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In this paper, an adaptive, disturbance-based sliding-mode controller for hypersonic-entry vehicles is proposed.

The scheme is based on high-order sliding-mode theory, and is coupled to an extended sliding-mode observer, able to

reconstruct online the disturbances. The result is a numerically stable control scheme, able to adapt online to reduce

the error in the presence ofmultiple uncertainties. The transformation of a high-order sliding-mode technique into an

adaptive law by using the extended sliding-mode observer is, together with the multi-input/multi-output formulation

for hypersonic-entry vehicles, the main contribution of this paper. The robustness is verified with respect to

perturbations in terms of initial conditions, atmospheric density variations, as well as mass and aerodynamic

uncertainties. Results show that the approach is valid, leading to an accurate disturbance reconstruction, to a better

transient, and to good tracking performance, improved of about 50% in terms of altitude and range errors with

respect to the corresponding standard sliding-mode-control approach.

Nomenclature

ah = third time derivative of h not dependent on control,
m∕s3

aV = second time derivative of V not dependent on
control, m∕s3

a�x�, b�x� = generic functions
bh;α = third time derivative of h dependent on uα, m∕s2
bh;μ = third time derivative of h dependent on uμ, m∕s2
bV;α = second time derivative ofV dependent onuα,m∕s2
bV;μ = second time derivative ofV dependent onuμ,m∕s2
CD = drag coefficient
CL = lift coefficient
D = drag acceleration, m∕s2
d = generic unknown function
dh = altitude-related disturbance/uncertainty, m∕s3
dV = velocity-related disturbance/uncertainty, m∕s3
g = gravitational acceleration, m∕s2
h = altitude, m
ki = nonlinear sliding-mode gains of the ith variable
L = lift acceleration, m∕s2
M = Mach number
nz = load factor
_Q = heat flux, W∕m2

�q = dynamic pressure, N∕m2

Rgas = specific gas constant, J∕�kg · K�
r = radial position, m
rD = relative degree of the system
sat = saturation function
sgn = sign function

T = temperature, K
Th = temperature derivative with respect to the altitude,

K∕m
uα = feedback angle-of-attack rate, rad∕s
uμ = feedback bank-angle rate, rad∕s
V = velocity modulus, m∕s
x�t� = state vector
α = angle of attack, rad
γ = flight-path angle, rad
γgas = specific-heat ratio
θ = longitude, rad
κmi = ith nonlinear sliding-mode gains of the kth variable
λmi = ith linear sliding-mode gains of the kth variable
μ = bank angle, rad
ρ = atmospheric density, kg∕m3

σ = generic sliding variable, standard deviation
ϕ = latitude, rad
ψ = velocity azimuth angle, rad
_�·� = first time derivative, �·�∕s
��·� = second time derivative, �·�∕s2
�·�
:::

= third time derivative, �·�∕s3b�·� = estimate of �·�, �·�
~�·� = residual of �·�, �·�
�·�ref = reference variable
�·��·� = generic subscript

I. Introduction

E NTRY guidance of an unpowered vehicle is a difficult task, as
the problem is governed by nonlinear equations of motion, and

multiple constraints acting on the vehicle must be taken into account.
For this reason, decades of research have provided several methods
for dealing with this problem. Among these, the so-called Apollo
entry guidance [1] has gained popularity in terms of reliability, and
has been used since the beginning of the Apollo program itself until
the last NASA missions (e.g., the Mars Science Laboratory [2,3]).
This method is based on the design of one or more reference drag-
velocity (or, alternatively, drag-energy) profiles that satisfy the
requirements of the mission. In the hypothesis of having a nominal
angle of attack, it is possible to extract the longitudinal states, that is,
the altitude, velocity, and flight-path angle, as well as the bank-angle
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command from the drag-energy model. Lateral motion is usually
controlled with so-called bank reversals, consisting of a rapid change
of the sign of the bank angle, but preserving its modulus. With this
approach, it is possible to keep the heading-alignment error under
control, while minimizing the impact of the lateral guidance on the
longitudinal performance of the system.
Over the last years, an alternative to the class of drag-energy

methods has arisen, based on the use of optimal-control theory, and
several tools have been developed over the years, such as DIDO [4,5]
and SPARTAN [6,7]. The problem is described in terms of a cost
function to be minimized (or maximized) and the differential
equations representing the motion of the vehicle. Moreover, other
constraints, such as the load factor and the heat flux, can be included
in the optimization problem as nonlinear algebraic constraints. The
optimal-control problem can be transcribed and solved with one
of many off-the-shelf available software (e.g., SNOPT [8] or
IPOPT [9]).
These two families of methods rely on several assumptions,

though. For instance, they use analytical or semi-analytical models
for the gravity field and the atmospheric density. Moreover,
dispersions on the initial states, the mass of the vehicle, and other
external disturbances affect the performance of the system.
Therefore, a feedback scheme, able to track the desired trajectory and
to reject these disturbances, is required. On this subject, several
alternatives have been proposed over the years. In [10,11], linear and
nonlinear feedback laws with a proportional–integral derivative
structure for the longitudinal tracking were proposed. The lateral
error was in both cases kept under control with the bank-reversal
management logic.
Alternatively, in [12,13], the use of different tracking laws based

on a tradeoff between longitudinal and lateral guidance performance
was suggested, whereas in [14] a pre-terminal area for energy
management ground-track control to limit the heading error was
adopted. Other possible solutions foresaw the use of a receding-
horizon scheme based on the linearized time-varying dynamics to be
controlled [15], and a unified predictor–corrector algorithm [16],
which covers all the possible entrymission profiles. The problemwas
also approached by using different gain-scheduling controllers
[17,18], or by tracking altitude and velocity via model reference
adaptive control [19,20]. A possible alternative to the state-tracking
schemes is a generalized constraint-tracking guidance, with a
particular emphasis on the tracking of the heat flux [21,22].
A different way to approach the tracking problem comes from the

field of attitude-control techniques, more specifically sliding-mode
control (SMC) [23], which shows excellent robustness against
perturbations with known upper bounds. This technique can be
applied to nonlinear systems; therefore, no large amount of
information has to be stored, as is the case forH∞ controllers, which
suffer from the rapid increase of the number of states needed to
represent the uncertainties, and the need to apply a gain-scheduling
technique, because they are conceived for linear systems.
Another advantage associated with the use of SMC techniques is

its robustness with respect to uncertainties and disturbances, because
of its nonlinear nature. Interesting results for the entry problem have
been obtained by using terminal-guidance high-order sliding-mode
(HOSM) controllers, in both the time [24] and range [25] domains,
respectively. They are based on the definition of sliding surfaces
associated with predefined terminal conditions to be achieved. More
recently, a new class of adaptive HOSM controllers was proposed
[26–28]. These methods generalize the possibility to apply virtually
chattering-free sliding-mode controllers to systems with relative
degree larger than 1 [29]. The controller is made adaptive by using a
double-layer strategy to estimate online the minimum gain required
to dominate unknown, but bounded disturbances acting on the
system. The adaptation is obtained by using the concept of equivalent
control, filtered out from the current control signal, and fed back into
the double-layer algorithm. However, a drawback of this technique
is the small step size required to obtain a stable numerical scheme
for the gains. Moreover, it requires the design of a dedicated
differentiator, which represents a parasitic dynamics [30], and needs
to be included in the loop.

In this work, an alternative adaptive disturbance-based high-order
SMC (ADHOSMC) scheme, based on an extended sliding-mode
observer (SMO), is proposed. Instead of estimating the equivalent
control via low-pass filtering, we propose to use a multi-input/multi-
output (MIMO) sliding-mode disturbance observer, able to
reconstruct online the disturbances acting on the system, and at the
same time, to observe the σ dynamics, that is, the sliding variables
representing the state errors, which can be fed in the loop. The
advantage of this approach is twofold. First, it relaxes the
requirements for the step size needed for the scheme. Second, at the
same time, it provides the derivatives of the sliding variables needed
to compute the tracking law.
The vehicle considered in this paper is the sharp edge flight

experiment (SHEFEX)-3 prototype, a vehicle planned by the DLR,
German Aerospace Center [31,32] for the demonstration of several
entry technologies. The proposed tracking law can be used as
feedback-control scheme together with onboard trajectory-
generation algorithms [33,34], as well as in conjunction with pure
optimal trajectory-generation tools [6,7]. The work is organized as
follows. In Sec. II, the vehicle and the scenario are briefly introduced,
whereas in Sec. III the adaptiveHOSM is described in detail, together
with a series of simulations coming from a simplified example
motivating the current work. In Sec. IV, the proposed technique is
applied to the longitudinal equations of motion of an unpowered
entry vehicle, whereas Sec. V focuses on the validation of the
proposed algorithms, and compares the results with a traditional
SMC algorithm. Finally, in Sec. VI, some conclusions on the work
are drawn.

