.1 The dual objective bTy(z) is monotonically increasing, the primal
objective cTz(z) and bTy(z) — z are monotonically decreasing if z increases.

Proof: We first prove the last part of the lemma. Suppose z > 2z, such that
bTy(z) > z. Consider the function

n+q
¢2(%,2) =&%— Y In&; — (n+q).
=1
It is easy to verify that Z(z) is the minimum of ¢%(Z,z) over the region {&
Az =0, £ > 0}. Note that, due to (3.6), the last ¢ coordinates of Z(z) are equal
to &,41(z). The first n components of #(z) are denoted as the vector #(z). Now,
since #(z) minimizes ¢¢(%, z) and #(Z) minimizes ¢¢(Z, z), we have
n+q n+q
T3(2)~qzins1(2)= Y In#:(2)—(n+q) < F'2(2)—q2Ens1(2) =" Inzi(2)—(n+q),
i=1 =1
n+g n+gq
T3(2)—qzin (2 Eln #:(2)—(nt+q) < T #(2)~qZFnpa (2 Eln z;(2)—(n+q).
Adding the two inequalities gives

—q(2Zn41(2) + 28541(2)) < —q(28n41(2) + 2Zn41(2)),
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or equivalently,
(2 = 2) (Zn41(2) — Tu4a(2)) 2 0.
This means that
Ent1(2) < Enya1(2). 3.7

Now from (3.6) we have

11
an(s) | Ty(2) =2

and a similar expression for #,41(Z). Substituting this into (3.7) gives that
bTy(z) — z monotonically decreases. To prove that ¢! z(z) is monotonically de-
creasing and bTy(z) is monotonically increasing, observe that z(z) = z(u), where
p= b—ﬂqfl'—z-. Since bTy(z) — z is monotonically decreasing, it follows from Lemma

Eag1(2) =

2.1 that cTz(z) is monotonically decreasing and 5Ty(z) is monotonically increas-
ing.

There is also a direct proof for the monotonicity of 87y(z). Since y(z) minimizes
é0(y, z) and y(Z) minimizes ¢p(y, Z) we obviously have

—qIn(bTy(2) — 2) Zln s:(2) € —qIn(bTy(2) — z2) Zlns,
i=1

and

—qIn(bTy(z) - 2) Zlns ) < —qIn(b7y(z) — 2) Zlns

i=1

Adding the two inequalities gives
—qIn(b"y(2) - 2) — ¢ln(b7y(2) — 2) < —qIn(b7y(2) ~ 2) — qIn(bTy(z) - 2),

or equivalently

bTy(z) — 2 > bTy(z) — 2
By(z) = = By(z) 2
This means that bTy(z) < bTy(2). ]

The following lemma gives an upper bound for the gap z* — z.

Lemma 3.2 One has
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Proof: The exact center y(z) minimizes the distance function for z. The neces-
sary and sufficient conditions for y(z) are (3.5). From these conditions we derive
that z(z) is primal feasible. Moreover, using z* < c¢Tz(z) it follows that

2= ¥y(2) < () = ¥Ty(2) = 2(2)"s(2) = (8" () - 2)
Consequently, n
(= —2) = (b'y(2) = 2) < E(bTy(Z) - z).
This implies n
2—z<(1+ ;)(bTy(z) - z).
0

For the distance function ¢5(y, z) we can easily compute the gradient and Hessian
matrix:

9(y,2z) == Véo(y,2z) = br;i ~b+ AS7'e = AS7e,

and

H(y,z) = V¢o(y,2) = (bT—yq_—z—);bbT + AS~2AT = A§2AT.

If no confusion is possible we will write, for shortness sake, ¢ and H instead of

9(y, z) and H(y, 2).

As shown above, finding the analytic center of F, is equivalent to minimizing
#o(y, z), which is the logarithmic barrier function for F, (with b = 0). Now
we are back in the formulation of Section 2.2. So from (2.8) we can get the

corresponding measure for the distance of an interior feasible point to the center
y(z) of F:
o(y,2) = min {[|S% — ]| : Az =0}. (3.8)

Since the é—distance of a point y in F, to the center y(z) is equal to o(y, z),
many results obtained for the é—measure can be generalized directly to 0. The
Newton direction p(y, z) is given by

ply,2) = —H g = —(AS2AT) ' AS e

Most of the lemmas we will give in this section are direct consequences of lemmas
proved in Section 2.2.

Lemma 3.3 For given y and z we have

o(y,2) = llp(y, )l = 157 ATp(y, )| 2 |57 ATp(y, 2).
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Proof: The equalities are immediate consequences of Lemma 2.2. The inequality
follows easily from the definition of AS™!. O

Lemma 3.4 Ifo(y,z) < 1 then y* = y + p is a strictly feasible point for F,.
Moreover,
a(y*,z) < o(y, 2)"

Proof: This is an immediate consequence of Lemma 2.3. a

Lemma 3.5 Ifo:=o0(y,z) <1 then

2

¢o(y,2) — ¢o(y(2), 2) <

1—o0?

Proof: This is an immediate consequence of Lemma, 2.4. O
Lemma 3.6 Ifo:=0(y,z) <1 and ¢ > 2\/n, then

bTy(z)——z§(1+M d )(bTy—z).

g 1—o

Proof: The proof is of the same structure as the proof of Lemma 2.5. We have
pTg = —o?%. On the other hand

T, _ .T gb _ Aac-1

Wy szp — TS 1ATp,

So we have )
q

iy Zpr =024 ¢TS5 1ATp.

Using the Cauchy-Schwartz inequality, we obtain
" ST AT < [|STLATP| [le]l < ov/m,

where the last inequality follows from Lemma 3.3. From this we deduce that

T, _ bT _
b yq £ /n < 2 yq Z/n. (3.9)

T, _
5] < L2 (0 4 oy S o(1 +0)
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Again, let y° := y and let y!,y%,--- denote the sequence of points obtained by
repeating Newton steps, starting at y°. According to Lemma 3.4 this Newton
process converges to y(z), and moreover

- k
o(y*,2) S o(yF 2P < <oy’ 2) = o(y,2)”
Therefore, we may write

Tyt — 2 = bTyF — 2 + 6T p(y%, 2)

< (1+20(y z)‘{]—) (bTy* — z)
(1+2 2"f) (b y* — z)
< (7Y% —2) ]j(1+202‘—‘@).

q

A

IA

In particular we have

My(z)—z < —z)H(1+2 2"/_)

=0

<1+¥1i )(bTy—z),

g

IA

where the last inequality follows from Lemma B.4. This proves the lemma. O

3.2.2 Complexity analysis

In this section we will derive an upper bound for the total number of Newton
iterations. We derive an upper bound both for the number of outer iterations
(updates of the lower bound) and for the number of inner iterations for an arbi-
trary outer iteration. The product of these two upper bounds is an upper bound
for the total number of Newton iterations. First, we will deal with the long— and
medium-step variant, and finally with the short—step variant. We will set 7 = %
in the Center Algorithm.

Theorem 3.1 After at most

2 n 4 T

outer iterations, the Center Algorithm ends up with an e—optimal solution of the
problem.
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Proof: Let z* be the lower bound in the k-th outer iteration, and y* the iterate
at the end of k& outer iterations. Using Lemmas 3.2 and 3.6 and the fact that
q > 2+/n successively, we obtain '

n

E)(bTy(Zk_l) — 251
n 2\/— T, k=1 __ k-1
< (1+q)(1+ . )(b k=1 _ k1)

2= < 1+

< 201+ %)(bTy"‘l — ¢y, (3.10)
Moreover,
pr zk 2 — (zk—l + g(bTyk—l _ Zk—l))
o — Rl o — k-1
bTyk—l - Zk—l
= 1-b0——5—
<1 o =1-¢ (3.11)
= 2(1+2) o ’ ’

where the inequality follows from (3.10). Hence, after k£ outer iterations we get

k k

(1) (" = )
(1= 0 (=" — 29,

where the second inequality follows from (3.11). This means that b7yX — 2% <
certainly holds if

lyk — 2

IA A IA

4(1+ )

€

NEK ;% 0
(1-07" (2 —z)s4(1+§).

Taking logarithms, this inequality reduces to

4(1 4 2)(2* — 2°
CKin(1-0)> 1 At DE )

Since —In(1 — 8") > ¢, this will certainly hold if

" l 4(1 + )(z*—zo):g(1+2)1n4(1+§)(z*—z°)'

0’ € 0 q €

If the Center Algorithm stops, we have, using (3.10),

=Ty <zt —2F <1 4 = )(bT —2F) <,
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which means that y is an e~optimal solution. This proves the theorem. u}

It is well-known that a 2-2F—optimal dual solution can be rounded to an optimal
solution for (£LD) in O(n3) arithmetic operations. (Seee.g. [117].) Consequently,
for this purpose it suffices to take e = 272L, ..

The following lemma is needed to derive an upper bound for the number of
inner iterations in each outer iteration. It states that a sufficient decrease in
the distance function value can be obtained by taking a step along the Newton
direction.

Lemma 3.7 Let a:=(1+ o). Then
Ay = ¢o(y,2) — ¢o(y + ap,z) > 0 —In(1 4 o).

Proof: This is an immediate consequence of Lemma 2.6. 0O

Now we give an upper bound for the total number of inner iterations during an
arbitrary outer iteration.

Theorem 3.2 FEach outer iteration requires at most

11 0 N
= 4 11g6
3 T q(1—a+q+2¢;)

inner iterations.

Proof: We denote the lower bound used in an arbitrary outer iteration by Zz,
while the lower bound in the previous outer iteration is denoted by 2. The iterate
at the beginning of the outer iteration is denoted by y. Hence y is centered with
respect to y(z) and z = z + 0(bTy — z). For each inner iteration we know,
according to Lemma 3.7, that the decrease in the distance function is at least

1 1.1
> ) > — 1
Ago 25 —In(l+3) > 57, (3.12)

since o > % in each iteration. Let N denote the number of inner iterations, then,
because of (3.12) and definition of y(z), we have

SN < oy, 7) ~ o(u(3), 3) (313)

Let us call the right-hand side of (3.13) ®,(y,z). According to the Mean Value
Theorem there is a Z € (Z, z) such that

do(y,2)| z_.
T (Z - Z). (3.14)

z=z

QD(y'l;) = QD(y,Z) +
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Let us now look at g%y_,z)‘. We have

dén(y,2) _ ¢
dz Ty — 2’

and, denoting the derivative of y(z) with respect to z by ¥/,

d ¢o(y(2),2) _ bTy' " aly’
dz = Ty =2 +; 5i(2)
bTyl _ 1 q n ,
R e o e R QL
.
bTy(z)— 2’

where the last two equations follow from (3.5). So

~ 1 - 1
z=2_q Ty —z  bTy(z) — 2 zzz.—q Vy—z bTy(z)—z)’

where the last inequality follows from the fact that z > Z and from Lemma 3.1.
Substituting this into (3.14) gives

d (I)D(y, Z)
dz

0o(3) < B0+ e (s~ g ) 62
= ®y(y,2) + ¢f <1 i i yz)“_zz)
= ;+q0 (119_1:2:@) (3.15)
_ %J’qa(l—a q+2\/_) (3.16)
where inequality (3.15) follows because ®5(y,Z) < 3 according to Lemma 3.5,

and

Ty -7 < (14 2Ty - 2)

according to Lemma 3.6. The theorem follows by combining (3.16) and (3.13).
0

Combining Theorems 3.1 and 3.2 we have the following theorem
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Theorem 3.3 After at most

22(1 + )( +q(1f9+qi\gﬁﬁ))lnz;(ug)izuzo)

Newton iterations, the algorithm ends up with an e-optimal solution. a

This makes clear that to obtain an e—optimal solution the algorithm needs (with

q=0(n))

2=2%) Newton iterations for the long-step variant (0 < 8 < 1);

o O
v>0).

2=2%) Newton iterations for the medium-step variant (§ = T

To obtain an optimal solution we have to take ¢ = 272L. For this value of €
the iteration bounds become O(nL) and O(\/nL) respectively, assuming that
z* — 2% < 20(I) Note that the best complexity result for the medium-step
variant is obtained by taking ¢ = ©(n). The given complexity bound for the
long-step variant can also be obtained by using 2/n < ¢ = O(4/n).

At the end of each sequence of inner iterations we have a dual feasible y such
that o(y,z) < 1. The following lemma shows that a primal feasible solution can
also be obtained in this region.

Lemma 3.8 Let the first n components of & := Z(y,z) be denoted by &. If
o:=0(y,z) <1 then
z

qin+1

T =
ts primal feasible. Moreover,

n- U\/— —z)< e -ty < E_i.—Z—\/——E-(bTy —z).

q+ 0\/' - g
Proof: By the definition of Z(y, z) we have

Ilgi(y,Z) —ef <1

This implies #(y,z) > 0,s0 z = — = > 0. Moreover, we have AF = 0, and since

the last ¢ components of Z are equal this is equivalent to

Az = qiin+1 b.
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Consequently, z is primal feasible. Moreover,
|s72 —n| = |e"(S2 — €)| < [lell 1152 — el < o/n.
Consequently,
n—ovn<sTi <n+oyn.
In the same way it can be verified that
q— 04 < qTn415n41 < ¢+ 0\/q.

Hence, since 8,41 = bTy — 2z,

_ T
u(bTy_z < "f $ < n+a\/r_l(bTy_z),
q+0/q T4 T g —04/Q
which proves the lemma. ]

Based on the quadratic convergence (Lemma 3.4) we can easily analyze the short—
step center method. The following lemma shows the effect on o of shifting the
‘objective constraints’ with a factor 1 — @, which is equivalent to updating the
lower bound.

Lemma 3.9 Let 0:=o(y,z) and z* := z + 0(bTy — 2). Then

o(y,z*) <o +0,/4(1 +0).
Proof: First note that s;, 2 = 1,---,n, does not change after shifting, but the
slacks for the objective constraints become (1—6)s;, i =n+1,---,n+gq. So, if I,
denotes the (n + ¢) X (n + ¢) diagonal matrix obtained from the identity matrix

by replacing the first n 1’s on the diagonal by 0, then the new slack variable
becomes (I — 61;)3. By definition

oy, z%t) = ma_:m{”(I —01,)58% — e” . Az = 0}.

Take z = Z(y, z), where Z := &(y, 2) solves the minimization problem corre-
sponding to o(y, z). Then it follows that

o(y,z¥) < "5’5) —e— BIqS'a"v”
o+ 01,55

IA

Now using that |#;3; — 1| < o, for each z, and hence 3;%; < 1 + o, we obtain
o(y,2*) < o +0(1+ 0)|Lyell = o +0y/a(1 + ),
which proves the lemma. o

As a consequence of the previous lemma and Lemma 3.4 we have the following
lemma.
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Lemma 3.10 Let y* := y + p and z* := 2 + 0(bTy — z), where 6 = 8%/6' If
o(y,z) < % then o(y*,z*) < %

Proof: As a consequence of Lemma 3.9 we have

o0,7) S g+ g VAl +g) = g

Now using Lemma 3.4, the lemma follows:

121 1

+ + < +2 intulel

O

Consequently, if we take e.g. ¢ = @(n), then if follows from Theorem 3.1 that
the short-step center method requires O(y/7In £=2) Newton iterations. The
same complexity bound is obtained by Renegar [124], but our analysis is much
simpler.

3.3 Smooth convex programming

3.3.1 On the monotonicity of the primal and dual ob-
jectives along the path of centers

In Section 2.4 we proved the monotonicity of the primal and dual objective
values along the path defined by the logarithmic barrier path. Although this
path coincides with the path of centers defined by the distance function, this
does not necessarily imply that the objective values are monotonically in z (the
parameterization of the central path is different).

In Den Hertog et al. [27] we proved that the primal objective fo(y(z)) is increas-
ing and fo(y(z)) — z is decreasing if z increases. This was done by differentiating
the Karush-Kuhn-Tucker conditions and manipulating these equations. In that
proof we needed the objective and constraint functions to be twice continuously
differentiable.

In this section we will prove a more general result. Assuming only convexity and
differentiability of the functions — fo(y) and fi(y),é = 1,---,n, we prove that
the objective value fo(y(z)) increases, and the dual objective and fo(y(z)) — 2
decrease, if 2 increases.

Theorem 3.4 The primal objective fo(y(z)) is monotonically increasing, the
dual objective fo(y(2)) — T, zi(2) fi(y(2)) and fo(y(z)) — z are monotonically
decreasing if z increases.
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Proof: We first prove the last part of the theorem. Suppose z > z, such that
fo(y(2)) > 2. Consider the function:

n+q n+q

$5(F,y,2) = D &:fily) + Y Indi + (n +q)-

i=1 i=1

It is easy to verify that (#(z),y(z)) maximizes ¢2(&,y,2). Note that, due to
(3.4), the last ¢ coordinates of Z are equal to Z,41. The first n components of
 are denoted as the vector #. Now, since (#(2), y(z)) maximizes ¢Z (%, y, z) and
(£(2), y(2)) maximizes ¢%(%,y, Z), we have

SO + (= Syl Fua) + 3 mae) + a0

> 382 A012) + 0 — (0 () Eua(2) + il (n+a),
and

S ) + (= Sl Fans(?)+ L ma(E) + 0+ 0)

> 3 66) o)+ 06 = Fulu(:) na(2) + 3 () + (n-+ ).

Adding the two inequalities gives

0 (2Fa11(2) + Fnia(2)) 2 q(2na (2) + ZEnsa (2)),

or equivalently,
(2 = 2) (Fn41(2) — En4a(2)) 2 0
This means that
Zp41(2) £ Enga(2). (3.17)
Now from (3.4) we have

ria(z) =~ =
= T awR)  fow(z) —

and a similar expression for #,+1(Z). Substituting this into (3.17) gives that
fo(y(2))—z monotonically decreases if z decreases. Finally, note that y(z) = y(),
for p = AE%JL, and y(2) = y(@), for g = f—"@?ﬁ Since i < p, it follows
from Theorem 2.7 that fo(y(2)) — X, zi(2) fi(y(2)) monotonically decreases and
fo(y(2)) monotonically increases if z increases.
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There is also a direct proof for the monotonicity of fo(y(z)). Since y(z) minimizes
#o(y, z) and y(Z) minimizes ¢p(y, zZ) we obviously have

—qIn(fo(y(2)) ~ 2) - iln(—fi(y(z))) < —gln(fo(y(2)) - 2) - éln(—fi(y(z))),

and

—qIn(fo(y(2)) — 2) —iln(—fi(y(i))) < —qIn(fo(y(2)) — 2) - Zln —fi(y(2)))-

i=1 =1

Adding the two inequalities gives

—qIn(fo(y(2)) — 2) — ¢In(fo(y(2)) — 2) £ —qIn(fo(y(2)) — z) — ¢ In(fo(y(2)) — %),

or equivalently

foly(e) =z  foly(2) - 2
fo(y(2)) =2 ~ foly(2)) — 2
This means that fo(y(z)) < fo(y(2)). 0

The following lemma gives an upper bound for the gap z* — 2.

Lemma 3.11 One has

Z—z<(1+ )(fo( (2)) — 2)-

Proof: The exact center y(z) minimizes the distance function ¢p(y,2). The
necessary and sufficient conditions for these minima are (3.2). From these
conditions we derive that (z(z),y(z)) is dual feasible. Moreover, using z* <

Foly(2)) — X, zi(2) fi(y(2)), it follows that

2 — fo(y(2)) < - sz(Z)f (¥(2)) = —(fo(y(Z)) - 2).

i=1

Consequently,
(=" = 2) = (foly(2) = 2) < (Joly(2)) = 2)-

This means

F—z< (14 %)(fo(y(Z)) ~2).

This proves the lemma. ]
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3.3.2 Properties near the centers

For the analysis we again assume that the functions —fo(y) and fi(y), 0 <
t < n, are convex with continuous first and second order derivatives in J, and
moreover that ¢5(y, z) is k—self-concordant. This self-concordancy property was
introduced and discussed in Section 2.4.2. The distance functions of the classes
of problems which were mentioned in that section also satisfy this condition (see
also Appendix A).

Now we will prove some lemmas for approximately centered points. As indicated
in Section 3.1, we can use the results obtained for the logarithmic barrier method
in Section 2.4, since y(z) is the analytic center of F,.

