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Abstract

Semantic segmentation of aerial point clouds with high accuracy is significant
for many geographical applications, but is not trivial since the data is massive
and unstructured. In the past few years, deep learning approaches designed for
3D point cloud data have made great progress. Pointwise neural networks, such
as PointNet and its extensions, show their ability to process 3D point clouds,
especially in classification and semantic segmentation. In this work, we imple-
ment DGCNN (Dynamic Graph CNN), which combines PointNet with Graph
CNN, and extend its semantic segmentation application from indoor scenes to
an aerial point cloud dataset: The Current Elevation File Netherlands (AHN),
which was produced by airborne laser scanners for the whole Netherlands. Point
clouds from the iteration AHN3 are classified into four classes: ground, building,
water and others (including vegetation, railways, etc). Moreover, DGCNN splits
the input point cloud into regular blocks before operating on it and processes
each block independently, which limits the effective range (receptive field) of the
network to some extent. Thus, the second aim of this work is to investigate the
impact of the effective range on the performance of DGCNN by adjusting two
crucial parameters: the block size and the neighborhood size k in k-NN graphs. It
turns out that enlarging the block size or k helps to improve the overall accuracy
of DGCNN, but cannot ensure better segmentation results from each individual
class. With the block size 50 m and k = 20, the most balanced F1 scores for all
classes and an overall accuracy of 93.28% are achieved. Based on the evaluation
for each setting with a certain block size and k, we also manage to further im-
prove the overall accuracy to 93.51% by combining smaller-scale (with block size
30 m) and larger-scale (with block size 50 m) segmentation results, with k = 20.
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Chapter 1

Introduction

Autonomous and reliable semantic segmentation of 3D point cloud data is an im-
portant capability in applications ranging from mapping, 3D modeling, naviga-
tion and urban planning, but identifying semantic information from unstructured
and unordered point sets is still challenging over the past few decades. Similar
to 2D image recognition, this problem has also benefited from deep learning
techniques and great progresses have been achieved. PointNet, the first neural
network directly consuming raw point cloud data, employs a series of multi-layer
perceptrons to learn higher dimensional features for each individual point and
concatenates them to obtain the global context within a small 3D block, which
shows effective and efficient performance on both classification and semantic seg-
mentation [1]. Soilan et al. extend the application of PointNet to the classi-
fication of The Current Elevation File Netherlands (AHN) aerial point clouds
and achieve a good overall performance, but there are still problems like a high
confusion of vegetation1 and building classes [2], as shown in Figure 1.1. Con-
sidering that PointNet does not exploit local features, limiting its performance
in case of 3D scenes with fine details, PointNet++ is then designed to apply
PointNet on local regions inside the input point set [3]. By sampling the points
in a hierarchical fashion and using PointNet recursively, PointNet++ is also able
to combine multi-scale geometric features. However, exploiting spatial relations
between points in a neighborhood is still an unsolved problem.

In images, convolutional neural networks (CNNs) can capture the spatially-local
correlation effectively [4]. Inspired by the success in 2D image recognition, many
CNN-based methods have also been proposed to extract the semantic meaning
in 3D data (e.g., point clouds). However, directly convolving on features of the
input points will cause permutation variance, bringing the problem of point or-
dering. Thus, many approaches rely on particular preprocessing techniques when
adapting CNN to point clouds. Voxel-based methods extend CNN to 3D cases by
first representing 3D shapes with 3D grids (voxels) and then applying 3D CNN

1The authors made a misktake when identifying the categories. Here “vegetation” actually
refers to the “others” class in the AHN dataset.
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1. Introduction 2

(a) Ground Truth (b) Prediction

Figure 1.1: Segmentation results from Soilan et al. show a high
confusion between vegetation and buildings, with vegetation shown

in green and buildings in yellow [2].

