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Introduction

Of the total 61.7 million passengers that passed through Amsterdam Airport Schiphol (AAS) in 2023, 22.6
million passengers did not enter the country [4]. This large share of transfer passengers allows the airport
to maintain a vast network of destinations. In line with the desire to counteract the climate impacts of the
airports, there have been several proposals to curb its the growth. As early as in 2008, there have been ex-
periments with implementing new air passenger taxes to reduce the demand for air travel [6]. Another more
direct approaches that has been proposed is a limit on the number of yearly flight movements [8].

There are many of these future scenarios that could impact the position of AAS in the transfer market. The air-
port currently owns a cost-based optimisation model that is used to gain insights into the effects of changing
fuel costs on the traffic flows through a network of 60 airports. However, this model is not yet capable to test
the tax regimes and policies that AAS may face in the future. The model lacks certain aspects of realism, for
example there are no airport capacities, but the most notable deficiency is found in the modelling of demand;
the passengers are treated as commodities without any preference in routing.

The aim of this research is to improve the original model in order to investigate the effects of possible future
policy changes and tax regimes might have on the network quality of the hub. A focus point of the research
is the nature of demand, an area that has not seen much coverage in the literature regarding the modelling
of airline networks. A new model is proposed that considers multiple passenger classes to differentiate be-
tween route preferences based on a time sensitivity factor. In addition, the model is switched to profit-based
optimisation, allowing it to make strategic decisions regarding which passengers to fly and which routes to
offer.

This thesis report summarises the work done during this research. The report is organised as follows: Part I
presents the scientific paper. Part II shows the appendices of the paper. Finally, in Part III, the literature study
that supports this research is presented.

xi
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Impact of Aviation Tax and Policies on Amsterdam

Airport Schiphol: an Airline Network Design Analysis

W.A. Mathoera1

Delft University of Technology, Delft, The Netherlands

Abstract

Amsterdam Airport Schiphol characterises itself as a major hub in Europe. Its network is not
sustainable with only the Dutch catchment area. Instead, it relies on transfer passengers. When
new tax regimes and policies are implemented to combat the environmental impacts of the airport, a
change in passenger flows could affect Schiphol’s network quality. This paper presents a MILP model
to analyse the effects of new policies by simulating passenger flows between airports. A profit-based
optimisation model with a greenfield airline network is formulated, which incorporates passenger
classes with different time sensitivities to account for passenger preferences in the network design.
This approach predicts that hubs at the edges of Europe are better gateways to the continent based on
the higher share of transfers. A case study on the implementation of a transfer tax at Schiphol shows
that the share of transfers declines, but the network will only see reduced frequencies of destinations.

1 Introduction

Amsterdam Airport Schiphol (AAS) characterises itself
as a large hub airport in the European market. The
airports sits among the top five global airports regard-
ing hub connectivity [1]. The large network of routes
that is created at AAS is however not viable with only
the Dutch catchment area [2]. Transfer passengers are
needed to support the network. This dependency on
transfers originated from the increased competition in
the aviation market due to deregulations. In order to
gain a prominent place in the market, the concept of
mainport was introduced. The aim of this process is to
act as a gateway between primary and secondary inter-
continental destinations [2]. The effects of this policy
can clearly be seen in the annual figures: transfer pas-
sengers accounted for 36% of the total of 61.7 million
passengers passing through Schiphol in 2023 [3].

This dependency could however post a threat to the
position of Schiphol in the aviation market. Any dis-
ruptions in the flow of transfer passengers could result
in degrading the network quality of AAS. Several tax
regimes, such as implementing a transfer tax, have been
proposed in order to increase the tax collected by the
Dutch government and to have a positive impact on
the environment. Besides this proposal, there are many
other scenarios in the future that could affect the po-
sition of the airport. Other examples might include: a
restriction on the number of yearly aircraft movements
or a flight-distance based tax for all EU airports.

There have been several studies into the effects
of such policies. The Dutch government has in-
structed studies related to the introduction of various
tax regimes of air passenger taxes and the European
Commission has instructed for a study regarding a har-
monised European tax system. These studies utilised
forecasting models to predict the effect on traffic flows
of passengers and aircraft through the Netherlands and
the European Free Trade Association (EFTA) respec-
tively. These models are not however not public as they

rely on private datasets to describe the competitive en-
vironment of the network.

The aim of this research is to investigate the effects
that the proposed policy changes and tax regimes, aim-
ing to reduce the climate impacts of AAS, might have
on the network quality of the hub.

For this purpose, a Mixed Integer Linear Program
(MILP) is proposed that is capable of simulating the
passenger and aircraft flows through a network of hub
and non-hub airports. A greenfield approach, without
an existing competitive market, is used in the modelling
of the network. This allows for possible better perform-
ing hubs to emerge in the simulations. A profit-based
optimisation is performed by taking into account the
operational costs and the passenger fares, which results
in a route network of direct and connecting itineraries.
Different preferences of direct and connecting itineraries
are taken into account by implementing multiple pas-
senger classes, each with a different time sensitivity.
One of the possible policy changes is investigated with
this model during this research; this paper presents a
case study on the introduction of a transfer tax.

The paper is structured as follows: section 2 presents
the background literature that is used in this research.
Section 3 outlines the methodology followed to create
the model. Section 4 presents the transfer tax case
study and its results. Section 5 presents a discussion
on the obtained results. Section 6 gives the conclusion
of the research. At last, section 7 offers recommenda-
tions for further research.

2 Background

This section reviews relevant contributions that inves-
tigate the effects of several tax regimes and policies
that may be applicable to Amsterdam Airport Schiphol
(AAS). Different types of modelling methods are exam-
ined, as well as the methods of acquiring the required
inputs of an analysis.

1Msc Student, Sustainable Air Transport, Faculty of Aerospace Engineering, Delft University of Technology
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2.1 Tax Regimes and Policies

In the Netherlands, there have been several proposals
of policies to reduce the impact of the aviation industry
on the climate. The Dutch government announced in
2017 it would be in favour of introducing an aviation
tax. A harmonised European tax and a tax on noisy
and polluting aircraft were favoured. The current pol-
icy is to levy a flat-rate air passenger tax on departing
Origin and Destination (OD) passengers and was im-
plemented in 2021. The decision to implement this tax
was based on an analysis of several tax regimes, such
as a tax based on an aircrafts noise certificate, a tax
based on flight distance, or a flat-rate tax for all OD
passengers, with the aim of raising e200 million in tax
revenue. The aviation impacts of these tax regimes were
analysed by CE Delft using the AEOLUS forecasting
model developed by Significance [4]. The chosen vari-
ant of a flat-rate tax of e7.50 was expected to have
little physical impact: the total number of passengers
would change between -0.6% and 0% depending on fu-
ture welfare scenarios [5]. This model has been used
again in studies on raising the tax rate for increased
revenues [6] and on removing the exemption of transfer
passengers on the aviation tax [7]. The AEOLUS model
used is a global strategic model that makes decisions in
a competitive environment. The model is focused on
the Netherlands and other destinations are defined as
zones. These zones reduce in precision with distance
from the Netherlands. The output of the model speci-
fies the number of yearly passengers, cargo, and aircraft
to and from a given zone. It does not give detailed route
structures or timetables of the flights in the network
[8]. A similar model is the AERO-MS model, which
is used in a study by the European Commission on an
European harmonised aviation tax [9]. The model gives
similar outputs specified per country in the European
Free Trade Association (EFTA). This study analysed
the aviation and climate impacts of an European-wide
fuel tax and distance-based tax. However, compared to
the policies of the Dutch Government, the aim of these
tax regimes is not mainly based on a desired revenue,
but a reduction in emissions of 90% in 2025.

Both models are used in studies on the effects of poli-
cies to reduce the climate impacts of aviation. However,
the models are not available to the public and both rely
on non-publicly available datasets. The paper proposes
a different approach that will simulate the passenger
flows in a network of airport nodes, which gives insights
in the effects of the larger network, instead of one focus
region.

2.2 World-Wide Airport Network

The design of a world-wide airport network entails the
strategic decision of which routes to offer. There are
two types of itineraries that can be considered when de-
signing a network: Point-to-Point (P2P), where passen-
gers are flown using a direct flights, and Hub-and-Spoke
(HS), where passengers are connected through hub air-
ports. The problem of finding the location of a hub for
optimal flows in a network has been given much atten-
tion in literature. O’Kelly (1986) has presented the one-
and two-hub location problem, where the flow of com-
modities which minimise the operational costs are de-

termined [10]. This model has been extended in O’Kelly
(1987) to the p-hub median problem, with an unlimited
number of hubs [11]. This model has been implemented
in studies such as Bernardes Real et al. (2018), where
they model a global network of airports, distinguishing
between gateway and domestic hubs [12]. Several ad-
vances have been presented in the literature, such as the
use of multiple-allocation systems in Campbell (1990),
where airports can be connected to multiple hubs [13],
and the rewriting of the problem as a multi-commodity
flow problem in Ernst and Krishnamoorthy (1996) al-
lowing for higher computational efficiency [14]. A more
advanced approach is presented in Jaillet et al. (1996),
where a focus is placed on itineraries of the airline net-
work [15]. Instead of following an implicit HS structure,
hubs emerge based on optimal flows of multiple types
of aircraft.

A review on hub location problems by Alumur et al.
(2021) highlights the nature of demand in airport net-
works as one area that has not seen much coverage in
the literature [16]. Most studies omit the use of elas-
tic demands, however an empirical analysis presented in
Hsiao and Hansen (2011) shows that demand is heav-
ily influenced by parameters, such as fares, frequencies
and flight time. These influences were incorporated to
result in estimates of price sensitivity and value of time
of the demand [17]. There have been several attempts
to incorporate these effects in hub location problems: in
Han and Zhang (2013) an adapted p-hub median prob-
lem is presented which optimises for profit includes de-
mand elasticities based on ticket prices and perceived
travel time cost [18]. The model is linearised per route
by selecting the ticket price for the highest profit. An-
other method of price-sensitive demands is presented
in O’Kelly et al. (2015), which linearises the problem
by finding an economic equilibrium between each sub-
market [19].

The literature of this section presents the background
of this research and is built upon by proposing a new
approach to analyse the discussed tax regimes and poli-
cies. The next section will elaborate on the methodol-
ogy used in this research.

3 Methodology

The aim of this research is to evaluate the effects that
various policy changes might have on the traffic flows
through Amsterdam Airport Schiphol (AAS). The influ-
ence of these policy changes, such as introducing trans-
fer fees or levying distance-based taxes, are not lim-
ited to the targeted flights, but have an effect on all
of the flights in the network. For example, introduc-
ing transfer fees at one airport may lead to a shift in
traffic at nearby hubs. In order to capture all these de-
pendent effects, the traffic flows in a world-wide airport
network will be modelled. The following sections will
describe the method followed during the research. First,
the choice of model is established in subsection 3.1. In
section subsection 3.2 - 3.5, the methods of determin-
ing the different inputs of the model are discussed. In
subsection 3.6, the model formulation and notation are
presented. The solution method of the model is de-
scribed in subsection 3.7. At last, in subsection 3.8 the
verification & validation method is discussed.

2



Table 1: Example dataset of AirportIS from IATA showing direct and connecting itineraries starting from
Amsterdam Airport Schiphol, in addition of the passenger count and average fare on the given itinerary.

Month Airline Origin Destination Stop 1 Stop 2
Origin
Region

Dest.
Region

Pax.
Count

Fare

Jul 2023 BA AMS LHR Europe Europe 18,294 128.25
Jul 2023 KL AMS SFO Europe North America 4,142 683.01
Jul 2023 EK AMS BKK DXB Europe Asia 4,101 375.82
Jul 2023 LH AMS BKK MUC Europe Asia 969 348.29
Jul 2023 TK AMS BKK IST Europe Asia 969 675.36
Jul 2023 WY AMS BKK MUC MCT Europe Asia 41 325.41

3.1 Model Set-Up

The aim of the model is to simulate the operations of
an airline in a world-wide network of airports. When
thinking about simulating the operations of an airline,
it is important to consider the two operating princi-
ples an airline can follow: Point-to-Point (P2P), where
itineraries are fulfilled by using direct flights, and Hub-
and-Spoke (HS), where passengers are routes through
a hub airport. In order to model these operation prac-
tices, the model must be able to allow for both direct
flights and lay-overs. The model that is formulated dur-
ing this research is based of the Airline Network Design
(AND) problem presented by Jaillet et al. (1996) [15].
As presented in section 2, this type of problem does not
consider the placement of hubs in the network, how-
ever, it only involves the routing of passenger flows in
the most cost-efficient manner.

An AND model best fits the aim of this research,
as it allows for the evaluation of both passenger and
aircraft flows through the network, instead of only fo-
cusing on the flows of passengers. This is important
as airline operations do include the type of aircraft in
the tactical decision making. The second benefit is that
this type of model inherently allows for any airport to
be connected to any other airport. If this would not be
the case, such as in a Hub Location Problem (HLP) all
itineraries starting from a given airport must be routed
through a set of hubs decided by the model. Such a
system would only allow for direct flights to and from
a hub airport, and therefore, a P2P network would be
more difficult to model.

To be able to use the AND model for this research,
some adaptions are implemented to reach the desired
level of realism. The most notable adaptation regards
the implementation of demand. One shortcoming of the
AND model is that all demand must be completely sat-
isfied. However, from the perspective of the airline, it
may be more advantageous to not satisfy all demand,
in order to maximise their profit. To implement this,
the objective of the model must be switched from cost
minimisation, to profit maximisation. By doing so, the
fares of passengers must be determined as well, instead
of only their cost of transportation. The adapted AND
will therefore include fares for each itinerary.

Another shortcoming of the AND model is that pas-
sengers are seen as a commodity; the passengers do not
have a preference in routing. In reality, a passenger
can be influenced by the flight and lay-over time of an
itinerary. An accurate representation would entail some

sort of elastic demand that is influenced by factors such
as the flight time. However, a trade-off must be made
between the level of realism and the computational cost
of the problem. For the adapted AND model, it is de-
cided to use static demand that is made time sensitive
by implementing penalties on non-direct routes. This
allows the problem to remain linearly solvable, while
implementing more realistic behaviour, regarding the
preference between direct and connecting itineraries.
However, time sensitivities can vary between types of
passenger. Multiple passenger classes will therefore be
implemented. This will allow for varying preferences of
itinerary type between the passenger classes.

It should be noted that the model does not include
cargo flows. Incorporating cargo flows would require
additional modelling on for example the handling ca-
pacities at an airport. In addition, the it cannot be
assumed that the cargo flows are symmetric in the net-
work, which would increase the difficulty of the prob-
lem. The effect of omitting cargo could be visible in the
choice of aircraft, where in reality larger aircraft could
be chosen based on the belly cargo space of aircraft.

This section concludes with an adapted set-up of an
AND profit-based model, that includes multiple time
sensitive fare classes. The next sections will go into de-
tail on the determination of the inputs of the model.
This includes the determination of the demand and the
fares, the selection of aircraft and airports, and the set-
up of the cost function of the model.

3.2 Demand and Fares

It has been established that the adapted AND model
will divide its demand into multiple fare classes. The
choice on the number of fare classes is influenced by
the computational cost required for each additional fare
class. It is decided to use three fare classes in the model:
economy class, business class and a third lower class
that represents the uncaptured demand. This third
class of passengers can be used by the model in case
the fares are able to cover the marginal costs on a spe-
cific itinerary.

For each itinerary and each fare class, a static de-
mand and a corresponding fare is determined. The data
that will be used in this research is obtained from the
IATA AirportIS database. This database lists per air-
line the total number of passengers that were routed
through a specific itinerary during a given month. In
addition, the average fare on that itinerary is given. A
sample of this data is shown in Table 1. This sample

3



shows two direct and four connecting itineraries. The
connecting itineraries also specify the connection air-
ports, in addition to the origin and destination. The
dataset of July 2023 will be used in this research, as
this month experienced the highest volume of commer-
cial flights at the airports of the European Union [20]

To determine the demand between a city-pair, first,
all the passengers of the direct and various connecting
itineraries are summed up; this number represents the
total flown demand between a city-pair. In addition,
there could be connecting itineraries where the first leg
corresponds to the given city-pair, but the airport of the
second leg is not present in the model. These passen-
gers are included in the demand between the city-pair.
The total demand is divided by 31 days to obtain the
average demand of one day in July. It is assumed that
the flown demand represents the economy and business
classes of the model. This flown demand will be divided
between these two classes with a set ratio of 4:1 for each
city-pair. The ratio has been determined by observing
the number seats on various 2-class configurations of the
selected aircraft types in this study. The third fare class
represents the uncaptured demand, however, the flown
demand does not show the uncaptured demand between
a city-pair. A set ratio of 1:4 between the uncaptured
demand and the economy class is assumed. This leads
to a ratio of 1:4:1 between the three fare classes. The
effects of this assumption are tested with a sensitivity
analysis.

From the same dataset, the fares of this demand can
be determined. It should be noted that the dataset does
not include the tax and airline fees for each itinerary.
These additional costs vary between routes and even
between airlines. It is assumed that the tax and fees
account for an additional 50% for economy class passen-
gers and 20% for business class passengers. the average
fare of all itineraries between a city-pair is calculated
and a ratio of 1:2 is assumed between the economy and
business fare classes. The fare of the uncaptured de-
mand is assumed to be slightly lower than the economy
class. A ratio of 0.8:1 is assumed between the third and
the economy fare class. The effects of these assumptions
are tested with a sensitivity analysis.

These fares represents a direct itinerary. A non-
direct itinerary would result in a lower fare due to the
time sensitive penalty. For these three fare classes, dif-
ferent levels of time sensitivity will be assumed. In or-
der to determine the penalty, each passenger class is as-
signed a Value of Time (VOT). This value represents the
perceived value lost by the passenger flying a non-direct
route. Several studies have been conducted in order to
determine the VOTs for different modes of transport
and trip purposes. Wardman e.a. (2016) presents a re-
view of multiple studies conducted to VOTs in Europe
[21]. Two results show that the VOT ratio between
leisure and business air travel is around 1:2. The re-
view also shows that the average VOT for non-business
travel is around e40 per hour. This results in a VOT of
e40 and e80 per hour for economy and business class
respectively. The value of the uncaptured demand will
be based of the VOT of other modes of transport. The
paper shows that other modes, such as car and train
travel have half or less than half of the value than air
travel. For this research, the third fare class will as-

sume half of the VOT, resulting in e20 per hour. The
VOT will also be applicable to the transfer time at the
airport, however, only half of the VOT is added to take
into account the out-of-vehicle time that can be spent
on leisure. For connections, an average of 2 hours will
be assumed in the model.

An overview of the characteristics of each passenger
class presented in this section is shown in Table 2.

Table 2: Assumptions on the three passenger classes
in the model.

Budget Economy Business

Demand Ratio 1 : 4 : 1
Fare Factor 0.8 1 2
Tax Rate 50% 50% 20%
VOT e20.00 e40.00 e80.00

3.3 Aircraft

One of the decision variables in the model is the num-
ber of aircraft that is placed between a city-pair. The
model is able to choose between multiple types of air-
craft. By implementing multiple types of aircraft, the
model is able to optimise for the number of seats, the
aircraft range, and the flight cost. A trade-off must be
made when selecting the aircraft types and the number
of aircraft types that is implemented in the model. More
aircraft types will increase the complexity of the prob-
lem. For this scenario, it was decided to implement the
five aircraft types shown in Table 3. This table shows
the seating capacity in a 2-class lay-out and the aircraft
range at MTOW.

Table 3: Set of aircraft types and characteristics
implemented in the model [22].

Seats [-] Range [nmi]

Boeing 777-300ER 381 7370
Airbus A350-900 300 8300
Airbus A321neoLR 200 4000
Airbus A320neo 150 3500
Embraer E195-E2 132 2655

The set of aircraft can be divided into two distance
categories: long-range (B777 and A350) and short-range
(A321, A320 and E195). By allowing different seating
capacities within a distance bracket, the model is able to
make tactical decisions, such as an upgrade to a bigger
aircraft on a certain route. In the short-haul range,

The fuel calculation of these aircraft is performed
using the Piano-X analysis tool. The tool takes into ac-
count the performance of the aircraft type to calculate
the required fuel for a given scenario, with variables such
as the block range and the payload weight. For multi-
ple block ranges, the fuel burn is calculated, in order
to create a distance based function for the fuel burn in
the model. For the calculations, it is assumed that the
aircraft have a load factor of 90%. The average payload
weight per passenger is assumed to be 99 kg [23]. The
fuel functions and corresponding data are presented in
Appendix A.

4



3.4 Airports

The AND model simulates the world-wide airport net-
work, but it is not possible to implement all the airports
of the world. A selection of airports needs to be made,
while ensuring that the model is still capable of produc-
ing useful insights regarding the transfer flows at AAS.
This section will discuss the method of determining the
airports that will be included.

In the model, a distinction is made between hub
and non-hub airports. At hub airports, it is possi-
ble to transfer passengers. By only allowing passen-
gers to transfer at hub airports, the number of possible
itineraries is reduced drastically. The choice of airports
therefore determines the complexity of the problem. For
this problem, it was decided to include 20 hub airports
in the model. With 20 hubs, it is possible to cover the
current busiest hubs in Europe, in addition to smaller
hubs in and around the continent. Only hubs around
Europe are included, as the research focuses on the traf-
fic flows that go through Europe. The selection of hubs
is based on the Air Connectivity Report by ACI Europe,
which ranks the hub connectivity of hubs in Europe [1].
In addition, possible gateway hubs at the edge of Europe
are included: Reykjavik, Helsinki and Dubai. For each
of these hubs, the capacity is determined based on the
maximum hourly runway capacity of the airports. With
the assumption that an airport is operable at maximum
capacity for 12 hours per day, the maximum daily ca-
pacity can be determined. The complete list of hubs and
the corresponding daily capacities is shown in Table 4.

Table 4: List of the hub airports and the
corresponding daily aicraft capacity based on the

hourly runway capacity [24][25][26][27].

AMS 1308 VIE 780
IST 1440 DUB 588
LHR 1092 ZRH 768
FRA 1320 CPH 732
CDG 1308 LIS 516
MAD 1068 OSL 852
BCN 864 KEF 360
MUC 1080 HEL 684
FCO 888 BRU 720
ATH 648 DXB 744

Next are the non-hub airports in the model. The
number of non-hub airports puts less strain on the com-
plexity of the model than the number of hub airports.
However, there still is a trade-off between the number
of airports and the computational time. A total of 200
non-hub airports will be included in the scenarios, re-
sulting in a total of 220 airports. Scenarios of this size
were able to be solved to near-optimality with an av-
erage of 30 minutes. Increasing the number of airports
would exponentially increase to solution time.

The 200 non-hub airports were selected by ranking
all the itineraries that connect through the 20 hub air-
ports. The itineraries are obtained from the AirportIS
database. This results a list of the 200 airports that
provide the most connecting passengers to these hubs.
The total list of airports is shown in Appendix E. By
using this method, airports that mostly provide direct

leisure flights can be filtered. For these itineraries it can
be assumed that they would remain a direct flight, and
can therefore be omitted from the problem. These local
passenger flows should however be kept in mind when
analysing the resulting passenger flows.

3.5 Costs

This section concerns the determination of the opera-
tional costs in the model. The AND discerns two types
of cost: a cost per aircraft and costs based on the num-
ber of passengers. The cost per flight includes, for ex-
ample, take-off and landing fees, and fixed capital costs.
The passenger based costs include, for example, the air-
port security charges. Other non-operating costs, such
as administration and promotion, are omitted from the
calculations, as they would not influence the routing
decisions and aircraft choice.

To determine the flight operating costs, the simplified
Direct Operating Cost (DOC) model of the TU Berlin
is used [28]. This model uses empirical formulas for de-
termining the fixed and variable costs on a route based
on the type of aircraft. Fixed costs include the capital
costs of the aircraft and the salaries of the flight and
cabin crew. These costs are calculated for a whole year,
and then divided by the average yearly utilisation to ob-
tain the fixed costs per block hour. The variable costs
include fuel, maintenance and ATC fees. The mainte-
nance costs and ATC fees are calculated based on the
flight time of a certain route. The fuel costs are based
on the fuel burn calculations from the Piano-X analy-
sis tool. The full method, including aircraft parameters
and fuel functions, is presented in Appendix A.

The method of determining the airport specific
charges vary per airport. The charges will be cate-
gorised in aircraft dependent and passenger dependent
charges. For each hub airport, the charges are obtained
by consulting the publicly available airport charges
guidelines. A summary of the hub airport charges is
presented in Appendix A. The charges of all remaining
non-hub airports are assumed to be the same as at Ams-
terdam Airport Schiphol. This assumption can be made
as the non-hub charges would not influence the tactical
decisions on any transfer operations in the network.

3.6 Model Formulation

This section presents the notation and formulation of
the adapted Airline Network Design (AND) model.

