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1 CHAPTER

Introduction

T
he common need for accurate and efficient control of today’s indus-
trial applications is driving the system identification field to face the

constant challenge of providing better models of physical phenomena.
Systems encountered in practice are often nonlinear or have time-varying
nature. Dealing with models of such kind without any structure is of-
ten found infeasible in practice. This rises the need for system descrip-
tions that form an intermediate step between Linear Time-Invariant (LTI)
systems and nonlinear/time-varying plants. To cope with these expecta-
tions, the model class of Linear Parameter-Varying (LPV) systems provides
an attractive candidate. The philosophy of LPV systems is to represent
the physical reality as a set of LTI systems from which one is selected at
every time instance to describe the continuation of the signal trajectories.
The LPV system class has a wide representation capability of physical
processes and this framework is also supported by a well worked out and
industrially reputed control theory. Despite the advances of the LPV con-
trol field, identification of such systems is still in its immature state, due
to many open problems of LPV system theory. This thesis focusses on the
development of a unified system theoretic view on general LPV systems.
Using this unified framework, it proposes a novel way to identify LPV
systems, as models of an underlying physical system. In this introduc-
tory chapter, the problem statement of this thesis is explained together
with a brief overview of the state-of-the-art in the LPV field, underlying
the need for improvement. This forms the starting point for motivating
the followed research strategy. The chapter finishes with a brief overview
of the context and the main contributions.

1.1 New challenges of system identification

Today, the need to optimize efficiency of plants in terms of performance or en-
ergy consumption and to improve reliability of automatization results in increas-

1



2 Chapter 1 Introduction

ing expectations towards automatic control applications. Engineers working in
the control field have to face challenges in terms of operating industrial process
in a more accurate way but at the same time with a lower cost in terms of used
energy. For example in lithography, moving stages of wafer stepper machines to-
day require fast and accurate positioning in the nanometer scale. In the emerging
alternative energy field, the coupled nonlinear nature of wind turbines and the
rapidly changing conditions of wind and grid load require more efficient and also
easily reconfigurable control solutions. On the other hand, economical efficiency
also drives the control field to replace existing control designs with solutions that
require less sensors or actuators, but still provide the same performance. Like
in the case of induction motors, high performance control based on less built-in
sensors, like speed-sensorless drives, has great economical importance. To cope
with these challenges, well applicable theoretical solutions have been developed
like optimal, robust, and nonlinear (NL) control approaches, trying to refine and
extend the results of Linear Time-Invariant (LTI) control theory, widely used in au-
tomatization. However to achieve the aimed objectives by these approaches, it is
vital that an accurate, compact, and reliable mathematical description of the actual
physical phenomenon is available.

First principle laws of physics, chemistry, biology etc. are commonly used to
construct a dynamic model of the system of interest. However, such a procedure
requires detailed process knowledge from specialists. Often it is a challenge to
assemble the existing knowledge into a coherent and compact mathematical de-
scription. Usually, this results in a very complex model of the system dynamics,
as it is hard to decide which effects are relevant and must be included in the final
model and which are negligible. Such an approach is also often found to be very
laborious and expensive. If the specialist’s knowledge is lacking, like in case of
poorly understood systems, the derivation of a model from first principles is even
impossible. Moreover, certain quantities, like coefficients, rates, etc. required to
build the model are often unknown, and have to be estimated by performing ded-
icated experiments.

Descriptions of systems can alternatively be derived by system identification,
where the estimation of a dynamical model is accomplished directly from mea-
sured input-output data. The expert knowledge still has a major role, as it gives
the basic source of information that is used in the decision on parameterization,
model-structure selection, experiment design, and the actual way of deriving the
estimate. This knowledge also helps in judging the quality and applicability of the
obtained models. Even if system identification requires human intervention and
expert knowledge to arrive at appropriate models, it also gives a general frame-
work in which most of the steps can be automated, providing a less laborious and
cost intensive modeling process.

Starting from frequency domain approaches in the early 1940s, over the years
considerable attention has been given to the identification of LTI systems, which
have proven their usefulness in many engineering applications. Today LTI sys-
tem identification has become a strongly founded framework considering issues
of uncertainty and closed-loop identification with a vast theory on experiment de-
sign (for an overview see Pintelon and Schoukens (2001)). But the need to operate
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processes with higher accuracy/efficiency, has soon resulted in the realization that
the commonly NL and Time-Varying (TV) nature of many physical systems must
be handled by the control designs. This required better models, which initiated a
significant research effort spent on identification and modeling of NL and Linear
Time-Varying (LTV) systems (see Ginnakis and Serpedin (2001) and Niedźwiecki
(2000) about the developed approaches). Despite many theoretical solutions, deal-
ing with NL models without any structure has been found infeasible in practice
both in terms of identification and control. Today, engineers working in the in-
dustry still prefer the application of LTI control-designs, due to the attractive ap-
proaches of optimal and robust control. These approaches are preferred as they
guarantee high performance and reliability, have easy and quick design schemes,
and engineers have a vast experience in their application. Additionally, it has
been also observed in practice that many NL systems can be well approximated
by multiple LTI models that describe the behavior of the plant around some opera-
tion points. The recognition manifested in the 1980s, that instead jumping into the
deep-space of NL and TV systems, a model class is needed which can serve as an
extension of the existing LTI control approaches, but is still able to incorporate NL
and TV dynamical aspects. This recognition and the observation of multiple LTI
modeling have led to the birth of Linear Parameter-Varying (LPV) systems through
the idea of gain-scheduling (Shamma and Athans 1992).

1.2 The birth of LPV systems

In gain-scheduling, the basic concept is to linearize the NL system model at differ-
ent operating points resulting in a collection of local LTI descriptions of the plant
(see Figure 1.1). Then subsequently, LTI controllers are designed for each local
aspect. These controllers are interpolated to give a global control solution to the
entire operation regime (Rugh 1991). The used interpolation function is called the
scheduling function in this framework and it is dependent on the current operating
point of the plant. To describe the changes of the operating point, a signal is in-
troduced, which is called the scheduling signal and often denoted by p. In this way,
the parameters of the resulting controller are dependent on the varying signal p,
hence the name parameter-varying, while the dynamic relation between the system
signals is still linear. Due to many successful applications of this design methodol-
ogy (Spong 1987; Whatley and Pot 1984; Stein 1980), gain-scheduling has become
popular in industrial applications, even if guarantees for overall stability of the
designed LPV controllers have not been available and the possibility of malfunc-
tion has existed. After 20 years, this has been resolved when interpolation based
methods appeared that guarantee global stability (Stilwell and Rugh 2000; Korba
and Werner 2001). Soon it has been realized that in general many NL systems can
be converted into an LPV form. Approaches have appeared that provided direct
LPV models for gain-scheduling without the laborious process of NL system mod-
eling or identification (Milanese and Vicino 1991; Nemani et al. 1995; Carter and
Shamma 1996; Tan 1997). LPV control has gained momentum during the 1990s,
when the first results about the extension of H∞ and H2 optimal control through
Linear Matrix Inequalities (LMIs) based optimization appeared (see Scherer (1996);
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Figure 1.1: The mechanism of gain-scheduling: interpolation of local LTI mod-
els/controllers of the plant to approximate the global behavior on the entire oper-
ation regime, i.e. scheduling space.

Apkarian and Gahinet (1995); and Packard (1994)) together with robust LTI con-
trol originated µ-synthesis approaches (Zhou and Doyle 1998). Contrary to the
former methods, these approaches guarantee stability, optimal performance, and
robustness over the entire operating regime of LPV models. Since then, the LPV
field has evolved rapidly in the last 15 years and became a promising framework
for modern industrial control with a growing number of applications like aircrafts
(Marcos and Balas 2004; Verdult et al. 2004), wind turbines (Bianchi et al. 2007;
Lescher et al. 2006), induction motors (Tóth and Fodor 2004; Prempain et al. 2002),
compressors (Giarré et al. 2006), servo systems (Wijnheijmer et al. 2006), wafer
steppers (Wassink et al. 2004; Steinbuch et al. 2003), internet web servers (Qin
and Wang 2007), and CD-players (Dettori and Scherer 2001). Unfortunately, LPV
system identification and modeling could barely keep up with the advances of the
control field. Only very recently, initiatives have been taken to explore many open
problems and questions in this area.

1.3 The present state of LPV identification

In the following, a general picture about the state-of-the-art in LPV system iden-
tification is presented. However, before going into details, we establish the key
steps of the classical identification framework where the specifics of the LPV iden-
tification methods can be positioned and categorized.

1.3.1 The identification cycle

Identification of dynamical systems on the basis of experimentally measured data
consists of several design steps, which need careful treatment in order to produce
a desired model of the system. These steps are summarized in the so called iden-
tification cycle presented in Table 1.1. This set of steps is referred as a cycle, due to
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Table 1.1: The identification cycle

Step 1. Experiment design, data collection, and data manipulation.

Step 2. Selection of model structure and parametrization.

Step 3. Choice of the identification criterion.

Step 4. Estimation of a model that is optimal with respect to the criterion.

Step 5. Validation of the resulting model estimate.

the fact that several iterations might take place, using the knowledge gathered in
the previous attempts, till the desired model is delivered. In the following a brief
overview of each step is given based on Ljung (1999).

Step 1. Experiment design and data preprocessing

Experiment design focuses on the choice of the excitation of the system to be iden-
tified in order to maximize the information content in the measured signals. The
design procedure is commonly accomplished with respect to a selected model
class to minimize the variance, i.e. the estimation error, of the resulting model es-
timate. One of the most important problems, is how to choose input signals that
are Persistently Exciting (PE), i.e. they result in output signals which have enough
information content to describe the dynamical relation of the system. A similarly
important notion is the use of adequately exciting inputs that result in informative
data sets which have enough information content to distinguish between different
models in the considered model class. White noise inputs are in general consid-
ered to be optimal, e.g. they excite all frequencies of an LTI system. As physical
actuation by such signals is often infeasible, in practice random binary noises, fre-
quency sweeps, and multisines are considered. Beside experiment design, data
preprocessing is focusing on the attenuation of disturbances, noises or other de-
fects in the measured data.

Step 2. Choice of the model structure

The choice of an appropriate model structure is the most crucial part of the iden-
tification cycle. It determines the set in which a suitable description of the system
is searched for. General questions considered in this step are the selection of the
model structure in terms of the representation form (state-space (SS), input-output
(IO), series-expansion, etc.), parametrization, and the type of noise modeling. In
terms of the well known bias/variance trade-off, the size of the model set is also
important, like the number of parameters or order of the model structure. To
obtain an adequate choice, the complexity of the algorithm delivering the model
estimate or undesired local solutions of the estimation, non-uniqueness of the op-
timum, etc., also need to be considered.
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Step 3. Choice of the identification criterion

Selection of the identification criterion, the mathematical formulation of the per-
formance measure of the model estimates, defines the user’s purpose or expecta-
tion towards the model of the plant. In the literature, many identification criteria
are presented, but the most commonly applied is the mean squared error of the
output prediction of the model estimate.

Step 4. Model Estimation

The model estimation phase is the consequence of the previous choices of the
identification cycle. Commonly the algorithmic solution of the estimation prob-
lem, defined in terms of the model structure and the identification criterion, are
considered here.

Step 5. Model (in)validation

A crucial question in identification is wether the obtained model is “good enough”
for the intended purpose of the user. Prior knowledge and experimental data are
both used to confront the estimated model for answering this question. By using
experimental data, validation is often accomplished by comparing simulation re-
sults of the model estimates to the measurements or by analyzing the model as a
predictor of future outputs of the system based on measured past data.

1.3.2 General picture of LPV identification

Next, the LPV identification problem is discussed, defining the notion of LPV sys-
tems and formulating the LPV model structures that are currently used in the lit-
erature. This sets the stage for the introduction of the state-of-the-art identification
approaches.