naturally [5]. The voxels can be regular, or obtained with octree [6]. Although
these methods are straightforward, a large consumption of memory is needed, es-
pecially when the voxels are acquired with small scales. Image-based approaches,
however, avoid the usage of 3D CNN by projecting the point cloud onto a series of
images that can be classified or segmented using 2D CNN [7]. This approach has
also shown success on ALS point clouds. N. Qin et al. propose a network clas-
sifying 3D terrain scenes with images obtained from multi-view and multimodal
representations [8]. Compared to methods directly operating on point cloud data,
both voxel-based and image-based approaches require costly preprocessing and
format conversion steps. Recently, graph-based CNN also gains much attention
in computer vision domains. Graphs, as a topology structure, are capable of im-
posing the prior knowledge contained in the input data [9]. In case of 3D point
clouds, constructing graphs, such as k nearest neighbor (k-NN) graphs, helps to
encode spatial relations among points and capture the local features. Dynamic
Graph CNN (DGCNN), proposed by Wang et al., further generates feature de-
scriptors based on edges of the k-NN graph of a point cloud [10]. By applying
convolution operations on these features, DGCNN accounts for the local features
in an effective manner and achieves state-of-the-art performance in the semantic
segmentation of point clouds.

In this work, we focus on the same AHN3 aerial point cloud dataset used by
Soilan et al. [2] but employ DGCNN instead of PointNet. We also investigate
how to incorporate multi-scale spatial context (i.e., context with different sizes of
receptive field, or effective ranges in case of point clouds), which is proved to be
helpful in semantic segmentation [11]. This can be done by processing input data
from multiple scales together, or by consolidating the final segmentation results
through exchanging information from different scales [12], which is adopted in
this work. To achieve the best combination of different effective ranges, we first
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explore their impact on the network performance by adjusting the block size and
k used in DGCNN.

1.1 Research Questions

The aim of this study can be summarized as follows:

1. Can DGCNN also work well on the semantic segmentation of aerial point
clouds (e.g., AHN3)?

2. How do different block sizes and k values used in DGCNN affect the seg-
mentation results and how can we evaluate the performance?

3. Is it possible to improve the semantic segmentation quality by incorporating
results from multiple scales?



Chapter 2

Methodology

2.1 DGCNN

Figure 2.1: Overview of DGCNN architecture [10], with each input
point containing 3 features (e.g., x, y and z). The segmentation

model extends the classification one by combining the global
feature vector with all local features generated by EdgeConv. p

semantic labels will be output for each point. The spatial
transform block aligns the input point cloud through a 3× 3

matrix, which is expected to be an orthogonal matrix and estimated
during training. In the EdgeConv operation, edge features for
each point with a dimension f are computed by applying a MLP
with a number of layer neurons defined as {a1, a2, ..., an}. After

pooling among edge features, a tensor of shape (n× an) will finally
be generated. ⊕: Concatenation.

DGCNN (Dynamic Graph CNN) is used for semantic segmentation of point
clouds in this study, which takes a whole point set as input and outputs a se-
mantic label for each point [10]. DGCNN uses a basic version of PointNet as the

4



2. Methodology 5

backbone. Similar to PointNet, a point cloud needs to be split into 3D blocks
with a certain block size (see Figure 2.2) before being fed into the neural net-
work [1]. In training mode, N points X = {x1, ..., xN} ∈ RF , where F is the
dimensionality of point features, are randomly sampled from a single block and
put into the neural network. Afterwards, points from another block are pro-
cessed until all blocks inside the point cloud are taken. In PointNet, a series
of multi-layer perceptrons (MLP) will be applied on each point to obtain point
features in a higher dimension. A symmetric function (e.g.,

∑
or max pooling)

is then used to convert features from all N points into a global feature vector,
which shows invariance to input permutations. In the segmentation model, the
global feature will be further concatenated with point features computed from
each MLP to form a final combined vector, which will be used to predict p scores,
with p the number of classes. PointNet can summarize both pointwise informa-
tion and global context inside a single block. However, points are processed only
individually in this network and local neighborhood information is not considered.