Input: parameters and sets

N : Set of airports, indexed by i

K : Set of aircraft types, indexed by k

M : Set of passenger classes, indexed by m

H ⊂ N : Subset of hub airports, indexed by h
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pmij : Fare between airports i and j for class m

bmihj : Passenger specific cost between airports i and
j via h for class m

fm
ij : Total demand between airports i and j for class

m

cmij : Operational cost of aircraft type k between air-
ports i and j

qk : Seating capacity of aircraft type k

dihj : Total distance between airports i and j via hub
h

Γi : Airport capacity of airport i

rk : Range of aircraft type k

Decision Variables

xm
ihj : Fraction of passengers of class m travelling be-

tween airports i and j using hub h

ykij : Number of aircraft of type k utilised between
airports i and j

zmihj : = 1 if fm
ij is routed via hub h

Model Formulation

max
∑
i

∑
j

∑
h

∑
m

(
pmij − bmihj

)
xm
ihjf

m
ij −∑

i

∑
j

∑
k

ckijy
k
ij (1)

s.t.∑
m

(
fm
ij x

m
i0j +

∑
h

(
fm
ihx

m
ijh + fhjx

m
hij

))
≤∑

k

qky
k
ij ∀i, j (2)

xm
ihj ≤ zmihj ∀i, j,m, h ̸= 0 (3)∑
h

zmihj ≤ 1 ∀i, j,m (4)∑
j

∑
k

ykhj ≤ Γh ∀h (5)

ykij = ykji ∀i, j, k (6)

xm
ihj ≥ 0 ∀i, j, h,m (7)

ykij ∈ W ∀i, j, k (8)

zmihj ∈ {0, 1} ∀h (9)

The objective function, shown in Equation 1, shows
the maximisation of the profit in the network based on
the passenger fares and the operational costs per pas-
senger and per aircraft. Equation 2 shows the first con-
straint, which ensures that the number of passengers

between a given city pair is able to fit within the avail-
able seats on that route. Equation 3 and 4 ensure that
a given passenger class is not divided between multiple
routes. Equation 5 ensures that the number of aircraft
departing from a given hub is within the departure ca-
pacity of the airport. No constraint regarding arrival
capacities is needed as Equation 6 ensures symmetric
flows of aircraft. Equation 7, 8 and 9 define the domain
of the decision variables.

3.7 Solution Method

The ANDmodel is formulated as a Mixed Integer Linear
Program (MILP), which can be solved using a Branch-
and-Bound (BnB) procedure. A commercial solver can
be used to find a solution for a given problem in a
shorter time by using additional techniques to converge
to a solution. For this study, Gurobi version 10.0.1 is
used on two AMD EPYC 7713 64-core processors with
a frequency of 2.0 GHz and 512 GB of RAM. With
this set-up, an optimality gap of around 6% could be
reached within an hour. The optimality gap represents
the difference between the upper bound of the problem
and the current incumbent solution. The convergence
of the optimality gap slowed down exponentially after
this limit. Therefore, this limit was kept for all scenar-
ios to obtain usable results within a reasonable amount
of time.

To reduce the size of the problem, constraint that
would not affect the problem were fixed. Routes with a
demand of less than 50 passengers per day are not able
to be flown using a direct flight. In addition, routes
which exceed the range of a certain aircraft are also not
able to be flown by the given aircraft type. The con-
straint controlling these itineraries could therefore be
fixed to 0.

The result of the optimisation procedure is a set of
values for all the decision variables. Several analyses
can be performed using the results. The analyses will
be divided into three categories. First, it is possible to
describe the network quality and traffic figures of an
airport. This includes the number of destinations that
can be reached from an airport, the frequencies they
are flown to and the number of each aircraft type that
is utilised. In addition, it is possible to find the num-
ber of local and transfer passengers that pass through
a given airport. Next are the results regarding the en-
vironment. From the results, it is possible to calculate
the CO2 emissions based on the fuel burned. At last are
the economic results. From the output it is possible to
find the total amount of taxes that have been paid at a
certain airport, for example.

3.8 Verification and Validation

During the research, it is important to perform verifi-
cation and validation steps in order to determine any
errors that might be present in the model. The ver-
ification steps entail determining if the simulation re-
sults correspond with the expected output of the model.
A set of scenarios is created for various aspects of the
model, where the outcome could be determined analyt-
ically. The scenarios are created with a simple network
of 1 hub and 2 non-hub airports. An example scenario
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puts a demand between the 2 non-hub airports that is
too small to be performed by a direct flight. The result
should be that passengers are routed through the hub,
if the fares would still result in increased profit. These
scenarios were tested and confirmed to correspond with
the predetermined results. An overview of the verifica-
tion tests is presented in Appendix C.

The validation step of the model is more difficult to
perform. The aim of the model is to identify the ef-
fects of policy changes in a world-wide airport network.
Validation with historic data would be impossible, as
there would be too many variables to consider to link
historic policy changes to the perceived effects. Simi-
larly, validating if the fare inputs are realistic, would
require knowing the composition of passengers on all
operated flights. A specific flight could accommodate
many different itineraries where each passengers con-
tributes a different amount to the cost of the aircraft.
For example, business class passengers may offset most
of the cost, while other passengers may only cover their
marginal cost of flying.

Instead, more focus is given towards validating the
costs of the model. The operational costs are not di-
rectly obtained from data, but are determined from sev-
eral models. These costs were validated by comparing
the hourly costs of operating the various types of air-
craft with the recommended values for economic anal-
yses, published by Eurocontrol. The used method for
determining the operational costs shows an overestima-
tion of the capital costs of aircraft. The used method
for determining the operational costs shows a small un-
derestimation of the hourly costs for the short-haul air-
craft. This underestimation in the short-haul aircraft
could be explained by the block time assumption of the
DOC method. The method assumes a block time of
1.83 hours for all aircraft. If it is assumed that the the
short-haul aircraft have only a block time of 1 hour,
the costs correspond with the data. The difference in
hourly costs should not be an issue as the total flight
cycle cost would still be comparable. An overview of
this validation is presented in Appendix C.

4 Case Study: Transfer Tax

This section will focus on one of the possible policy
changes that can be evaluated using this model; the
introduction of a transfer tax at Amsterdam Airport
Schiphol (AAS). Passengers flying from AAS pay a tax
for each departure. In 2023 this tax was e26.43 and in
2024 this tax is e29.05 [29]. However, this tax is omit-
ted for passengers transferring or in transit at AAS.
Multiple proposals have been made by the Dutch gov-
ernment to stop this exemption, in an attempt to reduce
the number of flights at AAS.

The Dutch government has already commissioned a
study into the effects of introducing a transfer tax [7].
This study examines the effects of including transfer
passengers in the air passenger tax for two price lev-
els. A low fare that charges each transfer passenger
e13.215 per departure, which results in a tax of e26.43
per round-trip flight, and a high fare of e26.43 per de-
parture, resulting in e52.86 per round-trip flight. This
change in air passenger tax is evaluated using the AE-
OLUS model, owned by the Ministry of Infrastructure

and Water Management [8]. This model implements a
different approach compared to the AND model of this
study. Instead of optimising all the traffic flows in the
network, the focus is put on the traffic flows in and out
of the Netherlands. Destinations are merged together
to create geographic zones. In addition, the AEOLUS
model is capable of accounting for current market shares
and incorporates the effects of policy changes by chang-
ing the utility functions of certain routes.

On the contrary, the AND model uses a greenfield
approach with no existing market shares. In order to
analyse the results, it is needed to create a baseline sce-
nario that can be used to compare the scenarios with
policy changes with. The next subsection will show the
results of a baseline scenario. This scenario reflects the
current situation without an air passenger tax for trans-
fer passengers. Next, the results of the scenarios includ-
ing the transfer tax are shown. The transfer tax will be
modeled in multiple price-levels. A range of price levels
between e0.00 and e26.43 will be simulated to be able
to spot any possible tip-off points in the data. A total
of 7 scenarios are created, Including the low and high
fares of e13.215 and e26.43.

4.1 Baseline

To find the effects of the introduction of a transfer tax,
a baseline scenario is created to compare the outputs
of the various scenarios with. These scenarios all have
only one variable input, the price level of the transfer
tax, in order to have a fair comparison. The transfer
tax will be included in the passenger fixed costs for pas-
sengers transferring at AAS. For transfers at AAS the
fixed cost is indicated as bmi0j in the objective function.
The transfer tax will be applied at the same price level
to the different fare classes.

The other inputs of the model will remain the same,
as presented in section 3. With these inputs the simula-
tion is performed using the designed Python program.
The solving algorithm was not able to find an optimal
solution within the given time constraint of 1 hour. In-
stead, a sub-optimal solution with an optimality gap of
6.6% is reached.

An overview of the network and traffic figures of AAS
is given in Table 5. The published traffic figures for July
2023 of AAS will be used to compare the results with
[30]. AAS serves a total of 168 destinations in the base-
line scenario, of the available 200 airports. Compared
to the actual conditions, AAS serves a total of 305 des-
tinations for passenger traffic in 2023. However, there
are some destinations with little traffic. For example,
from the dataset of passenger flows in 2023 it can be
found that there are only 258 destinations with more
than 25.000 annual passengers arriving at AAS.

The simulation shows that in the baseline there are a
total of 732 aircraft movements at AAS. This combines
arriving and departing aircraft. The calculated capac-
ity is quite a bit lower than the input capacity, which
was set at 1308 movements. The calculated capacity
did compare with the actual utilisation of July 2023,
which was on average 1321 aircraft per day. However,
the average load of the model is more comparable to the
actual data. By dividing the total departing passengers
by half of 732, the number of departing aircraft, an av-
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Figure 1: Relative size of hub traffic volume in the baseline scenario.
Hub airports are indicated by red dots and non-hub airports by blue squares.

erage load of 186 passengers is obtained. The actual
load factor was on average 147 passengers in July 2023.

The total number of passengers passing through AAS
would be double the local departures added to the trans-
fer passengers, which results in a total flow of 125.896
passengers. The actual numbers show an average of
193.853 passengers passing through AAS in a day. This
difference is mostly due to varying numbers of transfer
passengers. The simulation shows a total of 57.746 de-
parting passengers, which is similar to the actual daily
average is 62.960 departing passengers.

In addition to the key traffic figures of AAS, a map
indicating the traffic flows through the hubs is shown
in Figure 1. In this map, the traffic volume of each
hub is indicated by the relative size of the dots in the
map. The non-hub airports of the model are indicated
by squares.

Table 5: Key figures about Amsterdam Airport
Schiphol in the baseline scenario.

Europe Destinations 103
Intercontinental Destinations 65
# Aircraft 732
# Local Departing Pax. 57.746
# Transfer Pax. 10.404

Regarding the other hubs in the airport, an overview
of the ratios between local and transfer passengers is
shown in Figure 2. Most hubs only have a small share

of transfer traffic. Only five hubs have a larger than
25% share attributed to transfer traffic. Four of these,
OSL, KEF, HEL and DXB have relatively low airport
fees and are situated on the edge or outside of the Euro-
pean continent, which allows them to act as a gateway
for the continent.

Figure 2: Share of local (blue) and transfer (red
dotted) traffic at the hub airports of the model.

To get an indication of the effects of the assumptions
on the baseline scenario, a sensitivity analysis is per-
formed. The complete results of the sensitivity analysis
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is shown in Appendix D. The analysis is performed for
the main assumptions of the model: the Value of Time
(VOT) per passenger class, the fare ratios, the ticket
tax, and the passenger class ratios. Multiple scenarios
were created to find the effects of these assumptions.
The results confirm that the business passenger class
has the biggest influence on the number of other pas-
sengers on flights. By decreasing the fares or reducing
the demand of business class, the number of passengers
in other classes are increased by a larger factor. The
number of destinations did remain fairly constant be-
tween the scenarios, however, small trends due to the
assumptions were visible. For example, the number of
transfers increased with a lower VOT or the number
of destinations slightly increased with more total pas-
sengers. The results of the sensitivity analysis need to
be taken into account when analysing the results of the
simulations.

4.2 Results

The results of the scenarios including a transfer tax are
presented in this section. The variable in this case study
is the price level of the transfer tax at AAS. The base-
line assumes a price level of e0.00. The other scenar-
ios will have a range of price levels between e0.00 and
e26.43 per departure. A range of price levels is simu-
lated in order to visualise possible tip-off points in the
outputs. The number of scenarios is chosen by a trade-
off between the computational time of all the scenarios
and the level of detail of the tip-off points. In total
seven scenarios are generated between the price levels
of e0.00 and e26.43, resulting in steps of around e4.41.
This range includes the low and high scenario of e13.22
and e26.43 proposed by the Dutch government. An
overview of the scenarios and the corresponding simu-
lation performances, objective value, runtime and the
optimality gap, are presented in Table 6. The different
scenarios are numbered from 0 to 7, including the base-
line scenario. For all scenarios, the simulation reached
the time limit of 3600 seconds. This means that the
problems are not solved to optimality. Therefore, the
optimality gap is given as well for these simulations.

Table 6: Transfer tax scenarios with input transfer
tax level and simulation performance figures.

Tax [e] Network Profit [e] Runtime [s] Gap [%]

0 0.00 482 mln 3600 6.56
1 4.41 485 mln 3600 5.84
2 8.81 482 mln 3600 6.50
3 13.22 487 mln 3600 5.45
4 17.62 481 mln 3600 6.56
5 22.03 482 mln 3600 6.53
6 26.43 481 mln 3600 6.59

In Table 6, the obtained network profits are pre-
sented as well. For all simulations the profit remains
relatively stable around e482 million. In some scenar-
ios, the profit of the network is higher compared to the
baseline without a transfer tax at AAS.

To find the effects that occur specifically at AAS,
more outputs of the model are necessary. The outputs
that will be presented can be divided in three categories,
as have been established in section 3. These categories

are: network and traffic, CO2, and economic. First, the
network and traffic outputs of the simulations will be
presented. These outputs include traffic flows of local
and transfer passengers through AAS, the shift of pas-
sengers to other hubs, the fleet composition, and figures
on the network quality of the hub.

The following graphs show the size of the traffic flows
of passengers at AAS. The model assumes three types
of passenger classes: budget, economy and business.
These passenger classes will be indicated in the results
as class 0, 1 and 2 respectively. An overview of the char-
acteristics of the passenger classes is shown in Table 2.

In Figure 3, the number of transfer passengers pass-
ing through AAS can be seen for the range of trans-
fer tax prices. In the baseline scenario, the number of
transfer passengers equals to 10.404. The graph shows
that there is a downward trend in transfer passengers
when the transfer tax is increased. There are however
some anomalies; scenario 1 and scenario 3 have a larger
flow in transfer passengers that the preceding scenarios.
Scenario 1 even has a total of 10.546 passengers, which
is larger than in the baseline.

Figure 3: Number of transfer passengers at AAS
against the transfer tax.

Figure 4: Number of local passengers at AAS against
the transfer tax.
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In Figure 4, the number of local passengers departing
from AAS are shown for the range of transfer tax prices.
The graph does not show a clear trend in the number of
passengers. Instead, the number of passengers remains
around 58.500 passengers for all scenarios.

In Figure 5 and 6, the number of local and transfer
passengers through AAS are shown again, but divided
into the three fare classes in the model. The graphs
show that the ratio between the fare classes remains
constant for the range of transfer tax prices. However,
the ratio between transfer and local passengers do dif-
fer. The demand input assumes a ratio of 1 : 4 : 1
between the three fare classes. For the local passengers
from AAS, this ratio is around 0.6 : 3.6 : 1. When
comparing this ratio with the input ratio, it can be seen
that the higher the class, the more available demand is
fulfilled. For the transfer passengers through AAS, this
ratio is around 1.0 : 4.4 : 0.9. The traffic flows of trans-
fer passengers follow a different ratio than that of the
local passengers. The transfer flows cover more of the
middle class and less of the higher class of passengers.

Figure 5: Number of local passengers departing from
AAS split up in the three passenger classes against the

transfer tax.

Figure 6: Number of transfer passengers departing
from AAS split up in the three passenger classes

against the transfer tax.

When increasing the price level of the transfer tax,
the number of transfer passengers at AAS decreases.
Some of this traffic is captured by surrounding hub air-
ports in the network. In Table 7, the top five airports
that capture the most traffic are shown for the low and
high scenario. The table shows the number of passen-
gers that used to be routed through AAS in the base-
line, but are now routed through another hub airport.
The table also gives the remaining passengers that are
routed through other hubs outside of the top five. In
both the low and the high scenario, the top five consists
of the same airports. Four of these hubs are also the
closest neighbours of AAS and these are: BRU, FRA,
CDG and LHR.

Table 7: Top five airports in the low and high
scenario that capture the lost transfer traffic of AAS.
The number of captures passengers is shown between

the brackets.

e13.22 e26.43

1 BRU (1253) FRA (1171)
2 FRA (704) BRU (933)
3 CPH (473) CDG (401)
4 CDG (438) CPH (346)
5 LHR (355) LHR (295)

remainder (1780) (1422)

The network quality of AAS will be described using
the number of destinations reachable via direct flight
from AAS and the flight frequencies at the airport. In
Figure 7, the number of destinations in each transfer
tax scenario is graphed. A distinction is made between
destinations in Europe and Intercontinental (ICO) des-
tinations. In the baseline scenario, there are 103 Euro-
pean and 65 ICO destinations. Both sets remain rela-
tively stable when increasing the transfer tax price level:
the number of European destinations vary between 107
and 103 destinations and the number of ICO destina-
tions varies between 65 and 60. The number of ICO
destinations does show a slight trend downward when
increasing the transfer tax.

Figure 7: The number of European and
intercontinental destinations served from AAS against

the transfer tax.
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For these destinations, a histogram is made to show
with what frequency these destinations are flown to. In
Figure 8, the histogram is shown for the destinations in
the baseline and the high and low transfer tax scenarios.
Most destinations only have a frequency of 1 round-trip
per day. When the transfer tax is increased, the fre-
quency of some destinations is reduced, which leads to
an increase in the number of destinations being served
with a frequency of 1.

Figure 8: Histogram of the number of destinations
that is served for a given frequency for the baseline,

low and high scenarios.

Figure 9: Histogram on the number of aircraft of the
five aircraft types in the model for the baseline, low

and high scenarios.

The last result about the traffic figures regards the
number of aircraft deployed per aircraft type. Figure 9
shows a histogram of the five aircraft types of the model
for the baseline, low and high scenario. The first obser-
vation is that there is a large share of A321neoLRs in
the scenarios. In the short-range segment, there are also
some E195-E2s. This share increases when the transfer
tax is increases, and there are slightly less passenger
flows through AAS. The large share of A321neoLRs in-
dicates that the aircraft is the most efficient type in the
model for most routes. In certain cases where the range
of the A321neoLR is not sufficient, an A350 is chosen.
In the long-range segment, all flights are performed by

the A350. A similar comparison in the long-range seg-
ment can be made; the A350 is more efficient than the
B777 and the range of the A350 is sufficient for the des-
tinations in the results. As this model does not take
into account cargo flows, the advantage of more belly
space in larger aircraft are also not taken into account.
This also adds to the lack of any B777s in the results.

The next category is CO2. The CO2 emissions can
be calculated from the fuel burn by the aircraft. The
emissions are calculated for the set of flights flying in or
out of AAS and the total set of flights in the network. In
Figure 10, the emissions of flights passing through AAS
are shown. The data shows a clear downward trend,
as there are less flights flown from the airport. How-
ever, from the data in Figure 11 it can be seen that
the global emissions are not affected by the reduction
at AAS. The number of flights passing through AAS is
relatively small compared to the total number of flights
in the network. In addition, some flights are still flown,
but via another hub.

Figure 10: CO2 emissions of flight passing through
AAS against the transfer tax.

Figure 11: CO2 emissions of the total set of flights in
the network against the transfer tax.

The tax revenue is the last category of outputs of the
model. Passengers departing from AAS pay an air pas-
senger tax of e26.43 and this case study introduced this
air passenger tax for transfer passengers as well. The
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total air passenger tax for the various tax levels is pre-
sented in Figure 12. The graph shows an upward trend
when the tax level is increased. While the number of
transfer passengers is reduced, the tax collected is still
able to increase.

Figure 12: Tax revenue collected at AAS against the
transfer tax.

5 Discussion

This paper presents a case study with the aim of gaining
more insights into the effects that introducing a transfer
tax at Amsterdam Airport Schiphol (AAS) may have on
the traffic flows through the airport. The results of var-
ious scenarios with differing tax-levels are presented in
the previous section. The scenarios start from a baseline
that assumes no existing market shares between airlines.
The results of the simulations show that implementing a
transfer tax reduces the number of transfer passengers
at AAS, but does not affect the local passengers. It
should be noted that the number of transfer passengers
at AAS is relatively small compared to the number of
local passengers. Another observation is that the num-
ber of destinations remains fairly stable with respect to
the baseline scenario. In addition, the total tax revenue
increases when implementing a transfer tax. From these
outcomes, it can be stated that the network quality of
AAS barely degrades with respect to the baseline sce-
nario. Another important conclusion, however, is that
the results show that AAS would not be as large of a
hub as it is in real-life, if a scenario without pre-existing
market shares is assumed. In this discussion, the signifi-
cance of these conclusions will be established by putting
the scenarios in the context of real-life conditions, as
well as results of the case-study presented by CE Delft
[7].

5.1 Differing Baseline Scenario

One of the conclusions of the results is that AAS would
not be a major hub when optimising the network us-
ing a greenfield approach, without any existing market
shares. This is a different result than what could be ex-
pected when looking at the actual traffic flows at AAS.
In reality, transfer passengers account for 37% of the
total passenger flow at AAS, instead of the 15% that is
obtained from the simulation [3]. This also applies to
the other current major hubs, such as LHR, CDG and

FRA. The results show that most hubs have transfer
flows that account for less than 25% of their departing
traffic.

In addition, the results show that most destinations
are flown with a daily frequency of one round-trip. Such
operations also differ from what is expected at AAS,
where there is at often at least a frequency of two
trips per day to accommodate an incoming and out-
going wave at the start and end of the day. A possible
explanation of this difference could be that the model
does not take into account the number of frequencies in
the model objective. Instead, the frequencies are only
determined on the desired capacity of a route.

One important factor of the difference between the
simulation results and the actual traffic flows is the use
of a greenfield approach in the simulation. The model
does not assume any current market shares, and instead
only focuses on optimising for profit. By doing so, the
tactical decisions are more influenced by the location of
an hub airport and its landing and take-off fees. This
would result in airports that are more centrally located
and having cheaper airport fees being more desired for
transfers. Only five hubs have a larger than 25% share
attributed to transfer traffic. Four of these, OSL, KEF,
HEL and DXB have relatively low airport fees and are
situated on the edge or outside of the European con-
tinent, which allows them to act as a gateway for the
continent.

Another explanation of the lower share of transfer
passengers may be due to the cost of transfer itineraries.
The costs of transfer itineraries are usually higher than
that of direct itineraries, regarding fuel costs and air-
port fees. As there are no existing market shares in the
model, passengers are flown in the most optimal and
profitable manner as possible, which results in more di-
rect flights. Transfer itineraries are still utilised in cases
where a direct flight is not viable, and the transfer pas-
sengers are able to cover the marginal cost on the spe-
cific flights.

From these explanations, the significance of the con-
clusion can be established. The results show that, in
reality, it is not a given for certain airports to act as
a hub. Additional strategies, such as lower prices for
transfer itineraries, could have been used to attract
more transfer traffic. Otherwise, hubs would be bet-
ter placed at the gateways of the continent for optimal
passenger flows.

5.2 Network Quality of AAS

The second conclusion of the results is that increasing
the transfer tax at AAS does not have a big impact at
the network quality of the hub airport. It should be
kept in mind that the share of transfer passengers at
the hub was already low in the baseline scenario. Still,
the effects of increasing the transfer tax was visible in
the results of the simulations. The number of trans-
fer passengers decreased at AAS and a large number of
passengers were routed through nearby hubs.

The transfer tax case study can be compared with
the study commissioned by the Dutch government with
the same purpose of examining the effects of introduc-
ing a transfer tax at AAS. This study, performed by
CE Delft [7], approaches the problem by simulating the
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introduction of transfer fees using the AEOLUS-model.
This model is capable of accounting for current mar-
ket shares, which allows for a better representation of
the current situation. Multiple scenarios are created
with varying economic growth factors and varying re-
strictions in aircraft movements at AAS. The results
show a similar trend regarding the number of passen-
gers at AAS: the number of local passengers could ei-
ther slightly decrease due to lower frequencies or slightly
increase due to more available capacity, and the num-
ber of transfer passengers would decrease due to higher
costs. In the low and high transfer tax scenarios, the ex-
pected decrease in transfer passengers would be around
18% and 33% respectively. In the results of this study,
the decrease in these scenarios would be 12% and 42%.
There is however a difference in the number of daily
flights between the results. The study of CE Delft pre-
dicts a decrease of 5% and 10% in the low and high sce-
nario, whereas this study only sees a minimal reduction
of flights, as can be seen in Figure 9. The difference
could be explained by the different shares of transfer
passengers at AAS. As the results of this study only
show a small share of transfer passengers, a decrease
of transfer passengers would be less noticeable in the
number of flights.

The perform a more fair comparison between the two
models, the baseline scenario of the AND model should
be revisited in order to better represent the actual net-
work. However, the results can still be of significance in
order to gain insights of the general effects that certain
policies may have.

6 Conclusion

This study set out to investigate the effects that the
proposed policy changes aiming to reduce the number
of passengers at Amsterdam Airport Schiphol (AAS)
might have on the network quality of the hub. In or-
der to do so, a profit-based Airline Network Design
(AND) model is formulated that is capable of simu-
lating the passenger and aircraft flows through multi-
ple hubs around Europe. As different passengers have
different preferences for direct and connecting flights,
multiple fare classes are implemented into the demand
model. Each passenger class has a different time sen-
sitivity, which affects the attractiveness of connecting
flights.

With the AND model, a case study is carried out,
investigating the effects of introducing an air passenger
tax for transfer passengers. In 2023, passengers at AAS
paid a tax of e26.43 per departure, while transfer pas-
sengers were exempt from this tax. In order to reduce
the number of aircraft movements, the Dutch govern-
ment proposed to introduce this tax for transfer pas-
sengers. Two scenarios were proposed: a tax of e13.22
per departure, resulting in e26.43 per round-trip, or
e26.43 per departure, resulting in e52.26 per round-
trip. This case study examined these scenarios, includ-
ing five additional scenarios ranging between e0.00 and
e26.43. The scenario with a transfer tax of e0.00 acts
as a baseline scenario. These scenarios were optimised
with a one-hour time limit, however, only near-optimal
solutions were reached with a optimality gap around
6%.

The results of the scenarios show that a transfer tax
does lead to a reduction in the number of transfer pas-
sengers: 12% and 42% for the low and high scenario
respectively. However, the network quality in these sce-
narios is barely affected. This is explained as the base-
line scenario shows a different ratio between the local
and transfer passengers than in reality. Instead of 37%,
the simulation only shows a share of 15% of transfer
passengers at Amsterdam Airport Schiphol (AAS). The
conclusion that the transfer tax barely degrades the net-
work quality should therefore be put into context of
the given baseline scenario. This result does show that
when optimising using a greenfield approach, the hub
would not be as large as it is in real-life, based on its
location and costs.