LPV systems and the task of identification

Based on the original gain-scheduling principle, LPV systems are often viewed as
a linear dynamical relation between input signals u and output signals y, where the
relation itself is dependent on an external variable, the so called scheduling signal
p. This provides the schematic view presented in Figure 1.2. The relation can be
formalized as a convolution in terms of u and p, which reads in discrete-time (DT)
as

y =

∞∑

i=0

gi(p)q
−iu, (1.1)

where q denotes the time shift operator, i.e. q−iu(k) = u(k − i), u : Z→ RnU is the
DT input, y : Z→ RnY is the DT output, and p : Z→ P is the DT scheduling signal
of the system with a scheduling space P ⊆ RnP . The coefficients gi of (1.1) are
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LPV
u y

p

Figure 1.2: Input-output signal flow of LPV systems

functions of the scheduling variable and they define the varying linear dynami-
cal relation between u and y. If the functions gi are considered to be dependent
only on the instantaneous value of the scheduling signal, i.e. gi : P → RnY×nU ,
then their functional dependence is called static. An important property of LPV
systems is that for a constant scheduling signal, i.e. p(k) = p̄ for all k ∈ Z, (1.1) is
equal to an convolution describing an LTI system as each gi(p) is constant. Thus,
LPV systems can be seen to be similar to LTI systems, but their signal behavior
is different due to the variation of the gi parameters. Note that in the literature
there are many formal definitions of LPV systems, commonly based on particular
model structures and parameterizations. The convolution form (1.1) can be seen
as their generalization.

In identification, we aim to estimate a dynamical model of the system based
on measured data, which corresponds to the estimation of the coefficients gi in
(1.1). This estimation is formalized in terms of a model structure, an abstraction
of (1.1), and an identification criterion.

Model structures in LPV identification, input-output models

One particular type of model structure, which is used in some LPV identification
approaches, originates from the IO type of models of the LTI prediction-error set-
ting. These LPV-IO models are commonly defined in a filter form

y = −
na∑

i=1

ai(p)q
−iy +

nb∑

j=0

bj(p)q
−ju+ e, (1.2)

where e is a noise process, na ≥ 0 and nb ≥ 0, and the coefficients {ai}na

i=1 and
{bi}nb

j=0 are functions of p with static dependence. e is commonly considered to be
a zero-mean white noise.

Model structures in LPV identification, state-space models

Other type of model structures are inspired by the classical SS representation
based LTI models. These so called LPV-SS models are often given with a inno-
vation type of noise model:

qx = A(p)x+B(p)u+ E1(p)e, (1.3a)
y = C(p)x+D(p)u+ E2(p)e, (1.3b)
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LTIu y

p

Δ(p)
wz

Figure 1.3: Input-output signal flow of LFT models

where x : Z → RnX is the state-variable, e is a vector of independent zero-mean
white noise processes, and (A,B,C,D,E1, E2) are matrix functions with static de-
pendence on p. It is commonly assumed that the noise part is not dependent on
p, i.e. E1 and E2 are constants, however there are recent initiatives with varying
noise models. Additionally, the matrices are often considered with linear depen-
dence. In case of A, such a dependence is defined as

A(p) = A0 +

nP∑
l=1

Alpl, (1.4)

where Al ∈ RnX×nX and p = [ p1 . . . pnP ]⊤. This type of dependence is called
affine, and used as a core assumption in many LPV control-design approaches.

Alternatively, the process part of LPV-SS models is considered in an equiva-
lent Linear Fractional Transform (LFT) realization, which originates from the robust
control inspired µ-synthesis approaches. In this formalization, the scheduling de-
pendence is extracted into a feedback gain, while the remaining part of the system
is formulated as a LTI system (see Figure 1.3 for an upper LFT form). This formu-
lation is described mathematically as:





qx
w
y



 =





A1 B1 B2

C1 D11 D12

C2 D21 D22









x
z
u



 , z = ∆(p)w, (1.5)

where w and z are auxiliary variables and {A1, . . . , D22} are constant matrices,
while ∆ is a function of p with static dependence. An equivalent SS realization of
(1.5) is defined as

A(p) = A1 +B1∆(p) (I −D11∆(p))−1 C1,

B(p) = B2 +B1∆(p) (I −D11∆(p))−1D12,

C(p) = C2 +D21∆(p) (I −D11∆(p))
−1
C1,

D(p) = D22 +D21∆(p) (I −D11∆(p))
−1
D12,

if the matrix function I −D11∆(p) is invertible.

1.3.3 LPV-IO representation based methods

The existing LPV identification approaches are almost exclusively formulated in
discrete-time, they assume static dependence, and they are mainly characterized
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by the type of model structure LPV-IO or LPV-SS. In this way, the identification
methods of the LPV field can be categorized based on the model structures. The
resulting categories together with their main properties are summarized in Figure
1.4 and investigated in the following. First we treat LPV-IO approaches which
extend the results of LTI prediction-error identification. A common mark of these
methods that the approaches are derived only in the Single-Input Single-Output
(SISO) case, i.e. when nY = nU = 1. The following subcategories are distin-
guished:

A. Linear regression methods

Methods that fall into this category use the LPV-IO model structure (1.2) which
corresponds to a noise model

v +

na∑

i=1

ai(p)q
−iv = e, (1.6)

where v is the additive output noise. This results in an Auto-Regressive model with
eXogenous input (ARX), well known in the LTI identification framework. How-
ever, in the LPV case, the coefficients are functions of a varying p. Additionally,
the approaches use a linear parametrization of {ai}na

i=1 and {bj}nb

j=0 with polyno-
mial scheduling dependence. In case of nP = 1, this reads for ai as

ai(p) = ai0 +

n∑

l=1

ailp
l, (1.7)

where ail ∈ R. As the resulting model is linear-in-the-parameters, the estimation
of {ail} and {bjl} can be obtained by linear regression (see Wei and Del Re (2006);
Wei (2006); Bamieh and Giarré (2000); and Bamieh and Giarré (1999)). In analogy,
recursive least-squares or instrumental variable methods can also be applied to
refine the estimate, building on the concepts of the LTI prediction-error identifica-
tion framework (see Giarré et al. (2006) and Bamieh and Giarré (2002)). Extending
the LTI concepts, some conditions of PE for LPV-ARX models are derived in Wei
and Del Re (2006) and Bamieh and Giarré (2002). It is important to note that other
popular model structure concepts of the LTI prediction error framework, like Box-
Jenkins, Output-Error, etc. have not been used to identify LPV systems.

B. Nonlinear optimization methods

In this branch of IO approaches (see Figure 1.4), the coefficients {ai} and {bj} of
the LPV-IO model (1.2) are estimated by using nonlinear optimization to minimize
the mean-squared prediction error. The aim is to give better estimates than the
linear regression methods by using a nonlinear parametrization

ai(p) = ai0 + ai1z, (1.8)

where ai0, ai1 ∈ R and z is the output of a feed-forward hidden layer neural net-
work with inputs {y, q−1y, . . .}, {u, q−1u, . . .}, and {p, q−1p, . . .}. The estimation
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is accomplished via either a mixed linear/nonlinear procedure or by a separable
least-squares approach. In the former case, the functional dependencies of the co-
efficients are identified through a neural-network approach while the linear part
of the model is estimated by linear regression (Previdi and Lovera 2003, 2001,
1999). The approach is developed further in Previdi and Lovera (2004), where the
parallel estimation problem of the neural-network model and the linear part is
solved by a separable least-squares strategy.

1.3.4 LPV-SS representation based methods

Other type of approaches use the LPV-SS model structure (1.3a-b) or its LFT equiv-
alent (1.5). In applications, these approaches are generally more appreciated, as
LPV control theory requires a state-space representation and most of the LPV-SS
identification methods can also easily handle MIMO plants. The methods of LPV-
SS approaches fall into the following sub-categories (see Figure 1.4):

A. Gradient methods

These approaches formulate the estimation of the parameter-varying SS matrices
as a NL optimization problem solved via gradient-search-based algorithms. Due
to the nature of gradient-search optimization, the resulting estimate is often a lo-
cally optimal solution of the involved cost function. In Lee (1997) and Lee and
Poolla (1996), an LFT type of SS model structure is used where the scheduling de-
pendence is extracted as ∆(p) = diag(Ip1, . . . , IpnP). The estimation of the linear
part is formulated as a NL optimization, which is solved in an iterative scheme
based on the gradients of the mean-squared output error. In every step of the esti-
mation, the system matrices can be estimated in a different state basis, i.e. a family
of matrix estimates can be given which are all related by state transformations. To
eliminate the non-uniqueness of the estimation, in each iteration step, the matrix
estimates are restricted to a specific structure. Identifiability issues of such LFT
structures are investigated in Lee and Poolla (1997). Other methods have also
been developed which use the same methodology, but on the LPV-SS form (1.3a-
b) with radial-basis functions based scheduling dependence (Verdult et al. 2002,
2003). In this parametrization, the matrices are formulated as

A(p) = A0 +
n∑

l=0

gl(p)Al (1.9)

where Al ∈ RnX×nX and each gl : P→ [0, 1] is a radial basis function.

B. Full-state measurement approaches

These methods assume that the state x of the LPV-SS model, considered in the
LFT form (1.5), is measurable. In this setting, if ∆(p) is parameterized linearly,
the estimation problem reduces to a linear regression. In Nemani et al. (1995),
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the one-dimensional case of this approach has been treated, assuming a white
noise scheduling signal and using recursive least-squares to obtain the estimate.
Conservative conditions of persistency of excitation have also been derived. In
Mazzaro et al. (1999), the robust extension of the method has been worked out,
while in Lovera et al. (1998) and Lovera (1997) the approach has been generalized
to LFT structures with more complicated scheduling dependencies.

C. Multiple model approaches

These methods apply the classical gain-scheduling inspired approach: identifica-
tion for constant scheduling and interpolation. However, this approach is often
used in an intuitive manner. In some methods, the identified LTI models, or so
called “frozen” models, are transformed into canonical SS forms (Wassink et al.
2004; van der Voort 2002; Young 2002; Steinbuch et al. 2003) or internally balanced
modal form (Lovera and Mercère 2007) to perform interpolation on P. Some of
the methods also apply model reduction independently on the obtained LTI mod-
els before interpolation (Lovera and Mercère 2007; Steinbuch et al. 2003) or they
use LTI discretization of the estimated frozen models (Wassink et al. 2004; Stein-
buch et al. 2003). In other approaches, interpolation is accomplished via pole lo-
cations (Paijmans et al. 2008). As issues of noise and parametrization are dealt
with in a local sense, i.e. by the applied LTI identification, these approaches focus
on the question: how to accomplish interpolation in a more efficient sense. These
approaches closely relate to the local-linear-modeling framework (Murray-Smith
and Johansen 1997).

D. Linear-Matrix-Inequalities based optimization method

In Sznaier et al. (2000), identification of LPV-SS models is considered in a LFT form
with a linear dependence: ∆(p) = diag(Ip1, . . . , IpnP). The noise/disturbance v of
the system is assumed to be output additive with a moving average structure

v =

n∑

i=0

Eiq
−ie, (1.10)

where Ei ∈ R· and e is a ℓ∞ sequence. This noise model is considered to be
known. Under this assumption, the estimation problem of the LTI part is formu-
lated as a LMIs based optimization. Based on a similar mechanism, validation of
a LFT model with a linearly parameterized dependence can be formulated as a
LMI feasibility problem if norm bounds and structural properties of the noise are
known.

E. Global subspace techniques

The family of these methods builds strongly on the concepts of the LTI Multi-
variable Output-Error State-Space (MOESP) algorithm (see Verhaegen and Dewilde
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(1992); Verhaegen (1994)). During the estimation process, a generalized data equa-
tion of the LPV-SS model (1.3a) is formulated to obtain both an estimate of the state
evolution and the state-space matrices. In most methods, E1 and E2 are consid-
ered to be constant. The estimation is based on a discrete-time state-observability
matrix of (1.3a) that is reconstructed from the measured data using a similar mech-
anism as in the MOESP algorithm. This identification strategy also enables the
estimation of the system order, similar to the LTI case. Also common marks of the
LPV subspace approaches are the assumption of affine scheduling dependence
(see (1.4)) and the resemblance with bilinear system-identification methods.

• The early approaches have used certain approximations during the recon-
struction of the state, possibly leading to biased estimates (Verdult and Ver-
haegen 2005; Verdult 2002; Verdult and Verhaegen 2002). The computational
load of these methods has been found rather demanding in practice, as ma-
trix dimensions quickly explode with an increasing number of scheduling
variables and block dimensions. This has been the reason why the kernel
method based modification has been proposed in Verdult and Verhaegen
(2005) to regulate the computational load.

