

Delft University of Technology

Interaction-Aware Motion Planning in Crowded Dynamic Environments

Ferreira de Brito, B.F.

DOI
10.4233/uuid:0bc3677d-dc15-4f93-a079-8d600e967c5a
Publication date
2022
Document Version
Final published version
Citation (APA)
Ferreira de Brito, B. F. (2022). Interaction-Aware Motion Planning in Crowded Dynamic Environments.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:0bc3677d-dc15-4f93-
a079-8d600e967c5a

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:0bc3677d-dc15-4f93-a079-8d600e967c5a
https://doi.org/10.4233/uuid:0bc3677d-dc15-4f93-a079-8d600e967c5a
https://doi.org/10.4233/uuid:0bc3677d-dc15-4f93-a079-8d600e967c5a

Bruno Brito

Interaction-Aware Motion Planning
in Crowded Dynamic Environments

Interaction-Aw
are M

otion Planning in Crow
ded Dynam

ic Environm
ents

Bruno Brito

INVITATION

To attend the public defense of the
dissertation

Interaction-Aware Motion Planning
in Crowded Dynamic Environments

By

Bruno Brito

on Thursday, October 6, 2022 at
15:00 in the Senaatszaal of the

Auditorium TU Delft

A short presentation about the
dissertation will be given at 14:30

You are welcome to the reception
following the defense

Interaction-Aware Motion Planning in
Crowded Dynamic Environments

Bruno Brito

Interaction-Aware Motion Planning in
Crowded Dynamic Environments

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology,

by the authority of the Rector Magni�cus prof. dr. ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates

to be defended publicly on
Thursday 6 October 2022 at 15:00 o’clock

by

Bruno Filipe Ferreira de BRITO

Master of Electrical and Computers Engineering,
Faculdade de Engenharia da Universidade do Porto, Portugal,

born in Porto, Portugal.

This dissertation has been approved by the promoters.
Composition of the doctoral committee:

Rector Magni�cus chairperson
Prof.dr. R. Babuska Delft University of Technology, promotor
Dr. J. Alonso-Mora Delft University of Technology, promotor

Independent members:
Prof.dr. D. M. Gavrila Delft University of Technology
Prof.dr.ir. C. G. Chorus Delft University of Technology
Prof.dr. J. P. How Massachusetts Institute of Technology
Prof.dr. K. V. Hindriks Vrije Universiteit Amsterdam
Prof.dr. M. Wang Technische Universität Dresden

The research described in this thesis was partly supported by the Netherlands Organization
for Scienti�c Research (NWO) domain Applied Sciences.

Published and distributed by: Bruno Brito
E-mail: bruno�brito0@gmail.com

Keywords: Motion planning, machine learning, interaction, collision avoidance, au-
tonomous vehicles, mobile robots, trajectory prediction, decision-making,
dynamic environments, navigation among humans

Front & back: ProefschriftMaken

Printed by: ProefschriftMaken

Copyright © 2022 by Bruno Brito

ISBN 978-94-6366-605-3

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without
written permission of the author.

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

To my family.

vii

Contents

Summary xi

Samenvatting xv

Acknowledgments xix

1 Introduction 1
1.1 Motivation . 2
1.2 Approach . 3

1.2.1 Local Motion Planning . 3
1.2.2 Trajectory Prediction. 4
1.2.3 Learning for Global Guidance 5

1.3 Contributions and Outline . 6
1.4 Notation . 8

2 Background 9
2.1 Model Predictive Control. 10
2.2 Supervised Learning . 11

2.2.1 Variational Bayes. 13
2.3 Reinforcement Learning . 13

2.3.1 Proximal Policy Optimization 14
2.3.2 Soft Actor-Critic . 16

3 Literature Review 19
3.1 Motion Planning in Dynamic Environments 20

3.1.1 Mobile Robots . 20
3.1.2 Autonomous Driving. 21

3.2 Trajectory Prediction. 23
3.2.1 Traditional Approaches . 23
3.2.2 Deep Learning . 23

3.3 Learning Global Guidance Policies . 24
3.3.1 Navigation Among Crowds . 24
3.3.2 Learning-Enhanced MPC. 25
3.3.3 Combining MPC with RL. 25

3.4 Interaction-aware Motion Planning . 26
3.4.1 Traditional Methods . 26
3.4.2 Search-based Methods . 26
3.4.3 Optimization-based Methods . 27
3.4.4 Game Theoretic Methods. 27
3.4.5 Learning-based Methods . 27

viii Contents

3.5 Conclusions . 28

4 Model PredictiveContouringControl forCollisionAvoidance inDynamic
Environments 29
4.1 Introduction . 30
4.2 Preliminaries . 31

4.2.1 Robot Description . 31
4.2.2 Static Obstacles . 31
4.2.3 Dynamic Obstacles . 32
4.2.4 Global Reference Path . 32
4.2.5 Problem Formulation. 32

4.3 Method. 33
4.3.1 Static Collision Avoidance . 33
4.3.2 Dynamic Collision Avoidance 34
4.3.3 Model Predictive Contouring Control 36

4.4 Results - Mobile Robot . 39
4.4.1 Experimental Setup . 39
4.4.2 Parameter Evaluation . 40
4.4.3 Static Collision Avoidance . 41
4.4.4 Dynamic Collision Avoidance 42

4.5 Results - Autonomous Car . 46
4.6 Conclusions and Future Work . 51

5 Social-VRNN: One-Shot Multi-modal Trajectory Prediction for Interact-
ing Pedestrians 53
5.1 Introduction . 54
5.2 Variational Recurrent Neural Network 56

5.2.1 Multi-modal Trajectory Prediction Problem Formulation 56
5.2.2 Input Feature Extraction Module 58
5.2.3 Probabilistic Inference Module 58
5.2.4 Multi-modal Trajectory Prediction Distribution 59
5.2.5 Improving Diversity . 59
5.2.6 Training Procedure. 60

5.3 Experiments . 61
5.3.1 Experimental Settings . 61
5.3.2 Performance Evaluation . 61
5.3.3 Qualitative Analysis . 63

5.4 Conclusions . 66

6 Where to go next: Learning a Subgoal Recommendation Policy for Nav-
igation Among Pedestrians 67
6.1 Introduction . 68
6.2 Preliminaries . 69

6.2.1 Problem Formulation. 69
6.2.2 Agent Dynamics . 70
6.2.3 Modeling Other Agents’ Behaviors 70

Contents ix

6.3 Method. 71
6.3.1 Learning a Subgoal Recommender Policy. 71
6.3.2 Local Collision Avoidance . 73
6.3.3 PPO-MPC . 74

6.4 Results . 76
6.4.1 Experimental Setup . 76
6.4.2 Training Procedure. 77
6.4.3 Ablation Study . 77
6.4.4 Qualitative Analysis . 80
6.4.5 Performance Results . 83

6.5 Conclusions and Future Work . 85

7 Learning Interaction-AwareGuidance forTrajectoryOptimization inDense
Tra�c Scenarios 87
7.1 Introduction . 88
7.2 Problem Formulation. 91
7.3 Interactive Model Predictive Control . 92

7.3.1 Interactive Planner . 92
7.3.2 Local Motion Planner . 93
7.3.3 Training Procedure. 95
7.3.4 Online Planning . 96

7.4 Modeling Other Tra�c Drivers’ Behaviors 97
7.5 Experiments . 99

7.5.1 Experimental Setup . 99
7.5.2 Driving Scenarios . 100
7.5.3 Evaluation Scenarios . 102
7.5.4 Evaluation Metrics . 102
7.5.5 Training Procedure. 103
7.5.6 Qualitative Results . 104
7.5.7 Quantitative Results . 107
7.5.8 Performance Analysis . 110
7.5.9 Discussion . 115

7.6 Conclusions . 115

8 Conclusions and Future Work 117
8.1 Conclusions . 118
8.2 Future Work . 121

8.2.1 Interaction-Aware Motion Planning 121
8.2.2 Learning Guidance Policies. 121
8.2.3 Constraints-Aware Learning . 122
8.2.4 Continual Learning . 122

A The Jackal 123

B The Toyota Prius 125

Bibliography 127

x Contents

Curriculum vitæ 147

List of publications 149

xi

Summary

Autonomous robots will profoundly impact our society, making our roads safer, reducing
labor costs and carbon dioxide (CO2) emissions, and improving our life quality. How-
ever, to make that happen, robots need to navigate among humans, which is extremely
di�cult. Firstly, humans do not explicitly communicate their intentions and use intuition
to reason about others’ plans to avoid collisions. Secondly, humans exploit interactions
to navigate e�ciently in cluttered environments. Traditional motion planning methods
for autonomous navigation in human environments use geometry, physics, topologies,
and handcrafted functions to account for interaction but only plan one step. In contrast,
trajectory optimization methods allow planning over a prediction horizon accounting for
the environment evolution. Yet, these methods scale poorly with the number of agents and
assume structured scenarios with a limited number of interacting agents. Learning-based
approaches overcome the latter by learning a policy’s parameters o�ine, e.g., from data or
simulation. However, to date, learned policies show poor performance and unpredictable
behavior when employed in reality as the conditions di�er from the learning environment.
Moreover, learning-based approaches do not guarantee collision avoidance or feasibility
with respect to the robot dynamics. Therefore, this thesis aims to develop motion planning
algorithms generating online predictive and interaction-aware motion plans to enable
robots’ safe and e�cient navigation among humans.

The �rst main contribution of this thesis is a predictive motion planning algorithm for
autonomous robot navigation in unstructured environments populated with pedestrians.
The proposed method builds on nonlinear model-predictive contouring control proposing a
local formulation (LMPCC) to generate predictive motion plans in real-time. Static collision
avoidance is achieved by constraining the robot’s positions to stay within a set of convex
regions approximating the surrounding free space computed from a static map. Moreover,
an upper bound for the Minkowski sum of a circle and an ellipse is proposed and used as an
inequality constraint to ensure dynamic collision avoidance, assuming the robot’s space as
a circle and the dynamic obstacles’, for instance pedestrians, space ellipsoid. The LMPCC
approach is analyzed and compared against a reactive and a learning-based approach in
simulation. Experimentally, the method is tested fully onboard on a mobile robot platform
(Clearpath Jackal) and in an autonomous car (Toyota Prius).

In real scenarios, pedestrians do not explicitly communicate their intentions, and
therefore, LMPCC uses a constant velocity (CV) model to estimate their future trajecto-
ries. However, CV predictions ignore the environment constraints, e.g., static obstacles,
the interaction between agents, and the inherent uncertainty and multimodality of the
pedestrians’ motion. Hence, this thesis presents a variational recurrent neural network
architecture (Social-VRNN) for interaction-aware and multi-modal trajectory predictions.

xii Summary

The Social-VRNN fuses information of the pedestrian’s dynamics, static obstacles, and
surrounding pedestrians and outputs the parameters of a Gaussian Mixture Model (GMM).
A variational Bayesian learning approach is employed to learn the model’s parameters
minimizing the evidence lower bound (ELBO). Experimental results on real and simula-
tion data are presented, showing that our model can e�ectively learn to predict multiple
trajectories capturing the di�erent courses that a pedestrian may follow.

Enhancing the LMPCC method with interaction-aware predictions is insu�cient to
enable safe and e�cient autonomous navigation in cluttered environments. The LMPCC
is a local trajectory optimization method and considers a limited planning horizon to
enable online motion planning. Consequently, LMPCC plans can be locally optimal, which
may result in catastrophic failures, such as deadlocks and collisions, in the long term. To
overcome the latter, global guidance, e.g., cost-to-go heuristics, to the optimization problem
is an option. In contrast to optimization-based methods, learning-based methods, i.e., deep
reinforcement learning (DRL), allow learning policies to optimize long-term rewards in an
o�ine training phase. Therefore, this thesis introduces two novel frameworks enhancing
state-of-art online optimization-based planners with learned global guidance policies
applied to mobile robot navigation in cluttered environments and autonomous vehicles
driving in dense tra�c.

Firstly, the Goal-OrientedModel Predictive Controller (GO-MPC) is introduced, tackling
the problem that the robot’s global goal is often located far beyond the planning horizon
resulting in locally optimal motion plans. The framework proposes to use DRL to learn an
interaction-aware policy providing the next optimal subgoal position to an MPC planner.
The recommended subgoal helps the robot progress towards its end goal and accounts
for the expected interaction with other agents. Based on the recommended subgoal, the
MPC planner then optimizes the inputs for the robot, satisfying its kinodynamic and
collision avoidance constraints. Simulation results are presented demonstrating that GO-
MPC enhances the navigation performance in terms of safety and e�ciency, i.e., travel
time, compared to solely based MPC and deep RL frameworks in mixed settings, i.e., with
cooperative and non-cooperative agents, and multi-robot scenarios.

Secondly, the interactive Model Predictive Controller (IntMPC) for safe navigation in
dense tra�c scenarios is presented. While GO-MPC learns a subgoal policy, the IntMPC
learns a velocity reference policy exploring the connection between human driving behavior
and their velocity changes when interacting. Hence, the IntMPC approach learns, via deep
Reinforcement Learning (RL), an interaction-aware policy providing global guidance as a
velocity reference allowing to control and exploit the interaction with the other vehicles.
Simulation results are presented demonstrating that the learned policy can reason about
the cooperativeness of other vehicles and enable the local planner with interactive behavior
to pro-actively merge in dense tra�c while remaining safe in case the other vehicles do
not yield.

Overall, this thesis contributes to enhancing autonomous robots with predictive behav-
ior, with the ability to infer the others’ trajectories and operate in cluttered environments.

However, two important limitations remain to be solved: the proposed motion planner

Summary xiii

computes open-loop interaction-aware motion plans and does not account for interaction
in closed-loop. Moreover, the prediction model and guidance policies rely solely on o�ine
learning. Future works may investigate how to account for interaction in the planning
stage and how online data streams can be used to improve the navigation algorithm’s
performance over time.

xv

Samenvatting

Autonome robots zullen een grote impact hebben op onze samenleving, onze wegen veiliger
maken, de arbeidskosten en de uitstoot van koolstofdioxide (CO2) verlagen en onze lev-
enskwaliteit verbeteren. Om dat mogelijk te maken, moeten robots echter veilig kunnen
navigeren in de nabijheid van mensen, wat op het moment een grote uitdaging is. Ten
eerste communiceren mensen niet expliciet hun bedoelingen en gebruiken ze hun intuïtie
(in plaats van regels) om andere mensen te ontwijken. Ten tweede maken mensen gebruik
van interacties om e�ciënt te navigeren in drukke omgevingen. Traditionele bewegings-
planningsmethoden voor autonome navigatie in menselijke omgevingen maken gebruik
van geometrie, fysica, topologieën en handgemaakte functies om rekening te houden met
interactie. Daarentegen maken trajectoptimalisatiemethoden het mogelijk om beweging
over een voorspellingshorizon te plannen, rekening houdend met de veranderingen in
de omgeving. Deze methoden schalen echter slecht met het aantal andere robots en/of
mensen (ook wel “agenten”) en gaan ze uit van gestructureerde scenario’s met een beperkt
aantal interacterende agenten. Op deze vlakken doen methodes die op zelf-lerende algo-
ritmes gebaseerd zijn het beter, omdat de parameters die het beleid bepalen o�ine geleerd
kunnen worden, bijvoorbeeld vanuit sensor of simulatie data. Tot op heden presteren
deze methodes echter slecther en vertonen ze onvoorspelbaar gedrag wanneer het in de
praktijk wordt toegepast, aangezien de omstandigheden verschillen van de leeromgeving.
Bovendien bieden zelf-lerende beweginsplanners geen garantie voor het vermijden van
botsingen of haalbaarheid met betrekking tot de robotdynamiek. Daarom heeft dit proef-
schrift tot doel bewegingsplanningsalgoritmen te ontwikkelen die online voorspellende
en interactiebewuste bewegingsplannen genereren om veilige en e�ciënte navigatie van
robots rond mensen mogelijk te maken.

De eerste belangrijke bijdrage van dit proefschrift is een voorspellend bewegings-
planningsalgoritme voor autonome robotnavigatie in ongestructureerde omgevingen met
voetgangers. De voorgestelde methode bouwt voort op nonlinear Model Predictive Con-
touring Control en stelt een lokale formulering (LMPCC) voor om in realtime voorspellende
bewegingsplannen te genereren. Het vermijden van botsingen met statische objecten wordt
bereikt door de geplande posities van de robot te beperken binnen een reeks convexe ge-
bieden die de vrije ruimte benaderen. Deze gebieden worden berekend op basis van een
statische kaart van de omgeving. Bovendien wordt een bovengrens voor de Minkowski-som
van een cirkel en een ellips voorgesteld en gebruikt als een ongelijkheidsbeperking om te
garanderen dat botsingen met dynamicshe objecten worden vermeden, ervanuitgaande
dat de robot een circkelvormige ruimte inneemt en de objecten (bijvoorbeeld voetgangers)
ellipsoïde vormig zijn. De LMPCC-methode wordt geanalyseerd en vergeleken met een
reactieve, zelf-lerende methode in simulatie. Experimenteel wordt de methode volledig
aan boord getest op een mobiel robotplatform (Clearpath Jackal) en in een autonome auto

xvi Samenvatting

(Toyota Prius).

In de werkelijkheid communiceren voetgangers niet expliciet hun intenties, en daarom
gebruikt LMPCC een model met constante snelheid (CV) om hun toekomstige trajecten
te schatten. CV-voorspellingen negeren echter de omgevingsbeperkingen (bijvoorbeeld
statische obstakels), de interactie tussen agenten en de inherente onzekerheid en multi-
modaliteit van de beweging van voetgangers. Daarom presenteert dit proefschrift een
Variational Recurrent Neural Network architectuur (Social-VRNN) voor interactiebewuste
en multimodale trajectvoorspellingen. De Social-VRNN combineert informatie over de
dynamiek van de voetganger, statische obstakels en omringende voetgangers en geeft
de parameters weer als een Gaussian Mixture Model (GMM). Er wordt een variatieve
Bayesiaanse leerbenadering gebruikt om de parameters van het model te leren, waarbij de
ondergrens van het bewijs (ELBO) wordt geminimaliseerd. Experimentele resultaten op
echte data en simulatie data worden gepresenteerd, wat aantoont dat ons model e�ectief
kan leren meerdere trajecten te voorspellen die de verschillende paden van een voetganger
omvatten.

Het verbeteren van de LMPCC-methode met interactiebewuste voorspellingen is on-
voldoende om veilige en e�ciënte autonome navigatie in onoverzichtelijke omgevingen
mogelijk te maken. De LMPCC is een lokale trajectoptimalisatiemethode en houdt rekening
met een beperkte planningshorizon om online bewegingsplanning mogelijk te maken. Als
resultaat daarvan kunnen LMPCC-plannen lokaal optimaal zijn, wat op lange termijn kan
leiden tot catastrofale storingen, zoals volledige stilstand en botsingen. Globale begelei-
ding voor het optimalisatieprobleem, bijv. via een cost-to-go-heuristiek, is een optie om
dit probleem op te lossen. In tegenstelling tot standaard optimalisatie methoden, maken
zelf-lerende methoden zoals deep enhancement learning (DRL) het leerbeleid mogelijk om
langetermijnbeloningen te optimaliseren in een o�ine trainingsfase. Daarom introduceert
dit proefschrift twee nieuwe methoden die optimalisatie planners verbeteren met een
geleerde globale begeleiding die wordt toegepast op mobiele robotnavigatie in drukke
omgevingen en autonome voertuigen die in druk verkeer rijden.

Ten eerste wordt de Goal-Oriented Model Predictive Controller (GO-MPC) geïntro-
duceerd, waarmee het probleem wordt aangepakt dat het globale doel van de robot zich
vaak ver buiten de planningshorizon bevindt, wat resulteert in lokaal optimale bewegings-
plannen. Deze methode stelt voor om DRL te gebruiken om interactiebewust te leren en de
volgende optimale subdoelpositie door te sturen naar de MPC-planner. Het aanbevolen
subdoel helpt de robot om zijn einddoel te bereiken en houdt rekening met de verwachte
interactie met andere agenten. Op basis van het aanbevolen subdoel optimaliseert de
MPC-planner vervolgens de besturingssignalen van de robot, waarbij de kinodynamiek
wordt gerespecteerd en botsingen worden vermeden. Er worden simulatieresultaten gep-
resenteerd die aantonen dat GO-MPC de navigatieprestaties verbetert op het gebied van
veiligheid en e�ciëntie, d.w.z. reistijd, in vergelijking met standaard MPC en diepe RL-
methodes in gemengde omgevingen, d.w.z. met coöperatieve en niet-coöperatieve agenten,
en in multi-robot scenario’s.

Ten tweede wordt de interactieve Model Predictive Controller (IntMPC) voor veilige
navigatie in drukke verkeers scenario’s gepresenteerd. Terwijl GO-MPC een subdoelbeleid

Samenvatting xvii

leert, leert de IntMPC een snelheidsreferentiebeleid dat het verband onderzoekt tussen
menselijk rijgedrag en hun snelheidsveranderingen tijdens interactie. Daarom leert de
IntMPC-benadering, via diepgaande Reinforcement Learning (RL), een interactiebewust
beleid dat globale begeleiding aanbiedt als snelheidsreferentie waarmee de interactie met de
andere voertuigen wordt gecontrolleerd. Er worden simulatieresultaten gepresenteerd die
aantonen dat het geleerde beleid kan redeneren over de coöperatie van andere voertuigen
en de lokale planner in staat stelt met interactief gedrag proactief in te voegen in druk
verkeer terwijl het voertuig ook veilig beweegt als de andere voertuigen geen ruimte geven.

Dit proefschrift draagt in het algemeen bij aan het verbeteren van autonome robots
door hun gedrag voorspelbaar te maken, hun vermogen om de trajecten van anderen af te
leiden te verbeteren en door hun opereren in drukke omgevingen mogelijk te maken.

Er moeten echter nog twee belangrijke beperkingen worden opgelost: de voorgestelde
bewegingsplanner berekent open-loop interactiebewuste bewegingsplannen en houdt geen
rekening met interactie in closed-loop. Bovendien vertrouwen het voorspellingsmodel
en het begeleidingsbeleid uitsluitend op o�ine leren. Toekomstige werken kunnen on-
derzoeken hoe rekening kan worden gehouden met interactie in de planningsfase en hoe
online datastromen kunnen worden gebruikt om de prestaties van het navigatie-algoritme
in de loop van de tijd te verbeteren.

xix

Acknowledgments

From very early in my life, I wanted to be a scientist. I loved to learn new things and
make new inventions. Consequently, doing a Ph.D. became an important goal in my life. I
dreamed of learning from the best researchers, developing new ideas, and putting them
into practice. Now looking back, my Ph.D. was much more than doing research. Not only I
grew as a researcher but, more importantly, as a person, and it opened many doors for my
future career. Here, I want to thank the people that are part of this journey throughout my
Ph.D. and the path that leads to it.

Firstly, I want to thank my daily supervisor and promotor, Dr. Javier Alonso-Mora, for
giving me this fantastic opportunity, believing in me, and always supporting and guiding
me on the way. I have learned immensely from you: to think critically and to always seek
the most novel ideas. I also want to thank my promotor Prof. Robert Babuska for always
supporting me during the journey, mainly by allowing me to continue my research in
Portugal close to my loved ones during COVID times.

Secondly, I want to thank Prof. Dariu Gavrila, Prof. Caspar Chorus, Prof. Jonathan P.
How, Prof. Koen Hindriks, and Prof. Meng Wang for accepting to be my Ph.D. committee
members. A mark in my Ph.D. journey was the collaboration with Prof. Jonathan P. How
and Dr. Michael Everett. Here, I want to thank them for providing me the opportunity to
visit the Aerospace Controls Laboratory (ACL) laboratory at MIT. Unfortunately, the visit
had to happen remotely due to the COVID pandemic. Nevertheless, my work with them
resulted in what I consider to be the most signi�cant contribution to this thesis. Especially,
I want to thank Dr. Michael Everett for all the exciting discussions and for introducing me
to the reinforcement learning world.

Thirdly, I am very grateful to my colleagues at TU Delft. Specially, I want to thank Hai
Zhu, my Ph.D. brother. Thank you for always being the friend I needed in the best and
worst moments of the journey. I have signi�cantly learned from you; to Boaz Floor for all
the help in the early stage of my Ph.D. and now, I am happy that our paths have crossed
again; to Dr. Michal Čáp for the friendship; to Dr. Laura Ferranti for helping me get my
�rst research paper published and for always being available to revise my articles. I will
never forget our initial trials to make the Toyota Prius drive autonomously; to Dr. Carlos
Celemin, Giovanni Franzese, Rodrigo Pérez-Dattari for being the amazing friends you were,
for all the runs, dinners, and parties that we have shared; to Maximilian Kronmüeller and
Max Spahn for introducing me the beautiful landscapes in the Netherlands when cycling;
to Luzia Knödler for the help with my dissertation cover; to Lasse Peters for all the lessons
on game theory. I have learned a great deal from you; to all my talented master’s students:
Achin Agarwal, Chadi Salmi, Ewoud Croll, Niels Marcelis, Sant Brinkman and Sukrit Gupta.
Thanks for trusting me to be your supervisor. I have learned from you how challenging it

xx Acknowledgments

is to supervise and guide students but also how rewarding it is.

The path toward my Ph.D. was not straightforward. My �rst step after �nishing my
master’s degree was an internship at the European Space Agency (ESA). At ESA, I have
been luckily introduced to the robotics world. I want to thank Dr. Guillermo Ortega for his
support throughout my career and my goal to pursue a Ph.D; to Manuel Sanchez-Gestido
for the friendship; to the Sultans: Martin Azkarate, Moisés Navarro, Stella Papadimitriou,
Maria Markalain, Alicia Beldina, and Pedro Coelho. Thanks for being the amazing family
that you are. Our moments together will always �ll my heart with joy; to Micael Miranda
and Stéphanie Oliveira for the unconditional friendship and support. You have not only
helped me �nish this chapter but also brought new light into this world. To the little Mateo
I wish you a life full of happiness. After two incredible years in Dutch lands, Germany
was next. I was given the opportunity to research robotics at the Fraunhofer institute
in Stuttgart. Living in Germany as a foreigner without speaking the language is hard.
But, I was blessed with some of the best people in my life. Firstly, I want to thank my
brother Marcel Scherrmann. You are the most Portuguese German I have ever met, with a
giant heart full of joy. May you continue to rule many cities. To Kevin Bregler, Alexander
Pekarovskiy and Richard Bormann. You have enlighted my period at Fraunhofer.

As Jess C. Scott wrote:

“Friends are the family you choose”.

To Irmandade: André Gonçalves, Daniel Castro Neves, Antonia Ćurdo, Diana Correia,
Luciano Sousa, Manuel Sampaio, Petra Gouveia, Vasco Seifert, Rita Santos Silva, Pedro
Melo, Mafalda Leal Moura, João Leite and Paulo Gouveia, you represent the true meaning
of friendship; to Pedro Barbosa and Luciana Costa, you are some of the best persons that I
know and I am grateful to have you as friends; to Margarida, you are a great friend and I
admire your strength, and your visits are some of the best moments in the Netherlands;
to Tiago Sa, you are an example of perseverance; to my Italian brother Simone Fisci who
taught me to never stop partying; to Tiago Caetano for being the brother that I wish I had,
and for always helping me to stand-up on every fall.

To my family, To my sister Paula, thanks for always taking care of me. You are the
person with the biggest heart I know. To Carlitos, thanks for all the help and always
receiving me in your house with open arms. To my sister Carla, you will always be my
little sister. I am happy that our paths crossed in Delft. To my parents, who supported my
studies and me every step of the way. Everything I am and I have achieved, it is because of
you. You are my heroes. To Carlinhos and the new family joiners: Maria e Margarida. Your
godfather and uncle will always love you. Whenever you need me, I will be there for you.

To Luisa, my love, my wife and my friend. The �apping of a little butter�y’s wings
brought us together, and I am grateful for all your unconditional support and love. I am
the luckiest person to have you in my life.

Bruno Brito
Boston, September 2022

1

1

1
Introduction

1

2 Introduction

1.1 Motivation
Autonomous robot systems will profoundly impact our society, enabling us to automate
transportation and delivery services and assisting us in our households and hospitals [1].
For the �rst time, robot-taxi companies have announced to begin commercial operations
without a safety driver [2] (see Fig. 1.1a). Companies started to test their autonomous
last-mile delivery systems on the streets [3] (see Fig. 1.1b). Amazon introduced their
�rst household robot for home monitoring and companionship [4]. Yet, unstructured
environments with a large density and number of tra�c participants, driving a large
variety of vehicles, and exhibiting a wide range of behaviors (see Fig. 1.1c as example),
are still challenging. Current autonomous systems are limited to controlled settings, low
speed, and clutter-free environments despite all the recent technological advancements.
For instance, although autonomous driving companies have been granted the deployment
of autonomous vehicles, they can only operate in designated parts of the public roads and
during the night and cannot exceed 30 miles per hour [5].

(a) Example of an autonomous
riding service (by Motional)

(b) Last-mile delivery system (by
Starship Technologies

(c) Dense tra�c scenario

Figure 1.1: Illustrative examples of two real-world autonomous robot applications (left and
center image) and a challenging scenario for autonomous driving technologies (right �gure).

In urban settings, robots must navigate among other decision-making agents (i.e.,
robots and humans). However, coordinating with other tra�c participants is extremely
challenging in complex urban environments. While robots can communicate, that is not the
case when interacting with humans. Therefore, like humans, robots must be able to infer
the other agents’ intentions (i.e., prediction), reason about how their actions in�uence the
other agents’ (i.e., interaction) and use this information to plan safe and socially compliant
motion plans.

This thesis addresses three main problems in autonomous navigation: prediction of
pedestrian trajectories, interaction, and guidance. Firstly, while robots can coordinate
by sharing their motion plans [6], humans coordinate without explicit communication.
Therefore, robots must be capable of predicting what the other road users are likely
to do. Secondly, navigating in cluttered environments includes complex interactions
among various tra�c participants. Hence, algorithms enabling robots to reason about the
interactions among multiple tra�c participants and planing accordingly are essential for
safe and e�cient navigation in cluttered scenarios. Finally, in crowded environments, as
the one depicted in Figure 1.1c, many di�erent motion plans exist and exploring them all
is prohibitive. Therefore, algorithms suggesting a socially intuitive path providing global

1.2 Approach

1

3

guidance for the robot are required. This thesis focuses on the motion planning, prediction
and decision-making problems.

Over the past decades, there has been an immense e�ort from the research community
and industry to develop planning algorithms to enable safe autonomous navigation in
human-populated environments [7, 8]. Nevertheless, most approaches consider well-
structured scenarios (e.g., highways) and a limited number of interacting agents. Traditional
approaches mostly rely on continuous re-planing [9, 10] or reactive-methods [11–13] to
handle the dynamic nature of human environments but do not account for the environment
evolution nor for interaction. Additionally, optimization-based methods are widely used in
autonomous navigation systems because of their ability to provide safety guarantees. Yet,
these methods have scalability issues [14–16] and su�er from the curse of dimensionality
when accounting for interaction. In contrast, learning-based methods allow to overcome
the dimensionality issues by exploiting large amounts of data and o�ine training. But,
these methods do not provide any safety guarantees [17, 18].

In this dissertation, the main research goal is to develop algorithms that enable safe
autonomous navigation in crowded dynamic environments populated with humans and other
robots without communication and accounting for interaction.

1.2 Approach
This thesis investigates learning-based and optimization-basedmethods to develop planning
algorithms accounting for interaction and scaling to cluttered environments. To start,
this thesis follows a sequential approach [8], relying on state-of-the-art perception [19]
and localization [20] algorithms to perceive the environment, as depicted in Fig. 1.2.
Additionally, it is assumed the existence of a high-level mission planning layer providing
the mission’s goals. Hence, this thesis focus on the motion planning, prediction, and
decision-making problems.

1.2.1 Local Motion Planning

The motion planning problem can be in general formulated as follows: given a goal state
provided by a mission planner, the current robot’s and environments’ (e.g., other tra�c
participants and static obstacles) states, the goal is to plan a local trajectory and the
control commands for the robot. The trajectory must respect the robot’s kino-dynamic
constraints and ensure collision-free motion while progressing towards the goal. For
collision avoidance with dynamic obstacles, moving obstacles’ are modeled as ellipsoids
and the robot’s space as circles. This thesis provides a correct bound to approximate the
collision region, given by the Minkowsky sum of an ellipse and a circle. Then, this bound is
used as a non-linear inequality constraint to ensure safety. Model Predictive Control (MPC)
is used as a local motion planning method to enable predictive planning while satisfying
the robot’s kino-dynamic and collision constraints.

1

4 Introduction

Figure 1.2: Navigation pipeline used in this thesis. This thesis focus on the motion planning,
prediction and decision-making modules.

Model Predictive Control

The methods presented for local trajectory optimization in this thesis rely on the MPC
framework [21]. MPC enables predictive planning, which is essential to ensure smooth
collision avoidance and generate anticipatory behavior. The key idea behind MPC is to
compute a sequence of control inputs by optimizing over a �nite time horizon, incorporating
predictive information about the future environment’s states, and planning accordingly. By
de�ning the MPC as an optimization problem, a trajectory minimizing some cost function
is computed while satisfying constraints (e.g., collision and model dynamics) if a feasible
solution is found. Only the �rst control input is applied for each time-step, and a new
solution is computed considering the current state information.

1.2.2 Trajectory Prediction

Predictive motion planning relies on motion predictions to generate anticipatory behavior.
In multi-robot systems, motion predictions can be obtained by having each robot share their
future planned trajectories via communication [22]. However, when navigating among
humans, such a communication channel is not available. Therefore, autonomous robots,
such as service robots or autonomous cars, must reason about the intentions of the other
agents (e.g., pedestrians, other robots, etc.) and forecast their motions accurately.

To build an inference model of other agents’ motion is extremely di�cult due to its
uncertainty and multimodality (i.e., under the same circumstances, an agent may follow
multiple and di�erent paths). The uncertainty is caused by the partial observation of
the other agents’ states and their stochastic dynamics. The multimodality is due to the
interaction e�ects between the agents, the static environment and the non-convexity of the
problem. Hence, most state-of-the-art planners employ simple prediction models (e.g., a
constant velocity model [23]) not accounting for interaction and multi-modality. However,

1.2 Approach

1

5

predictive planning methods’ performance highly depends on the prediction accuracy and
the ability of prediction models to reason about interaction.

Recent advances in the �eld of parallel computing and automatic di�erential tools [24]
enabled machine learning methods to learn prediction models leveraging high-dimensional
information and large amounts of data. This thesis employs deep learning to create a
model providing high-�delity multimodal predictions. Chapter 4 presents a local motion
planner building on MPC for autonomous robot navigation in unstructured dynamics
environments.

Deep Learning

In general, the trajectory prediction problem can be formulated as a supervised learning
problem: given a dataset containing a set of input features (e.g., agent velocity and position)
and the associated true label or ground-truth, the model parameters � and a loss function
(e.g., mean square error (MSE), log-likelihood, etc.,.), one can compute the optimal model
parameters � ∗ using gradient descent. As a model, most recent algorithms rely on DNNs
because of their ability to incorporate high-dimensional information and in�nity approxi-
mation capacity [25]. When combined with variational learning [26], or normalizing �ows
[27], NNs can also be used to learn approximations of the model’s probability density
function from data, enabling uncertainty and multi-modality into the model predictions.
Chapter 5 provides a detailed overview on the applicability of variational learning in the
context of trajectory prediction.

1.2.3 Learning for Global Guidance

Safety and e�ciency are two essential features for the successful deployment of autonomous
robots in human environments. When it comes to safety, optimization-based methods can
compute plans respecting important constraints (e.g., kinematics and collision avoidance)
[7]. However, to enable online optimization these approaches rely on several assumptions
and simpli�cations that become impracticable in dense scenarios populated with humans.

Firstly, optimization-based algorithms (e.g., MPC) often employ a limited planning
horizon to limit the problem’s complexity and enable real-time computation. Consequently,
the solutions computed may be locally optimal and may lead to collisions or deadlocks
events in the long term. Secondly, optimization-based method’s performance strongly
depends on high-level decision variables typically de�ned as constant hyper-parameter
values (e.g., cost weights, reference values, etc.), which are a hurdle to tune. Moreover,
high-level decision variables signi�cantly in�uence the robot’s behavior and may hurt the
problem’s feasibility.

This thesis explores machine learning methods, speci�cally Reinforcement Learning
(RL), to provide global guidance on high-level decision variables enabling local planning
methods to scale to cluttered environments and compute interaction-aware motion plans.

1

6 Introduction

Reinforcement Learning

RL enables learning a decision-making policy o�ine by trial-and-error by interacting with
a simulation environment. Typically, the goal in RL is to learn a policy that maximizes
rewards over an in�nite time horizon. The key advantage of using RL is that it allows
moving the curse-of-dimensionality burden in online planning to an o�ine training phase.
The learned policy allows taking decisions accounting for the short and long-term impact.
Hence, RL algorithms are widely used to learn decision-making and control policies [28].
When using NNs as the policy’s model (i.e., Deep Reinforcement Learning (DRL)), RL can
account for high-dimensional information such as RGB-D images or LiDAR data.

Chapter 6 and Chapter 7 propose two novel approaches employing DRL to learn global
guidance policies with applications to dense tra�c scenarios and autonomous navigation
among humans and other robots.

1.3 Contributions and Outline
The goal of this thesis is to provide algorithmic innovations to enable safe and e�cient
robot navigation among humans, as discussed in Sec. 1.1. Hence, this thesis makes the
following scienti�c contributions:

(1) A Local Model Predictive Contouring Control (LMPCC) approach for local
motion planning in unstructured dynamic environments. By computing a set of
convex regions representing the free space from a static map and modeling moving
obstacles (e.g., pedestrians) as ellipsoids, the method allows computing motion plans
in real-time. This method enabled an autonomous mobile robot to safely navigate in
indoor environments populated with humans and an autonomous vehicle to perform
a collision avoidance maneuver to avoid a pedestrian crossing the road.