To better understand the effects at Amsterdam Air-
port Schiphol it is recommended to improve the mod-
elling of the baseline scenario. The model currently uses
a greenfield approach, however, implementing market
shares or by using an offset to calibrate the baseline
would allow for a better representation of the actual
network. In addition, the effect of the missing time
dimension in the model could be investigated, which
could affect the flight frequencies needed to fulfill cer-
tain itineraries. The last recommendation regards the
optimisation method of the problem, which is currently
not able to produce an optimal solution. Other opti-
misation techniques could be applied in order to reduce
the computational time.

7 Recommendations

This section will elaborate on the set of recommenda-
tions for further research using the AND model. The
first recommendation regards the set up of the base-
line scenario in the AND model. The baseline scenario
differs in certain aspects from reality, such as the sizes
of hub airports and the transfer flows. In order to use
the AND as a support tool, it is preferred to have a
model that represents reality more accurately. An im-
plementation of current market shares and a compet-
itive market could result in a better representation of
the market. In addition, a different system of mod-
elling the non-hub airports would be required. Increas-
ing the number of airports, increases the complexity of
the model. However, an airline such as KLM operates
by connecting many unique locations with its hub. In
order to capture this business model, a more efficient
method is needed that does not require each node to be
modelled separately.

Another recommendation is to investigate the effects
that the number of frequencies has on the network de-
sign. The frequency of a route can have an influence
on the demand that a route has, but also influences
the possible connections. The model currently does not
take the connecting time into account. Instead, it is
assumed that the itineraries on a given day have an
average lay-over of 2 hours. This average could vary
between itineraries and make some routes less desirable
or result in connections that are not possible. Adding
a time dimension makes the model more complex, but
allows for more insights in the actual needed frequencies
to fulfill certain itineraries, instead of only the general
flow of passengers through the network.
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The third recommendation regards the improvement
of the simulation method of the AND model. The
model currently is solved using the Gurobi MILP solver,
which uses a Branch-and-Bound method combined with
heuristics. The created AND problems are not consis-
tently solved to optimality within one hour. Certain
improvements have already been implemented to reduce
the size of the problem. Further research would bene-
fit from a faster optimisation method. This could, for
example, be realised by implementing (meta)heuristic
methods.

Finally, some recommendations regarding the possi-

bilities for future research can be given. This study
focused on the introduction of a transfer tax at AAS,
however, it is possible to test other forms of taxation.
For example, levying a distance based tax or implement-
ing a fuel tax. Such policies could also be applied to the
European Union as a whole, instead of only applying to
AAS. Besides increasing cost, it would also be possible
to evaluate non-cost-related changes in the network. For
example, it would be possible to evaluate the effects of
a closed Russian airspace for certain airlines. The AND
model could allow for evaluating a multitude of possible
scenarios in further research.
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A
Determining Operational Costs

This appendix will show the calculation methods used to determine the operational costs in the Airline Net-
work Design (AND) model. The TU Berlin DOC method is used to calculate the operational costs and is pre-
sented in section A.1. This method does not differentiate between airports for take-off and landing fees. The
determination of the airport fees is therefore presented separately in section A.2. The fuel burn calculations
needed to determine the fuel costs are presented in section A.3.

A.1. Aircraft Operational Costs
The aircraft operational costs are determined using the TU Berlin DOC method presented by J. Thorbeck and
D. Scholz (2013) [7]. The method uses empirical formulas to estimate the elements of the operational costs.
The operational costs are divided into fixed and variable costs. The next two subsections will look into the
method of determining these costs.

A.1.1. Fixed Costs
The fixed costs of a flight represent the capital costs, depreciation and insurance of the aircraft, but also the
salaries of the crew. The capital costs, CCAP, are determined based on a linear function of the Operational
Empty Weight (OEW). The formula for the capital costs is shown in Equation A.1 - A.2. The aircraft specific
inputs of the formula are the OEW, the aircraft engine weight (WEng), and the number of engines (NEng). The
parameters of the formula are as follows:

• POEW: price per kg OEW of 1150 [e/kg]
• PEng: price per engine weight of 2500 [e/kg]
• IR: interest rate of 5%
• DP: depreciation period of 14 years
• fRV : residual value of 10%
• fi ns : insurante rate of 0.5%

CCAP = [
POEW

(
OEW−WEngNEng

)
WEngNEngPEng

](
a + fIns

)
(A.1)

with a = IR
1− fRV

( 1
1+IR

)DP

fRV
( 1

1+IR

)DP
(A.2)

The determination of the crew costs is based on the number of seats on the aircraft. The formula for the crew
cost is shown in Equation A.3. There is one flight attendant for each 50 passengers. The total number of flight
attendants is given as nFA. The cost per flight attendant, SFA, ise60.000 per year, and the cost for a flight crew
of two pilots, SFC, ise300.000 per year. The crew complement, CC, indicates the number of crew per aircraft
and is assumed to be 5.

Ccrew = CC(SFAnFA +SFC) (A.3)
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The total fixed costs per year can be represented as C1 = CCAP+ Ccrew. To determine the fixed costs per oper-
ational hour, an average number of operational hours is determined per aircraft. First, the method assumes
a yearly number of operational days of 353.6, which removes time dedicated to C- and D-checks, as well
as a statistical number of days for repairs. The average block hours per day is obtained from the Airline Data
Project of MIT [2]. The hourly fixed costs are calculated by dividing the yearly fixed costs by the average yearly
block hours. The input data for the equations specified per aircraft are shown in Table A.1.

A.1.2. Variable Costs
The second part of the operational cost is the variable or route dependent cost. This cost consists of the
following elements: fuel, handling, airport fees, air traffic control, and maintenance. The handling costs and
airport fees calculations are omitted as the airport specific costs are calculated separately per airport and is
discussed in section A.2. The resulting costs are calculated using the formula shown in Equation A.4. The first
part of the formula is the fuel cost. The fuel cost per liter, P f , is assumed to be e0.541. The calculations for
the total fuel per flight, TF, are presented in section A.3. The next part of the formula is the air traffic control
costs, which is based on the Maximum Take-Off Weight (MTOW) of the aircraft and a price factor, f (R), which
is assumed to be 1. The third element is the maintenance cost, MC. The maintenance cost is determined
using Equation A.5 - A.8.

C2 = P f ·TF+ f (R) ·
√

MTOW

50
+MC (A.4)

The maintenance costs are split into three parts: the airframe material costs, MCMAT, the airframe personnel
costs, MCPER , and the engine maintenance costs, MCENG. The inputs of these empirical formulas are: the
OEW, the flight time, FT, the sea-level static thrust of one engine, SLST, the number of engines, NENG, and the
labor rate, LR, ofe50 per hour.

MC = MCMAT +MCPER +MCENG (A.5)

MCMAT = OEW · (0.21 ·FT+13.7)+57.5 (A.6)

MCPER = LR ·3 · [(0.655+0.01 ·OEW) ·FT+0.254+0.01 ·OEW] (A.7)

MCENG = NENG · (1.5 ·SLST+30.5 ·FT+10.6) (A.8)

The total costs of a flight be found by combining the fixed and variable costs. The parameters per aircraft type
used in the model are shown in Table A.1. The fixed costs per hour that are obtained from these inputs are
shown in Table A.2.

Table A.1: Input data for the DOC method of the aircraft used in the model.

MTOW [to] OEW [to] Weng [kg] Neng Seats
Avg. Block

Hours
SLST [to]

Boeing 777-300ER 352 168.6 8282.6 2 381 13 52.2
Airbus A350-900 245 126.1 7277.0 2 300 13 38.2
Airbus A321neoLR 97 51.1 3071.5 2 210 11 15.0
Airbus A320neo 79 44.8 3071.5 2 150 11 12.3
Embraer E195-E2 49 28.9 2177.0 2 132 9 10.3
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Table A.2: Fixed costs per hour, allocated to depreciation and crew, for the aircraft used in the model.

Fixed Depreciation Crew

Boeing 777-300ER e5,792 e4,969 e824
Airbus A350-900 e4,498 e3,780 e718
Airbus A321neoLR e2,529 e1,819 e710
Airbus A320neo e2,242 e1,625 e617
Embraer E195-E2 e2,015 e1,295 e720

A.2. Airport Fees
The method of determining the airport specific charges vary per airport. The charges will be categorised
in aircraft dependent and passenger dependent charges. For each hub airport, the charges are obtained by
consulting the publicly available airport charges guidelines. An example cost table of Amsterdam Airport
Schiphol is shown in Figure A.1 and Figure A.2 [3]. The table shows the landing and take-off fees per 1000kg
for different periods of the day and for different aircraft noise categories. The minimum charge is based of a
MTOW of 20.000 tonnes and additional surcharges are applied for noisy aircraft in category s1 and s2. There
is also a NOx charge based on aircraft data of NOx emissions during a standardised landing and take-off cycle.
Besides the aircraft specific charges, there are also passenger specific charges, which are shown in Figure A.2.
Amsterdam Airport Schiphol has different fees for local and transfer passengers. Certain airports also charge
different security fees based on the origin or destination of passengers, such as when entering or leaving the
Schengen zone.

Figure A.1: Landing and take-off fees for different periods of the day and 2 aircraft noise categories. There are in total 7 categories.

Figure A.2: NOx charges, passenger charges, and parking charges at Amsterdam Airport Schiphol.
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To implement the airport fees into the model, the costs have been divided between aircraft and passenger
specific costs. Certain airports have different fees for departures and arrivals. To ensure that the costs in the
network remain symmetric, the arrival and departure costs are averaged per airport. The passenger charges
are added for each additional passenger on a given route. The passenger charges are again averaged between
departing and arrival passengers to ensure symmetry. The passenger fees are specified for intra-Europe and
inter-Europe travel, as well as for local and transfer passengers. A summary of the charges is shown in Ta-
ble A.3.

Table A.3: Landing/take-off charges specified per aircraft type and passenger charges specified for inter/intra Europe travel and
local/transfer passengers.

B777 A350 A321 A320 E195
OD

Europe
OD

non Europe
Transfer
Europe

Transfer
non Europe

AMS e2,776.85 e668.85 e264.81 e172.22 e106.38 e17.87 e17.87 e8.56 e8.56
IST e1,743.44 e1,215.20 e481.12 e391.84 e242.05 e6.72 e6.72 e6.72 e6.72
LHR e1,131.17 e863.47 e795.66 e799.17 e767.26 e22.21 e22.21 e16.66 e16.66
FRA e1,235.78 e801.25 e380.18 e316.75 e253.93 e10.72 e14.60 e7.62 e7.62
CDG e1,485.44 e1,001.26 e462.15 e396.61 e286.66 e5.46 e12.57 e3.28 e7.54
MAD e1,494.80 e1,062.10 e460.80 e387.67 e264.97 e8.16 e10.79 e4.89 e6.47
BCN e1,326.69 e942.52 e408.65 e343.72 e234.79 e7.72 e9.04 e4.63 e5.42
MUC e1,066.44 e700.41 e394.84 e358.84 e288.88 e11.37 e12.01 e7.82 e8.25
FCO e931.09 e767.39 e415.69 e365.29 e244.89 e14.67 e18.11 e4.02 e6.96
ATH e886.13 e713.58 e375.88 e306.13 e170.31 e7.45 e9.10 e0.00 e0.00
VIE e703.00 e490.00 e194.00 e158.00 e97.60 e11.37 e12.01 e7.82 e8.25
DUB e3,083.38 e1,714.70 e769.80 e645.60 e486.02 e6.15 e6.15 e1.25 e1.25
ZRH e1,278.05 e1,083.05 e356.20 e356.20 e356.20 e12.00 e12.00 e7.50 e7.50
CPH e1,018.13 e709.65 e280.96 e228.83 e141.35 e9.22 e9.22 e5.01 e5.01
LIS e3,335.74 e1,707.69 e763.30 e562.10 e333.41 e8.00 e12.84 e6.48 e10.15
OSL e467.21 e399.42 e254.61 e225.97 e136.22 e4.92 e4.92 e1.57 e1.57
KEF e1,315.98 e991.16 e531.11 e473.83 e304.33 e10.30 e10.30 e2.49 e7.81
HEL e1,414.25 e1,161.32 e371.36 e316.28 e223.87 e7.71 e7.71 e5.08 e5.08
BRU e2,776.85 e668.85 e264.81 e172.22 e106.38 e17.87 e17.87 e8.56 e8.56
DXB e885.32 e614.29 e237.64 e191.83 e114.97 e15.13 e15.13 e5.04 e5.04

A.3. Fuel Calculations
The fuel calculation of these aircraft is performed using the Piano-X analysis tool. The tool takes into account
the performance of the aircraft type to calculate the required fuel for a given scenario, with variables such
as the block range and the payload weight. Quadratic functions are created with the program for the five
different aircraft types, which are implemented in the AND model in order to determine the fuel burn for a
given flight. The results of these functions will be compared with published data on the fuel burn of these
aircraft and is presented in subsection B.2.1. The terms of the quadratic equation are presented in Table A.4.

Table A.4: Generated fuel equations from Piano-X for the five aircraft in the model.

ad 2 bd c

Boeing 777-300ER 0.0005 11.903 2783.2
Airbus A350-900 0.0003 8.4066 1829.3
Airbus A321neoLR 0.0002 5.0145 623.32
Airbus A320neo 0.0002 4.1638 578.28
Embraer E195-E2 0.0002 3.8673 663.23



B
Verification and Validation

This appendix will show the verification and validation procedure that has been applied to the Airline Net-
work Design (AND) model. The purpose of the model verification is to ensure that the results of the sim-
ulations correspond with the expected results. The verification procedure is discussed in section B.1. The
purpose of the model validation is to determine if the model results are able to represent the real world. The
validation procedure is presented in section B.2.

B.1. Verification

The purpose of verification is to ensure that the simulation results correspond with the expected results of
the model. The AND will be tested by simulating multiple small scenarios that can be solved analytically, in
order to verify the results. The scenarios assume a set of three dummy airports with one hub where transfers
can occur. A map of the airport network is shown in Figure B.1, which includes the distances. Airport 0 is the
hub in the network. Two aircraft types are used in the scenarios: type 0 with a capacity of 100 passengers, a
range of 800 km, and a cost of e50 per km, and type 1 with a capacity of 200 passengers, a range of 1200 km,
and a cost ofe90 per km. Additional inputs are specific for each test

Figure B.1: Map with distances between dummy airports. Airport 0 is indicated as hub.

B.1.1. Aircraft Capacities

The first set of tests regards the capacities of aircraft in the model. These test verify whether the model cor-
rectly takes into account the seating capacity of aircraft, when choosing the number of aircraft on a route.
Test set 1 only uses aircraft type 1 with a capacity of 100 seats. Test set 2 uses both aircraft type 1 and 2 with
capacities of 100 and 200 seats respectively.
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# Test Explanation Expected Output Passed

1.1
There is a demand of 50
passengers between airport
0 and 1

This demand is not enough
to cover the cost of the air-
craft

No passengers are trans-
ported

Yes

1.2
There is a demand of 51
passengers between airport
0 and 1

This demand covers the
cost of the aircraft

All 51 passengers are trans-
ported

Yes

1.3
There is a demand of 151
passengers between airport
0 and 1

This demand covers the
cost of the first and second
aircraft

All demand is transported
and two aircraft are utilised

Yes

# Test Explanation Expected Output Passed

2.1
There is a demand of 141
passengers between airport
0 and 1

There is more demand than
what could be transported
with aircraft type 1. The de-
mand covers the cost of air-
craft type 2

All passengers are trans-
ported with aircraft type 2

Yes

2.2
There is a demand of 251
passengers between airport
0 and 1

There is more demand than
what could be transported
with aircraft type 2. The de-
mand covers the cost of air-
craft type 1 and 2

All passengers are trans-
ported with one aircraft of
both type 1 and 2

Yes

2.3
There is a demand of 341
passengers between airport
0 and 1

The demand covers the
cost of two aircraft of type 2

All passengers are trans-
ported using 2 aircraft of
type 2

Yes

B.1.2. Aircraft Range
The third set tests whether the ranges constraint of aircraft is correctly implemented in the model. The tests
focus on the route between airports 0 and 2, which is outside the range of aircraft 1.

# Test Explanation Expected Output Passed

3.1
There is a demand of 90
passengers between airport
0 and 2

The distance between air-
port 0 and 2 would require
aircraft type 2, but the de-
mand would not cover the
operational costs

No passegners are trans-
ported

Yes

3.2
There is a demand of 91
passengers between airport
0 and 2

The distance between air-
port 0 and 2 would re-
quire aircraft type 2 and the
demand covers the opera-
tional costs

All passengers are trans-
ported using 1 aircraft of
type 2

Yes
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B.1.3. Implementing Non-Direct Routes
The fourth set tests the behaviour of selecting non-direct routes. Connections can only be done through
selected hubs.

# Test Explanation Expected Output Passed

4.1

There is a demand of 1 pas-
senger between airports 1
and 2 and there are flights
between airport 0-1 and 0-
2

The demand is not enough
for a flight between 1 and
2, but the demand can be
flown with a connection at
airport 0

The demand between air-
ports 1 and 2 is fulfilled
through hub 0

Yes

4.2

There is a demand of 1 pas-
senger between airports 0
and 1, a demand of 90 be-
tween airports 1 and 2, and
there is a flight between 0
and 2

There is no spoke to air-
port 1 from hub 0, but the
demand between 1 and 2
could make a spoke possi-
ble in addition to the de-
mand between 0 and 1

All passengers are routed
through hub 0

Yes

B.1.4. Airport Capacity
The fifth set tests the implementation of the airport capacity constraint

# Test Explanation Expected Output Passed

5.1

There is a demand of 300
between airports 0 and 1,
which have a capacity of 2
departures. Only small air-
craft are available.

There is more demand
than aircraft capacity on
the route

Only 200 passengers are
transported on 2 aircraft
each way

Yes

5.2

There is a demand of 300
between airports 0 and 1,
which have a capacity of 2
departures. The small and
large aircraft are available.

To fulfill the demand within
2 departures, both a small
and a large aircraft are
needed

All passengers are trans-
ported using 1 aircraft of
type 1 and 2

Yes

B.1.5. Airport Fees
The sixth set tests whether the airport fees are correctly implemented in the cost function. These tests assume
a fee ofe50 per departure. For transfer itineraries there is a discount: instead ofe100 for two departures, the
cost is set ate75. This is to reflect the reduced fee for transfer passengers at hub airports.

# Test Explanation Expected Output Passed

6.1
There is a demand of 100
between airports 0 and 1

This test shows if the profit
takes into account the air-
port fee on a direct route

The total profit should be
100*50 less than in the case
without fees

Yes

6.2

There is a demand of 54 be-
tween airports 0 and 1, and
a demand of 95 between
airports 0 and 2

Due to higher costs, the re-
quired demand is slightly
higher than the previous
case of 51 and 91

All the demand is trans-
ported and the profit is 700

Yes
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B.1.6. Passenger Classes
The seventh set test the effect of the passenger classes in the model. The tests assume an economy and
business class, where the business class has doubled fares.

# Test Explanation Expected Output Passed

7.1

There is a demand of 100
economy passengers and
20 business passengers be-
tween 1 and 2

An all economy demand of
120 would not be sufficient
for a larger aircraft on the
route, but the higher fares
covers the costs

All the demand is trans-
ported using 1 aircraft of
type 2

Yes

7.2

There is a demand of 60
economy and 60 business
passengers between 1 and
2, and there are flights to
hub 0 with available space
for 60 passengers

A passenger class does
not split itself on multiple
routes, but the 120 pas-
sengers do not fit on one
aircraft.

Only 40 economy and all
60 business passengers are
transported between air-
port 1 and 2 using an air-
craft of type 1, as an of
aircraft type 2 would cost
more money

Yes

7.3

There is a demand of 30
economy and 90 business
passengers between 1 and
2, and there are flights to
hub 0 with available space
for 60 passengers

There is not enough space
for all 120 passengers on
one aircraft. The 30 econ-
omy passengers can either
be routed with a connec-
tion, or only 10 tickets are
offered

The 30 economy passen-
gers are routed with a con-
nection and the 90 busi-
ness passengers fly direct
between airports 1 and 2

Yes

B.2. Validation
The validation step of the model entails determining if the results of the model are able to represent the phys-
ical problem. The validation step of the model is more difficult to perform. The aim of the model is to identify
the effects of policy changes in a world-wide airport network. Validation with historic data would be impos-
sible, as there would be too many variables to consider to link historic policy changes to the perceived effects.
Similarly, validating if the fare inputs are realistic, would require knowing the composition of passengers on
all operated flights. Instead, more focus is given towards validating the costs of the model. The operational
costs are not directly obtained from data, but are determined from several models. Two different methods are
used: one for the fuel calculation and one for the direct operational costs. The following sections will show
the validation of these methods.

B.2.1. Fuel Calculation
The fuel calculation of these aircraft is performed using the Piano-X analysis tool. The tool takes into account
the performance of the aircraft type to calculate the required fuel for a given scenario, with variables such as
the block range and the payload weight. Quadratic functions are created with the program for the five differ-
ent aircraft types, which are implemented in the AND model in order to determine the fuel burn for a given
flight. The results of these functions will be compared with published data on the fuel burn of these aircraft.

The data that will be used is published in the Airfinance Journal [1], which shows estimates of the fuel burn
for different block ranges for a large set of commercial aircraft. The set did not cover the Airbus A321neoLR,
which is used in the AND model. Therefore, the data of the Airbus A321neo will be used to compare the cal-
culations.

The published fuel data and the calculated fuel burn for the various block ranges are shown in Table B.1 -
B.5. When comparing the calculations and the fuel data, it can be seen that the fuel burns are quite similar.
The differences are around 10% or less. The biggest difference is seen in the Airbus A321neoLR. The large
difference could be explained by the use of data of a slightly different aircraft, the Airbus A321neo. The results
also show that the for most aircraft the difference is greatest at the lower block ranges. This difference could
be explained by the use of a standard range for the reserve fuel in all flights. For shorter flights, this could be
overestimated slightly.
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All the results do show a slight underestimation of the fuel burn. However, the ratios between the fuel burns
of the aircraft are similar to that of the data. The impact on the tactical decision making regarding the type of
aircraft should therefore not be affected. This method of fuel calculation will therefore be maintained.

Table B.1: Fuel burn data for different block ranges compared to calculated fuel burn for the Boeing 777-300ER.

Boeing 777-300ER

Block Range [nmi] Fuel Data [kg] Fuel Calculated [kg] Difference
1000 15,610 15,186 -3%
2000 29,840 28,589 -4%
4000 60,900 58,395 -4%

Table B.2: Fuel burn data for different block ranges compared to calculated fuel burn for the Airbus A350-900.

Airbus A350-900

Block Range [nmi] Fuel Data [kg] Fuel Calculated [kg] Difference
1000 11,810 10,536 -12%
2000 22,010 19,842 -11%
4000 42,410 40,256 -5%

Table B.3: Fuel burn data for different block ranges compared to calculated fuel burn for the Airbus A321neoLR.

Airbus A321neoLR

Block Range [nmi] Fuel Data [kg] Fuel Calculated [kg] Difference
200 1,960 1,634 -20%
500 3,600 3,181 -13%

1000 6,450 5,838 -10%

Table B.4: Fuel burn data for different block ranges compared to calculated fuel burn for the Airbus A320neo.

Airbus A320neo

Block Range [nmi] Fuel Data [kg] Fuel Calculated [kg] Difference
200 1,570 1,419 -11%
500 2,880 2,710 -6%

1000 5,170 4,942 -5%

Table B.5: Fuel burn data for different block ranges compared to calculated fuel burn for the Embraer E195-E2.

Embraer E195-E2

Block Range [nmi] Fuel Data [kg] Fuel Calculated [kg] Difference
200 1,260 1,445 13%
500 2,440 2,647 8%
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B.2.2. Direct Operational Costs
The direct operating costs in the model are calculated using the Direct Operational Cost (DOC) method of
the TU Berlin. This method calculates the operational costs of a certain aircraft type using empirical formu-
las based on certain characteristics of the aircraft and the block distance. The calculated costs of the DOC
method will be compared with standard economic data published by Eurocontrol, which states estimates of
operational costs per flight hour [5].

The data set contains a small set of aircraft families. Three of the five aircraft of the AND model are present in
the data: the Boeing 777, the Airbus A320, and the Embraer 190. For these aircraft, an average flight time per
cycle is given. These are 6, 2, and 1.5 hours for the given aircraft types. The operational costs is the model are
calculated based on a distance. Therefore, to obtain the operational costs, the average cruise speed of each
aircraft type is multiplied by the average flight time of Eurocontrol. In addition, the AND model adds a block
time of 1.83 to flight cycle, which accounts for the fixed costs of the aircraft, such as crew costs.

The data of the hourly flight costs and the calculated hourly costs are presented in Table B.6 - B.8. The table
shows the different components of the DOC method that result in the total calculated cost. The results show
that the costs of the Boeing 777 is similar, whereas the costs of the short-range aircraft is underestimated
in the calculations. A possible explanation could be the implementation of the block time per aircraft. All
aircraft are assumed to have the same block time, however, it could be expected that the short-range aircraft
have a shorter block time. If the block time for the short-range aircraft is assumed to be only 1 hour, the hourly
costs are changed to around e4500 and e4000 for the Airbus A320 and the Embraer E195. This corresponds
better with the data. This difference should not have an influence in the model, as the total flight cycle cost
would still result in the same cost per flight cycle.

Table B.6: Operational cost per hour from
data compared to the calculated costs for

the Boeing 777-300ER.