II. Vehicle and Scenario Characterization

SHEFEX is a program of technological development for
atmospheric entry, conceived and led by the DLR, German
Aerospace Center over the last 20 years [35]. The idea is to test
technologies for atmospheric entry, such as structural and thermal-
protection systems, with the focus to transform blunt areas into flat
surfaces, to reduce costs without penalizing system performance.
SHEFEX-1 was successfully launched on 27 October 2005 from

Andøya Rocket Range in Andenes, Norway. The experiments
measured several aerodynamics parameters and their effect on the
structure during atmospheric entry, and used passive control during
entry. This mission also demonstrated that sounding rockets are
suitable for atmospheric entry experiments. The SHEFEX project
served as a starting point for SHEFEX-2, launched on 22 June 2012,
also from Andøya Rocket Range. The goal of SHEFEX-2 was to
validate analytical predictions and ground-test data, and to
investigate technologies for hypersonic and space-transportation
systems. To go on with the effort to increase the technological level
for real space missions, the development of SHEFEX-3 began in
2012. The SHEFEX-3 vehicle has a faceted surface, which
guarantees minor costs in terms of manufacturing. One of the
proposed designs (the reference one for this work) is shown in Fig. 1.
The reference surface is equal to 0.468 m2. The vehicle has its

center of mass (c.m.) at 55%, starting from the nose, and is fully
trimmable.
The entry interface has an initial altitude and velocity of 100 km

and 6.5 km∕s, respectively, and an initial flight-path angle equal to

Fig. 1 SHEFEX-3 entry vehicle.
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0 deg. Details on the entry interface and the vehicle data are listed in

Table 1, whereas the open-loop results are presented in Figs. 2 and 3.

The open-loop commands are defined as follows: the angle of attack

is initially equal to 45 deg, and slowly decreases until the value of

22 deg (corresponding to the maximum L∕D) is achieved. This

guarantees the correct exposure of the thermal-protection system at

the beginning of the mission, when a large heat flux is experienced,

whereas in the second part of themission, theL∕D ratio ismaximized

to extend the range capabilities of the vehicle. The bank-angle profile

varies from an initial value of 60 deg to a value of 45 deg to ensure a

sufficient margin of controllability.

The reference controls ensure proper final conditions in terms of

altitude and velocity, which allow for the opening of the parachute

system, while providing sufficient range, required for the onboard

experiments. It is worth mentioning that angular-rate limits were

included in the design of the control strategy. Specifically, these

limits are equal to 5 deg ∕s for both the angle-of-attack rate and the
bank-angle rate, and are compatible with the constraints coming

from the flight-control system. In the frame of this work, no lateral

control is included. However, the method can be fully coupled

with bank-reversal management, or with other lateral control

schemes.

Figure 2 shows the open-loop trajectory. Specifically, the plots in

the top left and the center left, representing the altitude (Fig. 2a) and

the flight-path angle (Fig. 2c), show one of the difficulties associated

with this scenario [i.e., the phugoid oscillations (typical of flight at

maximum L∕D)], and a high variability of the states, which require

an adequate reaction capability of the control scheme to be employed.

In Fig. 2b, the velocity modulus is depicted, in which one can see that

the velocity is almost constant during the first 200 s (as the drag is too

low to reduce it), and then decreases once that the vehicle experiences

a thicker atmospheric density, and therefore, a larger drag

acceleration. In Fig. 2d plot, the nominal range is depicted. One can

see that the spacecraft travels for about 3000 km. Plots in Figs. 2e and

2f present the corresponding open-loop profiles of angle of attack and

bank angle.

Table 1 SHEFEX-3 vehicle parameters and initial state

Parameter Value Unit State Initial value Unit

Mass 500 kg Altitude h 100.0 km
Reference surface 0.468 m2 Longitude θ 2.1 deg
Length 1.85 m Latitude ϕ 68.5 deg
Width 1.85 m Velocity modulus V 6500.0 m∕s
Height 0.66 m Flight-path angle γ 0.0 deg
c.m. 55% — — Heading angle γ −144.0 deg
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120

0 200 400 600 800
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0

1000

2000
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0 200 400 600 800
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e) Open-loop angle of attack f) Open-loop bank angle

c) Open-loop flight-path angle d) Open-loop range

a) Open-loop altitude b) Open-loop velocity

Fig. 2 Open-loop trajectory: states and controls.
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Finally, in Fig. 3, the constraints acting on the vehicle [i.e., the
dynamic pressure �q (Fig. 3a), the heat flux _Q (Fig. 3b), and the
vertical load factor nz (Fig. 3c)], together with their corresponding
limits, are depicted. Specifically, they are computed as

�q � 1

2
ρV2; _Q � kq

���
ρ

p
V3; nz �

jL cos α�D sin αj
g0

(1)

in which ρ is the atmospheric density expressed in kilogram per cubic
meter; kq is a constant depending on the material and the geometry
of the thermal-protection system, for SHEFEX-3 equal to
3.111 · 10−4 kg1∕2∕m3; and g0 is the gravity acceleration at sea
level (g0 � 9.806 m∕s2). The structural limits of the vehicle and the
active thermal-protection system dictate a limit for the preceding
constraints. These limits are equal to �qU � 2 · 104 N∕m2,
_QU � 2.5 MW∕m2, and nz;U � 5 g, respectively.

III. Adaptive Disturbance-Based High-Order SMC

In this section, the ADHOSMC approach is explained.
Sections III.A and III.B describe the HOSM theory and the extended
sliding-mode disturbance observer, respectively. Their combination
leads to the proposed ADHOSMC approach. In Sec. III.C, a practical
example, motivating this work, is shown.

A. HOSM Theory

The HOSM theory deals with the design of robust controllers for
nonlinear systems. The name refers to the fact that the system to
control is expressed in affine formwith respect to the control signals.
This is done by differentiating the equations of motion until the
control appears linearly. We refer to the nth-order sliding-mode
controllerwhen the highest derivative of the state to track is of ordern.
It is therefore possible to link the state errors to the so-called sliding
surfaces. The control will constrain the system to stay on this sliding
surface, and this will ensure the correct tracking of the reference
signals. As a practical example, suppose that we have the system
dynamics described by

σ�n��t� � a�t� � b�t�u (2)

in which σ�t� ∈ R is the state error, or equivalently, the sliding
variable associated with the state x�t�, and defined as x�t� − xref�t�;
a�t� andb�t� are known functions∈ R; andu�t� ∈ R is the control. In
real applications, the functions a�t� and b�t� do not perfectly match
the models. Moreover, unmodeled terms may affect the results. We
can therefore rewrite Eq. (2) as

σ�n��t� � a�t� � Δa�t� � �b�t� � Δb�t��u � a�t� � b�t�u� d�t�
(3)

in which d�t� ∈ R is an unknown, bounded function. Note that the
function d�t�may contain combinations of several uncertainties and/
or disturbances. That is

d�t� � Δa�t� � Δb�t�u� du�t� (4)

with Δa�t� and Δb�t� representing errors in the models of a�t� and
b�t�; and du�t� includes further, unknown terms. The operator ���n� in
Eqs. (2) and (3) represents the nth derivative with respect to the
independent variable, in this case, the time t.
Proposition 1: Consider Eq. (2) in the nominal case (i.e.,

d�t� � 0). In the hypothesis of b�t� ≠ 0, it is possible to state that the
high-order SMC

u � −b�t�−1� ~u� a�t��

~u �
Xn−1
i�0

γijσ�i��t�jαi sgn�σ�i��t�� (5)

stabilizes the nonlinear system described by Eq. (2) if the terms γi are
taken such that the polynomial

f�p� � pn � γnp
n−1 � : : : � γ1 (6)

is Hurwitz (that is, all its roots have negative real parts), and the terms
αi are computed according to the formula

αi−1 �
αiαi�1

2αi�1 − αi
; i � 2; : : : ; n (7)

with αn�1 � 1, and the seed αn is defined in the range �1 − ϵ; 1�,
with ϵ << 1.
Proof: In [29], proposition 8.1, it is possible to find a rigorous

proof of proposition 1 for the special case a�t� � 0, b�t� � 1. If we
replace the affine mapping between control u and pseudocontrol ~u
defined as

u � −b�t�−1� ~u� a�t�� (8)

in Eq. (4), the system is reduced to

σ�n��t� �
Xn−1
i�0

γijσ�i��t�jαisgn�σ�i��t�� � 0 (9)

For the system described in Eq. (9), proposition 8.1 of [29] directly
holds. The proof is complete, and is valid for the generic case
a�t� ≠ 0, b�t� ≠ 0; 1.
Remark 1:Note that Eqs. (5) and (8) define a continuous controller.

As a consequence, no chattering affects the system, and therefore, no
saturation functions need to be selected to mitigate this effect at the
expense of a robustness decrease.