(a) block size = 30 m (b) block size = 50 m (c) block size = 70 m

Figure 2.2: Labeled point sets from AHN3, with different block
sizes. Ground points are shown in brown, building points are in

yellow, water points are in blue and points from others are in green.

Based on the architecture of PointNet, DGCNN incorporates local features by
replacing the MLP with an edge convolution operation (EdgeConv). DGCNN
first constructs a directed graph G = (V,E) representing local structures inside
a point cloud, where V = {1, ..., N} indicates vertices and E ∈ V × V refers to
edges. In the simplest case, G is the k-nearest neighbor (k-NN) graph of X in
RF . Instead of convolving directly on point features, DGCNN first computes k
edge features for each point xi related to its k nearest neighbors xji1 , ..., xjik ,
as shown in Figure 2.3. The edge feature is defined by eij = hΘ(xi, xj), where
xj is one of the neighbors of xi and hΘ: RF × RF → RF

′
is a non-linear func-

tion with a set of learnable parameters Θ. In DGCNN, an asymmetric function
hΘ(xi, xj) = h̄Θ(xi, xj−xi) is adopted to account for both the global shape struc-
ture, indicated by xi, and the local neighborhood information, captured by xj−xi.

Finally, the EdgeConv operation can be achieved by applying a channel-wise
symmetric operation (max pooling in DGCNN) on the edge features associated
with each vertex. In addition, the directed graph G is computed with all point
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features and will be dynamically updated from layer to layer rather than taken
as a fixed constant.

Figure 2.3: The EdgeConv operation [10]. Here the k-NN graph is
constructed with k = 5. The output x′

i is calculated by aggregating
all edge features associated with the vertex xi through a symmetric

function (e.g., max pooling).

2.2 Multi-scale Combination

In 2D cases, e.g., object detection and semantic segmentation using images, the
size of the receptive field is crucial to the performance of CNNs [12], which will
affect the spatial context of the network. When it comes to point clouds, the
receptive field can be referred to as the effective range. In DGCNN, since the k-
NN graph is dynamically updated in the feature space from layer to layer, points
falling into the same category can belong to the same neighborhood even though
they are spatially far away. Thus, it is difficult to compute the effective range
using a simple equation. What we know for sure is that the effective range is
limited by the block size, and affected by the size of the neighborhood of each
point defined in k-NN graphs.

The local features and global features acquired by DGCNN only summarize the
information inside a single block. For aerial point clouds, there is no apparent
boundary like indoor scenes and objects in one block can be cut off, such as build-
ing roofs shown in Figure 2.2. Restricted by the block size, it is possible that
there is only one object (or one kind of objects) in a single block, which might
cause confusion during training, e.g., the ground and large building roofs can be
mislabeled as each other in a small scale if both of them are flat. Enlarging the
block size can reduce such mistakes, but detailed information acquired in small
scales can be unseen in large scales if the number of points N in each block is
unchanged. Besides, the size of the neighborhood (k) will directly influence the
scope of the EdgeConv operation and the effective range.

To improve the semantic segmentation quality, it is helpful to cover information
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from multiple scales. In this work, we achieve this goal by combining the point
descriptors estimated by DGCNN. For two network outputs with different effec-
tive ranges (i.e., different block sizes, or different values of k), we first apply the
softmax operation on them to obtain “probability” alike values for each class.
Considering an output vector x = {x0, x1, ..., xp−1}, the softmax function σ(x)m
for the mth class is:

σ(x)m =
exm∑
k e

xk
(2.1)

wherem ∈ {0, 1, ..., p−1} and p is the total number of classes [13]. For both point
descriptors, if the largest probability value corresponds to the same class m, this
point will be classified as m. Otherwise, the point will be labeled with the class
which has a larger probability value. We explore several possible realizations of
such combination and compare them experimentally in chapter 4.