(2) An interaction-aware variational recurrent neural network (Social-VRNN)
model for one-shot multi-modal trajectory prediction. The proposed variational
Bayesian approach enables faster training convergence than GAN-based approaches.
Moreover, employing a time-dependent prior over the latent space enables the pro-
posed model to achieve state-of-the-art performance and generate diverse trajectories
with a single network query.

(3) A framework enhancing state-of-the-art online optimization-based plan-
ners with a learned global guidance policy applied to two di�erent navigation
problems:

(a) A goal-orientedModel Predictive Control method (GO-MPC) for naviga-
tion among interacting agents. The GO-MPC utilizes a learned global guidance
policy (recommended subgoal) in the cost function, minimizing a long-term
cost-to-go and accounting for interaction. By relying on an MPC as a local
planner, the GO-MPC ensures dynamic feasibility and collision avoidance when
a feasible solution is found. Moreover, jointly training the RL policy with an

1.3 Contributions and Outline

1

7

optimization-based planner allows using the proposed method directly on real
hardware, reducing the sim to real gap.

(b) An Interactive Model Predictive Controller (IntMPC) for navigation in
dense tra�c environments. By combining DRL to learn an interaction-aware
policy providing information on high-level decision variables (e.g., velocity
reference) directly in the local planner’s cost function, the proposed approach
enables interactive behavior mandatory to navigate in dense tra�c scenarios
successfully.

The proposed algorithms of this thesis have been extensively evaluated and validated
with a mobile robot platform and a self-driving vehicle, see Appendix A and Appendix B
for more details on the platforms, respectively.

Figure 1.3 presents the overall thesis structure. Initially, Chapter 2 presents the funda-
mentals of MPC, supervised learning, and reinforcement learning to support the introduc-
tion of the following chapters. Chapter 3 reviews the state of the art of motion planning
methods in dynamic environments, followed by trajectory prediction models, learning
global guidance policies and interaction-aware motion planning. Chapter 4 presents the
local model predictive contouring control (LMPCC) method for autonomous navigation
in unstructured dynamic environments. Chapter 5 introduces the Social-VRNN model for
single-shot multi-modal trajectory predictions. Chapter 6 presents the Goal-oriented Model
predictive controller for navigation among humans and other robots. Chapter 7 describes
the Interactive Model Predictive Controller for interaction-aware motion planning in dense
tra�c scenarios. Finally, Chapter 8 draws the conclusions of this thesis and presents
possible future research directions.

1

8 Introduction

Chapter 1

Introduction

Chapter 2

Background

Chapter 4

Interaction-aware Variational

Recurrent Neural Network

Chapter 3

Local Model Predictive

Contouring Control

Chapter 5

Goal-oriented Model
Predictive Control

Chapter 6

Interactive Model Predictive

Controller

Chapter 7

Conclusion and
Future Works

Chapter 3

Literature Review

Figure 1.3: Thesis’ structure: Chapter 1 introduces and motivates the research presented on this
thesis. Next, the fundamentals of the methods proposed in this thesis are presented (Chapter 2),
followed by the related works (Chapter 3). Chapter 4 presents the �rst contribution of this
thesis: a local motion planner serving as the basis of the contributions presented in Chapter 7
and Chapter 6. At the same level, Chapter 5 introduces the proposed multi-modal prediction
model. Finally, Chapter 8 presents the conclusions and proposed future research directions.

1.4 Notation
This section describes the general and common notation used throughout this thesis.

The scalars are denoted by italic lowercase letters, x , vectors by bold lowercase, x,
matrices by plain uppercase, M , and sets by calligraphic uppercase,  . To denote the
transpose of a vector or matrix the superscript xT or MT is used, respectively. ‖x‖ =

√
xTx,

‖x‖2 = xTx, and ‖x‖2Q = xTQx denote the Euclidean norm, squared Euclidean norm, and
weighted squared Euclidean norm of x, respectively. ẋ denotes the derivative of x with
respect to time t .

2

9

2
Background

2

10 Background

This chapter brie�y introduces the fundamental methods on which the proposed ap-
proaches in this dissertation are built. Firstly, we introduce the Model Predictive Control
framework, and then, we provide a gentle introduction to supervised learning and rein-
forcement learning. Overall, this chapter presents essential preliminaries to the remainder
of this thesis.

2.1 Model Predictive Control
Optimization methods (e.g., dynamic programming) are widely used for planning and
control because of their ability to solve problems with equality and inequality constraints
[29]. The basis for optimization problems is a dynamic model describing the state evolution
of the system:

xk+1 = f (xk ,uk) (2.1)

where xk ∈ ℝn , uk ∈ ℝm are the state and control input vectors, respectively.

Here, we will only consider discrete time dynamics for sake of clarity and simplicity.
To handle continuous dynamics, there are several methods to discretize a continuous time
system [30]. In addition to the dynamics model, the optimization problem objectives (e.g.,
follow route, fuel consumption or travel time) are de�ned as a cost function:

J (x,u) =
T−1
∑
k=0

Jk (xk ,uk) + JT (xT ,uT) (2.2)

where Jk and JT are the stage and end cost function, respectively.

Generally, an optimization problem is formulated as

u∗ =argmin
u

T−1
∑
k=0

Jk (xk ,uk) + JT (xT ,uT) (2.3a)

subject to xk+1 = f (xk ,uk) (2.3b)
g(xk ,uk) ≤ 0 (2.3c)
xk ∈  , uk ∈ ∀k ≥ 0 (2.3d)
x0 = xinit (2.3e)

where x0 represents the initial conditions, g the inequality constraint function and  and
 are the sets of admissible states and control inputs, respectively. However, the problem
becomes intractable for long planning horizons.

Model Predictive Control addresses the last issue by considering a limited planning
horizon, repeatedly solving a �nite time optimal control problem in a receding horizon
fashion. At each time step k, starting at the current state (Equation (2.3e)), an open-loop
optimal control problem is solved over a �nite horizon T to obtain a locally optimal
sequence of control commands u∗ = [u0,… ,uT−1] (see Figure 2.1). Then, only the �rst

2.2 Supervised Learning

2

11

Figure 2.1: Receding horizon strategy. At time step k, MPC computes locally optimal sequence
of control commands u0∶T enabling the robot to minimize the distance to the reference path
depicted in green. Only the �rst control command u∗0 is applied and at the next time step k +1
the MPC computes a locally optimal sequence of control commands given the new observed
information by the robot.

control command is applied and at the next time step k +1 a new optimal control problem
based on new state information is solved over a shifted horizon (see bottom Figure 2.1).
Thus, MPC allows to compute online a locally optimal solution to the in�nite horizon
controller problem.

2.2 Supervised Learning
With the recent advancements of automatic di�erentiation tools and parallel computing,
learning high-dimensional models (i.e., deep learning) from large amounts of data is now
possible. This has triggered the research on supervised learning applied to a broad spectrum
of applications (e.g., high-�delity prediction models, high-performance visual detectors,
etc,.) [19, 31]. For instance, end-to-end driving policies [32] or high-�delity pedestrians
prediction models [33] have been learned from o�ine datasets. This section provides a
gentle introduction on supervised learning and how to learn deterministic and probabilistic
models from data [34, 35].

2

12 Background

Consider the task of learning a function f� with parameters � mapping an input vector
x to an output vector y

ŷ = f� (x) (2.4)

where ŷ is themodel’s output vector which can be de�ned as a sequence to learn a prediction
model or a control vector to learn a policy. In a supervised learning setting, there is a
dataset containingN tuples of input and output vectors, = {(x1,y1),…(xN ,yN)}. These
tuples typically correspond to expert labels, y, given the observation x. The goal is to �nd
the model’s parameters � ∗ minimizing a loss function

� ∗ = argmin
�

L(�) (2.5)

where L is the loss function used. When learning a deterministic model, L is typically
de�ned as the mean-squared error between the ground-truth vector y and the models
output ŷ, the norm loss or the Huber-loss [36]. When learning probabilistic models, the
negative log-likelihood is normally used resembling maximum likelihood estimation (MLE).
To avoid models to over�t the dataset and improve generalization of the learned model
extra loss terms can be added to the loss function (e.g., L2 and L1 regularization) [34].
The necessary conditions for � ∗ to be a minimum are)L

)� (�
∗) = 0. However, when using

non-linear and high-dimensional models such as neural networks there is no close-form
solution and � ∗ can only be found via iterative numerical optimization (e.g., gradient
descent algorithms). Therefore, we start from a initial set of model’s parameters �0 and for
each training step we update the model’s parameters in the direction that minimizes the
loss function (i.e., negative gradient direction). Algorithm 1 presents the overall algorithm.

Algorithm 1 Gradient Descent
1: Given: initial model parameters �0, step size � , the number of training steps nsteps

and batch size nbatch
2: for k = 0,1,2,…nsteps do
3: Randomly sample nbatch examples from the dataset
4: Update the model’s parameters:
5:

�k+1 = �k +� 1
nbatch ∑

nbatch
i=1 ∇�L(xi ,yi)

6: end for

Techniques that use the whole dataset at once are called batch methods. For large
datasets batch methods are intractable. Therefore, mini-batch methods split the training
dataset into small batches to compute the update direction vector. Methods that make an
update to the parameters vector based on one data point at a time, nbatch = 1, are known as
sequential gradient descent or stochastic gradient descent and are typically used for online
learning.

2.3 Reinforcement Learning

2

13

2.2.1 Variational Bayes

Let us consider the problem of learning a probability distribution of a random variable x
from a dataset  = {xi}Ni=1 generated by some random process involving an unobserved
continuous random variable z. Moreover, z is generated from some prior distribution q�(z).
Stochastic Gradient Variational Bayes (SGVB) [26, 37] tackles the intractability problem of
the integral of the marginal likelihood p� (x) = ∫ p� (z)p� (x|z) and the true posterior density
p� (z|x) = p� (x|z)p� (z)/p� (x). Additionally, it addresses the problem of learning from large
datasets where batch optimization is too expensive. The key idea is to learn an approximate
model for the posterior distribution q�(z|x) and for the marginal distribution p� (x|z), and
optimizing an evidence lower bound (ELBO):

ELBO(�,�;xi) = KL(q�(z|xi)||p� (z)) −Ez∼q� (z|x) [logp� (xi |z)] (2.6)

where KL denotes the the Kullback-Leibler divergence of p from q. However, we still
need to sample from the approximate posterior distribution z ∼ q�(z|x) during the training.
To enable learning both models end-to-end through back-propagation, we can obtain a
continuous di�erentiable sampler by applying the reparametrization trick [26]:

z = � +� ∗ � (2.7a)
z ∼ (�,�) (2.7b)

where � is an auxiliary noise variable � ∼ (0,1). Here, we assume that the approximate
posterior distribution follows a Gaussian distribution (Equation (2.7b)).

2.3 Reinforcement Learning
Markov Decision Processes (MDPs) are widely used to model sequential decision making
problems. An MDP is de�ned by a set of states  and actions , a transition function
P(s, s′|a) describing the probability of transitioning to state s′ from state s by taking action
a, and a reward function r(s,a, s′) providing quantitative feedback on the action taken. A
trajectory generated by sampling actions according to the policy � is de�ned as a sequence
of states and actions, � ∼ � = (s0, a0,… , sT , aT). MDPs rely on two main assumptions [38]:

1. The problems are formulated as a sequence of independent decisions.

2. The state at time t depends only on the events at time t − 1.

The optimality of a sequence of decisions (i.e., actions) is measured by return (i.e.,
discounted sum of future rewards):

R =
K
∑
k=0

krk (2.8)

2

14 Background

where R is the return, rk the immediate reward at time step k, K ∈ [0,∞) is the episode
length and
 ∈ (0,1] is a discount factor balancing the importance of short and long term
rewards. In the reinforcement learning framework, an agent learns by interacting with the
environment and using the sequence of states, actions and rewards to improve its decision
making policy [39], as depicted in Figure 2.2.

In general, RL can be divide in two main phases: experience collection and policy
training.

Figure 2.2: RL framework: at each time-step k, the robot �rst observes its state sk , then
takes action at , leading to the immediate reward rk and next state sk+1 = P(sk , ak), under the
transition model P .

The goal of reinforcement learning algorithms is to �nd the optimal policy’s parameters
� maximizing the return for a initial distribution of states 0:

� ∗ = argmax
�

Es0∼0,a∼��R(s0) (2.9)

2.3.1 Proximal Policy Optimization

Policy gradients aim to maximize the expected total reward by estimating the gradient of
the expected total reward and optimize the policy parameters by stochastic gradient ascent.
Commonly, policy gradients estimates have the following form:

∇�L = E{
∞
∑
k=0

Âk∇� log�� (ak |sk) (2.10)

where �� is a stochastic policy, � policy’s parameters, E denotes the expectation and Âk is
an estimate of the advantage function at timestep k. An n-step estimate of the advantage
function is computed as follows:

2.3 Reinforcement Learning

2

15

Ân(sk , ak) =
n−1
∑
l=0

 lrk+l +
nV̂ (sk+n) − V̂ (sk) (2.11)

Bootstrapping methods (low n) lead to biased estimates and so, policy updates. In con-
trast, Monte-Carlo methods (large n) solve the bias issue but su�er from high variance.
Generalized Advantage Estimation (GAE) [40] proposes an optimize solution for the bias-
variance trade-o� by computing an exponentially weighted average of the n-step advantage
estimator:

ÂGAEk (�) = (1−�)
N
∑
l=0

�n−1Ân (2.12)

Nevertheless, getting good results via policy gradient methods is challenging because they
are highly sensitive to the choice of step size. Too small step size leads to slow learning
progress, and too large may lead to catastrophic drops in performance resulting in poor
sample e�ciency and requiring a large number of steps to learn simple tasks.

Proximal Policy Optimization (PPO) [41] solves the latter by proposing to constraint
the di�erences between the policy distribution before and after the optimization step.
Thus, avoiding catastrophic changes in the policy parameters by clipping gradients of the
surrogate objective:

LCLIP(�) = E�∼��old [min(ratio(�)ÂGAE , clip(ratio(�),1 − �,1+ �)ÂGAE)] (2.13)

where � is a hyperparameter limiting the policies changes and ratio(�) = log��
log��old

is the
ratio of logarithmic probability between the new and old policies.The probability ratio
term in the PPO objective employs the idea of importance sampling, allowing to evaluate
of the new policy with samples collected from the old policy and thus, improving sample
e�ciency [42].

In addition to the surrogate objective, PPO optimizes two extra objectives: a regression
loss to learn a value function enabling parameter sharing [43] between the policy and value
function and the policy’s entropy to motivate exploration [44].

LPPO = LCLIP +Lv +Lentropy (2.14)

Algorithm 2 presents the PPO pseudocode. Overall, PPO is easy to implement, sample
e�cient and easy to tune.

2

16 Background

Algorithm 2 PPO-Clip [41]
1: Input: initial policy parameters �0, initial value function parameters �0
2: for k=0,1,2, . . . do
3: Collect set of trajectories k = {�i} by running policy �k = � (�k) in the environ-

ment.
4: Compute returns estimates R̂t .
5: Compute advantage estimates, ÂGAEt (using GAE [40]) based on the current value

function V�k .
6: Update the policy by maximizing the PPO-Clip objective:

�k+1 = argmax� 1
|k |T

∑�∈k ∑
T
t=0min(

�� (at ∣st)
��k (at ∣st)

A��k (st , at) , g (�,A
��k (st , at)))

typically via stochastic gradient ascent with Adam [45].
7: Fit value function by regression on mean-squared error:

�k+1 = argmin� 1
|k |T

∑�∈k ∑
T
t=0(V� (st) − R̂t)

2
,

typically via some gradient descent algorithm.
8: end for

2.3.2 Soft Actor-Critic

Soft Actor-Critic (SAC) [46] learns a stochastic policy with entropy regularization, and
explores in an on-policy way. In an entropy-regularized reinforcement learning setting,
the goal is to �nd a policy’s parameters maximizing the expected return and the policy’s
entropy:

� ∗ = argmax
�

E
�∼�� [

∞
∑
t=0

 t (R (st , at , st+1) +�H (� (⋅ ∣ st)))]
(2.15)

where H is the entropy function and � > 0 is the exploration-exploitation trade-o� coe�-
cient.

There are di�erent variants of the SAC method. Here, we introduce the SAC variant
learning two Q-functions Q�1 ,Q�2 . Moreover, to enhance training stability SAC employs
two target networks Q�targ,1 ,Q�targ,2 .

2.3 Reinforcement Learning

2

17

Algorithm 3 Soft Actor-Critic [46]
1: 1: Input: initial policy parameters �0, Q-function parameters �1,�2 and empty replay

bu�er 
2: Set target network parameters to initial parameters �targ,1 ←�1,�targ,2 ←�2
3: repeat
4: Observe state s and take action a ∼ �� (s)
5: Observe next state s′, reward r and terminal signal d
6: Store (s,a, r , s′, terminal) in replay bu�er 
7: if terminal then
8: Reset environment
9: end if
10: if it’s time to update then
11: for j in range(nupdates) do
12: Randomly sample a batch of transitions B = {(s,a, r , s′, terminal)} from 
13: Compute target values:

y (r, s′, terminal) = r +
(1− terminal)(min
i=1,2

Q�targ ,i (s
′, ã′)−� log�� (ã ∣ s′))

(2.16)
s.t. ã′ ∼ �� (⋅ ∣ s′)

14: Update Q-functions by one step of gradient descent using

∇�i
1
|B|

∑
(s,a,r ,s′,terminal)∈B

(Q�i (s,a) −y (r, s
′, d))

2 for i = 1,2 (2.17)

15: Update policy by one step gradient ascent using

∇�
1
|B|

∑
s∈B

(min
i=1,2

Q�i (s, ã� (s)) −� log�� (ã� (s) ∣ s)) (2.18)

where ã(s) is a sample from �� (⋅|s) which is di�erentiable wrt � via the
reparametrization trick

16: Update target networks using Polyak averaging

�targ ,i ←��targ ,i + (1−�)�i for i = 1,2 (2.19)

17: end for
18: end if
19: until convergence

Algorithm 3 presents the SAC algorithm composing two phases: an exploration phase
(lines 4-9) and policy and Q-functions training phase (lines 10-17). During the exploration
phase, the agent uses the current policy to explore the environment and records the
sequence of state, action and reward tuples into a bu�er replay. During the training phase,
�rst, a batch of transitions is sampled from the replay bu�er (line 12). Then, the target values

2

18 Background

y are computed using the smaller Q-value for the target helping to fend o� overestimation
in the Q-function (Equation (2.16)). The Q-functions are updated by giving a gradient step
to minimize the mean square Bellman error (Equation (2.17)). The policy is updated by
giving a gradient ascent step to maximize the expected return and entropy (Equation (2.18)).
Finally, the target Q-functions are updated using Polyak averaging between the main and
target parameters (Equation (2.19)).

3

19

3
Literature Review

3

20 Literature Review

In this chapter, we summarize related works connected to the three main research
problems of this thesis: motion planning in dynamic environments, trajectory prediction
and learning global guidance policies. We start with reviewing the state of the art of motion
planning methods, followed by a discussion on multi-robot local motion planning.

3.1 Motion Planning in Dynamic Environments
Over the past decades, there has been a tremendous amount of works proposing motion
planning algorithms for autonomous navigation in dynamic environments, ranging from
sampling-based to learning-based methods. Although some methods can be applied to
both mobile robots and autonomous vehicles, there are some critical di�erences in the
assumptions and problem settings. Hence, in Section 3.1.1 we review the literature of
motion planning methods applied to mobile robots and in Section 3.1.2 to autonomous
vehicles.

3.1.1 Mobile Robots

Collision avoidance in static and dynamic environments can be achieved via reactive
methods, such as time-varying arti�cial potential �elds [47], the dynamic window [11],
social forces [48] and velocity obstacles [49]. Although these approaches work well in low
speed scenarios, or scenarios of low complexity, they produce highly reactive behaviours.
More complex and predictive behaviour can be achieved by employing a motion planner.
For instance, model predictive control (MPC) [21, 50] allows to obtain smooth collision-free
trajectories that optimize a desired performance index, incorporate the physical constraints
of the robot and the predicted behavior of the obstacles.

Due to the complexity of the motion planning problem, path planning and path fol-
lowing were usually considered as two separate problems. Many applications of MPC for
path-following control are found in the literature, e.g., [51, 52]. These methods assume the
availability of a collision-free smooth path to follow.

Several approaches exist for integrated path following and control for dynamic envi-
ronments. These include: employing a set of motion primitives and optimizing the control
commands to execute them [53] and o�ine computation of tracking error bounds via reach-
ability analysis that ensures a safety region around the robot for online planning [54, 55].
These approaches, however, do not allow to incorporate the predicted intentions of the
dynamic obstacles and consequently, can lead to reactive behaviors. To overcome the
latter issue, [56] proposed the model predictive contouring control (MPCC) that allows to
explicitly penalize the deviation from the path (in terms of contouring and lateral errors)
and include additional constraints. Later, [57] designed a MPC for path following within a
stable handling envelope and an environmental envelope. While [57] is tailored to automo-
tive applications without dynamic obstacles, MPCC has been employed to handle static and
dynamic obstacles in structured driving scenarios [58]. There, static collision constraints
were formulated as limits on the reference path and thus limited to on-the-road driving
scenarios. The previous approaches do not account for the interaction e�ects between the
agents and may fail in crowded scenarios, a problem known as the freezing robot problem

3.1 Motion Planning in Dynamic Environments

3

21

(FRP) [59]. Interaction Gaussian Processes (IGP) [60] can be used to model each individual’s
path. The interactions are modeled with a nonlinear potential function. The resulting
distribution, however, is intractable, and sampling processes are required to approximate
a solution, which requires high computational power and is only real-time for a limited
number of agents.

Learning-based approaches address this issue by learning the collision-avoidance strat-
egy directly from o�ine simulation data [61], or the complex interaction model from raw
sensor readings [62]. Yet, both methods learn a reactive collision avoidance policy and do
not account for the kinodynamic constraints of the robot.

3.1.2 Autonomous Driving

Recently, increasing attention has been dedicated to VRUs safety (e.g., [63–68]). In [63],
a joint team from Daimler and Karlsruhe Institute of Technology drove an autonomous
car on the Bertha Benz Memorial Route, where they had to deal with VRUs. Their planner
is divided into a behavior generation and a trajectory planning. The behavior generation
decides how to interact with static and dynamic obstacles using a state machine. The
trajectory planner computes the desired path (without taking into account the dynamics
of the vehicle) and sends it to a path-follower low-level controller. When planning the
trajectory decisions concerning the obstacles have already been made.

Commercial Autonomous Emergency Braking (AEB) systems are able to avoid collisions
with detected VRUs as long as there is a su�ciently large distance between the vehicle and
the VRU. In [64], the authors presented a pedestrian AEB analytical model to calculate the
certainty of �nding a detected pedestrian in the collision zone, by analysing the pedestrian
lateral behavior. Their model can help verify existing AEB systems and design new AEB
systems.

If the distance to perform an emergency brake is too small, evasive steering maneuvers
are required. Research on evasive steering maneuvers for active pedestrian safety is ex-
tremely active. In [65], the authors provide a driver-assistant design to decide whether to
brake or evade the crossing pedestrian based on the information provided by the perception
module. A situation analysis module automatically evaluate the criticality of the current
driving scenario. Then, a decision module decides whether to warn the driver or to trigger
the appropriate maneuvers for collision avoidance and mitigation using dedicated con-
trollers. In [66], the authors provide an overview of evasive steering techniques discussing
the potential of evasive steering vs. braking. In addition, they also detail the design of
the Daimler automatic evasion driver-assistance system for pedestrian protection. Similar
to [65], their system also relies on a situation analysis module and a decision module that
can take over control of the car to trigger an emergency maneuver. In [67], the authors pro-
pose an autonomous lane-keeping evasive maneuver that relies on the road infrastructure
(cameras placed at speci�c hazardous locations). Their method can be used to take over
control of the car to avoid collisions with a pedestrian when braking is no longer possible.
In [68], the authors present a driver assistance system to help the driver initiate an evasive
maneuver with pedestrians. The system is able to take decisions by taking into account
upcoming tra�c.

3

22 Literature Review

Sampling-based Methods

RRTs [69] can quickly search in high-dimensional spaces that have both algebraic restric-
tions arising from obstacles, and di�erential constraints arising from nonholonomic and
dynamic constraints. Hence, it makes the algorithm extremely useful for real-time applica-
tions. The algorithm incrementally builds a tree of paths by connecting randomly sampled
con�gurations using an exact [70] or approximate [69] steer function based on vehicle
kinematics or dynamics. The advantage of approximate steer methods is that they avoid
the need for solving a Boundary Value Problem (BVP) for each sample, which can be a
computationally expensive operation for di�erentially constrained systems [71]. Although
RRTs have many bene�ts concerning traditional combinatorial path planning methods, the
algorithm often converges to a sub-optimal solution [70]. This sub-optimality may express
itself in the path quality by e.g., producing a meandering path.

Early variants of the algorithm enhance the solution quality by adding an optimization
heuristic during nearest neighbor selection [72–74], or prune the path after a solution
is found [75]. However, this does not guarantee asymptotic optimality. Therefore, the
RRT* introduces a rewiring operation that can guarantee asymptotic convergence towards
the optimal solution [70, 76, 77]. Due to the number of BVP that must be solved during
rewiring, the real-time implementation may be restricted to the use of exact steer functions
only (e.g., [78]).

To avoid the need for solving a BVP, [72, 79] introduced the Closed Loop Rapidly-
exploring Random Tree (CL-RRT). This variant samples in the controller’s input space
(e.g., a path and reference velocity) instead of the vehicle inputs (e.g., steer angle and
velocity). The controller inputs are used for simulating a closed-loop trajectory of the
vehicle controlled by a lateral and a longitudinal controller.

3.2 Trajectory Prediction

3

23

3.2 Trajectory Prediction
Recently there has been an increased focus on improving prediction methods to enable
safe autonomous navigation in urban environments. Hence, the literature tackling the
prediction problem for pedestrians and other human-driven vehicles is vast, ranging from
model-based (see Section 3.2.1) to data-driven (see Section 3.2.2) methods.

3.2.1 Traditional Approaches

Early works on human motion prediction are typically model-based. In [80], a model of
human-human interactions was proposed by simulating attractive and repulsive phys-
ical forces denominated as “social forces”. To account for human-robot interaction, a
Bayesian model based on agent-based velocity space was proposed in [81]. However, these
approaches do not capture the multi-hypothesis behavior of the human motion. To accom-
plish that, [82] proposed a path prediction model based on Gaussian Processes, known
as interactive Gaussian Processes (IGP). This was done by modeling each individual’s
path with a Gaussian Process. The main drawbacks of this approach are the usage of
hand-crafted functions to model interaction, limiting their ability to learn beyond the
perceptible e�ects, and is computationally expensive.

3.2.2 Deep Learning

Recently, Recurrent Neural Networks (RNNs) have been employed in trajectory prediction
problems [83]. Building on RNNs, a hierarchical architecture was proposed in [84] and [85],
which incorporated information about the surrounding environment and other agents, and
performed better than previous models. Despite the high prediction accuracy demonstrated
by these models, they are only able to predict the average behavior of the pedestrians.

In contrast, Social LSTM [86] models the prediction state as a Bivariate Gaussian and
thus, uncertainty can be incorporated. Moreover, interaction is modeled by changing
the hidden state of each agent network according to the distance between the agents, a
mechanism know as "Social pooling". Several approaches extended the latter either by
incorporating other sources of information or proposing updates in the model architecture
improving the performance of the model. For instance, head pose information from the
other agents was incorporated in [87] resulting in a signi�cant increase of the prediction
accuracy. Context information from visual images was used to encode both human-human
and human-space interactions [88]. Social pooling has been extended to generate collision-
free predictions [89] and to preserve spatial information by employing Grid LSTMs [90].

However, previous approaches did not consider the inherent multi-modal nature of
human motions. In [91], a generative model based on Generative Adversarial Networks
(GANs) was developed to generate multi-modal predictions by randomly sampling from the
latent space. This approach was extended with two attention mechanisms to incorporate
information from scene context and social interactions [92]. However, GANs are very
susceptible to mode collapsing causing thesemodels to generate very similar trajectories. To
avoid mode collapse, a recently improved Info-GAN for multi-modal trajectory prediction
was proposed [93]. Besides, [94] proposed a di�erent training strategy to overcome the

3

24 Literature Review

latter issue and improve trajectory prediction diversity. To account for the environment
constraints, [95] proposed to include scene context information provided by a top-view
camera of the scene. However, such information is not available in a real autonomous
navigation scenario. Moreover, to improve social interaction modelling, Graph Neural
Networks have been used in [96, 97]. Nonetheless, GANs are very di�cult to train and
typically require a large number of iterations until it converges to a stable Nash equilibrium.

In contrast, the Trajectron++ [98] employs variational learning to improve training
convergence and speed. Kernel-based methods employed Mixture Density Networks
(MDNs) to build a continuous map capturing the possible motion directions [99] or to learn
a multi-model distribution over a set of trajectories [100]. Nevertheless, [101] assumes
a time-independent prior over the latent space, and [99, 100] requires a large number of
samples to produce distinct trajectories.

3.3 Learning Global Guidance Policies
A key challenge of autonomous navigation in cluttered environments is that the robot’s
global goal is often located far beyond the planning horizon, meaning that a local sub-
goal or cost-to-go heuristic must be speci�ed instead. This is straightforward in a static
environment (e.g., using euclidean/di�usion [102] distance), but the presence interactive
agents makes it di�cult to quantify which subgoals will lead to the global goal quickest.
We start with reviewing works tackling the navigation problem in crowded environments
in Sec. 3.3.1. Then, in Section 3.3.2, we review works employing learning algorithms
providing guidance information to MPC-based planning algorithms. In Section 3.3.3 we
review approaches combining MPC with RL and its application to autonomous driving in
Section 3.3.3.

3.3.1 Navigation Among Crowds

Past work on navigation in cluttered environments often focuses on interaction models
using geometry [103, 104], physics [105], topologies [106, 107], handcrafted functions
[108], and cost functions [109, 109] or joint probability distributions [110] learned from
data. While accurate interaction models are critical for collision avoidance, this work
emphasizes that the robot’s performance (time-to-goal) is highly dependent on the quality
of its cost-to-go model (i.e., the module that recommends a subgoal for the local planner).

Designing a useful cost-to-go model in this problem remains challenging, as it requires
quantifying how “good” a robot’s con�guration is with respect to dynamic, decision-making
agents. In [111], deep RL was introduced as a way of modeling cost-to-go through an
o�ine training phase; the online execution used simple vehicle and interaction models
for collision-checking. Subsequent works incorporated other interactions to generate
more socially compliant behavior within the same framework [18, 112]. To relax the need
for simple online models, [17] moved the collision-checking to the o�ine training phase.
While these approaches use pre-processed information typically available from perception
pipelines (e.g., pedestrian detection, tracking systems), other works proposed to learn end-
to-end policies [113, 114]. Although all of these RL-based approaches learn to estimate the

3.3 Learning Global Guidance Policies

3

25

cost-to-go, the online implementations do not provide guarantees that the recommended
actions will satisfy realistic vehicle dynamics or collision avoidance constraints.

3.3.2 Learning-Enhanced MPC

Outside the context of crowd navigation, numerous recent works have proposed learning-
based solutions to overcome some of the known limitations of optimization-based methods
(e.g., nonlinear MPC) [115]. For example, solvers are often sensitive to the quality of the
initial guess hence, [116] proposes to learn a policy from data that e�ciently “warm-starts”
a MPC. Model inaccuracies can lead to sub-optimal MPC solution quality; [117] proposes
to learn a policy by choosing between two actions with the best expected reward at each
timestep: one from model-free RL and one from a model-based trajectory optimizer. Alter-
natively, RL can be used to optimize the weights of an MPC-based Q-function approximator
or to update a robust MPC parametrization [118]. When the model is completely unknown,
[119] shows a way of learning a dynamics model to be used in MPC. Computation time
is another key challenge: [120] learns a cost-to-go estimator to enable shortening of the
planning horizons without sacri�cing much solution quality, although their approach
di�ers from this work as it uses local and linear function approximators which limits its
applicability to high-dimensional state spaces. Learning methods can also be used for cost
tuning. MPC’s cost functions are replaced with a value function learned via RL o�ine in
[121] (terminal cost) and [122] (stage cost).[123] deployed value function learning on a real
robot outperforming an expert-tuned MPC.

3.3.3 Combining MPC with RL

Recently, there is increasing interest on approaches combining the strengths of MPC and
RL as suggested in [124]. For instance, optimization-based planning has been used to
explore high-reward regions and distill the knowledge into a policy neural network, rather
than a neural network policy to improve an optimization. [125–127].

Similar to our approach, [128] utilizes the RL policy during training to ensure explo-
ration and employs a MPC to optimize sampled trajectories from the learned policy at test
time. Moreover, policy networks have be used to generate proposals for a sampling-based
MPC [129], or to select goal positions from a prede�ned set [130].

Nevertheless, to the extent of our knowledge, approaches combining the bene�ts of
both optimization and learning-based methods were not explored in the context of crowd
navigation. Moreover, the works exploring a similar idea of learning a cost-to-go model
do not allow to explicitly de�ne collision constraints and ensure safety. Such cost-to-go
information can be formulated as learning a value function for the ego-agent state-space
providing information which states are more valuable [122].

Application to Autonomous Driving

Recently, there is increasing interest in approaches combining optimization and learning
methods [131]. For instance, optimization-based planning has been used to explore high-
reward regions and distill the knowledge into a policy neural network [125–127]. For

3

26 Literature Review

instance, [128] utilizes the RL policy during training to ensure exploration and employs an
MPC to optimize sampled trajectories from the learned policy at test time. Similarly, [132]
uses RL to learn a driving policy and employs an MPC as a supervisor to ensure safety.
Moreover, policy networks have been used to generate proposals for a sampling-based
MPC [129] or select goal positions from a prede�ned set [130].

3.4 Interaction-aware Motion Planning
The literature devoted to the problem of modeling human interactions among tra�c
participants is vast [8] and includes rule-based, optimization-based, game theoretic and
learning-based methods.

3.4.1 Traditional Methods

Traditional autonomous navigation systems typically employ a sequential planning ar-
chitecture hierarchically decomposing the planning and decision-making pipeline into
di�erent blocks such as perception, behavioral planning, motion planning and low-level
control [7]. For instance, rule-based methods translate implicit and explicit human-driving
behavior into handcrafted functions describing a set of rules directly in�uencing the motion
planning phase. In addition to rules, risk metrics can also be employed to generate cautious
driving behavior [133]. For instance, [134] used predictive risk maps to plan the navigation
behavior for an AV. These methods have demonstrated excellent ability to solve speci�c
problems (e.g., precedence at an intersection followed by waiting for the availability of
enough free space for the vehicle to pass safely) [135–137]. Nevertheless, these methods
do not consider the interactions between multiple tra�c participants and thus can fail in
dense tra�c scenarios.

3.4.2 Search-based Methods

The decision-making problem for autonomous navigation is inherently a Partially Ob-
servable Markov Decision Process (POMDP) because the other drivers’ intentions are not
directly observable but can be estimated from sensor data [138]. To improve decision-
making and intention estimation, it has been proposed to incorporate the road context
information [139]. To deal with a variable number of agents, dimensional reduction tech-
niques have been employed to create a compressed and �xed-size representation of the
other agents information [140]. Yet, solving a POMDP online can become infeasible if the
right assumptions on the state, action and observation space are not made. For instance,
[141] proposed to use Monte Carlo Tree Search (MCTS) algorithms to obtain an approxi-
mate optimal solution online and [142] improved the interaction modeling by proposing to
feedback the vehicle commands into planning. These methods demonstrated promising
results but are limited to environments for which they were speci�cally designed, demand
high computational power and can only consider a discrete set of actions.

3.4 Interaction-aware Motion Planning

3

27

3.4.3 Optimization-based Methods

Optimization-based methods are widely used for motion planning since they allow to de�ne
collision and kino-dynamics constraints explicitly. These methods include receding-horizon
control techniques which allow to plan in real-time and incorporate predicted information
by optimizing over a time horizon [8, 143, 144]. However, these works employ simple
prediction models and do not consider interaction. Recently, data-driven methods allow
to generate interaction-aware predictions [145] that can be used for planning [146, 147].
However, these methods ignore the in�uence of the ego vehicle’s actions in the planning
phase struggling to �nd a collision free trajectory in highly dense tra�c scenarios [82].
Not only motion planners must account for the interaction among the driving agents but
also generate motions plans which respect social constraints. Hence, to generate socially
compatible plans, Inverse Optimal Control techniques have been used to learn human-
drivers preferences [148], [149]. These methods either fail to scale to interact with multiple
agents [148] or can only handle a discrete set of actions [149] rendering them incapable to
be used safely in highly interactive and dense tra�c scenarios.

3.4.4 Game Theoretic Methods

Game Theoretic approaches such as [15] model the interaction among agents as a game
allowing to infer the in�uence on each agent’s plans. However, the task of modeling
interactions requires the inter-dependency of all agents on each other’s actions to be
embedded within the framework. This results in an exponential growth of interactions as
the number of agents increases, rendering the problem computationally intractable. Social
value orientation (SVO) is a psychological metric used to classify human driving behavior.
[14] models the interaction problem as a dynamic game given the other driver‘s SVO.
Similarly, a unscented Kalman �lter is used to iteratively update an estimate of the other
drivers‘cost parameters [16]. Nevertheless, these approaches require local approximations
to �nd a solution in a tractable manner. Cognitive hierarchy reasoning [150] allows to
reduce the complexity of these algorithms by assuming that an agent performs a limited
number of iterations of strategic reasoning. For instance, iterative level-k model based
on cognitive hierarchy reasoning [150] has been used to obtain a near optimal policy for
performing merge maneuvers [151] and lane change [152] in highly dense tra�c scenarios.
However, these approaches consider a discrete action space and do not scale well with the
number of vehicles.