Boeing 777-300ER

Data e9,507

Calculated e10,150

- Fuel e2,719

- Maintenance e706

- ATC e932

- Fixed e5,792
– Depreciation e4,969
– Crew e824

Table B.7: Operational cost per hour from
data compared to the calculated costs for

the Airbus A320neo.

Airbus A320neo

Data e4,829

Calculated e3,478

- Fuel e611

- Maintenance e341

- ATC e284

- Fixed e2,242
– Depreciation e1,625
– Crew e617

Table B.8: Operational cost per hour from
data compared to the calculated costs for

the Embraer E195-E2.

Embraer E195-E2

Data e4,097

Calculated e2,967

- Fuel e501

- Maintenance e270

- ATC e180

- Fixed e2,015
– Depreciation e1,295
– Crew e720



C
Sensitivity Analysis

This appendix will show the sensitivity analysis that has been performed on the Airline Network Design (AND)
model. The purpose of the sensitivity analysis is to gain insight into the effects that the assumptions on the
inputs may have on the results of the model. The assumptions of the model mostly regard the set-up of
the demand and fares in the network: the implementation of the Value of Time (VOT), the ratio between the
fares, the level of ticket tax, and the ratio of demand between the passenger classes. In the sensitivity analysis,
multiple scenarios with varying inputs will be simulated, after which an analysis of the results is given. The
results of the scenarios will be presented in a table of the key traffic figures of Amsterdam Airport Schiphol
(AAS), in addition to the results of the baseline scenario.

C.1. Value of Time
The Value of Time (VOT) represents the perceived value lost by the passenger by flying a non-direct route,
instead of a direct route. The VOT is added into the cost model in order to take into account the effect of
time sensitivity of the multiple types of passengers in the model. The current method assumes that budget,
economy and business class passengers perceive a value of 20, 40 and 80 per hour in the air respectively. Only
half of the value is perceived during a lay-over.

Three scenarios are tested in the sensitivity analysis. The first scenario (A) assumes no VOT at all for all
passengers. This would mean that a transfer flight and a direct flight would be equal in cost for a passenger.
The next two scenarios will assume a low and a high VOT: scenario (B) assumes a very low VOT. Budget,
economy and business class would perceive a value of 1, 2 and 4 per hour in the air respectively. Scenario
(C) assumes double the VOT than the base values. The last scenario will look at the influence of halving the
perceived value during lay-overs. Scenario (D) will not include the halved perceived values during a lay-over.
An overview of the scenarios is shown in Table C.1

Table C.1: Changed Value of Time values in the air and during a lay-over
in the sensitivity scenarios compared to the baseline inputs.

Value of Time

Budget Economy Business

Baseline e20 /e10 e40 /e20 e80 /e0
A e0 /e0 e0 /e0 e0 /e0
B e1 /e0.5 e2 /e1 e4 /e2
C e40 /e20 e80 /e40 e160 /e80
D e20 /e20 e40 /e40 e80 /e80

The results of the simulations are shown in Table C.2. The optimality gaps of the simulations are given as well,
as there was no optimal solution reached within the simulation limit of one hour. There are a few observations
that can be made: the first thing that can be noticed, is that there is not much fluctuation between the differ-
ent scenarios. The total number of local and transfer passengers during the simulated day deviate by less than
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a thousand passengers. The number of destinations also only vary by a few. This shows that the monetary
value in each scenario does not greatly affect the simulation outcome However, one trend is still visible in the
data: the number of transfer passengers decreases when the VOT is increased. This was expected, as a higher
VOT, would discourage transfers. In addition, it can be seen that not halving the VOT during lay-overs results
in comparable figures as in scenario C. This may indicate that most transfer itineraries are mostly influenced
by the transfer time, rather than the additional flight time of a non-direct itinerary. It should be noted that
the slight differences between the scenarios could be attributed to not having reached the optimal solution
during the simulation.

Table C.2: Key figures of the sensitivity analysis on the Value of Time.

Base A B C D

Optimality Gap 6.56 % 3.56 % 4.72 % 3.94 % 3.97 %
Europe destinations 103 106 105 108 107
Intercontinental Destinations 65 65 63 67 69
# Aircraft 732 756 734 758 756
# Local Passengers 57746 58944 57174 59108 59070
- Class 0 6340 6826 6295 6938 6914
- Class 1 40280 40737 39780 40964 40882
- Class 2 11126 11381 11099 11206 11274
# Transfer Passengers 10404 11614 11410 11165 10976
- Class 0 1598 1564 2030 1805 1911
- Class 1 7188 7830 7392 7596 7423
- Class 2 1618 2220 1988 1764 1642

C.2. Fare Ratio
The demand model assumes that there are three passenger classes in the network: budget, economy and
business. Each of these classes has its own fare. The fares are determined using the AirportIS dataset from
International Air Transportation Organisation (IATA), where average fares are presented for a given city-pair
market. From this average fare, a base fare is determined for the economy class. The base model assumes
that business class passengers pay 200 % of the base fare, and budget passengers pay 80% of the base fare.
This gives a ratio of 0.8 : 1 : 2 between the three classes.

Three scenarios are created to get insights into the effect of the share that each fare class pays. The first
scenario (A) assumes that budget class passengers are only able to pay a small amount. The budget fare
is set to 20 % of the base fare. The second scenario (B) assumes that business class passengers are able to
pay a larger share. The business fare is set to 400 % of the base fare. The third scenario (C) combines both
the smaller and larger share that budget and business class passengers are able to pay. An overview of the
scenarios is shown in Table C.3

Table C.3: Changed fare ratio variables in the sensitivity scenarios compared to the baseline inputs.

Fare Ratio

Budget Economy Business

Baseline 0.8 1.0 2.0
A 0.2 1.0 2.0
B 0.8 1.0 4.0
C 0.2 1.0 4.0

The results of the simulates are shown in Table C.4. The first observation of the results is that it can be seen
that the number of business class passengers remains fairly constant or even grows in the simulations. From
the results, it can be concluded that the fares of business class passengers determine the number of lower
classes needed. In the case that it is assumed that the business class has a higher fare, there are less passengers
of the other classes needed to cover the costs of a flight. When the fares of the budget class are reduced, the
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result is that most passengers are dropped, except for some budget class passengers that might cover the
marginal costs of a flight.

Table C.4: Key figures of the sensitivity analysis on the ratio between the fares.

Base A B C

Optimality Gap 6.56 % 4.15 % 4.33 % 4.07 %
Europe destinations 103 107 101 99
Intercontinental Destinations 65 62 60 59
# Aircraft 732 694 562 536
# Local Pax. 57746 51935 43205 40121
- Class 0 6340 505 3615 361
- Class 1 40280 40103 28265 28456
- Class 2 11126 11327 11325 11304
# Transfer Pax. 10404 11862 8350 9431
- Class 0 1598 55 1215 15
- Class 1 7188 9102 5080 6730
- Class 2 1618 2705 2055 2686

C.3. Ticket Tax
The fares are determined using the AirportIS dataset from IATA. This dataset includes average fares on a given
city-pair market, however, these fares do not include the taxes and fees that passengers had to pay for the
tickets. The additional fees can contribute a considerable amount to the final price of a given itinerary. The
baseline model assumes that the budget and economy passengers pay an additional 50% of the average fare
on taxes and fees. For business class passengers, it is assumed that an additional 20% of the fare is added.

For this analysis, three scenarios are created that will vary the additional taxes and fees for the three passenger
classes. The first scenario (A) assumes that there are no additional costs to the determined fare for each
passenger class. The second scenario (B) assumes the same low percentage of 20% for all passenger classes.
The last scenario (C) assumes the same high percentage of 50% for all passenger classes. An overview of the
scenarios is shown in Table C.5

Table C.5: Changed tax rate variables in the sensitivity scenarios compared to the baseline inputs.

Tax Rate

Budget Economy Business

Baseline 50% 50% 20%
A 0% 0% 0%
B 20% 20% 20%
C 50% 50% 50%

The results of the simulations are shown in Table C.6. The results show that a reduction of the ticket tax to
20% or 0% would reduce the passenger flows of the network. This is to be expected as this additional tax
on top of the fares also includes airline fees that are used to cover the airlines operating costs. By reducing
these fees, the routes become less profitable for the airline. The local traffic flows of the baseline were already
comparable to the actual local traffic flows of the network. Observations regarding business class show that if
there is no tax, the share of business transfers is almost doubled, and if the tax is increased, there is almost no
significant change. This could show that the business class already covers most part of the operational costs
of a flight, and if its share is reduced, more passengers are needed to cover the costs of a flight.
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Table C.6: Key figures of the sensitivity analysis on the ticket tax.

Base A B C

Optimality Gap 6.56 % 3.85 % 4.83 % 6.2 %
Europe destinations 103 92 101 103
Intercontinental Destinations 65 53 60 66
# Aircraft 732 460 598 722
# Local Pax. 57746 34068 47038 57273
- Class 0 6340 2572 4371 6068
- Class 1 40280 20622 31545 40005
- Class 2 11126 10874 11122 11200
# Transfer Pax. 10404 8812 8292 9374
- Class 0 1598 1384 1445 1468
- Class 1 7188 4471 5431 6344
- Class 2 1618 2957 1416 1562

C.4. Passenger Demand Ratio
The demand model assumes a fixed ratio between the three different passenger classes. The demand is de-
termined using the AirportIS dataset from IATA, which includes the number of passengers that were flown
on a given itinerary. The demand model assumes that the flown demand between two cities consists of 80
% economy class passengers and 20 % business class passengers. In addition, there could also be uncap-
tured demand. This assumption is based on the number of seats that are available on typical 2-class aircraft
configurations. The budget passenger class of the demand model is assumed to be an additional 20 % of the
demand shown in the dataset. This results in the class ratio of 2 : 8 : 2 between the budget, economy and
business class respectively.

The sensitivity analysis looks at varying ratios of these three passenger classes. The first scenario (A) assumes
a higher percentage of economy passengers, resulting in 90 % and 10 % economy and business class passen-
gers. The second scenario (B) assumes that there is more uncaptured demand than in the baseline. A share
of 40 % is assumed for the budget class passengers. The third scenario (C) combines both of these cases. An
overview of the scenarios is shown in Table C.7

Table C.7: Changed demand ratio variables in the sensitivity scenarios compared to the baseline inputs.

Demand Ratio

Budget Economy Business

Baseline 20% 80% 20%
A 20% 90% 10%
B 40% 80% 20%
C 40% 90% 10%

The results of the simulations are shown in Table C.8. It can be seen that varying the ratios between the pas-
senger demand classes has an immediate effect on the ratios between the flown passengers. A doubling of the
budget demand results in a around a doubling of the local and transfer budget passenger flows and a halving
of the business class demand results in around a halving of the local and transfer business passenger flows.
The results also show that less business class demand results in more total passengers. More passengers are
needed to cover the operational costs. In addition, as there are more passengers, there are also more aircraft
and slightly more destinations with less business class demand. This could indicate that the number of busi-
ness class seats in the baseline scenario could be reduced as the same routes are still operable without such
a large business class demand.
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Table C.8: Key figures of the sensitivity analysis on the ratio between the demand classes.

Base A B C

Optimality Gap 6.56 % 6.09 % 5.77 % 5.55 %
Europe destinations 103 110 107 109
Intercontinental Destinations 65 66 68 70
# Aircraft 732 790 818 874
# Local Pax. 57746 62008 66249 70950
- Class 0 6340 7947 14535 17161
- Class 1 40280 48477 40515 48274
- Class 2 11126 5584 11199 5515
# Transfer Pax. 10404 11018 9742 10083
- Class 0 1598 1928 2767 2655
- Class 1 7188 8487 5583 6814
- Class 2 1618 603 1392 614
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D
Airport List

This appendix presents the airports that have been included in the Airline Network Design (AND) model. The
tables show the IATA airport code and its latitude and longitude. Table D.1 presents the 20 hub airports. These
hubs have been selected as they cover the current busiest hubs in Europe, in addition to smaller hubs in and
around the continent. Table D.2 presents the 200 non-hub airports of the model. This selection of airports is
determined by ranking the destinations by the number of connecting passengers for the selected hubs.

Table D.1: Selection of 20 hub airports indicated by IATA code and latitude and longitude.

Airport Latitude Longitude Airport Latitude Longitude

AMS 52.3086 4.7639 VIE 48.1103 16.5697
IST 41.2613 28.7420 DUB 53.4287 -6.2621

LHR 51.4706 -0.4619 ZRH 47.4581 8.5481
FRA 50.0365 8.5613 CPH 55.6179 12.6560
CDG 49.0128 2.5500 LIS 38.7813 -9.1359
MAD 40.4719 -3.5626 OSL 60.1939 11.1004
BCN 41.2971 2.0785 KEF 63.9850 -22.6056
MUC 48.3538 11.7861 HEL 60.3172 24.9633
FCO 41.8045 12.2520 BRU 50.9014 4.4844
ATH 37.9364 23.9445 DXB 25.2528 55.3644

Table D.2: Selection of 200 non-hub airports indicated by IATA code and latitude and longitude.

Airport Latitude Longitude Airport Latitude Longitude

PDL 37.7412 -25.6979 NCE 43.6584 7.2159
KIV 46.9277 28.9310 VCE 45.5053 12.3519
STN 51.8850 0.2350 DUS 51.2895 6.7668
GRZ 46.9911 15.4396 MAN 53.3494 -2.2795
AES 62.5625 6.1197 MXP 45.6306 8.7281
TZX 40.9951 39.7897 GVA 46.2381 6.1090
OLB 40.8987 9.5176 ARN 59.6519 17.9186
VGO 42.2318 -8.6268 HAM 53.6304 9.9882
KRS 58.2042 8.0854 BER 52.3622 13.5007
LED 59.8003 30.2625 ALA 43.3543 77.0428
EVE 68.4913 16.6781 CAN 23.3924 113.2990
LCG 43.3021 -8.3773 MCT 23.5933 58.2844
DLM 36.7131 28.7925 TAS 41.2579 69.2812
LEJ 51.4239 12.2364 EBL 36.2376 43.9632
DRS 51.1341 13.7678 FRU 43.0613 74.4776
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Table D.2: Selection of 200 non-hub airports indicated by IATA code and latitude and longitude.

Airport Latitude Longitude Airport Latitude Longitude

RHO 36.4054 28.0862 LAS 36.0834 -115.1518
CAG 39.2515 9.0543 ADD 8.9779 38.7993
MPL 43.5762 3.9630 LHE 31.5216 74.4036
MAH 39.8626 4.2187 KIX 34.4273 135.2440
TFN 28.4827 -16.3415 HAV 22.9892 -82.4091
AAL 57.0928 9.8492 SGN 10.8188 106.6520

DME 55.4088 37.9063 BAH 26.2673 50.6376
CHQ 35.5317 24.1497 DMM 26.4712 49.7979
CGN 50.8659 7.1427 CLT 35.2140 -80.9431
SKP 41.9616 21.6214 KHI 24.9065 67.1608
BOO 67.2692 14.3653 KWI 29.2266 47.9689
GDN 54.3776 18.4662 CUN 21.0394 -86.8743
TOS 69.6833 18.9189 PHL 39.8719 -75.2411
LJU 46.2237 14.4576 TPE 25.0777 121.2330
ABZ 57.2019 -2.1978 RAK 31.6069 -8.0363
FNC 32.6979 -16.7745 SCL -33.3930 -70.7858
VNO 54.6341 25.2858 AUH 24.4438 54.6517

SJJ 43.8246 18.3315 HAN 21.2212 105.8070
TRN 45.2008 7.6496 BNE -27.3842 153.1170
BJV 37.2506 27.6643 DOH 25.2731 51.6081
EVN 40.1473 44.3959 YYC 51.1139 -114.0200
FAO 37.0144 -7.9659 MAA 12.9900 80.1693
RIX 56.9236 23.9711 ISB 33.5490 72.8257
LPA 27.9319 -15.3866 JED 21.6796 39.1565
BRI 41.1389 16.7606 DAC 23.8433 90.3978
JMK 37.4351 25.3481 ACC 5.6052 -0.1668
GYD 40.4675 50.0467 CGK -6.1256 106.6560
SVQ 37.4180 -5.8931 MLE 4.1918 73.5291
BSL 47.5900 7.5292 NRT 35.7647 140.3860
JTR 36.3992 25.4793 GIG -22.8100 -43.2506

NUE 49.4987 11.0781 CMN 33.3675 -7.5900
BRE 53.0475 8.7867 MRU -20.4302 57.6836
DBV 42.5614 18.2682 CPT -33.9648 18.6017
TLL 59.4133 24.8328 DSS 14.6700 -17.0733
HER 35.3397 25.1803 PTY 9.0714 -79.3835
MLA 35.8575 14.4775 LOS 6.5774 3.3212
NCL 55.0375 -1.6917 BLR 13.1979 77.7063
TBS 41.6692 44.9547 CMB 7.1808 79.8841
ESB 40.1281 32.9951 MEL -37.6733 144.8430
TRD 63.4578 10.9240 MNL 14.5086 121.0200
NTE 47.1532 -1.6107 DPS -8.7482 115.1670
LUX 49.6233 6.2044 RUH 24.9576 46.6988
ALC 38.2822 -0.5582 LIM -12.0219 -77.1143
PMO 38.1760 13.0910 MSP 44.8820 -93.2218
ADB 38.2924 27.1570 SYD -33.9461 151.1770
BLL 55.7403 9.1518 KUL 2.7456 101.7100
SPU 43.5389 16.2980 TUN 36.8510 10.2272
SOF 42.6967 23.4114 DEN 39.8617 -104.6730
ZAG 45.7429 16.0688 DTW 42.2124 -83.3534
CTA 37.4668 15.0664 ALG 36.6939 3.2145
SKG 40.5197 22.9709 BOG 4.7016 -74.1469
AYT 36.8987 30.8005 AMM 31.7226 35.9932
BOD 44.8283 -0.7156 EZE -34.8222 -58.5358



39

Table D.2: Selection of 200 non-hub airports indicated by IATA code and latitude and longitude.

Airport Latitude Longitude Airport Latitude Longitude

IBZ 38.8729 1.3731 IKA 35.4161 51.1522
SVG 58.8767 5.6378 NBO -1.3192 36.9278
TIA 41.4147 19.7206 PEK 40.0801 116.5850
VLC 39.4893 -0.4816 YVR 49.1939 -123.1840
LCA 34.8751 33.6249 IAH 29.9844 -95.3414
BEG 44.8184 20.3091 HKG 22.3089 113.9150
VKO 55.5915 37.2615 DFW 32.8968 -97.0380
KRK 50.0777 19.7848 SEA 47.4492 -122.3111
ORY 48.7233 2.3794 MEX 19.4354 -99.0824
BIO 43.3011 -2.9106 JNB -26.1392 28.2460
STR 48.6899 9.2220 PVG 31.1434 121.8050
GLA 55.8719 -4.4331 ICN 37.4691 126.4510
BGO 60.2934 5.2181 HND 35.5523 139.7800
HAJ 52.4611 9.6851 ATL 33.6367 -84.4281
LIN 45.4451 9.2767 BEY 33.8209 35.4884
BHX 52.4539 -1.7480 CAI 30.1115 31.3967
PMI 39.5517 2.7388 MIA 25.7932 -80.2906
TLS 43.6291 1.3638 BOM 19.0887 72.8679
FLR 43.8100 11.2051 EWR 40.6925 -74.1687
BLQ 44.5354 11.2887 YUL 45.4706 -73.7408
MRS 43.4393 5.2214 BKK 13.6811 100.7470
NAP 40.8860 14.2908 SIN 1.3502 103.9940
GOT 57.6628 12.2798 DEL 28.5556 77.0952
EDI 55.9501 -3.3723 GRU -23.4319 -46.4678
OTP 44.5711 26.0850 SFO 37.6190 -122.3750
AGP 36.6749 -4.4991 BOS 42.3643 -71.0052
OPO 41.2481 -8.6814 YYZ 43.6772 -79.6306
LGW 51.1481 -0.1903 TLV 32.0114 34.8867
WAW 52.1657 20.9671 IAD 38.9445 -77.4558
LYS 45.7256 5.0811 LAX 33.9425 -118.4080

BUD 47.4298 19.2611 ORD 41.9786 -87.9048
PRG 50.1008 14.2600 JFK 40.6394 -73.7793
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Executive Summary

Schiphol Airport characterises itself as a large hub airport in the European market. The Dutch catchment
area is however not able to support the whole route network of the airport. Instead, the airport fulfills a
gateway function: in 2022 transfer passengers occupy 37 % of the total 52.5 millions passengers at Schiphol
Airport1. This dependency creates a vulnerability to changes in the aviation market, affecting the cost of
transferring at Schiphol Airport. Such what-if scenarios are currently analysed using a network model of 60
airports. The aim of this research is to improve this model by increasing the handling capabilities of larger
networks and increasing the realism. The research question of the problem is formulates as follows:

How can a large scale world-wide airport network be modelled in order to analyse the traffic flows and
emergence of hubs due to changes in cost?

The literature review approaches this question from four angles: the formulation of the model, the method
of optimising the problem, the airport and aircraft characteristic, and the dynamics of cost and demand in
the network. Four sub-questions were formulates and are discussed next.

The first question regards the formulation of the model: how can an airport network with hubs be modelled
to show the effects of cost? Several types of models are presented, where the differences were mainly based
on the structure of the network. In this case, there are models that inherently assume a hub-and-spoke
network or models that show the emergence of hubs based on cost benefits on the consolidation of flows.
Different formulations were presented that can improve the computational efficiency. For example, path-
based and flow-based formulations were reviewed, where the latter is capable of reducing the size of the
problem, but also introduces weaker LP bounds to the problem.

The second question entails the optimisation process: what are possible optimisation methods which al-
low for solving large scale problems? Exact and heuristic procedures are reviewed. Meta-heuristic methods
display their ability to solve large-scale problems. Specialised exact methods are however also able to solve
large-scale problems, given that several optimisation techniques are combined. Some of the largest net-
works of hub location problems that have been reviewed vary between 100 and 500 nodes.

The third question regards the incorporation of airport and aircraft characteristics: what methods are avail-
able to model the airport and aircraft characteristics in the model? The desired characteristics are the ca-
pacities, range and fuel burn. The review presents methods of incorporating these in the model, however,
these increase the complexity of the model.

The last question considers the cost and demand dynamics: how can the dynamics of cost and demand be
incorporated into the model? The focus is on implementing the effects of flow consolidation, also known
as economies of scale, and the effects of price sensitivity into the model. In addition, estimating demand
remains a complex task due to the many influences, such as price, level of service, and network design. Fur-
ther research should be performed in order to better understand implementations of real-life data into such
models.

This literature review presents a good basis for the next phases of the research. Some decisions will need to
be made based on the desired level of detail of the model. If more complex methods are desired, such as
a better implementation of aircraft characteristics, it is important to analyse the effects it may have on the
computational efficiency of the model.

1Retrieved on 11-04-2023: https://nieuws.schiphol.nl/verdubbeling-aantal-reizigers-schiphol-in-2022/?
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1
Introduction

Schiphol Airport characterises itself as a large hub airport in the European market. The dutch catchment
area however is not able to solely support the route network present at Schiphol [21]. Transfer passengers
are the key in enabling this network. This dependency on transfers originated from the increased compe-
tition in the aviation market due to deregulations. In order to gain a prominent place in the market, the
concept of mainport was introduced [21]. The aim of this concept is to fulfill a gateway function by ex-
panding intercontinentally to primary and secondary destinations [21]. This focus on transfer passengers is
still visible today: in 2022 transfer passengers occupy 37 % of the total 52.5 millions passengers at Schiphol
Airport1.

This dependency on transfer passengers could be a vulnerability of the airport, in case of changes in the avi-
ation market, such as an introduction of penalties on emission in the Dutch airspace. In order to be better
prepared for uncontrollable changes in the future, it is important to consider various what-if scenarios that
can occur in the aviation market. In order to predict the outcome of the various scenarios, Schiphol uses a
network model to analyse the changes in the traffic flows due to changes in cost or policies. However, this
model can only handle up to 60 airports, 3 different types of aircraft, and lacks realism in the modeling of
costs.

The aim of the research is to formulate a new model that is able to predict the changes in traffic flows in the
global aviation market and the effect on the market position of Schiphol as a hub for various scenarios. Such
scenarios could include changes in fuel prices (taking into account either global or local effects), emission
penalties, port charges, or changes in policies, such as utilising at least a certain percentage of sustainable
fuels when departing from a certain airport. These effects can be expressed in costs, enabling them to be
incorporated in a cost-based traffic flow model. This research aim results in the following research objective:

To formulate a cost-based model that is able to locate hubs in a world-wide airport network
by minimising the cost of the global airport network.

The literature review is the first phase of the research project, which aims at reviewing the state-of-the-art
of the subject and finding the information necessary in order to achieve this objective. The main research
questions defines the main issue of this problem and can be formulated as follows:

How can a large scale world-wide airport network be modelled in order to analyse the traffic flows and
emergence of hubs due to changes in cost?

This research question will be split up into four sub-questions in this literature review. These questions
regard the formulation of the model, the method of optimising the problem, the airport and aircraft char-
acteristic, and the dynamics of cost and demand in the network. These four sub-questions are formulated
as follows:

1Retrieved on 11-04-2023: https://nieuws.schiphol.nl/verdubbeling-aantal-reizigers-schiphol-in-2022/?
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• How can an airport network with hubs be modelled to show the effects of cost?: A formulation of the
problem needs to be found. The literature review aims at presenting various methods that are capable
of modelling the world-wide airport network in order to capture the effects on the traffic flows based
on the costs in the network.

• What are possible optimisation methods which allow for solving large scale problems?: It is desired
to be able to solve large-scale world-wide networks with a model. Different optimisation methods ex-
ist that need to be applied to the problem. The literature review aims at presenting different methods
that are available, in addition to their ability to solve large-scale problems.

• What methods are available to model the airport and aircraft characteristics in the model?: The
model needs to be adapted to the characteristics of the nodes and vehicles in the world-wide airport
network. In this case, these are airports and aircraft. Both of these have characteristics, such as ca-
pacity restrictions, that need to be taken into account in the model. The review aims at presenting the
different methods of determining the characteristics and the implementation of them in the model.