• To overcome the resulting bias, non-approximative methods have been de-
rived by restricting the variation of the scheduling signals in the measured
data to be periodic (Felici et al. 2007, 2006) or to be piece-wise constant (van
Wingerden et al. 2007). While the former method is similar to periodic LTV
identification like in Verhaegen and Yu (1995) and Liu (1997), the latter ap-
proach extends the approximative method of Verdult and Verhaegen (2004).
For these special scheduling signals, it is possible to find parameter-varying
state-transformations such that the states in the subspace calculation are at
the same basis at every time instant. Thus, no approximation is needed for
the state-reconstruction in the noiseless case. However, identifiability of SS
models is not understood with such a restricted class of scheduling signals
and problems concerning non-unique solutions of the estimation may result.

• In the work of dos Santos et al. (2007), LPV-SS models (1.3a-b) with affine
dependence are formulated as LTI models by assuming white noise p, in-
dependent white noise u, and independent noise signals e1 and e2 in (1.3a)
respectively (1.3b). Then the estimation is solved as a bilinear identification
problem via a Picard type of iterative scheme. In this approach, the state
is reconstructed by a Kalman filter at each time instant, where the filter is
based on the model obtained in the previous time-steps. The disadvantage
of the method is that it only provides a meaningful estimate in case the white
noise assumptions of u and p are satisfied, which is hard to verify in practice.

F. Observer based grey-box techniques

These approaches like Gáspár et al. (2007, 2005) and Angelis (2001), formulate
the LPV identification problem as a parameter estimation of a known NL model
structure. In that case, it is possible to use an adaptive observer to find the un-
known parameters of the model based on measured data. The used observer is
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commonly an extended Kalman filter, which is applied on the augmented form
of the NL model, where the state is extended with unknown parameters as vari-
ables. If the estimation has converged, then the obtained NL model is processed
further, using the gain-scheduling approach to derive a LPV-SS form with affine
coefficient dependence (Angelis 2001).

1.3.5 Similarity to other system classes

LPV systems are often considered to be similar in some aspects to other system
classes. It has already been mentioned that LPV subspace techniques were in-
spired by the identification approaches of bilinear systems. These systems can be
considered as LPV systems where the scheduling signal is equal to the input of
the system.

LPV systems can also be seen as the extension of LTV systems. By restricting
the coefficients of an LPV system to depend on a fixed linear trajectory of time,
instead on a prior unknown trajectory of the scheduling variable, an LTV system
results. Due to the undoubtable structural similarity, many LPV approaches have
been inspired by the ideas of the LTV framework (IO methods, periodic identifica-
tion) which do not exploit the prior known linear variation of the time trajectory.

In the fuzzy framework, Takagi-Sugeno (TS) dynamic fuzzy models with linear
signal relation are often considered as LPV systems (Korba 2000). However, due to
the if-then structure of the fuzzy rules, commonly LPV control cannot be applied
on such systems and due to other structural differences such an equality of TS and
LPV systems is dubious in the general sense. Thus, in the following, TS dynamic
fuzzy models are treated as non-LPV systems.

1.4 Challenges and open problems

In the previous part, we have seen that a wide variety of identification methods
is available, approaching the underlying LPV identification problem (see Section
1.3.2) from different viewpoints. Many of these approaches are built around an
assumed model structure and focusing only on the estimation task, which is just
one step of the classical identification cycle. Due to these and many other issues,
several challenges and open problems exist, which deserve further research. The
most crucial questions are collected into the following list:

• The current methods use different identification settings, model structures,
and even different views about what an LPV system is. So it is an obvious
question how these concepts and ideas can be brought to a common ground,
where they can be analyzed, compared, and refined?

• Often, the validity of the used identification concepts is not investigated. For
example in prediction-error methods, like the least-squares LPV-IO meth-
ods, the formulation of the predictor, or even description and analysis of the
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Figure 1.4: Available methods of LPV identification.



1.4 Challenges and open problems 15

assumed noise structure of ARX models is omitted. Many approaches use
linear regression, which is applied as an optimization tool instead of esti-
mation in a stochastic sense. How to formulate the prediction-error setting
in the LPV case and how to derive well-founded identification approaches
that dwell on the concepts of the classical framework remain questions to be
investigated.

• In the SS variants of the gain-scheduling principle based identification meth-
ods, state-transformations are applied independently on each LTI-SS model
estimate. For example the frozen models are transformed to a canonical or
balanced form and then they are interpolated. However, such transformed
models do not have a common state, making the consequences of interpola-
tion to be unpredictable. Similarly, the problem of local transformations ap-
plies when model reduction is used independently on the frozen models or
the interpolation is based only on their pole locations. Unexpected problems
can also occur in the interpolation process, if the McMillan degree of the local
models changes at some interpolation points. Thus it is also important to
investigate how the gain-scheduling principle can be used in identification
such that the interpolation is well structured and issues of local transforma-
tions do not apply.

• Many LPV identification approaches, especially sub-space and gradient-se-
arch methods, have significant computational load which renders their pi-
ratical use to be hopeless in case of large scale systems. To assist practical
use, it is important to develop approaches that solve the estimation problem
efficiently and which are less effected by the curse of dimensionality.

• Selection of model structure and parametrization is often entirely skipped.
The way how possible first-principle knowledge about the data-generating
system is transformed to a discrete-time LPV form to assist at least the order
selection is generally ad-hoc. The main reasons are the absence of sound
results on LPV discretization theory or on the conversion of NL differential
equations to LPV representations.

• The cardinal question, concerning the choice of the scheduling variable for a
given physical system is commonly not investigated. As the entire dynamics
of LPV systems depends on this variable, its choice should also be part of
model structure selection. This also implies the question when a given NL
system can be efficiently described by a LPV model.

• In LTV system theory, it has been shown in discrete-time that equivalence
transformations between SS and IO models result in coefficients that are con-
structed from time-shifted versions of the original coefficients (Guidorzi and
Diversi 2003). If this is true for LTV systems, which can be considered as a
special cases of LPV systems, may the same phenomenon hold in the LPV
case? This would suggest that equivalent models in different representation
forms depend on the time-shifted versions of the scheduling, which is called
dynamic dependence.
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• In LPV identification, many approaches build upon the assumption that
LPV-SS and IO models with static dependence are equivalent representa-
tions of the same system. If in terms of the previous phenomenon, equiv-
alence relations, like state-transformations and IO realization, result in dy-
namic dependence, then it becomes a cardinal question how this phenome-
non effects the basic view of LPV identification and validity of the used ap-
proaches.

• In the view of the previous observation, further questions arise about how to
define LPV systems, what kind of representations these systems have, what
the equivalence relations are between these representations and how they
correspond to the previously used concepts of LPV system theory. Answers
to these questions are required to understand what LPV models correspond
to, how they are related, what is the restriction of specific parameterizations
and how the identification approaches can be compared.

• As LPV control is based on LPV-SS models it is also a question how to con-
vert the model estimates to equivalent forms on which LPV control can be
applied on directly.

• Beside these issues, it is a general mark of the LPV field that many ap-
proaches try to build intuitively on the concepts of the LTI theory. However,
is it true that relations of the LTI framework apply directly to the LPV case?
If not, then what are the merits of using the LTI concepts?

In conclusion, the current solutions of the field are not addressing the LPV
identification problem in general well-founded sense due to the restricted class
of model structures, the gaps of system theory, and the neglected steps of the
identification cycle. This motivates the current thesis to fulfill some of these gaps
and establish a well-posed identification setting of LPV systems.

1.5 Perspectives of OBF models

In view of the previous observations, a central problem of the field is the absence
of a model structure which has good representation capabilities with a limited
number of parameters, useful for control, and its identification represents a low
complexity problem. The latter means for example that the model structure is
either well applicable in a gain-scheduling type of approach, i.e. it is easily inter-
polatable without the need of local transformations, or its estimation is available
trough linear regression.

Perspectives of OBF models, gain-scheduling

From the gain-scheduling perspective, Orthonormal Basis Functions (OBF)s-based
model representations offer an easily interpolatable structure with a well worked-
out theory in the context of LTI system approximation and identification (Heu-
berger et al. 2005). The basis functions, that provide bases for the space H2
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(Hilbert space of complex functions that are squared integrable on the unit cir-
cle), are generated by a cascaded network of stable all-pass filters, whose pole
locations represent the prior knowledge about the system at hand. This approach
characterizes the transfer function of a proper SISO LTI system as

F (z) =

∞∑

i=0

w iφi (z) , (1.11)

where {w i}∞i=0 is the set of constant coefficients and Φ∞ = {φi}∞i=0 with φ0 = 1
represents the sequence of OBFs. This implies that every transfer function Fp̄ that
corresponds to (1.1) for constant scheduling p(k) = p̄ can be represented as a
linear combination of a given Φ∞. In LTI identification, only a finite number of
terms in (1.11) is used, like in Finite Impulse Response (FIR) models. In contrast
with FIR structures, the OBF parametrization can achieve almost zero modeling
error with a relatively small number of parameters, due to the infinite impulse-
response characteristics of the basis functions. In this way, it is always possible to
find a finite Φn ⊂ Φ∞, with a relatively small number of functions n ∈ N, such that
the representation error for all Fp̄ is negligible. Then, based on experiments with
constant p, frozen aspects of (1.1) can be identified in the form (1.11) with finitely
many terms, resulting in a set of local basis coefficients. Due to the linearity of
(1.11) in these coefficients, model interpolation can easily be accomplished on the
scheduling space P without the need of any local transformations, resulting in the
LPV model:

ŷ =

n∑

i=0

w i(p)φi (q)u. (1.12)

This type of interpolation would also be well structured against local changes of
the McMillan degree as the coefficients in (1.11) are not related directly to the order
of the system. By using SS realizations of the basis functions {φi}ni=0 in (1.12)
a direct LPV-SS realization of this model is available, which means that model
estimates can be directly used for control.

Perspectives of OBF models, global identification

OBF-based model structures have many attractive properties in the LTI case. In
the prediction-error framework, they correspond to output-error type of mod-
els with a linear-in-the-parameter property, which implies that their estimation is
available through linear regression. They generally need less parameters than FIR
models with similar properties. Non-asymptotic variance and bias bounds of the
estimates are also available. These fruitful properties imply that direct identifica-
tion of LPV systems may be beneficial in terms of the model structure (1.12) used
in a prediction-error setting. In such a setting, parameterizing the coefficients as

w i(p) =

nψ∑

l=0

θilψil(p), (1.13)
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where θil ∈ R and ψil are prior chosen functions of p, would yield that estimation
of {θil}l=0,...,nψ

i=0,...,n is available by linear regression, based on experimental data with
varying p. However, for the investigation of this approach, first an LPV prediction
error framework needs to be established. This would provide an identification
method with low complexity, like the IO approaches, but with direct SS realization
of the model estimates.

Perspectives of OBF models, approximation

Based on the work of Boyd and Chua (1985), it has been proved for nonlinear
Wiener models (LTI system followed by a static nonlinearity), that if the LTI part
is an OBF filter bank Φn, then such models are general approximators of nonlinear
systems with fading memory (NL dynamic systems with convolution representa-
tion). This means that, if the number of the OBFs in Φn approaches to infinity,
then the best achievable approximation error of the output trajectories in terms of
the choice of the static nonlinearity converges to zero in an arbitrary norm. It is
obvious that (1.12) is similar to these general approximators, which means that,
if the same property can be shown for the LPV case, then these models have a
wide representation capability of LPV systems. Based on the general approxima-
tor property and the attractive identification properties of OBF models, successful
identification approaches based on these structures have been introduced in the
NL and the fuzzy field (see Gómez and Baeyens (2004) and Sbárbaro and Johansen
(1997)). These methods provide low complexity and reliable estimates for the con-
sidered classes of systems, giving the hope that similar mechanisms could also be
successfully applied in the LPV case.

It is well known in the LTI case that the approximation error, i.e. the resulting
bias of the model estimate directly depends on how well the chosen basis func-
tions Φn can represent the dynamics of the system. In terms of gain-scheduling,
this refers to the size of the representation error of Φn with respect to each Fp̄. This
refers back to the observation that model structure selection has a prime impor-
tance in the LPV case, and as for other type of LPV models, this choice influences
the achievable maximal accuracy of the estimates.