2.3 Evaluation Measures

We evaluate the performance of all experiments with several metrics. The overall
accuracy, computed as dividing the number of correctly classified points from all
classes by the total number of predictions, is determined. Since the number of
points in different classes are unbalanced, e.g., points from water are much less
than ground, the average per class accuracy is also calculated. In addition, we
evaluate the mean value of the intersection over union (IoU) from each class,
which is a common metric used in semantic segmentation tasks. For point cloud
data, IoU from one class is computed as:

IoU =
TP

TP + FP + FN
(2.2)

where TP is the number of true positives, FP the number of false positives and
FN the number of false negatives [14]. If we assume “building” as the positive
class and “not building” as the negative class, a true positive indicates where the
model correctly predicts the positive class and a false positive refers to where the
model incorrectly predicts the positive class. Moreover, a true negative is an out-
come where the model correctly predicts the negative class and a false negative
is an outcome where the model incorrectly predicts the negative class. Similar
to TP , FP and FN , there is also a measure TN indicating the number of true
negatives.

In this work, we also determine the confusion matrix, which contains information
of TP , FP , FN and TN from all classes. To quantitatively analyze the segmen-
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tation results from each class, we use another three metrics, which are the recall,
the precision and the F1 score. These metrics are computed as:

recall =
TP

TP + FN
(2.3)

precision =
TP

TP + FP
(2.4)

F1 =
2× recall × precision
recall + precision

(2.5)

From the above equations, it can be noticed that the recall indicates the propor-
tion of points correctly classified by the model in all actual positive points, while
the precision means the percentage of correctly classified points in all positive
predictions. The recall can be thought of as a measure of completeness, and
the precision is also called the exactness of a model. The F1 score conveys the
balance between the precision and the recall.



Chapter 3

Dataset

The data used in this work comes from The Current Elevation File Netherlands
(AHN), which contains detailed and precise altitude data for the whole Nether-
lands, including raster and 3D point cloud [15]. Classification labels have already
been assigned to each individual point in the 3D point cloud. Each point belongs
to one of the following classes: ground, buildings, water, bridges and others. The
“others” class consists mostly of vegetation, and also objects like railways. In
our study, we use point clouds from the iteration AHN3. Moreover, since points
classified as bridges are much less than other categories, bridge points are merged
into ground class for better training of DGCNN.

Figure 3.1: AHN3 sections selected for study, with training sections
shown in purple and the test area in orange.

The whole AHN3 point cloud has been divided into smaller rectangular sections,
with each of them covering a surface area of 6.25 × 5 km2 and assigned with a
unique ID. For training and test purposes, we select 4 sections from the original
AHN3 dataset (see Figure 3.1), which are from the surroundings of Utrecht and
Delft. Table 3.1 shows the total number of points in each section. Besides, the
original dataset has an average point density of 20 points/m2. To make it easier
to handle the point cloud with a normal computer, each section is further split
into 25 tiles and downsampled uniformly with a point interval of 1 m. In our
work, 12 tiles from 38FN1, 37EN2 and 31HZ2 are finally used. In 32CN1, only
8 tiles are used since this section contains a large amount of vegetation, which

9
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(a) Rendered with false
color composed of return

number, number of
returns and intensity

(b) Rendered with RGB
colors that are taken from
aerial images acquired
with another flight

(c) Labeled with ground
(brown), building

(yellow), water (blue) and
others (green)

Figure 3.2: A subset of point cloud from the section 31HZ2 [15].

leads to much more points than other sections due to the multipath effect. The
number of finally used points is also summarized in Table 3.1, with a total num-
ber about 109.3 million.

Section ID # all points (·106) # used points (·106) Usage
38FN1 47.5 25.4 Training
37EN2 50.6 28.8 Training
32CN1 87.4 27.8 Training
31HZ2 55.9 27.4 Test

Table 3.1: Overview of used data from AHN3

Apart from x, y and z coordinates, all points from AHN3 are also provided with
extra attributes, e.g., return number, intensity, GPS time, etc. 9 features are
used in this work, including 3D coordinates (x, y, z), LiDAR features (return
number, number of returns and intensity) and normalized coordinates (nx, ny
and nz). The normalized x, y and z are obtained through subtracting central 3D
coordinates of each tile, which can make the learning of the network more robust.