• How can the dynamics of cost and demand be incorporated into the model?: In order to imple-
ment the effects of cost into the model, it is needed to understand the dynamics between cost and
demand in an airport network. The literature review aims at presenting the implementation of cost
and demand into the model, and the effects of cost on demand.

The literature review is divided into these four sub-questions. First, in chapter 2, the approaches to mod-
elling the airport network are reviewed. Next, in chapter 3, the possible optimisation methods for the prob-
lem are reviewed. In chapter 4, a review of the determination and implementation of the airport and aircraft
characteristics is given. In chapter 5, the dynamics of cost and demand in airport networks are reviewed. At
last, in chapter 6, a conclusion of the literature research is given.



2
Review of Airport Network Model Approaches

This chapter gives a review on approaches to modelling airport networks with hubs. The aim is to give an
answer to the sub-question: How can an airport network with hubs be modelled to show the effects of
cost? This chapter will review mathematical models that are able to show the traffic flows in an airport
network including hubs based on cost factors. To model a network with hubs, it is useful to consider the
Hub Location Problem (HLP), as they inherently assume a HS network based on the cost benefits. There
also exists other models that do not assume such a network, but determine the hubs in a network based
on the characteristics of the traffic flows through the network. This chapter starts with an overview of the
hub location models, in section 2.1. Next, in section 2.2 - 2.6, the different models are reviewed. At last, in
section 2.7, a discussion on the review is given.

2.1. Overview of Hub Location Models
One of the approaches of modelling an airport network is to make use of Hub Location Problem (HLP).
Early research into this type of problem is motivated by locating the central facilities in a Hub-and-Spoke
(HS) network as the location and throughput of the facility influence the total transportation cost [56]. The
Hub Location Problem (HLP) has many applications, such as air transportation systems [5], post delivery
services [73] and telecommunication networks [11]. This chapter will elaborate on a few key hub location
model formulations. Before this is done, a some definitions are introduced in order to classify the different
hub location problems. In a review of the state-of-the-art of hub location problems, Farahani et al. (2013)
stated some definitions that can be used to classify hub location problems [26]. Some of the key definitions
are as follows:

• Solution domain: is the available selection of nodes of the model. This can be all the nodes in the
network, a discrete set of nodes, or a continuous domain on a plane

• Objective criterion: Examples are a mini-sum objective that minimised the total transportation cost,
a mini-max objective that minimised the total maximum transportation cost between each two nodes,
and a maximisation of the total profit in the network.

• Source of number of hubs: The determination of the number of hubs is exogenous if it is a required
input, otherwise, if it is an output of the model, it is endogenous.

• Allocation Type: a model has single-allocation if a spoke is connected to one hub, otherwise, multiple-
allocation for more connections.

• Hub capacity: the hubs in the network are either capacitated or uncapacitated.

These definitions are used to classify the varieties of the models. The following sections will elaborate on
five categories of hub location problems. The first category is the p-Hub Location Problem (p-HLP), which
solves a network for a exogenously determined number of hubs. On the other hand, the Unconstrained
Hub Location Problem (UHLP) determines the number of hubs endogenously. Both of these models are de-
scribed using a path-based formulation. This implies that the decision variables in the problem indicate the
flow over a given path between an Origin-and-Destination (OD) city pair. Besides the path-based formula-
tions, there are also flow-based formulations of these model types, where the decision variables denote the
flow between individual legs of a complete itinerary. An advantage of these types of models is the reduction
in problem size as not all individual paths needs to be described by a decision variable, however, it does
weakens the bounds of the problem. Next, the Airline Network Design (AND) model is presented that has

3



2.2. p-Hub Location Problems 4

decision variables based on the number of aircraft, instead of working with flows of passengers. This model
does not determine the number of hubs implicitly, but does encourage consolidation of flows. At last, mod-
els with other objectives than minimising the total operational cost are reviewed, such as the p-Hub Center
Problem (p-HCP), where the objective is to minimise the maximum link cost of the network.

2.2. p-Hub Location Problems
One of the earliest hub location models is introduced by O’Kelly (1986); a programming formulation for the
single and two hub location problem [55]. The aim of this research entailed bringing together spatial in-
teraction models, where the focus has been placed on travel behaviour, and location theory, which focuses
on the facility locations. Farahani et al. (2013) presents a compact formulation of the single hub location
problem and it is shown in Equation 2.1 - 2.4 [26]. The model is locates a single hub in the network, such
that the total cost of transporting the passengers through the network is minimised.

In this model, hi j is the amount of flow between OD pair i and j , Ci j is the cost of transporting a passenger
from node i to node j , and Yi j is a binary number, being 1 if node i is connected to node j and 0 otherwise.
Yi i is equal to 1 if i is the hub node and 0 otherwise. Constraint 2.2 assures that there is only one hub and
constraint 2.3 assures that nodes are only connected to the hub.

min
∑

i

∑
j

∑
k

hi k
(
Ci j +C j k

)
Yi j Yk j (2.1)

s.t.∑
j

Y j j = 1 (2.2)

Yi j −Y j j ≤ 0 ∀i , j (2.3)

Yi j ∈ {0,1} ∀i , j (2.4)

Besides a single and two hub location model, it is also possible to model networks with multiple hubs.
O’Kelly (1987) presented the p-Hub Location Problem (p-HLP), which is able to model networks with p
hubs. In this problem the number of hubs is defined exogenously [56]. A compact formulation of the p-HLP
has been presented by Farahani et al. (2013) and is shown in Equation 2.5 - 2.9 [26]. The objective of this
formulation is split into three parts: the cost of transporting passengers on the spoke-hub leg, hub-spoke
leg, and the inter-hub leg.

The variables are similar to the single hub location problem. However, constraint 2.7 is added to ensure that
a node is only connected to one hub, resulting in a single-allocation network. In addition, constraint 2.6
restricts the number of hubs to P , instead of 1.

min
∑

i

∑
k

Ci k Yi k

(∑
j

hi j

)
+∑

k

∑
i

Ck j Yi k

(∑
j

h j i

)
+α∑

i

∑
j

∑
k

∑
m

hi j CkmYi k Y j m (2.5)

s.t.∑
j

Y j j = P (2.6)∑
j

Yi j = 1 ∀i (2.7)

Yi j −Y j j ≤ 0 ∀i , j (2.8)

yi j ∈ {0,1} ∀i , j (2.9)
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A downside of both of these formulations is that the objective is quadratic. Quadratic models require other
methods to be solved exactly than linear problems. However, linearising a model increases the number of
variables in the problem, but the computation time can be reduced by using heuristic solving methods [10].

A linear model of the p-HLP has been presented by Campbell (1994) [10]. The approach taken is to combine
the quadratic term Yi k Y j m into a single term Xi j km to indicate the flow of passengers between OD pair i
and j using hubs k and m. The formulation of the model is shown in Equation 2.10 - 2.16. This problem is
similar to the p-median problem, where each node must be allocated to a hub. In this linear formulation of
the p-Hub Location Problem (p-HLP), each OD city pair must be allocated to a hub pair. This type of model
is also known as the p-Hub Median Problem (p-HMP).

besides Xi j km , the other variables of this model are: the cost to transport a passenger between city pair i
and j using hubs k and m, Ci j km , the amount of flow between OD city pair i and j is Wi j , and Yk , which is 1
if city k is a hub and 0 otherwise. Constraint 2.11 is similar to the previous models, as it limits the number of
hubs to P . Constraints 2.12 - 2.15 ensure a valid connection between the replacement of Yi k Y j m with Xi j km .
There are also other sets of constraint that try to ensure this connection. For example, Skorin-Kapov et al.
(1996) introduced another set of constraints that creates a tighter model [66]. This is useful when solving the
model; when solving the model with relaxation on the integrality of the Yk variable, the model still mostly
produced integral solutions. This new set of constraints replace constraints 2.13 and 2.14 with constraints
2.17 and 2.18. Next to the tighter model, the number of constraints is reduced by 2n3(n −1) constraints.

min
∑

i

∑
j

∑
k

∑
m

Wi j Xi j kmCi j km (2.10)

s.t.∑
k

Yk = P (2.11)∑
k

∑
m

Xi j km = 1 ∀i , j (2.12)

Xi j km ≤ Ym ∀i , j ,k,m (2.13)

Xi j km ≤ Yk ∀i , j ,k,m (2.14)

Xi j km ≥ 0 ∀i , j ,k,m (2.15)

Yk ∈ {0,1} ∀k (2.16)

−−−−−−−−−−−−−−−−−−−−−−−−−−−∑
m

Xi j km ≤ Yk ∀i , j ,k (2.17)∑
k

Xi j km ≤ Ym ∀i , j ,m (2.18)

The p-HMP models are present in various studies. For example, García et al. (2012) applies a p-HMP to the
Australian Post dataset, a common dataset used to evaluate hub location models [27]. García et al (2012)
present a specialised exact algorithm to solve the model and is evaluated on networks up to 200 nodes.
However for large network, the model is only able to give an optimal solution within a 10 hour limit when a
large number of hubs is chosen. For example, 180 hubs for 200 airports. Another study, presented by Ishfaq
and Sox (2011), evaluates the effectiveness of the tabu-search metaheuristic on the p-HMP [36]. This study
evaluates networks up to 100 nodes. Networks with 100 nodes and 6 hubs are solved within 3 seconds, com-
pared to 83 seconds solved using CPLEX, a commercial solver. The metaheuristic is much faster, however,
the solution gap with the exact solution increases with network size. For the networks with 100 nodes, the
average solution gap was 8.3 %. [36]



2.3. Uncapacitated Hub Location Problem 6

2.3. Uncapacitated Hub Location Problem
The Unconstrained Hub Location Problem (UHLP) is another variation on hub location problems. Com-
pared to p-hub location problems, the number of hubs are decided endogenously, instead of exogenously.
To prevent all the nodes from becoming hubs, a fixed price will be charged when allocating a node as a
hub in the network. A basic formulation of the problem is presented by Campbell (1994) and is shown in
Equation 2.19 - 2.24 [10]. This formulation is based on the p-HMP shown in Equation 2.10 - 2.16 and also
produces a multi-allocation network.

The objective function 2.19 defines the cost to transfer the passengers and the cost to allocate a node as a
hub. This model again uses the four-indexed variable Xi j km , similar to p-HMPs, to indicate the flow fraction
between OD pair i and j , using hubs k and m, as well as the variables Ci j km , Wi j , and Yk . A new variable,
Fk indicates the cost to locate a hub at node k. The constraints of the UHLP are identical to the p-HMP
formulation, except constraint 2.11, which determines the number of hubs, is no longer needed.

min
∑

i

∑
j

∑
k

∑
m

Wi j Xi j kmCi j km +∑
k

Fk Yk (2.19)

s.t.∑
k

∑
m

Xi j km = 1 ∀i , j (2.20)

Xi j km ≤ Ym ∀i , j ,k,m (2.21)

Xi j km ≤ Yk ∀i , j ,k,m (2.22)

Xi j km ≥ 0 ∀i , j ,k,m (2.23)

Yk ∈ {0,1} ∀k (2.24)

The basic formulation of the UHLP is for multiple-allocation networks, also known as Unconstrained Multiple-
Allocation Hub Location Problem (UMAHLP). The problem can also be rewritten to solve for a single-
allocation network or Unconstrained Single-Allocation Hub Location Problem (USAHLP). This change is
achieved by replacing some constraints of the original problem. The formulation of the USAHLP is shown
in Equation 2.25 - 2.31. [10]

min
∑

i

∑
j

∑
k

∑
m

Wi j Xi j kmCi j km +∑
k

Fk Yk (2.25)

s.t.

Yk ∈ {0,1} ∀k (2.26)

0 ≤ Xi j km ≤ 1 ∀i , j ,k,m (2.27)∑
k

∑
m

Xi j km = 1 ∀i , j (2.28)

Zi k ∈ {0,1} ∀i ,k (2.29)

Zi k ≤ Yk ∀i ,k (2.30)∑
j

∑
m

(
Wi j Xi j km +W j i X j i mk

)=∑
j

(
Wi j +W j i

)
Zi k ∀i ,k (2.31)

However, other formulations exist that make use of the properties of the multiple-allocation network to
pre-process the problem [14]. On of the properties is that the demand between a given OD pair i and j will
always travel in one direction between hubs k and m; the direction with the lowest cost will be chosen [31].
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This cost is represented as the undirected flow cost Ci j e , where e are all the edges (k,m) ∈ E in the network.
The undirected flow cost is then found using: Ci j e = min{Ci j km ,Ci j mk }.

Another reduction in variables can be achieved by defining a restricted set of hub arcs, Ei j , for a given
OD pair [15]. Boland et al. (2004) present properties of UHLP that can be used to restrict the set of hub
arcs. For example, in an uncapacitated problem, no flow will be routes through two hubs if the routing
through one hub is cheaper [8]. Combining these properties will result in the formulation of the UHLP
shown in Equation 2.32 - 2.36 [15]. This formulation is similar to the original UHLP formulation, however
this formulation has less constraints and this formulation gives tighter LP bounds [31].

min
∑

i

∑
j

∑
e

Wi j Xi j eCi j e +
∑
k

Fk Yk (2.32)

s.t.∑
e

Xi j e = 1 ∀i , j (2.33)∑
e∈Ei j :k∈e

Xi j e ≤ Yk ∀i , j ,k (2.34)

Xi j e ≥ 0 ∀i , j ,e ∈ Ei j (2.35)

Yk ∈ {0,1} ∀k (2.36)

This formulation has been used in several studies and is solved using different techniques, such as by Marín
(2005) using a Lagrangian relaxation in combination with a branching method [48], or Cánovas et al. (2007)
using a dual-ascent based heuristic [17]. A comparison between the basic and new formulation of the UHLP
is presented by Mokhtar et al. (2017), where the computational times of the basic UHLP formulation are
compared to the new formulation analysed in Contreras et al. (2011) for the same dataset [50][15]. Both
studies solve the model using Benders decomposition method, an exact algorithm that can be used to solve
large instances of UHLP. However, Mokhtar et al. (2017) uses a modified version of the algorithm, which
improves the computation times. The analysis is performed up to 200 nodes and shows that the basic for-
mulation is faster in computation times in two thirds of the tests. However, the higher efficiency is mostly
noticed in smaller networks, whereas the new formulation performs better in larger networks.[50]

2.4. Flow-Based Variations
The p-HMP and UHLP models are both path-based models, where a single decision variable indicates the
complete path of a passenger. A variation on these types of models can be made by treating the problem as a
multi-commodity flow problem, where the sources and sinks are the hub nodes. Ernst and Krishnamoorthy
(1998) present a formulation for an uncapacitated multi-allocation p-HMP [24]. This section will elaborate
on this flow-based variation.

The motivation of this type of model was to find a new formulation that is able to solve larger problems
compared to what is possible with path-based formulations, such as the formulation of Skorin-Kapov et al.
(1996) [66], shown in section 2.2. To achieve this, the new formulation reduces the number of variables and
constraints by not considering every flow between each OD city pair individually. The formulation of this
model is given in Equation 2.39 - 2.47. For this formulation, the passenger flow Wi j is divided into origin i ,
Oi , and destination i , Di , using Equation 2.37 and 2.38.

Oi =
∑
j∈N

Wi j (2.37)
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Di =
∑
j∈N

W j i (2.38)

In the model, Zi k is the flow from city i to hub k, Xi j k is the flow from OD city pair i and j using hub k, Yi km

is the flow from city i using hubs k and m, Hk is an integer indicating if city k is a hub, di j is the distance to
travel between cities i and j , and χ, α and δ are the collection, transfer and distribution cost respectively.
Again, P indicates the number of hubs in the network.

min
∑

i∈N

[ ∑
k∈N

χdi k Zi k +
∑

k∈N

∑
m∈N

αdkmYi km + ∑
m∈N

∑
j∈N

δd j m Xi j m

]
(2.39)

s.t.∑
k

Hk = P (2.40)∑
k

Zi k =Oi ∀i (2.41)∑
m

Xi j m =Wi j ∀i , j (2.42)∑
m

Yi km +∑
j

Xi j k −
∑
m

Yi mk −Zi k = 0 ∀i , j

(2.43)

Zi k ≤Oi Hk ∀i , j (2.44)

Xi j m ≤Wi j Hm ∀i , j ,m (2.45)

Xi j m ,Yi km , Zi k ≥ 0 ∀i , j ,k,m (2.46)

Hk ∈ {0,1} ∀k (2.47)

This formulation reduces the problem size compared to the path-based p-HMP. However, a disadvantage
of this formulation is that it has weaker bounds [24]. When solving the problem with LP relaxation, the
solution usually is not integral, which does occur for the p-HMP presented in Skorin-Kapov et al. (1996)
[66]. To combat this, constraints are added during the optimisation process to create tighter bounds. For
example if a problem is symmetric, the constraints based on Equation 2.48 are added, which states that
the flow between city pair i and j is symmetric. These cuts are added for all the city pairs that are not
symmetric in the solution. From the computational study presented by Ernst and Krishnamoorthy (1998)
it was concluded that this approach for the flow-based method was more efficient than the path-based
method presented in Skorin-Kapov et al. (1996) [24].

Zi k =∑
j

Xi j k ∀i ,k (2.48)

2.5. Airline Network Design model
A different type of flow-based model is proposed by Jaillet et al. (1996). This model does not assume a priori
a hub-and-spoke structure and is therefore not focused on locating hubs [37]. It is however intended that
cost-efficient cities can cause consolidation of flows, which results in hubs of the network. Another point of
this model is that it is formulated to regard multiple aircraft types, and their corresponding capacities, in the
optimisation. At last, the formulation allows for different route-options to be taken between one origin and
destination pair. This is the result of capacity restrictions on the aircraft and possible cheaper alternatives
for the remaining passengers.
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Three different formulations of the model are given by Jaillet et al. (1996). The differences between them are
the maximum number of stops that are considered in the optimisation: one-stop, two-stop and unlimited
stops for an origin and destination pair. The one-stop and two-stop connection models are useful as they
are the most common type flown by airlines, whereas the unlimited stop connections are more common
for other applications, such as telecommunications and air cargo. The unlimited stop connection models,
however, can serve as a lower bound for the other two models. First, the formulation of the single-stop
model is shown in Equation 2.49 - 2.53. [37]

min
∑
i ̸= j

∑
k∈K

di j ck yk
i j (2.49)

s.t.

fi j
∑

t ̸=i , j

(
fi t Xi j t + ft j xt i j − fi j xi t j

)≤∑
k∈K

bk yk
i j ∀i ̸= j (2.50)∑

t ̸=i , j
xi t j ≤ 1 ∀i ̸= j (2.51)

xi t j ≥ 0 i ̸= t ̸= j (2.52)

yk
i j ≥ 0 and integer ∀i ̸= j ,k ∈ K (2.53)

The objective function of the model is to minimise the total transportation cost. The inputs in the model
are: the distance between node i and node j , di j , the cost per unit distance for aircraft type k, ck , the capac-
ity for aircraft type k, bk , and the flow between node i and node j , fi j . In this model, it is assumed that both
the distances and the flows are symmetric. The decision variables of the model are: the number of aircraft
of type k that fly between node i and node j , yk

i j , and the fraction of the flow of passengers between cities i
and j that is connected through node l , xi l j .

Constraint 2.50 ensures that the flow between cities i and j does not exceed the capacity of the total avail-
able seats between i and j . Constraint 2.51 ensures that the fraction of the connecting flows between i and
j are non-negative. The other constraints ensure that the decision variables are non-negative.

The two stop variation of this model replaces constraint 2.50 with constraint 2.54. This equation again
ensures that the flow between cities i and j does not exceed the total available number of seats. However,
now it needs to take into account more types of combinations, as there are more cities involved in a path. A
new variable is introduced to represent the flow using two hubs: xi l t j is the fraction of the flow of passengers
between cities i and j that is connected through hubs l and t .

fi j +
∑

t ̸=i , j

(
fi t xi j t + ft j xt i j − fi j xi t j

)+ ∑
l ,t ̸=i , j

(
fl j xl t i j + fi t xi j l t + fl t xl i j t − f i j xi l t j

)
(2.54)

A benefit of this model compared to the hub location problems described in section 2.1, is the focus on
available capacity per arc in the network. This method produces the number of aircraft needed for the
network, and is also able to differentiate between different models of aircraft. In addition, multiple paths
between origin-and-destinations are possible to emerge as limited capacity on an arc and opportunities for
consolidation may lead a fraction of the passenger flow on a different route [37].

A possible downside of the approach of the model is that there is no hub-and-spoke structure assumed in
the simulation. Hubs emerge in a simulation using this type of model by consolidating flows through cer-
tain hubs. A possible outcome could be that direct connections between nodes are more economical, which
results in no hubs being present in the network.
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2.6. Other Variations
The previously described models try to minimise the total cost of the network, however, there are also other
variations that can be used to locate hubs in a network. One variation on the hub location problem aims to
minimise the maximum distance or cost of each spoke to a hub. This problem is called the p-Hub Center
Problem (p-HCP). Another variation is the Hub Covering Problem (HCV), which locates hubs based on the
ability to cover a certain OD pair. For example, this coverage can be based on a maximum cost that cannot
be exceeded to connect a city to hub. This section will elaborate on these two variations.

2.6.1. P-Hub Center Location Problem
The p-Hub Center Problem (p-HCP) aims at minimising the maximum cost of each link in the network. This
type of model is useful in emergency facility location or for networks with perishables. A formulation of the
model has been presented by Farahani et al. (2013) and is shown in Equation 2.55 - 2.61 [26]. The decision
variables in this model are as follows: Xi j km is the flow of passengers between OD pair i and j using hubs k
and m, and Yk is an integer indicating if city k is a hub. The other variables are: Ci j km , the cost to transport
a passenger between OD pair i and j using hubs k and m, and P , the number of hubs in the network.

min max
i , j ,k,m

{
Xi j kmCi j km

}
(2.55)

s.t.∑
k

Yk = P (2.56)∑
k

∑
m

Xi j km = 1 ∀i , j (2.57)

Xi j km ≤ Ym ∀i , j ,k,m (2.58)

Xi j km ≤ Yk ∀i , j ,k,m (2.59)

Xi j km ≥ 0 ∀i , j ,k,m (2.60)

Yk ∈ {0,1} ∀k (2.61)

2.6.2. Hub Covering Location Problem
The Hub Covering Problem (HCV) aims at covering all nodes in the network based on a coverage condition.
For example, the cost to cover a OD pair using hubs k and m must not exceed a specified value γi j . This
condition is shown in Equation 2.62 [10]. This can be extended by specifying a maximum value on each
individual link cost ci j of a path. This condition is shown in Equation 2.63 [10]. Other types of coverage
could also be based on the distance between the nodes [38].

Ci j km ≤ γi j (2.62)

max{ci k ,cm j ,αckm} ≤ γi j (2.63)

A formulation of the HCV is presented by Campbell (1994), which is shown in Equation 2.64 - 2.68. This
formulation aims to minimise the total cost of locating hubs in the network, while covering all the demand
in the network. The decision variables in the model are: Yk , an integer indicating if city k is a hub, and
Xi j km , the flow of passengers between OD pair i and j using hubs k and m. Other variables are: Fk , the cost
of locating a hub at node k, and Vi j km , an integer indicating if OD pair i and j is able to be covered by hub
pair k and m. [10].
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min
∑
k

Fk Yk (2.64)

s.t.∑
k

∑
m

Vi j km Xi j km ≥ 1 ∀i , j (2.65)

Xi j km ≤ Ym ∀i , j ,k,m (2.66)

Xi j km ≤ Yk ∀i , j ,k,m (2.67)

Yk ∈ {0,1} ∀k (2.68)

2.7. Discussion
This chapter presented a review of models that could be capable of modelling airport networks, in order to
show the effects of cost on the placement of hubs. Each of the models has its own advantages and disad-
vantages. This section will briefly compare the different distinctions between the models.

The first distinction between the models is the method of defining the number of hubs in a network. The
p-HMP models define the number of hubs exogenously and therefore a decision needs to be made before
the simulation is started. This method would require performing an initial analysis on the network to de-
termine the desired number of hubs in the network. On the other hand, UHLP models define the hubs
endogenously. This method requires an additional variable in the model: the fixed cost of setting up a hub.
This would require determining the fixed cost of setting up a hub for each airport separately or assuming
the same cost for all airports.

The second distinction between the models is the use of path-based or flow-based decision variables. It
has been shown in section 2.4 that the flow-based counterparts of the path-based models have a smaller
problem size. This is due to the use of three-indexed variables, instead of four-indexed variables, which
describe all the possible paths in the network. However, these models are shown to have weaker LP bounds,
which slow downs the optimisation [24]. The proposed solution involved tightening the problem by adding
cuts during a Branch-and-Bound algorithm. This resulted in a more efficient optimisation compared to the
path-based models for medium sized problem. Other solutions have been proposed for larger networks.
When the flow-based models are chosen, it is necessary to identify the possible solutions to handle the weak
LP bounds. In addition, the compatibility of these solutions with different optimisation methods should be
tested, such as when using metaheuristics instead of the current Branch-and-Bound method.

The third point of consideration is the adaptability of the model to the problem. This could include the
use of capacities of airport facilities and the use of different aircraft types. The incorporation of multiple
aircraft increases the realism of the problem, for example by including the maximum range or capacity on a
given route. The Airline Network Design (AND) model, introduced in section 2.5, already incorporates the
use of different aircraft types for example, whereas the conventional hub location problems assume a single
aircraft type. However, a downside of the AND model is that it does not assume the benefits of a Hub-and-
Spoke network. This becomes apparent from the analysis of the model performed by Jaillet et al. (1996).
From a computational study comparing the results of the p-HMP model of Skorin-Kapov et al. (1996) and
the AND model, it could be concluded that the AND model mostly places the hubs in central locations [37].
This solution does not correspond with the solution of the conventional model, that places hubs at cities
that already have large origin or destination flows to benefit from the consolidation of flows.