In conclusion, the above discussed perspectives yield the observation that iden-
tification of LPV systems with OBF models like (1.12) could provide answers to
the current challenges of the identification field.

1.6 Problem statement

In the previous part, it has been shown that LPV modeling and system identifi-
cation has many open issues and raises a lot of questions, which have not been
answered yet. The underlying family of problems needs and deserves a unified
treatment and much more research. Based on this observation, we formulate the
aim of our research as the development of an effective LPV identification mecha-
nism that overcomes the drawbacks of the existing state-of-the-art solutions (see
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Section 1.4), but still deliverers low complexity models in a computationally at-
tractive way. The procedure is intended to handle the identification cycle from
model structure selection until delivering the model estimate. This results in the
following problem statement:

- Primary research objective -

Develop a framework and a structural approach for the iden-
tification of general LPV systems as models of an underlying
physical process.

Based on our previous observations and in the view of this objective, we identify
the following subgoals:

1. Investigate model-structure selection for LPVsystems

(a) Explore how LPV models relate to each other. What is the role of dy-
namic dependence and what are the corresponding equivalence trans-
formations. These investigations are needed to compare and analyze
representation capabilities and choices of model parameterization.

(b) Study how first-principle information, like NL system descriptions can
assist the choices of model structure.

(c) Due to the promising properties of OBF model structures, investigate
how these structures approximate/describe general LPV systems. What
are the representation capabilities and how can adequate selection of
the OBFs be accomplished with respect to a LPV system.

2. Formulate the prediction-error framework for LPV identification

(a) Investigate how low complexity LTI identification approaches, like the
OBFs-based method, can be extended to the LPV case.

(b) Investigate how the issues of noise, variance, and bias can be under-
stood in this framework.

3. Based on the results of the previous investigations, possibly by the use of
OBF models, develop estimation approaches that provide reliable LPV model
estimates with low computation load.

(a) Investigate how the gain-scheduling principle can be effectively used
for LPV identification without the need of local transformations.

(b) Explore how direct model estimates can be obtained using the predic-
tion error framework.

These subgoals are explained in detail in the following subsections:
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Subgoal 1, Model-structure selection

The first subgoal corresponds to the observation that model-structure selection in
terms of representation capabilities and parameterizations must be well explored,
i.e. clarified, before formulation of an LPV identification approach. It has been
revealed that the main obstacle in the comparison of representation capabilities
originates from the gaps of LPV system theory, i.e. absence of equivalence trans-
formations between different models. It has also been observed that dynamic de-
pendence may play an important role in such a relation. This has the consequence
that the concept of LPV systems and representations must be reviewed and for-
mally defined. In the LTI case, the behavioral approach (Polderman and Willems
1991) investigates these questions and gives a powerful framework where these
concepts can be clearly formulated. This framework also incorporates most re-
sults of LTI system theory in a simple and efficient way. To give a unified sys-
tem theoretical framework in the LPV case, which enables the investigation and
comparison of model structures, the extension of the LTI behavioral approach has
been considered. This theoretical framework is intended to serve as a tool in the
formulation of a well-posed identification framework.

It has been also observed that to assist model-structure selection, a clear under-
standing how LPV systems correspond to NL systems must be obtained. Thus,
a transformation procedure is required that can provide the best suitable LPV
description of a given NL system. Based on first-principle knowledge, such an
approach could provide vital information about parametrization, order selection,
etc., all required to select a good model-structure candidate for identification. As
first-principle models are commonly given in continuous-time, it is also vital to
investigate how model discretization can be solved efficiently in the LPV case.

Using the observation that OBFs-based model structures might provide an at-
tractive candidate to solve our primary objective, their representation capabilities
and properties must be investigated in the planned LPV behavioral framework.
A cardinal question that is to be understood, is whether a representation of LPV
systems is available in terms of OBF series expansions, similar to the LTI case
(see (1.11)). It must be investigated how adequate selection of OBFs can be ac-
complished based on measured data or a priori information in order to facilitate
model-structure selection.

Subgoal 2, Prediction-error framework

From the studied LPV identification approaches and the classical identification
framework, it can be concluded that low-complexity identification might be avail-
able in the prediction-error setting. However a formulation of this setting is miss-
ing in the current literature. Based on the promises that this setting may result in
an approach that solves the primary objective, investigation and formulation of an
LPV prediction-error setting is established as a secondary subgoal. It is planned
that if OBF model structures are found adequate in the previous investigations,
then the extension of the LTI-OBF identification framework is considered for the
LPV case.
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Subgoal 3, Estimation methods

Based on the results of the previous investigations, the actual formulation of the
estimation methods is aimed for as the third subgoal. We intend to explore how
the gain-scheduling approach of the current LTI identification literature can pro-
vide an answer to our primary research question. We also intend to seek out
possible ways of direct estimation of the system using the prediction-error frame-
work.

General remarks

In the following, we present a theory with new ideas of LPV behaviors, modeling,
and identification methods, that have appealing properties and can be applied
successfully to fulfill the aimed research objectives. Due to the vast number of
problems this thesis addresses, we also leave many open ends and questions for
future research. The exploration of all issues of the LPV identification cycle of gen-
eral physical systems remains a problem, but the use of orthonormal basis func-
tions opens interesting and promising perspectives to approach the identification
of this system class efficiently.

1.7 Overview of contents and results

This thesis is divided into eight major chapters, next to this introduction and the
conclusions in Chapter 10. See Figure 1.5 for an overview of the chapters and their
relations.

The introductory Chapter 2 is devoted to the basic mathematical and system
theoretical tools that are used in the remainder. This includes a brief overview of
the behavioral approach of Polderman and Willems (1991) for LTI systems where
we consider finite-dimensional differential/difference systems with input-output
partitioning. Through this framework, we explore the definitions of represen-
tations, equivalence classes and transformations, and minimality together with
issues of stability, state-observability and reachability, model balancing, and dis-
cretization theory with the purpose to extend these notions to LPV systems later
on. We also present a short overview of the basic issues of identification, espe-
cially focusing on OBFs based methods. It is motivated that in the OBFs-based
identification approach there is a prime emphasis on the model structure selec-
tion in terms of basis functions. To support this basis selection step in the LPV
case, the theories of Kolmogorov n-widths and Fuzzy clustering are discussed.

In Chapter 3, we introduce an LPV behavioral approach that establishes a uni-
fied system theoretical framework, as a solution for the first research subgoal. In
this framework, it becomes possible to understand basic relations of LPV models
and it gives the basic tool to introduce OBFs based LPV model parameterizations
later on.
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In Chapter 4, we explore equivalence transformations between different repre-
sentations of LPV systems. We investigate LPV-SS canonical forms and transfor-
mations between LPV-SS and IO representations. The explored relations give the
tools to analyze and compare LPV model structures, fulfilling research goal 1.a.
This chapter is based on the concepts of Tóth et al. (2007).

In Chapter 5, representation of LPV systems by OBF-based series-expansion
is investigated. It is shown that finite truncation of these representations can be
used as model structures for LPV system identification. Such structures also have
wide approximation capabilities. This gives answers for research goal 1.c.

In Chapter 6, discretization of LPV systems is reviewed. New discretization
approaches are introduced together with criteria to choose the discretization step
size. The developed methods provide tools to derive solutions for research goal
1.b. This chapter is based on the paper Tóth et al. (2008).

In Chapter 7, the modeling of NL systems in a LPV form is investigated and
the available solutions for this problem are studied. Using the framework of the
LPV behavioral approach, a new mechanism is introduced that solves the LPV
modeling issue of such systems. This approach is developed with the intention to
assist the model-structure selection phase of the identification cycle based on first
principle knowledge, fulfilling research goal 1.b.

In Chapter 8, the basis-selection problem of OBFs-based LPV model structures
is considered, introducing a clustering algorithm, which is inspired by the previ-
ously presented fuzzy clustering and Kolmogorov n-width theory (see Chapter
2). The method is based on the clustering of sample poles that result from identifi-
cation of the system with constant scheduling signals. The effect of noise on iden-
tification is also considered and a robust basis-selection procedure is developed
based on hyperbolic-geometry results. This provides direct answers for research
goal 1.c. The chapter is based on the papers Tóth et al. (2006b,a, 2008a,c).

In Chapter 9, the extension of the LTI OBFs-based identification approach to
the LPV case is developed, relaying heavily on the tools of the previous chap-
ters. The prediction-error framework is established for the LPV case and the
model structures of the current approaches are analyzed, fulfilling objective 2.
Two identification approaches, a global and a local one, are formulated with static
dependence of the coefficients. The former approach utilizes the gain-scheduling
interpolation-based concept while the latter obtains a global estimate based on lin-
ear regression. To overcome the limiting assumption of static dependence, which
is needed for the parametrization of these approaches, two alternative OBFs based
model structures are also worked out. These structures enable approximation of
dynamic dependence of the coefficients through a feedback with only static de-
pendence. An identification approach of such feedback structures is also derived
through a separable least-squares strategy. This concludes research objective 3.
The presented results of the chapter are based on the papers Tóth et al. (2008b,
2007).
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Figure 1.5: Structure of the thesis.
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2 CHAPTER

LTI systems and OBFs

T
his chapter is devoted to the introduction of a number of basic math-
ematical and system theoretical tools that are fundamental for the

theory developed in the subsequent chapters. In the scope of this thesis,
we consider dynamical systems based on the behavioral approach. Us-
ing this framework, in Section 2.1 we develop representations of LTI dy-
namical systems both in continuous and discrete-time and also introduce
important system theoretical concepts. To investigate the connection of
the continuous-time and the discrete-time domain, discretization theory
of LTI systems is briefly covered in a zero-order-hold setting. Beside the
system theoretical concepts, in Section 2.3 the basic theories of LTI system
identification are introduced focusing on prediction error methods. The
notion of Orthonormal Basis Functions (OBF)s is also developed in Section
2.2 with the brief coverage of their most important relations and proper-
ties. OBFs related parameterizations and the associated identification ap-
proaches are also introduced together with the optimality concept of OBF
model structures in terms of the Kolmogorov n-width theory. At last in
Section 2.5, the theory of fuzzy clustering is discussed, which is essential
for the basis selection approach of Chapter 8.

2.1 General class of LTI systems

2.1.1 Dynamical systems

We consider definition of dynamical systems in the context of the behavioral ap-
proach, where systems are described as a set of possible signal trajectories that
obey the underlying laws and restrictions of the physical phenomena.

25
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Definition 2.1 (Dynamical system) (Polderman and Willems 1991) A dynamical
system G is defined as a triple

G = (T,W,B), (2.1)

with T (often a subset of R) called the time-axis, W a set called the signal space, and B a
subset of WT called the behavior (WT is the standard notation for the collection of all maps
from T to W).

The set T defines the time-axis1 of the system, describing continuous, T = R, and
discrete, T = Z, systems alike, while W gives the range of the system signals.
B defines the physical laws, the rules for selecting which trajectories of WT are
possible and which are not. As it will be shown, this definition of dynamical sys-
tems is wide enough to contain popular system classes like Linear Time-Invariant
(LTI) (Polderman and Willems 1991), Linear Parameter-Varying (LPV) (see Chap-
ter 3), Linear Time-Varying (LTV) (Zerz 2006; Ilchmann and Mehrmann 2005), and
even nonlinear (NL) systems (Polderman and Willems 1991; Pommaret 2001).

Two crucial properties of dynamical systems are linearity and time-invariance:

Definition 2.2 (Linear dynamical system) (Polderman and Willems 1991) A dy-
namical system G is called linear, if W is a vector space and B is a linear subspace ofWT.

Definition 2.3 (Time-invariant dynamical system) (Polderman and Willems 1991)
A dynamical system G is called time-invariant, if T is closed under addition and qτB = B

for all τ ∈ T, where q is the forward time-shift operator, qτw(t) = w(t + τ).

A particularly important class of systems, which has both of these properties, are
called LTI systems:

Definition 2.4 (LTI system) (Polderman and Willems 1991) A dynamical system is
called LTI if it is both linear and time-invariant.