Lemma 3.12 Let d € R™. If||d||n(y,:) < 2 theny +d € F? C F°.
Proof: This is an immediate consequence of Lemma 2.20. ]

Lemma 3.13 Let y* := y 4+ p. If {|p|lw := ||p(¥, 2)|lH(w.2) < £ then yt € F2,
and

+ < Kk 2
”p(y ’z)“H(y*yZ) = (1 — E“plly)z”p”l{‘

Proof: This is an immediate consequence of Lemma 2.21. O

Again, as a consequence of Lemma 3.13, for ||p||g < 34;”@ we have that

Ip(y™s )z 2 < llplla,

and hence convergence of Newton’s method. For ||p||g < 3= the lemma gives

9
(s 2l < 7llpll (3.18)

1
Lemma 3.14 If ||p||x < 3 then

2
D
6oly,2) = do(u(2),2) < — 2l
1- (3xliplla)
Proof: This is an immediate consequence of Lemma 2.22. 0O

Lemma 3.15 If |iplls := [|p(¥, 2) | H(.s) € 5 and ¢ > 3@, then

2vn__ |pllu

1 - $xliplla

o) -2 < (14 ) (o) — 2).
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Proof: Since p = —H g we have pTg = —||p||%. On the other hand

T _ gVily) < Viily)
pe=» (f(y)—z .El—fi(y))‘

So we have

PV hy) = 2= (II 1+ 57 3 L ) (3.19)

i=1 fl( )

Now let J denote the matrix whose columns are %%z% Now it is easy to see that

p" 3> THE — el < 17 el < Vlpla,

where the last inequality follows from

|Jpl1? = pTJJTp < p"Hp = ||p|l%.

Using this in (3.19) gives

PV foly) < i% (Il + Valllr) < zupunf-"i”—;—:—fﬁ. (3.20)

Let y° := y and let y*,y?%, - - - denote the sequence of points obtained by repeating
Newton steps, starting at y°. According to Lemma 3.13 this Newton process
converges to y(z), and moreover

9 _ 9 21 ‘
o, 2l < TRl Dreosg < - < () 1062 o,

Then we have

™) =2z = fov*) =z + folv**") — fo(y¥)
fo¥) — z + V fo(y") T p(v*, 2)

< (1+2np<y L ) (ole) - 2)

AN

< (") =TT (14 21000 ML)
s o "‘)H(H?(g o 1oL

=0
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where the first inequality follows from the convexity of — fo(y). In particular we
have:

IA

fo(y(z)) — = (fo(yo) — z) ﬁ (1 +2 (% n)zi_l ”P“?{.\/Tﬁ)

=0

(1 L2vn el
g 1-2«|plln

IA

) (st -2,

where the last inequality follows from Lemma B.4 and because we assumed ¢ >

Vn (]

K

3.3.3 Complexity analysis

Based on the lemmas in the previous section, we will give upper bounds for
the total number of outer iterations and inner iterations needed by the Center

Algorithm stated in Section 3.1. First we will deal with the long— and medium-
1

step variant, and finally with the short-step variant. We set 7 = 3-.

Theorem 3.5 After at most

4 n (1+ 2)(z* — 29
5(1 + E)ln c

outer iterations, the Center Algorithm ends up with an e-optimal solution for

(CcP).

Proof: See the proof of Theorem 3.1. 0

The following lemma states that a sufficient decrease in the distance function
can be obtained by taking a step along the Newton direction.

Lemma 3.16 Let & := then

1
1+x]lpll

$0(02) = $o(y + @7, 2) 2 5 (sllplw ~ In(1 + wllpl))

Proof: This is an immediate consequence of Lemma 2.24. (]

Now we give an upper bound for the total number of inner iterations during an
arbitrary outer iteration.
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Theorem 3.6 The total number of inner iterations during an arbitrary outer
iteration is at most

22 A’ 3v/n
?+22qn 0(1—0+qn+3ﬁ>'

Proof: We denote the used lower bound in an arbitrary outer iteration by %,
while the lower bound in the previous outer iteration is denoted by z. The iterate
at the beginning of the outer iteration is denoted by y. Hence y is centered with
respect to y(2) and z = Z + 0(fo(y) — Z). Because of Lemma 3.16 and because
llpllz > & during each inner iteration, we have that the decrease in the distance

function is at least
1(1 1u+1ﬂ> !
2\3° VT3] 7 5
Due to the definition of y(z) we may write

5o < $o(3,3) ~ $oly(2),3), (3:21)

where N denotes the number of inner iterations. Let us call the right-hand side
of (3.21) ®5(y,2). According to the Mean Value Theorem there is a Z € (Z,2)

such that
Bo(y,3) = Bo(y,9) + L2055, (3.22)
Let us now look at %y—’zl. We have
déo(y,2) _ 4
dz foly) =2’
and
dén(y(2),2) _  Viy()Ty' -1 & Viiy()Ty
7 A Y8 PR DS Y1)
z T,/ _ n )
_ Vf;ﬂ((:‘/y((g))) z - 1 + fo(y(:)) — ;x,-(z)er(y(z))Ty,
_ q
— foly(2)) -2
where the last two equations follow from (3.2). So
d ®p(y, 2) _ ( 1 B 1 )
iz | = "\B@) =z R -z)|.
1 1
= 4 (fo(y) -z fo(y(2) - 5) ’
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where the last inequality follows from the fact that Z > # and from Theorem 3.4.
Substituting this into (3.22) gives
(z -z
y(z ) ) )
) —

foly(
= ®(y,z )+q0( ia (yi 2)

¢D(y7§) < (I)D(yaé)'*'q( (;

N|I

1
< — .
= 3n2+0(1—0 1+_£) (3.23)
_— +q0 6 +
T 3k? 1-0 gk+ 3\/_
where inequality (3.23) follows because ®(y, z) < 5= according to Lemma 3.14,
and fo(y(2))—2<(1+ %@)(fo(y) — Z) according to Lemma 3.15. O

Combining Theorems 3.5 and 3.6, the total number of iterations turns out to be
given by the following theorem.

Theorem 3.7 An upper bound for the total number of Newton iterations is given

by s ) (30 .o (1 f » qﬂ?:/;/ﬁ)) I 4(1 + f)ﬁz* _ ZO)'

O

This makes clear that to obtain an e-optimal solution and setting ¢ = O(n), the
algorithm needs

o O(x? z _”0) Newton iterations for the long-step variant (0 < 8 < 1);

e O(x*/nln L}?E) Newton iterations for the medium-step variant (6 = =,
v > 0);

e O z _’0) Newton iterations for 8 = ;‘%, v>0.

We want to point out that a complexity analysis can easily be given for the short-
step path-following method using some of the lemmas given above. Short-step
path—following methods start at a nearly centered iterate and after the lower
bound z is increased by a small factor, a unit Newton step is taken. The updating
factor is sufficiently small, such that the new iterate is again nearly centered with
respect to the new center.

The following lemma will be needed for analyzing such a short—step path—following
method. It states how the distance changes if z is increased.
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Lemma 3.17 Let z* := 2z + 0(fo(y) — z). Then

0
Ip(y, 2 a,e+) < llplle + 1— 0\/6'

Proof: Let us first introduce the notation g*, p* and H* for ¢(y, z*), p(y, 2*)
and H(y,z%), respectively. Note that

Violy) | Vie(y)Viy)"

+y —

B2 = ~tray = Y hw -7 T
S Viily) | S VAV )T
; —fi(y) +;z=; fi(y)?

_ 49 Vfo(y) 1 )Vfo(y)Vfo(y)T
1.9~ 1 2o () T o
Consequently, from Lemma B.3 it follows that H(y,z*)™! < H(y,z)"'. The

distance after increasing z becomes:

lptlls = /(g*)T(H+)1g+

< ((¢gh)TH g+

= llg*ll -3
_ | V) Vf,(y)“
fO(y)_z+ i=1

|9 Vi V fiy)
T TR -2 T 2.‘: — @)y

V fo(y) fi(y) “ 0 . V fo(y)
< - + q
qfo(y) -z ; —filW) g2 10 foly) — 2| 4-%
A%
= lplla + 7 “ f‘; s IIPE (3.24)
H™
Let us continue by evaluating ”q%—(f—;’-}% H-b Let J be the n X ¢ matrix whose
columns are all }——(’%@; Then we have
Vfo(y) T T( V2f0 V2f¢
— e'J
,qfo(y)—z H-% fo(y -z ,E_; ft(y

"V fiy)Vfi i
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From Lemma B.3 it follows that the eigenvalues of

v Vy) | Vii(y) Vf(y Vf.(y)T r\
J ( o) -z T = W) “E O ”") J

are all smaller than or equal to one. Consequently,

e,

-3

Substituting this into (3.24) yields the lemma. o

Lemma 3.18 Let y* := y+ p and z* := z + 0(fo(y) — 2), where § = 5%‘/5 If
”p(y7z)”H(y,z) S 3%‘1 then

1
lo(y, 25) |+ o4y < 3

Proof: Using Lemmas 3.13 and Lemma 3.17 we have

9 9 1 1 1 1
+ + < Z +)|}2 —K|l—+—F——— e
Ip(y™, 25+ ) < 4/c|]p(y,z )”H(”’zﬂ - 4’C (3r€ + 1- 22:\/5 22”) < 3k

O

This shows that if 6 is sufficiently small, then one unit Newton step is sufficient
to reach the vicinity of y(z*). With the help of Theorern 3.5 it is easy to see
that this short-step algorithm requires O(x+/n In 2= ) Newton iterations, using

q = 9(n).

3.4 Miscellaneous remarks

Further remarks on the center method

Note that the distance function for linear programming is self-concordant with
k = 1. The complexity results for linear programming (Section 3.2) and convex
programming (Section 3.3) with k = 1 are exactly the same. Comparing the
complexity results for the logarithmic barrier method and the center method we
observe that they are comparable (instead of nyo in the complexity bounds for
the logarithmic barrier method, we have 2* — 2° in the corresponding results for
the center method, but both expressions indicate the initial gap).

Again we emphasize that the upper bound for the long-step method can be
very pessimistic, because of the line searches involved in the inner iterations and
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because we normally have that ||p||g > 7. Moreover, note that the iteration
bound derived for the short-step method is exact. This explains the fact that a
large reduction factor gives a worse bound than a small reduction factor, while
one would expect the contrary.

A disadvantage of the center method compared with the logarithmic barrier
method is that the updating of the lower bound is always restricted: the lower
bound must not exceed the objective value in the current iterate. In the loga-
rithmic barrier method there is no such a restriction. This is one of the reasons
why the center method has always attracted less attention in the literature then
the logarithmic barrier method.

There may be some convex programming problems which satisfy the Relative
Lipschitz Condition but do not satisfy the self-concordancy. condition (this only
happens if one of the functions involved is not three times continuously differen-
tiable). For these problems the analysis given in [27] is still valid.

Relaxing the initial centering condition

Finally we note that the ’centering assumption’ ||p(y°, 2%)||m 0,0y < 7 can be
alleviated to

z*— 20

¢o(y",2°) — 6o(y(2°),2°) < O(x*v/nIn )

€
for the medium-step version, and to

2 —2°

¢D(y0a 20) - ¢D(y(zo)’ ZO) S O(K‘zn ln ),

for the long-step version. This follows easily from Lemma 3.16.

Comparison with other papers

Short-step center methods for linear programming were analyzed by Renegar
[124] and Vaidya [146]. Our analysis for such short-step center methods is much
simpler and gives the same complexity result.

It is interesting to compare the o-measure with other measures used in the
literature. Renegar [124] showed that in each iteration

x 1

S —e| £ =.
18()7%5 —ell < 56
Note that this distance measure is not computable since we do not know the
center y(z). This measure is related to our c—measure as follows:

I15()7'8 = ell = 153(2) — el < o (y,2),
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where the last inequality follows from the definition of o(y, z) (3.8). Vaidya [146]
used ¢p(y, z) — ¢o(y(2), #) as a distance measure, which is also not computable.

Jarre [63] and Mehrotra and Sun [96] analyzed short—step center methods for
some classes of convex programming problems. In [63] the O((1+M?)\/n1n ":’o )
complexity bound was obtained for § = 55 n(ll ryyt where M is the so—called
Relative Lipschitz constant; see Section 2.4.%. Note that the updating factor
is dependent on the (possibly unknown) Relative Lipschitz constant M. Note
that all these methods only deal with short-step methods, which are unattrac-
tive in practice. To accelerate his method, Jarre [63] proposed a (higher order)

extrapolation scheme.

Multi—objective programming

The ideas used in the center method can nicely be generalized for multi-objective
programming problems. Instead of one objective we now have more, say r, ob-
jectives. We will sketch this generalization for the linear programming problem;
for nonlinear programming similar arguments can be used.

Suppose there are r (conflicting) objective vectors:
blabZa"'1br1 ~

and the feasible region is again given by the constraints ATy < ¢. We introduce
a generalized version of the distance function:

—qZIn(b?y —z) — Zln(ci — a,Ty).
i=1 i=1
The unique minimum of this function for fixed values of z;, z = 1,---,r, is the
analytic center of the following polyhedron

Fo={y : ATy<c, bfy>z,i=1,---,r}.
N —’
q times

After (approximately) calculating the center of F, we can shift the objective
constraints:

Zi+ = Z,—l-al(bil‘y — zi), 7 = 1’...,7-,
where 0 < 6; < 1.

Morin and Trafalis [111] showed that using exact centers (y = y(z)) and §; = 1,
t=1,---,r, this process converges to a point on an efficient facet. A disadvantage
of taking 6; = 1 is that the current iterate can not be used for the next stage.
Generalizing some lemmas given in Section 3.2 it should be possible to analyze
the process for 6; < 1 while using approximate centers. This will also allow us
to use different values 6; or to change these values during the process according
to the preference of the user. We expect that similar complexity bounds as for
the single objective linear programming problem can be proved.
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Chapter 4

Reducing the complexity for LP

In this chapter we will discuss some ways to cut down the number of arithmetic
operations per iteration for the logarithmic barrier method for linear program-
ming, analyzed in Section 2.2. The analysis given in this chapter can easily be
extended to the center method, because of the close relationship between the
logarithmic barrier and the center method.

Essentially, in each iteration of these methods the m x m normal matrix AS~2AT
has to be computed and inverted. In the first section we show that the overall
complexity can be reduced by a factor \/n by using approximations for S and
rank-one updates in the computation of the inverse. In the second section we
analyze a variant of the logarithmic barrier method, in which we are allowed to
work with a (small) subset of all the constraints. This cuts down the number of
operations per iteration needed to compute the normal matrix.

4.1 Approximate solutions and rank—-one up-
dates

4.1.1 The revised logarithmic barrier algorithm

As shown in Section 2.2, the total number of arithmetic operations for the log-
arithmic barrier method for linear programming is O(n®®1n ™) for the short—
and medium-step variant, and O(n*In 222 ) for the long-step variant. For finding
an exact optimal solution the complexity bounds become O(n®®L) and O(n*L),
respectively.

The original O(n3*L) complexity bound for short-step path—following methods
was reduced to O(n®L) by Vaidya [146] for the center method, by Gonzaga
[45] for the logarithmic barrier method and by Kojima, Mizuno and Yoshise
[76] and Monteiro and Adler [107] for the primal-dual path—following method.

105
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This reduction was achieved by using Karmarkar’s [69] partial updating scheme.
Their partial updating analysis is based on steps of a fixed, short length, which
fits in short—step methods in a natural way. In Mizuno and Todd [103] a partial
updating analysis for an 'adaptive step’ path-following algorithm is given.

As mentioned above, the partial updating analysis in {146], [45], [76] and [107] is
based on steps of a short, fixed length, and so it cannot be used in medium- or
long-step algorithms. In this section we show that by using a Goldstein—Armijo
rule to safeguard the line searches of the barrier function, a y/n reduction in the
complexity bounds can be obtained for both variants. The Goldstein-Armijo
rule was introduced in the complexity analysis for Karmarkar’s {69] projective
algorithm by Anstreicher [3]. Anstreicher and Bosch [6] used the rule to improve
the complexity bound for the affine potential reduction algorithms in Ye {159]
and Freund [35].

We consider the dual linear programming problem (£D) as given in Section 2.2.
We will also use some of the results obtained in that section. Essentially, in each
iteration of the logarithmic barrier method, the m x m coefficient matrix AS—2AT
of this system, denoted H, has to be inverted (see (2.9)). Hence, assuming
that m = O(n), at each iteration O(n?) arithmetic operations are needed. The
matrices in two successive iterations differ only due to changes in S. Now consider
the hypothetical case when only one entry of S changes. Then the new coefficient
matrix H’' differs from H only by a rank-one matrix. So we can write

H' = H + uwT,
for suitable vectors u and v. With the help of the Sherman-Morrison formula

H'wTH!

Ty~1 _ pg-1 _
(H+uw')™ = H 1+oTH- 1w’

the inverse of H' can be calculated from the inverse of H in only O(n?) arithmetic
operations. If we require an exact solution of the system of equations we will in
general need to make n such rank-one modifications. Therefore O(n?) arithmetic
operations will be needed at each iteration.

However, assume that instead of AS~2AT we use AS—2AT, where S is a working
matrix closely related to S. Actually, the diagonal term §; of S is updated during
the inner iteration only if 3; differs too much from s;. If a limited number of
components of § are updated at a given iteration, a reduced computational cost
can be achieved using the Sherman—Morrison formula. Of course one does not
obtain the exact projected Newton direction p, but an approximation p of it.

The purpose is now to show that by performing a safeguarded line search along
D, one can achieve the double goal of enforcing a significant decrease of the



4.1. APPROXIMATE SOLUTIONS AND RANK-ONE UPDATES 107

barrier function at each iteration, while maintaining the number of updates in
the components of 3 relatively small, thereby achieving a computational saving.

In order to work out these ideas we introduce the diagonal matrix D, with
diagonal element d;, defined by

S =S8D.

Let p > 1 be some fixed number. The algorithm is designed so as to maintain
the inequality

<d;<p, 1<1<n. (4.1)

® =

Karmarkar [69] already used approximate solutions and partial updating to re-
duce the complexity bound for his algorithm. Using these approximate solutions
for S, we will show that on the average only \/n rank-one modifications are
needed, without increasing the complexity bound for the required number of
iterations. This can be reached by submitting the line search to a Goldstein—
Armijo condition.

To measure the distance to the central path, we shall use a slightly different
version of the §-metric (2.8), introduced in Section 2.2. We define

) Sz
bt = min {12 — ) - 42 =}, (42)
Again, there is a close relationship between this measure and the approximate
Newton direction p. A closed form solution for p is (cf. (2.9))
= (AS724T)! (E - AS“e) .
U
It can easily be verified that
8(y,m) = |15 A"

It is clear from the definition that &(y,x) = 0 if and only if y = y(k). In other
words, we will have )
6(y, ) =0 <= 6(y,n) = 0.

It is easy to verify that under assumption (4.1)
1 .
;5(y,u) < 6y, 1) < pé(y, 1) (4.3)

Consequently, if §(y, p) < % then we have §(y, #) <1, and the lemmas proved in
the Section 2.2 hold.
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The Goldstein~Armijo condition can be formulated as follows:

Ads o _ dboly+ o)

« da

, (4.4)
a=0
where A¢y is the change in the barrier function value and 0 < ¢ < 1. This
condition is a well-known rule in nonlinear programming; see e.g. [98]. It permits

significant decreases of ¢g(y, 1), but prevents excessively long steps. Note that
we have

dés (y + ap, /‘)

b . P . ~
da =~ (2~ A5 =~ ATH = By, u). (45)

a=0

We will now describe the revised algorithm to find an e-optimal solution.

Revised Logarithmic Barrier Algorithm

Input:

€ is the accuracy parameter;

0 is the reduction parameter, 0 < 8 < 1;

p is the coordinate update parameter, p > 1;
( is the Goldstein—-Armijo factor, { < %;

o is the initial barrier value;

y° is a given interior feasible point such that 8(y°, yo) < zip;

begin
y:=y% 8 := % p 1= po;
while > £ do
begin (outer step)
pi=(1—-0)u;
while 6(y, u) > zip do
begin (inner step)
D:= 8§51
& := arg mina>o {$(y + of, 1) s — aAT5 > 0, A8 > (B(y, p)’}
y:=y+ap )
for j:=1tondoif f-;- ¢ (%,p) then 3; := s;
end (inner step)
end (outer step)
end.
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4.1.2 Complexity analysis

We first give upper bounds for the total number of outer and inner iterations.
Finally, we derive an upper bound for the total number of coordinate updates of

S.