3.4.5 Learning-based Methods

Learning-based approaches leverage on large data collection to build interaction-aware
prediction models [145] or to learn a driving policy directly from sensor data [32]. For
instance, generative adversarial networks can be used to learn a driving policy imitating
human-driving behavior [153]. Conditioning these policies on high-level driving informa-
tion allows to use it for planning [154]. Moreover, to account for human-robot interaction
these policies can be conditioned on the interaction history [155]. Yet, the deployment of
these models can lead to catastrophic failures when evaluated in new scenarios or if the
training dataset is biased and unbalanced [156].

3

28 Literature Review

Reinforcement Learning (RL) has shown great potential for autonomous driving in
dense tra�c scenarios [157, 158]. For example, DQN has been employed to learn negotiating
behavior for lane change [159, 160] and intersection scenarios [161]. Yet, the latter consider
a discrete and limited action space. In contrast, in [162] it is proposed to learn a continuous
policy (jerk and steering rate) allowing to achieve smooth control of the vehicle. These
methods are able to learn a working policy under highly interactive tra�c conditions
involving multiple entities. However, they fail to provide safety guarantees and reliability,
rendering these methods vulnerable to collisions. Recently, a vast amount of works has
proposed di�erent ways to introduce safety guarantees of learned RL policies [115]. The key
idea behind theseworks is to synthesize a safety controller when an unsafe action is detected
by employing formal veri�cation methods [163], computing o�ine safe reachability sets
[164] or employing safe barrier functions [165]. To reduce conservativeness, [166] proposes
to use Linear Temporal Logic to enforce safety probabilistic guarantees. However, safe
RL methods do not account for interaction among the agents, being highly conservative
in dense environments. Finally, [167] learned a decision-making policy to select from
a discrete and limited set of prede�ned constraints which ones to enable in an MPC
formulation and thus, controlling the vehicle behavior applied to intersection scenarios.

3.5 Conclusions
The previous sections have introduced many works proposing new motion planning,
prediction, and decision-making techniques. Here, we provide some overall conclusions on
the most promising methods used to solve the motion planning, prediction, and decision-
making problems.

Related to motion planning, modern solvers enabled optimization methods to perform
real-time motion planning [168]. Therefore, techniques such as Model Predictive Control
[21, 169] became highly promising, allowing to incorporate constraints, generate kino-
dynamically feasible solutions and incorporate prediction information in the planning
stage.

On the trajectory prediction problem, over the past decade, Deep Learning (DL) models
[34] (i.e., neural networks) have dominated the �eld enabling us to learn prediction models
incorporating high-dimensional information from large amounts of data [170]. Moreover,
in combination with variational Bayesian learning methods [171], neural networks are a
powerful tool to learn complex probability models from data.

Finally, to tackle the decision-making problem, Reinforcement Learning [38] methods
are widely employed due to their ability to lean policy optimizing long-term rewards.
Furthermore, in combination with high capacity models such as neural works (i.e., Deep
Reinforcement Learning (DRL) [172]) methods have demonstrated to achieve super human
capabilities in many complex problems [173].

Hence, the methods developed in this thesis build upon three main pillars: MPC, DL,
and DRL.

4

29

4
Model Predictive Contouring

Control for Collision Avoidance
in Dynamic Environments

This chapter is based on:

• B. Brito, B. Floor, L. Ferranti and J. Alonso-Mora, "Model predictive contouring control for collision
avoidance in unstructured dynamic environments," IEEE Robotics and Automation Letters, 4(4): 4459-4466,
2019

• L. Ferranti, B. Brito, E. Pool, Y. Zheng, R. Ensing, R. Happee, B. Shyrokau, J. Kooij, J. Alonso-Mora and D.
Gavrila, "SafeVRU: A research platform for the interaction of self-driving vehicles with vulnerable road
users," IEEE Intelligent Vehicles Symposium (IV) (pp. 1660-1666), 2019.

Code: https://github.com/tud-amr/amr-lmpcc

4

30 Model Predictive Contouring Control for Collision Avoidance in Dynamic Environments

4.1 Introduction
Applications where autonomous ground vehicles (AGVs) closely navigate with humans in
complex environments require the AGV to safely avoid static and moving obstacles while
making progress towards its goal. Motion planning and control for AGVs are typically
addressed as two independent problems [8]. In particular, the motion planner generates a
collision-free path and the motion controller tracks such a path by directly commanding the
AGV’s actuators. Our method combines both motion planning and control in one module,
relying on constrained optimization techniques, to generate kinematically feasible local
trajectories with fast replanning cycles. More speci�cally, we rely on a Model Predictive
Controller (MPC) to compute an optimal control command for the controlled system, which
directly incorporates the predicted intentions of dynamic obstacles. Consequently, it reacts
in advance to smoothly avoid moving obstacles.

Here, we propose a practical reformulation of the Model Predictive Contouring Control
(MPCC) approach [58], namely, a Local Model Predictive Contouring Control (LMPCC)
approach, suitable for real-time collision-free navigation of AGVs in complex environments
with several agents. We build on [58], with the following contributions to make the design
applicable to mobile robots navigating in unstructured environments with humans:

• A static obstacle avoidance strategy that explicitly constrains the robot’s positions
along the prediction horizon to a polyhedral approximation of the collision-free area
around the robot.

• A closed-form bound to conservatively approximate collision avoidance constraints
that arise from ellipsoidal moving obstacles.

• A fully integrated MPCC approach that runs in real-time on-board of the robot and
with on-board perception.

We present experimental results with a mobile robot navigating in indoor environments
among static and moving obstacles and compare them with three state-of-art planners,
namely the dynamic window [11], a classical MPC for tracking [52] and a socially-aware
motion planner [174]. Our design is fully implemented on board of the robot including
localization and environment perception, i.e., detection of static obstacles and pedestrians.
Our design runs in real time thanks to its lightweight implementation. Moreover, in Section
4.5 we present experimental results with a real autonomous vehicle. The proposed method
has been open-sourced1.

1https://github.com/tud-amr/amr-lmpcc

4.2 Preliminaries

4

31

Figure 4.1: The faculty corridor was the scenario used to evaluate the capabilities of our method
to avoid dynamic obstacles.

4.2 Preliminaries

4.2.1 Robot Description

Let B denote an AGV on the plane  = ℝ2. The AGV dynamics are described by the
discrete-time nonlinear system

z(t + 1) = f (z(t),u(t)), (4.1)

where z(t) and u(t) are the state and the input of the robot, respectively, at time t ≥ 02. For
the case of our mobile robot we consider the state to be equal to the con�guration, that is,
z(t) ∈  = ℝ2 × . For the case of a car (Sec. 4.5), the state space includes the speed of the
car. The area occupied by the robot at state z is denoted by (z). which is approximated
by a union of nc circles, i.e., (z) ⊆ ⋃c∈{1,…,nc}c (z) ⊂ . The center of each circle, in the
inertial frame, is given by p+RWB (z)pBc . Where p is the position of the robot (extracted
from z), RWB (z) is the rotation matrix given by the orientation of the robot, and pBc is the
center of circle c expressed in the body frame.

4.2.2 Static Obstacles

The static obstacle environment is captured in an occupancy grid map, where the area
occupied by the static obstacles is denoted by static ⊂ . In our experiments we consider
both a global map, which is built a priori and used primarily for localization, and a local
map from the current sensor readings. Therefore, the static map is continuously updated

2In the remainder of the chapter we omit the time dependency when it is clear from the context.

4

32 Model Predictive Contouring Control for Collision Avoidance in Dynamic Environments

locally. Dynamic obstacles, such as people, that are recognized and tracked by the robot
are removed from the static map and considered as moving obstacles.

4.2.3 Dynamic Obstacles

Eachmoving obstacle i is represented by an ellipse of areai ⊂ , de�ned by its semi-major
axis ai , its semi-minor axes bi , and a rotation matrix Ri(). We consider a set of moving
obstacles i ∈  ∶= {1,…,n}, where n can vary over time. The area occupied by all moving
obstacles at time instant t is given by dyn

t = ⋃i∈{1,…,n}i(zi(t)), where zi(t) denotes the
state of moving obstacle i at time t . In this work, and without a loss of generality, we
assume a constant velocity model with Gaussian noise !o(t) ∼ (0,Qo(t)) in acceleration,
that is, p̈i(t) = !i(t), where pi(t) is the position of obstacle i at time t . Given the measured
position data of each obstacle, we estimate their future positions and uncertainties with a
linear Kalman �lter [175].

4.2.4 Global Reference Path

Consider that a reference path is available. In its simplest form, the reference path can be
a straight line to the goal position or a straight line in the direction of preferred motion.
But it could also be given by a global planner. We consider a global reference path 
consisting of a sequence of path segments connecting M way-points prm = [xpm , y

p
m] ∈

with m ∈ ∶= {1,…,M}. For smoothness, we consider that each path segment &m(�) is
de�ned by a cubic polynomial. We denote by � a variable that (approximately) represents
the traveled distance along the reference path, and which is described in more detail in Sec.
4.3.3. We do not require the reference to be collision free, therefore, the robot may have to
deviate from it to avoid collisions.

4.2.5 Problem Formulation

The objective is to generate, for the robot, a collision free motion for N time-steps in the
future, while minimizing a cost function J that includes a penalty for deviations from the
reference path. This is formulated in the optimization problem

J ∗ = min
z0∶N ,u0∶N−1,�0∶N−1

N−1
∑
k=0

J (zk ,uk , �k) + J (zN , �N)

s.t. zk+1 = f (zk ,uk), �k+1 = �k +vk� , (4.2a)

(zk) ∩ (static ∪dyn
k) = ∅, (4.2b)

uk ∈ , zk ∈, z0, �0 given. (4.2c)

Where vk is the forward velocity of the robot (for the mobile robot it is part of the input and
for the car it is part of the state), � is the time-step and  and  are the set of admissible
states and inputs, respectively. z1∶N and u0∶N−1 are the set of states and control inputs,
respectively, over the prediction horizon Thorizon, which is divided into N prediction steps.
�k denotes the predicted progress along the reference path at time-step k. By solving the
optimization problem, we obtain a locally optimal sequence of commands [u∗t]t=N−1

t=0 to

4.3 Method

4

33

Figure 4.2: Representation of the convex free space (orange squares) around each prediction
step on the prediction horizon (purple line) with respect to the in�ated static environment
and the collision space of the dynamic obstacle (green ellipses) with respect to the vehicle
representing discs (blue).

guide the robot along the reference path while avoiding collisions with static and moving
obstacles.

4.3 Method
The proposed method consists of the following steps, which are executed in every planning
loop.

1. Search for a collision-free region in the updated static map centered on the robot
and constrain the control problem such that the robot remains inside;

2. Predict the future positions of the dynamic obstacles and use the corrected bound to
ensure dynamic collision avoidance;

3. Solve a modi�ed MPCC formulation applicable to mobile robots (Section 4.3.3).

4.3.1 Static Collision Avoidance

Given the static map of the environment, we compute a set of convex four-sided polygons
in free space. This representation can provide larger collision-free areas compared with
other approximations such as circles. To obtain the set of convex regions at time t , we �rst
shift the optimal trajectory computed at time t − 1, namely, q0∶N = [p∗1∶N |t−1,qN], where
qN is a extrapolation of the last two points, that is, qN = 2p∗N |t−1 −p

∗
N−1|t−1. Then, for each

point qk (k = 1, ...,N) we compute a convex region in free space, given by a set of four linear
constraints cstatk (pk) = ⋃4

l=1 c
stat,l
k (pk). This region separates qk from the closest obstacles.

4

34 Model Predictive Contouring Control for Collision Avoidance in Dynamic Environments

β

b+ r

disc

b

r

disc

a+ r

disc

a

α

Figure 4.3: Safety boundary computation. The ellipsoid with semi-major axis and semi-minor
axis, a and b respectively, is represented in green, the ellipsoid with axis enlarged by rdisc is
represented in gray, the Minkowsky sum is represented in black and the ellipsoid enlarged by
� is represented in red.

In our implementation we compute a rectangular region aligned with the orientation of the
trajectory at qk , where each linear constraint is obtained by a search routine and reduced
by the radius of the robot circles rdisc. Figure 4.2 shows the collision-free regions along the
prediction horizon de�ned as yellow boxes. At prediction step k for a robot with state z
the resulting constraint for disc j and polygon side l is

cstat,l,j (z) = ℎl −n⃗l ⋅ (p − RWB (z)pBj) > 0, (4.3)

where ℎl and n⃗l de�ne each side of the polygons.

4.3.2 Dynamic Collision Avoidance

Recall that each moving obstacle i is represented by its position pi(t) and an ellipse of semi-
axis ai and bi and a rotation matrix Ri(). For each obstacle i ∈ {1,…,n}, and prediction
step k, we impose that each circle j of the robot does not intersect with the elliptical area
occupied by the obstacle. Omitting i for simplicity, the inequality constraint on each disc
of the robot with respect to the obstacles is

cobst,jk (zk)=[
Δx jk
Δy jk]

T
R()T

[

1
�2 0
0 1

�2]
R()[

Δx jk
Δy jk]

> 1, (4.4)

where the distance between disc j and the obstacle is separated into its Δx j and Δy j
components (Figure 4.2). The parameters � and � are the semi-axes of an enlarged ellipse
that includes the union of the original ellipse and the circle.

While previous approaches approximated the Minkowski sum of the ellipse with the
circle as an ellipse of semi-major � = a + rdisc and semi-minor axis � = b + rdisc [58], this

4.3 Method

4

35

assumption is not correct and collisions can still occur [176]. We now describe how to
compute the values for � and � such that collision avoidance is guaranteed, represented by
the larger in light red ellipsoid in Fig. 4.3.

Consider two ellipsoids E1 =Diag(1
a2

1
b2) and E2 =Diag(

1
(a+�)2 ,

1
(b+�)2). E1 is an ellipsoid

with a and b as semi-major and semi-minor axes, respectively. E2 represents the ellipsoid
E1 enlarged by � in both axis. The goal is to �nd the smallest ellipsoid that bounds the
Minkowsky sum. This is equivalent to �nd the minimum value of � such that the minimum
distance between ellipsoid E1 and E2 is bigger than r3, the radius of the circle bounding
the robot.

Lemma 1 ([177]). Let XTA1X = 1 and XTA2X = 1 be two quadratics in Rn . I� the matrix
A1 −A2 is sign de�nite, then the square of the distance between the quadratic XTA1X = 1 and
the quadratic XTA2X = 1 equals the minimal positive zero of the polynomial.

F (z) = D�(det�A1 + (z −�A2) − �(z −�A1A2))

where D stands for the discriminant of the polynomial treated with respect to �.

Considering A1 = E1, A2 = E2 and {�,a,b,} ∈ R+ this ensures that E1 −E2 is sign de�nite.
Hence, we can apply Lemma 1 to determine the polynomial F (z) and its roots. For the two
ellipsoids E1 and E2, the roots � of F (z) are:

� ∈

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

(2a(r + �)3 +2b(r + �)3 +4ab(r + �)2

(a2 +2ab +2ra +b2 +2rb
,

(r + �)2,

4a2 +4a(r + �)+ (r + �)2,

4b2 +4b(r + �)+ (r + �)2

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

. (4.5)

The �rst two roots have multiplicity two. The minimum distance equation is the square
root of the minimal positive zero of F (z). Thus, the minimum enlargement factor is found
by solving for the value of � that satis�es minj �(j) = r2.

A closed form formula can be obtained by noting that the minj �(j) is achieved for the
�rst root and solving this equation. Due to its length, it is not presented in this paper
but can be found at 4. This value of semi-axis � = a + � and � = b + � guarantee that the
constraint ellipsoid entirely bounds the collision space.

3Note we use r instead of rdisc in the reminder of the section to simplify the notation.
4A Mathemathica notebook with the derivation of the bound and a Matlab script as example of its computation
can be found in http://www.alonsomora.com/docs/19-debrito-boundcomputation.zip.

4

36 Model Predictive Contouring Control for Collision Avoidance in Dynamic Environments

4.3.3 Model Predictive Contouring Control

MPCC is a formulation specially tailored to path-following problems. This section presents
how to modify the baseline method [58] and make it applicable to mobile robots navigating
in unstructured environments with on-board perception.

Progress on Reference Path

Eq. 4.2 approximates the evolution of the path parameter by the traveled distance of the
robot. In each planning stage we initialize �0. We �nd the closest path segment, denoted
by m, and compute the value of �0 via a line search in the neighborhood of the previously
predicted path parameter.

Selecting the Number of Path Segments

As detailed in Section 4.2.4, the global reference is composed of M path segments. To
lower the computational load, only � ≤ M path segments are used to generate the local
reference that is incorporated into the optimization problem. The number of path segments
� cannot be arbitrarily small, and there is a minimum number of segments to be selected
to ensure the robot follows the reference path along a prediction horizon. The number of
path segments � in the local reference path is a function of the prediction horizon length,
the individual path segment lengths, and the speed of the robot at each time instance.
We select a conservative � by considering the maximum longitudinal velocity vmax and
imposing that the covered distance is lower than a lower bound of the travelled distance
along the reference path, namely,

�
N−1
∑
j=0

vj

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Traveled dist.

≤�Nvmax≤
m+�
∑
i=m+1

||pri+1 −p
r
i ||

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Waypoints dist.

≤
m+�
∑
i=m+1

si
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Ref. path length

, (4.6)

where m is the index of the closest path segment to the robot, � is the length of the
discretization steps along the horizon, and si the length of each path segment.

Maintaining Continuity over the Local Reference Path

We concatenate the � reference path segments into a di�erentiable local reference path Lr ,
which will be tracked by the LMPCC, as follows

p̄r (�k) =
m+�
∑
i=m

�i,+(�k)�i,−(�k)&i(�k), (4.7)

where �i,−(�k) = 1/(1 + e(�−∑
i
j=m si)/�) and �i,+(�k) = 1/(1 + e(−�+∑

i−1
j=m si)/�) are two sigmoid

activation functions for each path segment and � is a small design constant. This represen-
tation ensures a continuous representation of the local reference path needed to compute
the solver gradients.

4.3 Method

4

37

Figure 4.4: Approximated contour and lag errors on the path segment.

Cost Function

For tracking of the reference path, a contour and a lag error are de�ned, see Figure 4.4 and
combined in an error vector ek ∶= [�̃c (zk , �k), �̃l (zk , �k)]T, with

ek = [
sin�(�k) −cos�(�k)
−cos�(�k) −sin�(�k)](

pk − p̄
r (�k)), (4.8)

where �(�k) = arctan()yr (�k)/)xr (�k) is the direction of the path. Consequently, the LMPCC
tracking cost is

Jtracking(zk , �k) = eTk Q�ek , (4.9)
where Q� is a design weight.

The solution which minimizes the quadratic tracking cost de�ned in Eq. 4.9 drives the
robot towards the reference path. To make progress along the path we introduce a cost
term that penalizes the deviation of the robot velocity vk from a reference velocity vref, i.e.,
Jspeed(zk ,uk) = Qv(vref −vk)2 with Qv a design weight. This reference velocity is a design
parameter given by a higher-level planner and can vary across path reference segments.

To increase the clearance between the robot and moving obstacles, we introduce an
additional cost term similar to a potential function,

Jrepulsive(zk) = QR
n
∑
i=1(

1
(Δxk)2 + (Δyk)2 +
)

, (4.10)

where QR is a design weight, and Δxk , Δyk represent the components of the distance from
the robot to the dynamic obstacles. A small value
 ≥ 0 is introduced for numerical stability.

4

38 Model Predictive Contouring Control for Collision Avoidance in Dynamic Environments

Algorithm 4 Local Model Predictive Contouring Control

1: Given zinit, zgoal, static, dyn
0 , and N

2: for t = 0,1,2, ... do
3: z0 = zinit
4: Estimate �0 according to Section 4.3.3
5: Select � according to Equation (4.6)
6: Build p̄r (�k), k = 1, ...,N , according to Equation (4.7)
7: Compute cstat,jk (pk) along q0∶N
8: Get dynamic-obstacles predicted pose (Sec. 4.3.2)
9: Solve the optimization problem of Equation (4.11)
10: Apply u∗0
11: end for

Eq. 4.10 adds clearance with respect to obstacles and renders the method more robust to
localization uncertainties. Additionally, we penalize the inputs with Jinput(zk , �k) = uTk Quuk ,
where Qu is a design weight.

The LMPCC control problem is then given by a receding horizon nonconvex optimiza-
tion, formally,

J ∗= min
z0∶N ,u0∶N−1,�0∶N

N−1
∑
k=0

J (zk ,uk , �k)+J (zN , �N) (4.11a)

s.t. ∶ (4.2a), (4.2c), (4.11b)

cstat,l,jk (zk) > 0, ∀j ∈ {1,…,nc}, l ∈ {1, ..., 4} (4.11c)

cobst,jk (zk) > 1, ∀j ∈ {1,…,nc}, ∀obst (4.11d)

where the stage cost is J (zk ,uk , �k) ∶= Jtracking(zk , �k)+Jspeed(zk ,uk)+Jrepulsive(zk)+Jinput(uk)
and the terminal cost is J (zN , �N) ∶= Jtracking(zN , �N) + Jrepulsive(zN). Eq. 11c and Eq. 11d
are de�ned by Eq. 4.3 and Eq. 4.4, respectively. Algorithm 4 summarizes our method. Note
that at each control iteration, we solve (using [3]) Problem (4.11) until either a Karush-Kuhn-
Tucker condition [27] or the maximum number of iterations (itermax) is satis�ed (line
9). The selection of itermax is empirically based on the maximum number of iterations
allowed within the sampling time of our system to guarantee real-time performance.

4.4 Results - Mobile Robot

4

39

4.4 Results - Mobile Robot
This section presents experimental and simulation results for three scenarios with a mobile
robot. We evaluate di�erent settings for the parameters in our planner (Section 4.4.2),
as well as compare its performance in static (Section 4.4.3) and dynamic (Section 4.4.4)
environments against state of art motion planners [11, 52, 174]. In Section 4.5, we present
experimental results on a real autonomous vehicle.

4.4.1 Experimental Setup

Hardware Setup

Our experimental platform is a fully autonomous Clearpath Jackal ground robot, for
which we implemented on-board all the modules used for localization, perception, motion
planning, and control. Our platform is equipped with an Intel i5 CPU@2.6GHz, which is
used to run the localization and motion planning modules, a Lidar Velodyne for perception,
and an Intel i7 NUC mini PC to run the pedestrian tracker.

Software Setup

To build the global reference path we �rst de�ne a series of waypoints and we construct
a smooth global path by connecting the waypoints with a clothoid. We then sample
intermediate waypoints from this global path and connect themwith 3rd order polynomials,
which are then used to generate the local reference path.

The robot localizes with respect to a map of the environment, which is created before
the experiments. For static collision avoidance the robot utilizes a map that is updated
online with data from its sensors and we employ a set of rectangles to model the free space.
Our search routine expands the sides of a vehicle-aligned rectangle simultaneously in the
occupancy grid environment with steps of Δsearch = 0.05m, until either an occupied cell
is found or the maximum search distance Δsearch

max = 2m is reached. Once an expanding
rectangle side is �xed as a result of an occupied cell, the rest of the rectangle sides are
still expanded to search for the largest possible area. This computation runs in parallel to
the LMPCC solver, in a di�erent thread, and with the latest available information. Our
experiments employ the open-source SPENCER Pedestrian tracker and 2d laser data [178]
for detection and tracking of dynamic obstacles. If a pedestrian is detected, it is removed
from the static map and treated as a moving ellipse. Our simulations use the open-source
ROS implementation of the Social Forces model [105] for pedestrian simulation.

The LMPCC problem of Eq. 4.11 is nonconvex. Our planner solves this problem online
in real time using ACADO [179] and its C-code generation tool. We use a continuous-time
kinematic unicycle motion model [180] to describe the robot’s kinematics. The model is
then discretized directly in ACADO using a multiple-shooting method combined with a
Gauss-Legendre integrator of order 4, no Hessian approximations, and a sampling time
of 50 ms. We select qpOASES [181] to solve the resulting QP problem and set a KKT
tolerance of 10−4 and a maximum of 10 iterations. If no feasible solution is found within
the maximum number of iterations, then the robot decelerates. The planner computes

4

40 Model Predictive Contouring Control for Collision Avoidance in Dynamic Environments

a new solution in the next cycle. Based on our experience, this allowed to recover the
feasibility of the planner quickly. Our motion planner is implemented in C++/ROS and
will be released open source.

a) Visualization b) Top view

Figure 4.5: Experimental setup considering perfect perception and localization using a motion
capture system for performance evaluation.

4.4.2 Parameter Evaluation

To evaluate the performance of the planner we performed several experiments at di�erent
reference speeds, vref ∈ {1m/s, 1.25m/s, 1.5m/s}, and prediction-horizon lengths, THorizon ∈
{1s, 3s, 5s}. The robot follows a �gure-8 path (red line in Figure 4.5-(a)) while avoiding two
pedestrians (green ellipses) and staying within the collision-free area (yellow rectangles).
We use one circle to represent the planned position of the robot (light blue circles). Each
pedestrian is bounded by an ellipse of semi-axis 0.3 m and 0.2 m. The predicted positions
of the pedestrians are represented by a green line. We align the semi-minor axis to the
pedestrian walking direction. For this experiment we rely on a motion capture system
to obtain the position of the obstacles and robot. Figure 4.6 shows the computation time
to solve the optimization problem. For vref ∈ {1,1.25,1.5} m/s and THorizon ∈ {1,3} s the
computation times are under 50 ms, which is lower than the cycle-time de�ned for the
planner. But, for THorizon = 5 s the 99th percentile is above the 50ms, not respecting the
real-time constraint. The cases in which the planner exceeds the sampling time of the
system are the situations in which the pedestrians suddenly step in front of the robot or
change their direction of motion, requiring the solver more iterations to �nd a feasible
solution. If not all the constraints can be satis�ed, our problem becomes infeasible, and no
solution is found. In this case, we reduce the robot velocity, allowing the solver to recover
the feasibility after few iterations. Table 4.1 summarizes the behavior of the planner in
terms of clearance, that is, the distance from the border of the circle of the robot to the
border of the ellipse de�ning the obstacles. It demonstrates that a short horizon leads to

4.4 Results - Mobile Robot

4

41

Figure 4.6: Computation time required to solve the LMPCC problem online for di�erent velocity
references and horizon lengths. The central mark indicates the median. The bottom and top
edges of the box indicate the 25th and 75th percentiles, respectively. The red crosses represent
the outliers.

Table 4.1: Clearance between the robot and the dynamic obstacles for di�erent velocity refer-
ences and horizon lengths.

Prediction Horizon [s] Clearance Mean (1st percentile) [m]
vref = 1 vref = 1.25 vref = 1.5

1 1.54 (0.077) 1.60 (0.025) 1.69 (0.003)
3 1.66 (0.077) 1.69 (0.072) 1.82 (0.065)
5 1.69 (0.062) 1.68 (0.055) 1.92 (0.043)

lower safety distances and more importantly, that our method was able to keep a safe
clearance in most cases.

Based on these results, we selected a reference speed of 1.25 m/s and a horizon length
of 3 s for the following experiments.

4.4.3 Static Collision Avoidance

In this experiment we compare the proposed planner with two baseline approaches:

• A MPC tracking controller [52]. We minimize the deviation from positions on the
reference path up to 1 m ahead of the robot.

• The Dynamic Window (DW) [11]. We use the open-source ROS stack implementation.
TheDWmethod receives the next waypoint once the distance to the current waypoint
is less than 1 m.

For this and the following experiment, we fully rely on the onboard localization and
perception modules. A VLP16 Velodyne Lidar is used to build and update a local map
centered in the robot for static collision avoidance. The prebuilt o�ine map is only used
for localization.

In this experiment the mobile robot navigates along a corridor while tracking a global
reference path (red waypoints in Figure 4.7). When it encounters automatic doors, the

4

42 Model Predictive Contouring Control for Collision Avoidance in Dynamic Environments

Figure 4.7: Static collision avoidance scenario. The red crosses depict the path to follow
(waypoints) and the colored points are the laser scan data. The blue, green, and magenta
lines represent the trajectory obtained with the LMPCC,the MPC tracking controller, and the
Dynamic Window, respectively.

robot must wait for them to open. When it encounters the obstacle located near the third
upper waypoint from the left, which was not in the map, the robot must navigate around
it. Figure 4.7 shows the results of this experiment. All the three approaches are able to
follow the waypoints and interact with the automatic door. When they encounter the
second obstacle the classical MPC design fails to proceed towards the next waypoint. The
DW and the LMPCC approaches are able to complete the task. Both methods showed
similar performance (e.g., the traveled distance was 30.59 m for our LMPCC and 30.61 m
for the DW). The time to the goal was relatively higher for the DW (50 s) compared to
the LMPCC (41 s). This di�erence is mainly due to the ability of the LMPCC to follow
a reference velocity. In addition, we tested DW and LMPCC in a scenario where half of
the �rst door does not open due to malfunction. In such scenario, the LMPCC was able
to traverse around the broken door while the DW gets into a deadlock state due to the
narrow opening.

4.4.4 Dynamic Collision Avoidance

Our simulations compare our planner with an additional baseline: a socially-aware motion
planner named Collision Avoidance with Deep RL (CADRL) [174]. We employ the open-
source ROS stack implementation. The CADRL method receives the same waypoints as
the DW method.

Simulation Results

We compare the performance of the MPCC planner with the DW and CADRL baselines
in the presence of pedestrians. Figure 4.1 shows the setup of our experiment. To avoid

4.4 Results - Mobile Robot

4

43

the overlap of the static and dynamic collision constraints, the detected pedestrians are
removed from the updated map used for static avoidance and modeled as ellipses with a
constant velocity estimate. The global path, consists of a straight line along the corridor.
The robot has to follow this path while avoiding collisions with several pedestrians moving
in the same or opposite direction. In this experiment, we do not evaluate the MPC tracking
controller since it was unable to complete the previous experiment. Aggregated results in
Table 4.2 show that the LMPCC outperforms the other methods. It achieves a considerably
lower failure rate, smaller traveling distances, and maintains larger safety distances to the
pedestrians. Only for the four pedestrians case, the DW achieved larger mean clearance,
but with larger standard deviation. By accounting for the predictions of the pedestrians,
our method can react faster and thus generate safer motion plans. Table 4.2 also shows
that the number of failures grows with the number of agents. Yet, our method can scale up
to six pedestrians with low collision probability and perform real-time. For larger crowds
our method would select the closer 6 pedestrians.

4

44 Model Predictive Contouring Control for Collision Avoidance in Dynamic Environments

Ta
bl
e
4.
2:
St
at
is
tic

re
su
lts

of
m
in
im

um
di
st
an

ce
to

th
e
pe
de
st
ri
an

s
(w
he
re
cl
ea
ra
nc
e
is
de
�n

ed
as

th
e
bo
rd
er

to
bo
rd
er

di
st
an

ce
),
tr
av
el
in
g

di
st
an

ce
an

d
pe
rc
en
ta
ge

of
fa
ilu

re
so

bt
ai
ne
d
fo
r
10
0
ra
nd

om
te
st
ca
se
so

ft
he

dy
na

m
ic
co
lli
si
on

av
oi
da
nc
e
ex
pe
ri
m
en
tf
or
n
∈
{2
,4
,6
}
ag
en
ts
.

Th
e
pe
de
st
ri
an

s
fo
llo
w
th
e
so
ci
al

fo
rc
es

m
od
el
[1
05
].

#
ag
en
ts

Cl
ea
ra
nc
e
M
ea
n
(1
st
pe
rc
en
til
e)
[m

]
%
fa
ilu

re
s(
%
co
lli
sio

ns
/%

st
uc
k)

Tr
av
el
ed

di
st
an
ce

M
ea
n
(S
td
.)
[m

]
D
W

CA
D
RL

LM
PC

C
D
W

CA
D
RL

LM
PC

C
D
W

CA
D
RL

LM
PC

C
2

0.2
8
(0
)

0.1
5
(0
)

0.
29

(0
.01

5)
20

(1
9
/1

)
4
(4

/0
)

2
(0

/2
)

17
.99

(3
.9)

19
.27

(3
.7)

15
.8
1

(3
.2)

4
0.
46

(0
)

0.3
2
(0
)

0.
25

(0
.02

6)
35

(3
2
/3

)
31

(3
1
/0

)
5
(2

/3
)

19
.43

(5
.6)

21
.34

(4
.4)

15
.7
7

(4
.4)

6
0.0

6
(0
)

0.3
3
(0
)

0.
38

(0
.01

3)
43

(4
1
/2

)
51

(5
1
/0

)
7
(5

/2
)

21
.09

(4
.8)

18
.97

(5
.6)

16
.1
3

(1
.9)

4.4 Results - Mobile Robot

4

45

LMPCC
waypoint

(a) LMPCC

Dynamic Window
waypoint

(b) Dynamic Window

Figure 4.8: Dynamic collision avoidance scenario. The red crosses represent the global path
to follow (waypoints). The blue and magenta lines represent the trajectory executed by our
LMPCC (top) and by the Dynamic Window (bottom), respectively. The trajectories of the two
pedestrians are represented by the green and magenta circles. In the lower case (dynamic
window) the robot reacts late and the pedestrians must actively avoid it.

Experimental Results

We use the previous setup to compare the LMPCC and DW methods on a real scenario
with two pedestrians. We do not test the CADRL method because the current open-source
implementation does not allow static collision avoidance for unconstrained scenarios such
as the faculty corridor depicted in Figure 4.8. Figure 4.8 shows one representative run of
our method (top) and the DW (bottom). We observe that the proposed method reacts in
advance to avoid the pedestrians, resulting in a larger clearance distance. In contrast, the
DW reacts late to avoid the pedestrian, which has to avoid the robot himself actively. Our
proposed method was able to navigate safely in all of our experiments with static and two
pedestrians.

4

46 Model Predictive Contouring Control for Collision Avoidance in Dynamic Environments

4.5 Results - Autonomous Car
To validate the applicability of our method to more complex robot models, we have per-
formed a simulation and real experiments on an autonomous vehicle.

The planner commands the acceleration and front steering. The car follows a global
reference path while staying within the road boundaries (i.e., the obstacle-free region) and
avoiding moving obstacles (such as a simulated cyclist proceeding in the direction of the
car and a pedestrian crossing the road in front of the car).

The simulation setup uses a 9 DoF non-linear car model (three rigid bodies representing
the sprung body, front, and rear axles) developed in MATLAB/SimMechanics [182]. The tire
dynamics are modelled using Delft-Tyre 6.2 with a Magic Formula steady-state slip model
describing nonlinear slip forces and moments [183]. The car model runs on a Windows PC
with an Intel Xeon CPU running at 3.60 GHz. The car model is simulated at 100 Hz, while
the localization, perception, and control on the ROS machine (running Ubuntu 18.04.1 LTS)
send messages at 25 Hz (as in the setup we have on the real vehicle). The modules used
in the experimental setup are implemented on a PC (mounted on board the car) running
Ubuntu 18.04.1 LTS with an Intel(R) Core(TM) i7-6900K CPU at 3.20GHz. In addition, the
PC contains two Titan X (Pascal) GPUs for stereo matching and Vulnerable Road User
(VRU), i.e., pedestrian or cyclist, detection.

For safety reasons, we tested the interactions of the vehicle with a cyclist and two
pedestrians in simulation. Furthermore, we tested the interactions between the real vehicle
and a pedestrian dummy during our experiments. Our design was able to adapt the vehicle
behavior to di�erent initial con�gurations (e.g., di�erent reference velocities for the vehicle
and di�erent behavior of the pedestrians and cyclist). We have evaluated our method in
the following scenarios:

S1 Figure 4.9 shows the simulation results obtained from the interaction with a cyclist
and shows the bene�ts of using the estimated paths of the cyclist in the planner. The
cyclist decides to turn at an upcoming intersection. Thanks to the perception module that
predicts the path (Figure 4.9a), the car starts to brake (notice that the length of the blue
path shrinks) before the cyclist starts to turn (Figure 4.9b) and adapts its path to prevent
a possible collision (Figure 4.9c), while remaining within the road boundaries. Without
the prediction the cyclist will turn represented in green (e.g., with just a constant velocity
model) the car would not have enough time to react to the turning cyclist. Notice that
during the maneuver the planner commands the car to brake (reducing its speed) for the
safety of the cyclist (second plot from the left in Figure 4.9b). This is possible thanks to
the MPCC formulation that, compared to classical path-following approaches, allows the
controller more �exibility to determine the state trajectories.

S2 Figures 4.10 shows simulation results with two pedestrians crossing in front of the
car. This scenario shows how our vehicle handles multiple VRUs. The vehicle starts to pass
at left the �rst pedestrian (Figure 4.10a). Then, given that the �rst pedestrian continues

4.5 Results - Autonomous Car

4

47

to cross the street (from top to bottom) the vehicle plans to pass at right (Figure 4.10b).
During the maneuver, the vehicle encounters the second pedestrian (crossing the road
from bottom to top), and plans a path to avoid both pedestrians (Figure 4.10c). The two
pedestrians cross the road safely and the car returns to its path.

S3 Figures 4.11 and 4.12 show the experimental results. As Figure 4.11 depicts, the vehicle
is able to overtake the pedestrian dummy by taking into account its predicted position. At
the same time, the car is also able to increase its speed to reach its desired speed (3 m/s), as
Figure 4.12 shows. Figure 4.12 shows that the measured vehicle motion, closely follows the
desired motion, with some noise in the acceleration and a small delay in steering (approx
0.2 s) caused by physical steering-wheel limitations. Nevertheless, the vehicle is able to
safely pass the pedestrian dummy.

In all the cases studied, the LMPCC provided suitable paths for the vehicle to follow to
ensure the safety of the VRUs by taking into account their predicted paths (with behavioral
uncertainties) provided by the perception module. If su�cient space was available, the
vehicle passed the VRUs, planning agile maneuvers when needed (e.g., Scenario S2). If
passing was unsafe the vehicle reduced its speed or stopped (e.g., Scenario S1).