A last point of consideration is the presence of variations on the objective function of the model. In sec-
tion 2.6, a few variations have been given on the conventional hub location problems. The conventional hub
location problems emphasised on minimising the cost of the total network. It is also possible to minimise
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the maximum cost of each leg or to change to objective to covering all demand by hubs with a set criteria.
Both of these variations include the effect of cost in the model and could be useful for certain applications.
For example, the method of implementing the coverage limits could be extended to the conventional hub
location problems to implement the same coverage requirements. In addition, coverage penalties could be
introduced to allow for solutions that do not contain all the demand in the network.



3
Review of Problem Optimisation Methods

This chapter will give a review on problem optimisation methods that can be applied to the optimisation
problems discussed in chapter 2. The aim of this chapter is to give an answer to the sub-question: What
are possible optimisation methods, which allow for solving large scale problems? Several optimisation
methods will be reviewed in this chapter. Applications of the various methods to hub location problems
will be given to show the performance of the methods. In order to solve for large scale problems, it is im-
portant to reach an optimal solution within a reasonable amount of time and with a small solution gap. The
computation time however is dependent on the hardware that is used by the optimisation program and the
formulation of the problem. The review will therefore focus on various implementations of the algorithms
and show the performance in these specific cases. The chapter is divided into three parts. First, in sec-
tion 3.1, exact optimisation methods will be reviewed. In section 3.2, meta-heuristic optimisation methods
are discussed. At last, in section 3.3, a discussion of the review is presented.

3.1. Exact Methods
This section will elaborate on exact optimisation methods that can be applied to hub location problems.
The selection of optimisation methods is based on the popularity of the methods in hub location mod-
els, obtained from a comprehensive study on exact optimisation applications presented by Farahani et al.
(2013) [26]. The methods range from a basic enumeration procedure to a specialised exact algorithm for
hub location problems. The algorithms are: Branch-and-Bound (BnB), Branch-and-Cut (BnC), Column
Generation (CG), Branch-and-Price (BnP), and Benders Decomposition (BD).

Before continuing to the solution algorithms, the simplex solution method will explained. For most of the
methods, the simplex method forms a basis of the solution algorithm, by finding optimal solutions to sub-
problems. The simplex method is an algebraic procedure that solves a problem geometrically. The solution
space of a problem can be defined by the constraints in the problem. Intersecting constraints in the solu-
tion space result in corner-points. The corner-points in the feasible region are called Corner-Point Feasible
(CFP) solutions. A property of the CFP solutions is that if no adjacent CFPs provide better solutions, the cur-
rent CFP is the optimal solution [33]. The simplex method chooses new solutions by selecting the CFP that
has the highest rate of increasing the objective function (in a maximisation problem), therefore, not all so-
lutions have to be evaluated. The solution algorithms described increase the efficiency of the optimisation
process by building upon this solution method.

3.1.1. Branch and Bound
The Branch-and-Bound (BnB) method is the first exact method that will be discussed in this section. The
BnB method is an enumeration procedure to solve an integer problem by using a clever structure, which
divides the problem in many sub-problems. The algorithm starts by solving a relaxed version of the prob-
lem using the simplex method. This is the bounding step of the algorithm, where the optimal solution of
the relaxed problem provides the lower bound in a minimisation problem. The problem is then split into
two sub-problems by adding constraints to an individual variable with a non-integer solution. This step
is called branching. The sub-problems of each branch again can be optimised and result in another lower
bound of the main problem. If the solution consists of only integers, it can be considered to be an upper
bound of the main problem. If there is a branch with a lower bound higher than the current upper bound,
it is certain that the branch will not result in a better solution, and can therefore be disregarded. This step is

13
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called fathoming. The algorithm is repeated on the branched with the lowest lower bound, in the case of a
minimisation problem. This will continue until there are no more branches that are not fathomed. [9]

The BnB method can be slow and requires effort that grows exponentially with the size of the problem [9].
However, the BnB method provides the basis of other methods, such as the Branch-and-Cut (BnC) method,
and the method is also used in combination with heuristics. An example is the optimisation algorithm
presented in Stanojević et al. (2015). This solution algorithm uses the Evolutionary Algorithm (EA) heuristic
method to find initial hub locations in a hub location problem, after which the network is further solved
using parallel BnB instances [67]. The BnB method itself is used by the Mixed Integer Linear Programming
(MILP) solver lp_solve [4].

3.1.2. Branch and Cut
The Branch-and-Cut (BnC) algorithm improves on the Branch-and-Bound (BnB) algorithm by implement-
ing a cutting plane algorithm. Cutting planes can be added to further constrain the problem or lifted to
reduce the number of constraints. The addition of a cutting plane algorithm results in a two-phase algo-
rithm. The first phase of the algorithm is concerned with finding the optimal solution of the problem using
the cutting plane algorithm. The problem starts by finding the optimal solution to the relaxed problem us-
ing the simplex method. If the solution is a feasible integer solution, the algorithm stops. However, if there
are non-integer variables, there is at least one inequality in this solution of the relaxed problem compared
to the main problem [3]. The cuts that are violated will be added to further constrain the relaxed problem.
Cuts can be removed if they produce positive slack variables in the solution [24].

If no more cutting planes can be identified, the second phase consisting of the BnB algorithm is started. If
this phase does not result in a feasible solution, the violated cuts during the second phase will be identified
and are added to the constraints of the first phase. The first phase is resumed and the cycle is continued
until a feasible optimal solution is found. [3]

An implementation of the BnC algorithm to solve a p-HMP model is presented by Ernst and Krishnamoor-
thy (1998) [24]. The presented algorithm constructs various types of cuts that can be added to the problem.
For example, if the network is assumed to be symmetric, a cutting plane restricting the flow out of a node to
be equal to the flow into the node can be added. A computational study comparing the efficiency of the BnB
and BnC methods on various network sizes shows that the BnC method is significantly more effective. The
computation time required for a network of 15 nodes averages around 470 seconds for the BnB algorithm
and around 8 seconds for the BnC algorithm.

3.1.3. Column Generation
The Column Generation (CG) algorithm is a method which is typically used for problems with too many
variables to be solved explicitly. In the CG algorithm, it is assumed that not all decision variables of the
original problem are used. Instead, only a subset of the original problem decision variables are taken and
decision variables are added if they are needed. Before starting the algorithm, the original problem is re-
formulated to the Master Problem (MP) and the sub-problems. The initial subset of decision variables that
results in a feasible solution is called the Restricted Master Problem (RMP). An example of a RMP is pre-
sented in Contreras et al. (2011), where the RMP restricts the set of potential hubs for the flows between
each OD city pair [16].

An overview of the CG algorithm is shown in Figure 3.1 [22]. After having defined an initial RMP, the solution
and the dual values of the problem are found using the simplex method. An example of a basic linear
problem is given in Equation 3.1 - 3.3. The primal and dual solution of the problem are denoted by λ and u.
Instead of solving the pricing step for all the decision variables, this step is only performed over the subset
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of columns of the RMP. The aim of the pricing problem is to see if there is a slack in the current decision
variables, indicated by the dual values of the RMP, that can be taken by the non-basic decision variables in
the problem.

z∗ := min
∑
j∈J

c jλ j (3.1)

s.t.∑
j∈J

a jλ j ≥ b ∀ j ∈ J (3.2)

λ j ≥ 0 ∀ j ∈ J (3.3)

Figure 3.1: Visualisation of the procedure of the Column Generation (CG) algorithm [22]

The pricing problem for the example problem is shown in Equation 3.4, where c are the reduced cost coef-
ficients and A is the subset of columns in the RMP [45]. If there is no reduced cost coefficient c j < 0, there is
no additional column that can improve the problem and the optimal solution is found in the current RMP.
Otherwise, the column with a negative reduced price is added to the RMP and the algorithm continues.

c∗ := min{c(a)−uT a|a ∈ A} (3.4)

3.1.4. Branch and Price
The Branch-and-Price (BnP) algorithm is a hybrid between the Column Generation (CG) and Branch-and-
Bound (BnB) algorithms. An overview of the BnP algorithm is presented in Ponboon et al. (2016) and is
shown in Figure 3.2 [61]. The initialisation of the algorithm is similar as the CG algorithm: first the Restricted
Master Problem (RMP) is constructed that is able to produce a feasible solution. However, in the BnP algo-
rithm, the RMP is relaxed before finding the optimal solution. The pricing problems are then solved and
column candidates are identified and added to the RMP. If there are no new columns to add to the problem
and the RMP has an integer optimal solution, the optimal solution of the original problem is obtained. If
there is a non-integer optimal solution, then a new branch is generated on the RMP. The branching scheme
is similar to the BnB algorithm described in subsection 3.1.1.
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Figure 3.2: Visualisation of the procedure of the Branch-and-Price (BnP) algorithm [61]

An implementation of the BnP algorithm for a capacitated single-allocation hub location problem is pre-
sented in Contreras et al. (2011) [16]. The problem is solved using the BnP algorithm, however, instead
of using LP relaxation, the model is solved using Lagrangean relaxation. It is shown that the Lagrangean
formulation is able to solve formulations based on four indices faster than LP relaxations of similar formu-
lations with four, but also three indices. The efficiency of the algorithm is also increased by extending the
termination criteria of the model by comparing the solution of the current RMP with lower bounds obtained
from different methods. The final algorithm has been evaluated for networks up to 200 nodes and was able
to solve them optimally.

3.1.5. Benders Decomposition
The Benders Decomposition (BD) algorithm is an exact method that can be applied to mixed linear and
non-linear integer models. Instead of solving the model directly, the algorithm iterates between a linear
model that gives an upper bound and a cut in the search space, and a more manageable integer model
that gives a lower bound and integer solution [52]. In the algorithm, the original problem is divided into
the Master Problem (MP) and the Sub-Problem (SP). The MP is the relaxed version of the original problem,
together with the original integer variables and the constraints. The SP is the original problem where the
integer variables are fixed based on the results of the MP. After every iteration of solving the MP and the SP,
a new constraint based on the dual values of the SP is added to the MP. This additional constraint is called
a Benders cut. [20]

Najy and Diabat (2020) present the construction of the MP and SP for a simple Mixed-Integer Problem (MIP)
[52]. The original problem is shown in Equation 3.5 - 3.7. This equation minimises z∗, has decision variables
x and y , and the constraints are given by Equation 3.6. This minimisation problem can also be written as
Equation 3.8. This equation solves two minimisation problems, one for each decision variable.
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z∗ = min
x,y

cT x + f T y (3.5)

s.t .

Ax +B y ≥ b (3.6)

x ≥ 0, y ∈ Y ⊆Z+ (3.7)

z∗ = min
y∈Y

{ f T y +min
x≥0

{cT x : Ax ≥ b −B y}} (3.8)

The aim of the Sub-Problem is to find the upper bound of the original problem. The first step is to find
the dual problem of the minimisation of x. For a each given y , the dual problem can be constructed and is
shown in Equation 3.9, where u is the decision variable of the dual problem. If a fixed value y is given, the
upper bound of z∗ is obtained by using Equation 3.10. This is the Sub-Problem of the algorithm.

z∗ = min
y∈Y

{ f T y +max
u≥0

{(b −B y)T u : AT u ≤ c}} (3.9)

z∗ = min
y,θ

{θ+ f T y : (b −B y)T u ≤ θ,∀u : AT u ≤ c,u ≥ 0} (3.10)

For the Master Problem, the first step is to rewrite the problem shown in Equation 3.9 contain an infinite
constraint set, where the constraints are derived from all the points in the search space {u : AT u ≤ c,u ≥ 0}.
The new formulation is given in Equation 3.11. For the MP, the constraint set is restricted to some extreme
points obtained from the SP. This relaxation of the problem leads to the lower bound of the problem and is
shown in Equation 3.12, where UT is a subset of u.

z∗ ≤ f T y +max
u≥0

{(b −B y)T u : AT u ≤ c} (3.11)

z∗ ≥ min
y,θ

{θ+ f T y : (b −B y)T u ≤ θ,∀ut ∈UT } (3.12)

The algorithm proceeds by finding an upper bound using the Sub-Problem, in addition a new uT is ob-
tained and added to the Master Problem. A lower bound is then found using the Master Problem. The value
of y is then used in a new iteration starting with the Sub-Problem. The iteration stops when the difference
between lower and upper bound is sufficiently small.

The BD algorithm has been used to solve many different versions of hub location problems and has been
shown to outperform standard solvers, such as CPLEX. Najy and Diabat (2020) and de Camargo et al. (2008)
present implementations of the Benders Decomposition algorithm to multiple-allocation uncapacitated
hub location problems. The algorithm is able to solve large scale networks that are out of reach for stander
solvers: networks of 100 nodes and even up to 200 nodes are solvable whereas the implementation in CPLEX
only handles up to 25 nodes. Other examples include an implementation for a capacitated single allocation
problem [19] and a hybrid implementation between BD and an outer-approximation heuristic [18].

3.2. Meta-Heuristic Methods
Heuristic methods are able to produce a solution that is feasible, but in comparison with exact methods,
the solutions are likely only near-optimal, however they cannot guarantee it. Heuristic methods are mostly
iterative algorithm that search on new solutions that improve on the previous solution. The algorithms are
often based on simple ideas on finding a better solution, An advantage of using heuristic methods is the
capability of handling large scale problems, however the methods require a formulation that is adapted to
the original problem. On the other hand, metaheuristics provide general procedures in order to solve a
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problem. This section will elaborate on some of the popular meta-heuristics that have been applied to hub
location problems, based on a comprehensive list of heuristic algorithm applications presented by Farahani
et al. (2013) [26]. These methods are: Tabu Search (TS), Simulated Annealing (SA), Genetic Algorithm (GA),
and Ant Colony Optimisation (ACO).

3.2.1. Tabu Search
The first metaheuristic that will be reviewed is the Tabu Search (TS) algorithm. The Tabu Search algorithm
aims at escaping a local optimum of a problem to find the global optimum. After having obtained an ini-
tial solution, the algorithm needs to perform a local search procedure. This procedure results changes that
can be made to the current solution to reach an improvement. However, when a local optimum is reached,
there will be no more moves that can be made to improve the solution. In order to escape the local optimum
solution, the principle of the steepest ascent and mildest descent approach is followed; If there are no more
improvement possible, the move that results in the smallest loss is chosen. In order to stay away from the
previously left local optimum, the move to the local optimum is put on a list of forbidden moves, the tabu
list. A move will only be on the list temporarily to allow for better moves to be found. [33]

An example of Tabu Search in hub location problems is presented in Marianov and Serra (2003) [47]. The
problem is solved in two phases: first, the construction phase is executed to obtain an initial solution with
the location of the hubs. Next is the improvement phase, where new solutions are obtained by exchanging a
hub by a non-hub location. In case a non-feasible solution is obtained, a penalty is added. The TS algorithm
is used in this phase to avoid cycling back to the same solution. The algorithm was able to solve networks
of 30 nodes in 25 seconds on a personal computer.

Another implementation is shown in Silva and Cunha (2009), where a multi-start Tabu Search algorithm is
used [65]. This algorithm is used in cases when initial solutions are obtained easily, but improvement are
difficult to find, for example when a problem is tightly constrained and will lead to many infeasible moves.
The implementation of the algorithm was tested on USAHLP networks with 100 and 200 nodes and had a
computation time of 12 seconds and 1112 seconds respectively. The algorithm used was evaluates using 94
benchmark problems of up to 200 nodes and was shown to present optimal solutions to 92 of the problems.

3.2.2. Simulated Annealing
The next metaheuristic that is reviewed is the Simulated Annealing (SA) algorithm. This algorithm again
is aimed at escaping a local optimum solution to find the global optimum. However, instead of wasting
iterations exploring local optima by performing climbing and ascending moves, the Simulated Annealing
algorithm searches more directly for the global optimum. This is enabled by implementing a random com-
ponent in the selection of the next move. In a given problem, the following parameters can be defined [33]:

• Zc is the current solution value
• Zn is the current candidate solution value
• T is a parameter indicating the tendency to accept new solutions

In the case that the new solution improves on the current solution, the move is always taken. However,
in the case that the solution is worse, the new move will be taken based on the probability described in
Equation 3.13, in the case of a maximisation problem.

P {accept ance} = ex where x = (Zn −Zc )/T (3.13)

A key principle of the algorithm is that the tendency to take other solutions decreases with each iteration.
The parameter T used for this process is determined using a temperature schedule, named based on an
analogy with physical annealing where the slowly decrease in temperature results in decreasing fluctua-
tions in atom energy levels. An example temperature schedule for three iterations is as follows: T1 = 0.2Zc ,
T2 = 0.5T1, T3 = 0.5T2.
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An application of this algorithm is presented by Chen (2007), who introduces a hybrid between the SA and
TS algorithms for a UHLP problem [12]. This hybrid improves the solution finding method of the SA algo-
rithm by avoiding cycles using a tabu list. The implementation of the problem is divided into three steps:
determining the number of hubs, selecting the hub nodes, and allocating non-hub nodes to hubs. The first
step of the algorithm is to increase the number of hubs in the network, until the marginal decrease in trans-
portation cost is smaller than the fixed cost of adding a hub. To find new solutions, the algorithm performs
moves that replaces a single hub node with another node. The model has been tested with networks up
to 200 nodes with the new hybrid algorithm, a SA algorithm, and a Genetic Algorithm (GA) algorithm. The
result show that the SA algorithm is able to solve the large problem to the best known solution within one
hour. The hybrid algorithm however still comes out as the best algorithm of the three by solving the problem
in 3 minutes.

3.2.3. Genetic Algorithm
Another metaheuristic that can be used is the Genetic Algorithm (GA). This algorithm does not start with
one trial solution, instead, a whole population of feasible solutions is created. The basis of the algorithm is
to run a population of solutions and to generate new solutions based on the current population. In order
to rank the solutions, a fitness score is given to each solution, which is based on for example the objective
function value. Of this population, a certain group will be selected as parents of the new population, where
the solutions with a better fitness have a higher chance of being selected. These parents produce new so-
lutions by combining different parts of their solution and by introducing some mutations in the solution
in order to explore the feasible region of the problem. The main choices that need to be made in order to
use this model are: the population size, the manner of selecting the parents, the passing of features, the
mutation rate, and the stopping rule. [33]

An implementation of a GA is presented by Lin et al (2012) to solve a p-HMP model [43]. This choice was
motivated by the ability to search a vast area of the feasible region and the use of probabilities instead of
deterministic rules. In addition, this method was favourable as it does not require continuity or differen-
tiability of the constraints. The implementation uses the different OD paths for the encoding of the genes
of the solutions. This allows for feasibility in the solutions, while gradually improving to a local optimum.
The model uses a population of 100 and determines the fitness based on the inverse on the total cost of the
solution. A Computational study performed on a network of 40 airports with 3 or 4 hubs showed to produce
solutions with a reasonably good quality. The local optimal solutions differed less than 0.1% with the lower
bounds. The study also showed that the computational time increases with the number of hubs from 60
minutes to 80 minutes for 3 and 4 hubs respectively.

3.2.4. Ant Colony Optimisation
The last metaheuristic that will be discussed is the Ant Colony Optimisation (ACO) algorithm. This meta-
heuristic uses a colony of artificial ants which cooperate to find optimal solutions to a optimisation prob-
lem. The artificial ants are relatively simple agents and converge to a optimal solution by interacting indi-
rectly using stigmergy, which is indirect communication through the use of the environment [23]. To use an
ACO algorithm, it is first needed to define the solution components that can be used to construct a solution.
Next, a set of pheromone values need to be defined. The total pheromone model is the basis of the ACO
algorithm [7].

The algorithm starts by managing an ant colony and letting them construct a solution by choosing different
elements based on stochastic decision policies based on a pheromone trail. After a solution is obtained,
it is evaluated by an ant and the pheromones on the trail of the solution are updated, either increased if
pheromones are deposited or evaporated if there are less ants on the trail. The evaporation of pheromones
are useful to avoid a too rapid convergence of the problem and keeping a wide search space. [23]
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Four implementations of the ACO algorithm on a CHLP model are presented by Randall (2008) [62]. The
simplest approach presented is a hub oriented ACO, which determines which of the nodes should become
hubs in the model. This approach is used in combination with a greedy heuristic, which allocates the non-
hub nodes to the selected hubs by the ants, where the allocation is based on the traffic flow and distance
to the hub. A hub is allocated to a node by choosing the best combination of short distance and low traffic
flow. A computational study was performed with this algorithm for networks up to 50 nodes. On smaller
networks of 10 and 20 nodes were solvable in less than 1 second, in addition, larger problems with 50 nodes
were also solved to optimality relatively quickly, within 100 seconds.

3.3. Discussion
This chapter has reviewed various optimisation methods, either solving a problem using exact or meta-
heuristic methods. The aim of the research is to find optimisation methods that are able to solve large scale
models. This section will briefly discuss the trade-off between the different types of optimisation methods.

First is the choice between exact and heuristic based methods. Small-scale problems are able to be solved
efficiently using exact methods, however, large-scale problems would require the use of heuristic or spe-
cialised exact methods, such as the Benders Decomposition (BD) algorithm. Large-scale problems can be
considered out of reach of simple exact methods due to the computational time needed to solve the prob-
lem [20]. However, even though large-scale problems can be solved using specialized exact methods, meta-
heuristic methods are capable of solving to optimality or near-optimality within less computational time
[26]. As heuristic methods can end up at solutions that are near-optimal, instead of optimal, it is impor-
tant to analyse the behaviour of the heuristic method by comparing the heuristic against exact methods for
smaller networks.

Besides a choice between exact and heuristic based methods, it is possible to combine various techniques;
a combination of several algorithmic techniques is of importance when solving large-scale models [2]. Ex-
amples of such refinements are introducing elimination tests to reduce the problem size and constructing
stronger undominated cuts, known as Pareto-optimal cuts, to improve the convergence of an algorithm.
Contreras et al. (2011) uses this combination of these techniques on top of a BD algorithm and was able to
optimise UHLP networks of 500 nodes [15]. Other examples of combinations have been presented in the
chapter as well, for example, the hybrid between the SA and TS algorithms for a UHLP problem presented
by Chen (2007) [12]. The hybrid form is able to solve a network of 200 nodes 20 times faster.

When deciding on a optimisation method, it is important to understand the formulation of the problem as
well. A good implementation of the optimisation method can help the performance. This is for example
visible in the application of the Ant Colony Optimisation (ACO) algorithm, presented by Randall (2008),
who presents four different forms of the algorithm to a CHLP model [62]. One of these models is aimed at
determining the nodes that should become hubs in a network, coupled with another heuristic for the node
allocation. On the other hand, another model combines these by successively linking nodes to potential
hubs in the same algorithm. The result show that different implementations have better qualities regarding
the best solution and computation time.
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Review of Airport and Aircraft Modelling

Much research has been dedicated to using hub location problems for airport networks. To adapt a model
to the airport network, it is necessary to know the characteristics of the nodes and the vehicles. The aim
of this chapter is to find an answer to the following sub-question: What methods are available to model
the airport and aircraft characteristics in the model? First, the airport characteristics will be reviewed in
section 4.1. This section regards the determination of the capacity of airports and the implementation of
the capacity in hub location models. Next, in section 4.2, the determination of the aircraft characteristics
are reviewed. This includes the calculation of the range and fuel burn of a flight and a review of the imple-
mentation in different models. At last, in section 4.3, a discussion on the review is given.

4.1. Airport Modelling
The determination of airport capacities has two strategic purposes: understand the ability of the compo-
nents of an airport system to manage the passenger and aircraft flows and to estimate the delays that can
occur for different traffic flows [34]. Airport capacity is an important factor to consider in the hub location
process. A small airport can emerge as a hub in an uncapacitated model, but the flows at the airport may
exceed the capacity that the existing infrastructure allows for. The aim of this section is to present and re-
view the methods that can be used to estimate airport capacities. First, in subsection 4.1.1, an overview is
given on the different methods of capacity determination. In subsection 4.1.2 - 4.1.5, the various methods
are discussed.

4.1.1. Overview of Capacity
Airport capacity estimation is an important factor in the traffic management process as inaccuracies could
lead to delays or under-utilisation of the available capacity. The process of estimating the capacity of an
airport is difficult as the process depends on many factors, such as airport operation procedures, runway
configuration, the air traffic mix and meteorological conditions [39]. It should be noted that there are two
definitions of airport capacity that are being used when talking about airport capacity prediction problems.
The first is the ultimate capacity of an airport. This capacity indicates the maximum throughput that an
airport system is able to handle. The second in the practical capacity of an airport. This capacity states the
throughput of an airport, which is able to keep the average delay of flights below a specified amount. This
concept links the capacity of an airport with the delays of an airport system. [34]

When choosing a method to estimate the airport capacities, it is important to consider the characteristics of
the problem. Choi and Kim (2021) present the three characteristics that can be used to describe the airport
capacity prediction problem [13].

• Daily patterns. Airports have daily patterns in their demand, and usually, the capacity of an airport is
dependent on the expected demand levels [13]. The capacity of an airport is low early in the morning
and late at night as people do not prefer to fly at these times. The daily pattern of an airport can also
consist of peak periods, which can influence the use of priority for arrivals or departures.

• Weather Conditions. The capacity of an airport is dependent on the weather conditions of the air-
port. Flights to and from an airport are operated either under Visual Flight Rules (VFR) or Instrumen-
tal Flight Rules (IFR), where the decision is based on the weather conditions at the airport. If there

21
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are bad weather conditions, a flight needs to be operated under IFR, which increases restrictions on
flights. One of these restrictions is the minimum separation distance, where an increase would lead
to a decrease in capacity. Airports which face a lot of bad weather conditions, can expect a big differ-
ence in the capacity between Visual Meteorological Conditions (VMC) and Instrument Meteorological
Conditions (IMC). [13]

• Nonlinear Capacity. The capacity of an airport is described by two figures: the capacity of arrivals and
the capacity of departures. These two capacities are interdependent of each other and are connected
with a nonlinear function. This capacity curve can be represented in a graph with the departure ca-
pacity against the arrival capacity. An example is shown in Figure 4.1, where the curve is constructed
by connecting the capacities at various operating procedures [39]. The end-points of the graph repre-
sent the only-arrival and only-departure modes. The points in-between represent mixed modes.