The class of LTI systems is considered to be the collection of the most simplest
dynamical systems. Systems belonging to this class have been successfully used
in countless engineering applications to describe or approximate a wide range of
physical phenomena. In the sequel of the chapter, we recollect the major proper-
ties, representations, and identification theory of such systems with the intention
to extend these concepts to the LPV case. In the remaining part, we restrict our at-
tention to LTI dynamical systems which can be described by differential or differ-
ence equations that have finite order and finite signal dimension (W = RnW , nW ∈N). We call these systems Linear Time-Invariant Differential/Difference systems and
denote them with F . A basic property of such systems is that their behaviors B

are complete (w ∈ B ⇔ w|[t0,t1] ∈ B|[t0,t1], ∀[t0, t1] ⊂ T). In the sequel, if refer to
LTI systems, we refer to this system class.

1In general, T can be more than just literally “time”, as it is defined to be a set of independent
variables governing the system. For systems described by partial differential equations it can also
involve space coordinates like position.
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2.1.2 Representations of continuous-time LTI systems

In this section, we investigate the case when T = R, to which we refer as the
continuous-time (CT) case. Consider the constant-coefficient differential equation
(DE):

R(
d

dt
)w = 0, R ∈ R[ξ]nr×nW , (2.2)

where R[ξ]nr×nW denotes the ring of real polynomial matrices in the indeterminate
ξ with nr rows and nW columns. We denote by nξ the maximal power of ξ in R(ξ),
i.e. deg(R(ξ)) = nξ. Define Lloc

1 (R,RnW), the space of locally integrable functions
w : R→ RnW satisfying:

∫ τ2

τ1

‖w(t)‖2 <∞, (2.3)

with [τ1, τ2] ⊂ R and ‖ � ‖2 denoting the Euclidian norm on RnW . Also define
C∞(R,R·) as the space of infinitely differentiable functions w : R → R·. Now we
can formulate the definition of solutions we consider for (2.2). Restricting our-
selves to C∞ would leave out important functions like steps. On the other hand,
the space of distributions is too large to have the solution at every time instant
well-defined. A vital alternative is Lloc

1 , which is large enough to accommodate
steps, ramps, and so on and still concrete enough to avoid problems with distri-
butions. Thus, the concept of solution is introduced in the following sense:

Definition 2.5 (Weak solution) We call w ∈ Lloc
1 (R,RnW) a weak solution of (2.2), if

〈w,R⊤(− d

dt
)ϕ〉 :=

∫R w⊤R⊤(− d

dt
)ϕ dt = 0 (2.4)

holds for all smooth, so called test function ϕ : R→ Rnr with compact support.

Now we can give the differential equation or so called kernel (KR) representation
of CT-LTI dynamic systems as follows:

Definition 2.6 (CT-KR-LTI representation) (Polderman and Willems 1991) The
constant-coefficient differential equation (2.2) is called a continuous-time kernel repre-
sentation, denoted by RK(F), of the LTI dynamical system F = (R,RnW ,B), if

B =

{

w ∈ Lloc
1 (R,RnW) | w is a weak solution of R(

d

dt
)w = 0

}

. (2.5)

Note that in the considered class of LTI systems, any system with T = R has a KR
representation. As a next step, we introduce the concept of rank with respect to
matrix polynomials:

Definition 2.7 (Rank of matrix polynomials) The row (column) rank of a polynomial
matrix R ∈ R[ξ]n1×n2 is the dimension of the row (column) space of R (the row space is
the subspace of R[ξ]1×n2 spanned by the rows of R). As R[ξ]·×· is an Euclidian ring, thus
row and column ranks are equal, hence rank(R), being the row or column rank of R, is
well-defined.
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The following theorem holds:

Theorem 2.1 (Existence of full row rank KR representation) (Polderman and
Willems 1991) Let B be given with a KR representation (2.2). Then, B can also be
represented by a R′ ∈ R[ξ]·×nW with full row rank.

We postpone the further investigation of the properties of KR representations for
a moment, to deduce other classical representations of LTI systems.

In many applications, in particular in control, it is necessary to group the sig-
nals of dynamical systems into sets of input signals u : R→ U and output signals
y : R → Y. This is done to distinguish which of them we would like to (or we
can) actuate as inputs in order to drive the remaining, so called output signals
to a desired trajectory of B. The definition of such a IO partition of G, which is
commonly non-unique, is as follows:

Definition 2.8 (IO partition) (Polderman and Willems 1991) Let G = (T,RnW ,B).
The partition of the signal space as RnW = U × Y = RnU × RnY with nU, nY > 0 and
partition of w ∈ Lloc

1 (T,RnW) correspondingly2 as w = col(u, y) with u ∈ Lloc
1 (T,U)

and y ∈ Lloc
1 (T,Y) is called an IO partition of G, if

1. u is free, i.e. for all u ∈ Lloc
1 (T,U), there exists a y ∈ Lloc

1 (T,Y) such that
col(u, y) ∈ B.

2. y does not contain any further free component, i.e. given u, none of the components
of y can be chosen freely (maximally free).

In terms of Definition 2.8, if (u, y) is an IO partition of F = (R,RnW ,B), then there
exist matrix-polynomials Ry ∈ R[ξ]nY×nY and Ru ∈ R[ξ]nY×nU with Ry full row
rank, such that (2.2) can be written as

Ry(
d

dt
)y = Ru(

d

dt
)u, (2.6)

and the corresponding behavior is

B =

{

w = col(u, y) ∈ Lloc
1 (R,U× Y) | Ry(

d

dt
)y = Ru(

d

dt
)u holds weakly

}

.

Furthermore, due to the maximum freedom of the input signal u, such a IO par-
tition of an LTI system defines a causal mapping in case the solutions of (2.6) are
restricted to have left compact support (zero initial conditions at t = −∞). Other-
wise, initial conditions do matter (Willems 2007). Those LTI systems which have
no IO partition are conventionally called autonomous systems. In case nU = nY =
1, systems are referred as Single-Input Single-Output (SISO), while systems with
nU > 1, nY > 1 are called Multiple-Input Multiple-Output (MIMO) systems.

2col denotes column vector composition.
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Definition 2.9 (CT-LTI-IO representation) (Polderman and Willems 1991) The
continuous-time IO representation of F = (R,RnU+nY ,B) with IO partition (u, y) is
denoted by RIO(F) and defined as a differential-equation system with order na:

na∑

i=0

ai
di

dti
y =

nb∑

j=0

bj
dj

dtj
u, (2.7)

where aj ∈ RnY×nY and bj ∈ RnY×nU with ana 6= 0 and bnb
6= 0 are the coefficients

of the matrix polynomials Ru and Ry satisfying (2.6) with Ry full row rank. Due to the
maximum freedom of u, such polynomials exist with na ≥ nb ≥ 0.

Full row rank of Ry and maximal freedom of u implies that det(Ry(ξ)) 6= 0. Then,
we call the rational matrix polynomial function

F (ξ) = R−1
y (ξ)Ru(ξ), (2.8)

the transfer function of RIO(F). Note that nb ≤ na, i.e. the order of the nominator
polynomial is less than or equal to the order of the denominator polynomial. Such
a transfer function F is called proper and it satisfies

lim
ξ→∞

[F (ξ)]ij <∞, ∀i, j (2.9)

where [ · ]ij denotes the element of a matrix in the ith row and jth column. If
nb < na holds, then we call F strictly proper and

lim
ξ→∞

[F (ξ)]ij = 0. (2.10)

It is well-known, that if we denote by Y (s) and U(s) the Laplace transforms of
(u, y) ∈ B respectively, where (u, y) have left compact support and s ∈ C denotes
the Laplace variable, then

Y (s) = F (s)U(s). (2.11)

Substitution of s in F by iω gives the so called frequency response F (iω) of the sys-
tem, with ω ∈ R as the frequency and i =

√
−1 as the imaginary unit. Addi-

tionally, let R′y and R′u be coprime polynomials such that F (ξ) = (R′y)
−1(ξ)R′u(ξ).

Then all s ∈ C, for which det(R′y(s)) = 0, are called the poles of F , while all s ∈ C
satisfying det(R′u(s)) = 0 are called the zeros of F . Furthermore, by applying a
Laurent series-expansion of F (s) around s =∞, it can be shown, that there exists
a sequence of constants {gi}∞i=0 ⊂ RnY×nU , so called Markov parameters, such that

F (s) =
∞∑

i=0

gis
−i. (2.12)

Such a sequence is unique for any RIO(F), therefore it is quite often used as a
representation of F . Moreover, the signal

h = L
−1

{ ∞∑

i=0

gis
−i

}

, (2.13)
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is called the impulse response of RIO(F) (L−1 is the standard notation of the inverse
Laplace transformation). Such a signal corresponds to the response of RIO(F) for
an impulse input at t = 0 and it uniquely represents the IO behavior of F .

Besides partitioning the signals of the system in an IO sense, we often need
to introduce additional variables in most modeling exercises to express more con-
veniently the relationships of those signals which we are particulary interested
in. This is motivated by the first principle laws of physics where we can often
meet physically non-existing (virtual) variables like the potential field in the well-
known Maxwell’s equations. Also it can happen that we are just simply not inter-
ested in some “inner” variables of the system, like in the voltage drop on a resistor
of a space shuttle, if we would like to control its motion around the planet. We
call these other, auxiliary variables latent variables.

Definition 2.10 (Latent variable equivalent) (Polderman and Willems 1991) The
latent variable equivalent of a dynamical system G = (T,W,B) is defined as a system
GL = (T,W×WL,BL) with T the time-axis, W the manifest signal space, WL the latent
signal space, and BL ⊆ (W×WL)T the full behavior satisfying that

B = {w : T→ W | ∃wL : T→ WL such that (w,wL) ∈ BL} , (2.14)

where B is called the manifest behavior of BL.

Assuming that a continuous-time LTI system contains nL latent and nW manifest
variables, then as a generalization of (2.2):

R(
d

dt
)w = RL(

d

dt
)wL, (2.15)

where w : R → RnW is the manifest variable, wL : R → RnL is the latent variable,
R(ξ) ∈ R[ξ]nr×nW and RL(ξ) ∈ R[ξ]nr×nL are polynomial matrices, and

BL =
{
(w,wL) ∈ Lloc

1 (R,RnW × RnL) | (w,wL) satisfy (2.15) weakly
}
,

B =
{
w ∈ Lloc

1 (R,RnW) | ∃wL ∈ Lloc
1 (R,RnL) s.t. (w,wL) ∈ BL

}
.

Now we can introduce an important class of latent variables, the so called
state-variables, which not only naturally show up in applications, but are also use-
ful in the analysis and synthesis of dynamical systems. These variables often have
a direct interpretation in terms of physical variables like positions, velocities, and
masses and have a special property that distinguishes them from other latent vari-
ables:

Definition 2.11 (Property of state) (Polderman and Willems 1991) Consider a latent
variable system GL. Let (w1, wL,1), (w2, wL,2) ∈ BL and t0 ∈ T. In case of T = R,
assume that wL,1 and wL,2 are continuous on R. Define the concatenation of (w1, wL,1)
and (w2, wL,2) at t0 by (w,wL) = (w1, wL,1) ∧

t0
(w2, wL,2) with

w(t) =

{
w1(t), t < t0,
w2(t), t ≥ t0, and wL(t) =

{
wL,1(t), t < t0,
wL,2(t), t ≥ t0. (2.16)

Then BL is called a state-space behavior, and the latent variable wL is called the state, if
wL,1(t0) = wL,2(t0) implies (w,wL) ∈ BL.
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In this way, wL with the property of state acts as the memory of GL. The following
theorem holds:

Theorem 2.2 (State-kernel form) (Rapisarda and Willems 1997) The latent variable
wL is a state, iff there exist matrices rw ∈ Rnr×nW and r0, r1 ∈ Rnr×nL such that the full
behavior BL has the kernel representation:

rww + r0wL + r1ξwL = 0. (2.17)

Based on Theorem 2.2, as a convention we assume that the state latent variables
are chosen in such way that in (2.15), deg(RL(ξ)) = 1, while deg(R(ξ)) = 0 and
RL(ξ) is monic. In this way, a CT-LTI state-space (SS) behavior is always defined
by a first-order constant-coefficient DE. Now we can give the definition of the so
called SS representation of F :

Definition 2.12 (CT-LTI-SS representation) (Polderman and Willems 1991) The
continuous-time state-space representation of F = (R,RnU+nY ,B) is denoted by RSS(F)
and defined as a first-order constant-coefficient differential equation system in the latent
variable x : R→ X:

d

dt
x = Ax+Bu, (2.18a)

y = Cx+Du, (2.18b)

where (u, y) is the IO partition of F , x is the state-vector, X = RnX is the state-space,

BSS =
{
(u, x, y) ∈ Lloc

1 (R,U× X× Y) | (2.18a) & (2.18b) are satisfied weakly
}
,

is the full behavior of the manifest behavior B, and
[
A B
C D

]

∈
[ RnX×nX RnX×nURnY×nX RnY×nU ]

,

represents the SS matrices of RSS(F).