Chapter 4

Experiments

To investigate the feasibility of DGCNN on aerial point clouds and the influence
of different effective ranges, we experiment with three block sizes (30, 50 and 70
m) and three k values (15, 20 and 25). To compare the performance with different
settings, we first use k = 20 as the default neighborhood size and vary the block
size. Afterwards, using the block size achieving the best segmentation result, the
effect of different k is explored. Having results with the above single-scale set-
tings, we further consolidate the segmentation through multi-scale settings,
in which test results using different block sizes or k values are combined by com-
paring the output point descriptors from DGCNN. The choices of block size and
k depend on performances of previous single-scale experiments.

4.1 Training Settings

For each experiment, 4096 points are randomly sampled from each block during
training before being fed into the neural network. To ensure some overlap be-
tween different blocks, we use 1.5 as the sample rate for each point. In the test
stage, the sample rate is set as 1.0 and all points in each block are used.

All our experiments are performed on a High Performance Computing (HPC)
environment of Delft University of Technology, which consists of 26 computing
nodes. We use one available NVIDIA GeoForce RTX 2080 Ti GPU in the cluster.
During training, the batch size is 8, which means 8 blocks can be processed at
the same time. However, we use a batch size of only 1 during test, since the
number of points is different in each block when no random sampling is used and
different blocks cannot be stacked together. Moreover, the network is optimized
by the Adam optimizer with an initial learning rate of 0.001, which is suggested
as default in DGCNN [10]. For all experiments, the model used in test is obtained
by choosing the best model after training with 50 epochs.

11
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4.2 Results and Analysis

4.2.1 Single-scale Settings

Table 4.1 summarizes the quantitative results of point cloud semantic segmenta-
tion over the test area. When k is fixed as 20 and different block sizes are inves-
tigated, the best overall accuracy (93.28%) and mean IoU (81.73%) are achieved
with a block size of 50 m, while the highest average per class accuracy (90.90%)
is achieved with the block size 70 m. It can also be noticed that the average
per class accuracy and mean IoU with block size 30 m are much lower than the
best results, although the overall accuracy under all three settings are similar,
indicating that more balanced results among different classes can be obtained
when the block size is larger. Considering the recall and precision values shown
in Table 4.3 and Table 4.4, segmentation results from each individual class are
better when the block size is 50 m. Thus, for experiments with different k values,
a block size of 50 m is finally used.

In the middle part of Table 4.1, comparisons between different k values are pro-
vided. Similar to experiments with the block size, larger k values, which corre-
spond to a larger neighborhood, help to improve the performance of the model.
Besides, results from k = 20 and k = 25 are close to each other.

Block size (m) k OA (%) PA (%) mIoU (%)
30 20 91.72 81.53 74.94
50 20 93.28 89.39 81.73
70 20 92.97 90.90 79.51
50 15 92.38 88.51 79.98
50 20 93.28 89.39 81.73
50 25 93.30 89.01 82.10

50 & 30 20 93.51 91.60 82.34
50 15 & 20 93.37 90.48 82.46

Table 4.1: Comparison of the overall accuracy (OA), the average
per class accuracy (PA) and the mean IoU (mIOU) with different

block sizes and k values. “50 & 30” and “15 & 20” in the lowest part
indicate results with multi-scale combinations.