0 200 400 600 800

104

0

1

2
ref
max

0 200 400 600 800
0

1

2

3

0 200 400 600 800
0

5

a) Open-loop dynamic pressure b) Open-loop heat flux

c) Open-loop load factor
Fig. 3 Open-loop trajectory: constraints.
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The nominal case represented by Eq. (2) is still a special case. In
general, therewill be disturbances and uncertainties, whichwillmake
the d�t� term different from zero. Edwards and Shtessel proposed an
adaptive controller, based on a double-layer scheme, able to capture
the derivative of the disturbance _d�t�, and to use it to estimate online
the gain able to dominate the disturbance d�t� [28]. The scheme
works very well for small step sizes, which are suitable for industrial
applications. However, for entry-guidance schemes, this approach
may be complicated to be used, as outer-loop control-system
frequencies are usually lower (in the order of 1–10 Hz), and the
aforementioned approach may lead to numerical instabilities.
Moreover, the scheme still requires the design of a numerical
differentiator, as not all the derivatives of the states [required in
Eq. (5)], which are involved in the feedback loop, are directly
measured.
Therefore, to guarantee the validity of the hypothesis of

proposition 8.1 in [29] also in the presence of unknown disturbances,
we propose an alternative scheme, able to cope with larger step sizes
without reducing the accuracy of the results. The scheme is, at the
same time, able to observe the σ dynamics by only using
measurements of the states, and not their derivatives, and is based on
the sliding-mode differentiation theory [36,37].

B. Extended SMO

Let us define an augmented σ state σa ∈ Rn�1, defined as

σa � �σa;1; : : : ; σa;n; σa;n�1�T (10)

in which σa;n�1 � d�t�. The dynamics of Eq. (3) can be rewritten as

_σa;1 � σa;2

..

.

_σa;n � a� bu� d

_σa;n�1 � _d (11)

A system in the form of Eq. (11) can be estimated by using the sole
measurement of the first state σ1, supposed to be available [36,37].
(Here, the hypothesis of having a pure regulator problem, that is,
x1;ref � 0, σ1 � x1 − x1;ref � x1, is implicitly assumed, whereas the
general tracking problem is treated in Sec. IV.) The SMO can be
written as

_̂σa;1 � σ̂a;2 � λ1 ~σa;1 � κ1sgn� ~σa;1�
..
.

_̂σa;n � a� bu� λn ~σa;1 � κnsgn� ~σa;1�
_̂σa;n�1 � λn�1 ~σa;n�1 � κn�1sgn� ~σa;1� (12)

in which ~σa;1 is defined as σ1 − σ̂a;1. The terms λi > 0, i �
�1; n� 1� are linear gains, chosen such that the dynamics described
by Eq. (12) is stable, and define a Luenberger observer. Nonlinear
gains κi > 0, i � �1; n� 1� define a sliding-mode behavior, and
enforce the variables σ̂i to converge exponentially to the true sliding
states σi, i � �1; n� 1�, within an accuracy defined by a constant ϵ
such that

kσ1�t� − σ̂1�t�k ≪ ϵ ≪ 1 (13)

The consequence is that the estimated σ states converge to the
true ones, whereas the �n� 1�th component converges to the
disturbance d�t�, which means that the disturbance is reconstructed
in real time, and can be used to make the controller defined in
Eq. (5) adaptive.
Proposition 2: The structure defined in Eq. (12) converges to the

true σ state, provided that κ1 > jσa;2�t� −bσa;2�t�jmax.
Proof: A formal proof of proposition 2 is described in [36].

Remark 2: Note that the availability of σ1 is a realistic
hypothesis; as for the case of atmospheric entry, measurements of
altitude and velocity, available from the navigation solution, are
employed [38].
Remark 3: A more general criterion for the selection of the linear

and nonlinear gains, which appear in Eq. (12), is described in
Sec. III.C.
If we indicate the estimate of the disturbance d�t� as d̂�t�, we can

modify Eq. (5), and define the disturbance-based high-order SMC
law as

u � −b̂−1� ~u� â� d̂�; ~u �
Xn−1
i�0

γijσ�i�jαisgn�σ�i�� (14)

in which â and b̂ are the nominal functions a and b computed by
using the state estimates and obtained by the SMO; this online
estimator also provides the disturbance estimate d̂.
Proposition 3: Suppose that the disturbance signal d�t� is

bounded, together with its first and second derivatives, that is, there
exist some values δ0, δ1, δ2, such that jd�t�j ≤ δ0, j _d�t�j ≤ δ1, and
j �d�t�j ≤ δ2. Then, the adaptive law defined by Eq. (14) drives
the dynamics of Eq. (5) toward the equilibrium point
�σ1; : : : ; σn�T � �0; : : : ; 0�T in finite time.
Proof: Let us assume that the conditions for the SMO existence

hold. Then, each of the variables in the SMOofEq. (11)will converge
to the true ones, as stated in proposition 2. This means that, once the
observation sliding surface σa;1 is reached and maintained, the
dynamics is reduced to Eq. (9), and proposition 8.1 of [29] once again
holds. The proof is complete.
Remark 4:Note that this is a theoretical result. In practice, what we

obtain by using the adaptive law of Eq. (14) is a dramatic reduction of
the disturbance acting on the system from the full unknown
disturbance term d to a much smaller residual ϵd � d − d̂, which is
bounded, by

jϵdj <
ϵ0
μ

(15)

in which ϵ0 ≪ 1 is a tuning parameter in the SMO, and μ is
the eigenvalue of the observer, properly defined in Sec. V.B, and
taken ≥ 1 throughout this work. However, given the robustness
of the HOSM framework, and the exponential stability of the
nonlinear observer, the convergence is fast, and the proposed
adaptive law makes the controller able to work in quasi-ideal
conditions.

IV. Motivational Example

In this section, a simple example illustrating the motivation of
the work is described. Suppose we have a system of third order,
defined as

σ�3��t� � a�t� � b�t�u� d�t� (16)

in which a and b are equal to 2 and 4, respectively, whereas d�t� is a
time-dependent uncertainty acting on the system. Suppose that the
initial state is defined as σ � �1 0.5 0�T , and that, in the absence
of uncertainties (i.e., d�t� � 0), we apply the controller defined by
Eq. (5). Results are omitted for brevity, but one can observe some
of the interesting features of the HOSM theory: the error converges
to the equilibrium point �0; 0; 0�T in finite time, and the control
signal does not show any trace of the chattering phenomenon. Let
us consider the presence of the disturbance d�t�. A possible
approach to take the (unknown) disturbance d�t� into account is to
define a double-layer adaptive scheme, based on the use of the so-
called equivalent control [27,28,30]. The idea is to counteract the
disturbance d�t� by means of two gains k�t� and ρ�t�, which
become an upper bound for the first and second derivatives of the
disturbance. It is possible to demonstrate that the corresponding
candidate Lyapunov function converges to 0, which means that the
gains themselves are bounded and converge to the unknown
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disturbance derivatives. An example of application of this
technique (simulated with a step size equal to 0.1 ms) is
represented in Figs. 4a–4d. There, the double-layer-based adaptive
scheme is able to drive the states of the perturbed system,
represented in Fig. 4a, by using the control signal (depicted in
Fig. 4b) to its equilibrium point. Figures 4c and 4d show the two
layers of gains k and ρ. They are integrated in the scheme to
compensate for the disturbances. To guarantee convergence, the first
gain has to be equal or greater than the absolute value of the first
derivative of the disturbance. An example of this adaptive scheme is
shown in Fig. 4c, in which the gain k tracks with some margin ϵk
(which is one of the tuning parameters) j _d�t�j. The tracking of the
disturbance is realized by using the second layer, defined by a further
gain ρ, which is an upper bound for the second derivative of the
disturbance �d�t�, and ensures the convergence of the scheme.
However, although there is formal proof for the theoretical stability of
the scheme, in practice, some numerical issues arise when larger step
sizes are taken. For instance, if the step size is increased to 2.5 ms,
while keeping all the other parameters constant, we get the results

depicted in Figs. 5a–5d. One can see that numerical instabilities cause
divergence of the states of the adaptive scheme, which directly causes
the divergence of the states (Fig. 5a). Therefore, although this
technique is an excellent choice for high-performance architectures,
for machines with stricter CPU limitations, such as onboard
computers, this algorithm may not be the best alternative.
To overcome this drawback, an alternative scheme based on the

MIMO SMO is proposed. The advantage is twofold: first, it
significantly relaxes the step-size requirements, while still bringing
the state errors to 0. Second, it provides the variables needed for the
feedback process, that is, σ and its derivatives. Figures 6a–6d and
7a–7d show the corresponding results obtained by using the
proposed ADHOSMC scheme for step sizes equal to 0.1 and
2.5 ms, respectively. No qualitative differences can be observed in
the states, which, for both cases, converge toward the equilibrium
point of the system, and in the controls, which are chattering free.
Moreover, for both cases, the disturbance observer converges in
less than a second (about 690 ms) to the true d�t�with an accuracy
of �1%.
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Fig. 4 Application of double-layer adaptive HOSM: step size � 0.1 ms.
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Fig. 5 Application of double-layer adaptive HOSM: step size � 2.5 ms.
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V. Longitudinal Controller Design

Let us now apply the approach discussed in the previous section to
the longitudinal equations of motion of an unpowered reentry
vehicle. First, we need to extract the input/output linearized model
from these equations to have a system in the form of Eq. (2) to make
the application of the ADHOSMC possible.