Henceforth we shall denote {y’}, 7 = 0,1,2, - - the sequence of inner iterates and
{ue}, k=0,1,2, - the sequence of parameter values during the successive outer
iterations. Suppose that y’ is the current iterate when u; is calculated. Then set
mi = J. Take mg = 0. Then for any j > 0 there is a k such that my < j < mgyq,
and the value of  used in the calculation of ¥ is ux = (1 — 6)F p.

Theorem 4.1 After at most

1. 4npuy
-1
8" e

outer iterations, the Revised Logarithmic Barrier Algorithm ends up with a so-
lution such that z* — bTy < .

Proof: Since 8(y,p) < 2%, implies 6(y, 1) < %, the theorem is an immediate

consequence of Theorem 2.1. ~ (]

Lemma 4.1 Let § := §(y, 1), @ := [p(6 + p)]™*. Then

—In(1 + -6—)

A¢B = ¢B(y’/‘t) - ¢>B(y + ap, ,U) > »

o | om

Moreover 228 > (82, for ¢ < 1.

Proof: The first part can easily be proved by modifying the proof of Lemma 2.6
appropriately.

The second part follows immediately from Lemma B.5:

Agy > ¢ In(1+ é) > 8.0 = fs = lad (4.6)
p PP P 2014 g) 2p(6+p) 2

a

Theorem 4.2 Fach outer iteration of the revised algorithm requires at most

120p*
(1-20)

(s 28) s

inner iterations.
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Proof: Let us consider the (k + 1)’st outer iteration. Let N denote the number
of inner iterations. For each inner iteration we know, by the definition of & and

(4.6), that the decrease in the barrier function value is larger than Since

52
N 20(6+0) "
this expression is an increasing function of §, and since during each iteration
6 > -, we have
p ~
82 1
= 2
20(6 +p) — 12p*

Consequently, we have

(Y™, px) — du(y™*, pi).

From the proof of Theorem 2.2 it follows that

. 00)2 <0n+ SVn ) (4.7)

Hence the theorem follows. O

1
Pa(y™, pr) — da(y™*, pr) < 3+

Consequently, using an additional Goldstein—Armijo rule and approximate solu-
tions do not influence the order of the total number of outer and inner iterations.

The last theorem will give an upper bound for the total number of coordinate
updates in 3. For the proof of this theorem we make use of some results obtained

by Anstreicher [3].

Theorem 4.3 The total number W of coordinate updates of § up to the last
inner tteration is bounded by

W§%<%+( 0)2(0n+ f)) 4"6"°.

Proof:! Let K denote the number of outer iterations, and M the total number
of inner iterations. Let k; be an iteration at which an update of §; is performed.
Let k; > k; be the first iteration at which §; is updated again. Then we have

s] sg—l S k2 3‘3 ko s.‘?-l
I omac (2550 > ma [ 5 %

Jj=ki+1 1 J=k1+1 Si Jj=k1+1 S

kz k1
= max ,
o si")

> p.

11 would like to thank Kurt Anstreicher for the valuable suggestions for the proof of Theorem
4.3 he made during a visit to Delft, May 14-24, 1990.



4.1. APPROXIMATE SOLUTIONS AND RANK-ONE UPDATES 111

Taking logarithms and defining

. e st
=1 (sl = 2
1

we obtain
kp—1

Inp < Y |Invi|. (4.8)

i=ks
Letting

N 1
7} = max{r{, ;},
inequality (4.8) can be sharpened to

k21 )
Inp< Y |Ind. (4.9)

J=ky
To prove (4.9), first assume that for some ¢, ky < £ < ky — 1, rf < %. Then

ka—1 .
Inp=|ln# < Y |In#|.

j=k1

Else # = ri ky <j <k, —1, and (4.9) holds because of (4.8). Hence, (4.9) has
been proved. We deduce from (4.9) a bound on the total number w; of updates

of coordinate : of 3:
M-1

wilnp < Y [In#|.

=0
Consequently the total number of coordinate updates is bounded by

M-1 n .
Winp < )~ > |In#|. (4.10)
7=0 i=1

In view of Lemma B.6, with v = #¥ and w = %,

In

In#| < =201 7). (4.11)
p

1

Since 7! =rl if r! > %, and 7 > r! if r] < % we always have

11— ] < |1 —rl| = &)(s]) e #). (4.12)



112 CHAPTER 4. REDUCING THE COMPLEXITY FOR LP

Substitution of (4.11) and (4.12) into (4.10) gives

M-1 n

DN It

i=1

From the inequality relating the /; and I; norms

n

D™l P < Vall(S)THATF || < pv/|(5) AT

=1
Hence \ Mot
n e— . sl .
W< E S (3 A5, (@.13)
7=0

Since the Goldstein—-Armijo condition is satisfied in each inner iteration, it holds
for any j and k such that m; < j < mgyq (we will write k(j) instead of k to
denote its dependence on j) that

< 8 mG) — ey )

& < M . (4.14)
! CH(S7) 1 ATp |2
Substituting this into (4.13), we obtain
W< PV RS b i) — o (¥ i)
“e—-1) = 1(59)-1 AT
Since ||(57)"*ATp|| > L, this implies
203/n M-1 ] )
w o< P v > (¢B(y’,,uk<j))—¢B(y”l,uk(j)))
((p—1) =0
2p3 K-1 mk _—
(( Z (¢B ,/l'k) ¢ ( * Muk)) ’
Now using Theorem 4.1 and (4.7) we obtain
23/m (1 1 3 ) dnpg
W < — 0 - 1 .
S -0 (30*(1—0)2 ( ntsve) Jin =
]

Theorem 4.1 and Theorem 4.2 imply that M, the total number of inner iterations
needed by the algorithm, is at most

12p* 3 4p* dnpo
((1—0)2 (0"+§‘/5) L L
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The total number of arithmetic operations in each iteration, aside from the work
due to coordinate updates, is O(n?). The same amount of work is required for
each coordinate update. Consequently, the total number of arithmetic operations
needed by the algorithm is (M + W)O(n?).

To obtain an e-optimal solution the Revised Logarithmic Barrier Algorithm
needs

¢ O(nln™2) Newton iterations and O(n3%In £2) arithmetic operations for
the long-step variant;

e O(y/nln ™) Newton iterations and O(n®In 2£2) arithmetic operations for
the medium-step variant.

To obtain an optimal solution we have to take e = 272F. For this value of € the
revised algorithm needs O(n®*°L) and O(n®L) arithmetic operations respectively,
assuming that pe < 2000,

4.2 Adding and deleting constraints

4.2.1 General remarks

One drawback to all interior point methods is the great computational effort
required in each iteration. In each iteration the search direction p is obtained by
solving a linear system with normal matrix AD~2AT, where A is the (m x n)
constraint matrix and D a positive diagonal matrix depending on the current
iterate. Therefore, working with a subset of the dual constraints rather than the
full system, would save a great deal of computation, especially if n > m.

The first such an attempt to save computations is the so—called *build-down’
or ’column deletion’ method, proposed by Ye [156]. In his approach, a criteri-
on for detecting (non)binding constraints is derived on the basis of an ellipsoid
which circumscribes the optimal facet. If a constraint is detected to be non-
binding in the optimal set, it is removed from the system. Consequently, the
system becomes increasingly smaller, which reduces the computational effort for
computing the normal matrix AD-?AT. However, the speed of the detection
process is crucial. If the nonbinding constraints are only detected during the last
stage of the algorithm, the reduction in computation is negligible. To the best of
our knowledge, there are no computational results to be found in the literature
concerning this build-down process.

The second attempt to save computations is the ’build-up’ or ’column generation’
method. Papers on column generation techniques within interior point methods
were first written by Mitchell [99] and Goffin and Vial [41] for the projective
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method. In (8] computational results for Goffin and Vial’s method applied to
convex programming are reported. However, these papers provide no theoretical
analysis for the effect on the potential function and/or the number of iterations
after the addition of a column/row.

Ye [160] proposed a (non-interior) potential reduction method for the linear fea-
sibility problem which allows column generation. In each iteration an inequality
violated at the current center is added to the system (in a shifted position), until
a feasible point has been found. He proved that such a point can be found in
O(v/nL) iterations, where L is the input length of the problem. Although each
linear programming problem can be formulated as a linear feasibility problem,
this is an inefficient way of solving linear programming problems.

Dantzig and Ye [17] proposed a build-up scheme for the dual affine scaling al-
gorithm. This method differs from the ’standard’ affine scaling method in that
the ellipsoid chosen to generate the search direction p is constructed from a set
of m ’promising’ dual constraints. If the next iterate y + p violates one of the
other constraints, this constraint is added to the current system and a new ellip-
soid and search direction (using the new set of constraints) are calculated. After
making the step, a new set of m promising dual constraints is selected.

Tone [139] proposed an active-set strategy for Ye’s [159] dual potential reduction
method. In this strategy the search direction is also constructed from a subset of
constraints which have small dual slacks in the current iterate. More constraints
are added if no sufficient potential reduction is obtained. After making the
step a new set of dual constraints, with small slack values, is selected. This
algorithm converges to an optimal solution in O(/nL) iterations. In [67] some
computational results for this active-set strategy are reported.

Elaborating the above ideas, in this section we will propose a build—up and down
strategy for the logarithmic barrier method for linear programming (see Section
2.2). This strategy starts with a (small) subset of the constraints, and follows
the corresponding central path until the iterate is 'close’ to (or violates) one
of the other constraints, at which point the constraint is added to the current
system. Moreover, a constraint is deleted if the corresponding slack value of the
current approximately centered iterate is ’large’. This process is repeated until
the iterate is close to the optimum. We will derive an upper bound for the total
number of iterations required by this build-up and down algorithm. This upper
bound will appear to depend on ¢*, which is the maximal number of constraints
in the subsystem, rather then on n.

Comparing with the usual logarithmic barrier method, this build—up and down
method has two advantages. Firstly, it has the before mentioned property of
using only subsets of the set of all constraints and hence decreases the computa-
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tional effort per iteration. Secondly, since it is likely that ¢* < n, the (theoretical)
complexity is better than that of the standard path—following method.

In the next subsection we first analyze the effect of shifting, adding and deleting
a constraint on the position of the center, the ’distance’ to the path, and the
change in the barrier function. These basic properties are interesting in itself,
but also enable us to analyze the proposed build-up and down algorithm.

4.2.2 The effects of shifting, adding and deleting con-
straints

Again, we consider the dual linear programming problem (£LD) as given in Section
2.2. We will also use some of the results obtained in that section.

In the algorithm we will add and delete constraints. In the analysis we also need
to consider the effect of shifting a constraint. That is why we start with some
lemmas dealing with shifting a constraint. Note that if we take b = 0 then some
of Ye’s [160] results follow from some lemmas in this section.

In the sequel of this section we will denote by (AS~2AT)q the matrix AS—2AT
restricted to the columns of A in the index set @, i.e.

(AS‘2AT)Q = Z
1€Q

aia,T
s?

T

Moreover, we define

lzllg := \/2T(AS-2AT)5l,

assuming that AS~2AT has full rank. The full index set {1,---,n} is denoted by
N, and

lladlin’
¢t = 1,---,n. Note that é; is the distance to the i~th constraint measured in a
certain metric.

H

Shifting a constraint

Figure 4.1 shows for a special problem how the central path changes if a constraint
is shifted. Suppose the first constraint is shifted by a fraction € of the current
slack s;. So we replace the constraint

afy <¢g

by

aly<ec —es, 0<e<1.
Let the asterisk * refer to this new situation; so s} = (1 — ¢)s; and s! = s; for
i =2,---,n. The following lemma shows the effect on the §~measure (see (2.8)).
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Figure 4.1: The central path before and after the constraint is shifted.

Lemma 4.2

6" (y 1) < 8(y, 1) + e(1 + 6(y, 1))

Proof: By definition (2.8)

5*(y,ﬂ>=m;n{ é‘;___” A" = b}.

]

For simplicity we denote z = z(y,u), where z(y,u) solves the minimization
problem in (2.8). Taking z* = z, it follows that

St £381T1€q
— — e — ————
M p

ES81X
< 6y, )+ Ll
ES1T
= (y,p) + Ll-

6*(y, 1)

IA

llel|

Now using that |ﬂ;’l — 1| < é(y, i), and hence anm <1+ 6(y, 1), we obtain

6" (y, ) < 8y, p) + e(1 + 8(y, 1)),
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which proves the lemma. |

The following lemma shows that after shifting the first constraint by an amount
€s1(p), the slack variable s}(p) in the new center y*(x) is smaller than s;(u), but
the difference is at most the amount of shifting.

Lemma 4.3

(1 —¢)si(p) < si(p) < s1(p)

Proof: We analyze the effect of shifting the first constraint by an amount 7.
For the moment, the center for this new situation (with respect to y) is denoted

by y(u,n). So y*(p) = y(u,es1(n)), and y(p) = y(u,0). First note that y(u,n)
is the unique minimum of

oy, p) = ——-—Zln ci —aly) —In(c; — aly — n),
=2

and hence satisfies the following Karush-Kuhn—Tucker conditions:

[ Az =10

J ATyt ey +s=c (4.15)
Sz = pe.

Taking the derivative with respect to 5, we get

4

Az’ =90
S ATy +e1 4+ =0 (4.16)
Xs' + Sz’ =0,

where the prime denotes the derivative with respect to 7. From (4.15) and (4.16)
we derive that

0=AX2%' = —AX?ATy — AX?e,,
and hence y' = —(AX2AT) 1 AX?%,. This means that
S, = AT(AXZAT)_lAX261 — €

and
Xs' = —PAx(Xel) = —-771PAX(61)'

Consequently,
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Since the eigenvalues of the projection matrix P4x are zero or one, the result is
that —1 < s} €0, from which the lemma follows. 0O

The following lemma shows that the barrier function value in the p—center in-
creases by at least ¢ after shifting a constraint by a fraction ¢ of the corresponding
slack value.

Lemma 4.4

¢35 (™ (1), 1) > Sa(y(n),p) +¢

Proof: Using the notation introduced in the proof of Lemma 4.3, we have

d 5 (y(m:n)s 1) _ =
B dn gl

|

Since, by using (4.15) and (4.16),
bTyl — .’L‘TATy’ — ﬂeTS_lAT ' _ﬂeTs—l(s/ + 61),
this results into

1

T o-1
= e S € = .
s1(p,m)

d¢;(y0(l/:7,n),u)_ T-1(s' 4 er) g

“’I..\

Now using the Mean Value Theorem we obtain

a(y* (1) p) = Sa(y(p,es1(p)), 1)

¢5(y(k,0), 1) + esl(p)w

dn

0<n<es: (1)

= #u(y(p), 1)+ esi(p)

> #s(y(p),p) +e,

Sl(ﬂ’n) 0<n<531(u)

where the last inequality follows since si(g,7) < s1(g,0) = s1(p), for n > 0,
according to Lemma 4.3. This proves the lemma. 0O

Adding a constraint

Figure 4.2 shows for a special problem how the central path changes if a con-
straint is added. Suppose we add the constraint agy < ¢g. Let s > 0 be the
corresponding slack variable. The next lemma states what the effect is on 6. An
asterisk * refers to the situation after adding the constraint.



4.2. ADDING AND DELETING CONSTRAINTS 119

Figure 4.2: The central path before and after the constraint is added.

Lemma 4.5 Let § := 6(y,p). Then

14 860

§(y,p) < { Y1+
V1 + 62 if b < 6.

if 60> 6

Proof: By definition

2

) ) 1 [ Sz* €
6" (y,u)" = ming - - : Az* +ap=0b
=8 M 805 1
. 2
= min S —e +(ﬂ)—€-— )2 i Az* +€ao=b
=& ||| u p

Let Az := 2™ — z(y, 1), where z(y, u) solves the minimization problem in (2.8).
Then

2
St = ind [T ey SR (21 anr = oy
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2
< min{(6+ "S‘Aw ) + (s;.f -1 : AAc = —fao}
Azt r p

= min{(E+ IS8 + (sof ~ 1) : AAz = ~¢ao}
= min {(8 + ¢lllaolln)? + (s0€ — 1)}

It is an easy task to prove that if so > 8(y, p#)||ao||n then the right-hand side is
minimal for

___50_6”0'0”N _ 60—6
laoll% + 53 llaolln(1 + &3)’
else { = 0 is optimal. Substituting these values gives the lemma. O

Note that according to Lemma 4.5, adding a constraint hardly influences the
é-measure if &g is large, i.e. if the constraint which is added is far away from
the current iterate. The next lemma states that if we add a constraint, then the
corresponding slack value in the new center is larger than in the old center.

Lemma 4.6

so(p) 2 so(p)

Proof: First note that y*(x) is feasible for the old situation. Moreover, if
so(p) £ 0, then the lemma is obviously true, since sg(g) > 0. So, we may
assume that so(g) > 0, i.e. y(p) is also feasible for the new situation. Since y(u)
minimizes ¢g(y, ) we have ¢p(y(p), p) < éu(y*(), p). Since y*(p) minimizes
&5 (y, p) we have @5 (y* (1), 1) < ¢5(y(p), p). Now it is clear that

Inso(p) = #s(y(p), 1) — o5(y(1), 1)
< de(y(p), 1) — d5(y" (1), 1)
< ey (w), 1) — S5(y" (1), 1)
In s5(4),

which means that sj(p) > so(g). m)

The next lemma gives an upper bound for the barrier function value in the new
center after adding the constraint.

Lemma 4.7 If § := §(y,p) < 3, then

1 4
ba(y, 1) — S (y" (1), ) < 3 + max (O,In 3;) .
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Proof: Suppose that §, > 4. Then according to Lemma 4.5

1+ 66 1 1 1 1
6" Yy S S ) + S -+ < -,
b g St R St <2
Consequently, we have due to Lemma 2.4
.o 1
85y, 1) = G5(y" (k). 1) < 3.

121

(4.17)

Now suppose that 6y < 4. Then we add the constraint in a shifted position such
that éo is exactly 4. Let us refer to this situation by using the superscript 0.

Now we may write

Ga(y, 1) — 5w (u)n) = Sa(¥°(w), 1) — b5 (y™ (1), 1)

+ ooy, 1) — Sa(¥°(k), 1)
+ 65y, 1) — da(y, u)-

(4.18)

Now we deal with the three pairs of terms in the right-hand side of (4.18) sepa-

rately.

The first term @9 (y%(x), #) — ¢%(y*(u), 1) is smaller than or equal to 0, since
according to Lemma 4.4 the barrier function value in the exact center increases

after shifting.
Note that according to Lemma 4.5

<

D] =

1 1
8y, p) < 7 +

4 1416

From Lemma 2.4 it now follows that

a (¥, 1) — 3(¥°(1), 1) <

W =

For the third term we simply have

p Hlaolly _ 4

b5y, p) — 83(y, 1) =Insy —Inse =1 5
S0 0

Substituting all this into (4.18) yields

1
¢5(y, 1) — du(y™(p), 1) < 3+ lnﬁi.
0

Combining (4.17) and (4.19) gives the lemma.

(4.19)
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Deleting a constraint

In this section we consider the case that the constraint Ty < ¢; is removed from
the given problem, while assuming that the remaining constraint matrix has still
full rank. As before, let the asterisk * refer to the new situation. Now, letting
N* := N\ {j}, we have the following lemma, which will be needed in Lemma
4.9.
Lemma 4.8 Let §; := % and 8% = "—afljl——. Then 6; > 1 and

. iline

6 = V67— 1.

Proof: To simplify the notation we will assume that s = e. This amounts to
rescaling the columns of A by the slack values, and gives no loss of generality.
Let A* denote the matrix obtained from A by removing the j—th column. Then

A*(A")T = AAT — g;aT

j .
Since A*(A*)T is invertible, Sherman—Morrison’s formula states that
(AAT)1g;al (AAT)?

(*"1*("4')T)_1 = (AAT)—I + 1— aT(AAT)-laJ.

Multiplying this from the left with aJT and from the right by a; we obtain

leslle  _ llaslly
1= laill 11— llaslls

;i = lla;lix +

This can be rewritten as

. 1
5j2=5;(1_6_3)=53_1.

Note that certainly §; > 1. To prove that §; > 1, note that §; = 1 if and
only if a7 (AAT)"'a; = 1. This can be written as e;AT(AAT) ' Ae; = 1. Since
AT(AAT)1 Ae; equals the orthogonal projection of e; on the row space of A, we
conclude that §; = 1 holds if and only if e; is in the row space of A. This is
equivalent to having z; = 0 whenever Az = 0. In other words, no dependence
relation between the columns of A contains the j—th column with nonzero coeffi-
cient. From this we conclude that §; = 1 if and only if removing the j—th column
from A decreases the rank. This completes the proof of the lemma, because we
assumed that the remaining constraint matrix has still full rank. a
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Lemma 4.9 Let § := 6(y,p). Then

8 (y,p) <64

Proof: Let A* and S* be defined as in the previous lemma. Then by definition

* %

— €

My, p) = rr;}n{ : ATzt = b}.