4

48 Model Predictive Contouring Control for Collision Avoidance in Dynamic Environments

(a
)T

he
ve
hi
cl
e
pl
an
st
o
ov
er
ta
ke

th
e
cy
cl
ist

at
th
e
le
ft.

(b
)T

he
ve
hi
cl
e
br
ak
es

ba
se
d
on

th
e
cy
cl
ist
’s
es
tim

at
ed

pa
th
.

(c
)T

he
ve
hi
cl
e
pl
an
sb

as
ed

on
cy
cl
ist
’s
es
tim

at
ed

pa
th
.

(d
)T

he
ve
hi
cl
e
re
tu
rn
st
o
its

pa
th
.

Fi
gu
re
4.
9:
S1
:t
ur
ni
ng

cy
cl
ist
.T

he
ve
hi
cl
e
ad
ap
ts
its

pr
ed
ic
te
d
pa
th

ba
se
d
on

th
e
tw
o
es
tim

at
ed

pa
th
s
of

th
e
cy
cl
is
t.
Th

e
bl
ue

lin
es

ar
e
th
e

ro
ad

bo
un

da
ri
es
,t
he

re
d
lin

e
is
th
e
gl
ob
al

pa
th
,t
he

bl
ue

pa
th

(c
ir
cl
es
)i
st
he

pr
ed
ic
te
d
tr
aj
ec
to
ry

of
th
e
ca
r,
th
e
gr
ee
n
an

d
re
d
pa
th
s(
el
lip

se
s)

re
pr
es
en
tt
he

pr
ed
ic
te
d
tr
aj
ec
to
ry

of
th
e
cy
cl
is
tp

ro
vi
de
d
by

th
e
pe
rc
ep
tio

n
m
od
ul
e
(a
sa

m
ix
tu
re

of
tw
o
G
au

ss
ia
ns
).
Th

e
re
d
pa
th

is
as
so
ci
at
ed

w
ith

th
e
pr
ed
ic
tio

n
th
at

th
e
cy
cl
is
tw

ill
go

st
ra
ig
ht

at
th
e
in
te
rs
ec
tio

n,
w
hi
le
th
e
gr
ee
n
pa
th

is
as
so
ci
at
ed

w
ith

th
e
pr
ed
ic
tio

n
th
at

th
e
cy
cl
is
t

w
ill

tu
rn

at
th
e
in
te
rs
ec
tio

n.

4.5 Results - Autonomous Car

4

49

2

1

(a
)T

he
ve
hi
cl
e
pl
an
st
o
pa
ss

at
le
ft
th
e
�r
st
pe
de
st
ria

n.
(b
)T

he
ve
hi
cl
e
pl
an
st
o
pa
ss

at
rig

ht
th
e
�r
st
pe
de
st
ria

n.

(c
)T

he
ve
hi
cl
e
en
co
un

te
rs

th
e
se
co
nd

pe
de
st
ria

n
an
d
pl
an
sa

pa
th

to
av
oi
d
bo

th
pe
de
st
ria

ns
.

(d
)T

he
ve
hi
cl
e
re
tu
rn
st
o
its

pa
th

an
d
th
e
pe
de
st
ria

ns
sa
fe
ly

cr
os
s

th
e
ro
ad
.

Fi
gu
re

4.
10
:S
2:
tw

o
pe
de
st
ria

ns
.T

he
ve
hi
cl
e
ad
ap
ts
its

pr
ed
ic
te
d
pa
th

ba
se
d
on

th
e
es
tim

at
ed

pa
th

(r
ed

el
lip

se
s)
of

ea
ch

pe
de
st
ri
an

.N
ot
ic
e

th
at

th
e
si
ze

of
ea
ch

el
lip

se
s
gr
ow

s
ov
er

th
e
ho
ri
zo
n
du

e
to

th
e
un

ce
rt
ai
nt
ie
s
on

th
e
pe
de
st
ri
an

po
si
tio

ns
ov
er

tim
e.

4

50 Model Predictive Contouring Control for Collision Avoidance in Dynamic Environments

(a) Start of the overtaking. (b) During the overtaking.

(c) End of the overtaking.

Figure 4.11: S3: experimental results with a pedestrian dummy. Trajectory of the vehicle
during one of our experiments with our research platform. The blue lines depict the road
boundaries, the green line is the global path, the blue circles depict the trajectory planned by
the local planner, the red ellipses represent the dummy’s predicted position.

Figure 4.12: S3: experimental results with a pedestrian dummy. Acceleration, steering wheel
angle, and longitudinal velocity of the vehicle.

4.6 Conclusions and Future Work

4

51

4.6 Conclusions and Future Work
This chapter introduced a local planning approach based on Model Predictive Contouring
Control (MPCC) to navigate a mobile robot in dynamic, unstructured environments safely.
Our local MPCC (LMPCC) relies on an upper bound of the Minkowski sum of a circle and
an ellipse to safely avoid dynamic obstacles and a set of convex regions in free space to
avoid static obstacles. We compared our design with three baseline approaches (classical
MPC, Dynamic Window, and CADRL). The experimental results demonstrate that our
method outperforms the baselines in static and dynamic environments. Moreover, the light
implementation of our design shows the scalability of our approach up to six agents and
allows us to run all algorithms on-board. Finally, we showed the applicability of our design
to more complex robots by testing our method on an autonomous car.

5

53

5
Social-VRNN: One-Shot
Multi-modal Trajectory

Prediction for Interacting
Pedestrians

This chapter is based on:

• B. Brito, H. Zhu, W. Pan and J. Alonso-Mora, "Social-VRNN: One-Shot Multi-modal Trajectory Prediction
for Interacting Pedestrians," Conference on Robot Learning (CoRL), 2020

Code: https://github.com/tud-amr/social_vrnn

5

54 Social-VRNN: One-Shot Multi-modal Trajectory Prediction for Interacting Pedestrians

5.1 Introduction
In the previous Chapter 4, we have developed a motion planning algorithm for autonomous
navigation in unstructured, dynamic environments via local model predictive contouring
control (LMPCC). The method relies on a simple Constant Velocity (CV) model to predict
the dynamic agent trajectories and perform predictive collision avoidance. Nevertheless,
CV predictions ignore the interaction between the robot and the other agents and do not
consider the environment constraints.

This chapter tackles the prediction problem and proposes a new deep learning model
reasoning about the environment, interaction and multi-modality learned from data. Pre-
diction of human motions is key for safe navigation of autonomous robots among hu-
mans in cluttered environments. Therefore, autonomous robots, such as service robots
or autonomous cars, shall be capable of reasoning about the intentions of pedestrians to
accurately forecast their motions. Such abilities will allow planning algorithms to generate
safe and socially compliant motion plans [184, 185].

Generally, human motions are inherently uncertain and multi-modal [186]. The un-
certainty is caused by partial observation of the pedestrians’ states and their stochastic
dynamics. The multimodality is due to interaction e�ects between the pedestrians, the
static environment and non-convexity of the problem. For instance, as Fig. 5.1 shows,
a pedestrian can decide to either avoid a static obstacle or engage in a non-verbal joint
collision-avoidance maneuver with the other upcoming pedestrian, avoiding on the right or
left. Hence, to accurately predict human motions, inference models providing multi-modal
predictions are required.

Figure 5.1: Illustration of a scenario where there are multiple ways that two pedestrians can
avoid a collision. We present a method that given the same observed past, predicts multiple
socially acceptable trajectories in crowded scenes.

A large number of prediction models have been proposed. However, some of these
approaches only predict the mean behavior of the agents [85]. Others apply di�erent
techniques tomodel uncertainty such as ensemblemodeling [187], dropout during inference
[188] or learn a generative model and generate several trajectories by sampling randomly
from the latent space [91]. Recently, Generative Adversarial Networks (GANs) have been
employed for multi-modal trajectory prediction by randomly sampling the latent space to

5.1 Introduction

5

55

generate diverse trajectories [93]. Nevertheless, these methods have two main drawbacks.
First, GANs are di�cult to train and may fail to converge during training. Second, they
require a large number of samples to achieve good prediction performance which is
impracticable for real-time motion planning. Moreover, these approaches assume an
independent prior across di�erent timesteps ignoring the existing time dependencies on
trajectory prediction problems.

The goal is to develop a prediction model suitable for interaction-aware autonomous
navigation. Hence, we address these limitations with a novel generative model for multi-
modal trajectory prediction based on Variational Recurrent Neural Networks (VRNNs) [189].
We treat the multi-modal trajectory prediction problem as modeling the joint probability
distribution over sequences.

This chapter’s main contribution is a new interaction-aware variational recurrent
neural network (Social-VRNN) design for one-shot multi-modal trajectory prediction. By
following a variational approach, our method achieves faster convergence in comparison
with GAN -based approach. Moreover, employing a time-dependent prior over the latent
space enables our model to achieve state-of-the-art performance and generate diverse
trajectories with a single network query.

To this end, we propose a training strategy to learn more diverse trajectories in an
interpretable fashion. Finally, we present experimental results demonstrating that our
method outperforms the state-of-the-art methods on both simulated and real datasets using
one-shot predictions.

5

56 Social-VRNN: One-Shot Multi-modal Trajectory Prediction for Interacting Pedestrians

5.2 Variational Recurrent Neural Network
In this section, we present our Variational Recurrent Neural Network (VRNN) for multi-
modal trajectory prediction, depicted in Fig. 5.2.

5.2.1 Multi-modal Trajectory Prediction Problem Formulation

Consider a navigation scenario with n interacting agents (pedestrians) navigating on a
plane  = ℝ2. The dataset D contains information about the i-th pedestrian trajectory
� i1∶N = {(pi1,vi1),… , (piN ,v

i
N)}with N utterances and their corresponding surrounding static

environment i
env ⊂ , for i ∈ [0,…n]. vit = {vix,t ,viy,t} is the velocity and pit = {pix,t , piy,t}

is the position of the i-th pedestrian at time t in the world frame. Without loss of generality,
t = 0 indicates the current time and t = −1 the previous time-step. vi1∶TH = (vi1,… ,viTH)
represents the future pedestrian velocities over a prediction horizon TH and vi−TO∶0 the
pedestrian past velocities within an observation time TO . Throughout this chapter the
subscript i denotes the query-agent, i.e., the agent that we want to predict its future motion,
and −i the collection of all the other agents. Bold symbols are used to represent vectors
and the non bold x and y subscripts are used to refer to the x and y direction in the world
frame. xi0 = {vi−TO∶0,p

−i
0 ,i

env} represents the query-agent current state information. To
account for the uncertainty and multimodality of the i-th pedestrian’s motion, we seek a
probabilistic model f (�)with parameters � over a set ofM di�erent trajectories ∀m ∈ [0,M]:

p(vi,m1∶TH |x
i
0) = f (xi0, �) (5.1)

where m is the trajectory index. The probability is conditional to other agents states and
the surrounding environment to model the interaction and environment constraints.

5.2 Variational Recurrent Neural Network

5

57

O
ut

pu
t P

ro
ba

bi
lit

y
M

od
ul

e
Pr

ob
ab

ili
st

ic
 In

fe
re

nc
e

M
od

ul
e

- V
ar

ia
tio

na
l D

ee
p

G
en

er
at

iv
e

N
eu

ra
l N

et
w

or
k

Pr
io

r

D
ec

od
er

In
pu

t F
ea

tu
re

 E
xt

ra
ct

io
n

M
od

ul
e

En
co

de
r

LS
TM

LS
TM

C
N

N

C
N

N
 E

nc
od

er
En

vi
ro

nm
en

t C
on

te
xt

Elu

Relu

R
el

u

Relu

LS
TM

Linear

Relu

Relu

D
at

as
et

v
̃

v
̃

C
on

ca
te

na
te

El
em

en
t-w

is
e

m
ul

tip
lic

at
io

n

Relu

LS
TM

Fi
gu
re

5.
2:

So
ci
al
-V
RN

N
ar
ch
ite
ct
ur
e
fo
r
m
ul
ti-
m
od
al

tr
aj
ec
to
ry

pr
ed
ic
tio

n
co
m
po
se
d
by
:a

n
in
pu

tf
ea
tu
re

ex
tr
ac
tio

n,
a
pr
ob
ab
ili
st
ic
in
-

fe
re
nc
e
an

d
ou
tp
ut

pr
ob
ab
ili
ty

m
od
ul
e.

Th
e
�r
st
cr
ea
te
s
a
jo
in
t
re
pr
es
en
ta
tio

n
of

th
e
in
pu

t
da
ta

yi
=
{y

i v,
yi e

nv
,y

−i
}.

Th
e
pr
ob
ab
ili
st
ic

in
fe
re
nc
e
m
od
ul
e
(S
ec
tio

n
5.
2.
3)

is
ba
se
d
on

th
e
V
RN

N
[1
89
]
in
co
rp
or
at
in
g:

a
en
co
de
r
ne
tw
or
k
to

ap
pr
ox
im

at
e
a
tim

e-
de
pe
nd

en
t
po
s-

te
ri
or

di
st
ri
bu
tio

n
q(
z 0
|x
≤0
,z
<0
)∼


(�
z,
0,
di
ag
(�

2 z,
0)
)w

ith
[�
z,
0,
� z
,0
]=

en
c (

x (
x 0
),h

−1
,�
q)

w
ith

� q
as

th
e
ap
pr
ox
im

at
e
po
st
er
io
r
m
od
el

pa
ra
m
et
er
s;
a
de
co
de
r
ne
tw
or
k
to

m
od
el
th
e
co
nd

iti
on
al

ge
ne
ra
tio

n
di
st
ri
bu
tio

n
v k

|x
0,
z 0

∼


(�
x,
0,
di
ag
(�

2 x,
0)
)w

ith
[�
v,
1∶
T H
,�

v,
1∶
T H

]=

de
c (

z (
z 0
),

x t
(x

0)
,h

−1
,�
de
c)
w
ith

� d
ec

as
th
e
in
fe
re
nc
e
m
od
el
pa
ra
m
et
er
s;
a
pr
io
ro

n
th
e
la
te
nt

ra
nd

om
va
ri
ab
le
z
∼


(�
pr
io
r,0
,�

pr
io
r,0
)c
on
-

di
tio

na
lt
o
th
e
hi
dd
en
-s
ta
te
of

th
e
de
co
de
rn

et
w
or
k
[�
pr
io
r,0
,�

pr
io
r,0
]=

pr
io
r (h

−1
,�
pr
io
r)
w
ith

pa
ra
m
et
er
s�

pr
io
r.
Fi
na

lly
,t
he

ou
tp
ut

pr
ob
ab
ili
ty

m
od
ul
e
is
a
G
M
M

(S
ec
tio

n
5.
2.
4)
.

5

58 Social-VRNN: One-Shot Multi-modal Trajectory Prediction for Interacting Pedestrians

5.2.2 Input Feature Extraction Module

This module creates a joint representation of three sources of information: the query-agent
state, the environment context and social context. The �rst input is a sequence of TO history
velocities vi−TO∶0 of the query-agent. The second input is a local occupancy grid Oienv,
centered at the query-agent containing information about static obstacles (environment
context) with width Dx and height Dy . Here, we use the global map provided with publicly
available datasets [90, 190]. In a real scenario, the map information can be obtained by
building a map o�ine [191] or local map from online [192] using onboard sensors such as
Lidar. Due to its high dimensionality, a convolution neural network (CNN) is used to obtain
a compressed representation of this occupancy map while maintaining the spatial context.
The encoder parameters are obtained by pre-training an Encoder-Decoder structure to
minimize env = ∑Dx

i=1∑
Dy
j=1(

̂Oienv −Oi
env)2, as proposed in [85]. In addition, an LSTM layer

is added to the �rst two input channels, modeling the existing time-dependencies.

The third input provides information about the interaction among the pedestrians
containing information about their relative dynamics and spatial con�guration. More
speci�cally, it is a vector O−i

0 = [p−10 −pi0,v−10 −vi0,…p−n0 −pi0,v−n0 −vi0] with the positions
and velocities of the surrounding pedestrians relative to the query-agent. This input vector
is then fed into an LSTM, allowing to create a �xed-size representation of the query’s
agent social context and to consider a variable number of surrounding pedestrians. Finally,
the outputs of each channel are concatenated creating a compressed and time-dependent
representation of the input data yi = {yiv,yienv,y−i}. Note that we only use past information
about the query-agent velocities. For the other inputs only the current information is used.

5.2.3 Probabilistic Inference Module

The probabilistic inference module is based on the structure of the VRNN, as depicted in
Fig. 5.2. It contains three main components: a prior model, a encoder model and decoder
model. We use a fully connected layer (FCL) with Relu activation as the encoder model
 enc, the feature extractor of the joint input x and of the latent random variables z,
and the representation of the prior distribution prior. {�enc, �x, �z, �prior} are the network
parameters of { enc, x, z, prior}, respectively. The output vectors { enc

� , prior} are
then used to model the approximate posterior and prior distribution. We split the output
vectors into two parts to model the mean and variance, as represented in Fig. 5.2, and
apply the following transformations to ensure a valid predicted distribution: [�prior, �z] =
[prior

1∶wprior
, enc

1∶wz] and [�prior,�z] = [exp prior
wprior∶2wprior

, exp z
wz∶2wz].

2wprior and 2wz are the output vector size of the prior and latent random variable,
respectively. This ensures that the standard deviation is always positive. Furthermore, we
employ a LSTM layer as the RNN model propagating the hidden-state for the prior model
and encoding the time-dependencies for the generative model. In contrast to [189] our
generation model conditionally depends on the previous inputs:

vk |x0, z0 ∼ (�v,k ,diag(�2v,k))

[�v,k ,�v,k] = dec(z(z0), x(yi0),h−1)
(5.2)

5.2 Variational Recurrent Neural Network

5

59

Lastly, the decoder model consists of two FC layers, with ELU [193] and linear activation,
directly connected to the output of the LSTM network. Our models outputs in one shot TH
steps considering the compressed and time-dependent input representation yi0.

5.2.4 Multi-modal Trajectory Prediction Distribution

To predict one-shot multi-modal trajectories,we model the output of our network as a
Gaussian Mixture Model (GMM), similar to [194] and [195], with M > 1 modes accounting
for the multimodality of the pedestrian’s motion. For each mode m ∈ {1,…,M}, we predict
a sequence of future pedestrian velocities vi,m1∶TH represented by a bivariate Gaussian vi,mk ∼
 (�i,mx,k , �

i,m
y,k ,�

i,m
x,k ,�

i,m
y,k),k = 1,2,…,TH , capturing its motion uncertainty. Consequently, a

modal trajectory is de�ned as a sequence of independent bivariate Gaussian’s with length
TH . The M modes represent a set of M possible trajectories resulting in the following
probabilistic model:

p(vik |x0, z0,h0, �) =
M
∑
m=1

�mpG (�ik,m ,�
i
k,m) (5.3)

where pG is the probability density function of multivariate Gaussian distributions, � =
{�enc, �dec, �x, �z, �prior} are the model parameters, �i,mk = [�i,mx,k , �

i,m
y,k] and �

i,m
k = [� i,mx,k ,�

i,m
y,k]

are the mean and standard deviation of the predicted velocity vectors for them-th predicted
trajectory with likelihood �m at time-step k, respectively. The transformations described in
Sec.5.2.3 and Fig.5.2 are applied to the network outputs dec

� to ensure a valid distribution
parametrization.

5.2.5 Improving Diversity

Generative models have the key advantage of allowing to perform inference by randomly
sampling the latent random variable z from some prior distribution. Here, we propose
a strategy to induce our model to learn a more “diverse" distribution of trajectories in
a interpretable fashion, similar to [196]. Our VRNN models a generative distribution
conditionally dependent on the input representation vector yi, which is composed by three
sub-vectors {yiv,yienv,y−i}. Now, let’s assume that each input vector is a random variable
with the following distribution:

yiv ∼ (yi0,v,�v) (5.4)

yienv ∼ (yi0,env,�env) (5.5)

y−i ∼ (y−i0 ,�−i) (5.6)

where {yiv,yienv,y−i} are random variables representing the variability of the agent state,
the environment and surrounding agents context, respectively. {�v,�env,�−i} are the
variance of each input channel and are considered as hyperparameters of our model. Hence,

5

60 Social-VRNN: One-Shot Multi-modal Trajectory Prediction for Interacting Pedestrians

by sampling from these input distributions we can condition the generation distribution
of x according with the uncertainty on the pedestrian state or the environment context
and generate di�erent trajectories ṽi1∶TH by varying the pedestrian conditions. Then, we
introduce a loss function which motivates our model to cover the generated trajectories as
the following cross-entropy term:

div =
M
∑
m=1

TH
∑
k=1

−E[logpG (ṽk |x0, z0)] (5.7)

where ṽm,k is a velocity sample at time-step k from the m-th sampled trajectory.

5.2.6 Training Procedure

The model is trained end-to-end except for the CNN which is pre-trained. We train it using
back-propagation through time (BTTP) with �xed truncation depth ttrunc. Furthermore,
we apply the reparametrization trick [26] to obtain a continuous di�erentiable sampler and
train the network using backpropagation. We learn the data distribution by minimizing
a timestep-wise variational lower bound with annealing KL-Divergence as loss function
[197]:

 = m +� ∗ (KL +div) (5.8a)

m =
M
∑
m=1

TH
∑
k=1

−Ex0∼D[log�mpG (vk |z0,x0)] (5.8b)

KL(z0|x≤0, z<0) = �KL(q(z0|x≤0, z<0)||pG (z0|x<0, z<0)) (5.8c)

where � is the annealing coe�cient. The �rst term represents the reconstruction loss (Eq.
5.8b) and the second the KL-Divergence between the approximated posterior q(z0|x≤0,z<0)
(Eq. 5.8c) and the prior distribution of z. Here, the prior over the latent random variable z
is chosen to be a simple Gaussian distribution with mean and variance [�prior,0,�prior,0] =
 prior(h−1) depending on the previous hidden state. During training we aim to �nd the
model parameters which minimize the loss function presented in Equation 5.8a. The
annealing coe�cient allows the model �rst to learn the parameters that �t the data well
and later in the training phase to match the prior distribution and improve the diversity of
the predicted trajectories.

5.3 Experiments

5

61

5.3 Experiments
In this section, we show the obtained results of our generative model for simulation and
real data. We present a qualitative analysis and performance results of our method against
three baselines. To evaluate the performance of our model against the proposed baselines
we use the following evaluation metrics: the average displacement error (ADE) and the
�nal displacement error (FDE). The �rst two assess the prediction performance. For the
models outputting probability distributions, the mean values are used to compute the
ADE and FDE metrics. For the multi-modal distributions, we use the trajectory with the
minimum error as in [93].

5.3.1 Experimental Settings
We trained our model using RMSProp [198] which is known to perform well in non-
stationary problems with a initial learning rate � = 10−4 exponentially decaying at a rate
of 0.9 and a mini-batch size of 16. We used a KL annealing coe�cient � = tanh(step−10

4

103),
with step as the training step. We set the diversity weight � to 0.2 and {�xv ,�xenv ,�x−i} =
{0.2,0.2,0}. Additionally, to avoid gradient explosion we clip the gradients to 1.0. We
trained and evaluated our model for di�erent prior, latent random variable and input
feature vector sizes. The con�guration achieving lower validation error was {128,128,512},
for the prior, latent random variable and input feature vector size, respectively. Moreover,
we use M = 3 mixture components for the models using a GMM as the output function.
We set TH = 12 prediction steps corresponding to 4.8 s of prediction horizon and TO = 8
as used in previous methods [92, 93]. The models were implemented using Tensor�ow
[199] and were trained on a NVIDIA GeForce GTX 980 requiring 2×104 training steps, or
approximately 2 hours. The simulation datasets were obtained with the open-source ROS
implementation of the Social Forces model [80]. Our VRNN will be released open source.

5.3.2 Performance Evaluation

We compared our model with the following state-of-art prediction baselines:

• LSTM-D [85]: A deterministic interaction-aware model, incorporating the interaction
between the agents and static obstacles.

• SoPhie [92]: a GAN model implementing a Social and Physical attention mechanism.

• Social-ways (S-Ways) [93]: The state-of-art GAN based method for multi-modal
trajectory prediction.

• STORN [200]: Our VRNN model considering a time-independent prior as a Gaussian
distribution with zero mean and unit variance.

5

62 Social-VRNN: One-Shot Multi-modal Trajectory Prediction for Interacting Pedestrians

Ta
bl
e
5.
1:
Pe
rf
or
m
an

ce
re
su
lts

of
ou
rp

ro
po
se
d
m
et
ho
d
(S
oc
ia
l-V

RN
N
)v

s.
ba
se
lin

es
.T

he
re
su
lts

pr
es
en
te
d
fo
rt
he

So
ci
al

W
ay
sw

ith
30

sa
m
pl
es

(K
=
30
)a

nd
So
Ph

ie
m
et
ho
d
w
er
e
ta
ke
n
fr
om

[8
6]

an
d
[9
2]
,r
es
pe
ct
iv
el
y.
Th

e
A
D
E
an

d
FD

E
va
lu
es

ar
e
se
pa
ra
te
d
by

sl
as
h.

Th
e
av
er
ag
e
va
lu
es

(A
VG

)o
nl
y
co
ns
id
er

th
e
re
su
lts

fo
rt
he

re
al
da
ta
se
ts
.T

he
re
su
lts

fo
ru

si
ng

th
re
e
sa
m
pl
es

(K
=
3)

of
S-
W
ay
sw

er
e
ob
ta
in
ed

fr
om

th
e
op
en
-s
ou
rc
e

im
pl
em

en
ta
tio

n
pr
ov
id
ed

by
[9
3]
. D
et
er
m
in
ist
ic

St
oc
ha
st
ic

Si
ng

le
Sa
m
pl
e

M
ul
tip

le
Sa
m
pl
es

Si
ng

le
Sa
m
pl
e

D
at
as
et

LS
TM

So
Ph

ie
S-
W
ay
s

(K
=
30
)

S-
W
ay
s

(K
=
3)

ST
O
RN

So
ci
al
-V
RN

N

ET
H

0.4
0
/0

.65
0.7

0
/1

.43
0.
39

/0
.6
4

0.7
8
/1

.48
0.7

3
/1

.49
0.
39

/0
.70

H
ot
el

0.4
5
/0

.75
0.7

6
/1

.67
0.3

9
/0

.64
0.5

3
/0

.95
1.3

3
/1

.45
0.
35

/0
.4
7

U
ni
v

1.0
2
/1

.54
0.5

4
/1

.24
0.5

5
/1

.31
0.8

1
/1

.53
0.8

2
/1

.17
0.
53

/0
.6
5

ZA
R
A
01

0.3
5
/0

.68
0.
30

/0
.6
3

0.4
4
/0

.64
0.8

7
/1

.30
0.9

1
/1

.52
0.4

1
/0

.70
ZA

R
A
02

0.5
4
/0

.92
0.
38

/0
.78

0.5
1
/0

.92
1.2

7
/2

.13
0.9

1
/1

.52
0.5

1
/0

.5
5

AV
G

0.5
5
/0

.90
0.5

4
/1

.15
0.4

6
/0

.83
0.8

6
/1

.47
0.9

4
/1

.43
0.
44

/0
.6
1

5.3 Experiments

5

63

We use the open-source implementation of [93] to obtain the results for S-Ways considering
only 3 samples (K = 3) as the number of trajectories predicted by our method and as
suggested in [201]. We adopt the same dataset split setting as in [93] using 4 sets for
training and the remaining set for testing. Aggregated results in Table 5.1 show that
our method outperformed the deterministic baselines, STORN, and S-Ways using three
samples. Moreover, the results show that our method achieves comparable performance
with state-of-the-art methods using a high number of samples on the Zara01, Zara02 and
ETH datasets. In contrast, our method achieves the best performance on the Hotel and Univ
datasets. Finally, the poor performance of the STORN model results show that employing
a time-dependent prior improves the prediction performance signi�cantly.

5.3.3 Qualitative Analysis

In this section we present prediction results for simulated and real scenarios, as depicted in
Fig. 5.3. We have created two datasets to demonstrate this multi-modal behavior with static
obstacles (Fig.5.3(a)), and other pedestrians (Fig. 5.3(b)). Figure 5.3(a) shows the ability of
our method to predict di�erent trajectories according to the environment structure. Figure
5.3(b) demonstrates that our method can scale to more complex environments, with several
pedestrians and obstacles, and predict di�erent motion hypotheses.

Moreover, we evaluate our method on real data using the publicly available datasets
[90, 190].

In Fig. 5.3(c) on the left, our model infers two possible trajectories for the pedestrian to
avoid a tree. In addition, in the central and right images of Fig. 5.3(c), our model predicts
two possible trajectories to move through the crowd. Finally, Fig. 5.4 shows predicted
trajectories for both Social-VRNN and Social-Ways model in a crowded scene. The predicted
trajectories from the Social-VRNN model can capture two distinct trajectories through the
crowd. In contrast, Social-Ways only captures one mode, even considering 30 samples from
the baseline model. The presented results demonstrate that our model can e�ectively infer
di�erent trajectories according to the environment and social constraints from a single
query. We refer the reader to the video1 accompanying this chapter for more details on the
presented results.

1https://youtu.be/tBr5v7TXyG0

5

64 Social-VRNN: One-Shot Multi-modal Trajectory Prediction for Interacting Pedestrians

a) In this scenario, one agent is moving along a corridor with an obstacle in the middle. The
agent is moving from the left to the right. When she �nds the obstacle in the middle of its path,
our model successfully predicts two hypotheses: going left or right. Once she is already avoiding
the obstacle through the left side, the model predicts three hypotheses for the pedestrian to
continue its collision avoidance maneuver, with varying clearance levels. Finally, when she is
in free space all the predicted trajectories collapse to a single-mode.

b) This sub-�gure illustrates four sample results obtained in a more complex simulated scenario,
with several static obstacles and 15 agents. The two left �gures show two situations where the
agent can avoid another agent on its left, right or by simply move straight because the other
will keep moving away. The two right �gures show the ability of our model to predict di�erent
trajectories that an agent may follow to avoid a static obstacle.

c) Three examples of multi-modal trajectory prediction using our model in real scenarios.
In blue is depicted the ground truth trajectory, in red, green and yellow the three possible
predicted trajectories, in light blue the one sigma boundary of the predicted trajectory.

Figure 5.3: The scenarios depicted in Fig.5.3(a) and (b) were simulated by using the Social
Forces model [80] for the pedestrians. In magenta the real trajectory, in red, green and yellow
the mean values of each trajectory hypothesis and, in blue the 1-� uncertainty boundaries
of each trajectory. The dark blue dots represent the other agents. The plotted trajectories
correspond to a single network query.

5.3 Experiments

5

65

Figure 5.4: Social-VRNN predicted trajectories vs a multi-modal prediction baseline, Social-
Ways [93]. In blue is depicted the ground truth trajectory, in red, green and yellow the three
possible predicted trajectories by our model, in light blue the one sigma boundary of the
predicted trajectory and, in magenta 30 sampled predicted trajectories by the Social-Ways
model.

5

66 Social-VRNN: One-Shot Multi-modal Trajectory Prediction for Interacting Pedestrians

5.4 Conclusions
This chapter introduced a Variational Recurrent Neural Network (VRNN) architecture for
multi-modal trajectory prediction in one-shot and considering the pedestrian dynamics,
interactions among pedestrians and static obstacles. Building on a variational approach
and learning a mixture Gaussian model enables our model to generate distinct trajectories
accounting for the static obstacles and the surrounding pedestrians. Our approach allows
us to improve the state-of-the-art prediction performance in scenarios with a large number
of agents (e.g., Univ dataset) or containing static obstacles (e.g., Hotel dataset) from a single
prediction shot. Furthermore, the proposed approach reduces signi�cantly the number of
samples needed to achieve good prediction with high accuracy. Future work can integrate
the proposed method with a real-time motion planner on a mobile platform for autonomous
navigation among pedestrians.

6

67

6
Where to go next: Learning a

Subgoal Recommendation
Policy for Navigation Among

Pedestrians

This chapter is based on:

• B. Brito, M. Everett, M. How and J. Alonso-Mora, "Where to go next: Learning a Subgoal Recommendation
Policy for Navigation in Dynamic Environments." IEEE Robotics and Automation Letters 6.3 (2021):
4616-4623.

Code: https://github.com/tud-amr/go-mpc

6

68 Where to go next: Learning a Subgoal Recommendation Policy for Navigation Among Pedestrians

6.1 Introduction
Autonomous robot navigation in crowds remains di�cult due to the interaction e�ects
among navigating agents. Unlike multi-robot environments, robots operating among
pedestrians require decentralized algorithms that can handle a mixture of other agents’
behaviors without depending on explicit communication between agents.

Several state-of-the-art collision avoidance methods employ model-predictive control
(MPC) with online optimization to compute motion plans that are guaranteed to respect
important constraints [7], for instance the LMPCCpresented in Chapter 4. These constraints
could include the robot’s nonlinear kino-dynamics model or collision avoidance of static
obstacles and other dynamic, decision-making agents (e.g., pedestrians). Although modern
solvers enable real-time motion planning in many situations of interest [202], online
optimization becomes less computationally practical for extremely dense scenarios.

A key challenge is that the robot’s global goal is often located far beyond the planning
horizon, meaning that a local subgoal or cost-to-go heuristic must be speci�ed instead. This
is straightforward in a static environment (e.g., using euclidean/di�usion [102] distance),
but the presence interactive agents makes it di�cult to quantify which subgoals will lead to
the global goal quickest. A body of work addresses this challenge with deep reinforcement
learning (RL), in which agents learn a model of the long-term cost of actions in an o�ine
training phase (usually in simulation) [17, 18, 111, 113]. The learned model is fast-to-query
during online execution, but the way learned costs/policies have been used to date does not
provide guarantees on collision avoidance or feasibility with respect to the robot dynamics.

In this chapter, we introduce Goal Oriented Model Predictive Control (GO-MPC),
which enhances state-of-art online optimization-based planners with a learned global
guidance policy. In an o�ine RL training phase, an agent learns a policy that uses the
current world con�guration (the states of the robot and other agents, and a global goal)
to recommend a local subgoal for the MPC, as depicted in Figure 6.1. Then, the MPC
generates control commands ensuring that the robot and collision avoidance constraints
are satis�ed (if a feasible solution is found) while making progress towards the suggested
subgoal. Our approach maintains the kino-dynamic feasibility and collision avoidance
guarantees inherent in an MPC formulation, while improving the average time-to-goal and
success rate by leveraging past experience in crowded situations.

The main contributions of this chapter are:

• A goal-oriented Model Predictive Control method (GO-MPC) for navigation among
interacting agents, which utilizes a learned global guidance policy (recommended
subgoal) in the cost function and ensures that dynamic feasibility and collision
avoidance constraints are satis�ed when a feasible solution to the optimization
problem is found;

• An algorithm to train an RL agent jointly with an optimization-based controller in
mixed environments, which is directly applicable to real-hardware, reducing the sim
to real gap.

6.2 Preliminaries

6

69

Figure 6.1: Proposed navigation architecture. The subgoal planner observes the environ-
ment and suggests the next subgoal position to the local motion planner, the MPC. The MPC
then computes a local trajectory and the robot executes the next optimal control command,
which minimizes the distance to the provided position reference while respecting collision and
kinodynamic constraints.

Finally, we present simulation results demonstrating an improvement over several
state-of-art methods in challenging scenarios with realistic robot dynamics and a mixture
of cooperative and non-cooperative neighboring agents. Our approach shows di�erent
navigation behaviors: navigating through the crowd when interacting with cooperative
agents, avoiding congestion areas when non-cooperative agents are present and enabling
communication-free decentralized multi-robot collision avoidance.

6.2 Preliminaries

6.2.1 Problem Formulation

Consider a scenario where a robot must navigate from an initial position p0 to a goal
position g on the plane ℝ2, surrounded by n non-communicating agents. At each time-step
t , the robot �rst observes its state st (de�ned in Sec.6.3.1) and the set of the other agents
states St = ⋃i∈{1,…,n} sit , then takes action at , leading to the immediate reward R(st , at) and
next state st+1 = ℎ(st , at), under the transition model ℎ.

We use the superscript i ∈ {1,…,n} to denote the i-th nearby agent and omit the
superscript when referring to the robot. For each agent i ∈ {0,n}, pit ∈ ℝ2 denotes its
position, vit ∈ ℝ2 its velocity at step t relative to a inertial frame, and ri the agent radius. We
assume that each agent’s current position and velocity are observed (e.g., with on-board
sensing) while other agents’ motion intentions (e.g., goal positions) are unknown. Finally,
t denotes the area occupied by the robot and i

t by each surrounding agent, at time-step
t .

6

70 Where to go next: Learning a Subgoal Recommendation Policy for Navigation Among Pedestrians

The goal is to learn a policy � for the robot that minimizes time to goal while ensuring
collision-free motions, de�ned as:

� ∗ = argmax
�

E
[

T
∑
t=0

 tR(st ,�(st , St))]

s.t. xt+1 = f (xt ,ut), (6.1a)
sT = g, (6.1b)
t (xt) ∩i

t = ∅ (6.1c)
ut ∈ , st ∈  , xt ∈  , (6.1d)
∀t ∈ [0,T], ∀i ∈ {1,…,n}

where (6.1a) are the transition dynamic constraints considering the dynamic model f , (6.1b)
the terminal constraints, (6.1c) the collision avoidance constraints and  ,  and  are the
set of admissible states, inputs (e.g., to limit the robot’s maximum speed) and the set of
admissible control states, respectively. Note that we only constraint the control states of
the robot. Moreover, we assume other agents have various behaviors (e.g., cooperative or
non-cooperative): each agent samples a policy from a closed set  = {�1,… ,�m} (de�ned
in Sec.6.2.3) at the beginning of each episode.

6.2.2 Agent Dynamics

Real robotic systems’ inertia imposes limits on linear and angular acceleration. Thus, we
assume a second-order unicycle model for the robot [203]:

ẋ = v cos v̇ = ua
ẏ = v sin !̇ = u�
 ̇ = !