Confusion matrices from the above experiments are shown from Table 4.2 to Ta-
ble 4.6. Points from others and ground classes are identified well in all cases,
with high values in both recall and precision. This is not surprising considering
points in both classes are way more than other categories. When the network
processes point clouds in a smaller scale (e.g., the block size is 30 m or k = 15),
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block size = 30 m Prediction Recall (%)
k = 20 others ground building water

G
t

others 12605814 377425 263017 3993 95.14
ground 130083 8242652 72551 8205 97.51
building 1154213 215135 4187805 497 75.35
water 4171 35463 9 55021 58.21

Precision (%) 90.73 92.92 92.58 81.25

Table 4.2: Confusion matrix of segmentation results with block size
= 30 m and k = 20 (Gt: Ground truth)

block size = 50 m Prediction Recall (%)
k = 20 others ground building water

G
t

others 12491522 373611 380528 4485 94.27
ground 101575 8207967 131128 12932 97.09
building 725797 91307 4740282 140 85.29
water 1244 16794 68 76723 80.90

Precision (%) 93.78 94.46 90.26 81.38

Table 4.3: Confusion matrix of segmentation results with block size
= 50 m and k = 20

block size = 70 m Prediction Recall (%)
k = 20 others ground building water

G
t

others 12286168 85676 635932 622 94.45
ground 393010 8265197 106283 31115 93.97
building 565762 95030 4815031 2 87.93
water 2199 6800 226 63099 87.24

Precision (%) 92.75 97.78 86.64 66.53

Table 4.4: Confusion matrix of segmentation results with block size
= 70 m and k = 20

block size = 50 m Prediction Recall (%)
k = 15 others ground building water

G
t

others 12449649 505497 288765 6235 93.96
ground 77090 8270088 91649 14775 97.83
building 904223 177600 4475384 319 80.53
water 1060 16248 16 77505 81.73

Precision (%) 92.96 92.20 92.17 78.42

Table 4.5: Confusion matrix of segmentation results with block size
= 50 m and k = 15
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block size = 50 m Prediction Recall (%)
k = 25 others ground building water

G
t

others 12485661 382648 377977 3860 94.23
ground 95490 8264229 84858 9025 97.76
building 697189 161876 4698144 317 84.54
water 682 18564 168 75415 79.53

Precision (%) 94.03 93.62 91.03 85.10

Table 4.6: Confusion matrix of segmentation results with block size
= 50 m and k = 25

the predicted building points have a much higher precision than the recall, which
means the model misses a large number of points from this class, although most
predictions are correct. For the water class, when the block size is very large
(70 m) or the network looks at a small neighborhood (k = 15), the precision can
be worse than the recall rate, indicating that the model is not accurate enough
for detecting water points in this case. Since the total number of water points is
much less than other classes, the segmentation of water can be tricky. Only when
the block size is 50 m and k = 20, the recall rate and precision show balanced
high values.

4.2.2 Multi-scale Settings

Apparently, the segmentation results are improved when we combine results with
different block sizes or k values, compared to the original single-scale settings,
as shown in Table 4.1. An average per class accuracy of 91.60% can be achieved
when combining results with the block size as 30 m and 50 m, which is the best
result in all experiments. In addition, k = 20 is chosen in this case since k = 25
means much more parameters and brings the overfitting problem, although we
achieve similar results under both single-scale settings in subsection 4.2.1.

block size = 30 & 50 m Prediction Recall (%)
k = 20 others ground building water

G
t

others 12611735 87874 843299 1807 93.11
ground 372161 8281938 104242 18251 94.36
building 261449 74927 4609489 4 93.20
water 4031 8141 240 74591 85.73

Precision (%) 95.19 97.98 82.95 78.80

Table 4.7: Confusion matrix of combined segmentation results
(block size = 30 m & 50 m), with k = 20
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block size = 50 m Prediction Recall (%)
k = 15 & 20 others ground building water

G
t

others 12518431 75101 761904 897 93.73
ground 431562 8252793 105192 15019 93.73
building 294763 113751 4689956 13 91.99
water 4889 11636 247 78900 82.47

Precision (%) 94.48 97.63 84.39 83.20

Table 4.8: Confusion matrix of combined segmentation results (k =
15 & 20), with the block size as 50 m

Table 4.8 shows that combining different k values helps to achieve higher and
more balanced values of the precision and recall of the water class. However, the
segmentation result is not always better under multi-scale settings for all classes.
For detected building points, the precision values in Table 4.7 and Table 4.8 are
much worse than the corresponding single-scale settings, while the recall rates are
increased. This might be caused by some incorrect but confident predictions with
small scales (i.e., block size = 30 m or k = 15), which have higher “probability”
values in the output descriptor of DGCNN.