Note that in the full behavior BSS, the latent variable x trivially fulfills the state
property in terms of Theorem 2.2. An SS representation also has a transfer func-
tion in the form of

F (ξ) = D + C(ξI −A)−1B. (2.19)

The transfer functions of RSS(F) and RIO(F) are equivalent and they describe the
behavior ofF restricted to signal trajectories with compact left support. Moreover,
their Markov parameters satisfy that g0 = D and gi = CAi−1B for i ≥ 1.

2.1.3 Representations of discrete-time LTI systems

Even if in the physical reality, the time-variation of systems, with a very few excep-
tions, is exclusively and inherently continuous, the class of discrete-time (DT) dy-
namical systems, where the time-axis is restricted to T = Z, is particularly impor-
tant for engineering applications. Since the introduction of digital computation
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operated on a DT scale, digital processors controlled systems have widespread in
industry and have become a part of our daily life from coffee vendor machines
to space shuttles. The essential interaction between the DT and CT world is ac-
complished or viewed through the so called sampling of physical continuous-time
signals, observing them at specific points of the CT time-axis. With the restriction
of periodic, equidistant sampling, we call w′ : Z→ W

w′(k) = w(kTd), ∀k ∈ Z, (2.20)

the DT projection or discretization of the signal w : R → W with sampling-time or
discretization-step Td ∈ R+, where R+ = {x ∈ R | x > 0}. In this way, we call
G′ = (Z,W,B′) the DT equivalent of G = (R,W,B) under sampling-time Td, if

B′ =
{
w′ ∈ WZ | ∃w ∈ B such that (2.20) is fulfilled

}
(2.21)

Note that the concept of sampling only provides a particular viewpoint for the un-
derstanding of the universe of DT systems. It is not guaranteed that a CT system
has a DT equivalent for arbitrary Td, nor that every DT system is an equivalent of
a sampled CT system. It must be clear, that DT systems are a stand alone mathe-
matical concept of modeling, however they have strong relation to the CT domain
based on the concept of sampling.

In the remaining part of this section, we give the DT analog of the concepts
of CT-LTI systems. Many of these concepts have been introduced in the way that
by associating the indeterminate ξ with the forward time-shift operator q , the DT
equivalent directly results.

Consider the constant-coefficient difference equation (DF):

R(q)w = 0, R ∈ R[ξ]nr×nW . (2.22)

Definition 2.13 (DT-KR-LTI representation) (Polderman and Willems 1991) The
constant-coefficient difference equation (2.22) is called a discrete-time kernel (KR) repre-
sentation, denoted by RK(F), of the LTI dynamical system F = (Z,RnW ,B) if

B =
{
w ∈ (RnW)Z | w is a solution of R(q)w = 0

}
. (2.23)

Note that in the considered class of LTI systems, any system with T = Z has a
KR representation. In terms of Theorem 2.1, such representations can always be
given with full row rank. We denote the discrete-time KR representation of a
continuous-time LTI dynamical system F = (R,RnW ,B) by RK(F , Td), if the DT
behavior B′ of this representation is equivalent with B under Td. Similar to the
continuous-time case, we can give the definition of IO representations, based on a
valid IO partition (u, y) of a discrete-time F .

Definition 2.14 (DT-LTI-IO representation) (Polderman and Willems 1991) The
discrete-time IO representation of the LTI system F = (Z,RnU+nY ,B) is denoted by
RIO(F) and defined as a difference-equation system with order na:

na∑

i=0

aiq
iy =

nb∑

j=0

bjq
ju, (2.24)
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where (u, y) is the IO partition of F , aj ∈ RnY×nY and bj ∈ RnY×nU with ana 6= 0 and
bnb
6= 0 are the coefficients of the underlying matrix polynomials Ru, Ry with Ry being

full row rank and na ≥ nb ≥ 0.

By defining u′(k) := u(kTd) and y′(k) := y(kTd), the discrete-time IO representa-
tion, denoted by RIO(F , Td), of a continuous-time LTI system F with IO partition
(u, y) can be given, with equivalent behaviors under the sampling-time Td.

Similar to the CT case, the transfer function F (ξ) of an IO representation can
be introduced. For a col(u, y) ∈ B with left compact support, denote by Y (z) and
U(z) the Z-transforms of u and y, defined on their appropriate region of conver-
gence3 (ROC) with z ∈ C called the Z-variable. Then F satisfies that

Y (z) = F (z)U(z), (2.25)

for any z in the intersection of the ROC of Y (z) and U(z). Substitution of z in F (z)
by eiωTd gives the frequency response of the DT system. The Markov parameters
of F (z) are similarly deduced as in CT by a Laurent expansion around z = ∞,
while the impulse response of F (z) is given as

h = Z
−1

{ ∞∑

i=0

giz
−i

}

, (2.26)

where Z −1 represents the inverse Z-transformation.

For the discrete-time behavior B, we can also introduce latent variables in
terms of Definition 2.10 with the property of state (see Definition 2.11). Based
on these concepts, DT state-space representations of a F are defined as follows:

Definition 2.15 (DT-LTI-SS representation) (Polderman and Willems 1991) The
SS representation RSS(F) of the LTI system F = (Z,RnU+nY ,B) is defined as a first-
order constant-coefficient difference-equation system in the latent variable x : Z → X:

qx = Ax +Bu, (2.27a)
y = Cx +Du, (2.27b)

where (u, y) is the I/O partition of F , x is the state-vector, X = RnX is the state-space,

BSS =
{
(u, x, y) ∈ (U× X× Y)Z | (2.27a) & (2.27b) are satisfied

}
,

is the full behavior of the manifest behavior B, and

[
A B
C D

]

∈
[ RnX×nX RnX×nURnY×nX RnY×nU ]

,

represents the SS matrices of RSS(F).

3The region of convergence is the set of points inC for which the Z-transform associated summation
converges.
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Again, the discrete-time SS representation of a continuous-time LTI dynamical
system F = (R,RnU+nY ,B) is denoted as RSS(F , Td), where the manifest behav-
ior of RSS(F , Td) is equivalent with B under the sampling-time Td. The transfer
function of a discrete-time RSS(F) is similarly deduced as in the CT case (see
equation (2.19)) and the same relation holds for the Markov parameters.

2.1.4 Equivalence classes and relations

In this subsection, we briefly cover the relation and the main properties of the in-
troduced system representations. We require the introduction of these concepts as
later we intend to extend this unified framework to LPV systems. First we concen-
trate on KR representations of a given F . The following definition is important:

Definition 2.16 (Equal behaviors) (Polderman and Willems 1991) Let Bi ⊆ (RnW)
T

,
i = 1, 2. We call B1 and B2 equal if

w ∈ B1 ∩ C∞(R,RnW) ⇔ w ∈ B2 ∩ C∞(R,RnW), for T = R, (2.28a)
w ∈ B1 ⇔ w ∈ B2, for T = Z. (2.28b)

As an abuse of notation, we introduce B1 = B2 to denote equality of B1 and
B2 in terms of Definition 2.16. In analogy, the equivalence of KR representations
follows as:

Definition 2.17 (Equivalent KR representations) (Polderman and Willems
1991) Let Ri ∈ R[ξ]nr×nW , i = 1, 2. Then the KR representations:

R1(ξ)w = 0 and R2(ξ)w = 0, (2.29)

where ξ is either d
dt or q , are called equivalent, if they define the same (equal) behavior.

The existence of equivalent KR representations implies that such representations
of dynamical systems are non-unique. To show this, introduce the concept of
unimodular matrices:

Definition 2.18 (Unimodular matrix) Let M ∈ R[ξ]n×n. Then M is called an uni-
modular polynomial matrix if there exists a M † ∈ R[ξ]n×n, such that M †M = I . In
other words, det(M) is equal to a nonzero constant.

Then, the following theorem holds:

Theorem 2.3 (Left-side unimodular transformation) (Polderman and Willems
1991) Let R ∈ R[ξ]nr×nW and M ∈ R[ξ]nr×nr with M unimodular. Define R′ := MR.
Denote the behaviors corresponding toR andR′ by B and B′ respectively. Then B = B′.
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Furthermore, if R ∈ R[ξ]nr×nW is not full row rank, i.e. rank(R) = n < nr, then
there exists an unimodular M ∈ R[ξ]nr×nr such that

MR =

[
R′

0

]

, (2.30)

where R′ ∈ R[ξ]n×nW is full row rank and the corresponding behaviors are equiv-
alent in terms of Theorem 2.3.

Theorem 2.4 (Right-side unimodular transformation) (Polderman and Willems
1991) Let R ∈ R[ξ]nr×nW and M ∈ R[ξ]nW×nW with M unimodular. Denote the behav-
iors defined by R and RM as B and B′.

• If T = R, then B ∩ C∞(R,RnW) and B′ ∩ C∞(R,RnW) are isomorphic4.

• If T = Z, then B and B′ are isomorphic.

• If M is constant (zero order polynomial), then B and B′ are isomorphic even ifT = R.

In other words, Theorem 2.4 implies that right-side unimodular transformations
do not change the underlying relation between the system signals, but they do
change the signals, the trajectories of the behavior in an isomorphic sense. There
is an important form of LTI-KR representations that can be obtained via left and
right-side unimodular transformations:

Theorem 2.5 (Smith-McMillan form) (Polderman and Willems 1991) Let R ∈R[ξ]nr×nW with rank(R) = n. Then, there exist unimodular matrices M1 ∈ R[ξ]nr×nr

and M2 ∈ R[ξ]nW×nW such that

M1RM2 =

[
R′ 0
0 0

]

,

where R′(ξ) = diag(r1, . . . , rn) for some 0 6= ri ∈ R[ξ].

The Smith-McMillan form gives a unique representation of the behavior associ-
ated with R and it is important for the characterization of the concept of mini-
mality. Now it is possible to introduce the notion of equivalence relation based on
Guidorzi (1981) and Kalman (1963):

Definition 2.19 (Equivalence relation) Introduce the symbol ∼ to denote the equiv-
alence relation on

⋃R[ξ]·×· (all polynomial matrices with finite dimensions). R1 ∈R[ξ]n1×nW and R2 ∈ R[ξ]n2×nW with n1 ≥ n2 are called equivalent, i.e. R1 ∼ R2, if
there exists a unimodular matrix M ∈ R[ξ]n1×n1 such that

MR1 =

[
R2

0

]
l n2

l n1 − n2
. (2.31)

4An isomorphism is a bijective map f between two algebraic structures (groups, rings, or vector
spaces) such that both f and its inverse f−1 preserve all the relevant structure; i.e. properties like
identity elements, inverse elements, and binary operations (they are homomorphisms).
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This implies that if R1 ∼ R2, then the corresponding behaviors are equal.

Definition 2.20 (Equivalence class) The set E ⊆ ⋃R[ξ]·×· is called an equivalence
class, if it is a maximal subset of R[ξ]·×· such that R1, R2 ∈ E implies that R1 ∼ R2.

An equivalence class defines the set of all representations which have the same
behavior. An important subset of an equivalence class are the so called minimal
representations:

Definition 2.21 (Minimality) (Polderman and Willems 1991) R ∈ R[ξ]nr×nW is
called minimal if it has full row rank, i.e. rank(R) = nr.