Let Az := z* — 2*(y, u), where z(y, u)T = (¢, 2*(y, #)T) solves the minimization
problem for §(y, 4). Then

S*z*(y, 8;
522“ (y ﬂ)_e”2+(%"1)2.

Hence

(4.20)

So we may write

6*(?/,/1:) — min{ Sx—(y”u_)__e_i_.évﬂ
H®

Az

: A*Az = faj}

< 5+min{l||S‘Ax|| : A*Az:{aj}
Az |

¢
= 6+ ;H%‘IIN'
146

2

IA

5+

N*,

[la;]

where the last inequality follows from (4.20). Using the definition of & we
conclude that

1+6
&

By the previous lemma, this completes the proof. 0

§(y,p) <6+

4.2.3 The build—up and down algorithm

To keep the formulas simple we will assume in this section (as in Ye [160]) that
the constraints —e < y < e are included in the dual constraints ATy < ¢. Let
J C N be the index set corresponding to the constraints —e < y < e. We
will also assume that the columns of A have length 1. Note that each bounded
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problem can be formulated in this way by rescaling. At the end of this section
we will show that these assumptions are not essential.

Under the above assumptions it can easily be proved (see Ye {160]), that if Q 2 J
then

lailly = af (AS~2AT)5'a: < <. (4.21)

N | -

Based on the analysis in the previous section we will give strategies for working
with subsets of the constraints instead of the full constraint matrix A. Both

a build—up strategy (adding constraints) and a build-down strategy (deleting
constraints) will be given.

In our approach we start with a certain (small) subset @ of the index set N, such
that @ D J. Then we start the logarithmic barrier method, with respect to the
constraints in (). This means that we work with the problem

(De)  max{¥Ty:dly <auicQ),

instead of problem (LD). If the current iterate is close to (or violates) a constraint
which is not in @, it is added to the current system, and we go back to the
previous iterate. To be more precise: we check in each iteration if there is an
index ¢ ¢ @ such that

8; <2t ors; < 2—t“§,‘, (4.22)

where 1, is some ’adding’ parameter, and § is the slack vector of the dual iterate
which was almost centered with respect to the previous value of the barrier
parameter. If there is such a constraint, we add it to our system, go back to the
previous iterate (for which s; > 27% and s; > 27%=3;) and continue the process.
Consequently, all iterates are feasible for the whole problem. This is the build—up
part.

If the slack value of a constraint in the current iterate is sufficiently large (say
8; > tq, where t4 is a ’deleting’ parameter), we will remove it from our current
system, since it is then likely that this constraint will be nonbinding in an optimal
solution. After removing constraints, we recenter when necessary. Note that it
is not sure that this constraint is nonbinding in an optimal solution, but, since
we have a strategy for adding constraints, this causes no problem: constraints
which are incorrectly removed, will be added later on. To avoid ’cycling’, i.e. the
case that a constraint is deleted and added many (in fact infinitely many) times,
we will only delete constraints if we are close to the central path.

Before describing the algorithm we introduce some notation. Let 8g(y, 1), ¢3(y, &)
and pg denote the 6—measure, the barrier function and the Newton direction, re-
spectively, with respect to the subsystem Q. Recall that computing (AS—2AT)q
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costs less computational time than computing AS~2AT, especially when |Q)| is
relatively small. The algorithm goes as follows.

Build-Up and Down Algorithm

Input:

€ 1s an accuracy parameter;

0 is the reduction parameter, 0 < 6 < 1;

Q is the initial subset of constraints, Q D J;

o is the initial barrier parameter value;

y° is a given interior feasible point such that g(y, uo) < 3;

begin
Y = Yo; § 1= Yo; K 1= po;
while ¢ > £ do
begin
Delete~Constraints;
poi= (1= 0)u;
Center-and—-Add—-Constraints
end
end.

The procedures Center—and—Add—Constraints and Delete—Constraints are
defined as follows.

Procedure Center—-and—Add—Constraints

Input:
t, is an ’adding’ parameter;

begin
while 6(y, p) > § do
begin
& 1= arg mingso {d)l?(y +apg,p):si —aalpg >0, Vi€ Q};
if 3i¢Q : s; —aalpg < 27 max(1,3;) then
Q:=QU{i: s; —aalpg < 27t max(1,3;),: ¢ Q}
else y := y + apg
end
yi=y
end.
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Procedure Delete—Constraints

Input:
ty > 4 is a ’deleting’ parameter;

begin
fori:=1ton do
ifieQ\J and s; > t; then
begin
Q:=Q\ {i};
if 6g(y, 1) > ; then Center-and-Add-Constraints
end
end.

In Section 4.2.5 it is shown how to obtain a starting point y and set @ such that
y is feasible for the whole problem and ég(y, ) < %.

4.2.4 Complexity analysis

First we analyze the procedure Center-and-Add—-Constraints. Let ¢ be the cardi-
nality of the current subset Q). Theorem 2.2 gives an upper bound for the number
of Newton iterations required by the standard logarithmic barrier method be-
tween two reductions of the barrier parameter. Lemma 4.11 below gives a similar
upper bound if also constraints are added between the two reductions. The fol-

lowing lemma will be needed in the proof of Lemma 4.11. It generalizes Theorem
2.2 and Lemma 4.7.

Lemma 4.10 If 6§ = 6(y,p) < 1, and ji := (1 — 0)p, then

1

(v, ) — 4u(y"(B),B) < §+( (\/—Q+T+9q+r>+

3" max (0 In 2"‘/_>

k=1 Six

where the superscript r refers to the situation that constraints iy, - - -, 1, are added.
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Proof: The proof generalizes the proof of Lemma 4.7. We construct situation 0
by adding constraint 7;,- - -, i, in a shifted position such that

sp = max(s;,, 2rv2),

which means that 67, > 4r.
Note that
$5(y, B) — (v (R), 1) = S3(v°(A), ) — #3(v" (R), )
+ ¢a(y, ) — S2(¥°(R), &)
+ ¢aly, 1) — da(y, ). (4.23)
Now we deal with the three pairs of terms in the right-hand side of (4.23) sepa-
rately.

The first term ¢3(y°(2), ) — ¢5(y" (i), i) is smaller than or equal to 0, since
according to Lemma 4.4 the barrier function value in the exact center increases
after shifting.

Repeatedly applying Lemma 4.5 and using §7, > 4r, we have that

1

1
Oy, ) < 6 e
(v,u) < é+ Z TSt

1
St

From (2.22) it now follows that

A1) = A1) < 5+ g (VAT +0lg +1))

For the third term we simply have

by — B, ) = Yo s —lns.k)—z:max(o 1n2’"f)

k=1 k=1 Six

Substituting all this into (4.23) gives the lemma. 0

Lemma 4.11 Between two reductions of the barrier parameter, the Build-Up
and Down Algorithm requires at most

02
(1-0)?

Newton iterations if r constraints were added.

O(l—l— (q+r)+rta+rlnr)
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Proof: Let i be the current value and u the previous value of the barrier
parameter (i.e. i := (1—0)u). Let iy,- - -, 4, denote the indices of the r constraints
which are added to @ while the barrier parameter has value ji, and let y*, for
k =1,---,r, denote the iterate just after the ix—th constraint has been added,
whereas y*(ji) and ¢%(y*, fi) denote the corresponding center and barrier function
value, respectively. Finally, let y® denote the iterate at the moment that u is
reduced to & (i.e. y° is in the vicinity of y°(u)), and ¢3(y°, ¢) the corresponding
barrier function.

Since in each iteration the barrier function value decreases by a constant (Lemma
2.6), the number of Newton iterations needed to go from y° to the vicinity of
y"(i2) is proportional to at most

r—1
P = (4% B)—da(y' B)+ Y (#5(v%, 1) — dh(u**, ) +45 (v, B)— L (y" (R), )-
k=1

(4.24)
Since ¢1I;(yka ﬁ) = ( ,F’) —In szk’
r—1 r—1
Y (5050 - b6 m) = 3 (4768 m - ¢k ) ~ Insh)
k=1 k=1

r~1
= Sy i) — ¢ (v, B) — Y Insh,.
. k=1

Substituting this into (4.24), while using ¢7(y", &) = ¢;7(y", &) — Ins] , we
obtain

P = ¢y i) — ¢5(v'( Zlns
= ¢;<y°,m—«s;(yf(ﬂ),mz:ln%- (4.25)
k=1 ik

From Lemma 4.10 we have

_ ol - 1 0 3
(%, B) — i (v"(R), ) < 3+ -0y (—\/‘1 +r+6(¢+ 7')) +
> max (O In 27‘\/_)
k=1 1)
Consequently,
4 9.,2rv/2
p<iy? (§\/q+—r+0(q+r)) + zlnr—nal—(s”g—rﬂ.
3 (]. - 0)2 2 k=1 ik
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The lemma follows because

st > 27" max(s), 1).

(8]

Let us now analyze the procedure Delete-Constraints. Lemma 4.9 gives that
when a constraint is deleted in an iterate near the path, and if 5; > t; > 4 then
1 1411

1
* < - i —.
6(y’”)—4+ 4 \/§<2

From this point we have to recenter. As a consequence to Lemma 4.11 we obtain
that recentering costs at most O(1+rt¢,+rInr) Newton iterations, if r constraints

have to be added.

Note that it is not excluded in the algorithm that a constraint is removed at
each outer iteration and added during each inner loop. To avoid this undesirable
behavior, several strategies can be added to the algorithm; e.g. a constraint may
be deleted only once (or a fixed number of times). In the sequel K will denote the
maximal number of times a constraint may be deleted. Note that K is certainly
not larger than the number of updates of y, so using Theorem 2.1

ey
K < %m h kL

€

where ¢* denotes the maximal number of constraints in the subsystem during
the whole process.

Theorem 4.4 After at most

€

Ml ok e 1 bq” 9o
O((K+1)(q Ing +qta)+(0+(1"6)2)1n )

Newton iterations an e¢—optimal solution has been found for (LD), where ¢* de-
notes the mazrimal number of constraints in the subsystem during the whole pro-
cess.

Proof: From Theorem 2.3 it follows that the standard logarithmic barrier algo-

rithm needs ) o
q" q o
O((0+(1—0)2)1n e )

Newton iterations to obtain an e-optimal solution for (£LDg-). Since this solution
is also feasible for (£D) and the subsystem forms a relaxation of (LD), it is also
an e—optimal solution for (LD).
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During the process of the algorithm at most Kg¢* constraints were deleted,
which costs O(Kg¢*) additional Newton iterations. Moreover, at most (K +
1)¢* constraints were added, which costs, according to Lemma 4.11 at most
O((K + 1)(¢*t. + ¢*Ing¢*)) additional Newton iterations. Summing all Newton
iterations proves the theorem. m]

To obtain an optimal solution, we have to take ¢ = 272L. Now, according to
Theorem 4.4, we have the following result:

To obtain a 2-?Y—optimal solution the algorithm requires
o O(1/¢*L) Newton iterations if we take K = O(1), t, = O (VL:)’ and 6 =

ﬁ, q is the current number of constraints in our subsystem, v > 0 and
independent of ¢, n and L;

e O(q*L) Newton iterations if we take K = O(1),t, = O(L) and 0 £ 6 < 1;

o O(q*Llng*) Newton iterations if we take K = Ky, and t, = O(lng),
where g is the current number of constraints in our subsystem, and 0 <
g<1. o

Note that, since it is likely that ¢* < n, the iteration bounds for the medium-
and long-step variants (the first two cases), are better than that for the standard
logarithmic barrier method (Theorem 2.3).

4.2.5 Concluding remarks

Initialization

Suppose the constraints are divided into two disjoint sets ¢ and Q such that
QUQ = {1, --,n}. Now assume that y and (zq,zg) are the (weighted) po—
centers for (LD), i.e. they minimize

over the feasible region, where § = |Q|. It is easy to verify that these centers
have to satisfy
AQ.’I:Q +AQ.TQ = b
AQy+sq = cq
Agy+sQ = ¢
XQSQ = Ho€
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It is well-known that such points can be obtained by transforming the original
problem; see e.g. Monteiro and Adler [107] and Renegar [124]. Let us introduce
now an extra column a := Agzg and an extra primal variable £ and dual slack
variable 5. Then (zg, 1) and y satisfy
AQIEQ + fa = b
AQy+sq = <
aTy +n = mgcQ
Xgsq = e
€n = po.
This means that y is feasible for the whole problem (L£D) and is the center
for the subproblem consisting of the ¢ constraints and an additional constraint

aTy < xgcQ-, which is a valid inequality for (£D). Note that the constraints
which are not in @) are condensed into this additional constraint.

General criteria

The same results can be obtained without assuming that the box constraints
—e < y < e are included and that the columns of A have unit length. For this
purpose we have to change the criterion (4.22) for adding constraints into

8; < 27% max(&;, ||la:l|o),
and the criterion for deleting a constraint into

S; > td“aiHQ-

Increase in potential function after deleting constraints

At the end of Ye’s [160] paper, it is said to be a further research topic how deleting
inequalities will affect the potential function (the potential function he used is
¢s(y, 1), with b = 0). The answer can be obtained very easily from Lemmas 4.9
and 2.4. Suppose that the current point is centered, i.e. §(y,u) < 7, and that
an inequality is removed if the corresponding slack value is larger than 4. Then
according to Lemma 4.9 we have §*(y, 1) < ;. Now using Lemma 2.4 we have

So(u (k) m) > G5y, m) - %
2> d’B(ya#) +In4 — %

2 ¢u(y(n),u) +1nd - %
> ¢B(y(ﬂ)7 /l') + 1.
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This means that removing such a constraint increases the potential function value
by at least one. Removing a constraint which is close to the current iterate will,
of course, decrease the potential function value. It can easily be verified that an
increase can still be guaranteed if the corresponding slack value of the removed
inequality is larger than 2.16.

Deleting nonbinding constraints

We go back to the problem (£D), and to the standard logarithmic barrier method
described in Section 2.2. Ye [156], [158] showed that it is possible in IPM’s to
detect constraints which are binding or nonbinding in all optimal solutions.

If a nonbinding constraint is detected, it can be removed from the system. Since
the central path will change by deleting constraints, the problem for the path—
following analysis is how to control the number of iterations to return to the new
path. Ye [156] gives a (rather awkward) solution for this problem: the detected
constraints (there must be at least two) are condensed into one constraint such
that the current iterate is also close to the new path. Using Lemma 4.9 we give
another, more simple solution.

First note that for the detection process we need both a dual and a primal
solution. According to Lemma 2.7 a primal solution z(y, i) can easily be obtained
if 6(y, 1) < 1. From Ye [158] it is easy to obtain the following lemma.

Lemma 4.12 Let § := 6(y,p) < 1 and z := z(y,p). Then if
si— zi\/w >0, (4.26)
where r* = (sTz)? + ||Sz||?, and w; is the i-th diagonal element of the matriz
XAT(AX?AT) AKX,

then aly < ¢; is not binding for all dual optimal solutions. A 0

We will now show that § does not change too much if a constraint is removed

for which (4.26) holds.

Theorem 4.5 If n > 6 and a constraint satisfies criterion (4.26) (i.e. it is
nonbinding in the optimum) and therefore removed from the system, then we
have for the new §-distance

2(1 +9)

* < Ik, S,
5(y,u)_5+n_5ﬁ



4.2. ADDING AND DELETING CONSTRAINTS 133

Proof: According to Lemma 4.12 the i-th constraint can be removed if

8 > L,/w; = r\/a?(AXQAT)—la,-. (4.27)
T
Note that
z;8; alp af |lasll~ 6
— — 1| = |25 = | 2(AS72AT) g < = =—.
5 1) = 222 = S a2ty ) < Loy, = 2
Consequently,

Substituting this into (4.27) gives:
r

> ——
p(1+ %)

or equivalently

r
&>~ -6 4.28
p (4.28)

Using that ||% — e]| = § it can easily be verified that

r? 2 p? ((n - 8v/n)? + (Vi — 6)%). (4.29)
From Lemma 4.9 if follows that

1+6
JoE—1

Now using (4.28) and (4.29) in (4.30) it follows after some algebraic manipula-

tions that 21 + 6)
*
< I _—
6 6 n— 6\/5,

ifn >6. O

<o+

(4.30)

This means that the detected constraint can be removed while still staying in
the quadratic convergence region of the (new) central path.

Subjects of further research

It will be a major improvement if we could prove that ¢* = ©(m) for (a variant of)
the Build-Up and Down Algorithm, i.e. that at most a multiple of m constraints
are in the working set. This is a subject of further research. The following
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observation is important in this respect?. Suppose that @ is the current working
set, then

1
Z ﬁ = Z e?SalAg(AS_zAT)alAQsalei = trace(I — PAQsal) =m,
€@ % ieQ

where the last equality follows since the projection matrix I — PAQ -1 has m

eigenvalues 1, and the trace of a matrix equals its sum of the eigenvalues. Now
it easily follows that, if there are ¢ = ym constraints in the current working set,
then for at least one of the constraints we must have

/‘1
51_ _\/’7a

which means that if 4 is not too small then this constraint is ’far’ from the current
iterate and can therefore be deleted.

Another subject of further research is to generalize the approach given in this sec-
tion to (non—differentiable) convex programming. Starting with an LP-relaxation
of the problem, we can apply the standard logarithmic barrier method. If the
iterate is close to the boundary of the feasible region, a new linear constraint can
be added to the LP-relaxation®.

2This observation was made by Kurt Anstreicher.
3During his stay at Delft, February—August 1992, John Kaliski developed such an imple-
mentation and obtained very promising results.



Chapter 5

Discussion of other IPM’s

In this chapter we will briefly discuss the IPM’s mentioned in Section 1.3 and not
treated in the previous chapters. First we will treat the path-following methods,
especially the primal-dual path—following method, since the dual (primal) path-
following methods are treated in the previous chapters. Then we discuss the
affine scaling method, the projective and affine potential reduction methods.
Following the literature, the methods are mainly described for the primal problem
(LP) (the dual problem can be treated analogously). Some open problems will
also be indicated. We will not give a detailed description of all these methods.
(More detailed survey papers are [44], [53], [135] and [151].) Our aim is to
show that all these methods rely on some common notions: they all use the
central path somehow, and the search directions are all linear combinations of
two characteristic vectors. These comparisons will be carried out in the last
section.

Concerning IPM’s for the convex programming problem (CP), only a few com-
plexity results have been obtained in the literature hitherto. The results for
the path-following methods for (CP) discussed in Chapters 2 and 3 are at this
moment the best,.

5.1 Path—following methods

Path—following methods based on the classical logarithmic barrier function meth-
od and the center method are extensively treated in Chapters 2 and 3. Short-step
path—following methods follow the central path closely, whereas the medium-,
and especially the long—step methods follow the central path loosely. The analysis
given in these chapters is either based on a primal or a dual method. Extensions
to smooth convex programming, satisfying some conditions, are also given in the
previous chapters.

135



136 CHAPTER 5. DISCUSSION OF OTHER IPM’S

Kojima et al. [75], [76] and Monteiro and Adler [107] proposed a primal-dual
short-step path—following method ([76] treats the positive semi-definite linear
complementarity problem). In this method steps are taken in the primal and
dual space simultaneously. Recall that the Karush-Kuhn-Tucker conditions for

(p) and (y(p), s(p)) are (see (2.6))

ATy4+s=c¢c, s>0
Az = b, z>0 (5.1)
Xs = pe.

The search direction used in [75], [76] and [107] is the Newton direction for this

nonlinear system of equations. Let p,, p, and p, denote the search direction in
the z—, y— and s-space, respectively. Then the search directions are determined

by

0 AT T Pz 0
A 0 O Py | = 0 . (5.2)
S 0 X Ds pe — Xs
These search directions are explicitly given by
pe =[S = STIXAT(ASTIXAT) T ASTY (pe — Xs), (5.3)
py = (AST'XAT)LAS}(Xs — pe), (5.4)
ps = —A'p,. (5.5)

We will now follow the approach given in [107]. Suppose now that (z,y,s) are
approximately centered with respect to u. Then p is reduced by a small factor,
ie. pt = (1 — O)u, where § = ﬁ,—‘. It is shown in [107] that taking a full
Newton step, yields points z* = z + p,, y* = y + p, and s* = s + p,, which are
approximately centered with respect to u*. More precisely, starting with

Xs 1
|— —ell < 57,
U 10
we get
1 <
p el < o

Note the similarity with the §-measure (2.8). In fact, it is easy to see that

Xs
||—“— —ef| 2 max(é(z, p), 6(y, 1)),
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where 6(x, u) is the primal variant of §(y, 1) (see also (2.27)).