Figure 4.1, Figure 4.2 and Figure 4.3 illustrate the segmentation results with dif-
ferent single-scale settings and multi-scale settings from one tile of the test
area. Compared to large scales, smaller block size or k can cause some confusion
to the classification of building points, e.g., the middle of the large roof can be
detected as ground points (see black boxed areas in Figure 4.1). When the block
size is 30 m, points from others can also be mislabeled as buildings, as shown in
the blue boxed area in Figure 4.1a. Figure 4.3a and Figure 4.3d also indicate that
points on building facades can be labeled as others (trees). With small scales,
there exist some “block effect” in the test results, which means the edges of some
blocks can be clearly seen in the visualization of the segmentation. Most of these
problems can be solved when we increase the block size or the neighborhood size
k1. Beyond that, smaller scales also show advantages in the segmentation of ar-
eas, where objects from different classes are highly mixed (see Figure 4.2a, which
indicates the central station in Utrecht, and Figure 4.2d).

1The “block effect” is not removed with k = 25, which might be due to the randomness of
the test, or the overfitting problem of the model when there are much more parameters.
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(a) block size = 30 m,
k = 20

(b) block size = 50 m,
k = 20

(c) block size = 70 m,
k = 20

(d) block size = 50 m,
k = 15

(e) block size = 50 m,
k = 25

(f) block size = 30 & 50
m, k = 20

(g) block size = 50 m,
k = 15 & 20

(h) Ground
Truth

Figure 4.1: Segmentation results from a tile in the test area, with
ground points in brown, building points in yellow, water points in
blue and points from others in green. With small scales, confusion
of building and ground classes can be seen in black boxed areas. A
large number of points from others are labeled as buildings when

the block size is 30 m, as indicated by the blue boxed area.
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(a) block size = 30 m,
k = 20

(b) block size = 50 m,
k = 20

(c) block size = 70 m,
k = 20

(d) block size = 50 m,
k = 15

(e) block size = 50 m,
k = 25

(f) block size = 30 & 50
m, k = 20

(g) block size = 50 m,
k = 15 & 20

(h) Ground
Truth

Figure 4.2: Segmentation results around Utrecht central station in
the test area, with ground points in brown, building points in

yellow, water points in blue and points from others in green. With
small scales, highly mixed points from ground and others are easier

to distinguish.
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(a) block size = 30 m,
k = 20

(b) block size = 50 m,
k = 20

(c) block size = 70 m,
k = 20

(d) block size = 50 m,
k = 15

(e) block size = 50 m,
k = 25

(f) Ground
Truth

(g) block size = 30 & 50
m, k = 20

(h) block size = 50 m,
k = 15 & 20

(i) Street scene shown in
Google Map, which is

viewed from the satellite

Figure 4.3: A point cloud subset in 3D view. With smaller scales
(i.e., block size = 30 m or k = 15), many points from building

facades are detected as trees from “others”.

When we combine results from two single-scale settings, drawbacks from both
scales can be mitigated by taking more confident predictions. For example, when
the block size 30 m and 50 m are combined (see Figure 4.3g), much less points on
building facades are detected as trees and the “block effect” is removed compared
to Figure 4.3a, which is achieved with the block size 30 m. Additionally, grass
points shown in Figure 4.3b (block size = 50 m) are mislabeled as buildings,
which is also largely corrected in Figure 4.3g.