(6.2)

where x and y are the agent position coordinates and is the heading angle in a global
frame. v is the agent forward velocity, ! denotes the angular velocity and, ua the linear
and u� angular acceleration, respectively.

6.2.3 Modeling Other Agents’ Behaviors

In a real scenario, agents may follow di�erent policies and show di�erent levels of co-
operation. Hence, in contrast to previous approaches, we do not consider all the agents
to follow the same policy [17, 204]. At the beginning of an episode, each non-ego agent
either follows a cooperative or a non-cooperative policy. For the cooperative policy, we
employ the Reciprocal Velocity Obstacle (RVO) [205] model with a random cooperation
coe�cient1 ci ∼  (0.1,1) sampled at the beginning of the episode. The “reciprocal” in
RVO means that all agents follow the same policy and use the cooperation coe�cient to
split the collision avoidance e�ort among the agents (e.g., a coe�cient of 0.5 means that
1This coe�cient is denoted as �BA in [103]

6.3 Method

6

71

each agent will apply half of the e�ort to avoid the other). For the non-cooperative agents,
we consider both constant velocity (CV) and non-CV policies. The agents following a CV
model drive straight in the direction of their goal position with constant velocity. The
agents following a non-CV policy either move in sinusoids towards their �nal goal position
or circular motion around their initial position.

6.3 Method
Learning a sequence of intermediate goal states that lead an agent toward a �nal goal
destination can be formulated as a single-agent sequential decision making problem. Be-
cause parts of the environment can be di�cult to model explicitly, the problem can be
solved with a reinforcement learning framework. Hence, we propose a two-level planning
architecture, as depicted in Figure 6.1, consisting of a subgoal recommender (Section 6.3.1)
and an optimization-based motion planner (Section 6.2.3). We start by de�ning the RL
framework and our’s policy architecture (Section 6.3.1). Then, we formulate the MPC to
execute the policy’s actions and ensure local collision avoidance (Section 6.3.2).

6.3.1 Learning a Subgoal Recommender Policy

We aim to develop a decision-making algorithm to provide an estimate of the cost-to-go in
dynamic environments with mixed-agents. In this chapter, we propose to learn a policy
directly informing which actions lead to higher rewards.

RL Formulation

As in [111], the observation vector is composed by the ego-agent and the surrounding
agents states, de�ned as:

st = [dg,pt −g,vref, , r] (Ego-agent)
sit = [pit ,v

i
t , r

i , d it , r
i + r] ∀i ∈ {1,n} (Other agents)

(6.3)

where st is the ego-agent state and sit the i-th agent state at step t . Moreover, dg = ‖pt −g‖
is the ego-agent’s distance to goal and d it = ‖‖pt −p

i
t ‖‖ is the distance to the i-th agent.

Here, we seek to learn the optimal policy for the ego-agent � ∶ (st , St) −→ at mapping
the ego-agent’s observation of the environment to a probability distribution of actions. We
consider a continuous action space  ⊂ ℝ2 and de�ne an action as position increments
providing the direction maximizing the ego-agent rewards, de�ned as:

preft = pt +�t (6.4a)
��� (st , St) = �t = [�t,x , �t,y] (6.4b)

‖�t ‖ ≤ Nvmax, (6.4c)

where �k,x , �k,y are the (x, y) position increments, vmax the maximum linear velocity and
�� are the network policy parameters. Moreover, to ensure that the next sub-goal position
is within the planning horizon of the ego-agent, we bound the action space according with

6

72 Where to go next: Learning a Subgoal Recommendation Policy for Navigation Among Pedestrians

Figure 6.2: Proposed network policy architecture.

the planning horizon N of the optimization-based planner and its dynamic constraints, as
represented in Equation (6.4b).

We design the reward function to motivate the ego-agent to reach the goal position
while penalizing collisions:

R (s,a) =
⎧⎪⎪
⎨⎪⎪⎩

rgoal if p = pg
rcollision if dmin < r + r i ∀i ∈ {1,n}
rt otherwise

(6.5)

where dmin =min
i

‖‖p−p
i‖‖ is the distance to the closest surrounding agent. rt allows to adapt

the reward function as shown in the ablation study (Sec.6.4.3), rgoal rewards the agent if
reaches the goal rcollision penalizes if it collides with any other agents. In Section. 6.4.3 we
analyze its in�uence in the behavior of the learned policy.

Policy Network Architecture

A key challenge in collision avoidance among pedestrians is that the number of nearby
agents can vary between timesteps. Because feed-forward NNs require a �xed input vector
size, prior work [17] proposed the use of Recurrent Neural Networks (RNNs) to compress
the n agent states into a �xed size vector at each time-step. Yet, that approach discarded
time-dependencies of successive observations (i.e., hidden states of recurrent cells).

Here, we use the “store-state” strategy, as proposed in [206]. During the rollout phase,
at each time-step we store the hidden-state of the RNN together with the current state
and other agents state, immediate reward and next state, (sk , Sk ,hk , rk , sk+1). Moreover, the
previous hidden-state is feed back to warm-start the RNN in the next step, as depicted
in Fig.6.2. During the training phase, we use the stored hidden-states to initialize the
network. Our policy architecture is depicted in Figure 6.2. We employ a RNN to encode a
variable sequence of the other agents states Sk and model the existing time-dependencies.
Then, we concatenate the �xed-length representation of the other agent’s states with the
ego-agent’s state to create a join state representation. This representation vector is fed

6.3 Method

6

73

to two fully-connected layers (FCL). The network has two output heads: one estimates
the probability distribution parameters ��� (s,S) ∼ (�,�) of the policy’s action space and
the other estimates the state-value function V � (st) ∶= Est+1∶∞, [∑

∞
l=0 rt+l]. � and � are the

mean and variance of the policy’s distribution, respectively.

6.3.2 Local Collision Avoidance

Here, we employ MPC to generate locally optimal commands respecting the kino-dynamics
and collision avoidance constraints. To simplify the notation used, hereafter, we assume
the current time-step t as zero.

State and Control Inputs

We de�ne the ego-agent control input vector as u = [ua ,u�] and the control state as
x = [x,y, ,v,w] ∈ ℝ5 following the dynamics model de�ned in Section 6.2.2.

Dynamic Collision Avoidance

We de�ne a set of nonlinear constraints to ensure that the MPC generates collision-free
control commands for the ego-agent (if a feasible solution exists). To limit the problem
complexity and ensure to �nd a solution in real-time, we consider a limited number of
surrounding agentsm , withm ≤ n. Considern = {x1,… ,xn} as the set of all surrounding
agent states, than the set of the m-th closest agents is:

De�nition 6.1. A set m ⊆ n is the set of the m-th closest agents if the euclidean distance
∀xj ∈ m , ∀xi ∈ n ⧵m ∶ ‖‖xj ,x‖‖ ≤ ‖xi ,x‖.

We represent the area occupied by each agent i as a circle with radius ri . To ensure
collision-free motions, we impose that each circle i ∈ {1,…,n} i does not intersect with the
area occupied by the ego-agent resulting in the following set of inequality constraints:

cik (xk ,x
i
k) =

‖‖‖pk ,p
i
k
‖‖‖ ≥ r + ri , (6.6)

for each planning step k. This formulation can be extended for agents with general quadratic
shapes, as in [202].

Cost Function

The subgoal recommender provides a reference position pref0 guiding the ego-agent toward
the �nal goal position g and minimizing the cost-to-go while accounting for the other
agents. The terminal cost is de�ned as the normalized distance between the ego-agent’s
terminal position (after a planning horizon N) and the reference position (with weight
coe�cient QN):

JN (pN ,�(x,X)) =
‖‖‖‖‖

pN −pref0
p0 −pref0

‖‖‖‖‖QN
, (6.7)

6

74 Where to go next: Learning a Subgoal Recommendation Policy for Navigation Among Pedestrians

To ensure smooth trajectories, we de�ne the stage cost as a quadratic penalty on the
ego-agent control commands

Juk (uk) = ‖uk ‖Qu , k = {0,1,…,N −1}, (6.8)

where Qu is the weight coe�cient.

MPC Formulation

The MPC is then de�ned as a non-convex optimization problem

min
x1∶N ,u0∶N−1

JN (xN ,pref0) +
N−1
∑
k=0

J uk (uk)

s.t. x0 = x(0), (6.1d), (6.2),
cik (xk ,x

i
k) > r + ri ,

uk ∈ , xk ∈  ,
∀i ∈ {1,…,n}; ∀k ∈ {0,…,N −1}.

(6.9)

Here, we assume a constant velocity model estimate of the other agents’ future positions,
as in [202].

6.3.3 PPO-MPC

We train the subgoal policy using a state-of-art method, Proximal Policy Optimization
(PPO) [41], but the overall framework is agnostic to the speci�c RL training algorithm. In
addition, we propose to jointly train the guidance policy ��� and value function V�V (s)
with the MPC, as opposed to prior works [17] that use an idealized low-level controller
during policy training (that cannot be implemented on a real robot). Algorithm 5 describes
the proposed training strategy and has two main phases: supervised and RL training. First,
we randomly initialize the policy and value function parameters {�� , �V }. Then, at the
beginning of each episode we randomly select the number of surrounding agents between
[1,nagents], the training scenario and the surrounding agents policy. More details about the
di�erent training scenarios and nagents considered is given in Sec.6.4.2.

An initial RL policy is unlikely to lead an agent to a goal position. Hence, during
the warm-start phase, we use the MPC as an expert and perform supervised training to
train the policy and value function parameters for nMPC steps. By setting the MPC goal
state as the ego-agent �nal goal state pref = g and solving the MPC problem, we obtain
a locally optimal sequence of control states x∗1∶N . For each step, we de�ne a∗t = x∗t,N and
store the tuple containing the network hidden-state, state, next state, and reward in a
bu�er ←{sk , a∗t , rk ,hk , sk+1}. Then, we compute advantage estimates [40] and perform
a supervised training step

�Vk+1 = argmin
�V

E(ak ,sk ,rk)∼MPC [
‖‖‖V� (sk) −V

targ
k

‖‖‖] (6.10)

��k+1 = argmin
�

E(a∗k ,sk)∼MPC [‖‖a
∗
k −�� (sk)‖‖] (6.11)

6.3 Method

6

75

Algorithm 5 PPO-MPC Training

1: Inputs: planning horizonH , value function and policy parameters {�V , ��}, number of
supervised and RL training episodes {nMPC, nepisodes}, number of agents n, nmini-batch,
and reward function R(st , at , at+1)

2: Initialize states: {s00,… ,sn0} ∼  , {g0,… ,gn} ∼ 
3: while episode < nepisodes do
4: Initialize ←∅ and ℎ0 ←∅
5: for k = 0,…,nmini-batch do
6: if episode ≤ nMPC then
7: Solve Eq.6.9 considering pref = g
8: Set a∗t = x∗N
9: else
10: pref = �� (st , St)
11: end if
12: {sk , ak , rk ,hk+1, sk+1,done} = Step(s∗t , a∗t ,ht)
13: Store ←{sk , ak , rk ,hk+1, sk+1,done}
14: if done then
15: episode + = 1
16: Reset hidden-state: ℎt ←∅
17: Initialize: {s00,… ,sn0} ∼  , {g0,… ,gn} ∼ 
18: end if
19: end for
20: if episode ≤ nMPC then
21: Supervised training: Eq.6.10 and Eq.6.11
22: else
23: PPO training [41]
24: end if
25: end while
26: return {�V , ��}

where �V , �� are the value function and policy parameters, respectively. Note that �V and
�� share the same parameter except for the �nal layer, as depicted in Fig.6.2. Afterwards,
we use Proximal Policy Optimization (PPO) [41] with clipped gradients for training the
policy. PPO is a on-policy method addressing the high-variance issue of policy gradient
methods for continuous control problems. We refer the reader to [41] for more details about
the method’s equations. Please note that our approach is agnostic to which RL algorithm
we use. Moreover, to increase the learning speed during training, we gradually increase
the number of agents in the training environments (curriculum learning [207]).

6

76 Where to go next: Learning a Subgoal Recommendation Policy for Navigation Among Pedestrians

6.4 Results
This section quanti�es the performance throughout the training procedure, provides an
ablation study, and compares the proposed method (sample trajectories and numerically)
against the following baseline approaches:

• MPC: Model Predictive Controller from Section 6.3.2 with �nal goal position as
position reference, pref = g;

• DRL [17]: state-of-the-art Deep Reinforcement Learning approach for multi-agent
collision avoidance.

To analyze the impact of a realistic kinematic model during training, we consider two
variants of the DRL method [17]: the same RL algorithm [17] was used to train a pol-
icy under a �rst-order unicycle model, referred to as DRL, and a second-order unicycle
model (Eq.6.2), referred to as DRL-2. All experiments use a second-order unicycle model
(Eq.6.2) in environments with cooperative and non-cooperative agents to represent realistic
robot/pedestrian behavior.

6.4.1 Experimental Setup

The proposed training algorithm builds upon the open-source PPO implementation pro-
vided in the Stable-Baselines [208] package. We used a laptop with an Intel Core i7 and
32 GB of RAM for training. To solve the non-linear and non-convex MPC problem of
Equation (6.9), we used the ForcesPro [168] solver. If no feasible solution is found within
the maximum number of iterations, then the robot decelerates. All MPC methods used
in this work consider collision constraints with up to the closest six agents so that the
optimization problem can be solved in less than 20ms. Moreover, our policy’s network
has an average computation time of 2ms with a variance of 0.4ms for all experiments.
Hyperparameter values are summarized in Table 6.1.

6.4 Results

6

77

Table 6.1: Hyper-parameters.

Planning Horizon N 2 s Number of mini batches 2048
Number of Stages 20 rgoal 3

 0.99 rcollision -10
Clip factor 0.1 Learning rate 10−4

6.4.2 Training Procedure

To train and evaluate our method we have selected four navigation scenarios, similar to
[17, 18, 113]:

• Symmetric swapping: Each agent’s position is randomly initialized in di�erent
quadrants of the ℝ2 x-y plane, where all agents have the same distance to the origin.
Each agent’s goal is to swap positions with an agent from the opposite quadrant.

• Asymmetric swapping: As before, but all agents are located at di�erent distances
to the origin.

• Pair-wise swapping: Random initial positions; pairs of agents’ goals are each
other’s intial positions

• Random: Random initial & goal positions

Each training episode consists of a random number of agents and a random scenario.
At the start of each episode, each other agent’s policy is sampled from a binomial dis-
tribution (80% cooperative, 20% non-cooperative). Moreover, for the cooperative agents
we randomly sample a cooperation coe�cient ci ∼ (0.1,1) and for the non-cooperative
agents is randomly assigned a CV or non-CV policy (i.e., sinusoid or circular). Figure 6.3
shows the evolution of the robot average reward and the percentage of failure episodes.
The top sub-plot compares our method average reward with the two baseline methods:
DRL (with pre-trained weights) and MPC. The average reward for the baseline methods
(orange, yellow) drops as the number of agents increases (each vertical bar). In contrast,
our method (blue) improves with training and eventually achieves higher average reward
for 10-agent scenarios than baseline methods achieve for 2-agent scenarios. The bottom
plot demonstrates that the percentage of collisions decreases throughout training despite
the number of agents increasing.

6.4.3 Ablation Study

A key design choice in RL is the reward function; here, we study the impact on policy
performance of three variants of reward. The sparse reward uses rt = 0 (only non-zero
reward upon reaching goal/colliding). The time reward uses rt = −0.01 (penalize every step
until reaching goal). The progress reward uses rt = 0.01 ∗ (‖st −g‖ − ‖st+1 −g‖) (encourage
motion toward goal). Aggregated results in Table 6.2 show that the resulting policy trained
with a time reward function allows the robot to reach the goal with minimum time, to travel
the smallest distance, and achieve the lowest percentage of failure cases. Based on these

6

78 Where to go next: Learning a Subgoal Recommendation Policy for Navigation Among Pedestrians

Figure 6.3: Moving average rewards and percentage of failure episodes during training. The
top plot shows our method average episode reward vs DRL [17] and simple MPC.

results, we selected the policy trained with the time reward function for the subsequent
experiments.

6.4 Results

6

79

Ta
bl
e
6.
2:
A
bl
at
io
n
St
ud

y:
D
is
cr
et
e
re
w
ar
d
fu
nc
tio

n
le
ad
st
o
be
tte

rp
ol
ic
y
th
an

sp
ar
se
,d
en
se

re
w
ar
d
fu
nc
tio

ns
.R

es
ul
ts
ar
e
ag
gr
eg
at
ed

ov
er

20
0

ra
nd

om
sc
en
ar
io
s
w
ith

n
∈
{6
,8
,1
0}

ag
en
ts
.

Ti
m
e
to

Go
al
[s
]

%
fa
ilu

re
s(
%
co
lli
sio

ns
/%

tim
eo
ut
)

Tr
av
el
ed

di
st
an
ce

M
ea
n
[m

]
#
ag
en
ts

6
8

10
6

8
10

6
8

10
Sp

ar
se

Re
w
ar
d

8.0
0

8.5
1

8.5
2

0
(0

/0
)

1
(0

/1
)

2
(1

/1
)

13
.90

14
.34

14
.31

Pr
og

re
ss

Re
w
ar
d

8.9
8.7

9
9.0

1
2
(1

/1
)

3
(3

/0
)

1
(1

/0
)

14
.75

14
.57

14
.63

Ti
m
e
Re

w
ar
d

7.
69

8.
03

8.
12

0
(0

/0
)

0
(0

/0
)

0
(0

/0
)

13
.2
5

14
.0
1

14
.0
6

6

80 Where to go next: Learning a Subgoal Recommendation Policy for Navigation Among Pedestrians

Figure 6.4: Two agents swapping scenario. In blue is depicted the trajectory of robot, in red the
non-cooperative agent, in purple the DRL agent and, in orange the MPC.

6.4.4 Qualitative Analysis

This section compares and analyzes trajectories for di�erent scenarios. Figure 6.4 shows
that our method resolves a failure mode of both RL and MPC baselines. The robot has to
swap position with a non-cooperative agent (red, moving right-to-left) and avoid a collision.
We overlap the trajectories (moving left-to-right) performed by the robot following our
method (blue) versus the baseline policies (orange, magenta). The MPC policy (orange)
causes a collision due to the dynamic constraints and limited planning horizon. The DRL
policy avoids the non-cooperative agent, but due to its reactive nature, only avoids the
non-cooperative agent when very close, resulting in larger travel time. Finally, when using
our approach, the robot initiates a collision avoidance maneuver early enough to lead to a
smooth trajectory and faster arrival at the goal.

6.4 Results

6

81

(a
)

(b
)

(c
)

Fi
gu
re

6.
5:

Sa
m
pl
e
tr
aj
ec
to
ri
es

w
ith

m
ix
ed

ag
en
t
po
lic
ie
s
(r
ob
ot
:
bl
ue
,c
oo
pe
ra
tiv

e:
gr
ee
n,

no
n-
co
op
er
at
iv
e:

re
d)
.
In

(a
),
al
la

ge
nt
s
ar
e

co
op
er
at
iv
e;
in

(b
),
tw
o
ar
e
co
op
er
at
iv
e
an

d
�v

e
no
n-
co
op
er
at
iv
e
(c
on
st
.v
el
.);
in

(c
),
th
re
e
ar
e
co
op
er
at
iv
e
an

d
tw
o
no
n-
co
op
er
at
iv
e
(s
in
us
oi
da
l).

Th
e
G
O
-M

PC
ag
en
ta

vo
id
s
no
n-
co
op
er
at
iv
e
ag
en
ts
di
�e
re
nt
ly

th
an

co
op
er
at
iv
e
ag
en
ts
.

6

82 Where to go next: Learning a Subgoal Recommendation Policy for Navigation Among Pedestrians

(a
)D

RL
[1
7]

(b
)D

RL
-2

(e
xt
.o

f[
17
])

(c
)G

O
-M

PC

Fi
gu
re
6.
6:
8
ag
en
ts
sw

ap
pi
ng

po
si
tio

ns
.T
o
si
m
ul
at
e
a
m
ul
ti-
ro
bo
te
nv
ir
on
m
en
t,
al
la

ge
nt
s
fo
llo
w
th
e
sa
m
e
po
lic
y.

6.4 Results

6

83

We present results for mixed settings in Figure 6.5 and homogeneous settings in Fig-
ure 6.6 with n ∈ {6,8,10} agents. In mixed settings, the robot follows our proposed policy
while the other agents either follow an RVO [205] or a non-cooperative policy (same distri-
bution as in training). Figure 6.5 demonstrates that our navigation policy behaves di�er-
ently when dealing with only cooperative agents or both cooperative and non-cooperative.
Whereas in Figure 6.5a the robot navigates through the crowd, Figure 6.5b shows that the
robot takes a longer path to avoid the congestion.

In the homogeneous setting, all agents follow our proposed policy. Figure 6.6 shows that
our method achieves faster time-to-goal than two DRL baselines. Note that this scenario
was never introduced during the training phase, nor have the agents ever experienced
other agents with the same policy before. Following the DRL policy (Figure 6.6a), all agents
navigate straight to their goal positions leading to congestion in the center with reactive
avoidance. The trajectories from the DRL-2 approach (Figure 6.6b) are more conservative,
due to the limited acceleration available. In contrast, the trajectories generated by our
approach (Figure 6.6c), present a balance between going straight to the goal and avoiding
congestion in the center, allowing the agents to reach their goals faster and with smaller
distance traveled.

6.4.5 Performance Results

This section aggregates performance of the various methods across 200 random scenarios.
Performance is quanti�ed by average time to reach the goal position, percentage of episodes
that end in failures (either collision or timeout), and the average distance traveled.

The numerical results are summarized in Table 6.3. Our method outperforms each
baseline for both mixed and homogeneous scenarios. To evaluate the statistical signi�cance,
we performed pairwise Mann–Whitney U-tests between GO-MPC and each baseline (95%
con�dence). GO-MPC shows statistically signi�cant performance improvements over the
DRL-2 baseline in terms of travel time and distance, and the DRL baseline in term of travel
time for six agents and travel distance for ten agents. For homogeneous scenarios, GO-MPC
is more conservative than DRL and MPC baselines resulting in a larger average traveled
distance. Nevertheless, GO-MPC is reaches the goals faster than each baseline and is less
conservative than DRL-2, as measured by a signi�cantly lower average distance traveled.

Finally, considering higher-order dynamics when training DRL agents (DRL-2) improves
the collision avoidance performance. However, it also increases the average time to goal and
traveled distance, meaning a more conservative policy that still under-performs GO-MPC
in each metric.

6

84 Where to go next: Learning a Subgoal Recommendation Policy for Navigation Among Pedestrians

Ta
bl
e
6.
3:
St
at
is
tic
sf
or

20
0
ru
ns

of
pr
op
os
ed

m
et
ho
d
(G
O
-M

PC
)c
om

pa
re
d
to

ba
se
lin

es
(M

PC
,D

RL
[1
7]

an
d
D
RL

-2
,a
n
ex
te
ns
io
n
of

[1
7]
):
tim

e
to

go
al

an
d
tr
av
el
ed

di
st
an

ce
fo
r
th
e
su
cc
es
sf
ul

ep
is
od
es
,a
nd

nu
m
be
r
of

ep
is
od
es

re
su
lti
ng

in
co
lli
si
on

fo
r
n
∈
{6
,8
,1
0}

ag
en
ts
.F
or

th
e
m
ix
ed

se
tt
in
g,
80
%
of

ag
en
ts
ar
e
co
op
er
at
iv
e,
an

d
20
%
ar
e
no
n-
co
op
er
at
iv
e.

Ti
m
e
to

Go
al
(m

ea
n
±
st
d)

[s
]

%
fa
ilu

re
s(
%
co
lli
sio

ns
/%

de
ad
lo
ck
s)

Tr
av
el
ed

D
ist
an
ce

(m
ea
n
±
st
d)

[m
]

#
ag
en
ts

6
8

10
6

8
10

6
8

10
M
ix
ed

A
ge

nt
s

M
PC

11
.2
±
2.2

11
.3
±
2.4

11
.0
±
2.2

13
(0

/0
)

22
(0

/0
)

22
(2
2
/0

)
12
.2
±
2.3

12
.4
±
2.5

12
.1
±
2.3

D
RL

[1
7]

13
.7
±
3.0

13
.7
±
3.1

14
.4
±
3.3

17
(1
7
/0

)
23

(2
3
/0

)
29

(2
9
/0

)
13
.8
±
3.3

13
.8
±
4.0

14
.4
±
3.3

D
RL

-2
[1
7]
+

15
.3
±
2.3

16
.1
±
2.2

16
.7
±
2.2

6
(6

/0
)

10
(1
0
/0

)
13

(1
3
/0

)
14
.9
±
2.3

16
.1
±
2.2

16
.7
±
2.2

GO
-M

PC
12
.7
±
2.7

12
.9
±
2.8

13
.3
±
2.8

0
(0

/0
)

0
(0

/0
)

0
(0

/0
)

13
.7
±
2.7

13
.8
±
2.8

14
.3
±
2.8

H
om

og
en

eo
us

M
PC

17
.37

±
2.9

16
.38

±
1.5

16
.64

±
1.7

30
(2
9
/1

)
36

(2
5
/1

1)
35

(2
8
/7

)
11
.3
±
2.1

10
.9
±
2.3

10
.6
±
2.8

D
RL

[1
7]

14
.2
±
2.4

14
.4
±
2.7

14
.6
±
3.3

16
(1
4
/2

)
20

(1
8
/2

)
20

(2
0
/0

)
12
.8
±
2.3

12
.2
±
2.3

12
.2
±
3.2

D
RL

-2
[1
7]
+

15
.9
±
3.1

17
.5
±
4.2

15
.9
±
4.5

17
(1
1
/6

)
29

(2
1
/8

)
28

(2
4
/4

)
15
.2
±
3.0

15
.9
±
4.2

15
.4
±
4.5

GO
-M

PC
13

.8
±
2.
9

14
.3

±
3.
3

14
.6

±
2.
9

0
(0

/0
)

0
(0

/0
)

2
(1

/1
)

14
.7
±
2.9

15
.1
±
3.3

15
.1
±
2.9

6.5 Conclusions and Future Work

6

85

6.5 Conclusions and Future Work
This chapter introduced a subgoal planning policy for guiding a local optimization planner.
We employed DRL methods to learn a subgoal policy accounting for the interaction e�ects
among the agents. Then, we used an MPC to compute locally optimal motion plans re-
specting the robot dynamics and collision avoidance constraints. Learning a subgoal policy
improved the collision avoidance performance among cooperative and non-cooperative
agents as well as in multi-robot environments. Moreover, our approach can reduce travel
time and distance in cluttered environments. Future work could account for environment
constraints.

7

87

7
Learning Interaction-Aware

Guidance for Trajectory
Optimization in Dense Tra�c

Scenarios

This chapter is based on:

• B. Brito, A. Agarwal, and J. Alonso-Mora, "Learning Interaction-Aware Guidance for Trajectory Optimiza-
tion in Dense Tra�c Scenarios," in IEEE Transactions on Intelligent Transportation Systems (T-ITS), doi:
10.1109/TITS.2022.3160936.

Code: https://github.com/tud-amr/int-mpc

7

88 Learning Interaction-Aware Guidance for Trajectory Optimization in Dense Tra�c Scenarios

7.1 Introduction
In the previous chapter (Chapter 6), we have demonstrated that deep reinforcement learning
algorithms can be employed to learn a policy providing global guidance (i.e., next subgoal)
to a local optimization-based planner through its cost function. However, for autonomous
navigation in dense tra�c scenarios providing the next optimal subgoal position is not
su�cient. In dense tra�c scenarios, autonomous vehicles (AVs) must engage in a non-
verbal negotiation and exploit the interactions with each other t e�ciently and safely
navigate. Taking inspiration in Chapter 6, in this chapter we introduce a learning-based
method enabling interactive behavior for navigation in dense tra�c scenarios.

Despite recent advancements in autonomous driving solutions (e.g., Waymo [209],
Uber [210]), driving in real-world dense tra�c scenarios such as highway merging and
unprotected left turns still stands as a hurdle in the widespread deployment of autonomous
vehicles [8]. Driving in dense tra�c conditions is intrinsically an interactive task [211],
where the AVs’ actions elicit immediate reactions from nearby tra�c participants and
vice-versa. An example of such behavior is illustrated in Fig. 7.1, where the autonomous
vehicle needs to perform a merging maneuver onto the main lane. To accomplish this task,
it needs to �rst reason about the other driver’s intentions (e.g., to yield or not to yield)
without any explicit inter-vehicle communication. Then, it needs to know how to interact
with multiple road-users and leverage other vehicles’ cooperativeness to induce them to
yield, such that they create room for the AV to merge safely.

Figure 7.1: Illustration of a dense on-ramp merging tra�c scenario where the autonomous
vehicle (yellow) needs to interact with other tra�c participants in order to merge onto the
main lane in a timely and safe manner. The potential follower (purple) may yield (green
arrow) to the autonomous vehicle leaving space for the autonomous vehicle to merge or behave
non-cooperatively (red arrow) to deter the autonomous vehicle from merging. To successfully
merge, the autonomous vehicle needs to identify the cooperative ones by interacting with them
without any explicit inter-vehicle communication.

The development of interaction-aware prediction models has been studied [170, 212],
allowing AVs to reason about other drivers’ intentions. In contrast, developing interactive
motion planning algorithms that can reason and exploit other drivers cooperativeness is still
challenging [14]. The majority of traditional motion planning methods are too conservative
and fail in dense scenarios because they do not account for the interaction between the
autonomous vehicle and nearby tra�c [8], [213]. However, works that account for the
interaction among agents do not scale for many agents due to the curse of dimensionality

7.1 Introduction

7

89

[16, 155, 214]. Deep Reinforcement Learning (DRL) methods can overcome the latter, but
either do not provide any safety guarantees [162] or are overly conservative to ensure
safety [166].

In this chapter, we introduce an interactive Model Predictive Controller (IntMPC) for
safe navigation in dense tra�c scenarios. We explore the insight that human drivers
communicate their intentions and negotiate their driving maneuvers by adjusting both
distance and time headway to the other vehicles [215, 216]. Studies show that in dense
tra�c scenarios, such as merging and left-turning, cooperative or aggressive behavior is
strongly connected to higher or smaller average distance and time headway [217, 218],
respectively. These driving features (i.e., relative distance and time headway) can be directly
translated into a velocity reference. Hence, we propose to learn, via Deep Reinforcement
Learning (DRL), an interaction-aware policy as a velocity reference. This reference provides
global guidance to a local optimization-based planner, which ensures that the generated
trajectories are kino-dynamically feasible and safety constraints are respected. Our method
leverages vehicles’ interaction e�ects to create free-space areas for the AV to navigate and
complete various driving maneuvers in cluttered environments. The main contribution of
this work is an Interactive Model Predictive Controller (IntMPC) for navigation in dense
tra�c environments combining DRL to learn an interaction-aware policy providing global
guidance (velocity reference) in the cost function to a local optimization-based planner.

Extensive simulation results demonstrate that our approach triggers interactive negoti-
ating behavior to reason about the other drivers’ cooperation and exploit their coopera-
tiveness to induce them to yield while remaining safe.

7

90 Learning Interaction-Aware Guidance for Trajectory Optimization in Dense Tra�c Scenarios

Ve
lo

ci
ty

 R
ef

er
en

ce

Lo
ca

l M
ot

io
n

Pl
an

ne
r

LM
PC

C
O

th
er

 A
ge

nt
s

Eg
o

Ve
hi

cl
e

Si
m

ul
at

io
n

M
od

el
 (C

-ID
M

)

Fo
llo

w
er

Le
ad

er
C

on
tro

l

O
bs

er
ve

In
te

ra
ct

iv
e-

M
PC

 (I
nt

-M
PC

)

In
te

ra
ct

iv
e

Pl
an

ne
r

SA
C

 A
ge

nt

Fi
gu
re
7.
2:
O
ur

pr
op
os
ed

ar
ch
ite
ct
ur
e
co
m
pr
is
es

of
th
re
e
m
ai
n
m
od
ul
es
:a
n
In
te
ra
ct
iv
e
Re
in
fo
rc
em

en
tL

ea
rn
er

(D
RL

A
ge
nt
),
a
Lo
ca
lM

ot
io
n

Pl
an

ne
r
(M

PC
C
)a

nd
a
Si
m
ul
at
io
n
M
od
el
(P
-I
D
M
).
Th

e
AV

ob
se
rv
es

th
e
le
ad
er

st
at
e
sl
an

d
fo
llo
w
er

st
at
e
sf

re
la
tiv

e
to

it,
w
hi
ch

se
rv
es

as
in
pu

tt
o
th
e
In
te
ra
ct
iv
e
Pl
an

ne
r
pr
ov
id
in
g
a
re
fe
re
nc
e
ve
lo
ci
ty
v k

,re
f
=
�(
s k
,S
k)

fo
r
th
e
M
PC

C
to

fo
llo
w
.T

he
M
PC

C
th
en

co
m
pu

te
s
lo
ca
lly

op
tim

al
se
qu

en
ce

of
co
nt
ro
lc
om

m
an

ds
u∗ 0∶

H
−1

m
in
im

iz
in
g
a
co
st
fu
nc
tio

n
J(
s k
,u
k)

(S
ee

Se
ct
io
n
7.
3.
2)
.T

he
re
fe
re
nc
e
ve
lo
ci
ty
v r

ef
al
lo
w
s
to

di
re
ct
ly

co
nt
ro
lt
he

AV
ag
gr
es
si
ve
ne
ss
an

d
th
us
,t
o
co
nt
ro
lt
he

in
te
ra
ct
io
n
w
ith

th
e
ot
he
r
ve
hi
cl
es
.F
in
al
ly
,P
-I
D
M

th
en

co
m
pu

te
sa

cc
el
er
at
io
n

co
m
m
an

d
fo
r
th
e
ot
he
r
ve
hi
cl
es

ba
se
d
on

th
e
es
tim

at
ed

AV
’s
m
ot
io
n
pl
an

(S
ec
tio

n
7.
5.
8)
.

7.2 Problem Formulation

7

91

7.2 Problem Formulation
Consider a set  of n vehicles interacting in a dense tra�c scenario comprising an au-
tonomous vehicle (AV) and n −1 human drivers, henceforth referred to as other vehicles,
exhibiting di�erent levels of willingness to yield. The term "vehicles" is used to collectively
refer to the AV and other vehicles. At the beginning of an episode, the AV receives a global
reference path  to follow from a path planner consisting of a sequence of M waypoints
prm = [xrm , yrm] ∈ ℝ2 with m ∈ ∶= {1,…,M}. For each time-step k, the AV observes its
state sk and the states of other agents Sk = [s1k ,… ,sn−1k], then takes action ak , leading to
the immediate reward R(sk , ak) and next state sk+1 = f (sk ,uk), under the dynamic model
f 1 and controller model ℎ, with uk = ℎ(sk , ak). The vehicle’s state is de�ned as

sik = {xk , yk , k ,vk}∀i ∈ {0,…,n −1}

where xk and yk are the Cartesian position coordinates, k the heading angle and vk the
forward velocity in a global inertial frame  �xed in the main lane (see Figure 7.2). ego

and i denote the area occupied by the AV and the i-th other vehicle, respectively. We
aim to learn a continuous policy �(ak |sk , Sk) conditioned on the AV’s and other vehicles’
states minimizing the expected driving time E[tg] for the AV to reach its goal position
while ensuring collision-free motions, de�ned as the following optimization problem:

� ∗ =argmin
�

E[tg ∣ �(ak |sk , Sk)]

s.t. sk+1 = f (sk ,uk), (7.1a)
uk = ℎ(sk ,�(ak |sk , Sk)) (7.1b)
ego
k ∩i

k = ∅ (7.1c)
uk ∈ , sk ∈  , at ∈, (7.1d)
∀i ∈ {1…n−1} ∀k ∈ {0…tg}

where (7.1a) are the kino-dynamic constraints, (7.1c) the collision avoidance constraints,
and  , and are the set of admissible states, actions, and control inputs (e.g., maximum
vehicles’ speed), respectively. We assume that each vehicle’s current position and velocity
are observed (e.g., from on-board sensor data) and no inter-vehicle communication.

1This is identical to the Vehicle Model used in the simulation de�ned in Section 7.3.2

7

92 Learning Interaction-Aware Guidance for Trajectory Optimization in Dense Tra�c Scenarios

7.3 Interactive Model Predictive Control
This section introduces the proposed Interactive Model Predictive Control (IntMPC) frame-
work for safe navigation in dense tra�c scenarios. Figure 7.2 depicts our proposed motion
planning architecture incorporating three main modules: an interactive reinforcement
learner, a local optimization planner, and an interactive simulation environment. Firstly,
we de�ne the RL framework to learn an interaction-aware navigation policy (Section 7.3.1),
providing global guidance to a local optimization planner (Section 7.3.2). Secondly, we
introduce our training algorithm to jointly train the interaction-aware policy and the local
optimization planner (Section 7.3.3). Our IntMPC enhances the AV with interactive behav-
ior, exploiting the other tra�c participants’ interaction e�ects.s To �nalize ,we introduce
the behavior module used to simulate dense tra�c scenarios with various driving behavior,
ranging from cooperative to non-cooperative. Here, we propose an expansion for the
Intelligent Driver Model (IDM) model allowing the other vehicles to react to the other’s
predicted plans (Section 7.4).

7.3.1 Interactive Planner

Here, we propose to use deep RL to learn an interaction-aware velocity reference exploiting
the interaction e�ects between the vehicles and providing global guidance to a local
optimization-based planner.

RL Formulation

The AV’s observation vector is composed by the leader’s (vehicle in front) and the follower’s
(vehicle behind the AV) state, ok = [slk , s

f
k], relative to the AV’s frame. To enable interactive

behavior with the other tra�c participants, we de�ne the RL policy’s action as a velocity
reference to directly control the interaction at the merging point. High-speed values lead
to more aggressive and low-speed to more conservative behavior, respectively. Hence, we
consider a continuous action space ⊂ ℝ and aim to learn the optimal policy � mapping
the AV’s state and observation to a probability distribution of actions.