Because of the small updates in the barrier parameter, this method is a short—
step method. It immediately follows from Theorem 2.1 that this primal-dual
algorithm needs O(y/nln™2) Newton iterations. This iteration bound is the
same as the bound for the short-step dual (or primal) path—following methods
analyzed in Sections 2.2 and 3.2. In [75] the iteration bound is O(nIn 2£2), but
this was improved to O(y/nln2£2) in [76]. All these papers also contain some
tricks (rank-one updates, inexact solutions, see also Section 4.1) to obtain the
overall complexity of O(n®In %£) arithmetic operations. Mizuno and Todd [103]
analyzed a variant of Monteiro and Adler’s method in which g% is chosen as
small as possible while maintaining the centering condition.

A natural question is now what happens if we look at larger reductions of p,
i.e. medium- or long-steps. How many iterations are now needed to reach the
vicinity of the new center? To our knowledge such an analysis has not been given
in the literature. We will come back to this issue in Section 5.4. '

Monteiro and Adler [108] extended their analysis to convex quadratic program-
ming, obtaining similar complexity bounds. In [109] they extended their analysis
to problems with linear constraints and convex objective with an additional as-
sumption on the third derivative (see also Appendix A). Kortanek et al. [79]
studied a similar short-step path-following method for problems with convex ob-
jective and linear constraints. Each iteration, however, requires the solution of
a system of nonlinear equations, which may be harder than solving the problem
itself. Zhu [167], using the analysis of [79], showed that if the objective function
fulfils the so—called Scaled Lipschitz Condition (see also Appendix A), then the
iteration bound is O(y/nIn ™2) to obtain an e-optimal solution. This Scaled
Lipschitz Condition holds true for e.g. linear, convex quadratic, and entropy
functions.

Extending the analysis of the primal-dual path—following method to (smooth)
convex programming (with nonlinear constraints) seems to be difficult. Of course
it is possible to apply Newton's method to the nonlinear Karush-Kuhn-Tucker
conditions (2.3) for (CP). The nonlinear equality constraints Y7, 2;V fi(y) =
V fo(y), however, give troubles in the complexity analysis. One possible way
to avoid these troubles is perhaps to use the symmetric conical formulation for
convex programming problems, proposed by Nesterov and Nemirovsky [116].

5.2 " Affine scaling methods

We first explain a version of the method for the primal problem (LP). Starting
with (LP), the non-negativity constraints z > 0 are replaced by the ellipsoidal
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author steplength | non-degeneracy assumptions
Dikin [30],{31] =1 primal

Barnes [9) g<1 primal and dual
Vanderbei et al. [148] long primal and dual
Tseng and Luo [140] p=2L -

Tsuchiya [141] B=1 dual

Tsuchiya [142] B=4% -

Gonzaga [49] long primal

Tsuchiya and Muramatsu [145] | long, v = 3 -

Table 5.1: Convergence proofs for affine scaling algorithms.

constraints || X~1(Z — z)|| < B < 1, in which z is the current iterate and Z the
variable in which the minimization is carried out. Note that this ellipsoid is
contained in the feasible region of (LP). So, problem (LP) is relaxed to

nL_in {Tz : Az =b, | XY ~-2)[| < B <1},

which is easy to solve. It can easily be verified that the solution is

XPaxXe

z(B) ==z - ﬂm-

The search direction —X PsxXc is called the primal affine scaling direction.
Note that this search direction is simply the scaled projected gradient direction
with respect to the objective function. The projective method (see Section 5.3)
also uses the projected gradient direction but after a projective transformation
instead of an affine scaling. Consequently, the affine scaling method is a natural
simplification of the projective method.

Another interesting observation is that the affine scaling direction in a point on
the central path is tangent to this path. Consequently, the continuous affine
scaling path coincides with the central path if it is initiated on this path.

The affine scaling method had already been proposed by Dikin [30] in 1967.
He proved convergence for the unit steplength (8 = 1), under primal non-
degeneracy. After Karmarkar's publication this method was rediscovered by
many researchers. Barnes [9] showed that, for fixed 8 < 1, the method converges
if both (LP) and (LD) are non-degenerate. Under the same non-degeneracy



5.2. AFFINE SCALING METHODS 139

assumptions, Vanderbei et al. [148] allowed 3 to be greater than 1, as long as
all components z;() remain greater than (1 — 4)z; > 0. This corresponds to
moving a proportion -y of the way to the boundary of the feasible region. This is
referred to as taking long steps in the literature. Vanderbei and Lagarias [147]
clarified Dikin’s proof. The proof was extended to long steps by Gonzaga [49]
under primal non-degeneracy.

Tseng and Luo [140] used ergodic convergence theory to show that the affine
scaling method converges if a very small steplength is taken (in fact g8 = 2-L).
Tsuchiya [141] proved convergence for # = 1/8 under strong dual non-degeneracy,
and later in [142] without any non-degeneracy assumptions. The last result was
obtained by using a local Karmarkar potential function and projective geometry
arguments. Recently, Tsuchiya and Muramatsu [145] proved global convergence
for the long-step affine scaling methods using ¥ = 2, without requiring any

3
non—degeneracy assumption.

Adler et al. [1] and Monma and Morton' [104] applied the affine scaling algo-
rithm to the dual problem (£D). Since the derivation of the dual affine scaling
direction given in these papers is rather cumbersome, we will give a different
derivation, analogous to the derivation of the primal affine scaling method. S-
tarting with (£LD) the non-negativity constraints s > 0 are replaced by the
ellipsoidal constraints |[S~!(3 — s)|| < 8 < 1, where s is the slack variable of the
current iterate, and (g, §) are the variables in which the maximization is carried
out. So, problem (LD) is relaxed to

max {b7§ : ATg+35=¢, |ST'E—9)| <B <1}
Yy

Maximizing a linear function over an ellipsoid is an easy task. It can easily be
verified that the solution is

(AS-2AT)"%

y(B) =y + ﬁ\/bT(AS-zAT)—lb'

The search direction (AS~2AT)b is called the dual affine scaling direction.

Because of results of Megiddo and Shub [94] concerning the continuous trajecto-
ries induced by the affine scaling direction, the primal and dual affine algorithms
are believed to be not polynomial. They showed that for the Klee-Minty cube
the continuous trajectories visit the neighborhoods of all vertices if the starting
point is chosen close to the boundary. But, since in the algorithm discrete steps
are taken, it is still an open question whether the affine scaling method is poly-
nomial or not. Barnes et al. [10] added ’centering steps’ based on a potential

1They credit the derivation of the dual affine scaling direction to M.J. Todd.
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function to achieve an O(nL) iteration bound. (In Section 5.5 we will show that
the search directions used by IPM’s consist of an affine scaling and a centering
part.)

The long-step (dual) affine scaling method has been implemented in several
codes; for computational results see e.g. [87] or [104]. In these implementations
we normally have 0.9 < v < 0.99. Note that the convergence proof for the long—
step affine scaling methods in [145] only holds for v < 2. Consequently, there
still remains a gap between the theoretical and practical step sizes.

All the methods discussed above are either primal or dual methods. There also
exists a primal-dual version of the affine scaling method. The search direc-
tions used in this method are (5.3)-(5.5) with 4 = 0. Taking very short steps,
B = (nLlnn)~!, Monteiro et al. [110] proved that this method has an O(nL?)
iteration bound for linear and quadratic programming. In fact, they proved that
this primal-dual algorithm is a (very) short-step path—following algorithm.

Kojima et al. [74] proposed a primal-dual affine scaling algorithm in which the
step size at each iteration is adaptively determined as the minimizing point for the
so—called primal-dual potential function (see Section 5.4). However, the derived
complexity is not polynomial. Mizuno and Nagasawa [102] obtained an O(nL?)
iteration bound by choosing the step size such that the primal-dual potential
function does not increase. Note that this complexity bound is the same as that
of Monteiro et al. [110], but the step size is much larger. They also showed that
an O(y/nL) iteration bound can be obtained by using centering steps when an
iterate is far from the central path. Note that this is in fact the primal-dual
variant of Barnes et al. [10].

The question whether or not it is possible to prove polynomiality for the primal-
dual affine scaling method using a fixed percentage to the boundary as the step
size, is still open. In [74] a counter example for the convergence is given, in which
the step sizes in the primal and dual spaces differ, but both are fixed ratios to
the boundaries.

Dikin [30] already extended the affine scaling method to convex quadratic pro-
gramming. Tsuchiya [144] extended his analysis to strictly convex quadratic
programming and proved global convergence under a dual non-degeneracy con-
dition. Gonzaga and Carlos [54] proved global convergence of the affine scaling
algorithm for linear equality constrained convex problems under a primal non-
degeneracy assumption.

We conclude this section by deriving an affine scaling direction for the convex
problem (CP). Without loss of generality we assume that the objective function
is linear, i.e. fo(y) = bTy. Starting with this problem, the constraints f;(y) <0
are replaced by the ellipsoidal constraint (§ — y)TH(§ — y) < 8%, where y is the
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current iterate, and § the variable in which the maximization is carried out, and

V2fi( y) °Vi(y)V fily)T
"= Z-f. (v) ; fiy)?

(As in the linear case, H is the Hessian of — %, In(— fi(y)).) As a consequence
of Lemma 2.20 it follows that this ellipsoid is contained in the feasible region of
(CP) if B < 1, where & is the self-concordancy parameter. So, problem (CP) is
relaxed to

max {675 : (§ —y)"H(G - y) < F”}.
The solution of this relaxed problem is

H-b
VOTH-1b

Consequently, H='b can be interpreted as the ’affine scaling’ direction for (CP).
McCormick [89], using a different derivation, analyzed a method based on this
direction. The step size is taken such that it minimizes the distance function

y(B) =y + B————=

—In(b"y — 7y(8)) — X_In(~fi(y(8)))-
i=1
Using this step size, McCormick [89] showed global convergence under a regular-
ity assumption, which reduces to the non-degeneracy assumption in the linear
programming case. It is still an open question whether it is possible to prove
convergence if fixed step lengths are used, e.g. a fixed percentage to the bound-
ary.

5.3 Projective potential reduction methods

For Karmarkar’s [69] projective algorithm the LP problem must be in the so-
called canonical form (constraints are Az = 0, efz = 1, = > 0), with known
optimal value. He showed that all LP problems can be transformed to this form,
but this transformation is inefficient in practice. Later on Todd and Burrell [136]
used a lower bound technique to remove the assumption of known optimal value.
Anstreicher [2], Gay [38], Gonzaga [46] and Ye and Kojima [161] independently
developed a standard form variant.

We will sketch the method for the primal problem (£LP). The auxiliary function
used in this method is in fact

dx(z, 21) = qIn(cFz — z) — Zln z;,

=1
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where z is a lower bound for the (unknown) optimal value. This surrogate
function is used, instead of the objective function, to measure the progress of the
algorithm and is therefore called a potential function.

Note that ¢«(z,2;) is nonconvex, however Imai [59] showed that if ¢ > n +1
then e?c(®#) is convex. (He also showed that if ¢ > n and the feasible region
is bounded, then e?%(®#) js again convex.) Consequently, for fixed z;, ¢x(z, 2)
achieves a unique minimum, which we will denote by z(z;). The Karush-Kuhn-
Tucker conditions for z(z;) are

ATy4+s=¢, >0
Az = b, z2>0 (5.6)

Tr—
Xs=%ﬂe'

If we compare this with the Karush-Kuhn—Tucker conditions for the logarithmic
T

barrier function (2.6), then we observe that z(z;) = z(p), for p = 5—5%-')_—", ie.

z(z;) lies on the central path?.

A nice property of this function is that if the value of ¢«(z,2) is small then z
is close to the optimum. More precisely: it is easy to show that if ¢x(z,2) <
—(n + 2q)L and the feasible region is bounded, then ¥z — z < 272L, which
means that z is a 22l —optimal solution. Consequently, if we can guarantee that
the potential function value decreases at least with a certain constant A in each
iteration, then the iteration bound is O(:(n + ¢)L) (assuming that the initial
potential function value is O((n + ¢)L)).

Since z(z) is the minimizing point for ¢x(z, /), we cannot guarantee a sufficient
reduction in the potential function if we are ‘close’ to z(2;), which is on the central
path. Therefore, in such a case we have to decrease the lower bound somehow,
which means in fact that we define a new reference point on the central path.
So, there are in fact two important ingredients: how to obtain a reduction in
ox(z, z1) if z is not too close to z(z), and how to update z; if the current point
z is indeed close to z(2;). The projective method is one way to achieve this; in
Section 5.4 we will discuss an alternative (affine) way.

In the projective method ¢ = n+1. Problem (LP) is homogenized by introducing

2In [126] it is shown that, similarly as in the logarithmic barrier and center method, ¢7 z(z)
is monotonically decreasing and 5T y(z;) is monotonically increasing if z; increases.
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an extra variable,

(LP) |

\ = b

where &(z)7 = (T, —z), A = (A,—b). Then (LP’) is rescaled with X, where 2
is the current iterate for (LP’), i.e.

T

1 ?

and z is the current iterate for (LP). Consequently, (LP’) is scaled into
(

8>
I

min &(z

(cP”y <

where &(z)T = é(z;)TX' , A= AX. Now the constraint Zn41 = 1 is replaced with
e’z = n+1, for which the current Z = e is central. This replacement corresponds
to the next projective transformation of the feasible region:

(n+1)X1z
eITX-13

Note that the feasible region is now contained in the unit simplex. So, finally we
end up with the following problem:

=

(5.7)

(LP")

The search direction which is used in this ’projective’ space is simply the pro-
jected gradient direction for (LP"), i.e.

p = Pgé(z),
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where

The next iterate in the transformed space is

_ p
We go back to the original space by rescaling and normalizing
z.(B)
et =X : [Zn41(B).
Zn(8)

Note that the potential function for (LP’) is

n+1
¢K($,Zl) = &K(:’i, zl) = (n + 1)111 ?:(z,)T:i - Zlna’:,—.

=1

This potential function is invariant under the projective transformation (5.7). It
easily follows that ¢x(Z, z) differs by a constant from

B n+1

¢(Z,z1) = (n+1)In&(z)"z - Y Inz;.

=1

Hence, by decreasing ¢ by a constant, we will decrease ¢y in the original space
by a constant.

Let us now consider the search direction p in the projective space. It can easily
be verified that
&(z1)Te

n+1l"’
where §(z;) = (AAT)"1AE(z). In terms of the original space, p can be expressed

by
b ( X(c— ATy(z)) ) 'z — a, (5.5)

p=3&z) - ATy(z) -

bT5(z) — 2 n+1

since &(2;)Te = Tz — 2.

From (5.8) it is easy to see that if ||p|| < fn‘:—‘l"lr, 0 <7 <1, then §(z, c—::f—_lzl) <7,
which means that z is close to the central path for problem (LP). (||p]| = 0 <



5.3. PROJECTIVE POTENTIAL REDUCTION METHODS 145

6(:1:,%‘1;1’“) = 0.) Moreover, if ||p|| < %1, then 3(z;) = ¢ — ATg(z) > 0,
which means that §(z) is dual feasible. In the projective algorithm a step along
p is carried out if §(z) is infeasible. Based on the observation that in this case
llpll = QE%L, which means that z is not too close to z(z), this leads to a
reduction in the potential function of at least %. If §(z) is feasible, the lower
bound z is increased such that one of the coordinates of y(z) equals zero. Note
that the lower bound is updated to ensure that ||p|| is large enough, which will

give a sufficient reduction in the potential function.

The projective algorithm described above needs O(nL) iterations and O(n*L)
arithmetic operations, assuming that m = O(n). Karmarkar [69] showed that
this can be brought down to O(n®5L) arithmetic operations by using approximate
solutions and rank-one updates. The disadvantage of this analysis is that it is
based on steps of fixed, short length, which does not fit in potential reduction
methods. Therefore, Anstreicher [3] introduced the Goldstein—Armijo rule to
safeguard the line search, and showed that the \/n reduction in the number of
arithmetic operations can still be obtained.

Gonzaga [51], [46] described a different approach to the projective algorithm,
namely he gave a conical interpretation of the projective algorithm. His interest-
ing conclusion is that there is no need for problem transformation; all techniques
can be applied directly to formulation (LP). Consequently, the dimension of
the problem need not to be increased. Projective algorithms have an underlying
motivation based on the minimization of a zero-degree homogeneous potential
function on a cone, but this cone does not have to be described.

De Ghellinck and Vial [18] proposed another primal projective algorithm. They
homogenize the problem (LP) into (LP’). Then, using the freedom introduced
by the variable z,41, they keep &(2)T# constant, while minimizing ¢« (%, z).
This minimization process is carried out by performing a line search along the
(projected) Newton direction. The bound is updated according to a certain rule
and, after updating, the line search is guaranteed to yield a reduction of the
potential function value of at least a fixed quantity. Yamashita [153] proposed
a dual projective algorithm, which is basically the dual variant of De Ghellinck
and Vial’s primal algorithm. In Section 5.5 we will see that the search directions
used by all these projective methods coincide.

Roos [125] (see also Goffin and Vial [42] and Xiao and Goldfarb [152]) proposed
an interesting dual projective algorithm, which is in fact also path—following.
This algorithm resembles De Ghellinck and Vial’s [18] algorithm, but there are
some important differences: the normalizing constraint is replicated n times; a
unit Newton step is taken instead of a line search; the upper bound is updated
if we are close to the current reference point on the central path. This method
can be characterized as a projective short-step path-following method.
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Ye {157] proposed a projective algorithm which has an O(y/nL) iteration bound.
Instead of introducing one extra variable to homogenize the problem, he intro-
duced r = |/n] + 1 extra variables. Again, after the projective transformation
(5.7) a step along the gradient direction in the (n + r)-dimensional projective
space is carried out. Using a primal-dual version of the potential function (see
Section 5.4), and a slightly different updating rule for the lower bound, he proved
that this method has an O(y/nL) iteration bound.

Anstreicher [2] showed that fractional linear programming problems can also be
solved by the projective method. Kapoor and Vaidya [68] and Ye and Tse [164]
independently extended the projective method to convex quadratic program-
ming. The number of iterations to find a 272 —optimal solution is O(nL), and
each iteration requires O(n3L) arithmetic operations. Ye and Tse [164] also gave
an analysis for problems with convex objective function and linear constraints.
They proved the nice result that convexity of a function is invariant under the
projective transformation (5.7).

Using the conical formulation Nesterov and Nemirovsky [116] proposed a general-
ization of the projective method for basically the same smooth convex program-
ming problems as given in Section 2.4 (i.e. problems for which the logarithmic
barrier satisfies the self-concordancy property). Under the assumption that the
optimal value is known in advance, they derived an upper bound for the total
number of iterations, which is comparable to the iteration bound for the long—
step path—following methods.

5.4 Affine potential reduction methods

Recall Karmarkar’s potential function ¢x(z,z) from Section 5.3. Gonzaga [47)
showed that it is not necessary to do a projective transformation to obtain a
reduction in the potential function value. In [47] he assumed that the optimal
value is zero, while this assumption is eliminated in [50] using a lower bound
technique. The search direction used is simply the scaled projected gradient
direction with respect to the potential function:

p=—XPixXVu(z,2) = —XPax( Xc—e). (5.9)

1
Tz — z
Using ¢ > n+ /0, he proved that if || X~'p|| > 7, where 0 < 7 < 1, then at least
a constant reduction in the potential function value can be obtained by taking a
step along the search direction p. If || X~'p|| < 7 then the current iterate is close
to the central path and the lower bound can be reduced to

zf=clz - LTz - z),
q
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where r = n + || X p||\/n, which also reduces the potential function. Note that
if || X~'p|| < 7, then it follows from (5.9) and (2.9) that 6(:5,"’!—”;—21) < 7 which
means that z is close to the central path.