Table 4.9 also summarizes F1 scores from different classes in all experiments. For
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the ground class, the F1 score varies not much with the block size or k value.
Increasing the scale helps to detect points from buildings and others. The F1
score varies the most with different scales for the water class and larger scales do
not always improve the segmentation. When the block size is too large, the F1
score even drops a lot. For water points, the model performs the best when the
block size is 50 m and k = 25. Moreover, combining results from different scales
improve the F1 score, but not very much.

Block size (m) k
F1 score (%)

others ground building water
30 20 92.88 95.16 83.08 67.77
50 20 94.03 95.76 87.71 81.14
70 20 93.59 95.84 87.28 75.49
50 15 93.32 94.93 85.95 80.04
50 25 94.13 95.65 87.66 82.22

30 & 50 20 94.14 96.14 87.78 82.12
50 15 & 20 94.10 95.64 88.03 82.83

Table 4.9: Comparison of per class F1 scores under different
single-scale and multi-scale settings
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Conclusion

This work investigates the feasibility of DGCNN on the semantic segmentation
of ANH3 point clouds using 3D coordinates and LiDAR features (return number,
number of returns and intensity), and discusses how different choices of the block
size and the neighborhood size k in k-NN graphs affect the segmentation results.

Three block sizes (30 m, 50 m and 70 m) and three k values (15, 20 and 25) are
studied. The best overall accuracy (93.30%) and mean IoU (82.10%) are achieved
when the block size is 50 m and k = 25, while the highest average per class
accuracy is obtained with a block size of 70 m and k = 20. It can be concluded
that increasing the block size or k is beneficial for the overall performance of
DGCNN on AHN3 point clouds. For each individual class, i.e., ground, building,
water and others, we also discover that a certain single-scale setting cannot ensure
the best segmentation results from all classes. However, we can achieve a balanced
and good F1 scores for all kinds of objects when both values of the block size and
k are appropriate (e.g., when the block size is 50 m and k = 20 or 25). Besides,
combining segmentation results from single-scale settings helps to consolidate the
overall performance of the model by exploiting advantages from both settings,
although confusion for some classes (e.g., buildings and vegetation from “others”)
can also be caused.

20



Chapter 6

Recommendations

In our experiments, DGCNN is proved to be an effective way of classifying aerial
point clouds, but there are still many problems indicating future research and
further investigation. First, during test, the number of points inside a block is
largely increased when we set the block size as 70 m, resulting in the out-of-
memory problem in relevant experiments. Thus, although using a larger block
size can improve the overall accuracy, the best choice is also limited by the hard-
ware. Second, we downsampled the original AHN3 point clouds uniformly before
applying DGCNN, which lowers the point density and causes certain loss of de-
tails. Since downsampling is necessary in some cases considering the memory
usage, it might be significant to improve the sampling method at the same time,
e.g., sampling with octree to account for different detail levels within a point
cloud. In this way, it is possible to add object-level context such as more detailed
division of tree and building facade points. Similar problems also happen during
training. The block usage of DGCNN can cause artefacts in the segmentation
results, which means in some area the edges of the blocks are very obvious. This
problem can be less serious using a larger block size, but in this case the point
density inside a block is harmed due to random sampling. It is beneficial to apply
more refined sampling technique in each block, or to sample for several times.
Third, using a larger k value increases the overall performance of the model,
but the model can be overfitted when k is too large (e.g., k = 25). This can
be explained by the usage of much more parameters, and the more overlapping
neighborhood of different points. We could account for more points in a block
when increasing the neighborhood size. Additionally, in multi-scale combina-
tions, some predictions at one scale are correct but less “confident” compared to
the other. A correction method should be found. We could also consider using
boosting strategy to improve the result, or incorporating the multi-scale com-
bination inside the network. Lastly, we notice that the “others” class of AHN3
dataset contains points from grass, trees, railways, etc., which actually are dis-
tinct in features like height (z coordinate). We suggest a finer division of classes
in the next iteration of AHN point cloud data, which might improve the perfor-
mance of network further. For the future research, it will also be beneficial to
apply DGCNN on aerial point clouds with more complex categories.
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