Figure 4.1: Departure-arrival capacity chart constructed by four different operating strategies [39].

These characteristics are useful to taken into account when estimating the airport capacity. Besides the
characteristics of the airport capacity problem, it is also useful to know the components of the total airport
system capacity. The two main components that can be recognised are the runway and airspace capacity.
The runway capacity regards the flow of aircraft that can safely be allocated to a runway. These flows are
influence by the runway configuration, operation procedures and the Wake Turbulence Category (WTC)
distribution of the aircraft. Early analyses mostly focus on this component of the system [34]. The next
component is the capacity of the terminal airspace around an airport. The airspace capacity is influenced
by, for example, weather influences on certain zones in the airspace.

Various airport capacity models have been formulated which are able to estimate capacities of an airport
system. To organise these models, Mascio et al. presents five different levels of model refinement for airport
capacity prediction problems [49]. The different levels are distinguished by the amount of information
needed for the model inputs, the number of components considered in the model, and the application
of the models. The five categories are as follows:

1. Table Lookup. The first level is based on comparing the runway configuration to runway config-
urations for which the capacity already has been estimated. An example of such a lookup table is
generated by the Federal Aviation Administration (FAA). For various runway configurations and flight
mixes, there are available hourly capacities for either VMC or IMC. The table generated by the FAA is
shown in Figure 4.2. An advantage of this method is that not much data is required for the estimation,
however, the method is intended only for runways only and simple airfields. [25]

2. Charts. The second level again has the same use-case as the first level, however, if more detailed
information is available on the traffic mix and the airport lay-out, it is possible to obtain more accurate
estimates by reading off graphs. The FAA has also generated graphs for various runway configurations.
An example graph is shown in Figure 4.3. [25]
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Figure 4.2: Example table lookup for the determination of the runway capacities of two different runway configurations [25]

3. Analytic Models. The third level regards analytical models based on the runway capacities of air-
ports. Such models are able to connect multiple factors with each other, such as the aircraft Wake
Turbulence Category distribution, final approach speeds, separation distances, and Air Traffic Con-
trol (ATC) rules.[49]

4. Airfield Capacity Simulation. The fourth level concerns the capacity estimation of complex airfields,
which requires more detailed input data. Examples of such inputs may be the flight track geometries,
fleet mix per runway and the configuration of the airport itself.

5. Aircraft Delay Simulation. The fifth and last level of models are able to simulate the operations at the
airfield and also take the flight schedule into consideration.

These five categories of airport capacity prediction models show the different levels of detail that can be
attained for a model. The categories do however lack a category of models that are present in the research
field; empirical models. An example is the empirical approach to airport capacity estimation presented by
Gilbo (1993), where the non-linear curve of the departures and arrivals is approximated based on data [29].
More recently, data-driven models are being used to estimate airport capacities. Examples are: a decision-
tree model, which can predict the runway capacity in real-time [30], a machine learning based application,
which is based on historical flight tracks, weather forecasts, and airport operational data [51], and neural-
networks which are able to predict the airports capacity and implements transfer learning to adapt the
model to other airports [13].

This section gave an overview of the different methods that can be followed to estimate the airport capacity.
The following subsections will review some instances of each of the models in the described categories,
ranging from the empirical approach to the simulation approach.

4.1.2. Empirical Approach
An empirical approach to the airport capacity prediction problem is presented by Gilbo (1993) [29]. The
empirical approach is proposed as it eliminates assumptions based on the distribution functions of random
variables in the analytical approaches. The method proposed uses the non-linear relationship characteris-
tic between the arrivals and the departures of a runway to generate a model. In the model, the relationship
between the arrival capacity ca and departure capacity cd is described by the following function: cd =φ(ca).
This function is obtained by fitting a curve based on the traffic flows during peak periods. It is assumed that
the peak periods reflect or approach the actual maximum capacity of an airport.
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Figure 4.3: Example chart for the determination of the runway capacity [25]

The data obtained during the peak hours is plotted in a arrival-departure capacity graph. This results in the
graph shown in Figure 4.4. The dots represent the arrival and departure capacity during peak periods; in
this case the peak periods have a time-span of 15 minutes. Around these data points, a piece-wise linear
curve is fitted. If all the points are considered, the outer curve is obtained. It can be seen that the envelope
obtained from this curve leaves some large areas where there are no data points. To increase the robustness
of the model, the outliers in the dataset needs to be removed by some rejection criteria. This results in the
inner curve in Figure 4.4, which can be used for the capacity estimation of an airport. The obtained curve
can be used to optimise the capacity of an airport. For example, Gilbo (1993) presents a model that is able
to allocate the airport capacity to the arrival and departure demand for a given time-span [29].

Figure 4.4: Empirical determination of the arrival-departure capacity curve [29].

4.1.3. Runway Capacity Model
The first analytical model reviewed is presented by Hockaday and Kanafani (1974) and is aimed at estimat-
ing the ultimate capacity of a runway system for various operating conditions [34]. The main assumption of
the model is that aircraft arrive at a certain point before continuing onto the descent path. In addition, any
deviations from the mean path are normally distributed and independent of other aircraft. The first step
in the capacity calculation consists of finding the interval times between the various aircraft categories for
landings and take-offs. Next, the runway capacities can be calculated using the interval times and expected
fleet mix for the various operating conditions. At last, the capacity of the runways can be optimised by se-
lecting the best operating strategy.



4.1. Airport Modelling 25

There are five conditions that describe the minimum separation between aircraft. These conditions are as
follows:

• AROR(i) Arrival Runway Occupancy Requirement. The time needed for an aircraft to clear a runway
after arrival.

• AASR(ij) Arrival-Arrival Separation Requirement. The time between two arriving aircraft that needs
to be maintained in order to ensure minimum separation distances.

• DROR(i) Departure Runway Occupancy Requirement. The time that a departing aircraft occupies the
runway.

• DDSR(ij) Departure-Departure Separation Requirement. The time between two departing aircraft
that needs to be maintained in order to ensure minimum separation distances.

• DASR(j) Departure-Arrival Separation Requirement. The time separation between arriving aircraft of
class j to ensure the separation rules.

The minimum separation times of the various conditions are assumed to be based on normal distributions
around a average time based on the aircraft category. The determination of the Arrival-Arrival Separation
Requirement requires an extra step as this time separation is based on the velocities of the two aircraft
involved. There are two cases in arrival separation that need to be considered. First is the closing case,
where the trailing aircraft is overtaking the leading aircraft, v(i ) ≤ v( j ). The minimum separation is applied
to the moment when the leading aircraft lands, as this is the closest the two aircraft will be. The minimum
separation time is found by dividing the minimum separation distance between the two aircraft categories,
δ(i j ), and the airspeed of the trailing aircraft v( j ). This equation is shown in Equation 4.1. In the other
case the space between the aircraft opens up, as the leading aircraft has a higher speed, v(i ) > v( j ). The
separation at the runway threshold is now larger than at the entry point. The minimum separation time is
now using the formula shown in Equation 4.2, where γ is the length of the final approach path. The opening
and closing case are visualized in Figure 4.5, where the time separation between the leading and trailing
aircraft is shown with respect to the distance to the runway. [34]

Figure 4.5: Opening and closing case between arriving aircraft with different approach speeds [34].
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δ(i j )

v( j )
for v(i ) ≤ v( j ) (4.1)

δ(i j )

v( j )
+γ

(
1

v( j )
+ 1

v(i )

)
for v(i ) > v( j ) (4.2)

The capacity of a runway is found by dividing the average inter-arrival or departure time of two aircraft by
the desired time span. To find the average time, it is first needed to determine the time of a single aircraft
pair. For two arriving aircraft, the inter-arrival time, T A A(i j ), is the maximum of the A ASR(i j ) and the
AROR(i ). The inter-departure time, T DD(i j ), is the maximum of the DDSR(i j ) and the DROR(i ). The
average time is based on the fleet mix proportions, where the probability of aircraft i using the runway is
p(i ). The probability that aircraft i is followed by aircraft j is p(i j ) = p(i )p( j ). The average inter-arrival and
departure time are then found using Equation 4.3 and Equation 4.4.

T A A =∑
i j

p(i j )T A A(i j ) (4.3)

T DD =∑
i j

p(i j )T DD(i j ) (4.4)

To find the capacity in mixed operation use, Hockaday and Kanafani (1974) use the method of inserting
departures into a runway with arrival priority. The number of aircraft that can be inserted is determined by
comparing the inter-arrival time between two aircraft of categories i and j with the Departure-Arrival Sep-
aration Requirement time D ASR( j ). When the capacities of these three operating modes are determined, it
is possible to select the best operating strategy for an airport based on the expected demand.

4.1.4. Airport Capacity Model
Another analytical based model is the Airport Capacity Model (ACM), produced by the FAA [70]. This model
includes weather predictions, such as surface winds and visibility, to find the probabilistic capacity esti-
mates for a runway system [39]. The model consists of two modules; these modules are the Runway Con-
figuration Estimator (RCE) and the Runway Capacity Model (RCM). The inputs to these modules are cate-
gorized into four categories and are shown below:

• Weather Forecasts: includes the surface winds at the airport, the height of the cloud ceiling, and the
visibility range.

• Predicted Demand: consists of the hourly arrival and departure estimates and the aircraft Wake Tur-
bulence Category mix.

• Airport Adaptation: The runway lay-out, geometry, possible configurations, as well as the runway
occupancy times and approach speeds per aircraft category.

• Operational Standards and Procedures: state the thresholds for crosswind, tailwind, ceiling and vis-
ibility. This also includes the minimum separations for arrivals and departures, and the Wake Turbu-
lence Category (WTC) separations.

These inputs are used by the two modules, the first of which is the Runway Configuration Estimator. There
are three main steps that are performed by this module. The first step is to find the possible runway con-
figuration based on the available runways of an airport. Next, the surface winds are used to calculate the
expected crosswind and tailwind at each runway. Using the stated thresholds of the airports, the usable
runway configurations can be determined.

The second module, the Runway Capacity Model, delivers the runway capacities of the chosen runway
configuration of the RCE. The first step in the capacity determination is to determine the meteorological
conditions at the airport using the input weather conditions. For each single runway the capacity for the
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several operating procedures is estimated, using the predicted demand, airport adaptation, and operational
standards. A similar method for determining the minimum time separations is used as presented in sub-
section 4.1.3 [39]. The last step is to combine the capacities of the single runways to obtain the total airport
capacity estimate.

An improvement to the Airport Capacity Model is the Integrated Airport Capacity Model (IACM), presented
by Kicinger et al. (2011), incorporates the terminal airspace capacity into the model; a visualisation of the
components of this model is shown in Figure 4.6 [40]. Next to the Airport Capacity Model (ACM), the Termi-
nal Capacity Model (TCM) determines the capacity of the terminal airspace around the airport based on the
parts of the airspace which are affected by the weather and have an influence on the arrival and departure
traffic. Additional inputs to this model are precipitation and echo tops forecast. The capacities of both the
ACM and TCM are combined to obtain an improved estimate of the airport capacity. [39]

Figure 4.6: Visualisation of the components of the Integrated Airport Capacity Model (IACM), including the model inputs [39].

4.1.5. Simulation
The fourth and fifth level of detail in airport capacity prediction regard the use of simulation models. Com-
pared to analytical models, the simulation models require labor-intensive setups and large data-sets are
required per airport in order to estimate the airport capacity [13]. However, a greater level of detail can be
achieved by using simulation-methods, whereas analytical models provide approximations of the airport
capacity, which is more useful for strategic purposes [39].

An example of a simulation-based model is the Total Airspace and Airport Modeller (TAAM), owned by
Jeppesen. The model is a fast-time flight path simulator, which is able to simulate the total air traffic system
of an airport. There are many applications of the model, such as estimating the airport capacities, planning
airport improvements, designing arrival and departure procedures and assessing the controller workload.
The model requires an input file that described the entire air traffic system, but the level of detail required
is dependent on the application. The file includes inputs such as the airport layout, the air traffic schedule
and flight plans, and airport operational standards. Different aspects of the model have been verified in
different scenarios. The simulation model is able to demonstrate being capable of simulating the airport
operations closely compared to reality.[68]
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4.1.6. Airport Capacity Implementation
The previous subsections elaborated on the determination of the airport capacities. The hub location prob-
lems described in section 2.1 all assume that the nodes of the network are uncapacitated, which means that
there is no limit on the flow that can pass through a node. In real life however, nodes in a network are lim-
ited in capacity by for example the operating conditions of the runways of an airport [34]. This section will
elaborate on the different methods that can be applied to hub location problems to incorporate capacity, as
well as the method of obtaining the capacity of the airports in the network.

There are various methods that allow for the implementation of capacity in the network. The first of these
is setting a limit on the flow that can pass through an airport node. The second limits the maximum flow
on a link between two nodes. An example of the first method is given by Campbell (1994) formulates a
constraint for the Unconstrained Hub Location Problem (UHLP). This constraint limits the total passenger
flow through a node and is shown in Equation 4.5. [10] This constraint can be added to the UHLP given in
Equation 2.19 - 2.24. This equation assumes a new variable, Γk , which represents the maximum number of
units that can pass through the hub node k.

∑
i

∑
j

Wi j

(∑
m

(
X km

i j +X mk
i j

)
−X kk

i j

)
≤ Γk Yk ∀k (4.5)

Another method is to implement a limit on the capacity of an arc between two cities. Campbell (1994)
present a constraint that is able to achieve this. A constraint is added that add a minimum and a maximum
threshold on an arc. An example constraint is shown in Equation 4.6 for the p-HMP shown in Equation 2.10
- 2.16 [10]. In this equation, the minimum threshold flow between cities i and k is indicated by Ti k and
the constraint is restricted by using a large number M . The choice of the large number determines the
maximum flow on the arc. This is determined using Equation 4.7.

Ti k −
∑

j

∑
m

(
Wi j Xi j km +W j i X j i mk

)≤ M (1−Zi k ) ∀i ,k (4.6)

Mi k =∑
j

(Wi j +W j i ) ∀i ,k (4.7)

A disadvantage of these methods is the use of decision variables that determine the total flow of passengers,
instead of putting restrictions on the number of vehicles. The number of vehicles however are used to
indicate the runway capacity of an airport. To incorporate the runway capacity into the model, it would
be favourable to include a decision variable for the number of vehicles, such as is present in the Airline
Network Design (AND) model presented by Jaillet et al (1996) [37]. However, this model does not yet include
a method to impose limits on the airport capacity.

4.2. Aircraft Modelling
The previous section elaborated on the airport characteristics. Aircraft also have certain characteristics that
need to be taken into account, such as the maximum payload and the possible maximum range, which are
dependent on each other. The basic models shown in section 2.1 are currently only formulated for the flow
of passengers, without a distance restriction. This section will focus on incorporating the characteristics of
aircraft in the models. First, in subsection 4.2.1, the determination of aircraft range is discussed. Next, in
subsection 4.2.2, the dynamics between payload and range are explained. At last, in subsection 4.2.3, the
implementation of the aircraft characteristics into hub location models are discussed.

4.2.1. Aircraft Range Determination
This subsection will regard the determination of the range and fuel consumption of an aircraft. The method
presented in this subsection is obtained from Ruijgrok (2009) [63]. For a model that includes the choice of
an aircraft type, it is important to know if an aircraft is able to meet the range requirements of a certain flight.
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In addition, the fuel consumption of that aircraft can be used to determine the fuel cost or the amount of
emissions. Two distinctions in range will be made in this review: the stage length and cruise range. The
stage length, also known as total range, is the total distance that can be flown between take-off and landing.
The cruise range however is the distance of the cruise phase.

The maximum total range of an aircraft is dependent on the fuel capacity of an aircraft. An important vari-
able in the range calculation is the fuel consumption per hour, F , which is defined as the difference in fuel
weight W f per unit of time. As the usage of fuel leads to an equal decrease in aircraft weight W , the variable
can be rewritten as shown in Equation 4.8. The burned fuel can be determined using the integral shown in
Equation 4.9. The range of an aircraft is based on an integral over the velocity. By combining this with the
fuel consumption rate, the integral shown in Equation 4.10 can be obtained. In this equation the fraction
V /F is also called the specific range.

F = dW f

d t
=−dW

d t
(4.8)

W f

∫ t2

t1

F d t (4.9)

R =
∫ t2

t1

vd t =
∫ W2

W1

−V

F
dW (4.10)

In order to determine the stage length of a flight, the calculation will be split in two parts: the cruise phase,
and the phases of climb and descent. This distinction is made as different assumption can be made for
each phase. First, the cruise phase is considered. In the range determination, there is a distinction between
propeller and jet aircraft. The difference is visible in the fuel consumption rate, shown in Equation 4.11 and
Equation 4.12. For propeller aircraft, the fuel consumption is based on a specific fuel consumption cP and
the brake power Pbr , found using the power available Pa and the propulsive efficiency η j . For propeller
aircraft, the specific fuel consumption cT and the thrust T are used.

F = cP Pbr = cP
Pa

η j
(4.11)

F = cT T (4.12)

For the determination of the cruise range, it can be assumed that the aircraft will be in steady and level
flight. For the propeller aircraft, it can be assumed then that the power available Pa is equal to the power
required Pr . The fuel consumption rate can then be rewritten to Equation 4.13, with D as the drag on the air-
craft. Using the relationship of D =CD /CLW , the specific range can be rewritten as shown in Equation 4.14.
Inserting this range into Equation 4.10 gives the range equation for propeller aircraft, in Equation 4.15.

F = cp
Pa

η j
= cp

Pr

η j
= cp

DV

η j
(4.13)

V
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CD

1

W
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R =
∫ W1

W2

η j

cP

CL

CD

dW

W
(4.15)

During cruise, only small variations can be expected in η j and cP and at a single of attack during cruise,
CL/CD is also constant [63]. These assumptions allow the integral to be approximated using Equation 4.16.

R = η j

cP

CL

CD
ln

W1

W1
(4.16)
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For the determination of the range of jet aircraft, similar steps can be performed. If steady level flight is
assumed, the thrust can be rewritten to Equation 4.17, using the relationship D = CD /CLW . Combining
Equation 4.12, Equation 4.10 and Equation 4.17 gives the range integral shown in Equation 4.18. For steady
level flight, it can be assumed that cT and CL/CD remain constant, which allows for the integral approxima-
tion shown Equation 4.19.

T = D = CD

CL
W (4.17)

R =
∫ W1

W2

V

cT

CL

CD
ln

dW

W
(4.18)

R = V

cT

CL

CD
ln

W1

W2
(4.19)

The second part of the total range determination is due to the climb and descent phases. For these phases,
the rate of climb, RC , of an aircraft is an important parameter. The rate of climb is defined as the vertical
component of the airspeed V and is shown in Equation 4.20, with H as the altitude and γ as the flight path
angle. The distance flown during a climb or descent manoeuvre, s, is then calculated by taking the integral
over the horizontal part of the velocity, shown in Equation 4.21, which is rewritten to integrate over height
using Equation 4.20. The fuel weight burned is found by integrating the fuel consumption rate over time, as
shown in Equation 4.22, which is rewritten to be integrated over altitude using Equation 4.20.

d H

d t
= RC =V sinγ (4.20)

s =
∫ t2

t1

V cosγd t =
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H1

d H

tanγ
(4.21)
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t1

F d t =
∫ H2

H1

F

RC
d H (4.22)

When solving for the fuel burn, it should be noted that in these integrals the weight reduction due to fuel
burn has an effect on the rate of climb. In order to include these effects, the integral could be solved it-
eratively, while updating the rate of climb to the new aircraft weight after each step. The new weight of
the aircraft is then found by subtracting the fuel weight burned in each step. This method requires the use
of a graph or an analytic expression between the rate of climb, altitude and weight. Another method is
proposed by EUROCONTROL, which uses performance data of the Base of Aircraft Data (BADA) [53]. This
method combines a thrust model, which provides the thrust of the aircraft, and a fuel consumption model,
which calculates the fuel burned. An advantage of using this method is the availability of many aircraft type
specific data

4.2.2. Payload-Range Characteristics
In the last subsection it was established that the range of an aircraft is limited by the fuel capacity of an
aircraft. In order to determine the amount of fuel an aircraft can carry, it is important to understand the
different components of the weight of an aircraft. The weight of an aircraft can be divided into three main
weight categories: the Operational Empty Weight (OEW), the payload weight and the fuel weight. These
weights added up are restricted to the Maximum Take-Off Weight (MTOW) of the aircraft. The payload ca-
pacity of an important factor in the economic performance of an aircraft. The payload-range diagram is a
useful tool to show the payload capacity.

An example payload-range diagram is shown in Figure 4.7 [63]. This diagram shows the payload weight
against the maximum range of an aircraft. The diagram can be divided into three segments. The first seg-
ment restricts the payload to the available space on the aircraft. In the second segment, in order to increase
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the range, the payload needs to be exchanged for fuel weight as the combined weight of the aircraft is lim-
ited by the MTOW. The third segment starts when the tank capacity is reached. In order to get any increase
in range, the weight needs to be reduced by removing payload.

Figure 4.7: Payload-range diagram visualising the three limiting cases of the payload. [63]

The curve of the payload-range diagram indicates the limited payload for each range, however, all points
under the curve could be a possible payload. An interesting use of the graph is to determine the additional
fuel weight for an increase in payload. To start, the range equation, shown in Equation 4.19, can be rewritten
to contain the individual components of weight: the Operational Empty Weight W0, the payload weight WP

and the fuel weight W f . Equation 4.23 shows the individual weight components, assuming that the end of
the phase has no fuel left. This equation can be rewritten to solve for W f , as shown in Equation 4.24. To find
the increase in fuel weight for an increase in payload weight, the derivative is taken over the payload weight
WP . The result is shown in Equation 4.25.

R = V

cT

CL
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W0 +WP +W f

W0 +WP
(4.23)
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4.2.3. Implementing Aircraft Characteristics
Much research has been dedicated to using hub location problems for airport networks. Different ap-
proaches are taken to implement the characteristics of aircraft into the model. First, the maximum range of
aircraft will be discussed. A common approach is to not regard any characteristics in the model. An exam-
ple is the analysis performed by O’Kelly (1998) who compares different Hub-and-Spoke networks resulting
from three different versions of hub allocation models [57]. The paper states the use of a single and mul-
tiple allocation model referenced from Campbell (1994), which are also described in section 2.1, and the
FLOWLOC model formulated by O’Kelly and Bryan (1997) [59], which is similar to the multiple allocation
model, however it gives a greater discount for larger flows between two hubs. These three models do not
take into consideration any distance limitations or capacity constraints.
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Another more recent example is the Gateway Hub Location Problem (GHLP) formulated by Bernades Real
et al. (2018) [5]. The formulated mathematical model makes a distinction between standard hubs and gate-
way hubs, where the former only allows for connections within a region, the latter allows for connections to
other regions. This model again does not include any constraints regarding the characteristics of the aircraft
in the network. However, longer arc distances are discourages as the cost of activating an arc between nodes
is based on a weighted function of the distance.

The approach taken in the two given examples seem to assume that there will always be an aircraft that is
able to fly the route. In addition, there is also no explicit number of aircraft determined for a route, which
allows any capacity problems of aircraft to be disregarded. An advantage of this system is that it avoids
complicating the model. This approach can be useful if it is certain that there will be no range limitations
within a given network. For example, the analysis performed by O’Kelly (1998) simulated a network in the
United Stated of America. If the largest distance between two nodes is smaller than the maximum range at
a useful payload, then there would be no need for implementing such a constraint in the model. This does
however mean that a payload, or load factor, needs to be assumed for all aircraft to be sure that the range
can be met; an aircraft at Maximum Take-Off Weight (MTOW) has a different range than an aircraft with no
payload and maximum fuel.

In the case that range is able to be a limiting factor, another approach should be followed. The following
approach that will be discussed implements a limit on the maximum arc distance between two nodes. This
limit can be imposed in different ways. One method is to directly add a constraint to the model. An example
is the model formulated by Oktal and Ozger (2013), which is a multi-allocation Capacitated Hub Location
Problem (CHLP) with additional constraints; if a distance between two nodes is greater than the aircraft
range, it can not be chosen. The range in this case is chosen to be the maximum range of the considered
aircraft at MTOW. [58]

Another method of implementing range of the aircraft into the model has been used by Lowe and Sim (2013).
The model presented is a Hub Covering Flow Problem (HCFP), which improves upon the Hub Covering
Problem (HCV) by incorporating the transportation costs of the demand flow. Limits on the distance are
imposed by using the big-M method on the transportation cost between two nodes. If the distance between
two nodes becomes larger than the maximum range of an aircraft, the cost will rise to a large number M,
which would counteract the minimisation of the total cost. In addition, this method can be used when mul-
tiple types of aircraft are considered in the network. If the maximum range of an aircraft is reached, instead
of assuming a cost of M, first the operating cost of the next aircraft is used. This can be repeated for the
desired amount of aircraft. [44]

Next, the implementation of capacity is discussed. As most hub location models do not include a decision
on the number of aircraft, there is also no need to implement the capacity in the models. The capacity of
aircraft does get utilised in the Airline Network Design (AND) model presented by Jaillet et al. (1996), as this
model selects the number of aircraft on city pair based on the expected flow. The capacity of aircraft can
however also be implemented in hub location models that do not make implicit decisions on the number
of aircraft. A solution is presented by Kimms (2016), which uses city arc-costs based on the number of
vehicles; an additional fixed cost is incurred for every additional aircraft that is needed to cover the flow. A
more detailed review of this method is given in subsection 5.1.3.
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4.3. Discussion
This chapter reviewed modelling methods of airports and aircraft. The aim is to find techniques to represent
the characteristics of airports and aircraft in the hub location models. For both of these components of the
airport networks, the modelling techniques have been reviewed, as well as the method of implementation
into hub location models. This section will elaborate on the key-points of the chapter.