These results immediately lead to an O(nL) iteration bound. Gonzaga [50]
also showed that using a smaller increase in z;, i.e. T = 2n, ¢ = n + v /n,
1 < v = 0(1), this algorithm has an O(\/nL) iteration bound. For this last
method one can show that two subsequent values of the lower bound correspond
to two values of the barrier parameter which differ at most a factor 1 — @(71:)
This means that this algorithm is in fact a medium-step algorithm.

Monteiro [105] extended Gonzaga’s [50] analysis to problems with linear con-
straints and convex, continuously differentiable objective functions. He proved
global convergence, but did not obtain an explicit upper bound for the number
of iterations.

Todd and Ye [137] introduced the following primal-dual potential function3:

$rv(z,8) = qIn(zTs) = Y lnz; — > Ins;,
=1 =1
where ¢ = n+ vy/n, 1 < v = O(1). Ye [159] used this function to construct
an algorithm with an O(y/nL) iteration bound. (This method was the first IPM
which need not to follow the central path closely, while still having an O(y/nL)
bound.) Note that

bex(2,5) = bz, 57y) = 3 Ins:. (5.10)

=1

A nice feature of ¢ry(z, s) is its symmetry in z and s. Moreover, it can be shown
that if dry(z,s) < —2v4/nL — nlnn then z¥s < 272L, which means that z is
a 272l _optimal solution. Consequently, if one can guarantee that the potential
function value decreases in each iteration by at least a certain constant, it will
give an O(y/nL) iteration bound (assuming that the initial potential function
value is not too large).

Ye [159] achieved such a reduction. Given a dual feasible solution (y, s), a step
in the primal space with steplength “T[)_‘%p—” is carried out along the projected
gradient direction with respect to ¢ry(z, s), i.e.

T
p= —XPaxXVry(z,s) = —XP,,XX(-:—‘“C — Xe). (5.11)

31t was recently pointed out by M.J. Todd and Y. Ye that this potential function had earlier
been introduced by Tanabe [133]. Tanabe used this function to derive his algorithms, but not
in a complexity analysis.
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This gives a reduction in the potential value of at least 0.05 as long as || X~'p{| >
0.4. (Because of (5.10) and s is fixed, this also means that ¢x is reduced.)

Note that for fixed s the minimum of ¢rv(z,s) is z(z), for zy = bTy. Conse-
quently, if the current primal iterate is too close to z(z;) we have to update our
dual estimate. To be more precise: if ||X*p|| < 0.4, then the dual estimate
can be updated such that the potential function value reduces by at least 0.05.
Again note that if | X~!p|| < 7,0 < 7 <1, then it follows from (5.11) and (2.9)
that &(z, LT“) < r. In essence the same algorithm is developed in Freund [35].
Although there is a slight difference between the algorithms of Ye and Freund in
the control sequence as to when to take a primal step and when to recompute
the dual variables, the basic ideas are the same: fix s, reduce the potential func-
tion until we are close to the central path, recompute s, and so on. Note that
this method is a primal method, since only steps in the primal space are taken.
Freund also showed that ¢ = n + /n is the optimal choice from the complexity
point of view.

Note that Ye’s [159] potential reduction method needs O(y/nL) iterations and
O(n®*°L) arithmetic operations. Anstreicher and Bosch [6] showed that this last
figure can be brought down to O(n®L) by using approximate solutions, rank-one
updates, and a Goldstein—Armijo safeguarded line search.

Nesterov and Nemirovsky [116] generalized Ye’s potential reduction method to
smooth convex programming problems in the symmetric conical formulation.
The iteration bound obtained is comparable to the bounds obtained for the
medium- and short-step path-following methods. However, the analysis only
holds true for problems which has a self-concordant logarithmic barrier, and for
which the Legendre transformation of this barrier can be calculated. It appeared
that for many problems this transformation is difficult to calculate. Only for
linear programming, quadratically constrained convex quadratic programming
and matrix norm minimization problems it has been explicitly calculated (see

[116]).

Iri and Imai [61], [60] worked with a variant of @k, which they call the multi-
plicative function

Ty — 24
bula,z) = =2 (5.12)
1=1 *1
Note that this function is closely related to ¢x:
dx(z, z1) = In du(z, 21). (5.13)

As mentioned above, Imai [59] showed that ¢, is convex for ¢ > n + 1. Conse-
quently, the Newton direction with respect to ¢y is well-defined. Iri and Imai
[61] assumed that the optimal value is zero, and using z; = 0 they do a step along
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the Newton direction. They only proved some convergence results, but did not
give a polynomiality proof. This method was always considered as being distinct
from other IPM’s.

Inspired by the work of Zhang [166], Iri [60] proved that by taking a step along
the Newton direction, ¢y can be reduced by at least a factor % (which means a
reduction in ¢y of at least In £). In this paper it is still assumed that the optimal
value is zero. This result immediately leads to an O(nL) iteration bound, for

finding a 2-2F—optimal solution.

It is likely that it is not necessary to assume that the optimal value is zero. It
should be possible to use a lower bound technique, as Gonzaga did in [50], which
will also make clear the similarity with Gonzaga’s potential reduction method.
Because of (5.13) it easily follows that z(z), the minimizer for ¢y(z,z), also
minimizes ¢y, which means that ¢, also parameterizes the central path. Given a
lower bound z; the potential function ¢y(z, 2;) is minimized by means of Newton’s
method, until the current iterate is close to z(z). Then the lower bound is
updated, i.e. a new reference point on the central path is defined implicitly. The
clue is to find a good measure for closeness to z(z;) and a good updating rule
for z;. (To our knowledge, such an analysis has not been given in the literature,
perhaps also due to the fact that the Hessian of ¢y is rather complicated.)

Another natural idea is to use the multiplicative version of @1y, which we call
the symmetric multiplicative function

(2Ts)"
LTS

¢SM(‘77, 3) =

Note that

drv(z,8) = In Psu(z, 3).
Again, given a dual (primal) feasible solution y (z), ¢su achieves its minimal
value at a point on the central path. Using a similar procedure as in Ye [159)
(fix s, reduce ¢sy until the current primal iterate is close to the central path,
then update the dual estimate, and so on) it should be possible to prove that
a sufficient reduction in ¢sy can be obtained by doing a step along the Newton

direction. Because of the symmetrical form, this will lead to an O(y/nL) iteration
bound instead of O(nL).

In Kojima et al. [77] a primal-dual version of Ye’s [159] method is develop-
ed for positive semi-definite linear complementarity problems. Steps are tak-
en in the primal and dual space simultaneously. The search direction used is
the Newton direction with respect to the Karush-Kuhn-Tucker conditions for
(z(p), y(p), s(p)) (see (5.2)), where p = %’4. They proved that taking a cer-
tain step along these directions gives a reduction in ¢ry(z,s) of at least 0.2 if

g = n+ +/n. Consequently, this method also has an O(y/rL) iteration bound.
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Note that this method can be viewed as a barrier method where the barrier
parameter changes dynamically in each iteration: p = “’TT’. If for example the

current iterates are centered, i.e. z = z(u) and y = y(p), u = ‘—:—’, then the next
barrier parameter is in fact yt = ’TT’ This case corresponds to a medium-step
update, since

+
L 1

g Va+l

Observe that this primal-dual method needs O(n®°L) arithmetic operations.
Bosch and Anstreicher [14] showed that this can be reduced by a factor \/n, by
using approximate solutions, rank—one updates, and a primal-dual version of the
Goldstein—Armijo condition.

In practical implementations it also appeared that the so-called primal-dual
infeasible interior point method is very efficient. The difference with the orig-
inal primal-dual potential reduction method is that all the iterates satisfy the
nonnegativity constraints z > 0 and s > 0, but not necessarily the equality con-
straints. Kojima et al. [73] demonstrated global convergence of such a method.
Their algorithm finds approximate optimal solutions if both the primal and du-
al problem have interior points, and detects infeasibility when the sequence of
iterates diverges. Zhang [166] and Mizuno [101] proved polynomiality for this
method.

The primal-dual potential reduction method shows very good practical behavior.
Computational results were first given in [92] and elaborated in [16] and [85].
Mehrotra [95] invented a predictor—corrector variant, in which also second order
derivatives are used. Surprisingly good results for this variant are reported in
[84], which makes, up till now, this method the 'champion’ of all IPM’s for solving
linear programs.

Monteiro [106] proved that a special variant of the primal-dual potential re-
duction method for linearly constrained convex problems is globally convergent.
No upper bound for the number of iterations was obtained. Yamashita [154]
and McCormick [90] gave a convergence analysis for the primal-dual method
applied to (CP). They proved convergence under some usual conditions, but
did not obtain an upper bound for the number of iterations. Again, the dual
feasibility constraints %, z;V fi(y) = V fo(y) seem to cause the difficulties. It
is an interesting question whether it is possible to get good complexity results
for a primal-dual potential reduction method for smooth convex programming
problems stated in Nesterov and Nemirovsky’s [116] symmetric conical form.
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5.5 Comparison of IPM’s

Use of the central path

As discussed in the previous chapters and sections all IPM’s use the central path
implicitly or explicitly. The continuous affine scaling trajectory initiated on the
central path coincides with the central path. The logarithmic barrier function,
the distance function, Karmarkar’s potential function, the multiplicative function
and the primal-dual potential function of Todd and Ye all yield parameterizations
of the central path. Both path—following and potential reduction methods use
a parameter which defines a point on the central path, go to its vicinity, and
define a new reference point on the central path using dual information which is
available near the central path.

Path—following methods based on the logarithmic barrier function or the distance
function use the central path explicitly. Starting close to a center, a new reference
point on the path is defined, and the number of iterations to go to its vicinity is
upper bounded. Also the number of updates in the parameter (i.e. the number
of times a new reference point is defined) can be estimated.

Projective and affine potential reduction methods are based on reductions of a
potential function, but use the central path implicitly. The potential function
achieves its minimum (for fixed parameter) in a point on the path. A reduction
in the potential function value can be guaranteed as long as the current iterate
is not too close to this point on the path. If it is too close, we can use dual
information which is available near the path to generate a new parameter, which
means a new point on the path. The primal-dual potential reduction method is
somewhat distinct: it can be viewed as a method for which the barrier parameter
changes dynamically in each iteration, i.e. the reference point on the central path
is shifted in each iteration®.

Search directions

The similarities of IPM’s become even more clear if we look at the search direc-
tions used in the different methods. Note that in fact each IPM is determined by

4Dik Trom may help us to clarify the similarities and differences between the IPM’s. (Dik
Trom is a country-boy in a famous old Dutch boy’s book [71], who is always in mischief.) At
some time Dik wins a dog-race by keeping a sausage in front of the dog, while sitting on the
dog-cart. In path-following and potential reduction methods the ’sausage’ is put somewhere
on the central path and if the ’dog’ is close to it, then the sausage is moved further along
the path. Note that at such times the dog is close to the central path, but otherwise can be
far. For path—following methods the number of times the sausage must be shifted is known
and fixed, for most of the potential reduction methods this is not known. The primal-dual
potential reduction method is comparable with Dik’s situation: the sausage on the central path
is always far enough from the dog.
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its search direction (and, less important, by the choice of the step size). Espe-
cially for the projective methods it is not clear from the papers what the search
direction in the original space is. In [20] we carefully calculated the search direc-
tions for all known IPM’s for linear programming; see also Yamashita [153] and
Gonzaga [51]. We derived the amazing result that all search directions are linear
combinations of two characteristic vectors: the affine scaling and the centering
direction.

The affine scaling direction is exactly the search direction used in affine scaling
directions: the primal affine scaling direction (see Section 5.2) is

Pass = —X Pax Xc
and the dual affine scaling direction is
dags = (AST2AT) .

The centering direction is the Newton direction for the problem of finding the an-
alytic center of the feasible region (see Section 3.1). More precisely, the problems
for finding the analytic center for the primal and dual problem are

max{H:ci : Az =b, 2 2 0}
i=1
and n
max{Hs; : ATy +s=¢, s >0},

=1

respectively. Now it is easy to verify that the primal centering direction is
Peent = X Paxe,
and the dual centering direction is
deent = —(AST2AT)TAS e

Again note that these Newton directions coincide with the scaled projected gradi-
ent direction for the center problem. Primal-dual methods use search directions
which are linear combinations of the primal-dual affine scaling and primal-dual
centering direction, given by

p;fj = '—DPADDC,
dygy = (AD*AT)7b,
p:ent = DPADDX_IG,
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cat. | author Daff Pcent

Gill et al. [39]
Gonzaga [45], [49] 1 @
Roos and Vial [130], [129]
1 | Den Hertog et al. {29]
Renegar [124]

[ zu—cTz!2 —c
Vaidya [146] 1 —"T—Thu

Zu—c® T+ Peent

Den Hertog et al. [21]

Barnes [9], Dikin [30]
2 | Vanderbei et al. [148] 1 0
Tsuchiya and Muramatsu[145]

T

c"T—2 "CT cent
Gonzaga [51] 1 TAXTAT) )

De Ghellinck and Vial [18]

T T

3 | Mitchell and Todd [100] 1 A e

Gay [38], Ye and Kojima [161]

CT -2 —CT cent
Ye [157] U | st axtatyn

T

Gonzaga [47], [50] 1 c a.;,—z,
4 | Freund [35], Ye [159] 1 zTs

q

T, 2
2ot 4Ty

CtT—21—C" Pcent

Iri and Imai [61] 1

Table 5.2: Primal search directions in 1. path-following 2. affine scaling 3.
projective potential reduction 4. affine potential reduction algorithms, for linear
programming.



154

CHAPTER 5. DISCUSSION OF OTHER IPM’S

cat. | author doyys deent
Gill et al. [39]
Gonzaga [45], [49] 1 U
Roos and Vial [130], [129]
1 | Den Hertog et al. [29]
Renegar [124]

. @ly=n)® 7
Vaidya [146] 1 et
Den Hertog et al. [21]

Barnes [9], Dikin [30]
2 | Vanderbei et al. [148] 1 0
Tsuchiya and Muramatsu[145]
2o —bT y4bT
Gonzaga [52] 1 1+cTs-1(zé-s-lzT(Ig—gﬁ’_)-xAs—l)s—lc
3 | Yamashita [153]
Roos (125 1 2t b d
oos {125} AF TS T(I=5-TAT(AS—24T)—TA5-T)5Tc
Gonzaga [47] and [50] 1 -’“_Tbru
4 | Freund [35], Ye [159] 1 e
(zabTy)? _,T
Iri and Imai [61] 1 ﬁ;ﬂ%

Table 5.3: Dual search directions in 1. path—following 2. affine scaling 3. pro-
jective potential reduction 4. affine potential reduction algorithms, for linear
programming.
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cat. [ author Parsldass | Prent/ Tent

Kojima et al. [75]
1 | Monteiro and Adler [107] 1 P

Todd and Ye [137]

2 | Monteiro et al. [110]
Mizuno and Nagasawa [102] 1 0

4 | Kojima et al. [77] 1 zs

Table 5.4: Primal-dual search directions in 1. path—following 2. affine scaling 4.
affine potential reduction algorithms, for linear programming,.

d,.. = —(AD*AT)1AS e,

cent —

where D = (X $~')'/?, the geometric mean of X and S~'. Note that p},, and
d;;; are the projected gradient directions for (LP) and (L£LD) after scaling with D.
These directions are used in the primal-dual affine scaling method of Monteiro
et al. [110] and Mizuno and Nagasawa [102]. In the same way, the centering
directions pf,,, and dZ,,, are the projected gradient directions for the primal and
dual center problems, respectively, after scaling with D.

The Tables 5.2-5.4 are taken from our paper [20]. They show that the search
directions used by IPM’s for linear programming are linear combinations of the
affine scaling and centering direction (we omit the technical calculations; they
can be found in [20]). Because of these results, it has been proposed (Gonzaga
[51], Domich et al. [32]) to do a search on the plane spanned by the affine scaling
and centering direction. Some computational results are reported in [32].

The affine scaling direction for (CP) (with linear objective) was derived in Section
5.2, and is given by H~'b. The centering direction is defined as the Newton
direction for

max {ﬂ(—ﬁ@)) L fi(y) <0},

which is the problem of finding the analytic center of F. This Newton direction
is explicitly given by —H'g, where
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Again, it can be verified that both the search directions used in the logarithmic
barrier method (Section 2.4) and the center method (Section 3.3) are linear
combinations of these two characteristic vectors.

Complexity bounds

As we have seen, the iteration bounds for path—following and potential reduc-
tion methods are O(nL) or O(y/nL). The potential function methods with an
O(y/nL) iteration bound can not be guaranteed to be a real long-step method for
each problem, i.e. if we look at the corresponding barrier parameters, then the
reduction in the barrier parameter is not guaranteed to be ©(1) for all problems,
while for the long-step path-following methods this is possible. It can even be
proved that Gonzaga’s [50] potential reduction method, with an O(y/nL) itera-
tion, is a medium--step path-following method for each problem.

A great advantage of path—following methods is that, as we have shown in Chap-
ters 2 and 3, for the convex programming problem (CP) similar complexity
bounds as for the linear case can be obtained. As mentioned in Section 5.4 also
some complexity results for the potential reduction method for convex program-
ming have been obtained by Nesterov and Nemirovsky [116]. A disadvantage of
their method is that it is necessary to compute the Legendre transformation of
the barrier, which can be very difficult. Hitherto, this transformation has been
calculated only for linear and convex quadratic programming with quadratic
constraints and matrix norm minimization.

Practical merits

Only a relatively small number of papers on IPM’s deal with implementations.
Of course, it is quite easy to convert a theoretical IPM into a straightforward
implementation, but it requires a great deal of work and specialized knowledge
to obtain an effective implementation.

An early study of the practical behavior of the projective method was carried
out by Tomlin [138]. The results obtained were not encouraging, but the main
reason for this is that the reformulation used is inefficient.

After that Vanderbei et al. [148] gave experimental results for the primal affine
scaling method, while Adler et al. [1}, Monma and Morton [104], and Marsten
et al. [87] gave extensive results for the dual affine method. Gill et al. [39]
gave an implementation for the (long-step) path—following method, based on
the logarithmic barrier function. The advantage of a dual variant is that the
solution of the linear system of equations need not be exact, since all iterates
are in the interior of the feasible region and so can absorb residual errors. All
these results were promising when compared with the results of MINOS (an
implementation of the simplex method).
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The primal-dual potential reduction method was first implemented by McShane
et al. [92]. They found that the method typically takes fewer iterations than
the dual affine scaling method. The implementation was refined and extended
in Choi et al. [16] and Lustig et al. [84]. They found that their implementation
starts to dominate the simplex method (MINOS) when, roughly speaking, n +
m is greater than 2.500. After that, Mehrotra [95] developed his predictor-
corrector variant of this primal-dual potential reduction method, which showed
a substantial improvement in practical behavior [85].

In [86] it is argued that most of the NETLIB problems, which is a standard set
of test problems, are too small to reveal the dramatic superiority of the interior
method for large models. In this paper the authors showed that the speedups of
their interior point implementation over the simplex implementation in OSL are
significant for large problems.

At this moment there are several commercial codes which contain IPM imple-
mentations, namely OB1, OSL and KORBX, from which OB1 is the best. This
code, developed by Lustig, Marsten and Shanno, contains the dual affine scal-
ing method, the dual logarithmic barrier function method and the primal-dual
potential reduction method (with and without the predictor—corrector modifica-
tion). It is striking that in practice these IPM’s need 20-60 iterations, almost
independent on the problem dimensions. (This indicates that the theoretical
worst case iteration bounds are too pessimistic.) From the practical point of
view the most efficient algorithm for linear programming is the primal-dual po-
tential reduction variant with the predictor-corrector modification.

At this time the practical merits of IPM’s for (general) convex programming are
still unclear. Only a few recent papers deal with interior point implementations
for convex programming, but we expect that this number will increase in the near
future, since now the theory has justified the practicability of some IPM’s. The
most important justification from the theory is that the theoretical complexity
results of some IPM’s for solving some classes of convex programming problems
is the same as for solving linear programming problems (see Chapters 2 and 3).

In [123] an efficient implementation of the logarithmic barrier method for quadrat-
ic programming is given. Some computational results for the primal-dual method
for problems with separable convex objective and linear constraints are reported
in [15). Some implementation issues for logarithmic barrier methods for general
convex programming problems are treated in [150] and [112]. The computational
results for the logarithmic barrier method given in [115] and [66] are promising,
but still much has to be done. At this moment there are no computational results
for other IPM’s for general convex programming.

It is important to note that still some of the heuristics used in practice, both
for linear and convex programming, are different from the theoretical implemen-



158 CHAPTER 5. DISCUSSION OF OTHER IPM’S

tations studied by researchers. So, in many cases there is still a gap between
theory and practice.