A. Input/Output Feedback Linearization

The longitudinal dynamics of the vehicle with respect to a
nonrotating Earth is described by [10]

_h � V sin γ

_V � −D − g sin γ

_γ � 1

V
L cos μ�

�
V

r
−
g

V

�
cos γ

_α � uα � _αref

_μ � uμ � _μref (17)

inwhichh,V, and γ are the altitude, velocitymodulus, and flight-path

angle, respectively, whereas r is the radial position; g is the gravity

acceleration, whereasL andD are the lift and drag accelerations. The

controls are, in this case, the angle-of-attack rate uα and the bank-

angle rate uμ. Indeed, they appear in affine form in the equations of

motion. This is not the case for the angle of attack, which is “hidden”

in the aerodynamic database, as for the vehicle analyzed here, the

coefficients depend on angle of attack, Mach number, and altitude,

and the bank angle, which appears as an argument of the cosine

function. The objective is to derive the MIMO ADHOSMC that

allows to track the reference altitude href�t� and velocity Vref�t�. An
important differencewith respect to [24,25,39] is that, in this case, the

reference states are time dependent and not terminal, constant values;

therefore, their derivatives are different from zero and need to be

included in the controller design. To have the controls linearly

appearing in the equations of motion, we differentiate the altitude

three times and the velocity two times. The total relative degree of the

system is 5, and is equal to the order of the system of Eq. (17).

If we differentiate the altitude three times with respect to time,

we get

0 5 10
-2

0

2

0 5 10
-6

-4

-2

0

2

0 5 10
-2

0

2

0 5 10
-2

0

2

a) State errors b) Control

c) Disturbance estimation d) Disturbance derivative estimation
Fig. 6 Application of ADHOSMC: step size � 0.1 ms.
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Fig. 7 Application of ADHOSMC: step size � 2.5 ms.
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_h�t� � V sin γ

�h�t� � _V sin γ � V _γ cos γ

h
:::
�t� � �V sin γ � 2 _V _γ cos γ � V �γ cos γ − V _γ2 sin γ (18)

From the preceding equation, it is clear that the expression for �γ
is needed. If we differentiate γ twice, we get

_γ � L

V
cos μ�

�
V

r
−
g

V

�
cos γ

�γ �
_L

V
cos μ −

L _V

V2
cos μ −

L sin μ

V
�_μref � uμ� � : : :

�
�
_V

r
−
V _r

r2
−

_g

V
� g _V

V2

�
cos γ −

�
V

r
−
g

V

�
_γ sin γ (19)

Furthermore, differentiating the velocity twice with respect to

time yields

_V � −D − g sin γ

�V � − _D − _g sin γ − g_γ cos γ (20)

Atmospheric density and gravity-acceleration derivatives with

respect to time can be easily computed either analytically or

numerically. Assuming that the atmospheric density ρ and the

gravity acceleration g depend only on the altitude, we can write

_ρ � ρh _h _g � gh _h (21)

in which ρh and gh are the derivatives of the atmospheric density

and the gravity acceleration with respect to the altitude,

respectively. From the analysis of Eqs. (18–20), it is clear that we

need to extract differential information about the aerodynamic

accelerations L and D from the model. Drag and lift acceleration

derivatives with respect to time can be computed as

_D � D

�
_ρ

ρ
� 2

_V

V
�

_CD

CD

�
; _L � L

�
_ρ

ρ
� 2

_V

V
�

_CL

CL

�
(22)

The time derivatives of the aerodynamic coefficients can be

computed using the information contained in the aerodynamic

database:

_CD � CD;α� _αref � uα� � CD;MMV
_V � �CD;MMh � CD;h� _h

_CL � CL;α� _αref � uα� � CL;MMV
_V � �CL;MMh � CL;h� _h (23)

in which CD;α and CL;α are the derivatives of the aerodynamic

coefficients with respect to the angle of attack α.CD;M andCL;M are

the derivatives of the aerodynamic coefficients with respect to the

Mach number M, CD;h and CL;h are the derivatives of the

aerodynamic coefficients with respect to the altitude, whereas _αref
is the reference angle-of-attack rate. Finally, the termsMV andMh

are the derivatives of the Mach number with respect to the velocity

V and the altitude h, and are described in the Appendix. With all

these relationships, the entire input/output model can be obtained.

It has the following compact form:

h
⃛

�t� � ah � bh;αuα � bh;μuμ; �V�t� � aV � bV;αuα � bV;μuμ

(24)

As for the single-input/single-output system of Eq. (5),

uncertainties on aerodynamics, mass, atmosphere, and wind will

cause variations of the functions ai, bi;j, i � h; V, j � α, and μ. All
these uncertainties can be combined into two extra terms to be

added in Eq. (24), which become

h
:::
�t� � ah � bh;αuα � bh;μuμ � dh

�V�t� � aV � bV;αuα � bV;μuμ � dV (25)

The expressions for the terms ah, aV , bh;α, bh;μ, bV;α, and bV;μ are
given in the Appendix. They depend on the states and their

derivatives, whereas uα and uμ are the control rates we need to

determine.
Remark 5: Explicit expressions for the uncertainties dh and dV can

be obtained bywriting the perturbed version of Eq. (25),which can be

obtained by replacing the nominal variables involved in Eqs. (18–24)

with their perturbed version (i.e., replacing CL with CL � ΔCL, and

so on). However, this development is omitted, as the scope of the

adaptive-control scheme proposed here is to reconstruct uncertainties

without any previous knowledge of them. Moreover, there may be

other uncertainties not modeled by Eqs. (18–24), which will be dealt

with the method here anyway.
It is now possible to design the adaptive high-order SMC scheme

for the system of Eq. (25).

B. MIMO ADHOSMC

The objective of the feedback-control scheme is to track the given

altitude and velocity profiles. In a similar fashion to what has been

done in Sec. III, let us define two decoupled sliding surfaces σh and
σV :

σh � h�t� − href�t�; σV � V�t� − Vref�t� (26)

We can extend the approach developed in Sec. III, and specifically

Eq. (14), to the MIMO system represented by Eq. (26). Let us define

the following matrices and vectors:

A �
�
ah
aV

�
; B �

�
bh;α bh;μ
bV;α bV;μ

�
; D �

�
dh
dV

�
(27)

~u �
" P

2
i�0 γh;ijσ�i�h �t�jαh;isgn�σ�i�h �t��P
1
i�0 γV;ijσ�i�V �t�jαV;isgn�σ�i�V �t��

#
; u �

�
uα
uμ

�
(28)

With these definitions, the MIMO control law can be written in

matrix form as

u � −B−1� ~u�A�D� (29)

All the terms in Eq. (29) are defined, except the vector D, which

will be replaced by its estimated value D̂, leading to the final form of

the ADHOSMC law.

u � −B̂−1� ~u� Â� D̂� (30)

The quantities Â, B̂ are computed by using the nominal

expressions described in the Appendix, by using the derivatives

estimated with the SMO, and D̂ is the vector containing the online

estimates of the disturbances acting on the system. From the term u,
the angle of attack and bank angle can be obtained as

α�t� � αref�t� � Δα�t� � αref�t� �
Z

t

t0

uα dτ

μ�t� � μref�t� � Δμ�t� � μref�t� �
Z

t

t0

uμ dτ (31)

inwhichuα anduμ are the feedback angle-of-attack rate and the bank-
angle rate, respectively. From the inspection of Eq. (30), one can see

that the control can be synthesized only if thematrixB is nonsingular.

det�B� � bh;αbV;μ − bh;μbV;α ≠ 0 (32)
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If we look at the definitions shown in the Appendix, we can write

det�B� � 0 ⇔ bD;αL cos γ sin μ � 0 (33)

Because bD;α and L are always different from 0, from a physical

point of view, Eq. (33) gives us the two only possibilities, inwhich the

control synthesis cannot be applied. The former is related to the

condition γ � �90 deg, which means that the controller cannot be

applied in vertical motion. This condition is excluded during the

trajectory planning in any case. The latter is related to the condition

μ � 0 deg, which represents a well-known singularity for

controllability of unpowered entry vehicles [40–42]. To exclude

this possibility, a region around μ � 0 deg is avoided. Specifically,

for all the simulations, the bank angle is limited in the interval [0.1,

89] deg. The angle of attack was limited to the range [−5, 7.5] deg
with respect to the nominal angle-of-attack profile, in a similar

fashion to what has been done for the space shuttle [10]. With the

proposed approach, it is possible to track the altitude and velocity by

modulating the bank angle and the angle of attack at the same time.

The next step is the extension of the SMO to the system represented

by Eq. (25).