�� (sk , ok) = ak = vk,ref (7.2a)
�� (sk , ok) ∼ (�k ,�k) (7.2b)

where � are the policy’s network parameters, is a multivariate Gaussian density function,
and � and � are the Gaussian’s mean and variance, respectively.

We formulate a reward function to motivate progress along a reference path, to penalize
collisions and infeasible solutions, and when moving too close to another vehicle. The
reward function is the summation of the four terms described as follows:

7.3 Interactive Model Predictive Control

7

93

R (sk , ok , ak) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

vk
rinfeasible
rcollision if ego

k ∩i
k ≠ ∅

rnear dmin(sk , sik) ≤ Δdmin

(7.3)

where cc,ik is the collision avoidance constraint between the AV and the vehicle i (Sec-
tion 7.3.2),ego

k ∩i
k represents the common area occupied by the AV and the i-th other

vehicle at step k. dmin is the minimum distance to the closest nearby vehicle i and Δdmin is a
hyper-parameter distance threshold. The �rst term vk is a reward proportional to the AV’s
velocity encouraging higher velocities and thus, encouraging interaction and minimizing
the time to goal. The second rinfeasible, third rcollision and fourth term rnear penalize the AV
for infeasible solutions, collisions and for driving too close to other vehicles, respectively.

7.3.2 Local Motion Planner

Deep RL can be used to learn an end-to-end control policy in dense tra�c scenarios [162],
[158]. However, their sample ine�ciency [219] and transferability issues [220] makes it
hard to apply them in real-world settings. In contrast, optimization-based methods have
been widely used and deployed into actual autonomous vehicles [143, 221]. Therefore, we
employ Model Predictive Contour Control (MPCC) to generate locally optimal control com-
mands following a reference path while satisfying kino-dynamics and collision avoidance
constraints if a feasible solution is found. The reference path can be provided by a global
path planner such as Rapidly-exploring Random Trees (RRT) [222].

Vehicle Model

We employ a kinematic bicycle model for the AV, described as follows:

ẋ = v cos(� +�)
ẏ = v sin(� +�)
�̇ =

v
lr
sin(�)

v̇ = ua

� = arctan(
lr

lf + lr
tan(u�))

(7.4)

where � is the velocity angle. The distances of the rear and front tires from the center
of gravity of the vehicle are lr and lf , respectively, and are assumed to be identical for
simplicity. The vehicle control input u is the forward acceleration ua and steering angle
u� , u = [ua ,u�].

Cost Function

The local controller receives a velocity reference vref, from the Interactive Planner (Sec-
tion 7.3.1), exploiting for the interaction e�ects of the AV in the other vehicles to maximize
long-term rewards. To enable the AV to follow the reference path while tracking the
velocity reference, we de�ne the stage cost as follows:

7

94 Learning Interaction-Aware Guidance for Trajectory Optimization in Dense Tra�c Scenarios

J (sk,uk , �k) = ‖‖e
c
k (sk , �k)‖‖qc +

‖‖‖e
l
k (sk , �k)

‖‖‖ql
+ ‖‖‖vk,ref −vk

‖‖‖qv
+ ‖‖u

a
k
‖‖qu +

‖‖‖u
�
k
‖‖‖q�

(7.5)

where = {qc , ql , qv , qu , q�} denotes the set of cost weights and �k is the estimated progress
along the reference path. To track the reference path closely, we minimize two cost terms:
the contour error (eck) and lag error (elk). Contour error gives a measure of how far the ego
vehicle deviates from the reference path laterally whereas lag error measures the deviation
of the ego vehicle from the reference path in the longitudinal direction. For more details on
path parameterization and tracking error, please refer to [143]. The third term, ‖vk,ref −vk ‖,
motivates the planner to follow vref closely. Finally, to generate smooth trajectories, we
add a quadratic penalty to the control commands uak and u�k .

Dynamic Obstacle Avoidance

The occupied area by the AV, ego(sk), is approximated with a union of nc circles i.e
Āego(sk) ⊆ ⋃c∈{1,…,nc}c (sk), where c is the area occupied for a circle with radius r . For
each vehicle i, the occupied areai is approximated by an ellipse of semi-major axis ai ,
semi-minor axis bi and orientation �. To ensure collision-free motions, we de�ne a set
of non-linear constraints imposing that each circle c of the AV with the elliptical area
occupied by the i-th vehicle does not intersect:

ci,ck (sk , sik)=[
Δxck
Δyck]

T
R(�)T

[

1
�2 0
0 1

�2]
R(�)[

Δxck
Δyck]

> 1, (7.6)

∀k ∈ {0,…,H} and ∀i ∈ {1,…,n − 1}. The parameters Δxck and Δyck represent x-y relative
distances in AV’s frame between the disc c and the ellipse i for prediction step k. R() is
the rotation matrix. To guarantee collision avoidance we enlarge the other vehicle’s semi-
major and semi-minor axis with a rdisc coe�cient, assuming � = a + rdisc and � = b + rdisc,
as described in [223].

Road Boundaries

We introduce constraints on the lateral distance (i.e., contour error) of the AV with respect
to the reference path to ensure that the vehicle stays within the road boundaries [142]:

−wroad
left ≤ eck (sk) ≤ w

road
right (7.7)

where wroad
left and wroad

right are the left and right road limits, respectively.

7.3 Interactive Model Predictive Control

7

95

MPC Formulation

We formulate the motion planning problem as a Receding Horizon Trajectory Optimization
problem (7.8) with planning horizon H conditioned on the following constraints:

u∗0∶H−1 = min
u0∶H−1

H−1
∑
k=0

J (sk ,uk , �k) + J (sH , �H) (7.8a)

s.t. sk+1 = f (sk ,uk), (7.8b)
�k+1 = �k +vkΔt (7.8c)
−wroad

left ≤ ec (sk) ≤ wroad
right (7.8d)

ci,ck (sk , sik) > 1 ∀c ∈ {1,…,nc}, (7.8e)
uk ∈ , sk ∈  , (7.8f)
∀k ∈ {0,…,H}. (7.8g)

where Δt is the discretization time and u∗0∶H−1 the locally optimal control sequence for
H time-steps. In this work, we assume a constant velocity model to estimate of the other
vehicles’ future positions, as in [223].

7.3.3 Training Procedure

We train the policy using Soft Actor-Critic (SAC) [46] to learn the policy’s probability
distribution parameters. SAC augments traditional RL algorithms’ objective with the
policy’s entropy, embedding the notion of exploration into the policy while giving up on
clearly unpromising paths [46]. We propose to jointly train the guidance policy with the
local motion planner allowing the trained policy to directly implement our method on a
real system and learn with the cases resulting in infeasible solutions for the optimization
solver. In contrast to prior works on safe RL [165], during training, we do not employ
collision constraints (Eq. 7.8e), exposing the policy to dangerous situations or collisions
which is necessary to learn how to interact with other vehicles closely.

Algorithm 6 describes the proposed training strategy. Each episode begins with the
initialization of all vehicle’s states (see Sections 7.5.2 and 7.5.3 for more details). Every K
cycles, we sample a reference velocity vref from the policy �� . Querying the interaction-
aware policy every K control cycles helps to stabilize the training procedure and better
assess the policy’s impact on the environment (see Section 7.5.8). Then, theMPCC computes
a locally optimal sequence of steering and acceleration commands u∗0∶H−1 for the AV. If
a feasible solution is found, we apply the �rst control command of the sequence and re-
compute the motion plan in the next cycle considering new observations. If no feasible
solution is found, we apply a braking command. Training the interaction-aware policy with
the MPCC controller enables the policy to account for the controller and AV constraints.
Afterward, the P-IDM computes an action for each vehicle on the main lane while being
aware of the AV on the adjacent lane. An episode is over if: the AV reaches the goal position
(�nishes merging or turning left); the AV collides with another vehicle; it does not �nish
the maneuver in time (i.e., timeout). Finally, to update the policy’s distribution parameters,
we employ the Soft Actor-Critic (SAC) [46] method. We refer the reader to [46] for more

7

96 Learning Interaction-Aware Guidance for Trajectory Optimization in Dense Tra�c Scenarios

Algorithm 6 Training Procedure
1: Inputs: planning horizon H , initial policy’s parameters � , Q-functions’ parameters

{�1,�2}, number of training episodes nepisodes, number of vehicles n, reward function
R(sk , ok , ak) and number of control steps K

2: Initialize initial states: {s0,… ,sn−10 } ∼ 
3: Initialize replay bu�er: ←∅
4: while episode < nepisodes do
5: Get observation ok and AV’s state sk
6: if k mod K == 0 then
7: Sample velocity reference for the AV:

vk,ref ∼ �� (sk , ok)
8: end if
9: Solve the optimization problem of Eq. 7.8 without collision constraints (Eq. 7.8e) :

u∗k∶k+H = MPCC(vk,ref, sk , ok)
10: Estimate AV’s lateral position:

ỹH = PredictionModel(vk , sk , ok) (Section 7.5.8)
11: {sk+1, done, rk} = Step(sk ,uk)
12: Store (sk , ak , rk , sk+1,done) in replay bu�er 
13: if done then
14: episode + = 1
15: Initialize: {s0,… ,sn0} ∼ 
16: end if
17: if it’s time to update then
18: SAC training [46]
19: end if
20: end while
21: return {�,�1,�2}

details about the learning method’s equations. Please note that our approach is agnostic to
which RL algorithm we use.

7.3.4 Online Planning

Algorithm 7 describes our Interactive Model Predictive Controller (IntMPC) algorithm.
For every step k, we �rst obtain a velocity reference, vref, from the trained policy. Then,
by solving the MPCC problem (Equation (7.8)), we obtain a locally optimal sequence of
control commands u∗k∶k+H . Finally, if the MPCC plan is feasible we employ the �rst control
command, u∗k , and re-compute a new plan considering the new observations following a
receding horizon control strategy. Else, we apply a braking command, usafe.

7.4 Modeling Other Tra�c Drivers’ Behaviors

7

97

Algorithm 7 Int-MPC
1: Inputs: AV’s state sk , observation ok and reference path prm = [xrm , yrm] ∈ ℝ2 with
m ∈ ∶= {1,…,M} waypoints.

2: for k = 0,1,2, ... do
3: Get observation ok and AV’s state sk
4: Sample velocity reference for the AV:

vk,ref = �� (sk , ok)
5: Compute MPCC trajectory by solving Eq. 7.8:

u∗k∶k+H = MPCC(vk,ref, sk , ok)
6: if u∗k∶k+H is feasible then
7: Apply u∗k
8: else
9: Apply usafe
10: end if
11: end for

7.4 Modeling Other Tra�c Drivers’ Behaviors
We aim to simulate dense and complex negotiating behavior with varying degrees of
willingness to yield. For instance, in a typical dense tra�c scenario (e.g., on-ramp merg-
ing), human drivers trying to merge onto the main lane need to leverage other drivers’
cooperativeness to create obstacle-free space to merge safely. In contrast, drivers on the
main lane exhibit di�erent levels of willingness to yield. Some drivers stop as soon as they
spot the other vehicle on the adjacent lane (Cooperative). Other drivers ignore the other
vehicles entirely and may even accelerate to deter it from merging (Non-Cooperative).
Moreover, they also consider an internal belief about the other vehicle’s motion plan on the
adjacent lane in their decision-making process at the merging point. Here, we introduce
the Predictive Intelligent Driver Model (P-IDM) to control the longitudinal driving behavior
of the other vehicles, built on the Intelligent Driver Model (IDM) [224]. Our proposed
model consists of three main steps: leader and follower selection, other vehicles’ motion
estimation, and control command computation.

Leader & Follower Selection

For each vehicle, the model assigns a leader, denoted with up-script l, and a follower,
denoted with up-script f . Consider  l

i as the set of potential leaders for the vehicle i, then

De�nition 7.1. IDM: A set  l
i ⊆  is the set of possible leaders for the vehicle i if ∀j ∈

[0,n −1], j ≠ i ∶ x jk > x
i
k and y

i
k < ci .

De�nition 7.2. IDM: A set  f
i ⊆  is the set of possible followers for the vehicle i if ∀j ∈

[0,n −1], j ≠ i ∶ x jk < x
i
k and y

i
k < ci .

where ci is a hyper-parameter threshold used to model cooperation (Section 7.5.3) [162].
Figure 7.3 shows an example of the leader’s and follower’s sets for the merging scenario

7

98 Learning Interaction-Aware Guidance for Trajectory Optimization in Dense Tra�c Scenarios

Figure 7.3: Leader & Follower Selection Process. The AV is depicted in yellow, the i-th interacting
vehicle in blue, and the i-th vehicle’s follower and leader in black. (xk , yk) are the x-y position
coordinates in the main lane frame of the AV and (x ik , y

i
k) of the i-th vehicle on the main lane at

time-step k. Dashed purple represents the followers’ area set. Dashed red and green represent
the leader’s area set. To model mixed driving behavior, the i-th vehicle cooperation coe�cient
ci is randomly sampled from a uniform bounded distribution ci ∼ ([wmin,wmax]) (de�ned
in Section 7.5.3). wmax and wmin represents a maximum and minimum distance between the
center of the current lane and the adjacent lane.

as well as the physical representation of the cooperation coe�cient ci . In the IDM, the
leaders’ and followers’ sets are de�ned based on the vehicle’s current lateral position, yik ,
leading to reactive behavior. In contrast, we propose to de�ne the leader’s and follower’s
sets based on the estimated lateral position at time-step H , ỹiH , as it follows

De�nition 7.3. P-IDM: A set  l
i ⊆  is the set of possible leaders for the vehicle i if ∀j ∈

[0,n −1], j ≠ i ∶ x jk < x
i
k and

‖‖ỹ
i
H
‖‖ < ci .

Employing the predicted lateral position ỹH instead of the current lateral position yk
allows to elicit non-reactive behavior from the other vehicles. The leader for the vehicle i
is de�ned as it follows

De�nition 7.4. A vehicle j ∈  l
i is the leader of vehicle i if ∀m ∈  l

i ,m ≠ j ∶ ‖‖‖x
j
k −x

i
k
‖‖‖ ≤

‖‖x
m
k −x ik ‖‖.

To model mixed driving behavior, ci is sampled from a uniform bounded distribution
ci ∼ ([wmin,wmax]) (de�ned in Section 7.5.3). wmax and wmin represents a maximum and
minimum distance between the center of the current lane and the adjacent lane, as depicted
in Figure 7.3, respectively. Moreover, the ci values’ range plays an essential role in the �nal
policy’s behavior by controlling the proportion of cooperative and non-cooperative vehicles
encountered by the AV during training resulting in a more aggressive or conservative �nal
policy.

7.5 Experiments

7

99

Motion Plan Estimation

To enhance the IDM model with predictive driving behavior, we propose to condition
the IDM on the beliefs of the other drivers’ motion plans. Speci�cally, we assume that
each vehicle on the main lane maintains an internal belief about the AV’s motion plan
(on the adjacent lane)2. To estimate the AV’s motion plans, di�erent prediction models
can be employed (e.g., constant velocity model). Later, in Section 7.5.8, we investigate our
method’s performance for di�erent prediction models.

Control Command Computation

For each time-step k and for each vehicle i, the acceleration control is computed depending
on the vehicle’s velocity vik and current distance to the leader Δx ik =

‖‖‖(x
i
k , y

i
k) − (x

l
k , y

l
k)
‖‖‖:

ua,ik = amax
⎡
⎢
⎢
⎣
1−(

vik
v∗)

4
−
(
s∗ (vik ,Δv

i
k)

Δx ik)

2⎤
⎥
⎥
⎦

(7.9)

where s∗ is the desired minimum gap, amax the maximum acceleration, Δvik = v
i
k −v

l
k the

i-th vehicle approach rate to the preceding vehicle, and v∗ the desired velocity. Please note
that we only do longitudinal control for the other vehicles on the main lane by employing
Equation (7.9). For the AV, we employ a local optimization-based planner (Section 7.3.2)
for steering and acceleration control.

7.5 Experiments
This section presents simulation results for two dense tra�c scenarios (Section 7.5.2)
considering di�erent cooperation settings for the other vehicles (Section 7.5.3). First, we
present qualitative (Section 7.5.6) and performance results (Section 7.5.7) of our approach
against two baselines:

• DRL : state-of-the-art Deep Reinforcement Learning approach, SAC [46], learning a
continuous policy controlling the AV’s forward velocity.

• MPCC [143]: Model Predictive Contour Controller with a constant velocity reference.

After, we provide an ablation study analyzing our method’s design choices (Section 7.5.8).
All controller parameters were manually tuned to get the best possible performance.

7.5.1 Experimental Setup

Simulation results were carried out on an Intel Core i9, 32GB of RAMCPU@2.40GHz taking
approximately 20 hours to train, approximately 20 million simulation steps. The non-linear
2For the Ramp Merging scenario (detailed in Sec. 7.5.2), the current lane corresponds to the main lane whereas
the adjacent lane refers to the merge lane whereas for the Unprotected Left Turn scenario (detailed in Section
7.5.2), the current lane refers to the top lane and the adjacent lane corresponds to the bottom lane.

7

100 Learning Interaction-Aware Guidance for Trajectory Optimization in Dense Tra�c Scenarios

Table 7.1: Hyperparameters

Hyperparameter Value
Planning Horizon 1.5 s
Number of Stages N 15
Number of parallel workers 7
Q neural network model 2 dense layers of 256
Policy neural network model 2 dense layers of 256
Activation units Relu
Training batch size 2048
Discount factor 0.99
Optimizer Adam
Initial entropy weight (�) 1.0
Target update (�) 5×10−3
Target entropy lower bound -1.0
Target network update frequency 1
Learning rate 3×10−4
Replay bu�er size 106
rinfeasible -1
rcollision -300
rnear -1.5
{qc , ql , qv , qu , q�} {0.1,0.2,1.0,0.1,0.1}
K 2
Timestep 0.1 s
Control cycle 0.2 s

and non-convex MPCC problem of Equation (7.8) was solved using the ForcesPro [225]
solver. Our simulation environment, P-IDM, builds on an open-source highway simulator
[226] expanding it to incorporate complex interaction behavior. Hyperparameters values
can be found in Table 7.1.

7.5.2 Driving Scenarios

We consider two densely populated driving scenarios: merging on a highway and unpro-
tected left turn. The vehicles are modeled as rectangles with 5 m length and 2 m width.
For each episode, the initial distance between the other vehicles is drawn from a uniform
distribution ranging from [7, 10] m. Their initial and target velocities are sampled from a
uniform distribution, v0∶n0 ∼ (3,4)m/s. This initial con�guration prevents early collisions
while ensuring no gaps of more than 2 meters [227], typical of dense tra�c scenarios. These
scenarios compel the AV to leverage other vehicles’ cooperativeness while also exposing it
to a myriad of critical scenarios for the �nal policy’s performance.

7.5 Experiments

7

101

(a) Ramp merging scenario. The AV on the main road, bottom lane, has to merge into the main top lane.

(b) Unprotected left-turn scenario: The AV on the main road, bottom lane, has to make a left-turn while avoiding
collision with the other vehicles on the main road, top lane.

Figure 7.4: Evaluation environments: The AV is depicted in yellow and the reference path is
depicted by the black dashed line. Each other vehicle is assigned with a color transitioning
from red (i.e., non-cooperative) to green (i.e., cooperative). The number displayed by each
vehicle represents its cooperation coe�cient.

Ramp Merging

Figure 7.4a depicts an instance of the merging scenario. It comprises two lanes: the main
lane and a merging lane. At the beginning of each episode, the main lane is populated with
the other vehicles, moving from left to right. In contrast, the merge lane only includes the
AV.

Unprotected Left Turn

Figure 7.4b illustrates the unprotected left turn scenario. It consists of two roads: the main
road and the left road perpendicular to each other. The main road is populated with the
other vehicles (on the top lane) and the AV (on the bottom lane). The other vehicles move
from right to left on the main road, whereas the AV is initialized at the bottom lane of the
main road, and its objective is to take an unprotected left turn onto the left road.

7

102 Learning Interaction-Aware Guidance for Trajectory Optimization in Dense Tra�c Scenarios

7.5.3 Evaluation Scenarios

We present simulation results considering di�erent settings for the other vehicles’ cooper-
ation coe�cient:

• Cooperative: In this scenario, most vehicles are cooperative (ci ∼ (2,4)m), implying
that as soon as the AV shows intentions of merging into the main lane, the other
vehicle starts considering the AV as its new leader, leaving space for it to merge into
the main lane. This evaluation scenario helps in assessing the merging speed of the
policy.

• Non-Cooperative: This scenario comprises mostly non-cooperative vehicles (ci ∼
 (0,2) m), meaning that the other vehicles would not stop for the AV unless the
AV’s lateral horizon state is in the top lane. This scenario explicitly assesses the
policy’s aggressiveness. In these scenarios, the best option for the AV is to stop and
wait for gaps and then merge in as quickly as possible.

• Mixed: This tra�c scenario involves agents with varying degrees of cooperative-
ness (ci ∼  (0,4) m), featuring a continuous transition from cooperative to non-
cooperative vehicles. Here, the goal is to assess how di�erently the AV behaves with
cooperative and non-cooperative vehicles.

During training, we consider a mixed setting for the other vehicles. Rule based methods
such as IDM, MOBIL fail in highly dense tra�c conditions and thus have not been included
for evaluation purposes [162].

7.5.4 Evaluation Metrics

To evaluate our proposed method, we employ the following evaluation metrics:

• Success Rate: Percentage of successful episodes. An episode is deemed successful
if the AV is able to merge on to the main highway or perform a left term without
colliding and before timeout.

• Collisions: Percentage of episodes resulting in collision.

• Timeout: Percentage of episodes in which the AV did not reach the goal within the
maximum speci�ed time. This metric does not include those episodes that resulted
in collision.

• Time-to-goal: Time in seconds for the AV to reach the goal position.

7.5 Experiments

7

103

(a) Average reward during training when training with (green curve) and without (blue curve) collision
constraints.

(b) Percentage of successful and failure episodes during training when training without collision constraints.

Figure 7.5: Training performance.

7.5.5 Training Procedure

The interactive policy was trained considering a mixed setting of other vehicles following a
P-IDM model with CV predictions. Figure 7.5 shows the performance of the learning policy
during training. The top sub-plot (Figure 7.5a) shows the average reward evolution when
training a policy with and without collision constraints. Training with collision constraints
enables faster growth of the average rewards until 12×106 training steps. This phenomenon
happens because the policy’s task is simpler as the local controller overwrites the policy’s
actions that may lead to a collision. Nevertheless, employing collision constraints does not
allow the AV to interact closely with the other vehicles. Hence, after the 12×106 training
steps, the policy trained without collision constraints achieves a higher average reward.
The bottom sub-plot (Figure 7.5b) shows the percentage of failure and collision episodes
during training, demonstrating that the learning policy e�ectively decreases the percentage
of collisions while increasing the rate of successful episodes throughout training.

7

104 Learning Interaction-Aware Guidance for Trajectory Optimization in Dense Tra�c Scenarios

7.5.6 Qualitative Results

Figure 7.6 presents visual results for our method for the merging scenarios and Figure 7.7
the left-turn scenarios. In Fig. 7.6a, the AV successfully merged onto the main lane by
leveraging other vehicles’ cooperativeness. In contrast, in Fig. 7.6b, we highlight a critical
advantage of our framework: the ability to perform a collision avoidance maneuver when
the guidance policy wrongly estimates the other vehicle’s cooperativeness. In this episode,
at 12.1 s, the AV initiates a merging maneuver. However, the non-cooperative vehicle does
not allow it. The local planner aborts and starts a collision avoidance maneuver at 15.5
s, merging successfully later when encountering a cooperative vehicle at 22.4 s. Finally,
Fig. 7.7a shows the AV performing an unprotected left-turn maneuver successfully. The
presented qualitative results show that our proposed method enables the AV to safely and
e�ciently navigate in dense tra�c scenarios.

7.5 Experiments

7

105

(a
)S

uc
ce
ss
fu
lm

er
gi
ng

m
an
eu
ve
r:
As

th
e
AV

ap
pr
oa
ch
es

th
e
m
er
gi
ng

po
in
t,
it
tri
es

to
as
se
ss

th
e
re
ac
tio

n
of

its
ac
tio

n
on

th
e
ve
hi
cl
e
tit
le
d
"2
5"

by
in
ch
in
g
cl
os
er

to
th
e

m
ai
n
la
ne
.T

he
ve
hi
cle

’s
no

n-
co
op

er
at
iv
e
be
ha
vi
or

do
es

no
te

lic
it
a
re
sp
on

se
ty
pi
ca
lo

fv
eh
ic
le
sw

ill
in
g
to

yi
el
d,
fo
rc
in
g
th
e
AV

to
st
op

.I
tt
rie

st
he

sa
m
e
w
ith

th
e
ve
hi
cle

tit
le
d
"2
9"

by
cr
ee
pi
ng

cl
os
er

to
th
e
m
ai
n
la
ne

bu
tf
ai
ls
ag
ai
n.

Fi
na
lly
,t
he

m
er
ge

is
su
cc
es
sf
ul

w
he
n
a
co
op

er
at
iv
e
ve
hi
cl
e
tit
le
d
"9
1"

em
er
ge
sa

nd
gi
ve
sw

ay
to

th
e
AV

.

t
=
9.
0s

t
=
12
.1
s

t
=
15
.5
s

t
=
22
.4
s

t
=
32
.1
s

(b
)A

tte
m
pt
in
g
to

m
er
ge

w
ith

a
no

n-
co
op

er
at
iv
e
ve
hi
cle

:I
n
th
is
ep
iso

de
,t
he

gu
id
an
ce

po
lic
y
w
ro
ng

fu
lly

es
tim

at
es

th
e
ot
he
rv

eh
ic
le’
sn

on
-c
oo

pe
ra
tiv

e
na
tu
re
,t
itl
ed

"6
",

co
m
pe
lli
ng

th
eA

V
to

m
er
ge

in
fro

nt
of

th
eo

th
er

ag
en
t.
H
ow

ev
er
,t
he

ob
st
ac
le
av
oi
da
nc
ec

on
st
ra
in
tf
or
ce
st
he

AV
to

st
ee
ra

w
ay

fro
m

th
eo

th
er

ve
hi
cle

to
av
oi
d
a
co
lli
sio

n.
Fi
na
lly
,t
he

AV
m
er
ge
si
n
fro

nt
of

th
e
co
op

er
at
iv
e
ve
hi
cl
e
tit
le
d
"8
4"
.

Fi
gu
re

7.
6:
A
ll
th
e
sc
en
ar
io
se

m
pl
oy

th
e
P-
ID
M

m
od
el
(S
ec
tio

n
7.
4)

to
si
m
ul
at
e
th
e
ot
he
rv

eh
ic
le
s.
Th

e
AV

is
re
pr
es
en
te
d
in

ye
llo
w
,w

he
re
as

th
e

fu
tu
re

st
at
es
,a
s
co
m
pu

te
d
by

th
e
M
PC

C
,a
re

pl
ot
te
d
in

lig
ht

bl
ue
.E

ac
h
ot
he
r
ve
hi
cl
e
is
as
si
gn
ed

w
ith

a
co
lo
r
tr
an

si
tio

ni
ng

fr
om

re
d
(i.
e.
,

no
n-
co
op
er
at
iv
e)
to

gr
ee
n
(i.
e.
,c
oo
pe
ra
tiv

e)
to

hi
gh
lig

ht
th
e
ot
he
r
ve
hi
cl
es
’c
oo
pe
ra
tiv

en
es
s.
Th

e
nu

m
be
r
di
sp
la
ye
d
by

ea
ch

ot
he
r
ve
hi
cl
e

re
pr
es
en
ts
its

co
op
er
at
io
n
co
e�

ci
en
t.
A
ll
th
e
nu

m
be
rs
in

be
tw
ee
n
sh
ow

a
co
nt
in
uo
us

tr
an

si
tio

n
fr
om

no
n-
co
op
er
at
iv
e
(0
)t
o
co
op
er
at
iv
e
(1
00
).

7

106 Learning Interaction-Aware Guidance for Trajectory Optimization in Dense Tra�c Scenarios

(a
)U

np
ro
te
ct
ed

le
ft-
tu
rn

sc
en
ar
io
:t
he

AV
ap
pr
oa
ch
es

th
e
ce
nt
er

of
th
e
m
ai
n
la
ne

to
m
ak
e
th
e
ot
he
rv

eh
ic
le
sy

ie
ld
.T

he
�r
st
th
re
e
ve
hi
cle

si
tm

ee
ts
ar
e
no

n-
co
op

er
at
iv
e

an
d
do

no
ts
to
p.

W
he
n
it
m
ee
ts
a
co
op

er
at
iv
e
ve
hi
cl
e,
tit
le
d
"8
2"
,t
he

AV
be
ha
vi
or

in
du

ce
st
he

ot
he
rv

eh
ic
le
to

yi
el
d
al
lo
w
in
g
th
e
AV

to
cr
os
ss

uc
ce
ss
fu
lly
.

Fi
gu
re

7.
7:
A
ll
th
e
sc
en
ar
io
se

m
pl
oy

th
e
P-
ID
M

m
od
el
(S
ec
tio

n
7.
4)

to
si
m
ul
at
e
th
e
ot
he
rv

eh
ic
le
s.
Th

e
AV

is
re
pr
es
en
te
d
in

ye
llo
w
,w

he
re
as

th
e

fu
tu
re

st
at
es
,a
s
co
m
pu

te
d
by

th
e
M
PC

C
,a
re

pl
ot
te
d
in

lig
ht

bl
ue
.E

ac
h
ot
he
r
ve
hi
cl
e
is
as
si
gn
ed

w
ith

a
co
lo
r
tr
an

si
tio

ni
ng

fr
om

re
d
(i.
e.
,

no
n-
co
op
er
at
iv
e)
to

gr
ee
n
(i.
e.
,c
oo
pe
ra
tiv

e)
to

hi
gh
lig

ht
th
e
ot
he
r
ve
hi
cl
es
’c
oo
pe
ra
tiv

en
es
s.
Th

e
nu

m
be
r
di
sp
la
ye
d
by

ea
ch

ot
he
r
ve
hi
cl
e

re
pr
es
en
ts
its

co
op
er
at
io
n
co
e�

ci
en
t.
A
ll
th
e
nu

m
be
rs
in

be
tw
ee
n
sh
ow

a
co
nt
in
uo
us

tr
an

si
tio

n
fr
om

no
n-
co
op
er
at
iv
e
(0
)t
o
co
op
er
at
iv
e
(1
00
).

7.5 Experiments

7

107

7.5.7 Quantitative Results

Aggregated results in Table 7.2 show that our method outperforms the baseline methods in
terms of successful merges and number of collisions considering di�erent settings for the
other vehicles’ behaviors (i.e., cooperative, mixed and, non-cooperative). The combined
capability of interactive RL policy to implicitly embed inter-vehicle interactions into the
velocity’s policy and the safety provided by the collision avoidance constraints allows
our method to succeed in all the environments. The optimization-based baseline (MPCC)
shows poor performance for all settings, i.e., high collision rate. The reason is the lack of
assimilation of inter-vehicle interactions into the policy and a tracking velocity reference
error term in the cost function formulation that motivates the AV to keep the same velocity
disregarding the nearby vehicles’ cooperativeness. The DRL baseline achieves signi�cantly
higher performance, i.e., lower collision rate and a higher number of successful episodes.
Nevertheless, it still leads to a signi�cant number of collisions due to the lack of collision
avoidance constraints to ensure safety when closely interacting with other vehicles. This
demonstrates that employing collision constraints for navigation in dense tra�c scenarios
leads to superior performance over solely learning-based methods. In contrast, safety
comes with the cost of larger average time-to-goal because the AV has to �nd the right
time-window to merge.

7

108 Learning Interaction-Aware Guidance for Trajectory Optimization in Dense Tra�c Scenarios

Ta
bl
e
7.
2:
St
at
is
tic

re
su
lts

fo
r
12
00

ru
ns

of
pr
op
os
ed

m
et
ho
d
(In

tM
PC

)c
om

pa
re
d
to

ba
se
lin

es
(M

PC
C
[1
43
]a

nd
D
RL

[4
6]
)c
on
si
de
ri
ng

th
re
e

di
�e
re
nt

se
tt
in
gs

fo
r
th
e
ot
he
r
ve
hi
cl
es

(S
ec
tio

n
7.
5.
3)
:p

er
ce
nt
ag
e
of

su
cc
es
s,
co
lli
si
on
s
an

d
tim

eo
ut

ep
is
od
es
.

Co
op

er
at
iv
e

M
ix
ed

N
on

Co
op

er
at
iv
e

Su
cc
.(%

)
Co

ll.
(%
)

Ti
m
eo
ut
(%
)

Su
cc
.(%

)
Co

ll.
(%
)

Ti
m
eo
ut
(%
)

Su
cc
.(%

)
Co

ll.
(%
)

Ti
m
eo
ut
(%
)

M
PC

C
[1
43
]

78
.0

11
.0

10
.0

62
.0

22
.0

16
.0

26
.0

57
.0

19
.0

RL
[4
6]

86
.0

3.0
11
.0

69
.0

2.0
29
.0

31
.0

5.0
64
.0

In
t-M

PC
86

.0
0.
0

14
.0

70
.0

0.
0

30
.0

36
.0

0.
0

64
.0

7.5 Experiments

7

109

Table 7.3: Statistical results on the time-to-goal [s]. Only the episodes where all methods
are successful are considered in the presented results. Bold values represent the results with
statistical signi�cance.

Cooperative Mixed Non-cooperative
MPCC [143] 34.7 ± 4.1 35.9 ± 6.9 40.1 ± 5.8
DRL [46] 37.5 ± 7.8 37.9 ± 6.9 41.8 ± 7.4
IntMPC 37.6 ± 8.0 37.7 ± 6.0 41.0 ± 7.3

Figure 7.8: This �gure provides a comprehensive analysis of the agents’ cooperation level
(0 - non cooperative, 100 - cooperative) in front of which the ego vehicle was able to merge
successfully.

Table 7.3 presents statistical results of the time-to-goal for all methods. To evaluate
the statistical signi�cance, we performed pairwise Mann–Whitney U-tests between each
method, considering a 95% con�dence level. The results show statistical signi�cance for the
MPCC’s results against the other methods for cooperative and mixed settings. In contrast,
there is no statistical di�erence in terms of time-to-goal between the DRL and IntMPC.
Similarly, between all methods in non-cooperative environments. The presented results
show that employing collision avoidance constraints do not increase the average time-to-
goal while improving safety. Moreover, in non-cooperative environments, all methods
achieve comparable performance in terms of time-to-goal.

To demonstrate our policy’s ability to leverage agents’ cooperativeness explicitly, we
evaluate 600 episodes in a mixed scenario where we track the other vehicle’ cooperation
level in front of which the AV performs a successful merging maneuver. Fig. 7.8 depicts
a histogram illustrating the number of successful episodes per cooperation coe�cient,
demonstrating that our method mostly merges with cooperative vehicles. A small number
of successful merges can be seen with non-cooperative vehicles as well. This behavior
can be attributed to the random sampling of IDM parameters resulting in di�erent agents’
acceleration values. Thus, the agents might leave a gap big enough for the AV to merge

7

110 Learning Interaction-Aware Guidance for Trajectory Optimization in Dense Tra�c Scenarios

Figure 7.9: Number of infeasible solutions encountered by the solver for our method (IntMPC)
versus the optimization-based baseline (MPCC).

onto the lane when moving from a standstill position.

Figure 7.9 presents the number of infeasible solutions for our method (IntMPC) and the
MPCC baseline. To jointly train the RL policy with the local controller and penalize the
state and action tuples resulting in the solver infeasibility, signi�cantly reduces the number
of infeasible solutions. Finally, in terms of computation performance, our policy’s network
has an average computation time of 1.35 ± 0.5 ms. To solve the IntMPC’s optimization
problem (Equation (7.8)) takes on average 3.0 ± 1.35 ms for all experiments. There was
no statistical di�erence on the policy’s and solver’s computation times for the di�erent
settings of the other vehicles (e.g., cooperative, mixed and non-cooperative). These results
demonstrate out method’s real-time applicability.

7.5.8 Performance Analysis

This section investigates the impact of two critical design choices for our proposed approach:
MPCC’s parameters and using a di�erent number of control cycles per RL policy query.
Moreover, we evaluate our method’s robustness to di�erent prediction models used by the
other vehicles to estimate the AV’s motion plans. To �nalize, we compare the risk-level
that the AV takes with our method and the two planning baselines.

Local Controller Parameters

The MPCC’s parameters (i.e., weights and velocity reference) highly in�uence the local
planner’s performance. Here, we study the two key components controlling the AV’s
interaction with the other vehicles: the velocity tracking weight (qv) and the reference
velocity (vref). Table 7.4 presents performance results for di�erent qv and vref values.
Increasing the reference velocity combined with high qv values generates more aggressive
behavior and signi�cantly reduces the timeout rate. However, it also increases the collision
rate. In contrast, low qv values weaken the in�uence of the velocity reference on the
MPCC performance. The presented results demonstrate that �ne-tuning the MPCC’s

7.5 Experiments

7

111

weights and velocity reference is insu�cient for safe and e�cient navigation in dense
tra�c environments, supporting the need for an interaction-aware velocity reference.
qv = 1.0 and vref = 2 m/s lead to the best performance, i.e., higher success rate and lower
collision and timeout rate. For the following experiments, we use qv = 1.0 and a velocity
reference of vref = 2 m/s for the MPCC baseline.

Table 7.4: Ablation study of the MPCC’s parameters considering a mixed setting for the other
vehicles.