We call
∑n

i=1 deg(ri) in the Smith-McMillan form of a R associated with RK(F),
the degree of all KR representations in the same equivalence class. This degree is
often referred as the McMillan degree of F . Note that for a minimal RK(F) with
nW = 1, the McMillan degree of F is equal to deg(R) = nξ.

To be able to uniquely specify or sort equivalence classes, we need a specially
distinguished subclass of representations:

Definition 2.22 (Canonical forms) Ecan ⊂
⋃R[ξ]·×· is called a set of canonical forms,

if each element of
⋃R[ξ]·×· is equivalent under ∼ with only one element of Ecan. (Ecan is

the class representative of
⋃R[ξ]·×· under ∼).

The introduced concepts generalize to IO representations as well. We can de-
fine equivalence relation on pairs of R[ξ]·×·, which define an IO representation:

Definition 2.23 (Equivalence relation of IO representations) LetRu, R
′
u ∈ R[ξ]nY×nU

andRy, R
′
y ∈ R[ξ]nY×nY withRy, R

′
y full row rank, deg(Ry) ≥ deg(Ru), and deg(R′y) ≥

deg(R′u). We call )Ry, Ru) and )R′y, R
′
u) equivalent

(Ry, Ru) ∼ (R′y, R
′
u), (2.32)

if there exists a unimodular matrix M ∈ R[ξ]nY×nY such that

R′y = MRy and R′u = MRu. (2.33)

This implies the following concept of minimality for IO representations:

Definition 2.24 (Minimal IO representation) An IO representation defined through
Ry and Ru is called minimal, if there are no R′u and R′y polynomials with deg(Ry) <
deg(R′y) such that

(Ry, Ru) ∼ (R′y, R
′
u).

Using the IO equivalence relation and minimality, the definitions of IO equiva-
lence classes and canonical forms extend trivially. Note that for a minimal RIO(F)
with nY = 1, the McMillan degree of F is equal to deg(Ry) = na.
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For SS representations RSS(F), the SS behavior is defined by a zero-order
polynomial matrix R ∈ R[ξ]nr×(nY+nU) and a first-order polynomial matrix RL ∈R[ξ]nr×nX . Left-side multiplication of R and RL by an unimodular matrix M ∈R[ξ]nr×nr which does not change the order (to satisfy convention) of these poly-
nomials, i.e. deg(MR) = deg(R) = 0 and deg(MRL) = deg(RL) = 1, is equal to a
left-side multiplication by a nonsingular matrix M1 ∈ Rnr×nr :

R′ := M1R and R′L := M1RL. (2.34)

However, such a multiplication results in a non-monic RL(ξ). To stress the monic
convention of this polynomial, right-side multiplication ofR′L(ξ) is done by a non-
singular M2 ∈ RnX×nX to eliminate the non-monic term:

R′′L := M1RLM2. (2.35)

By Theorem 2.4, we know that such a right-side multiplication does not change
the manifest behavior of the resulting SS representation. However, it does change
the SS behavior, altering it to an isomorphic group. As a result, the state trajec-
tories of the system are altered, giving a new state variable. Moreover, it can be
shown, that such a transformation requires a special structure of M1 and M2. This
structure is equivalent by appropriate left and right side multiplications of the SS
matrices of RSS(F) with nonsingular matrices T ∈ RnX×nX and T−1, called the
state-transformation (see Rapisarda and Willems (1997) and Kailath (1980)). Based
on the previous considerations, the following equivalence relation can be defined:

Definition 2.25 (Equivalence relation of SS representations) Let (A,B,C,D) and
(A′, B′, C′, D′) be quadruplets of matrices in R·×· defining SS representations with nX ≥
n′X. These SS representations are called equivalent,

[
A B
C D

]

∼
[
A′ B′

C′ D′

]

, (2.36)

if there exists a nonsingular matrix transformation T ∈ RnX×nX such that:

TAT−1 =

[
A′ 0
∗ ∗

]

, TB =

[
B′

∗

]

,
l n′X
l nX − n′X

CT−1 =
[
C′ 0

]
, D = D′.

(2.37)

Based on the previous considerations, the existence of a state-transformation T
between the matrices of two SS representations implies that they have the same
manifest behavior. Furthermore, the states are related as

Tx(t) =

[
x′(t)
∗

]

,
l n′X
l nX − n′X ∀t ∈ T. (2.38)

It trivially follows that a state-transformation in the LTI case always implies alge-
braic equivalence of the state variables (Kalman 1963).
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Definition 2.26 (Minimal SS representation) An SS representation defined through
the (A,B,C,D) matrices is called minimal, if there exist no (A′, B′, C′, D′) such that

[
A B
C D

]

∼
[
A′ B′

C′ D′

]

,

with n′X < nX.

Again, using the SS equivalence relation and minimality, definitions of SS equiv-
alence classes and canonical forms can be established trivially. In addition, the
state-dimension nX of a minimal RSS(F) is equal to the McMillan degree of F .

2.1.5 Stability of LTI systems

In this subsection, the stability concept of dynamical systems is introduced. Sta-
bility is a very common issue in many areas of engineering sciences and mathe-
matics. Intuitively, stability implies that small causes produce small effects. There
are several types of stability, but here we use the concept of dynamical stability.

Definition 2.27 (Dynamic stability) (Polderman and Willems 1991) The autonomo-
us LTI dynamical system F = (T,RnW ,B) is said to be stable, if (w ∈ B) ⇒ (∃ε ∈ R+

0

such that ‖w(t)‖ ≤ ε for all t ≥ 0) (in an arbitrary norm ‖�‖). It is said to be unstable, if it
is not stable; it is said to be asymptotically stable, if it is stable and (w ∈ B)⇒ (w(t)→ 0
as t→∞).

This definition strongly builds on the linearity (the only fixed point of the dynamic
relation is 0) and time-invariance of the system class (stability on t ≥ 0 implies
stability on t ≥ t0 for all t0 ∈ R). To check the stability of F , consider the following
theorem:

Theorem 2.6 (Stability by KR representation) (Polderman and Willems 1991) Let
RK(F) be the representation of F = (T,RnW ,B). Denote R 6= 0 the matrix polynomial
associated with RK(F). Then, F is

1. Asymptotically stable, iff all roots of det(R(ξ)), denoted by {λi}ni=1, satisfy that:

{
Re(λi) < 0, for T = R;
|λi| < 1, for T = Z. (2.39)

2. Stable, iff all {λi}ni=1 satisfy that:

{
Re(λi) < 0 or Re(λl) = 0, & λi semisimple, for T = R;
|λi| < 1 or |λi| = 1, & λi semisimple, for T = Z. (2.40)

where λi is a semisimple root of det(R(ξ)), if the dimension of ker(R(λi)) is equal
to the multiplicity of λi as a root of det(R(ξ)).

3. Unstable, iff it is not stable.
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In case of an IO partition of F , the concept of dynamic stability is formulated
around the autonomous part of the behavior (non-free signals) on the half line
[0,∞), where u = 0. By considering the generalization of this theorem with re-
spect to IO and SS representations of F , the following well-know theorems result:

Theorem 2.7 (Stability by IO representation) (Polderman and Willems 1991) Let
RIO(F) be the IO representation of F with polynomial matrices (Ry, Ru) such that
deg(Ry) > 0. Then F is

1. Asymptotically stable, iff all roots of Ry, denoted by {λi}na

i=1 satisfy (2.39).

2. Stable, iff all roots of Ry satisfy (2.40) and if λi is a semisimple root of Ry, then it
is not a root of R−1

y Ru.

Theorem 2.8 (Stability by SS representation) (Polderman and Willems 1991) Let
RSS(F) be the SS representation of F with state-space matrices (A,B,C,D), where A 6=
0. The latent variable system defined by RSS(F) is

1. Asymptotically stable, iff all eigenvalues of A, denoted by {λi}nXi=1 satisfy (2.39).

2. Stable, iff all eigenvalues of A satisfy (2.40), where λi is a semisimple eigenvalue
of A, if the dimension of ker(λiI − A) is equal to the multiplicity of λi as a root of
det(ξI −A).

It is important to note that the concept of dynamic stability implies IO stabil-
ity (Bounded-Input Bounded-Output (BIBO) stability) in the (signal) ℓ∞ norm, and
asymptotic stability implies IO stability in the ℓτ norm, 1 ≤ τ <∞:

Definition 2.28 (BIBO stability) (Polderman and Willems 1991) The LTI dynamical
system F = (T,RnW ,B) with IO partition (u, y) is said to be BIBO stable in the ℓτ norm
with 1 ≤ τ <∞, if

(u, y) ∈ B and







if T = R, ∞∫

0

‖u(t)‖τdt <∞⇒
∞∫

0

‖y(t)‖τdt <∞,

if T = Z, ∞∑

k=0

‖u(k)‖τ <∞⇒
∞∑

k=0

‖y(k)‖τ <∞.

It is said to be BIBO stable in the ℓ∞ norm if

(u, y) ∈ B and sup
t≥0
‖u(t)‖ <∞⇒ sup

t≥0
‖y(t)‖ <∞.

The concept of Bounded-Input Bounded-State (BIBS) stability can be similarly de-
fined for LTI systems with both IO partition and state variables. BIBS stability
always implies BIBO stability.

Another approach of stability leads through the approach of Lyapunov, which
is widely used for stability analysis of linear and nonlinear systems, with both
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time-varying and time-invariant nature. While for LTI systems, the Lyapunov
method gives an informative alternative approach, for LPV systems it is the most
applicable way to characterize or test stability of a given SS representation (see
Section 3.3.2). First we introduce the intuitive idea in the context of first-order
differential/difference equations:

ξw = f(w), (2.41)

where f : RnW → RnW is a Lipschitz continuous function and ξ is either d
dt or q .

For notational convenience, assume that f(0) = 0, so the equilibrium of (2.41) is 0
for which we investigate the concept of stability. Note, that any isolated non-zero
equilibrium point w ∈ RnW of (2.41), i.e. f(w) = 0, can be transferred to the origin
by an exchange of variablesw′ = w−w. We would like to find conditions ensuring
that every solution w : T → RnW of (2.41) goes to zero as t → ∞. Suppose thatT = R and a continuously partially differentiable function V : RnW → R is given
with V(0) = 0 and V(τ) > 0 for τ 6= 0. Assume that the derivative of V along
every solution of (2.41) is non-positive. Then V(w(t)) is non-increasing for any
w solution and under some additional requirements it implies that w(t) → 0 for
t→∞. To implement this idea, define the following:

Definition 2.29 (Definiteness of a function) A real valued function g : Rn → R is

• positive semi-definit (denoted by g � 0) if g(τ) ≥ 0, ∀τ ∈ Rn,

• positive definit (denoted by g ≻ 0) if g � 0 and (g(τ) = 0)⇔ (τ = 0),

• negative semi-definit (denoted by g � 0) if g(τ) ≤ 0, ∀τ ∈ Rn,

• negative definit (denoted by g ≺ 0) if g � 0 and (g(τ) = 0)⇔ (τ = 0).

Then based on the previously given considerations about V , the following theo-
rem holds:

Theorem 2.9 (Lyapunov stability) (Polderman and Willems 1991) The origin is an
asymptotically stable equilibrium point of (2.41) in a global sense, if there exists a so called
Lyapunov function V : RnW → R such that the following conditions are satisfied:

1. V ≻ 0 (positive-definit),

2. If T = R, then V is continuously partially differentiable and grad[V ]f ≺ 0,

3. If T = Z, then V is continuous at 0 and (V ◦ f)− V ≺ 0,

4. V(τ)→∞ as ‖τ‖ → ∞.

Similar conditions can be given for stability of the equilibrium point by relax-
ing Theorem 2.9 to require only semi-definiteness in the conditions. Instability
condition of the equilibrium point can also be introduced in the similar sense as
Theorem 2.9 by exchanging negative-definiteness of item 2 and 3 with positive-
definiteness. However, Theorem 2.9 is non-constructive in the determination of
the Lyapunov function which can be laborious in practice.