C. Nonlinear Disturbance Observer

The control scheme synthesized in the previous section relies on

several models (for instance, the atmospheric density and the

aerodynamic database), which can be different with respect to the

actual data. Themissing information can be enclosed in D̂, whichwill

be estimated by aMIMOSMO. The technique is here extended to the

longitudinal states involved in the atmospheric entry, that is, the

altitude and the velocity.Moreover, because the flight-path angle and

its derivatives appear in Eqs. (18–24), this state is also included in the

observer, which will provide, together with the states and their

derivatives, the estimates d̂h�t� and d̂V�t�. If we define the state vector
x as

x � fh _h �h v _v γ _γ gT (34)

the system of Eq. (17) can be rewritten in state-space form as

_x1 � x2 _x2 � x3 _x3 � ah � bh;αuα � bh;μuμ _x4 � x5

_x5 � aV � bV;αuα � bV;μuμ _x6 � x7

_x7 � aγ � bγ;αuα � bγ;μuμ (35)

We want to estimate online the terms d̂h�t� and d̂V�t� defined in

Eq. (25). If we define the new augmented state vector xa

xa � f h _h �h dh v _v dV γ _γ gT (36)

the perturbed equations of motion can be represented in state-space

form as

_xa;1 � xa;2 _xa;2 � xa;3 _xa;3 � ah � bh;αuα � bh;μuμ � xa;4

_xa;4 � _dh _xa;5 � xa;6 _xa;6 � aV � bV;αuα � bV;μuμ � xa;7

_xa;7 � _dV _xa;8 � xa;9 _xa;9 � aγ � bγ;αuα � bγ;μuμ (37)

For the scenario analyzed here, the measurements of attitude,

position, and velocity are obtained with sufficient accuracy by the

navigation subsystem [38], and are converted into altitude, velocity,

and flight-path-angle measurements zh, zV , and zγ . These

measurements can be integrated into the following MIMO nonlinear

disturbance estimator:

_̂xa;1 � x̂a;2 � λh0 ~xh � κh0sat� ~xh� _̂xa;2 � x̂a;3 � λh1 ~xh � κh1sat� ~xh�
_̂xa;3 � ah � bh;αuα � bh;μuμ � x̂a;4 � λh2 ~xh � κh2sat� ~xh�
_̂xa;4 � λh3 ~xh � κh3sat� ~xh� _̂xa;5 � x̂a;6 � λv0 ~xh � κv0sat� ~xV�
_̂xa;6 � aV � bV;αuα � x̂a;7 � λv1 ~xV � κv1sat� ~xV�
_̂xa;7 � λv2 ~xV � κv2sat� ~xV� _̂xa;8 � x̂a;9 � λγ0 ~xγ � κγ0sat� ~xγ�
_̂xa;9 � aγ � bγ;αuα � bγ;μuμ � λγ1 ~xγ � κγ1sat� ~xγ� (38)

in which λhi , λ
v
i , λ

γ
i are the linear gains, and κ

h
i , κ

v
i , κ

γ
i are the nonlinear

gains of the observer, respectively; they are all positive, whereas the

terms ~xh, ~xV , ~xγ are the differences between themeasurements and the

observer estimates, computed as

~xh � zh − x̂a;1 ~xV � zV − x̂a;5 ~xγ � zγ − x̂a;8 (39)

The state vector x̂a is consequently defined as

x̂
·

a �
n
ĥ ĥ

·

ĥ
··

d̂h v̂ v̂
·

d̂V γ̂ γ̂
·
o
T

(40)

To avoid observer’s chattering, the sgn function is replaced by the

saturation function, defined as

sat� ~xm� �
8<:

1; ~xm ≥ wm

−1; x ≤ −wm
~xm
wm

; j ~xmj < wm

; m � h; v; γ (41)

Equation (41) implies that, when the residuals defined in Eq. (39)

are within the boundaries defined by wh, wV , and wγ , the SMO

becomes a Luenberger observer with augmented linear gains:

~λmi � λmi � 1

wm

m � h; v; γ (42)

The procedure to select the linear and nonlinear gains is directly

taken from [37], and is based on the assumption that the disturbances

and their derivatives can be unknown, but bounded, which is a

realistic hypothesis given the scenario we are dealing with.

Therefore, it is always possible to define some positive constants cmi ,
m � h; v, and i � 1; 2, such that

jdhj ≤ ch1 ; j _dhj ≤ ch2 jdV j ≤ cv1; j _dV j ≤ cv2 (43)

holds. More rigorously, the disturbance derivatives are assumed

Lipschitz continuous.With these premises, it is possible to realize the

conditions for the SMO only if the nonlinear gains satisfy the

following relationships [36]:

κh1 ≥ j ~xa;2j κV1 ≥ j ~xa;5j κγ1 ≥ j ~xa;8j (44)

If we define the thresholds for the convergence of the observer ϵh,
ϵV , and ϵγ , it is possible to compute the linear gains as

Table 2 Monte Carlo

campaign parameters

Parameter Range �3σ� Units

Δh �1 km
ΔV �100 m∕s
Δγ �0.25 deg
Δρ �20% — —

ΔCL �10% — —

ΔCD �10% — —

Δm �0.5% — —
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λhi � Ci
4μ

i
h; i � 1; : : : ; 4

λVi � Ci
3μ

i
V ; i � 1; : : : ; 3

λγi � Ci
1μ

i
γ; i � 1; 2 (45)

inwhich the parameters μh, μV , and μγ are the poles of the Luenberger
observer. These parameters have to satisfy the following inequality:

μm ≥

��������������������
μmax�Pm�
μmin�Pm�

s
2μmax�Pm�cm2
�1 − νm�ϵm

; m � h; v; γ (46)

in which the terms νh, νV , and νγ are constant parameters defined in
the range (0, 1). The coefficients Ci

j are computed as

Ci
j �

j!

i!�j − i�! i; j � 1; 2; 3 (47)

and the parameters μmax�Pm� and μmin�Pm� (m � h; v; γ) are the
maximum and minimum eigenvalues of the matrices Pm, which
represent the solutions of the following Lyapunov equations:

PhMh �MT
hPh � −I3

PVMV �MT
VPV � −I2

PγMγ �MT
γ Pγ � −1 (48)

with

Mh �
24−C1

3 1 0

−C2
3 0 1

−C3
3 0 0

35; MV �
�
−C1

2 1

−C2
2 0

�
; Mγ �−C1

1 (49)

and In is the identitymatrix having dimensionsn × n. Once the linear
gains are computed, the nonlinear gains can be obtained as

κm1 ≥ k ~xmkmax

��������������������
μmax�Pm�
μmin�Pm�

s
; m � h; v; γ (50)

κhi ≥ κh1C
i−1
3 μi−1h ; i � 2; 3; 4 κvi ≥ κv1C

i−1
2 μi−1V ;

i � 2; 3 κγi ≥ κγ1C
i−1
1 μi−1γ ; i � 2

(51)

Rigorous mathematical proofs for these relationships can be found
in [37].

With the estimates of the disturbances d̂h�t� and d̂V�t�, and the

states’ derivatives
_̂
h�t�, �̂h�t�, ĥ

···

�t�, _̂V�t�, �̂V�t�, the sliding variables
can finally be computed as
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Fig. 8 Monte Carlo campaign (1000 runs): ADHOSMC vs SMC:
altitude–velocity plane.
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Fig. 9 Monte Carlo campaign (1000 runs): ADHOSMC vs SMC: states.
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σ̂h � h�t� − href�t� σ̂
·

h � ĥ
·

�t� − _href�t� σ̂
··

h � ĥ
··

�t� − �href�t�

σ̂V � V̂�t� − Vref�t� σ̂
·

V � V̂
·

�t� − _Vref�t� (52)

With the use of the disturbance observer, we simultaneously
estimate online the uncertainties acting on the system and the
derivatives of the current states, needed for the design of the
controller, by only using available measurements.

VI. Results

Simulation campaigns have been performed to assess the
behavior of the proposed controller. The ADHOSMC is compared
with a standard SMC, based on the traditional SMC theory
[39]. The schemes are tuned to ensure similar control authority.
More specifically, the two seeds αh and αV are both taken equal to
0.8, whereas the poles associated with Eq. (28) are placed at −0.4
and −0.6, respectively. For what regards the disturbance observer,

the linear gains are based on the poles λh � −6.18, λV � −4.57,
and λγ � −5.56, whereas the nonlinear gains are κh �
�2.82; 78.4; 484.9; 1664.7�T , κV � �0.51; 5.1; 11.7�, and κγ �
�0.02; 0.17�. Finally, the saturation layers are chosen as

wh � 0.25, wV � 0.1, and wγ � 0.001. The nonlinear control

strategy is therefore completely defined by a small number of

constant parameters, with the advantage that no large data sets,
coming from gain-scheduling techniques, are required. For what

regards the triggering of the feedback scheme, because at the

beginning of the entry the atmospheric density is thin, the

aerodynamic accelerations are very small and cannot properly

counteract gravity, and this condition may induce control

saturation. To avoid it, the scheme is triggered once the

aerodynamic accelerations become significant. A rule, which
works well in practice, is to use the drag-to-gravity ratio as a

measure of the effectiveness of the control. In this case, the trigger

is associated with a drag acceleration equal to 0.5g, which

happens in a time interval between 140 and 170 s after the

beginning of the entry.
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a) ADHOSMC vs SMC: altitude error b) ADHOSMC vs SMC: velocity error
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Fig. 10 Monte Carlo campaign (1000 runs): ADHOSMC vs SMC: state errors and controls.
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Fig. 11 Monte Carlo campaign (1000 runs): ADHOSMC vs SMC: constraints.
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To assess the behavior of the developed control strategy, a full

Monte Carlo campaign has been run. Dispersions on atmospheric

density, altitude, velocity, and flight-path angle are considered.

Moreover, aerodynamic dispersions and mass uncertainty have been

included. The control sample rate for all the simulations is 0.1 s. All

the uncertainties follow a normal distribution. Further details about

the uncertainties are listed in Table 2.