Success (%) / Collision (%) / Timeout (%)
qv = 0.1 qv = 1.0 qv = 10.0

vref = 2 m/s 58 / 26 / 16 62 / 22 / 16 58 / 34 / 8
vref = 3 m/s 48 / 26 / 26 62 / 29 / 9 55 / 42 / 3
vref = 4 m/s 56 / 25 / 19 57 / 35 / 8 53 / 46 / 1

Hyperparameter Selection

A key design choice of the proposed framework is the number of control cycles per policy
query, denoted by K . For instance, for K = 1, we query the policy network for a new
velocity reference for each control cycle, while for K = 4, we use the same queried velocity
reference during 4 control cycles. Here, we study the impact on the learned policy’s
performance for K = {1,…,4}. During testing, all the policies are evaluated using K = 1.
Table 7.5 summarizes the obtained performance results. The policy trained with K = 2
outperforms the other policies in terms of success and collision rate. The policy trained
with K = 1 elicits an overly aggressive response from AV, evident from a high collision
rate and a low timeout percentage. In contrast, higher K values lead the AV to exhibit
an overly conservative behavior, thus, higher timeout percentage. This behavior can be
attributed to the long duration for which the same action is applied after querying the
interactive policy. For instance, using a large velocity reference value during many control
cycles highly increases the collision likelihood at the merging point. This compels the RL
algorithm to learn biased policy towards low-velocity references to avoid an impending
collision resulting in an overly conservative behavior. Finally, the policy trained with K = 2
elicits a balanced response from the AV that is neither too conservative nor too aggressive,
resulting in a high success rate and a low collision rate for all the scenarios.

7

112 Learning Interaction-Aware Guidance for Trajectory Optimization in Dense Tra�c Scenarios

Ta
bl
e
7.
5:
Se
ns
iti
vi
ty

an
al
ys
is
of

th
e
hy

pe
rp
ar
am

et
er
K
,i
.e.
,n
um

be
ro

fc
on
tr
ol
cy
cl
es
pe
rR

L
po
lic
y
qu

er
y,
on

th
e
le
ar
ne
d
po
lic
y’
sp

er
fo
rm

an
ce
.

A
ll
po
lic
ie
sw

er
e
tr
ai
ne
d
co
ns
id
er
in
g
a
m
ix
ed

se
tt
in
g
of

ot
he
r
ve
hi
cl
es
.Q

ue
ry
in
g
th
e
RL

po
lic
y
fo
r
a
ne
w
ve
lo
ci
ty

fo
r
ea
ch

tw
o
co
nt
ro
lc
yc
le
s

le
ad
s
to

th
e
be
st
pe
rf
or
m
an

ce
(b
ol
d
va
lu
es
).

Co
op

er
at
iv
e

M
ix
ed

N
on

Co
op

er
at
iv
e

Su
cc
.(%

)
Co

lli
sio

n(
%)

Ti
m
eo
ut
(%
)

Su
cc
.(%

)
Co

ll.
(%
)

Ti
m
eo
ut
(%
)

Su
cc
.(%

)
Co

ll.
(%
)

Ti
m
eo
ut
(%
)

K
=
1

80
.0

0.0
20
.0

70
.0

0.0
30
.0

33
.0

0.0
67
.0

K
=
2

88
.0

0.0
12

.0
72

.0
0.0

28
.0

37
.0

0.0
63

.0
K
=
3

71
.5

0.0
28
.5

46
.75

0.0
53
.25

5.5
0.0

94
.5

K
=
4

72
.0

0.0
28
.0

47
.0

0.0
53
.0

0.0
0.0

10
0.0

7.5 Experiments

7

113

Simulation Environment

This work introduces an IDM variant enhancing the other vehicles with anticipatory
behavior. Our proposed model (P-IDM in Section 7.4) relies on the assumption that the
other vehicles can infer the AV’s motion plans. Here, we evaluate the in�uence of the
prediction model used to infer the AV’s plans on our method’s performance. We consider
the following prediction models variants:

1. CV: Constant velocity (CV) model;

2. CVPath: Constant velocity (CV) model along the AV’s reference path;

3. MPCC: MPCC plan (Equation (7.8)) assuming the AV’s current velocity as the velocity
reference, vref = vk .

Moreover, we also evaluate our method’s performance in reactive scenarios employing
the IDM [224] to model the other vehicles’ behaviors. The presented results in Table 7.6
demonstrate that our proposed approach is robust and generalizes well to environments
with other vehicles exhibiting di�erent behaviors. Employing the CV-Path prediction model
results in highly cooperative behavior for other vehicles as shown by the high success
rate. In contrast, the scenarios with vehicles following an IDM [224] represents the most
challenging scenario.

7

114 Learning Interaction-Aware Guidance for Trajectory Optimization in Dense Tra�c Scenarios

Ta
bl
e
7.
6:
A
na

ly
si
s
of

th
e
pr
op
os
ed

m
et
ho
d’
s
pe
rf
or
m
an

ce
w
he
n
in
te
ra
ct
in
g
w
ith

re
ac
tiv

e
(ID

M
[2
24
])
an

d
pr
ed
ic
tiv

e
ve
hi
cl
es

(C
V,
C
V-
Pa
th

an
d
M
PC

C
).

Co
op

er
at
iv
e

M
ix
ed

N
on

Co
op

er
at
iv
e

Su
cc
.(%

)
Co

ll.
(%
)

Ti
m
eo
ut
(%
)

Su
cc
.(%

)
Co

ll.
(%
)

Ti
m
eo
ut
(%
)

Su
cc
.(%

)
Co

ll.
(%
)

Ti
m
eo
ut
(%
)

Re
ac
t.
M
od

el
ID
M

[2
24
]

86
.0

0.0
14
.0

70
.0

1.0
29
.0

36
.0

0.0
64
.0

Pr
ed
.M

od
el

CV
88
.0

0.0
12
.0

72
.0

0.0
28
.0

37
.0

0.0
63
.0

CV
-P
at
h

98
.0

0.0
2.0

88
.0

0.0
12
.0

37
.0

0.0
63
.0

M
PC

C
89
.0

0.0
11
.0

76
.0

0.0
24
.0

39
.0

0.0
61
.0

7.6 Conclusions

7

115

Table 7.7: Risk-level analysis

Time of Closest Encounter [s] / Distance of Closest Encounter [m]
Cooperative Mixed Non-cooperative

MPCC [143] 9.3 / 3.44 13.6 / 3.13 13.5 / 3.07
RL [46] 26.5 / 3.45 45.6 / 3.15 43.6 / 3.15
IntMPC 25.6 / 3.51 46.0 / 3.20 43.1 / 3.17

Risk-level Analysis

Table 7.7 compares the risk-level that the AV takes using our approach against the baseline
methods for two risk metrics as proposed in [133]: Time of Closest Encounter (TCE)
and the Distance-of-Closest-Encounter (DCE). DCE models how close the AV gets to the
other vehicles meaning that lower DCE represents higher risk. TCE models the risk time-
dependency, assuming that risk events further away in time have a lower probability of
occurrence. Hence, the larger TCE, the lower the risk. The presented results show that our
method incurs the lowest risk.

7.5.9 Discussion

The presented performance and ablation results demonstrate that our approach improves
performance and safety signi�cantly compared to pure learning or optimization baselines.
Our approach enables the AV to exploit the interaction e�ects in the other agents to ef-
�ciently and safely perform di�erent driving maneuvers by employing RL to learn an
interaction-aware velocity reference directly fed into the MPCC’s cost function. Never-
theless, the sensitivity analysis results presented in Table 7.6 show some performance
degradation when evaluating our approach in scenarios containing agents following di�er-
ent policies from those used in the training scenarios. This e�ect is due to the sim-to-real
gap inherent to RL methods [228], and it can be exacerbated when evaluating our approach
in real environments.

7.6 Conclusions
This section introduced an interaction-aware policy for guiding a local optimization plan-
ner through dense tra�c scenarios. We proposed to model the interaction policy as a
velocity reference and employed DRL methods to learn a policy maximizing long-term
rewards by exploiting the interaction e�ects. Then, a MPCC is used to generate control
commands satisfying collision and kino-dynamic constraints when a feasible solution
is found. Learning an interaction-aware velocity reference policy enhances the MPCC
planner with interactive behavior necessary to safely and e�ciently navigate in dense
tra�c. The presented results show that our method outperforms solely learning-based
and optimization-based planners in terms of collisions, successful maneuvers, and fewer
deadlocks in cooperative, mixed, and non-cooperative scenarios.

8

117

8
Conclusions and Future Work

8

118 Conclusions and Future Work

8.1 Conclusions
This thesis presents algorithms that enable safe autonomous navigation of mobile robots
in environments populated with humans and other robots. The �rst goal of this thesis is
to develop a motion planning algorithm endowing computing predictive motions plans
online for mobile robots and autonomous vehicles in unstructured, dynamic environments.
Computing predictive motion plans requires planning over a prediction horizon and,
therefore, requires aworldmodel that estimates its evolution. Consequently, the second goal
is to create human trajectory prediction models accounting for interaction, environment
constraints, and multi-modality. In dynamic environments, generating trajectories online
requires planning over a limited horizon and, consequently, computing locally optimal
solutions. Hence, the third objective is to develop a method for providing long-term
guidance to a local planner. Lastly, to navigate e�ciently in dense tra�c scenarios, it
is crucial to interact with the other agents. Thus, the last goal of this thesis is to create
a method to enhance local trajectory planners with interactive behavior to exploit the
interaction with other agents in dense tra�c scenarios.

Chapter 4 presented a Local Model Predictive Contouring Control method (LMPCC)
enabling safe autonomous navigation in dynamic and unstructured environments. Here,
we tackled two main problems. Firstly, previous works modeling dynamic obstacles’ space
as circles and ellipsoids used an incorrect bound and collisions could still occur when
used for motion planning. Therefore, we proposed a closed-form bound to conservatively
approximate the Minkowski sum of a circle and an ellipse which can be formulated as a
non-linear inequality constraint into the optimization problem to avoid collisions with
dynamic obstacles. Secondly, using the same bound to model the complex structure of
indoor environments would require many computationally expensive constraints and
result in an overly conservative approximation of the static obstacles’ space. To account
for static obstacles, we proposed an algorithm to compute a polyhedral approximation of
the collision-free area around the robot. The polyhedral approximation consists of a set of
linear constraints reducing the computational demands compared to the ellipsoid-circle
constraints used for dynamic collision avoidance. We implemented the proposed method
in an autonomous mobile robot and an autonomous vehicle with onboard localization and
obstacle detection, which was shown to avoid walking humans at a maximum speed of
1.5 m/s. Additionally, our proposed Model Predictive Contouring Control scheme was
shown to perform in real-time achieving computation times under 50 ms for planning
horizons below 3 s. It was demonstrated that the proposed motion planner signi�cantly
improved navigation performance in terms of safety, reducing by 44% and 35% the number
of episodes resulting in collisions compared to learning-based and traditional methods,
respectively. The primary reason for this result is that our approach plans N-steps ahead,
endowing the robot with anticipatory behavior while the baseline approaches are purely
reactive. Moreover, in terms of e�ciency, the average traveled distance was reduced by
approximately 15% and 23% compared to learning-based and reactive methods, respectively.

Chapter 5 tackles the problem of predicting multi-modal trajectory from a single net-
work query. State-of-the-art approaches employed random sampling from the latent space
distribution to predict multi-modal trajectories (i.e., to predict multiple possible trajectories).

8.1 Conclusions

8

119

However, these approaches su�er from mode-collapse (i.e., model can only predict one or
a very small subset of possible outcomes), generating very similar trajectories. Moreover,
most methods relied on generative adversarial neural networks (GANs) as the model, which
is very di�cult and unstable to train. Therefore, Chapter 5 introduced a novel Variational
Recurrent Neural Network (VRNN) architecture for one-shot multi-modal trajectory pre-
diction. The presented architecture learns the parameters of a Gaussian Mixture Model
to account for uncertainty and multi-modality. It incorporates information about pedes-
trian dynamics, static obstacles, and other interacting pedestrians to predict trajectories
accounting for interaction and environment constraints. Additionally, by employing a
variational approach, the proposed model has stable training and faster convergence than
GAN-based methods. The qualitative results presented in Chapter 5 show that the Social-
VRNN predictions avoid static obstacles and account for the interactions with surrounding
pedestrians. Moreover, qualitative results demonstrate that the proposed model generates
more distinct trajectories than the state-of-the-art prediction model [93]. The performance
results demonstrate that the proposed model reduces the average displacement error (ADE)
by 9 % and the �nal displacement error (FDE) in 25% compared to two baseline prediction
models [92, 93].

In Chapter 6, the addressed problem is two-fold. Firstly, local trajectory optimization
methods scale poorly with the number of agents and require considering limited planning
horizon to generate a solution online, leading to catastrophic failures if the �nal goal
position is outside the planning horizon. Secondly, deep RL-based methods overcome
the scalability issues and enable long-term planning but do not necessarily satisfy hard
constraints. Thus, Chapter 6 introduced the Goal-Oriented Model Predictive Control (GO-
MPC) framework enhancing a state-of-art online optimization-based planner (MPC) with a
learned subgoal policy providing global guidance. The MPC ensures generating trajectories
satisfying collision and dynamic constraints. The DRL enables learning a policy accounting
for the long-term planning horizon and interaction with other agents. During training,
performance results demonstrate that the proposed framework achieves on average over
20% higher average episode reward compared to solely optimization-based and learning-
based [17] approaches. Qualitative results show that the learned policy exhibits di�erent
behaviors depending on the cooperativeness of other agents. Additionally, the results show
that the proposed approach enables decentralized and communication-free multi-robot
collision avoidance. The performance results show a reduction in the percentage of failure
episodes (i.e., collisions and deadlocks) between 13% to 22% compared to the MPC baseline
without guidance, depending on the number of agents ranging from six to ten. Compared
to the DRL [17] and DRL-2 baseline, our method reduces the percentage of failure episodes
between 17% to 29% and between 6% to 13%, respectively. Similarly, when considering
a multi-robot setting, the performance test results show a reduction in the percentage
of failure episodes between 13% to 33% compared to the MPC baseline, between 16% to
18% compared to the DRL baseline [17] and between 17% to 26% compared to the DRL-2
baseline [17]. In terms of e�ciency, the GO-MPC only outperforms the DRL-2 baseline
[17] presenting on average larger travel time and traveled distance than the MPC and DRL
baselines. The �rst explanation behind these results is that the GO-MPC has to behave
more conservatively to bring the percentage of collisions close to zero. Secondly, DRL
learns a policy or guidance behavior that allows solving simple and complex scenarios

8

120 Conclusions and Future Work

simultaneously. Consequently, the qualitative results show that the GO-MPC can show
over-conservative behavior in simple scenarios (e.g., low number of agents).

Finally, in Chapter 7 we tackled the problem of autonomous navigation in dense tra�c
scenarios (e.g., merging on highways and unprotected left-turn maneuvers). Autonomous
vehicles must exploit interaction with other cars to enable them to navigate in dense tra�c
successfully. Therefore it is crucial to endow AVs with interactive behavior. Hence, we
proposed the interactive Model Predictive Controller (IntMPC) utilizing an interaction-
aware policy providing a velocity reference to the local planner. The learned policy allows
leveraging the vehicles’ interaction e�ects to create free-space areas. The LMPCC computes
the steering and throttle commands for the AV respecting collision and dynamic constraints.
In contrast to the GO-MPC approach proposed in Chapter 6, in the IntMPC framework
the DRL policy provides a velocity reference as global guidance information allowing
to control the interaction with the other vehicles. The qualitative results show that the
learned policy enhances the LMPCC with interactive behavior to pro-actively merge in
dense tra�c. The performance results show that the IntMPC improves the navigation per-
formance and safety substantially. Concerning optimization-based baselines, the proposed
method increased over 8% the success rate in cooperative, mixed, and non-cooperative
settings. As compared to DRL baseline, the proposed approach reduced by 3%, 2%, and
5% the percentage of collisions in cooperative, mixed, and non-cooperative environments,
respectively. Moreover, it increased the success rate by 5% in non-cooperative scenarios
compared to the DRL baseline. Finally, the risk-analysis results show that, on average,
the IntMPC presents larger Time to Collision (TTC), Time of Closest Encounter (TCE),
and Distance of Closest Encounter compare to the baselines. Therefore, incurring lower
collision risk.

Overall, these contributions address the key challenges in safe and e�cient robot
navigation among humans and other robots. However, there are still several remaining
issues before we can safely deploy autonomous robots everywhere. Toward that goal,
possible directions of future work are described below.

8.2 Future Work

8

121

8.2 Future Work
This thesis contributed to motion planning, prediction, and decision-making algorithms,
enabling safe and e�cient navigation among humans. Nevertheless, many open challenges
still need to be addressed before broadly releasing autonomous systems (e.g., mobile robots
and autonomous vehicles) in human environments. Hereafter, we recommend several
future research directions to extend this work for interaction-aware motion planning,
learning for socially-aware guidance, and precise control.

8.2.1 Interaction-Aware Motion Planning

This work proposed to learn o�ine a policy controlling the interaction with the other agents
through the MPC’s cost function. However, such an approach is prone to generalization
issues as the agents’ behavior might be signi�cantly di�erent in reality compared to
simulation. Moreover, it requires to assume that the interactions among the agents are
decoupled during the planning phase which is not realistic.

The collision avoidance problem is inherently a game. Each autonomous agent’s
actions are coupled with the others. Game-theoretic approaches considering a feedback
information structure have shown that accounting for this action coupling between all
agents in the motion planning phase allows discovering strategies exploiting the actions of
the others [229]. Yet, this comes with the cost of the so-called "curse of dimensionality,"
limiting game-theoretic approaches to scenarios with a small number of agents.

It is critical to develop algorithms enabling online computation of game solutions.
Future works may explore supervised learning to learn o�ine a joint model for all agent
dynamics. Then, employing di�erentiable MPC [230] is a promising solution to �nd
approximate solutions to the Nash equilibrium online.

8.2.2 Learning Guidance Policies

This thesis proposed two methods to solve the curse of dimensionality issues inherent
to local optimization methods when navigating in cluttered environments (Chapter 6) or
accounting for interaction (Chapter 7) by learning a policy providing global guidance in
the local planner’s cost function. However, further research on learning global guidance
policies is still required. Firstly, to apply the GO-MPC in real scenarios, it is necessary to
expand the method to account for static obstacles. Secondly, further research is needed to
improve the GO-MPC performance in terms of travel time and distance. As pointed out in
Section 8.1, the GO-MPC can show highly conservative behavior in simple scenarios (e.g.,
swapping positionwith another agent), which is one of the results behind the poor e�ciency
performance (i.e., average travel time and traveled distance). Moreover, the qualitative
results presented in Chapter 6 show that the learned behavior does not resemble the
pedestrians behavior. Thus, further research to enable learning socially compliant guidance
policies is necessary. Techniques such as Generative Adversarial Imitation Learning [231]
and Adversarial Inverse Reinforcement Learning [232] are promising solutions. Yet, these
approaches are sensitive to hyper-parameter tuning and challenging to train, requiring
further research.

8

122 Conclusions and Future Work

8.2.3 Constraints-Aware Learning

The state-of-the-art supervised and reinforcement learning methods used in this thesis
can learn policies capable of solving complex tasks from high-dimensional information.
Yet, these methods cannot learn policies respecting the kinematic and dynamic constraints
of the system. For instance, DRL enables learning guidance policies that, combined with
constrained optimization methods (e.g., the GO-MPC approach proposed in this thesis),
enable robots to navigate cluttered environments. However, the generated guidance
information does not necessarily respect dynamic or collision constraints relying on the
local planner to handle those.

Most state-of-the-art learning methods neglect the geometric knowledge that we have
about the system. Thus, to advance learning methods incorporating such information is
critical to enable learning policies for control. Two recent promising works in this direction
are Implicit Behavior Cloning [233] and physics-informed neural networks [234, 235]. But
they have not been yet explored for autonomous navigation.

8.2.4 Continual Learning

The learning methods proposed in this thesis rely on large amounts of data gathered
o�ine through large datasets or simulation environments to learn the model’s parameters.
However, o�ine learning is prone to generalization issues, leading to catastrophic failure
in real or novel environments. In addition, state-of-the-art learning algorithms have �xed
performance not improving over time.

Current autonomous robotic systems have access to online data streams (e.g., sensor
data, algorithms outputs, etc.), providing valuable information from the environment where
they are deployed. Hence, it is essential to develop learning algorithms exploiting online
data while retaining past knowledge to improve the model’s (e.g., prediction and decision-
making) performance in unseen environments and enable the next generation of robots to
adapt to non-stationary environments.

A

123

A
The Jackal

(a) Jackal v1. (b) Jackal v2. (c) Jackal v3.

The algorithms presented in this thesis have been fully implemented on-board and
tested on the Jackal platform from Clearpath. The Jackal’s design has been evolving
throughout the development of this research giving birth to the three Jackal generations
presented in Appendix A. All the designs are equipped with a Velodyne LiDAR (VLP-16)
with 16 laser beams used for localization and pedestrian detection, an IMU, and an Intel i5
CPU@2.6GHz. The �rst and second versions, Jackal v1 and Jackal v2, were also equipped
with a ZED stereo camera for pedestrian detection. Additionally, both platforms used an
Nvidia Xavier GPU board and an Intel NUC i7 CPU@3.2GHz as extra processing power
units. In the Jackal v3 version, the additional processing power units (i.e., Intel NUC and
Nvidia Xavier) have been replaced by a Dell laptop, simplifying the hardware complexity,
reducing power consumption from the robot’s batteries, and easier software development
and debugging. Moreover, the stereo cameras have been replaced by the Intel RealSense,
allowing to reduce the robot’s computational demands as the Intel cameras have stereo
on-board processing. The Jackal v3 setup has �ve Intel RealSense cameras enabling 360
degrees of perception range.

B

125

B
The Toyota Prius

The LMPCCmethod presented in Chapter 4 has been tested on the TU Delft Toyota Prius to
avoid a pedestrian, as depicted in Figure B.1. The car has a PC mounted on board running
Ubuntu 18.04.1 LTS with an Intel(R) Core(TM) i7-6900K CPU at 3.20GHz with 64GB of
RAM. In addition, the PC contains two Titan X (Pascal) GPUs for stereo matching. For
localization, the vehicle uses a high-precision dual GPS mounted on top. Finally, there the
car uses one stereo camera for VRU detection.

Figure B.1: The TU Delft Toyota Prius

127

Bibliography

[1] P. A. Hancock, Illah Nourbakhsh, and Jack Stewart. On the future of transportation in
an era of automated and autonomous vehicles. Proceedings of the National Academy
of Sciences, 116(16):7684–7691, 2019.

[2] Andrew J. Hawkins. Motional’s robotaxis will be fully driverless in las vegas by
2023, Nov 2021.

[3] Andrew J. Hawkins. Starship technologies’ delivery robots are coming to more
college campuses this fall, Aug 2021.

[4] Vice President of Products at Amazon Charlie Tritschler. Meet astro, a home robot
unlike any other, Sep 2021.

[5] Alphabet’s waymo and gm’s cruise get california dmv approval to run
commercial autonomous car services. https://www.cnbc.com/2021/09/30/
waymo-and-cruise-get-california-dmv-approval-to-run-driverless-cars.html. Ac-
cessed: 2021-11-04.

[6] Javier Alonso-Mora, Paul Beardsley, and Roland Siegwart. Cooperative collision
avoidance for nonholonomic robots. IEEE Transactions on Robotics, 34(2):404–420,
2018.

[7] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli. A
survey of motion planning and control techniques for self-driving urban vehicles.
IEEE Transactions on intelligent vehicles, 1(1):33–55, 2016.

[8] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. Planning and Decision-
Making for Autonomous Vehicles. Annual Review of Control, Robotics, and Au-
tonomous Systems, 1(1):060117–105157, 2018.

[9] Steven M LaValle and James J Ku�ner Jr. Randomized kinodynamic planning. The
international journal of robotics research, 20(5):378–400, 2001.

[10] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning. The international journal of robotics research, 30(7):846–894, 2011.

[11] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window approach
to collision avoidance. IEEE Robotics & Automation Magazine, 4(1):23–33, 1997.

128 Bibliography

[12] Jur Van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity obstacles for
real-time multi-agent navigation. In 2008 IEEE International Conference on Robotics
and Automation (ICRA), pages 1928–1935. IEEE, 2008.

[13] Sean Quinlan and Oussama Khatib. Elastic bands: Connecting path planning and con-
trol. In [1993] Proceedings IEEE International Conference on Robotics and Automation,
pages 802–807. IEEE, 1993.

[14] Wilko Schwarting, Alyssa Pierson, Javier Alonso-Mora, Sertac Karaman, and Daniela
Rus. Social behavior for autonomous vehicles. Proceedings of the National Academy
of Sciences of the United States of America, 116(50):2492–24978, 2019.

[15] Jaime F Fisac, Eli Bronstein, Elis Stefansson, Dorsa Sadigh, S Shankar Sastry, and
Anca D Dragan. Hierarchical game-theoretic planning for autonomous vehicles. In
2019 International Conference on Robotics and Automation (ICRA), pages 9590–9596.
IEEE, 2019.

[16] Simon Le Cleac’h, Mac Schwager, and Zachary Manchester. Lucidgames: Online
unscented inverse dynamic games for adaptive trajectory prediction and planning.
IEEE Robotics and Automation Letters, 6(3):5485–5492, 2021.

[17] M. Everett, Y. F. Chen, and J. P. How. Collision avoidance in pedestrian-rich envi-
ronments with deep reinforcement learning. IEEE Access, 9:10357–10377, 2021.

[18] Changan Chen, Yuejiang Liu, Sven Kreiss, and Alexandre Alahi. Crowd-robot
interaction: Crowd-aware robot navigation with attention-based deep reinforcement
learning. In 2019 International Conference on Robotics and Automation (ICRA), pages
6015–6022. IEEE, 2019.

[19] Joel Janai, Fatma Güney, Aseem Behl, Andreas Geiger, et al. Computer vision for
autonomous vehicles: Problems, datasets and state of the art. Foundations and
Trends® in Computer Graphics and Vision, 12(1–3):1–308, 2020.

[20] Eitan Marder-Eppstein, Eric Berger, Tully Foote, Brian Gerkey, and Kurt Kono-
lige. The o�ce marathon: Robust navigation in an indoor o�ce environment. In
International Conference on Robotics and Automation, 2010.

[21] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive control for
linear and hybrid systems. Cambridge University Press, 2017.

[22] Hai Zhu and Javier Alonso-Mora. Chance-constrained collision avoidance for mavs
in dynamic environments. IEEE Robotics and Automation Letters, 4(2):776–783, 2019.

[23] Wilko Schwarting, Javier Alonso-Mora, Liam Pauli, Sertac Karaman, and Daniela
Rus. Parallel autonomy in automated vehicles: Safe motion generation with minimal
intervention. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 1928–1935. IEEE, 2017.

129

[24] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey Dean,
Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael Isard, et al. Tensor�ow:
A system for large-scale machine learning. In 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), pages 265–283, 2016.

[25] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
networks, 4(2):251–257, 1991.

[26] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR,
abs/1312.6114, 2013.

[27] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. Improved variational inference with inverse autoregressive �ow. Advances
in neural information processing systems, 29:4743–4751, 2016.

[28] Szilárd Aradi. Survey of deep reinforcement learning for motion planning of au-
tonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 2020.

[29] StevenMLaValle. Motion planning. IEEE Robotics &AutomationMagazine, 18(2):108–
118, 2011.

[30] Jiirg P Keller and Brian DO Anderson. A new approach to the discretization of
continuous-time controllers. In 1990 American Control Conference, pages 1127–1132.
IEEE, 1990.

[31] Lei Tai, Jingwei Zhang, Ming Liu, Joschka Boedecker, andWolfram Burgard. A survey
of deep network solutions for learning control in robotics: From reinforcement to
imitation. arXiv preprint arXiv:1612.07139, 2016.

[32] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, MathewMonfort, Urs Muller, Jiakai Zhang,
et al. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

[33] Mahir Gulzar, Yar Muhammad, and Naveed Muhammad. A survey on motion
prediction of pedestrians and vehicles for autonomous driving. IEEE Access, 9:137957–
137969, 2021.

[34] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[35] Christopher M Bishop. Pattern recognition. Machine learning, 128(9), 2006.

[36] Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in
statistics, pages 492–518. Springer, 1992.

[37] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backprop-
agation and variational inference in deep latent gaussian models. In International
Conference on Machine Learning, volume 2, page 2. Citeseer, 2014.

[38] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

130 Bibliography

[39] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, and
Joelle Pineau. An introduction to deep reinforcement learning. arXiv preprint
arXiv:1811.12560, 2018.

[40] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015.

[41] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms, 2017.

[42] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International conference on machine learning,
pages 1889–1897. PMLR, 2015.

[43] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Philip S. Yu. Learning multiple
tasks with multilinear relationship networks. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, page 1593–1602, Red
Hook, NY, USA, 2017. Curran Associates Inc.

[44] Ronald J Williams and Jing Peng. Function optimization using connectionist rein-
forcement learning algorithms. Connection Science, 3(3):241–268, 1991.

[45] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[46] Tuomas Haarnoja, Aurick Zhou, P. Abbeel, and Sergey Levine. Soft actor-critic:
O�-policy maximum entropy deep reinforcement learning with a stochastic actor.
In ICML, 2018.

[47] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots.
In Autonomous robot vehicles, pages 396–404. Springer, 1986.

[48] Gonzalo Ferrer, Anais Garrell, and Alberto Sanfeliu. Robot companion: A social-
force based approach with human awareness-navigation in crowded environments.
In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
1688–1694. IEEE, 2013.

[49] Javier Alonso-Mora, Paul Beardsley, and Roland Siegwart. Cooperative Collision
Avoidance for Nonholonomic Robots. IEEE Transactions on Robotics, 34(2):404–420,
April 2018.

[50] Jan Marian Maciejowski. Predictive control: with constraints. Pearson education,
2002.

[51] Francesco Borrelli, Paolo Falcone, Tamas Keviczky, Jahan Asgari, and Davor Hrovat.
MPC-based approach to active steering for autonomous vehicle systems. International
Journal of Vehicle Autonomous Systems, 3(2-4):265–291, 2005.

131

[52] C. M. Kang, S. Lee, and Chung Choo Chung. On-road path generation and control
for waypoints tracking. IEEE Intelligent Transportation Systems Magazine, 9(3):36–45,
2017.

[53] Thomas M. Howard, Colin J. Green, and Alonzo Kelly. Receding horizon model-
predictive control for mobile robot navigation of intricate paths. In Andrew Howard,
Karl Iagnemma, and Alonzo Kelly, editors, Field and Service Robotics, pages 69–78,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[54] David Fridovich-Keil, Sylvia L. Herbert, Jaime F. Fisac, Sampada Deglurkar, and
Claire J. Tomlin. Planning, fast and slow: A framework for adaptive real-time safe
trajectory planning. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 387–394, 2018.

[55] Jaime F Fisac, Andrea Bajcsy, Sylvia L Herbert, David Fridovich-Keil, Steven Wang,
Claire J Tomlin, and Anca D Dragan. Probabilistically safe robot planning with
con�dence-based human predictions. Robotics: Science and Systems (RSS), 2018.

[56] D. Lam, C. Manzie, and M. Good. Model predictive contouring control. In 49th IEEE
Conference on Decision and Control (CDC), 2010.

[57] Matthew Brown, Joseph Funke, Stephen Erlien, and J Christian Gerdes. Safe driving
envelopes for path tracking in autonomous vehicles. Control Engineering Practice,
61:307–316, 2017.

[58] Wilko Schwarting, Javier Alonso-Mora, Liam Paull, Sertac Karaman, and Daniela Rus.
Safe nonlinear trajectory generation for parallel autonomy with a dynamic vehicle
model. IEEE Transactions on Intelligent Transportation Systems, 19(9):2994–3008, 2018.

[59] Thibault Kruse, Amit Kumar Pandey, Rachid Alami, and Alexandra Kirsch. Human-
aware robot navigation: A survey. Robotics and Autonomous Systems, 61(12):1726–
1743, 2013.

[60] Pete Trautman. Sparse interacting gaussian processes: E�ciency and optimality
theorems of autonomous crowd navigation. In 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), 2017.

[61] Björn Lütjens, Michael Everett, and Jonathan P. How. Safe reinforcement learn-
ing with model uncertainty estimates. International Conference on Robotics and
Automation (ICRA), 2019.

[62] Pinxin Long, Tingxiang Fan, Xinyi Liao, Wenxi Liu, Hao Zhang, and Jia Pan. Towards
optimally decentralized multi-robot collision avoidance via deep reinforcement
learning. In 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 6252–6259. IEEE, 2018.

[63] Julius Ziegler, Philipp Bender, Markus Schreiber, Henning Lategahn, Tobias Strauss,
Christoph Stiller, Thao Dang, Uwe Franke, Nils Appenrodt, Christoph Gustav Keller,
et al. Making Bertha Drive–An Autonomous Journey on a Historic Route. IEEE
Intelligent Transportation Systems Magazine, 6(2):8–20, 2014.

132 Bibliography

[64] Alberto López Rosado, Stanley Chien, Lingxi Li, Qiang Yi, Yaobin Chen, and Rini
Sherony. Certainty and critical speed for decision making in tests of pedestrian
automatic emergency braking systems. IEEE Transactions on Intelligent Transportation
Systems, 18(6):1358–1370, 2017.

[65] Christoph G Keller, Thao Dang, Hans Fritz, Armin Joos, Clemens Rabe, and Dariu M
Gavrila. Active pedestrian safety by automatic braking and evasive steering. IEEE
Transactions on Intelligent Transportation Systems, 12(4):1292–1304, 2011.

[66] Thao Dang, Jens Desens, Uwe Franke, Dariu Gavrila, Lorenz Schäfers, and Walter
Ziegler. Steering and evasion assist. InHandbook of intelligent vehicles, pages 759–782.
Springer, 2012.

[67] Sebastian Köhler, Brian Schreiner, Ste�en Ronalter, Konrad Doll, Ulrich Brunsmann,
and Klaus Zindler. Autonomous evasive maneuvers triggered by infrastructure-based
detection of pedestrian intentions. In IV Symposium, pages 519–526, 2013.

[68] Thomas Grußner, Lutz Bürkle, and ClausMarberger. ErweiterungAktiver Fußgänger-
schutzsysteme Durch Eine Fahrerinitierte Ausweichunterstützung. In Uni-DAS e.V.
Workshop Fahrerassistenzsysteme, pages 19–28, 2015.

[69] Steven M. LaValle. Rapidly-exploring random trees : a new tool for path planning.
The annual research report, 1998.

[70] Sertac Karaman and Emilio Frazzoli. Incremental Sampling-based Algorithms for
Optimal Motion Planning. International Journal of Robotics Research, 5 2010.

[71] Steven Lavalle. Planning Algorithms. Cambridge University Press, Cambridge, 2006.

[72] Yoshiaki Kuwata, Gaston Fiore, Justin Teo, Emilio Frazzoli, and Jonathan How. Mo-
tion planning for urban driving using RRT. In 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS, pages 1681–1686. IEEE, 9 2008.

[73] Chris Urmson and Reid Simmons. Approaches for Heuristically Biasing RRT Growth.
In IEEE International Conference on Intelligent Robots and Systems, volume 2, pages
1178–1183, 2003.

[74] Emilio Frazzoli, Munther A. Dahleh, and Eric Feron. Real-Time Motion Planning for
Agile Autonomous Vehicles. Journal of Guidance, Control, and Dynamics, 25(1):116–
129, 2002.

[75] Kwangjin Yang. An e�cient Spline-based RRT path planner for non-holonomic
robots in cluttered environments. 2013 International Conference on Unmanned Aircraft
Systems, ICUAS 2013 - Conference Proceedings, pages 288–297, 2013.

[76] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research, 30(7):846–894, 2011.

[77] Sertac Karaman and Emilio Frazzoli. Sampling-based optimal motion planning for
non-holonomic dynamical systems. Proceedings - IEEE International Conference on
Robotics and Automation, pages 5041–5047, 2013.

133

[78] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli, and Seth
Teller. Anytime Motion Planning using the RRT*. IEEE Conference on Robotics and
Automation, 2011.

[79] Yoshiaki Kuwata, Justin Teo, Gaston Fiore, Sertac Karaman, Emilio Frazzoli, and
Jonathan P. How. Real-time motion planning with applications to autonomous urban
driving. IEEE Transactions on Control Systems Technology, 17(5):1105–1118, 2009.

[80] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics, 1995.

[81] Sujeong Kim, Stephen J. Guy,Wenxi Liu, DavidWilkie, RynsonW.H. Lau, Ming C. Lin,
and Dinesh Manocha. BRVO: Predicting pedestrian trajectories using velocity-space
reasoning. International Journal of Robotics Research, 34(2):201–217, 2015.

[82] Peter Trautman and Andreas Krause. Unfreezing the robot: Navigation in dense,
interacting crowds. In 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 797–803. IEEE, 2010.

[83] Stefan Becker, Ronny Hug, Wolfgang Hübner, and Michael Arens. An evaluation
of trajectory prediction approaches and notes on the trajnet benchmark. ArXiv,
abs/1805.07663, 2018.

[84] Hao Xue, Du Q Huynh, and Mark Reynolds. Ss-lstm: A hierarchical lstm model for
pedestrian trajectory prediction. In 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 1186–1194. IEEE, 2018.

[85] Mark Pfei�er, Giuseppe Paolo, Hannes Sommer, Juan Nieto, Rol Siegwart, and Cesar
Cadena. A data-driven model for interaction-aware pedestrian motion prediction in
object cluttered environments. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 1–8. IEEE, 2018.

[86] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-
Fei, and Silvio Savarese. Social lstm: Human trajectory prediction in crowded spaces.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 961–971, 2016.

[87] Irtiza Hasan, Francesco Setti, Theodore Tsesmelis, Alessio Del Bue, Fabio Galasso, and
Marco Cristani. Mx-lstm: mixing tracklets and vislets to jointly forecast trajectories
and head poses. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6067–6076, 2018.