First, the method of airport modelling is treated. To better reflect airports in a hub location model, it is
useful to include the capacities of the airports. The method of modelling airports therefore focused on de-
termining the capacities of a given airport. Different methods have been discussed that vary in complexity.
If more data is available, such as weather forecast and operational standards, it is possible to get more ac-
curate capacity numbers. Before choosing a method for the model, it should be determined what accuracy
level is desired. As the capacities are used for a hub location model, rather than a real-time application, it is
not beneficial to include current weather forecasts. Instead, the hub location model focuses on the capac-
ities relative to other cities in the model. In such applications, it could suffice to use simple techniques to
determine the airport capacities.

If the capacity numbers are determined, it is needed to determine how to implement the capacities into the
model. This is dependent on the type of model that is used. What should be taken into consideration is how
to adapt the capacity to the formulation of the model; if a model has decision variables based on passenger
flows, the airport capacity cannot be directly implemented, as these are generally given as numbers of air-
craft.

Next, the method of aircraft modelling is discussed. The main characteristics that can be implemented in
hub location models were determined to be range, capacity and fuel use. The basis of determining range
and fuel burn have been established in this chapter. When determining these characteristics, it is important
to consider the method of determining the performance during climb and descent, as these segments are
not described by the Breguet range equation. An example method is the use of the BADA aircraft database in
order to iteratively determine the performance during climb and cruise. The interactions between capacity
and fuel weight have also been reviewed. An useful tool is the determination of the marginal fuel weight for
additional payload. This can be used to get better estimates for the fuel burn for certain load factors, if the
model takes this into account.

The method of implementing the aircraft characteristics is found to be lacking in current literature on hub
location models. A common approach is to neglect any characteristics of the aircraft in the model, besides
incorporating the fuel component in the cost function. Some studies show an implementation of the max-
imum range of aircraft into the model. For example, a Capacitated Hub Location Problem (CHLP) model
formulated by Oktal and Ozger (2013), who limit the distance between two cities to the maximum range
at Maximum Take-Off Weight (MTOW) of an aircraft [58]. The model presented by Lowe and Sim (2013)
implements range for different aircrafts, by using different range brackets and updating the cost-function
based on the aircraft in that range bracket [44]. A direct implementation of aircraft characteristics is only
found in the AND model formulated by Jaillet et al. (1996), where the aircraft range and capacity are used to
determine the number of aircraft on a given route [37]. In addition, this method allows for multiple types of
aircraft to be regarded.



5
Review of the Dynamics of Cost and Demand

in Airport Networks

The final part of the literature research entails the review of cost dynamics and demand modeling in airport
networks. These elements of the model are grouped as they have some dependency on each other. The aim
of this chapter is to answer the sub-question: How can the dynamics of cost and demand be incorporated
into the model? The first part of the chapter, section 5.1, will look at the modelling of economies of scale:
the cost benefits of consolidating flows in Hub-and-Spoke (HS) networks. In section 5.2, the modelling of
price sensitivity is reviewed. This entails the change in demand due to a change in price of a given service.
In section 5.3, the various methods of determining the demand in an airport network are reviewed. At last,
in section 5.4, a discussion of the review is given.

5.1. Economies of Scale
One of the main benefits that the usage of hubs provides is consolidation of flows. These flow consolidations
have a positive effect on the operational cost as larger, more cost efficient, aircraft can be used and higher
load-factors can be expected. In addition, the usage of hubs could further reduce the investment cost by
focusing on on location only. This effect is called economies of scale. However, a main issue in conventional
hub location problems is the inadequate modelling of economies of scale [2]. This section will elaborate on
three modelling methods that vary in complexity: discounted arcs, piece-wise arcs, and multi-aircraft arcs.

5.1.1. Discounted Arc Cost
One of the earliest used methods to model economies of scale is to introduce a discount factor for inter-hub
transfers. This method models the cost-benefits of inter-hub travel as a discount on the operational cost
compared to a non-hub flight. This discount is visualised in Figure 5.1 [2]. This figure shows the total op-
erational cost based on the amount of flow between cities i and j . In the figure ci j described the standard
unit costs between cities i and j and α is the discount factor of the flow between two hubs. This method
is present in a p-HMP formulated by Campbell (1994) and the total cost of the itinerary is shown in Equa-
tion 5.1 [10]. This equation describes the cost between an OD pair i and j using hubs k and m using three
cost components: two spoke-hub flights and one discounted inter-hub flight.

Ci j km = ci k + cm j +αckm (5.1)

This method has been applied in many other hub location models and still is the basis for recent research
in the field [2]. For example, it can still be found in studies such as: Mahmoodjanloo et al. (2020) which
uses this implementation to formulate a multi-modal hub location pricing problem [46], and Gelareh et al.
(2015) which shows a formulation for an uncapacitated multi-allocation hub model with budget constraints
for the operator of the network [28].

This implementation allows for less complex models, however, it may not always be a good reflection of real
networks [2]. It assumes that the cost is linear compared to the flow between two cities, which could lead to
effects of economies of scale being modelled incorrectly. For example, a spoke-hub connection with a large
flow benefits of economies of scale by using larger vehicles, but will be priced using the non-discounted
cost.

34
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Figure 5.1: Cost function diagram based on the flow between cities i and j :
A regular cost-function and its discounted form by factor α [2].

5.1.2. Piece-Wise Arc Cost
Regarding the previous implementation, a more adequate representation of the effects of economies of
scale would be to take into account the size of the flow over an arc. O’Kelly and Bryan (1998) propose a non-
linear cost function, which represents the decrease in the marginal unit cost with an increase in the load
factor of a vehicle [59]. A visual representation of the total operational cost against the total flow is shown
as the curve in Figure 5.2 [2]. This formulation prevents incorrect effects from the discounted-arc method,
such as incorrect pricing on spoke-hub connections with large flows.

O’Kelly and Bryan (1998) do remark that the use of non-linear formulations make the model impractical to
solve and therefore propose a piece-wise linear approximation. For better modelling, this function can be
adapted to a piece-wise function. Each of these pieces has their own slope, the discount factor, and a fixed
starting cost [59]. Such a piece-wise function is shown as well in Figure 5.2, with discount-factors β1 and β2

for the two pieces.

Figure 5.2: Cost function diagram based on the flow between cities i and j :
A non-linear cost-function and a piece-wise approximation [2].

The formulation presented by O’Kelly and Bryan (1998) implements this piece-wise arc cost on the inter-
hub connection using the following method. The total operational cost Ci j km from Equation 5.1 is updated
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to Equation 5.2 [59]. In this equation, the discount factor is determined for a corresponding segment, q .
The slope of a segment is aq and the fixed cost of a segment is FCq . The total flow on the inter-hub link
(k,m) to which the given aq is applied to is Rqkm . At last, Yqkm is 1 if the flow on the inter-hub link (k,m) is
charged the fixed cost FCq , otherwise it is 0.

Ci j km = ci k + cm j + ckm

∑
q
(
aq Rqkm +FCq Yqkm

)∑
q Rqkm

(5.2)

In a computational study, this method was compared to the discounted-arc method and it was shown that
the new method retains the properties of the original method while improving the properties of the cost
function. However, a possible problem might be the property of user equilibrium, which can not be guar-
anteed in a system with flow-dependent costs. This could result in paths emerging in the network that are
not the least-cost paths of a OD sub-market [59].

5.1.3. Multi-Aircraft Arcs
An interesting interpretation of the piece-wise approximation is to consider the segments to belong to dif-
ferent vehicle types. For example, a two-piece approximation might represent a small and large vehicle. A
downside of using the piece-wise approximation, is that the fixed costs originate from the non-linear curve,
instead of being adapted to the actual fixed costs of upsizing to a new vehicle. [2]

A variation of the piece-wise approximation is the use of step-wise functions, which rely on linear discount
factors, but to take into account the fixed costs per vehicle. After a certain flow is reached, a new vehicle is
needed and the fixed cost of a vehicle is charged. Kimms (2006) provides a method that also includes multi-
ple types of aircraft in the cost function [41]. By overlapping the fixed cost and the variable cost functions of
multiple aircraft, the cheapest option for each size of passenger flow can be determined. A visual represen-
tation is given in Figure 5.3 [2]. This figure shows the total operation cost functions for a small vehicle and a
large vehicle. The minimum cost option per size of flow is highlighted.

Figure 5.3: Cost function diagram based on the flow between cities i and j :
A piece-wise cost-function representing the minimum cost between a small and a large vehicle [2].

This approach of Kimms (2016) allows for the incorporation of economies of scale on non-hub connections
and is implemented by adding indexes to the cost variable: ci j is divided into fixed costs f and variable

costs v , and a distinction is made between modes of transport m. This results in the variables c f m
i j for fixed

costs and cvm
i j for variable costs. This does also come with a change in decision variables: the flow on a flight

between i and j using mode m is f m
i j , and the number of vehicles between i and j of mode m is zm

i j . [41]
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Another study presented by Serper and Alumur (2016) builds on this method by implementing different
capacities for the various modes of transport. A computational study was performed by using a heuristic
algorithm on a network of 25 nodes. The results showed that a network could be optimised in 30 minutes
with solution gaps around 1% [64]. An additional complexity of the problem can be expected compared to
the previous methods due to the added decision variables, but the result is a more realistic modelling of the
economies of scale. In this case, an extra benefit is the determination of the types of vehicles on each route.

5.2. Price Sensitivity
In the previously described problems in chapter 2, it is assumed that the demands in the network are inelas-
tic. This implies that the demand between a OD pair is not influenced by the type of service offered on the
route. However, the use of a Hub-and-Spoke (HS) network in the hub location models, instead of aPoint-to-
Point (P2P) network, introduces changes to the transportation costs, routes and travel times. These changes
can be expected to alter the demand for certain routes [32].

In this case, the demand in a OD sub-market is expected to be elastic, which means the demand is depen-
dent on the price of the service offered. In a HS network, it is possible for multiple services to occur in a OD
sub-market. For example, a direct flight, a one-stop flight or a two-stop flight, where each of these services
has their own price. O’Kelly et al. (2015) presents an invertible demand function, ρ =φ(w), in order to show
the connection between the prices and the demands of these services, where the vectors ρ and w indicate
the prices and the demand of the services respectively [60]. This function can be used to determine the
willingness to pay for a service by taking the integral of the demand function for the given demand. This
integral is shown in Equation 5.3 [60].

∫ w

0
φ(ξ)dξ=∑

i

∑
j

∫ wi j

0
φ(ξi j )dξi j (5.3)

In order to optimise for a network with elastic demand, the method of minimising the total operational
costs does not suffice. Instead, to maximise the covered demand, strategic hub location decisions should
be implemented with a focus on maximising the profit [42]. Such a shift in objective can lead to a funda-
mentally different hub network that is able to cover more demand, when assuming price elasticity [42].

An example of a profit maximisation model is presented by O’Kelly et al. (2015), where the conventional p-
HMP is adapted to include the different types of service that are available in each OD sub-market [60]. The
formulation of the model is given in Equation 5.4 - 5.16. The objective of the model is based on customer
utilities for all the OD sub-markets, and subtracting the operational costs of the different services and the
set-up costs of hub locations.

In this model, the decision variables are: xi j km , the flow between OD pair i and j using hubs k and m,
yi j km , the flow between OD pair i and j using hub k, zi j , the flow between OD pair i and j directly, and
γk , an integer indicating if node k is a hub. The total demand of a sub-market is given by bi j and the
equilibrium demands of the different services are ẅi j , w i j and w̃i j for the two-stop, one-stop and direct
service respectively. The cost of each service c̈i j , c i j and c̃i j , uses the same notation. The cost of establishing
a hub at node k is fk .

max
∑

i

∑
j

∫ wi j

0
φ(ξi j )dξi j −

∑
i

∑
j

∑
k

∑
m

c̈i j km xi j km −∑
i

∑
j

∑
k

c i j k yi j k −
∑

i

∑
j

c̃i j zi j −
∑
k

fkγk (5.4)
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s.t.

Yi j k +
∑

m ̸=k
xi j km + ∑

m ̸=k
xi j mk ≤ bi jγk ∀i , j ,k

(5.5)∑
k

∑
m

xi j km ≥ ẅi j ∀i , j (5.6)∑
k

yi j k ≥ w i j ∀i , j (5.7)

zi j ≥ w̃i j ∀i , j (5.8)∑
k
γk = P (5.9)

xi j km ≥ 0 ∀i , j ,k,m (5.10)

yi j k ≥ 0 ∀i , j ,k (5.11)

zi j ≥ 0 ∀i , j (5.12)

ẅi j ∈R ∀i , j (5.13)

w j ∈R ∀i , j (5.14)

w̃i j ∈R ∀i , j (5.15)

γk ∈ {0,1} ∀k (5.16)

This model is presented by O’Kelly et al. (2015) as the first hub location model to integrate three different
service types in the model. A computational study with test data showed that the location of the hubs are
centrally clustered as the hubs provide multiple services, in this case the one-stop and two-stop itineraries.
Lin and Lee (2018) present another hub location problem with elastic demands for less-than-truckload
freight, but with capacities on the hub locations. With a different model formulation, the same behaviour
in hub location is visible; the hub network is denser when the objective is profit maximisation, compared to
when the objective is cost minimisation.

The incorporation of price elasticity improves the realism of the problem, however, not much research has
been dedicated to this subject. Alumur et al. (2021) suggests the incorporation of a more realistic demand
as a key topic in future research in hub location problems [2]. For example, a remaining question of the
study of O’Kelly et al. (2015) is to connect the model to real cases by calibrating the demand functions with
real data [60].

5.3. Demand Modelling
An obvious approach to obtaining the demand flows in a network is to directly use demand data from real-
life. However, such data is only applicable to the current real-life airport network. The nature of demand is
highly variable and the elasticity of demand regarding air fares, flight frequency and hub location all have an
influence on the current demand [2]. Using such data could be less reliable in a hub location model where
the network is different from the real-life network. An alternative to this could be to estimate the demand.
A cross-sectional analysis looks into the different factors that influence the demand for an OD pair. Factors
may include the population size and income figures, but could also be the type of city; a touristic city, such
as Las Vegas, generates different traffic than a commercial city, such as New York City [54].

Various approaches to travel demand modelling are available, but Hsiao and Hansen (2011) note that the
models can be categorised by two types. A distinction is made between demand generation models and
demand assignment models. The first type concerns the determination of the size of the flows. The second
type is able to generate the distribution of the traffic in a network, for example the choice of different routes
between an OD pair [35]. The second type of model will be omitted from the research as distribution of
traffic should be a result of the hub location model and not be an input.
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Several approaches for demand generation models will be explained in the remainder of the chapter. The
demand generation models can be divided into supply-side and demand-side formulations. This distinc-
tion is made by Hsiao and Hansen (2011), where the supply-side formulations are focused on factors such
as flight frequency and air fares and the demand-side formulations are based on factors such as population
and income figures. [35]

5.3.1. Supply-Side
This section will look at various models based on the first category of demand generation models based on
supply-side factors. Examples of these factors are the flight frequencies and air fares of the flights between
an OD pair. One of the earliest models is presented by Swan (1979). The quality of service is presented as
an important decision factor of consumers, in addition to cost, when choosing a flight between an OD pair.
The quality of service can be influenced by, for example, the inconvenience involved with low frequency
flights. A flight scheduled with low frequency is likely to be at the desired time of the consumer, resulting in
a displacement time subjected onto the consumer. Other qualities of service might be the duration and the
comfort of the trip. [69]

These qualities of service, in combination with the air fare, can be represented as a the perceived price of
the service. The formulation of the perceived price, PP , is shown in Equation 5.17. In this equation, F is the
airfare, T is the total travel time, v is the value of time of the consumer, q is the variable representing the
quantised quality dimensions, and h are the implied prices of the quality dimensions.

PP = F + v ·T + g ·q (5.17)

The demand between an OD pair is then found using Equation 5.18. In this equation, k1 is a market density
constant and α represents the price elasticity. The price elasticity normally varies across different income
groups, however, as the perceived price takes into account the actual price and time this factor is relatively
constant. This assumption can be made as low income groups value time less compared to higher income
groups, and the opposite is true for the actual airfare. [69].

D = k1 ·PPα (5.18)

Another supply-side based model is presented by Abrahams (1983). In the formulated model, demand is
again based on the cost imposed on the traveler. The cost is defined as the airfare, as well as the value of
time spent utilising the airline service. The time spent utilising the airline service is comparable to one of
the qualities of service from the model of Swan (1979). The time lost due to infrequent flights is in this
model called the schedule delay. A difference of this model is the addition of more factors, such as automo-
bile costs, which is chosen as an alternative mode of travel. [1]

The demand equation formulated by Abrahams (1983) is given in Equation 5.19 [1]. In this equation, X (i , j )
is the demand between cities i and j , P is the lowest airfare, SD is the expected schedule delay, AC is the
automobile costs, POP is the population of city i times the population of city j , Y is the income per capita,
and GGN P is the rate of growth of the Gross National Product. Each factor is multiplied with a factor αx ,
which are determined by fitting the model to real-life data.

X (i , j ) =α0 +α1P (i , j )+α2SD(i , j )+α3 AC (i , j )+α4POP (i , j )+α5Y (i , j )+α6GGN P (5.19)

Other supply-side based models are similar in formulation; a set of factors are assumed to be influential in
the demand between an OD pair and the model is fitted against real-life data. The set of factors can be made
more specific to the region that is to be modelled. An example is the model formulated by Bhadra (2002)
[6]. This model considers the size of the presence of Southwest Airlines, a low-cost carrier, in a given OD
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pair as a factor for the demand. This is in addition to other factors, such as the market power of dominant
and non-dominant airlines. Another model presented by Wei and Hansen (2006) considers more detailed
supply-side factors, such as the number of spokes of an airline serving the chosen hub, the capacity of the
hub, and the average number of seats on the aircraft used on the given OD pair.[72]

A critique of the supply-side based models is that not all possible routes for a OD pair are considered [35].
This could lead to misleading results when for example the lowest travel time in a OD pair are considered,
even though this flight is scheduled with a low frequency, or the flight has a high fare.

5.3.2. Demand-Side
The second category of demand generation models are based on demand-side factors. These factors are for
example the population size, the income figures and the distances between the cities, which are not related
to the characteristics of the airport network.

In early research, Verleger (1972) presents three different simple models that can be used to estimate the
demand of a transportation network. The three types are gravity models, point-to-point models, and aggre-
gate models, which use supply-side based factors. This section will focus on the first two types of models.
[71]

The first type of model is the gravity model. These models follow the assumption that the demand between
two cities will decrease with an increase in distance. However, the demand will grow if the two cities have
larger populations. A basic formulation of the gravity model is shown in Equation 5.20. In this equation, Ti j

is the travel demand between cities i and j , Mi is the population of city i , di j is the distance between cities
i and j , and a is a variable for fitting the model. A variation of the model is shown in Equation 5.21, which
incorporates different travel inducing effects by using variables αi for city i . [71]

Ti j = a
Mi M j

d 2
i j

(5.20) Ti j = a
Mαi

i M
α j

j

d 2
i j

(5.21)

The presented models require much less data compared to the supply-side based models presented in sub-
section 5.3.1. However, Verleger (1972) outlines that heterogeneous markets are difficult to fit to such mod-
els. Satisfactory results have only been achieved with homogeneous markets, for example, the Northeast
Corridor in the United States. [71]

Simple gravity models have been used however in hub location problems as a basis in the simulation of the
models. For example, Jaillet et al (1996) uses the gravity model shown in Equation 5.22, where fi j is the
demand between cities i and j [37]. This model only uses the following variables: pi being the population
size of city i and α a constant.

fi j =α
(
pi p j

)0 .5 (5.22)

Another more recent hub location model, formulated by Bernardes Real et al. (2018), is analysed using the
gravity model shown in Equation 5.23. In this equation, wi j is the demand between cities i and j , pi is the
population of city i divided by 100.000, gi the factor representing the Gross Domestic Product (GDP) of city
i , and di j is the distance between cities i and j . [5]

wi j = pi p j gi g j exp−0.01di j (5.23)

The apparent use case of the gravity models is not to accurately represent the demand flows of a network,
rather the generated instances are used to obtain some meaningful results when analysing the formulated
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models. In the case of the model formulated by Jaillet et al. (1996), different data sets are obtained by vary-
ing the constant factor α in the analysis [37].

Next to the gravity models, Verleger (1972) also presented point-to-point models. Such models are based
on data specific to an OD city pair. These models do not regard the travel on other city pairs. Additional
assumption followed in the given model are that general economic conditions and the distribution of busi-
ness and leisure are omitted. [71]

The point-to-point model presented in the paper is shown in Equation 5.24. In this equation, Ti j (t ) is the
travel demand between cities i and j at time t , Pi j is the price between cities i and j , Mi is the mass of city
i , and a, α and β are constants.

Ti j (t ) = aPi j (t )αMi (t )β1 M j (t )β2ϵ (5.24)

A downside of using such models is that every OD city pair needs to be fitted separately, which could lead
to problems where much less data is available for certain city pairs than others. Verleger (1972) also states
that aggregate models could also be able to provide better estimates compares to point-to-point models,
as such models are able to distinguish between the different purposes that travelers may have, instead of
grouping all travelers for an OD pair. However, the point-to-point models are much easier to construct as
data is better accessible. [71]

The main purpose, however, of the formulated point-to-point model by Verleger (1972) was to perform an
analysis between OD city pairs and the demand flows and find out if there are regularities to be found in
these demand flows and if this could lead to feasible gravity models. [71]

5.4. Discussion
This chapter has presented a review on the methods of incorporating the dynamics of cost and demand
in airport network models. The aim is to present the interaction of these two components of the airport
network and to show methods of determining the demand in an airport network. This chapter has been
divided into three components that encompass the dynamics of cost and demand: the incorporation of
economies of scale into a hub location problem, the effect of price sensitivity on demand and the possible
implementations, and the determination of demand itself in the airport network. This section will briefly
discuss the results of the literature review.

First, the effect of economies of scale is reviewed. This effect describes the cost benefits that can be ob-
tained by consolidating flows, for example in a HS network. Alumur et al. (2021) states that a key theme
in the future of hub location problems is to improve the implementation of economies of scale [2]. Most
implementations consider a discount-factor inter-hub arcs, to represent the use of larger and more cost
efficient vehicles. This does result that no cost-benefits can be obtained on non-hub arcs, even though
there could be large flows of passengers present. Kimms (2016) presents a better method that models a cost
function that allows for a better adaptation to the size of the passenger flows [41], while also allowing for
multiple aircraft types to be considered. A downside of the more accurate methods, such as the piece-wise
cost functions, is the increase in computational effort.

Another key point presented by Alumur et al. (2021) is to improve the nature of the demand in hub location
problems [2]. This chapter has focused on the incorporation of price sensitivity and demand modelling
itself. A simple approach to determine the demand in a model is to use the demand data of the current
network, for example, obtained from ticket sales. However, a change in the network can cause a response
in the demand. The flow through a sub-market can downgrade due to higher prices or even stop to exist
[60]. The realism of the model can be increased if such effects are taken into account, however, estimating
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demand remains a complex task as it is related to various components of the network, such as price, level of
service and network design [60]. An implementation of this effect is presented by O’Kelly et al. (2015), who
includes different levels of service for different groups of consumers to maximise the profit of the network.
An interesting extension to this problem could be the implementation of different classes on the same flight
in order to maximise profits, compared to a passenger-mix problem. Further research should be performed
in order to understand the correct implementation of real-life data into such models.



6
Conclusion

The aim of this report was to review the modelling approach of world-wide networks. The research ques-
tion that was answered in this question is: How can a large scale world-wide airport network be modelled in
order to analyse the traffic flows and emergence of hubs due to changes in cost? This question was divided
up into four subjects regarding the formulation of the model, the method of optimising the problem, the
airport and aircraft characteristic, and the dynamics of cost and demand in the network.

The first of these sub-questions is: How can an airport network with hubs be modelled to show the effects
of cost? The review showed several possible models that are capable of projecting the traffic flows through
a network, where the differences were mainly based on the structure of the network. In this case, there
are models that inherently assume a Hub-and-Spoke network or models that show the emergence of hubs
based on cost benefits on the consolidation of flows. Different formulations were presented that can im-
prove the computational efficiency. For example, path-based and flow-based formulations were reviewed,
where the latter is capable of reducing the size of the problem, but also introduces weaker LP bounds to the
problem.

The next sub-question is: What are possible optimisation methods which allow for solving large scale prob-
lems? The review focused on exact and meta-heuristic methods that have been applied to hub location
problems. Several implementations of the meta-heuristic methods display their ability to solve large-scale
problems. Specialised exact methods are however also able to solve large-scale problems, given that several
optimisation techniques are combined. Some of the largest networks of hub location problems that have
been reviewed vary between 100 and 500 nodes.

The third sub-question regarded is: What methods are available to model the airport and aircraft charac-
teristics in the model? The review first considered the determination of the characteristics of airports and
aircraft in the network. For airports, the important part is the implementation of capacity. For aircraft, it
is the range, fuel burn, and capacity. Current literature of hub location problems does not mainly focus on
implementing the characteristics of aircraft, besides fuel cost into the models. Only some literature is avail-
able on implementing multiple aircraft in the modelling of world-wide airport networks.

The last sub-question is: How can the dynamics of cost and demand be incorporated into the model? The
review focuses on methods to implement effects of flow consolidation, also known as economies of scale,
and the effects of price sensitivity into the model. In addition, estimating demand remains a complex task
due to the many influences, such as price, level of service, and network design. Further research should be
performed in order to understand better implementations of real-life data into such models.

This literature review presents a good basis for the next phases of the research. Some decisions will need to
be made based on the desired level of detail of the model. If more complex methods are desired, such as
a better implementation of aircraft characteristics, it is important to analyse the effects it may have on the
computational efficiency of the model.
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