From the previous table, one can see that, together with the initial

errors and the atmospheric-density uncertainty, a variation of the CL

and CD coefficients up to�10% is included. These limits are in line

with thewind-tunnel tests performed by theDLR,GermanAerospace

Center, Institute of Aerodynamics and Flow Technology [43].

Moreover, uncertainties in the dry mass, together with the propellant

residuals, were taken into account according to the margins

suggested by the ESA [44]. A total of 1000 runs have been

performed. For visibility purposes, only the results associated with

the first 25 simulations are plotted, and are shown in Figs. 8–14,

whereas in Figs. 15a and 15b, there is a comparison of the behavior of

the sliding states for all the three SMC techniques considered here.

Table 3 illustrates the benefits of using ADHOSMC compared to

SMC and pure HOSM.

From Figs. 8 and 9, we can observe that both the ADHOSMC and

SMC strategies correctly track the reference states. The dispersions

reduce over time, and a first difference in the methods can be seen.
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Fig. 12 Monte Carlo campaign (1000 runs): altitude online reconstruction.
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Fig. 13 Monte Carlo campaign (1000 runs): velocity and flight-path-angle reconstruction.
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The ADHOSMC generates smoother results, and this is especially
visible in the h − V plane, plotted in Fig. 8, and in the flight-path
angle (Fig. 9c), in the interval between 140 and 170 s,which is exactly
the moment at which the drag becomes large enough to counteract
gravity. Note that the effective error that the control scheme has to
deal with is much larger than what has been summarized in Table 2.
Indeed, there is a lack of control authority during the first 2–3 min of
mission, and during this phase the error may significantly increase.
However, the control scheme can properly counteract the error once
activated. The difference coming from the two strategies becomes
more evident in Figs. 10a and 10b, in which one can see that, in
general, the convergence to the equilibrium point is significantly
faster (in the order of 80–100 s) than if we use the standard SMC. For
the 1000 cases analyzed, the velocity errors go to 0 more slowly by
using theADHOSMCstrategy than by using the SMC in less than 1%
of the cases, whereas for the altitude it never happens. The reason is
due to an angle-of-attack saturation. In that case, the other available
control, that is, the bank angle, is used to keep tracking the reference
altitude, and this causes a delay in the convergence of the
velocity error.
Note that, in general, however, there is more control activity when

the SMC is used thanwhen theADHOSMC is adopted, as is shown in
Fig. 10. It is also interesting to see that, once the sliding surfaces are
reached, the control profiles of the two schemes perfectly overlap.
This behavior is consistent with the fact that the two control

schemes achieve the same sliding surfaces in different ways, and in
different times, but when these are reached, the control activity to
track them is the same, as the kinematic profiles involved in their
definition are the same too.
An interesting difference between the two schemes can be

observed in Fig. 11, which shows the constraints. Although both the
control systems satisfy the limits in terms of dynamic pressure and
heat flux, the delay in the convergence of the SMCwith respect to the
ADHOSMC causes several violations of the maximum value of
vertical load factor, as it is visible from the bottomplot. This limit was
violated in about 11%of the cases,whereas in total only six violations
occur when the ADHOSMC is employed. Themaximum violation in
the two cases is in any case quite different. Theworst cases in terms of
load factor are associated with a value of 5.27g (ADHOSMC) and
7.06g (SMC). Moreover, the conventional SMC violates five times
themaximum dynamic pressure, whereas this never happenswith the
ADHOSMC. Finally, both the systems satisfy the requirements in
terms of heat flux.
In terms of observer’s performance, we can see how the states and

their derivatives are correctly reconstructed. Specifically, the altitude
and its first and second derivatives are shown in Fig. 12, whereas in
Fig. 13 the velocity modulus, the flight-path angle, and their
derivatives are plotted. The online estimates (continuous black lines)
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Fig. 14 Monte Carlo campaign (1000 runs): disturbance reconstruction.
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Fig. 15 Monte Carlo campaign (1000 runs): ADHOSMC vs SMC: state errors.
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are overlapped with the corresponding true profiles (dotted gray

lines). The estimates are very accurate over the entire mission

timeline. Figures 14a and 14b show the comparison between true

disturbances acting on the system [dh�t� and dV�t�, in dotted gray

lines] and their estimates [d̂h�t� and d̂V�t�, in continuous black lines].
Also, here, the approximation is very goodwith one exception. Errors

with respect to the true disturbances can indeed be observed only at

the moment of triggering the feedback-control scheme. The reason

for this behavior resides in the fact that there is a discontinuity in the

angular rates uα anduμ at themoment of triggering the control system

or saturating the controls. Because they appear in the online SMO of

Eq. (38), the condition of Lipschitz continuity invoked in Eq. (43) is

locally violated, and this causes the presence of these errors.

However, once the control activity is started, the hypothesis of

Lipschitz continuity is valid again, and the estimated disturbances

converge to the true ones immediately, and are bounded by the

theoretical ϵ (assumed equal to 0.01 m∕s3 for both the altitude and

the velocity), as foreseen by the SMO theory. In any case, because

the local discontinuity of the angular rates is a mathematical

simplification, it does not limit the practical applicability for real

systems, which will always have a finite angular acceleration, and,

therefore, will not be affected by this local decrease of accuracy.

Finally, the behavior of the altitude and velocity sliding states for the

three SMC techniques are depicted in Figs. 15a and 15b. In both the

plots, one can see that the use of the disturbance observer helps

the ADHOSMC to reach the sliding surfaces, whereas without the

control system does not reach the origin of the sliding state space.

Note that the conventional SMC is also able to reach the origin, but it

shows a worse transient, consistently with the results of Figs. 10a

and 10b.

If we look at Table 3, we can see the benefits of using the

ADHOSMC: the tracking error in terms of altitude is reduced, both

with respect to the standard SMC, andmore dramatically with respect

to the application of the corresponding pure HOSM strategy. Also,

the standard deviation is reduced of about 30%with respect towhat is

obtained by using the standard SMC. It is worth to recall that these

results are obtainedwithout any saturation function in the control law

(as in the case of the SMC), which would cause a decrease of the

robustness of the system, and no tradeoff between robustness and

chattering reduction needs to be operated.
Also, in terms of final range, we can observe an improvement

coming from the use of the proposed approach. The use of the

ADHOSMCpositively affects all the constraints.We can observe that

all the peaks are equal or less to the ones obtained by using

conventional SMC, and as previously stated, only six violations were

observed on a total of 1000 cases (corresponding to the 0.6% of

cases), against 112 violations observed when the SMC was used.

Finally, the corresponding standard deviations are positively

influenced aswell when theADHOSMC is employed. The reason for

these results comes from the improvement in the transient behavior.

Because all the peaks are experienced at about 180–200 s after the

beginning of the entry, a better transient (i.e., a faster and smoother

convergence to the reference states) automatically turns into a

reduction of the peaks, whichwill become closer to the nominal ones.

VII. Conclusions

In this paper, a novel adaptive-control scheme for hypersonic-
entry vehicles has been proposed. The proposed method uses the
chattering-free high-order SMC strategy, and is at the same time
able to estimate the combination of known and unknown
perturbations acting on the system. The disturbances dh and
dV , coming from multiple uncertainties, are reconstructed online
by only using the measurements provided by the navigation
subsystem. Moreover, the scheme provides accurate estimates of
the state derivatives, without the need to design a further
differentiator.
The approach can be implemented by using a step size, which is in

the range of the nowadays onboard computers, and, therefore,
significantly relaxes the corresponding computational requirements.
The results show the feasibility of the approach, together with a
significant improvement in the response of the system, especially in
terms of transient, with respect to standard SMC strategies. The
transient-behavior improvement translates into a significantly
smaller number of violations of the maximum value of constraints, in
this specific case, the load factor, and in general, to an improvement
of the final errors. Moreover, the estimates match very well with the
true derivatives and disturbances, confirming the validity of the
proposed adaptive approach.