As discussed in the Introduction, IPM’s were already studied and implemented
in the 1960s. A natural question is therefore why these methods did not retain
their initial popularity. Several reasons can be given; see e.g. Jarre [64] and
Wright [151]. The first reason is that the theoretical analysis given the last eight
years, not only showed polynomiality for these methods, but also provided in-
sight in important implementation issues. The most important insight concerns
the choice of the barrier function: the complexity results given for the loga-
rithmic barrier function could not be given for other barriers, like the inverse
barrier (see [23]). Other important issues clarified by the recent literature are
the choice of the step length, the usage of the central path as a reference path,
the termination criteria for minimizing the barrier function, etc. The second
reason is concerned with the fact that Hessians of barrier functions can become
increasingly ill-conditioned as the iterates approach an optimal solution. This
was the main reason why these methods became out of flavor during the 1960s.
Nowadays, however, much more stable techniques are available, which can be
used to overcome this difficulty. Moreover, the computers of the present day use
a much higher arithmetic precision than in the 1960s. The third reason is that
the efficiency of an interior point implementation heavily depends on the usage
of good sparse matrix techniques, which were not available in the 1960s.



Chapter 6

Summary, conclusions and
recommendations

Most of the papers on path—following methods are concerned with short-step
methods. These methods are unattractive in practice since they use fixed short
steps and small updates in the parameter, and therefore require many iterations.
On the other hand, medium- and long-step path—following methods are much
more flexible, since they allow to do large updates in the parameter and (approx-
imate) line searches. In the literature such medium- and long—step methods are
only analyzed for the logarithmic barrier method applied to linear programming.

In this thesis we studied short-, medium- and long-step path-following meth-
ods for linear, quadratic and smooth convex programming problems based on
the classical logarithmic barrier and Huard’s distance function. Both methods
have much in common: both functions parameterize the so—called central path,
use Newton steps to reach the vicinity of the current reference point on the cen-
tral path, whereafter the parameter (barrier parameter p or lower bound z) is
updated, which means that a new reference point is defined.

We proved some important properties for the logarithmic barrier method applied
to linear programming, by using the quadratic convergence of the Newton process
in a well-defined vicinity of the u—center. Based on these properties we were able
to give an upper bound for the number of Newton iterations to reach the new
vicinity. The number of updates in the parameter p to obtain an e-optimal
solution could also be estimated. Consequently, the product of these two bounds
is an upper bound for the total number of iterations.

Depending on the updating scheme we derived the following iteration bounds for
obtaining an e—optimal solution: O(n In 2£) iterations for the long-step method
and O(y/nln2) iterations for the medium-step method. By doing a small
update in the barrier parameter it was possible to prove that only one full Newton

159
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step is sufficient to reach the vicinity of the new reference point. This result also
yields an O(y/nIn £} iteration bound for the short-step method. Although the
short— and medium-step variants give the best iteration bounds, the long-step
variant is much better in practice since in the long—step variant we do not have to
follow the central path closely. A reason for this inconsistency might be that the
O(n) upper bound for the number of inner iterations for the long—step variant
is rather pessimistic since the reduction in the logarithmic barrier function is
usually larger than ﬁ (we are allowed to do (approximate) line searches, and in
many iterations we will have §(y, ) 3> 7). On the other hand, the given iteration
bounds for the short— and medium-step variants are totally determined by the

number of updates in the barrier parameter, which is exact more or less.

The logarithmic barrier method was also extended to convex quadratic program-
ming and, assuming some smoothness condition, to convex programming. In all
these cases the Hessian norm of the Newton direction (||p||x) appeared to be
appropriate to measure the ’distance’ to the reference point. For linear program-
ming the analysis was facilitated by giving a useful characterization of this mea-
sure (6§ = ||p||#)- A similar analysis has been given for the convex quadratic case,
by using three different but related measures. The iteration bounds obtained are
O(nln ™) for the long-step variant and O(y/nln*2) for the medium- and
short-step variant.

For smooth convex programming problems such a nice characterization could
not be given, but using the notion of self-concordancy [116] we obtained simi-
lar complexity results as for linear and quadratic programming. More precisely,
the iteration bounds obtained are O(x?nln™2) for the long-step variant and
O(x+/n1n 2£2) for the medium- and short-step variant. The complexity analysis
is based on the self-concordancy condition for the logarithmic barrier function.
In some cases we have to reformulate the problem such that self-concordancy for
the resulting logarithmic barrier function can be proved. Such self-concordancy
proofs can be given for linear and convex quadratic programming with quadratic
constraints, primal geometric programming, /,—approximation, matrix norm min-
imization, maximal inscribed ellipsoid (see [116]), (extended) entropy program-
ming, dual geometric programming, primal and dual [,~programming (see Ap-
pendix A).

Using the observation that y(z), the minimum of Huard’s distance function, is
the analytic center of a certain region (the intersection of the feasible region
and a certain level set), it was straightforward to extend the é-measure for this
case. Based on this relationship many results for the center method for linear
and convex programming directly followed from the results obtained for the log-
arithmic barrier method. For linear programming the following iteration bounds
were obtained: O(nln #=2£) for the long-step variant, and O(y/nIn ":zo) for

€




6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 161

the medium- and short-step variant. For convex programming problems satisfy-
ing the self~concordancy condition the following iteration bounds were obtained:

O(x*nln Z=2) for the long-step variant, and O(k/m1In £=2) for the medium-
and short—step variant. These bounds are similar to the iteration bounds for the
logarithmic barrier method, since both nuo and z* — 2° indicate the initial gap
in objective value.

In each iteration of the logarithmic barrier method for linear programming one
has to solve a linear system like

AS?ATp =,

where r is some right-hand side. Solving this linear system costs O(n?®) arithmetic
operations, hence the overall complexity is O(n* In 2£2) for the long-step variant
and O(n®*®1n"2) for the medium-step variant. We analyzed two ways to cut
down the work per iteration. The analysis can easily be extended to the center
method, because of the close relationship between the logarithmic barrier and
the center method.

First, we analyzed a variant of the logarithmic barrier method in which approx-
imations S for S are used. The diagonal term 3; is updated only if it differs
too much from the previous value. By performing a safeguarded line search, we
proved that a limited number of components of S are updated at a given itera-
tion. This means that using rank-one updates a reduced computational cost can
be achieved by computing (AS~247)~" instead of (AS~2AT)~!. We proved that
in this way a y/n reduction in the overall complexity can be obtained.

Second, we analyzed a variant of the logarithmic barrier method in which on-
ly a (promising) subset of the dual constraints are used to calculate the search
direction. In particular if n > m this can save much computational cost in
computing AS2A7. Starting with a certain subset of the dual constraints, we
apply the standard path—following algorithm, until the current iterate is close
to a constraint which is not in the current subset. Then this (almost violated)
constraint is added. Also a strategy to delete constraints was given. By proving
some basic lemmas concerning the effects of shifting, adding and deleting con-
straints on the §—measure and the logarithmic barrier function, we were able to
give upper bounds for the number of iterations. These bounds are comparable
with those obtained for the standard logarithmic barrier method, with the excep-
tion that the parameter n is replaced by ¢*, which is the number of constraints
in the subsystem. It is still an open question whether it is possible to modify the
build-up and down algorithm such that ¢* = ©(m) can be proved.

We also sketched the place of these path—following methods within other IPM’s.
Basically, there are four classes: path-following methods, affine scaling methods,
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projective potential reduction methods and affine potential reduction methods.
The affine scaling method is believed not to be polynomial. Both projective
and affine potential reduction methods use the central path implicitly. The
basic idea behind these methods is the same as for the path—following methods:
define a reference point on the central path, try to come to its vicinity, if the
current iterate is 'too close’, then update the parameter (lower or upper bound,
barrier parameter, duality gap), which means that the reference point is shifted.
The difference is that the progress of potential reduction methods is measured
by a potential function. Another striking similarity between IPM’s concerns
the search direction. It appeared that the search directions used in IPM’s are
all linear combinations of two characteristic vectors: the affine scaling and the
centering direction.

It is an important question why the logarithmic function plays such a key role
in all polynomial IPM’s. This can partly be explained by some nice properties
of this function (symmetric, self-concordant). However, the question whether it
is possible to prove polynomiality for other interior barrier methods or exterior
penalty methods, is still not fully answered. We studied inverse barrier methods
for linear programming in [25], but could not prove polynomiality.

We also argued that the path—following methods analyzed in this thesis are most
suitable of all IPM’s to be extended to smooth convex programming. Most of
the papers on potential reduction methods for convex programming only deal
with global convergence properties. Some difficulties arise when trying to an-
alyze (affine, projective) potential reduction methods for convex programming:
the dual feasibility constraints ¥, z;Vfi(y) = Vfo(y) are difficult to satisfy,
potential functions are usually nonconvex.

Nesterov and Nemirovsky [116] circumvented these difficulties by transforming
the convex programming problem into a symmetric conical formulation. Using
this formulation they obtained some complexity results for both a projective
and an affine potential reduction method. However, these results only hold if
the Legendre transformation of the (logarithmic) barrier can be explicitly giv-
en. Hitherto, this has only been accomplished for linear and convex quadratic
programming with quadratic constraints and for matrix norm minimization prob-
lems.

Based on the theoretical results, several efficient IPM implementations have been
developed, all using good sparse matrix techniques. Numerical results [88] have
shown that interior methods start to dominate the simplex method when m +n
is greater than 2.500. For large linear programming problems IPM’s are much
faster than the simplex method. Especially some variants of the primal-dual
potential reduction variant have shown very good practical behaviour. Again we
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note that since the heuristics used in practical implementations often differ from
the theoretical algorithms, there are still a lot of open theoretical problems.

It has been observed that in practice IPM’s need 20-60 iterations, almost inde-
pendent of the problem dimensions. It is an intriguing open problem to give a
theoretical explanation for this phenomenon. Another closely related question
is whether it is possible to improve the best iteration bound (O(4/nL)) and the
best overall complexity (O(n3L)).

Concerning convex programming, the conversion of theoretical results into nu-
merical algorithms has been slow so far. Since the complexity analysis and
results for path—following methods for linear and convex programming are sim-
ilar, this may indicate that it is possible to develop efficient implementations
for path-following methods for convex programming based on the theoretical
results. Some preliminary implementations have provided some encouragement
that IPM’s are in practice efficient for solving convex programming problems,
but still much has to be done in this respect (e.g. the use of good sparse ma-
trix techniques). The analysis given in Chapters 2 and 3 may help to obtain an
efficient IPM implementation for convex programming.

Another challenge is to carry these new interior point methodologies into oth-
er classical areas of mathematical programming, e.g sensitivity and parametric
analysis, (mixed) integer programming, cutting plane and decomposition meth-
ods, etc. Until recently, it was believed by many researchers that sensitivity and
parametric analysis could not be handled with IPM’s. In [62], however, it is
shown that many difficulties arising from the simplex approach are circumvented
by the interior point approach. A typical feature of an IPM is that it quickly
finds feasible solutions with good objective values, but takes a relatively long
time to converge to an accurate solution. This feature can be of great value for
branch and bound methods for solving (mixed) integer programming (see [13]).
It is well-known that cutting plane and many decomposition methods are un-
stable and inefficient in practice. It is not unlikely that using ’central interior
points’ rather than ’boundary points’ will put new life into these methods (see

[a1]).
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Appendix A

Self—concordancy proofs

In this appendix we show that for some classes of problems the logarithmic barrier
function and the distance function are self-concordant. Moreover, we show that
some other smoothness conditions used in the literature are also covered by this
self-concordancy condition.

Recall the definition of self-concordancy as given in Section 2.4.2:

Definition of self-concordancy: A function ¢ : F° — R is called x-self-
concordant on F°, & > 0, if ¢ is three times continuously differentiable in F°
and for all y € F° and h € R™ the following inequality holds:

Ol

[V2e(y)[h, b, B]| < 25 (hTV2p(y)h)*

where V3¢(y)[h, h, h] denotes the third differential of ¢ at y and k.

A.1 Some general composition rules

The following lemma gives some helpful composition rules for self-concordant
functions. The proof follows immediately from the definition of self-concordancy.

Lemma A.1 (Nesterov and Nemirovsky [116])

o (addition and scaling) Let @; be k;~self-concordant on F?, i = 1,2, and
p1,p2 € RY then pip1 + paps is k—self-concordant on FP N F3, where

K= maa:{\;—%,%}.

o (affine invariance) Let ¢ be k—self~-concordant on F° and let B(y) = By+b:
R* — R™ be an affine mapping such that B(R*) N F° # 0. Then o(B(.))
is k—self-concordant on {y : B(y) € F°}. o
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The next lemma states that if the quotient of the third and second order deriva-
tive of f(z) is bounded by the second order derivative of — Y, Inz;, then the
corresponding logarithmic barrier and distance functions are self-concordant.
This lemma will help to simplify self-concordancy proofs in the sequel.

Lemma A.2 Let f(z) € C3(F°) and convex. If there exists a § such that

|V3f(z)[h, h, k]| < BRTV2f( z)h4|2i: z;, (A.1)

Vz € F° and Vh € R", then

o(2) = f(@) = Y lnz;

i=1

is (1 + 1B)-self-concordant on F°, and
P(t,z) = ~In(t - f(z)) = Y Inaz;
=1
is (14 %ﬂ)—self—concordant on R x F°.

Proof: We start by proving the first part of the lemma. Straightforward calcu-
lations yield

Vo(a)Th = Vi(z)Th- )f“;ﬁ (A.2)
WTV2%p(z)h = hTVEf(z)h + il h:: (A.3)
Vip(a)[h, h,h] = Vf(z)[h,h, k] - 22 = (A.4)
We show that -
(T (z)lh, b, A < 401+ 38 (RTV (), (A5)

from which the lemma follows. Since f is convex, the two terms on the right—
hand side of (A.3) are nonnegative, i.e. the right-hand side can be abbreviated
by

RTV2p(z)h = a® + b?, (A.6)

with a,b > 0. Because of (A.1) we have that

|V3f(z)[h, h, k]| < Ba’b.
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Obviously
~ R} ™ h? h2
<> = b,
So we can bound the right—hand side of (A.4) by
|V3p(z)[h, &, h]| < Ba®b+ 2b°. (A.7)

It is straightforward to verify that
(Ba®b + 26%)% < 4(1 + %[3)2(412 + b?)%.

Together with (A.6) and (A.7) our claim (A.5) follows and hence the first part
of the lemma.

Now we prove the second part of the lemma. Let

ko
= ( ! ), h=| : and ¢(Z)=t- f(z), (A.8)
T B
then
P(E) = —Ing(z ;lnx, (A.9)
V() Th = % y :— (A.10)
Tty = VY d(@)h (Vy(w)Th SR
RIVEip(2)h = o) + o) ;1 p (A.11)
(i __Vg(@)h LTI (h""V2 (£)h)Vg(E)Th
V ¢( )[hah,h] - g(i) ((IJ)2
o(Vg@)TRE R
2= GF BF 2 g -5 (A.12)
We show that
(V(@)[h, b, B)? < 401+ S8V (RTVPH(2)AY, (A13)

which will prove the lemma. Since g is concave, all three terms on the right-hand
side of (A.11) are nonnegative, i.e. the right-hand side can be abbreviated by

RTV2p(2)h = a® + b* + 2, (A.14)
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with a, b,¢ > 0. Due to (A.1) we have
V3g(&)[h, b, h]
9(%)
so that we can bound the right-hand side of (A.12) by
|V3(%)[h, k, k]| < Ba’c + 3a?b + 26% + 263, (A.15)

< Ba’c,

It is straightforward to verify that
1
(ﬁazc + 3a%b+ 26 + 203)2 <4(1+ ﬁﬁ)z(a2 + b+ c2)3,

by eliminating all odd powers in the second term via inequalities of the type
2ab < a? + b?. Together with (A.14) and (A.15) our claim (A.13) follows, and
hence the lemma. a

In the next sections we will show self-concordancy for the logarithmic barrier
function for several nonlinear programming problems by showing that (A.1) is
fulfilled. An immediate consequence from Lemma A.2 is that also the distance
functions for these problems are self-concordant. Note that due to Lemma A.1
also 'mixtures’ of these problems have self-concordant barrier and distance func-
tions. Finally, recall from Section 2.4.2 that —In(— fi(y)), where f;(y) is a linear
or convex quadratic function, is 1-self-concordant.

A.2 The dual geometric programming prob-
lem

Let {Iy}k=1,. ., be a partition of {1,...,n} (i.e. Ui, Ixr ={1,...,n}and N[ =
@ for k # 1). The dual geometric programming problem is then given by (see
[33])
min ¢z + 35, [Ziefk z;lnx; — (Zielk x.') ln(zielk .7:,)]
z>0.

For this problem we have the following lemma.

Lemma A.3 The logarithmic barrier function of the dual geometric program-
ming problem (DGP) is 2-self-concordant®.

1This contradicts the remark in [78] that the self-concordancy property does not hold for
this problem.
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Proof: Because of Lemma A.l, it suffices to verify 2-self~concordancy for the
following logarithmic barrier function

=Y ailnz; - (Z z;) ln(z :c,-) =Y Inz, (A.16)

i€l i€}, i€l 1€l

for some fixed k. For simplicity, we will drop the subscript ¢ € I;. Now we can
use Lemma A.2, so that we only have to verify (A.1) for

:1:) = Z:c; Inz; — (Z x.') ]D(Z JJ{),

and S = 3, which is equivalent to the following inequality:

hi)? 53(2 ’: (EE’; )JE'Z (A.17)

EE_ . (E 1
i (T
Here z; > 0 and h; arbitrary. To prove this inequality, let us define:

Y h
2 x;

Z.’L‘?é‘, = 0

Using this substitution, we can rewrite the left—hand side of the inequality (A.17):

o2 - (e
" el
- 252(:_ sz §Z>
(2
ki

€i=$.~_%(hi—

:L‘,)

Note that

26'

= [ (& +2E2)
sl +2Z€2|Zhl

< 32&?\’ o (A.18)

where the last inequality follows because

IA

h2
1
<\,
Z;
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and
S (a2 T E e (D) (A19)

z}

(The last inequality in (A.19) follows directly from the Cauchy-Schwartz inequal-
ity.) Now note that the right-hand side of (A.17) is equal to

325? ‘Z.’ﬁ
1 .’E?

Together with (A.18), this completes the proof. 0

A.3 The extended entropy programming prob-
lem

The extended entropy programming problem is defined as

min Tz + %, fi(z;)

z 20,

where |f"(z;)] < ;c,-i‘::%‘). This class of problems is studied in Ye and Potra
[163] and Han et al®. [57]. In the case of entropy programming we have fi(z;) =
z;ln z;, for all ;, and x; = 1. Self-concordancy for the logarithmic barrier function
of this problem simply follows from the following lemma.

Lemma A.4 Suppose that |f!"(z;)| < mi%ﬁ), then the logarithmic barrier func-

tion for the extended entropy programming problem (EEP) is (14 max; k;)-self-
concordant.

Proof: Using Lemma A.1 it suffices to show that
fi(z)) —Inz;

is (1 4 1k;)-self-concordant. Since

)] < i)~

s
z;

this immediately follows from Lemma A.2. a

2In this paper it is conjectured that these problems do not satisfy the self-concordancy
condition. The lemma shows that it does satisfy the self-concordancy condition.
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A.4 The primal [,-programming problem

Let p, > 1, ¢ = 1,---,n. Let I, ¥k = 1,---,r be sets of indices such that
LinI; =8,j #k, and U,_, Iy = {1,---,n}. Then the primal [,-programming
problem [119]-[121], [134] can be formulated as

T
max nly
(Pc,) o
Ziel"alaiy—cﬂ"'+bky—dkS0,k=l,---,r.

Nesterov and Nemirovsky [116] treated a special case of this problem, namely
the so-called /,-approximation problem. We will reformulate (PL,) such that
all problem functions remain convex, contrary to Nesterov and Nemirovsky’s
reformulation.

The primal /,—programming problem can be reformulated as:

(

max 7Ty
Yiel iti+b{y—dk <0, k=1,---,r
' s <t
PL) . (A.20)
a,Ty—c,-Ss,- 2:1’-..,n
—afly+c<s
s> 0.

The logarithmic barrier function for this problem can be proved to be self-
concordant. Observe that in the transformed problem we have 4n+r constraints,
compared with r in the original problem (PL,).