[88] Federico Bartoli, Giuseppe Lisanti, Lamberto Ballan, and Alberto Del Bimbo. Context-
aware trajectory prediction. In 2018 24th International Conference on Pattern Recog-
nition (ICPR), pages 1941–1946. IEEE, 2018.

[89] Kaiping Xu, Zheng Qin, Guolong Wang, Kai Huang, Shuxiong Ye, and Huidi Zhang.
Collision-free lstm for human trajectory prediction. In International Conference on
Multimedia Modeling, pages 106–116. Springer, 2018.

134 Bibliography

[90] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. Crowds by example. Com-
puter Graphics Forum, 26, 2007.

[91] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. So-
cial gan: Socially acceptable trajectories with generative adversarial networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2255–2264, 2018.

[92] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, Hamid Rezato�ghi,
and Silvio Savarese. Sophie: An attentive gan for predicting paths compliant to
social and physical constraints. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1349–1358, 2019.

[93] Javad Amirian, Jean-Bernard Hayet, and Julien Pettré. Social ways: Learning multi-
modal distributions of pedestrian trajectories with gans. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages 0–0, 2019.

[94] Osama Makansi, Eddy Ilg, Ozgun Cicek, and Thomas Brox. Overcoming limitations
of mixture density networks: A sampling and �tting framework for multimodal
future prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 7144–7153, 2019.

[95] Tianyang Zhao, Yifei Xu, Mathew Monfort, Wongun Choi, Chris Baker, Yibiao Zhao,
YizhouWang, and Ying Nian Wu. Multi-agent tensor fusion for contextual trajectory
prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 12126–12134, 2019.

[96] Rohan Chandra, Tianrui Guan, Srujan Panuganti, Trisha Mittal, Uttaran Bhat-
tacharya, Aniket Bera, and Dinesh Manocha. Forecasting trajectory and behavior of
road-agents using spectral clustering in graph-lstms. IEEE Robotics and Automation
Letters, 5(3):4882–4890, 2020.

[97] Stuart Ei�ert, Kunming Li, Mao Shan, Stewart Worrall, Salah Sukkarieh, and Eduardo
Nebot. Probabilistic crowd gan: Multimodal pedestrian trajectory prediction using a
graph vehicle-pedestrian attention network. IEEE Robotics and Automation Letters,
5(4):5026–5033, 2020.

[98] Tim Salzmann, B. Ivanovic, Punarjay Chakravarty, and Marco Pavone. Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data. In ECCV, 2020.

[99] Weiming Zhi, Ransalu Senanayake, Lionel Ott, and Fabio Ramos. Spatiotemporal
learning of directional uncertainty in urban environments with kernel recurrent
mixture density networks. IEEE Robotics and Automation Letters, 4(4):4306–4313,
2019.

[100] Weiming Zhi, Lionel Ott, and Fabio Ramos. Kernel trajectory maps for multi-modal
probabilistic motion prediction. In Conference on Robot Learning, pages 1405–1414,
2020.

135

[101] B. Ivanovic and Marco Pavone. The trajectron: Probabilistic multi-agent trajec-
tory modeling with dynamic spatiotemporal graphs. 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 2375–2384, 2019.

[102] Yu Fan Chen, Shih-Yuan Liu, Miao Liu, Justin Miller, and Jonathan P How. Motion
planning with di�usion maps. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2016.

[103] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. Reciprocal n-body
collision avoidance. In Robotics research. Springer, 2011.

[104] Jur P. van den Berg, Jamie Snape, Stephen J. Guy, and Dinesh Manocha. Reciprocal
collision avoidance with acceleration-velocity obstacles. 2011 IEEE International
Conference on Robotics and Automation, pages 3475–3482, 2011.

[105] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics. Physical
review E, 51(5):4282, 1995.

[106] Christoforos I Mavrogiannis and Ross A Knepper. Multi-agent path topology in
support of socially competent navigation planning. The International Journal of
Robotics Research, 38(2-3):338–356, 2019.

[107] Christoforos I Mavrogiannis, Wil B Thomason, and Ross A Knepper. Social momen-
tum: A framework for legible navigation in dynamic multi-agent environments. In
Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interac-
tion, pages 361–369, 2018.

[108] Pete Trautman, JeremyMa, RichardMMurray, andAndreas Krause. Robot navigation
in dense human crowds: Statistical models and experimental studies of human–robot
cooperation. The International Journal of Robotics Research, 34(3):335–356, 2015.

[109] Beomjoon Kim and Joelle Pineau. Socially adaptive path planning in human environ-
ments using inverse reinforcement learning. International Journal of Social Robotics,
8(1):51–66, 2016.

[110] Anirudh Vemula, Katharina Muelling, and Jean Oh. Modeling cooperative navigation
in dense human crowds. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 1685–1692. IEEE, 2017.

[111] Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P How. Decentralized non-
communicating multiagent collision avoidance with deep reinforcement learning. In
2017 IEEE international conference on robotics and automation (ICRA), pages 285–292.
IEEE, 2017.

[112] Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P. How. Socially aware motion
planning with deep reinforcement learning. 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1343–1350, 2017.

136 Bibliography

[113] Tingxiang Fan, Pinxin Long, Wenxi Liu, and Jia Pan. Distributed multi-robot collision
avoidance via deep reinforcement learning for navigation in complex scenarios. The
International Journal of Robotics Research, 39:856 – 892, 2020.

[114] Lei Tai, Jingwei Zhang, Ming Liu, and Wolfram Burgard. Socially compliant naviga-
tion through raw depth inputs with generative adversarial imitation learning. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages 1111–1117.
IEEE, 2018.

[115] Lukas Hewing, Kim PWabersich, Marcel Menner, and Melanie N Zeilinger. Learning-
based model predictive control: Toward safe learning in control. Annual Review of
Control, Robotics, and Autonomous Systems, 3:269–296, 2020.

[116] Nicolas Mansard, Andrea DelPrete, Mathieu Geisert, Steve Tonneau, and Olivier
Stasse. Using a memory of motion to e�ciently warm-start a nonlinear predictive
controller. In 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 2986–2993. IEEE, 2018.

[117] Guillaume Bellegarda and Katie Byl. Combining bene�ts from trajectory optimization
and deep reinforcement learning, 2019.

[118] Mario Zanon and Sébastien Gros. Safe reinforcement learninge using robust mpc.
IEEE Transactions on Automatic Control, 2020.

[119] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural
network dynamics for model-based deep reinforcement learning with model-free
�ne-tuning, 2017.

[120] Mingyuan Zhong, Mikala Johnson, Yuval Tassa, Tom Erez, and Emanuel Todorov.
Value function approximation and model predictive control. In 2013 IEEE symposium
on adaptive dynamic programming and reinforcement learning (ADPRL), pages 100–
107. IEEE, 2013.

[121] Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor
Mordatch. Plan online, learn o�ine: E�cient learning and exploration via model-
based control. arXiv preprint arXiv:1811.01848, 2018.

[122] Farbod Farshidian, David Hoeller, and Marco Hutter. Deep value model predictive
control. arXiv preprint arXiv:1910.03358, 2019.

[123] Napat Karnchanachari, Miguel I. Valls, David Hoeller, and Marco Hutter. Practical
reinforcement learning for mpc: Learning from sparse objectives in under an hour
on a real robot, 2020.

[124] Damien Ernst, Mevludin Glavic, Florin Capitanescu, and Louis Wehenkel. Reinforce-
ment learning versus model predictive control: a comparison on a power system
problem. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
39(2):517–529, 2008.

137

[125] Sergey Levine and Vladlen Koltun. Guided policy search. In International Conference
on Machine Learning, pages 1–9, 2013.

[126] Sergey Levine and Vladlen Koltun. Variational policy search via trajectory optimiza-
tion. In Advances in neural information processing systems, 2013.

[127] Igor Mordatch and Emo Todorov. Combining the bene�ts of function approximation
and trajectory optimization. In Robotics: Science and Systems, volume 4, 2014.

[128] Zhang-Wei Hong, Joni Pajarinen, and Jan Peters. Model-based lookahead reinforce-
ment learning, 2019.

[129] TingwuWang and Jimmy Ba. Exploring model-based planning with policy networks.
ArXiv, abs/1906.08649, 2020.

[130] Colin Greatwood and Arthur G Richards. Reinforcement learning and model pre-
dictive control for robust embedded quadrotor guidance and control. Autonomous
Robots, 43(7):1681–1693, 2019.

[131] Bruno Brito, Michael Everett, Jonathan P How, and Javier Alonso-Mora. Where
to go next: Learning a subgoal recommendation policy for navigation in dynamic
environments. IEEE Robotics and Automation Letters, 6(3):4616–4623, 2021.

[132] Joseph Lubars, Harsh Gupta, Adnan Raja, R. Srikant, Liyun Li, and XinzhouWu. Com-
bining reinforcement learning with model predictive control for on-ramp merging.
CoRR, abs/2011.08484, 2020.

[133] Julian Eggert. Predictive risk estimation for intelligent adas functions. In 17th
International IEEE Conference on Intelligent Transportation Systems (ITSC), pages
711–718, 2014.

[134] Florian Damerow and Julian Eggert. Predictive risk maps. In 17th International IEEE
Conference on Intelligent Transportation Systems (ITSC), pages 703–710. IEEE, 2014.

[135] Christopher R. Baker and John M. Dolan. Tra�c interaction in the urban challenge:
Putting boss on its best behavior. 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS, pages 1752–1758, 2008.

[136] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan, D. Duggins,
T. Galatali, and C. Geyer et Al. Autonomous Driving in Urban Environments: Boss
and the Urban Challenge. Journal of Field Robotics, 25(8):425–466, 2008.

[137] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger, D. Haehnel,
T. Hilden, G. Ho�mann, and B. Huhnke et Al. Junior: The stanford entry in the
urban challenge. Journal of Field Robotics, 25(1):569–597, 2008.

[138] Haoyu Bai, Shaojun Cai, Nan Ye, David Hsu, and Wee Sun Lee. Intention-aware
online pomdp planning for autonomous driving in a crowd. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 454–460, 2015.

138 Bibliography

[139] W Liu, S Kim, S Pendleton, and M H Ang. Situation-aware decision making for
autonomous driving on urban road using online POMDP. In 2015 IEEE Intelligent
Vehicles Symposium (IV), pages 1126–1133, 6 2015.

[140] Constantin Hubmann, Marvin Becker, Daniel Altho�, David Lenz, and Christoph
Stiller. Decision making for autonomous driving considering interaction and uncer-
tain prediction of surrounding vehicles. 2017 IEEE Intelligent Vehicles Symposium
(IV), pages 1671–1678, 2017.

[141] Constantin Hubmann, Jens Schulz, Gavin Xu, Daniel Altho�, and Christoph Stiller.
A Belief State Planner for Interactive Merge Maneuvers in Congested Tra�c.
IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018-
Novem(November 2018):1617–1624, 2018.

[142] Bingyu Zhou, Wilko Schwarting, Daniela Rus, and Javier Alonso-Mora. Joint multi-
policy behavior estimation and receding-horizon trajectory planning for automated
urban driving. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 2388–2394, 2018.

[143] Laura Ferranti, Bruno Brito, E Pool, Y Zheng, Ronald M Ensing, Riender Happee,
B Shyrokau, Julian FP Kooij, Javier Alonso-Mora, and Dariu M Gavrila. Safevru: A
research platform for the interaction of self-driving vehicles with vulnerable road
users. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 1660–1666. IEEE, 2019.

[144] Jae Sung Park, Chonhyon Park, and Dinesh Manocha. I-planner: Intention-aware
motion planning using learning-based human motion prediction. The International
Journal of Robotics Research, 38(1):23–39, 2019.

[145] Bruno Brito, Hai Zhu, Wei Pan, and Javier Alonso-Mora. Social-vrnn: One-shot
multi-modal trajectory prediction for interacting pedestrians. Conference on Robot
Learning, 2020.

[146] Sangjae Bae, Dhruv Saxena, Alireza Nakhaei, Chiho Choi, Kikuo Fujimura, and
Scott Moura. Cooperation-aware lane change maneuver in dense tra�c based on
model predictive control with recurrent neural network. In 2020 American Control
Conference (ACC), pages 1209–1216. IEEE, 2020.

[147] Boris Ivanovic, Amine Elhafsi, Guy Rosman, Adrien Gaidon, and Marco Pavone.
Mats: An interpretable trajectory forecasting representation for planning and control.
Conference on Robot Learning, 2020.

[148] Dorsa Sadigh, Shankar Sastry, Sanjit A. Seshia, and Anca D. Dragan. Planning
for autonomous cars that leverage e�ects on human actions. Robotics: Science and
Systems, 12, 2016.

[149] Changxi You, Jianbo Lu, Dimitar Filev, and Panagiotis Tsiotras. Advanced planning
for autonomous vehicles using reinforcement learning and deep inverse reinforce-
ment learning. Robotics and Autonomous Systems, 114:1–18, 2019.

139

[150] Colin F. Camerer, Teck Hua Ho, and Juin Kuan Chong. A cognitive hierarchy model
of games. Quarterly Journal of Economics, 119(3):861–898, 2004.

[151] Mario Garzón andAnne Spalanzani. Game theoretic decisionmaking for autonomous
vehicles’ merge manoeuvre in high tra�c scenarios. 2019 IEEE Intelligent Transporta-
tion Systems Conference, ITSC 2019, pages 3448–3453, 2019.

[152] Maxime Bouton, Alireza Nakhaei, David Isele, Kikuo Fujimura, and Mykel J Kochen-
derfer. Reinforcement learning with iterative reasoning for merging in dense tra�c.
In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC),
pages 1–6. IEEE, 2020.

[153] Alex Kue�er, Jeremy Morton, Tim Wheeler, and Mykel Kochenderfer. Imitating
driver behavior with generative adversarial networks. In 2017 IEEE Intelligent Vehicles
Symposium (IV), pages 204–211. IEEE, 2017.

[154] Felipe Codevilla, Matthias Müller, Antonio López, Vladlen Koltun, and Alexey Doso-
vitskiy. End-to-end driving via conditional imitation learning. In 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 4693–4700. IEEE,
2018.

[155] Edward Schmerling, Karen Leung, Wolf Vollprecht, and Marco Pavone. Multimodal
Probabilistic Model-Based Planning for Human-Robot Interaction. Proceedings - IEEE
International Conference on Robotics and Automation, pages 3399–3406, 2018.

[156] Alexander Amini, Wilko Schwarting, Guy Rosman, Brandon Araki, Sertac Karaman,
and Daniela Rus. Variational autoencoder for end-to-end control of autonomous
driving with novelty detection and training de-biasing. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 568–575. IEEE, 2018.

[157] Cathy Wu, Aboudy Kreidieh, Kanaad Parvate, Eugene Vinitsky, and A. Bayen. Flow:
Architecture and benchmarking for reinforcement learning in tra�c control. ArXiv,
abs/1710.05465, 2017.

[158] M. Bouton, A. Nakhaei, K. Fujimura, and Mykel J. Kochenderfer. Cooperation-
aware reinforcement learning for merging in dense tra�c. 2019 IEEE Intelligent
Transportation Systems Conference (ITSC), pages 3441–3447, 2019.

[159] Pin Wang, Chingyao Chan, and Arnaud de La Fortelle. A reinforcement learning
based approach for automated lane change maneuvers. 2018 IEEE Intelligent Vehicles
Symposium (IV), pages 1379–1384, 2018.

[160] Mustafa Mukadam, Akansel Cosgun, Alireza Nakhaei, and Kikuo Fujimura. Tactical
decision making for lane changing with deep reinforcement learning. 2017.

[161] Tommy Tram, Anton Jansson, Robin Grönberg, Mohammad Ali, and Jonas Sjöberg.
Learning negotiating behavior between cars in intersections using deep q-learning.
In 2018 21st International Conference on Intelligent Transportation Systems (ITSC),
pages 3169–3174. IEEE, 2018.

140 Bibliography

[162] Dhruv Mauria Saxena, Sangjae Bae, Alireza Nakhaei, Kikuo Fujimura, and Maxim
Likhachev. Driving in dense tra�c with model-free reinforcement learning. In 2020
IEEE International Conference on Robotics and Automation (ICRA), pages 5385–5392.
IEEE, 2020.

[163] Nathan Fulton and André Platzer. Safe reinforcement learning via formal methods:
Toward safe control through proof and learning. In AAAI, 2018.

[164] Jaime F Fisac, Neil F Lugovoy, Vicenç Rubies-Royo, Shromona Ghosh, and Claire J
Tomlin. Bridging hamilton-jacobi safety analysis and reinforcement learning. In
2019 International Conference on Robotics and Automation (ICRA), pages 8550–8556.
IEEE, 2019.

[165] Richard Cheng, Mohammad Javad Khojasteh, A. Ames, and Joel W. Burdick. Safe
multi-agent interaction through robust control barrier functions with learned uncer-
tainties. 2020 59th IEEE Conference on Decision and Control (CDC), pages 777–783,
2020.

[166] Maxime Bouton, Jesper Karlsson, Alireza Nakhaei, Kikuo Fujimura, Mykel J. Kochen-
derfer, and Jana Tumova. Reinforcement learning with probabilistic guarantees for
autonomous driving, 2019.

[167] Tommy Tram, Ivo Batkovic, Mohammad Ali, and Jonas Sjöberg. Learning when to
drive in intersections by combining reinforcement learning and model predictive
control. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pages
3263–3268, 2019.

[168] Alexander Domahidi and Juan Jerez. FORCES Professional. embotech GmbH
(http://embotech.com/FORCES-Pro), July 2014.

[169] Jan Maciejowski. Predictive Control With Constraints. 01 2002.

[170] Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M Kitani, Dariu M Gavrila,
and Kai O Arras. Human motion trajectory prediction: A survey. The International
Journal of Robotics Research, 39(8):895–935, 2020.

[171] Shinichi Nakajima, Kazuho Watanabe, and Masashi Sugiyama. Variational Bayesian
Learning Theory. Cambridge University Press, 2019.

[172] Hao Dong, Hao Dong, Zihan Ding, Shanghang Zhang, and Chang. Deep Reinforce-
ment Learning. Springer, 2020.

[173] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree
search. nature, 529(7587):484–489, 2016.

[174] Michael Everett, Yu Fan Chen, and Jonathan P How. Motion planning among
dynamic, decision-making agents with deep reinforcement learning. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 3052–3059.
IEEE, 2018.

141

[175] Greg Welch and Gary Bishop. An introduction to kalman �lter. In SIGGRAPH 2001,
1995.

[176] Jianyu Chen, Wei Zhan, and Masayoshi Tomizuka. Constrained iterative LQR for
on-road autonomous driving motion planning. In 20th International Conference on
Intelligent Transportation Systems (ITSC), 2017.

[177] Alexei Yu Uteshev and Marina V Yashina. Metric problems for quadrics in multidi-
mensional space. Journal of Symbolic Computation, 68:287–315, 2015.

[178] Timm Linder, Stefan Breuers, B. Leibe, and Kai Oliver Arras. On multi-modal people
tracking from mobile platforms in very crowded and dynamic environments. 2016
IEEE International Conference on Robotics and Automation (ICRA), pages 5512–5519,
2016.

[179] B. Houska, H.J. Ferreau, andM. Diehl. ACADO Toolkit – An Open Source Framework
for Automatic Control and Dynamic Optimization. Optimal Control Applications and
Methods, 2011.

[180] Roland Siegwart and Illah R. Nourbakhsh. Introduction to Autonomous Mobile Robots.
The MIT Press, 2 edition, 2011.

[181] Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock, and
Moritz Diehl. qpoases: A parametric active-set algorithm for quadratic programming.
Mathematical Programming Computation, 2014.

[182] Zhenji Lu, Barys Shyrokau, Boulaid Boulkroune, Sebastiaan van Aalst, and Riender
Happee. Performance benchmark of state-of-the-art lateral path-following con-
trollers. In 15th IEEE International Workshop on AMC, pages 541–546, 2018.

[183] Tass International. Delft-tyre 6.2.

[184] B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora. Model predictive contouring
control for collision avoidance in unstructured dynamic environments. IEEE Robotics
and Automation Letters, 4(4):4459–4466, 2019.

[185] Jiahao Lin, Hai Zhu, and Javier Alonso-Mora. Robust vision-based obstacle avoidance
for micro aerial vehicles in dynamic environments. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 2682–2688. IEEE, 2020.

[186] Parth Kothari, Sven Kreiss, and Alexandre Alahi. Human trajectory forecasting in
crowds: A deep learning perspective. arXiv preprint arXiv:2007.03639, 2020.

[187] Björn Lötjens, Michael Everett, and Jonathan P How. Safe reinforcement learning
with model uncertainty estimates. In 2019 International Conference on Robotics and
Automation (ICRA), pages 8662–8668. IEEE, 2019.

[188] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning. In international conference on machine
learning, pages 1050–1059, 2016.

142 Bibliography

[189] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and
Yoshua Bengio. A recurrent latent variable model for sequential data. In Advances
in neural information processing systems, pages 2980–2988, 2015.

[190] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool. You’ll never
walk alone: Modeling social behavior for multi-target tracking. In 2009 IEEE 12th
International Conference on Computer Vision, pages 261–268. IEEE, 2009.

[191] Safdar Zaman, Wolfgang Slany, and Gerald Steinbauer. Ros-based mapping, localiza-
tion and autonomous navigation using a pioneer 3-dx robot and their relevant issues.
In 2011 Saudi International Electronics, Communications and Photonics Conference
(SIECPC), pages 1–5. IEEE, 2011.

[192] G. Q. Huang, A. B. Rad, and Y. K. Wong. Online slam in dynamic environments.
In ICAR ’05. Proceedings., 12th International Conference on Advanced Robotics, 2005.,
pages 262–267, 2005.

[193] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate
deep network learning by exponential linear units (elus). CoRR, abs/1511.07289, 2015.

[194] Christopher M Bishop. Mixture density networks. Technical report, Citeseer, 1994.

[195] Alex Graves. Generating sequences with recurrent neural networks, 2013.

[196] Nicholas Rhinehart, Kris M Kitani, and Paul Vernaza. R2p2: A reparameterized
pushforward policy for diverse, precise generative path forecasting. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 772–788, 2018.

[197] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and
Samy Bengio. Generating sentences from a continuous space. Proceedings of The
20th SIGNLL Conference on Computational Natural Language Learning, 2016.

[198] T Tieleman and G Hinton. Rmsprop: Divide the gradient by a running average of
its recent magnitude. coursera: Neural networks for machine learning. Tech. Rep.,
Technical report, page 31, 2012.

[199] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S Corrado, Andy Davis, Je�rey Dean, Matthieu Devin, et al. Tensor�ow:
Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensor�ow. org, 1(2), 2015.

[200] Justin Bayer and Christian Osendorfer. Learning stochastic recurrent networks.
arXiv preprint arXiv:1411.7610, 2014.

[201] Trajnet++ (A Trajectory Forecasting Challenge).

[202] Bruno Brito, Boaz Floor, Laura Ferranti, and Javier Alonso-Mora. Model predictive
contouring control for collision avoidance in unstructured dynamic environments.
IEEE Robotics and Automation Letters, 4(4):4459–4466, 2019.

143

[203] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[204] Tingxiang Fan, Pinxin Long, Wenxi Liu, and Jia Pan. Fully distributed multi-robot
collision avoidance via deep reinforcement learning for safe and e�cient navigation
in complex scenarios. ArXiv, abs/1808.03841, 2018.

[205] Jur Van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity obstacles for
real-time multi-agent navigation. In 2008 IEEE International Conference on Robotics
and Automation, pages 1928–1935. IEEE, 2008.

[206] Steven Kapturowski, Georg Ostrovski, Will Dabney, John Quan, and Remi Munos.
Recurrent experience replay in distributed reinforcement learning. In International
Conference on Learning Representations, 2019.

[207] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In Proceedings of the 26th annual international conference on machine
learning, pages 41–48, 2009.

[208] Ashley Hill, Antonin Ra�n, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto,
Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol,
Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu.
Stable baselines, 2018.

[209] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chau�eurnet: Learning to drive
by imitating the best and synthesizing the worst. arXiv preprint arXiv:1812.03079,
2018.

[210] Abbas Sadat, Sergio Casas, Mengye Ren, Xinyu Wu, Pranaab Dhawan, and Raquel
Urtasun. Perceive, predict, and plan: Safe motion planning through interpretable
semantic representations. In European Conference on Computer Vision, pages 414–430.
Springer, 2020.

[211] Simon Ulbrich, Simon Grossjohann, Christian Appelt, Kai Homeier, Jens Rieken,
and Markus Maurer. Structuring cooperative behavior planning implementations
for automated driving. In 2015 IEEE 18th International Conference on Intelligent
Transportation Systems, pages 2159–2165. IEEE, 2015.

[212] Sajjad Moza�ari, Omar Y Al-Jarrah, Mehrdad Dianati, Paul Jennings, and Alexandros
Mouzakitis. Deep learning-based vehicle behavior prediction for autonomous driving
applications: A review. IEEE Transactions on Intelligent Transportation Systems, 2020.

[213] David González, Joshué Pérez, Vicente Milanés, and Fawzi Nashashibi. A Review of
Motion Planning Techniques for Automated Vehicles. IEEE Transactions on Intelligent
Transportation Systems, 17(4):1135–1145, 2016.

[214] Pete Trautman. Sparse interacting Gaussian processes: E�ciency and optimality
theorems of autonomous crowd navigation. 2017 IEEE 56th Annual Conference on
Decision and Control, CDC 2017, 2018-Janua:327–334, 2018.

144 Bibliography

[215] Arkady Zgonnikov, David A. Abbink, and Gustav Markkula. Should i stay or should
i go? evidence accumulation drives decision making in human drivers. 2020.

[216] Tomer Toledo, Haris N Koutsopoulos, and Moshe E Ben-Akiva. Modeling integrated
lane-changing behavior. Transportation Research Record, 1857(1):30–38, 2003.

[217] Florian Marczak, Winnie Daamen, and Christine Buisson. Key variables of merg-
ing behaviour: empirical comparison between two sites and assessment of gap
acceptance theory. Procedia-Social and Behavioral Sciences, 80:678–697, 2013.

[218] Gary A Davis and Tait Swenson. Field study of gap acceptance by left-turning drivers.
Transportation Research Record, 1899(1):71–75, 2004.

[219] Yang Yu. Towards sample e�cient reinforcement learning. In IJCAI, pages 5739–5743,
2018.

[220] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in
deep reinforcement learning for robotics: a survey. In 2020 IEEE Symposium Series
on Computational Intelligence (SSCI), pages 737–744. IEEE, 2020.

[221] Wilko Schwarting, Javier Alonso-Mora, Liam Paull, Sertac Karaman, and Daniela Rus.
Safe Nonlinear Trajectory Generation for Parallel Autonomy with a Dynamic Vehicle
Model. IEEE Transactions on Intelligent Transportation Systems, 19(9):2994–3008, 2018.

[222] B Berg, B Brito, J Alonso-Mora, and M Alirezaei. Curvature Aware Motion Planning
with Closed-Loop Rapidly-exploring Random Trees. In 2021 IEEE Intelligent Vehicles
Symposium (IV), 2021.

[223] Bruno Brito, Boaz Floor, Laura Ferranti, and Javier Alonso-Mora. Model Predictive
Contouring Control for Collision Avoidance in Unstructured Dynamic Environments.
IEEE Robotics and Automation Letters, 4(4):4459–4466, 2019.

[224] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested tra�c states in
empirical observations and microscopic simulations. Physical review E, 62(2):1805,
2000.

[225] Andrea Zanelli, Alexander Domahidi, J Jerez, and Manfred Morari. Forces nlp: an e�-
cient implementation of interior-point methods for multistage nonlinear nonconvex
programs. International Journal of Control, 93(1):13–29, 2020.

[226] Edouard Leurent. An Environment for Autonomous Driving Decision-Making, 2018.

[227] Daiheng Ni, John D Leonard, Chaoqun Jia, and Jianqiang Wang. Vehicle longitudinal
control and tra�c stream modeling. Transportation Science, 50(3):1016–1031, 2016.

[228] JanMatas, Stephen James, and Andrew J Davison. Sim-to-real reinforcement learning
for deformable object manipulation. In Conference on Robot Learning, pages 734–743.
PMLR, 2018.

145

[229] David Fridovich-Keil, Ellis Ratner, Lasse Peters, Anca D Dragan, and Claire J Tom-
lin. E�cient iterative linear-quadratic approximations for nonlinear multi-player
general-sum di�erential games. In 2020 IEEE International Conference on Robotics
and Automation (ICRA), pages 1475–1481. IEEE, 2020.

[230] Brandon Amos, Ivan Dario Jimenez Rodriguez, Jacob Sacks, Byron Boots, and J. Zico
Kolter. Di�erentiable mpc for end-to-end planning and control. In NeurIPS, 2018.

[231] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In NIPS,
2016.

[232] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial in-
verse reinforcement learning. In International Conference on Learning Representations,
2018.

[233] Pete Florence, Corey Lynch, Andy Zeng, Oscar Ramirez, Ayzaan Wahid, Laura
Downs, Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit
behavioral cloning. Conference on Robot Learning (CoRL), November 2021.

[234] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial di�erential equations. Journal of Computational Physics,
378:686–707, 2019.

[235] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang,
and Liu Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–
440, 2021.

147

Curriculum vitæ

Bruno Brito was born in September 1990 in Porto, Portugal.
He received the M.Sc. (2013) degree from the Faculty of Engineer-
ing of the University of Porto. Between 2014 and 2016, he was
a trainee at the European Space Agency (ESA) in the Guidance,
Navigation, and Control section. After, he was a Research As-
sociate, between 2016 and 2018, in the Fraunhofer Institute for
Manufacturing Engineering and Automation.

In January 2018, he became a Ph.D. candidate at the Depart-
ment of Cognitive Robotics, Delft University of Technology, Delft,

the Netherlands. In his Ph.D. project, he worked on motion planning algorithms for au-
tonomous navigation among humans under the supervision of Dr. Javier Alonso-Mora.
During 2020, he collaborated with the Aerospace Controls Laboratory (ACL), MIT, Boston,
United States, researching on learning global guidance policies, together with Dr. Michael
Everett and Prof. Jonathan P. How.

His research interests include robot motion planning, deep learning, reinforcement
learning, model predictive control, and learning-based motion planning.

149

List of publications

Referred journals
• R. Pérez-Dattari*, B. Brito*, O. de Groot, J. Kober and J. Alonso-Mora, “Visually-guided motion
planning for autonomous driving from interactive demonstrations,” in Engineering Applications
of Arti�cial Intelligence, 116 (2022): 105277.

• B. Brito, A. Agarwal and J. Alonso-Mora, “Learning Interaction-aware Guidance Policies for
Motion Planning in Dense Tra�c Scenarios,” in IEEE Transactions on Intelligent Transportation
Systems, doi: 10.1109/TITS.2022.3160936.

• H. Zhu, B. Brito, and J. Alonso-Mora, “Decentralized probabilistic multi-robot collision avoid-
ance using bu�ered uncertainty-aware voronoi cells,” in Autonomous Robots, 46(2): 401-420
(2022).

• L. Knoedler, C. Salmi, H. Zhu, B. Brito, and J. Alonso-Mora, “Improving pedestrian prediction
models with self-supervised continual learning,” in IEEE Robotics and Automation Letters, 7(2):
4781-4788 (2022).

• B. Brito, M. Everett, J. How and J. Alonso-Mora, “Where to go Next: Learning a Subgoal
Recommendation Policy for Navigation in Dynamic Environment,” in IEEE Robotics and
Automation Letters, 6(3):4616-4623, July. 2021.

• O. de Groot, B. Brito, L. Ferranti, D. Gavrila and J. Alonso-Mora, “Scenario-Based Trajectory
Optimization in Uncertain Dynamic Environments,” in IEEE Robotics and Automation Letters,
6(3):5389-5396, July. 2021.

• H. Zhu*, F.M. Claramunt*, B. Brito, and J. Alonso-Mora, “Learning interaction-aware trajectory
predictions for decentralized multi-robot motion planning in dynamic environments,” in IEEE
Robotics and Automation Letters, 6(2):2256-2263, Apr. 2021.

• B. Brito, B. Floor, L. Ferranti and J. Alonso-Mora, “Model Predictive Contouring Control for
Collision Avoidance in Unstructured Dynamic Environments,” in IEEE Robotics and Automation
Letters, 4(4):4459-4466, Oct. 2019.

* indicates equal contributions.

150 List of publications

Referred conference proceedings
• M. Lodel, B. Brito, Á. Serra-Gómez, L. Ferranti, R. Babuska and J. Alonso-Mora, “Where to
Look Next: Learning Viewpoint Recommendations for Informative Trajectory Planning,” in
2022 IEEE International Conference on Robotics and Automation (ICRA), 4466-4472.

• J. de Vries, E. Trevisan, J. van der Toorn, T. Das, B. Brito, and J. Alonso-Mora, “Regulations
Aware Motion Planning for Autonomous Surface Vessels in Urban Canals,” in 2022 IEEE
International Conference on Robotics and Automation (ICRA), 3291-3297.

• B. van den Berg, B. Brito, M. Alirezaei, and J. Alonso-Mora, “Curvature AwareMotion Planning
with Closed-Loop Rapidly-exploring Random Trees,”in Proceedings of the IEEE Intelligent
Vehicles Symposium (IV), 2021.

• M. Spahn, B. Brito, and J. Alonso-Mora, “Coupled Mobile Manipulation via Trajectory Opti-
mization with Free Space Decomposition,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), June 2021.

• B. Brito, H. Zhu, W. Pan, and J. Alonso-Mora, “Social-vrnn: One-shot multi-modal trajectory
prediction for interacting pedestrians,” in Conference on Robot Learning (CoRL), Nov. 2020.

• Á. Serra-Gómez, B. Brito, H. Zhu, J.J Chung, and J. Alonso-Mora, “With whom to communicate:
Learning e�cient communication for multi-robot collision avoidance,” in Proceedings of the
IEEE Intelligent Vehicles Symposium (IV), Oct. 2020.

• L. Ferranti*, B. Brito*, E. Pool, Y. Zheng, R. Ensing, R. Happee, B. Shyrokau, J. Kooij, J. Alonso-
Mora and D. Gavrila, “SafeVRU: A research platform for the interaction of self-driving vehicles
with vulnerable road users,” in Proceedings of the IEEE Intelligent Vehicles Symposium (IV), 2019.

Bruno Brito

Interaction-Aware Motion Planning
in Crowded Dynamic Environments

Interaction-Aw
are M

otion Planning in Crow
ded Dynam

ic Environm
ents

Bruno Brito

INVITATION

To attend the public defense of the
dissertation

Interaction-Aware Motion Planning
in Crowded Dynamic Environments

By

Bruno Brito

on Thursday, October 6, 2022 at
15:00 in the Senaatszaal of the

Auditorium TU Delft

A short presentation about the
dissertation will be given at 14:30

You are welcome to the reception
following the defense

	Summary
	Samenvatting
	Acknowledgments
	Introduction
	Motivation
	Approach
	Local Motion Planning
	Trajectory Prediction
	Learning for Global Guidance

	Contributions and Outline
	Notation

	Background
	Model Predictive Control
	Supervised Learning
	Variational Bayes

	Reinforcement Learning
	Proximal Policy Optimization
	Soft Actor-Critic

	Literature Review
	Motion Planning in Dynamic Environments
	Mobile Robots
	Autonomous Driving

	Trajectory Prediction
	Traditional Approaches
	Deep Learning

	Learning Global Guidance Policies
	Navigation Among Crowds
	Learning-Enhanced MPC
	Combining MPC with RL

	Interaction-aware Motion Planning
	Traditional Methods
	Search-based Methods
	Optimization-based Methods
	Game Theoretic Methods
	Learning-based Methods

	Conclusions

	Model Predictive Contouring Control for Collision Avoidance in Dynamic Environments
	Introduction
	Preliminaries
	Robot Description
	Static Obstacles
	Dynamic Obstacles
	Global Reference Path
	Problem Formulation

	Method
	Static Collision Avoidance
	Dynamic Collision Avoidance
	Model Predictive Contouring Control

	Results - Mobile Robot
	Experimental Setup
	Parameter Evaluation
	Static Collision Avoidance
	Dynamic Collision Avoidance

	Results - Autonomous Car
	Conclusions and Future Work

	Social-VRNN: One-Shot Multi-modal Trajectory Prediction for Interacting Pedestrians
	Introduction
	Variational Recurrent Neural Network
	Multi-modal Trajectory Prediction Problem Formulation
	Input Feature Extraction Module
	Probabilistic Inference Module
	Multi-modal Trajectory Prediction Distribution
	Improving Diversity
	Training Procedure

	Experiments
	Experimental Settings
	Performance Evaluation
	Qualitative Analysis

	Conclusions

	Where to go next: Learning a Subgoal Recommendation Policy for Navigation Among Pedestrians
	Introduction
	Preliminaries
	Problem Formulation
	Agent Dynamics
	Modeling Other Agents' Behaviors

	Method
	Learning a Subgoal Recommender Policy
	Local Collision Avoidance
	PPO-MPC

	Results
	Experimental Setup
	Training Procedure
	Ablation Study
	Qualitative Analysis
	Performance Results

	Conclusions and Future Work

	Learning Interaction-Aware Guidance for Trajectory Optimization in Dense Traffic Scenarios
	Introduction
	Problem Formulation
	Interactive Model Predictive Control
	Interactive Planner
	Local Motion Planner
	Training Procedure
	Online Planning

	Modeling Other Traffic Drivers' Behaviors
	Experiments
	Experimental Setup
	Driving Scenarios
	Evaluation Scenarios
	Evaluation Metrics
	Training Procedure
	Qualitative Results
	Quantitative Results
	Performance Analysis
	Discussion

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work
	Interaction-Aware Motion Planning
	Learning Guidance Policies
	Constraints-Aware Learning
	Continual Learning

	The Jackal
	The Toyota Prius
	Bibliography
	Curriculum vitæ
	List of publications
	Lege pagina
	Lege pagina