Appendix: Dynamic Inversion Terms

The terms ah, aV , bh;α, bh;μ, bV;α, and bV;μ can be computed as
follows:

ah � 2 _V _γ cos γ − V _γ2 sin γ � sin γaV � V cos γaγ (A1)

aV � −aD − gh sin γ _h − g cos γ_γ (A2)

bh;α � sin γbV;α � V cos γbγ;α (A3)

bh;μ � V cos γbγ;μ (A4)

bV;α � −bD;α (A5)

bV;μ � 0 (A6)

aD � D

�
ρh
ρ
� CD;h

CD

�
_h�D

�
2

V
� CD;MMV

CD

�
_V �D

�
CD;α

CD

�
_αref

(A7)

aL � L

�
ρh
ρ
� CL;h

CL

�
_h� L

�
2

V
� CL;MMV

CL

�
_V � L

�
CL;α

CL

�
_αref

(A8)

bD;α � D
CD;α

CD

(A9)

bL;α � L
CL;α

CL

(A10)

Table 3 Monte Carlo campaign results (1000 cases)

Parameter Units ADHOSMC SMC HOSM

Mean Δhf m 2.44 3.66 −27.92
Standard deviation Δhf m 19.69 28.25 68.12
Mean ΔVf m∕s −0.04 −0.01 −0.81
Standard deviation ΔVf m∕s 0.18 0.05 1.07
Mean ΔRf km 0.50 0.99 0.90
Standard deviation ΔRf km 7.43 7.71 7.82
Mean �qpeak N∕m2 15,226 15,391 15,295
Standard deviation �qpeak N∕m2 1,695 1,831 1,556
Mean _Qpeak MW∕m2 1.744 1.753 1.748
Standard deviation _Qpeak MW∕m2 0.089 0.124 0.079
Mean nz;peak g 4.091 4.309 4.100
Standard deviation nz;peak g 0.284 0.610 0.277
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aγ �
�
1

r
� g

V2

�
_V −

�
V

r2
� gh

V

�
_h cos γ −

L

V2
_V cos μ −

L

V2
sin μ_μref

(A11)

−_γ
�
V

r
−
g

V

�
sin γ � aL

V
cos μ (A12)

bγ;α � bL
V

cos μ (A13)

bγ;μ � −
L

V
sin μ (A14)

Moreover, the partial derivatives of Mach number with respect to

the altitude h and the velocity modulus V are computed as follows:

Mh � −
M

2

Th

T
MV � 1�������������������

γgasRgasT
p (A15)

with Th representing the derivative of the atmospheric temperature T
with respect to h, and computed numerically, whereas γgas is the air
specific-heat ratio, equal to 1.4, and Rgas is the specific gas constant,

assumed equal to 287.05 J∕�kg · K�).

References

[1] Bogner, I., “Description of Apollo Entry Guidance,” NASA TM CR-
110924, 1966.

[2] Tu, K. Y., Munir, M. S., Mease, K. D., and Bayard, D., “Drag-Based
Predictive Tracking Guidance for Mars Precision Landing,” Journal of
Guidance, Control, and Dynamics, Vol. 23, No. 4, July–Aug. 2000,
pp. 620–628.
doi:10.2514/2.4607

[3] Benito, J., and Mease, K. D., “Reachable and Controllable Sets for
Planetary Entry and Landing,” Journal of Guidance, Control, and

Dynamics, Vol. 33, No. 3, 2010, pp. 641–654.
doi:10.2514/1.47577

[4] Ross, I. M., “A Beginner’s Guide to DIDO, Ver. 7.3, A MATLAB
Application Package for Solving Optimal Control Problems,” Elissar
Document # TR-711, Monterey, CA, 2014.

[5] Bollino, K. P., “High-Fidelity Real-Time Trajectory Optimization for
Reusable Launch Vehicles,” Ph.D. Dissertation, Mechanical and
Astronautical Engineering Dept., Naval Postgraduate School,
Monterey, CA, 2006.

[6] Sagliano, M., and Theil, S., “Hybrid Jacobian Computation for Fast
Optimal Trajectories Generation,” AIAA Guidance, Navigation, and

Control (GNC) Conference, AIAA Paper 2013-4554, Aug. 2013.
doi:10.2514/6.2013-4554

[7] Huneker, L., Sagliano, M., and Arslantas, Y. E., “SPARTAN: An
Improved Global Pseudospectral Algorithm for High-Fidelity Entry-
Descent-Landing Guidance Analysis,” 30th International Symposium on

Space Technology and Science, ISTS and IEPC Paper 2015-d-43, 2015.
[8] Gill, P. E., Murray, W., and Saunders, M. A., “User’s Guide for SNOPT

Version 7: Software for Large-ScaleNonlinear Programming,”Software
User Manual, Dept. of Mathematics, Univ. of California, San Diego,
CA, 2008.

[9] Wächter, A., and Biegler, L. T., “On the Implementation of an Interior-
Point Filter Line-Search Algorithm for Large-Scale Nonlinear
Programming,” Mathematical Programming, Vol. 106, No. 1, 2006,
pp. 25–57.
doi:10.1007/s10107-004-0559-y

[10] Harpold, J. C., and Graves, C. A. Jr, “Shuttle Entry Guidance,” Journal
of the Astronautical Sciences, Vol. 27, No. 3, 1979, pp. 239–268.

[11] Mease, K. D., and Kremer, J. P., “Shuttle Entry Guidance Revisited
Using Nonlinear Geometric Methods,” Journal of Guidance, Control,
and Dynamics, Vol. 17, No. 6, 1994, pp. 1350–1356.
doi:10.2514/3.21355

[12] Bharadwaj, S., Rao, A. V., andMease, K. D., “Entry Trajectory Law via
FeedbackLinearization,” Journal of Guidance, Control, andDynamics,
Vol. 21, No. 5, 1998, pp. 726–732.
doi:10.2514/2.4318

[13] Saraf, A., Levitt, J. A.,Mease, K. D., and Ferch,M., “Landing Footprint
Computation for Entry Vehicles,” AIAA Guidance, Navigation and

Control Conference and Exhibit, AIAA Paper 2004-4774, Aug. 2004.
doi:10.2514/6.2004-4774

[14] Lu, P., and Hanson, J. M., “Entry Guidance for the X-33
Vehicle,” Journal of Spacecraft and Rockets, Vol. 35, No. 3, 1998,
pp. 342–349.
doi:10.2514/2.3332

[15] Lu, P., “Regulation About Time-Varying Trajectories: Precision Entry
Guidance Illustrated,” Journal of Guidance, Control, and Dynamics,
Vol. 22, No. 6, 1999, pp. 784–790.
doi:10.2514/2.4479

[16] Lu, P., “Entry Guidance: A Unified Method,” Journal of Guidance,

Control, and Dynamics, Vol. 37, No. 3, May–June 2014, pp. 713–728.
doi:10.2514/1.62605

[17] Roenneke, A. J., and Cornwell, P. J., “Trajectory Control for a Low-Lift
Entry Vehicle,” Journal of Guidance, Control, and Dynamics, Vol. 16,
No. 5, Sept.–Oct. 1993, pp. 927–933.
doi:10.2514/3.21103

[18] Roenneke, A. J., and Markl, A., “Reentry Control to a Drag-vs-Energy
Profile,” Journal of Guidance, Control, and Dynamics, Vol. 17, No. 5,
Sept.–Oct. 1994, pp. 916–920.
doi:10.2514/3.21290

[19] Mooij, E., “Model Reference Adaptive Guidance for Re-Entry
Trajectory Tracking,” AIAA Guidance, Navigation, and Control

Conference and Exhibit, AIAA Paper 2004-4775, Aug. 2004.
doi:10.2514/6.2004-4775

[20] Mooij, E., “Robustness Analysis of an Adaptive Re-Entry Guidance
System,” AIAA Guidance, Navigation, and Control Conference and

Exhibit, AIAA Paper 2005-6146, Aug. 2005.
doi:10.2514/6.2005-6146

[21] Mooij, E., “Heat-Flux Tracking for Thermal-Protection System
Testing,” AIAA/AAS Astrodynamics Specialist Conference, AIAA
Paper 2014-4141, Aug. 2014.
doi:10.2014/6.2014-4141

[22] Mooij, E., “Adaptive Heat-Flux Tracking for Re-Entry Guidance,”
AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2014-
4144, Aug. 2014.
doi:10.2014/6.2014-4142

[23] Shtessel, Y. B., and Shkolnikov, I. A., “Aeronautical and Space Vehicle
Control in Dynamic Sliding Manifolds,” International Journal of

Control, Vol. 76, Nos. 9–10, 2003, pp. 1000–1017.
doi:10.1080/0020717031000099065

[24] Harl,N., andBalakrishnan, S.N., “ReentryTerminalGuidanceThrough
Sliding Mode Control,” Journal of Guidance, Control, and Dynamics,
Vol. 33, No. 1, July–Aug. 2000, pp. 186–199.
doi:10.2514/1.42654

[25] Furfaro, R., andWibben, D. R., “Mars Atmospheric Entry Guidance via
Multiple Sliding Surface Guidance for Reference Trajectory Tracking,”
AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2012-
4435, Aug. 2012.
doi:10.2514/6.2012-4435

[26] Utkin, V. I., and Poznyak, A. S., “Adaptive Sliding Mode Control with
Application to Super-Twisting Control: Equivalent Control Method,”
Automatica, Vol. 49, No. 1, 2013, pp. 39–47.
doi:10.1016/j.automatica.2012.09.008

[27] Yu, P., Shtessel, Y., and Edwards, C., “Adaptive Continuous Higher
Order Sliding Mode Control of Air Breathing Hypersonic Missile for
Maximum Penetration,” AIAA Guidance, Navigation, and Control

(GNC) Conference, AIAA Paper 2015-2003, Jan. 2015.
doi:10.2514/6.2015-2003

[28] Edwards, C., and Shtessel, Y., “Adaptive Continuous Higher Order
SlidingModeControl,”Automatica, Vol. 65,March 2016, pp. 183–190.
doi:10.1016/j.automatica.2015.11.038

[29] Bhat, S. P., and Bernstein, D. S., “Geometric Homogeneity with
Applications to Finite-TimeStability,”Mathematics of Control, Signals,

and Systems, Vol. 17, No. 2, 2005, pp. 101–127.
doi:10.1007/s00498-005-0151-x

[30] Shtessel, Y., Edwards, C., Fridman, L., and Levant, A., Sliding Mode

Control and Observation, Birkhäuser–Springer, New York, 2013,
Chaps. 2–5.