Lemma A.5 The logarithmic barrier function for the reformulated l,—program-
ming (PL,) problem is (1 + 3 max; |p; — 2|)-self-concordant.

Proof: Since f(s;) := s, p; > 1, satisfies (A.1) with 8 = |p; — 2|, we have from
Lemma A.2 that
—In(t; — s?) —Ins;

is (14 3|p; — 2|)-self-concordant. Consequently, it follows from Lemma A.1 that
the logarithmic barrier function for the reformulated primal l,—programming
problem is (1 + } max; |p; — 2|)-self-concordant. ]

Note that the concordancy parameter depends on p;. We can improve it as
follows. We replace the constraints s?* < ¢; by the equivalent constraints s; < ¢,
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where 7; = L. Moreover, the redundant constraints s > 0 are replaced by ¢ > 0.
So, we obtam the following reformulated /,-programming problem:

max 0Ty

Zt&[kpt +bky-dlcso, k:].,"',f'

" S,’Stf‘

PL) . (A.21)
aly —c <'s; t=1,---,n

~afy+e<sy

Ltzo.

The following lemma improves the result of Lemma A.5.

Lemma A.6 The logarithmic barrier function for the reformulated l,~program-
ming problem (PL;) is 3-self-concordant.

Proof: Since f(t;) := —t[*, m; < 1, satisfies (A.1) with 8 = |m; — 2|, we have
from Lemma A.2 that

~In(t]* — s;) — Int;

is (14 1|m; —2[)-self-concordant, where 7; < 1. Consequently, the corresponding
logarithmic barrier function is 2—self-concordant. m]

A.5 The dual /[,—programming problem

Let ¢; be such that L + —1'- = 1. Moreover, the columns of matrix A are a;,
t=1,---,n, and the columns of matrix B are by, k = 1,---,r. Then, the dual
of the l ,—programming problem (PL,) is (see [119]-[121], [134])

qe

Zi

min ¢’z +d7z + k=1 2k Lick % Zk
(DL,) Az+ Bz =g
z 2 0.
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(If z; # 0 and 2z, = 0, then 2z |Z

equivalent to

* is defined as 00.) The above problem is

min ¢ x+ﬂz+zilq
si'z;q&lst;, ie€ly, k=1,---,r

z<s

(PL) ) =< (A.22)
A$+BZ=1’

z>20

s> 0.

\

Note that the original problem (DL,) has r inequalities, and the reformulated
problem (DL) 4n + . Now we prove the following lemma.

Lemma A.7 The logarithmic barrier function of the reformulated dual l,—pro-
gramming problem (DL,) is (1 + lg max;(g; + 1))-self-concordant.

Proof: It suffices to show that

—In(t; — s¥2;%") —Inz — Ins;

is (1 + lg(q + 1))-self-concordant, or equivalently by Lemma A.2, that (we will
omit the subscript ¢ and k in the sequel of this proof) f(s, z) := s9279*! satisfies

(A.1) for B =/2(¢+1), i.e. that

|h1| + |h22|2’
4

V21 (s, 2)[k, b, ]| < V2(g + ATV f(s, 2)h (A.23)

where hT = (hy, hy). After doing some straightforward calculations we obtain
for the second order term

IV f(s,2)h = q(qg—1)s97227972(s2%h2 + s%2h% — 25%2%h, hy)
= q(q—1)s73279"2(zhy — shy)’sz,
and for the third order term
93 £(s, 2) [, by Bl = a(g— 1)s™2712|(q — 2)2h8 — (g + 1)s%h3 —
3(q — 1)s2®h3hy + 3¢s?zhy bl
q(g —1)s77227972(2hy ~ sha)?|(g — 2)zhy — (g + 1)shq|
a(a—1)(q + D)™ (zhs — sh)(zlh] + s|al).

IA



174 APPENDIX A. SELF-CONCORDANCY PROOFS

Now we obtain

V3£ (s, 2)[R, b, h| _ ha] | |hal |h1| LT
RTV2f(s,z)h — s (g+ 1)( ) <Vq+1) T2

This proves (A.23) and hence the lemma. 0

We can improve this result as follows: the constraints s kq‘+1 < ¢; are re-
placed by the equivalent constraints t%z;%+! > s, where pi == l, and the
redundant constraints s > 0 are replaced by ¢t > 0. The new reformulated dual
l,—programming problem becomes:

r

min ¢ :c+de+Zi_1q
s <thiz"t diel, k=1,---,r

rz<s

(DL3) T -z <s (A.24)
Az + Bz=1

z>290

| t20.

Lemma A.8 The logarithmic barrier function of the reformulated dual l,—pro-
gramming problem (’D,C;’) is 2—self-concordant.

Proof: Similarly to the proof of Lemma A.7, it can be proved that
—In(t 27" — s;) — Int,

with p; < 1,1s (1 + @(p; + 1))-self-concordant. The lemma follows now from
Lemma A.1 and from p; < 1. O

A.6 Other smoothness conditions

Relative Lipschitz Condition

As shown in Jarre [64), if the problem functions f; € C® and fulfil the Relative
Lipschitz Condition (2.43) with parameter M, then the associated logarithmic
barrier function is (1 + M)-self-concordant.
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Monteiro and Adler’s Condition

Monteiro and Adler {109] considered problems with linear equality constraints
and convex separable objective function. The objective function °; fi(z;) must
satisfy the following condition:

There exist real numbers T and p such that for all reals z > 0 and y > 0 and all
1=1,.-+,n, we have

7)1 < Tmax{ 2y Ly} ste).

Using Lemma A.2 and substituting y = z in the above condition, it is easy to
see that the logarithmic barrier function for such a problem is (1 + %T)—self—
concordant.

Scaled Lipschitz Condition

In [167] and [81] interior point methods are given and analyzed for problems
with equality constraints and convex objective function f(x) which satisfies the
so—called Scaled Lipschitz Condition:

Given any v, 0 < v < 1, there exists K > 0, such that
IX(Vf(z+ Az) — Vf(z) — V2 f(z)Az)|| < KAzTV?f(z)Ax, (A.25)

whenever z > 0 and || X 1Az|| < 7.

This condition is also covered by the self-concordancy condition if f is three
times continuously differentiable in the interior of the feasible domain. More
precisely we will show in the next lemma that the corresponding logarithmic
barrier function is (1 + 2 K )-self-concordant.

Lemma A.9 Suppose f(z) € C® fulfils the Scaled Lipschitz Condition with pa-
rameter K. Then the corresponding logarithmic barrier function is (1 + %K)—
self-concordant,

Proof: It suffices to prove (A.1). Set h = Az as in definition (A.25). First note

that
n 72

h? B
> o5 =X Al

=1 1

Since f € C? we may expand Vf as follows:

V(e +A2) = Vf(z) + Vf(2)Az + 5 V(@) Az, Az, ] + of | Ac]P),
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where V3f(z)[Az,Az,.] is a vector whose i-th component is equal to

f(=)

—————Azx; Azy.
ik 6a:.-6a:,~8zk T OTk

Replacing Az by AAz in definition (A.25), inserting the above expansion, divid-
ing by A%, and taking the limit as A tends to zero we obtain
IXV3f(z)[Az, Az, ]| < 2K AzTV? f(z)Axz. (A.26)
Giving that V3f(z)[Az,Az,v] = V3f(z)[Az, Az,.]Tv, the left-hand side is e-
qual to
mgx{st(x)[Ax,Aa:,v] : | XMl = 1}
In particular, we may choose v = Az/||X~!Az|| and obtain
V3f(z)[Az, Az, Az] < 2K || X' Az||AzTVf(2)Ax,

which is exactly relation (A.1). 0



Appendix B

(General technical lemmas

Lemma B.1 If Gi, G, are symmetric matrices with |hTG1h| < RTG,h, Vh €
R", then
(RTG1hy)? < KT GyhihI Gk,

Vhi, ha € R™.
Proof: See Jarre [64]. o

Lemma B.2 If F € RY™" is a symmetric trilinear form, and G € R™" q
symmetric bilinear form, and { > 0 is such that Vh € R"

F(h, h, h)* < (G[h, kP,

then
F[hla h27 h3]2 S gG[hlv hl]G[h% h2]G[h3a h3]7

Vhy, ha, hs € R™.
Proof: See Nesterov and Nemirovsky [116] and Jarre [64]. o

Lemma B.3 Let G and G; be square matrices of the same size. If G, is positive
semi-definite, then the eigenvalues of GT (G2 + G1GT)™'G, are all smaller than
or equal to one. If in addition G, is positive definite, then (Gy + G2)™! < Gy*.

Proof: Let o(P) denote the maximal eigenvalue of P = GT(G, + G;GT)~1G,.
It is easy to verify that

P? = GI(G: + GiGT)'GiGT (G, + G1GT)'G, < GT (G, + G,GT) ', = P.

177
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Hence, o(P)? = o(P?) < o(P). This means that o(P) < 1, which proves the
first part of the lemma. To prove the second part, note that G; can be written
as RRT, since G, is positive definite. Furthermore,

Gi'—(G1+G) ' =0
if and only if
G:=R" (G - (Gi+ Ga)™)) R = 0.

Note that
G =1-R"(RRT +G;)™'R.

Moreover, since G, is positive semi—definite it follows from the first part that
the eigenvalues of RT(RRT + G;3) 'R are smaller than or equal to one. Hence
G > 0, which proves the second part of the lemma. o

LemmaB.4 Let 0 <a<1and0<B<1. Then

= i af
g(1+a52)51+m.

Proof: It is well-known that
[Ia+8")=1+) 4"
=0 =1
Now, it is easy to verify that
[1(1+a8*) =1+ o8,
=0 =1

where j; > 1. Hence it follows that

[l +ef?) < 143 p
=0 =1
of
= 14"
+ -3’
which proves the lemma. 0O

Lemma B.5 For v > 0 we have: In(1+v) <v— '.'(f_:u)
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Proof: First note that —In(1 +v) = In(1 — 1%;). Now using Karmarkar’s [69]
well-known inequality we have for v > 0

2
v ) > v _1(1_":.1,) _ v v?
1+v' = 14v 21-35 1+v 2(1+v)

In(1 —

This means that

v v? v

In(1 + ) < o
( +v)—1+v+2(1+v) v 2(1+v)

2

(@]

LemmaB.6 Let w € R, 0 < w < 1, andv € R, v > w. Then |Inv| <
|1—u||lnw|.

1-w

Proof: Defining

nu iy #£1
plu) = {
1 ifu=1,

it is easy to see that ¢(u) is monotonically decreasing and positive for u € (0, 00).

Hence

Inv Inw | |lnwl

“lw—-1| 1-w’

v—1

This implies the lemma. 0O
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Samenvatting

Karmarkar heeft in 1984 een nieuwe polynomiale methode voor lineaire program-
mering (LP) beschreven. Hij claimde dat zijn methode vele malen sneller is dan
de klassieke simplex methode. Het kardinale verschil met de simplex methode
is dat Karmarkar’s methode, in plaats van hoekpunten, iteratie punten in het
inwendige van het toegelaten gebied genereert. Karmarkar’s pionierswerk leid-
de tot het nieuwe onderzoeksgebied 'inwendige punt methoden voor lineaire en
niet-lineaire programmering’. De vele inwendige punt methoden die sindsdien
ontwikkeld zijn, kunnen ruwweg in vier klassen ingedeeld worden: pad-volgende
methoden, affiene schalings methoden, projectieve potentiaal reductie methoden
en affiene potentiaal reductie methoden. Sommige van deze methoden lenen zich
ook voor uitbreidingen naar (niet-lineaire) convexe programmering.

In dit proefschrift beschrijven en analyseren we pad-volgende methoden voor li-
neaire, kwadratische en convexe programmeringsproblemen. Deze methoden zijn
gebaseerd op klassieke concepten: de logaritmische barriere methode van Frisch
(1955), Fiacco en McCormick (1968) en de centreer methode van Huard (1968).
Beide methoden parametriseren het zogenaamde centrale pad van het probleem
(een gladde curve in het inwendige van het toegelaten gebied, die eindigt in een
optimale oplossing van het probleem), en volgen bij benadering dit pad om in
(de buurt van) het optimum te komen.

Verreweg de meeste pad-volgende methoden die in de literatuur beschreven zijn
en waarvoor polynomialiteit bewezen is, zijn gebaseerd op kleine veranderingen in
de parameter en op kleine stappen van vaste lengte (lijnzoeken is niet toegestaan).
Dergelijke korte-stap methoden die het centrale pad zeer nauwkeurig volgen,
vereisen veel iteraties en zijn daarom voor praktische doeleinden onaantrekkelijk.
In dit proefschrift analyseren we niet alleen korte-stap methoden, maar ook
medium- en lange-stap pad-volgende methoden waarin grotere veranderingen
in de parameter uitgevoerd mogen worden, en het doen van langere stappen
gebaseerd op lijnzoeken toegestaan is. Dergelijke medium- en lange-stap pad-
volgende methoden zijn in de literatuur alleen beschreven en geanalyseerd voor
de logaritmische barriéere methode toegepast op LP.

In dit proefschrift bewijzen we eerst enkele belangrijke eigenschappen van de lo-
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garitmische barriére methode voor LP. Daarbij wordt telkens gebruik gemaakt
van het feit dat het Newton proces in een goed gedefinieerde omgeving van een
punt op het centrale pad kwadratisch convergeert naar dit punt. Gebruik makend
van deze eigenschappen zijn we in staat om de volgende complexiteitsgrenzen af
te leiden voor het vinden van een e-optimale oplossing: O(n In 2£2) Newton itera-
ties voor de lange-stap variant, en O(y/nIn *£2) voor de medium- en korte-stap
variant. Hierin is n het aantal ongelijkheidsbeperkingen en po de beginwaarde
van de barriere parameter.

De complexiteitsanalyse wordt vervolgens uit gebreid naar kwadratische program-
mering (QP) en bepaalde klassen van convexe programmeringsproblemen. Voor
al deze gevallen blijkt de lengte van de Newton richting (gemeten in een speciale
metriek) een uitstekende maat te zijn om de afstand tot het referentiepunt op het
centrale pad te meten. De analyse voor LP wordt vergemakkelijkt doordat een
nuttige karakterisering van deze afstandsmaat gegeven kan worden. Een derge-
lijke karakterisering is ook mogelijk voor QP. De verkregen complexiteitsgrenzen
voor QP zijn precies dezelfde als voor LP.

Gebruikmakend van het begrip ’self-concordancy’, geintroduceerd door Nesterov
en Nemirovsky in 1989, zijn we in staat om de analyse ook uit te breiden naar
convexe programmering. Voor convexe programmeringsproblemen waarvoor de
logaritmische barriere functie self-concordant is, worden complexiteitsgrenzen
afgeleid die vergelijkbaar zijn met de resultaten voor LP en QP: O(x*nln 2)
Newton iteraties voor de lange-stap, en O(x/nln 242 ) Newton iteraties voor de
medium- en korte-stap methode. Hierin is « de self-concordancy parameter.

Nesterov en Nemirovsky hebben bewezen dat de volgende klassen van problemen
voldoen aan de self—concordancy conditie: lineaire en convexe kwadratische pro-
grammering met kwadratische beperkingen, primaal geometrische programme-
ring, l,-benaderingsproblemen, minimaliseren van matrix normen en het vinden
van de maximaal ingeschreven ellipsoide in een polytoop. In dit proefschrift be-
wijzen we ook self-concordancy voor andere klassen van problemen, zoals (uitge-
breide) entropie programmering, duaal geometrische programmering en primaal
en duaal l,—programmering. Het blijkt dat de self-concordancy parameter &
soms verlaagd kan worden door het probleem te herformuleren.

Ook voor de centreer methode van Huard kunnen dergelijke complexiteitsgren-
zen worden afgeleid. We bewijzen dat deze methode voor het vinden van een

e-optimale oplossing van het LP probleem O(nln ":’0 ) Newton iteraties nodig

heeft voor de lange-stap variant, en O(y/nln ":’o) iteraties voor de medium-
en korte-stap variant. Hierin is 2z* de optimale waarde van het probleem en
2° de beginwaarde van de benedengrens parameter. Vanwege de nauwe samen-
hang tussen de logaritmische barri¢re methode en de centreer methode, kunnen

vele resultaten gebruikt worden die we voor de logaritmische barriére methode
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afgeleid hebben. Ook de verkregen complexiteitsgrenzen voor beide methoden
zijn vergelijkbaar, omdat zowel npyo als z* — 2° de onnauwkeurigheid van de
startoplossing aangeven.

Voor de centreer methode toegepast op convexe programmeringsproblemen die
voldoen aan de self—concordancy eigenschap worden de volgende complexiteits-
grenzen afgeleid: O(x*nln =% 22) Newton 1terat1es voor de lange-stap, en voor
de medium- en korte-stap methode O(k+/nln = =2') jteraties. Deze resultaten
zijn opnieuw vergelijkbaar met die van de loga,ritrmsche barriére methode.

In elke iteratie van de logaritmische barriere methode voor LP moet voor het
vinden van de zoekvector een stelsel lineaire vergelijkingen opgelost worden. De
coéfficiénten matrix van dit stelsel is afhankelijk van het huidige iteratie punt. Per
iteratie kost het berekenen van de zoekvector O(n?) bewerkingen, zodat de totale
complexiteit O(n?In 22) is voor de lange-stap logaritmische barriere methode
en O(n®*In 22 voor de medium- en korte-stap methode. We analyseren twee
manieren om de hoeveelheid werk per iteratie te verminderen. (Vanwege de
nauwe samenhang tussen de logaritmische barri¢re en de centreer methode kun-
nen dezelfde analyses gegeven worden voor de centreer methode.)

In een eerste variant van de logaritmische barriére methode maken we gebruik
van benaderingen van het huidige iteratie punt. Door dergelijke benaderingen te
gebruiken veranderen er per iteratie slechts een beperkt aantal coéfficiénten in
de matrix van het stelsel lineaire vergelijkingen. Door nu rang-één modificaties
toe te passen kan de totale complexiteit verlaagd worden met een factor Vn.

In een tweede variant wordt slechts een deel van alle beperkingen in beschouwing
genomen. Als het huidige iteratie punt een beperking die nog niet opgenomen
is (bijna) overschrijdt, dan wordt deze beperking alsnog opgenomen. Ook wordt
er een strategie gegeven voor het verwijderen van beperkingen. Opnieuw wor-
den er bovengrenzen afgeleid voor het aantal benodigde iteraties. Deze grenzen
zijn vergelijkbaar met de grenzen verkregen voor de gewone logaritmische bar-
riere methode, met dit verschil dat de parameter n in de complexiteitsgrenzen
wordt vervangen door ¢*, waarin ¢* het maximaal aantal opgenomen beperkingen
voorstelt.

Tenslotte worden de overeenkomsten en verschillen tussen pad-volgende metho-
den en andere inwendige punt methoden besproken. Het basis idee blijkt in al
deze methoden min of meer hetzelfde te zijn: definieer een referentie punt op
het central pad, probeer in de buurt van dit punt te komen, en verleg dan het
referentie punt, totdat het huidige iteratie punt dicht genoeg bij het optimum
ligt. Het expliciet uitrekenen van de gebruikte zoekrichtingen in inwendige punt
methoden voor LP levert het verrassende resultaat op dat al deze zoekrichting-
en lineaire combinaties zijn van de zogenaamde affiene schalingsrichting en de
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centreer richting.

De in dit proefschrift afgeleide complexiteitsresultaten voor pad—volgende me-
thoden zijn in het geval van LP vergelijkbaar met de resultaten voor andere in-
wendige punt methoden. Van alle inwendige punt methoden zijn de pad—volgende
methoden echter het meest geschikt voor uitbreidingen naar convexe program-
mering. In de literatuur zijn ook complexiteitsresultaten bekend voor potentiaal
reductie methoden toegepast op convexe programmering, maar de verkregen re-
sultaten voor de pad-volgende methoden zijn beter.

Verscheidene implementaties van inwendige punt methoden voor LP vertonen sig-
nificante versnellingen ten opzichte van de klassieke simplex methode, met name
voor grote problemen. Het ontwikkelen van goede implementaties van inwendige
punt methoden (met name pad-volgende methoden) voor convexe programme-
ring verkeert nog in een beginfase. Omdat de in dit proefschrift gegeven analyse
aantoont dat er geen wezenlijk verschil is in gedrag van pad-volgende methoden
voor LP en convexe programmering, verwachten we dat ook voor convexe pro-
grammering efficiénte implementaties van pad-volgende methoden ontwikkeld
kunnen worden.
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