[31] Sagliano, M., Samaan, M., Theil, S., and Mooij, E., “SHEFEX-3
Optimal Feedback Entry Guidance,” AIAA SPACE 2014 Conference

and Exposition, AIAA Paper 2014-4208, Aug. 2014.
doi:10.2514/6.2014-4208

[32] Sagliano, M., Oehlschlägel, T., Theil, S., and Mooij, E., “Real Time
Adaptive Feedforward Guidance for Entry Vehicles,” 3rd CEAS

EUROGNC Conference, CEAS, ONERA, ISAE SUPAERO and
ENAC, 2015.

SAGLIANO, MOOIJ, AND THEIL 535

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
D

ec
em

be
r 

15
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

06
75

 

http://dx.doi.org/10.2514/2.4607
http://dx.doi.org/10.2514/2.4607
http://dx.doi.org/10.2514/2.4607
http://dx.doi.org/10.2514/1.47577
http://dx.doi.org/10.2514/1.47577
http://dx.doi.org/10.2514/1.47577
http://dx.doi.org/10.2514/6.2013-4554
http://dx.doi.org/10.2514/6.2013-4554
http://dx.doi.org/10.2514/6.2013-4554
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.2514/3.21355
http://dx.doi.org/10.2514/3.21355
http://dx.doi.org/10.2514/3.21355
http://dx.doi.org/10.2514/2.4318
http://dx.doi.org/10.2514/2.4318
http://dx.doi.org/10.2514/2.4318
http://dx.doi.org/10.2514/6.2004-4774
http://dx.doi.org/10.2514/6.2004-4774
http://dx.doi.org/10.2514/6.2004-4774
http://dx.doi.org/10.2514/2.3332
http://dx.doi.org/10.2514/2.3332
http://dx.doi.org/10.2514/2.3332
http://dx.doi.org/10.2514/2.4479
http://dx.doi.org/10.2514/2.4479
http://dx.doi.org/10.2514/2.4479
http://dx.doi.org/10.2514/1.62605
http://dx.doi.org/10.2514/1.62605
http://dx.doi.org/10.2514/1.62605
http://dx.doi.org/10.2514/3.21103
http://dx.doi.org/10.2514/3.21103
http://dx.doi.org/10.2514/3.21103
http://dx.doi.org/10.2514/3.21290
http://dx.doi.org/10.2514/3.21290
http://dx.doi.org/10.2514/3.21290
http://dx.doi.org/10.2514/6.2004-4775
http://dx.doi.org/10.2514/6.2004-4775
http://dx.doi.org/10.2514/6.2004-4775
http://dx.doi.org/10.2514/6.2005-6146
http://dx.doi.org/10.2514/6.2005-6146
http://dx.doi.org/10.2514/6.2005-6146
http://dx.doi.org/10.2014/6.2014-4141
http://dx.doi.org/10.2014/6.2014-4141
http://dx.doi.org/10.2014/6.2014-4141
http://dx.doi.org/10.2014/6.2014-4142
http://dx.doi.org/10.2014/6.2014-4142
http://dx.doi.org/10.2014/6.2014-4142
http://dx.doi.org/10.1080/0020717031000099065
http://dx.doi.org/10.1080/0020717031000099065
http://dx.doi.org/10.2514/1.42654
http://dx.doi.org/10.2514/1.42654
http://dx.doi.org/10.2514/1.42654
http://dx.doi.org/10.2514/6.2012-4435
http://dx.doi.org/10.2514/6.2012-4435
http://dx.doi.org/10.2514/6.2012-4435
http://dx.doi.org/10.1016/j.automatica.2012.09.008
http://dx.doi.org/10.1016/j.automatica.2012.09.008
http://dx.doi.org/10.1016/j.automatica.2012.09.008
http://dx.doi.org/10.1016/j.automatica.2012.09.008
http://dx.doi.org/10.1016/j.automatica.2012.09.008
http://dx.doi.org/10.1016/j.automatica.2012.09.008
http://dx.doi.org/10.2514/6.2015-2003
http://dx.doi.org/10.2514/6.2015-2003
http://dx.doi.org/10.2514/6.2015-2003
http://dx.doi.org/10.1016/j.automatica.2015.11.038
http://dx.doi.org/10.1016/j.automatica.2015.11.038
http://dx.doi.org/10.1016/j.automatica.2015.11.038
http://dx.doi.org/10.1016/j.automatica.2015.11.038
http://dx.doi.org/10.1016/j.automatica.2015.11.038
http://dx.doi.org/10.1016/j.automatica.2015.11.038
http://dx.doi.org/10.1007/s00498-005-0151-x
http://dx.doi.org/10.1007/s00498-005-0151-x
http://dx.doi.org/10.2514/6.2014-4208
http://dx.doi.org/10.2514/6.2014-4208
http://dx.doi.org/10.2514/6.2014-4208


[33] Sagliano, M., Mooij, E., and Theil, S., “Onboard Trajectory Generation
for Entry Vehicles via Adaptive Multivariate Pseudospectral
Interpolation,” Journal of Guidance, Control, and Dynamics, 2016.
doi:10.2514/1.G001817

[34] Sagliano, M., “Development of a Novel Algorithm for High
Performance Reentry Guidance,” Ph.D. Dissertation, Fachbereich
Produktionstechnik, Univ. of Bremen, Bremen, Germany, 2016.

[35] Weihs, H., “The SHEFEX Story: A Historical Review 2001–2014,” 5th
International ARA Days, Atmosphere Reentry Association, Avantage-
Aquitaine, 2015.

[36] Jiang, L., and Wu, Q. H., “Nonlinear Adaptive Control via Sliding-
Mode State and Perturbation Observer,” IEE Proceedings: Control

Theory and Applications, Vol. 149, No. 4, July 2002, pp. 269–277.
doi:10.1049/ip-cta:20020470

[37] Talole, S. E., Benito, J., and Mease, K. D., “Sliding Mode Observer for
Drag Tracking in Entry Guidance,” AIAA Guidance, Navigation, and

Control (GNC) Conference and Exhibit, AIAA Paper 2007-6851,
Aug. 2007.
doi:10.2514/6.2007-6851

[38] Steffes, S. R., “Development and Analysis of SHEFEX-2 Hybrid
Navigation System Experiment,” Ph.D. Dissertation, Fachbereich
Produktionstechnik, Universität Bremen, Bremen, Germany, 2012.

[39] Xu, H., Mirmirani, M. D., and Ioannou, P. A., “Adaptive Sliding Mode
Control Design for a Hypersonic Flight Vehicle,” Journal of Guidance,
Control, and Dynamics, Vol. 27, No. 5, Sept.–Oct. 2004, pp. 829–838.
doi:10.2514/1.12596

[40] Mooij, E., Linear Quadratic Regulator Design for an Unpowered,

Winged Re-Entry Vehicle, Series 08: Astrodynamics and
Satellite Systems, No. 3, Delft Univ. Press, Delft, The Netherlands,
1998, pp. 2392–3339

[41] Mooij, E., “Passivity Analysis for Non-Linear, Non-Stationary Entry
Capsules: Translational Motion,” International Journal of Adaptive

Control and Signal Processing, Vol. 28, Nos. 7–8, July–Aug. 2014,
pp. 708–731.
doi:10.1002/acs.v28.7-8

[42] Mooij, E., “Characteristic Motion of Re-Entry Vehicles,” AIAA

Atmospheric Flight Mechanics (AFM) Conference, AIAA Paper 2013-
4603, Aug. 2013.
doi:10.2514/6.2013-4603

[43] Neeb, D., and Gülhan, A., “Experimentelle Bestimmung der
Aerodynamischen Beiwerte von SHEFEX II im H2K,” DLR TR- IB-
32418-2009A36, 2012.

[44] Anon., “Margin Philosophy for Science Assessment Studies,” ESATR
SRE-PA/2011.097, 2012.

536 SAGLIANO, MOOIJ, AND THEIL

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
D

ec
em

be
r 

15
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

06
75

 

http://dx.doi.org/10.2514/1.G001817
http://dx.doi.org/10.2514/1.G001817
http://dx.doi.org/10.2514/1.G001817
http://dx.doi.org/10.1049/ip-cta:20020470
http://dx.doi.org/10.1049/ip-cta:20020470
http://dx.doi.org/10.2514/6.2007-6851
http://dx.doi.org/10.2514/6.2007-6851
http://dx.doi.org/10.2514/6.2007-6851
http://dx.doi.org/10.2514/1.12596
http://dx.doi.org/10.2514/1.12596
http://dx.doi.org/10.2514/1.12596
http://dx.doi.org/10.1002/acs.v28.7-8
http://dx.doi.org/10.1002/acs.v28.7-8
http://dx.doi.org/10.1002/acs.v28.7-8
http://dx.doi.org/10.1002/acs.v28.7-8
http://dx.doi.org/10.2514/6.2013-4603
http://dx.doi.org/10.2514/6.2013-4603
http://dx.doi.org/10.2514/6.2013-4603