2.1 General class of LTI systems 41

In the following, we focus on LTI systems in the context of the Lyapunov sta-
bility concept. Let x ∈ XT be the (weak) solution of the autonomous part of a SS
representation RSS(F):

ξx = Ax. (2.42)

Consider the class of quadratic functions V(τ) = τ⊤Pτ , where τ ∈ RnX , P ∈RnX×nX , and P = P⊤ (symmetric). For symmetric matrices, consider the con-
cept of definiteness as the definiteness of τ⊤Pτ in terms of Definition 2.29. For
a quadratic V in continuous-time, using the chain rule of differentiation, it holds
that

d

dt
V(x) = (grad[V ])(x) ·Ax = x⊤(A⊤P + PA

︸ ︷︷ ︸

Q

)x, (2.43)

where Q ∈ RnX×nX and symmetric. Q = A⊤P + PA is called the CT Lyapunov
equation. In discrete-time, using a quadratic Lyapunov function yields

V(qx)− V(x) = x⊤(A⊤PA− P
︸ ︷︷ ︸

Q

)x, (2.44)

where Q ∈ RnX×nX and symmetric. Q = A⊤PA − P is called the DT Lyapunov
equation. Based on Theorem 2.9, the following holds (Polderman and Willems
1991):

Theorem 2.10 (LTI Quadratic stability) (Polderman and Willems 1991) Consider
(2.42). Assume that A, P = P⊤, and Q = Q⊤ satisfy the corresponding Lyapunov
equation (either in CT or in DT). Then

• (P ≻ 0, Q � 0)⇒ ((2.42) is stable).

• (P ≻ 0, Q � 0, and the A-invariant subspace in ker[Q] is {0}) ⇒ ((2.42) is
asymptotically stable).

• (P ≺ 0, Q � 0, and the A-invariant subspace in ker[Q] is {0}) ⇒ ((2.42) is
unstable).

Note that in the last two items of Theorem 2.10, the additional condition results
from the fact that if Q � 0 it must be also guaranteed that (ξx = Ax, x⊤Qx =
0)⇒ (x = 0) which corresponds to an observability condition. Note that Theorem
2.10 gives a constructive version of the Lyapunov theorem. For a given A and Q,
under the condition that no two eigenvalues ofA satisfy λi+λj = 0, the Lyapunov
function can be constructed by solving the corresponding Lyapunov equation for
P . Notice that such a construction can also be formulated without the specification
of Q by solving the Linear Matrix Inequalities (LMI)s:

A⊤P + PA ≺ 0, or A⊤PA− P ≺ 0 with P ≻ 0. (2.45)

In terms of (2.45), finding P for a given A represents a Linear Semi Definite Pro-
gramming (LSDP) problem that can be efficiently solved by a variety of (interior-
point-based) solvers like SeDuMi (Sturm 1999) or CSDP. In case of LPV systems,
this concept is successfully extended, giving an easily computable stability test.
However as we will see, using quadratic Lyapunov functions with P ∈ RnX×nX in
the LPV case only gives a sufficient stability condition of systems.
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2.1.6 State-space canonical forms

Since the 1960s, state-space representations have been thoughtfully investigated to
deduce informative and structurally attractive representatives of SS equivalence
classes. Through these investigations many canonical forms have been introduced
with special structures of the SS matrices. These structures are required to estab-
lish realization theory and equivalence transformations between SS and IO rep-
resentations in the LTI and as we will see in the LPV case too. One set of these
canonical forms is related to concepts of state-observability and state-reachability.
Due to uniformity of these concepts in the LTI case, they are introduced without
distinguishing between the CT and DT cases.

Definition 2.30 (Complete state-observability) (Polderman and Willems 1991)
RSS(F) is called completely state-observable if (u, y), with the laws of the system (state-
space equations), determines x uniquely, i.e. for all (u, x, y), (u, x′, y) ∈ BSS it holds that
x = x′.

Definition 2.31 (Complete state-reachability) (Polderman and Willems 1991)
RSS(F) is called completely state-reachable, if for any given two states x1, x2 ∈ X, there
exists an input signal u and an output signal y, such that (u, x, y) ∈ BSS with x(t1) = x1

and x(t2) = x2 for some t1, t2 ∈ T.

The concepts of state-observability and state-reachability5 are important corner-
stones of control theory and they are connected to the following informative ma-
trices of SS representations:

Definition 2.32 (State-observability matrix) The state-observability matrix of RSS(F)
is defined as OnX ∈ R(nYnX)×nX with

OnX =
[
C⊤ A⊤C⊤ . . . (AnX−1)⊤C⊤

]⊤
. (2.46)

Definition 2.33 (State-reachability matrix) The state-reachability matrix of RSS(F)
is defined as RnX ∈ RnX×(nXnU) with

RnX =
[
B AB . . . AnX−1B

]
. (2.47)

These matrices have the following well-known property:

Theorem 2.11 (Induced complete state-observability/reachability)RSS(F) is com-
pletely state-observable (reachable), iff rank(OnX) = nX (iff rank(RnX) = nX).

Corollary 2.1 If RSS(F) is completely state-observable (reachable), then at least nx num-
ber of rows of OnX (columns of RnX) are linearly independent, forming an invertible ma-
trix. This implies that in the SISO case, OnX (or RnX) is invertible.

5Note that in many text-books, reachability is also called controllability. As in DT, sometimes con-
trollability is identified as state-stabilizability, usually much confusion rises around this term. To avoid
this problem, here the terminology of reachability is used.
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The following theorem is the consequence of the minimality concept of Proposi-
tion 2.26:

Theorem 2.12 (Induced SS minimality) (Polderman and Willems 1991) RSS(F)
is minimal iff it is completely state-observable.

Note that, opposite to the orthodox LTI system theory, minimality in this context
does not require6 state-reachability. However, when it is necessary to refer to orig-
inal concept, we use the terminology of joint minimality:

Definition 2.34 (Joint minimality) If RSS(F) is minimal and completely state-reach-
able, then the representation is called jointly minimal.

In the sequel, OnX and RnX are used to develop canonical forms for LTI-SS repre-
sentations.

Observability canonical form

Assume that RSS(F) is completely observable and SISO. Then, introduce a new
state-basis with the transformation matrix

To = OnX , (2.48)

leading to a new state variable xo, obtained as

xo(t) = Tox(t), ∀t ∈ T. (2.49)

To derive an equivalent representation of F in terms of the new state variable, To

is applied to the system matrices in accordance with ∼, resulting in:

[
Ao = ToAT

−1
o Bo = ToB

Co = CT−1
o Do = D

]

=











0 1 . . . 0 βo
nX−1

...
...

. . .
... βo

nX−2

0 0 . . . 1
...

−αo
0 −αo

1 . . . −αo
nX−1 βo

0

1 0 . . . 0 βo
nX











.

The resulting representation

RO

SS(F) =

[
Ao Bo

Co Do

]

, (2.50)

is called the observability canonical state-space representation of F and it is equivalent
with RSS(F). An important property of RO

SS(F), is that the associated observabil-
ity matrix of this representation is an identity matrix.

Now assume that F is a MIMO system. Then according to Luenberger (1967),
the canonical form of a completely observable RSS(F) is realized by a mapping
rule of three steps:

6Non-reachable systems are very common and they allow a state-minimal representation. Consider
for instance autonomous systems. Such systems define an unique behavior, but their state representa-
tion is never state-reachable.
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Figure 2.1: Young’s selection scheme for OnX : nX = 3, nY = 2. Vectors represented
by dark cells must be selected if they are independent.

1. Choose nX-independent rows of the full column-rank OnX with a given or-
dering sequence.

2. Rearrange those nX-independent rows with a fixed order to form a nonsin-
gular state transformation matrix To.

3. By applying the equivalence transformation defined by To, compute the
canonical representation.

Based on this, write OnX as the sequence of vectors:

OnX =
[
o⊤1 . . . o⊤nY A⊤o⊤1 . . . A⊤o⊤nY . . .

]⊤
, (2.51)

where C⊤ = [o⊤1 , . . . , o
⊤
nY ]. According to the previous mapping strategy, the first

step in the development of a MIMO observability canonical form is the selection
of nX linearly independent vectors from the nX×nY rows of (2.51), which form the
state basis of the new representation. It can be shown, that due to the complete
observability of the system, it is always possible to make a selection, but in gen-
eral it is not unique (Luenberger 1967). Depending on the particular way of the
selection procedure, different canonical forms can be obtained. In the following,
such a selection procedure is used that reproduces the structure of the previously
introduced SISO LTI observability canonical form. According to this, write the
vectors defined by (2.51) in the following order

{o1, o2, . . . , onY , o1A, o2A, . . . , onYA, . . .} , (2.52)

which matches Young’s selection scheme II presented in Figure 2.1. For the sake of
simplicity, momentarily assume that rank(C) = nY, meaning that {o1, o2, . . . , onY}
are linearly independent. Define the index set Iτ2

τ1
= {τ ∈ Z | τ1 ≤ τ ≤ τ2}.

Then, the linear dependence of every vector from the ordered sequence (2.52) can
be analyzed one after the other: if τi ∈ Inx1 is the smallest number such that oiA

τi

is linearly dependent on the previous vectors, then there exists a set of unique
constants {αo

ijl}, such that

oiA
τi =

nY∑
j=1

τij−1
∑

l=0

αo
ijlojA

l, (2.53)
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where the ordering of the vectors implies that

τij =







τi for i = j,
min (τi + 1, τj) for i > j,
min (τi, τj) for i < j.

(2.54)

Once all dependent vectors belonging to all the nY output channels associated
chains have been found, a total of nX =

∑nY
i=1 τi independent vectors is selected

due to the complete observability assumption. Furthermore, as the first nY vectors
{o1, o2, . . . , onY} are independent, they are automatically selected, implying that

max
i∈InY1

τi = τmax ≤ nX − nY + 1. (2.55)

Moreover, the remaining linearly dependent relations (see (2.53)) are described by
∑nY

i=1

∑nY
j=1 τij number of constants {αo

ijl}. Finally, the new state basis is defined
by

T⊤o =
[

o T
1 . . .

(
Aτi−1

)⊤
o T
1 . . . o T

nY . . .
(
AτnY−1

)⊤
o T

nY ] . (2.56)

Due to the linear independence of the rows, To is invertible and by using the
same argument as in the SISO case, it implies algebraic equivalence, defining an
equivalence relation. This equivalence relation yields the following form of the
transformed matrices of RO

SS(F):

[
Ao Bo

Co Do

]

=








[
Ao

ij

]
, i, j ∈ InY1

Bo
1

...
Bo

nY
e1 0nY×(τ1−1) . . . enY 0nY×(τnY−1) D







,

where [ � ] denotes matrix composition, {ei}nYi=1 is the standard basis of RnY , and

Ao
ii =









0 . . . 0 −αo
ii0

1
. . .

... −αo
ii1

...
. . . 0

...
0 . . . 1 −αo

ii(τi−1)









⊤

(τi×τi)

Ao
ij =
















0 . . . 0 −αo
ij0

...
...

...
...

... −αo
ij(τij−1)

...
... 0

...
...

...
0 . . . 0 0
















⊤

(τi×τj)

Bo
i =






βo
i1(τi−1) . . . βo

inU(τi−1)

...
...

βo
i10 . . . βo

inU0






(τi×nU)

Do =






βo
11τ1

. . . βo
1nUτ1

...
...

βo
nY1τnY . . . βo

nYnUτnY (nY×nU)

Based on this representation, the LTI system is separated to an interconnection of
subsystems characterized by the Ao

ii and Bo
i matrices and the connection of these

subsystems is defined through theAo
ij matrices. In this way, using the constructed
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state-space transformation To applied on RSS(F), we have constructed a canonical
SS representation of F . The following corollary holds for representations of F
with the structural form of (Ao, Bo, Co, Do) both in the SISO and the MIMO cases:

Corollary 2.2 RO
SS(F) is completely state-observable and hence minimal.

This corollary means that transformation to the canonical form preserves state-
observability, i.e. a SS representation with this structure always completely state-
observable. In case rank(C) 6= nY, the observability canonical form does not exist
in the previously introduced structure as Co cannot be a matrix composed from
zero vectors and standard bases. In this case, To is constructed by considering
the system only with the independent output channels. Then, To is applied to
the original matrices. The resulting Co retains the structure of the conventional
canonical form for the linearly independent channels (containing only zero vec-
tors and standard bases), however it contains non-unit elements (the weights of
the linear combination of the independent channels) in the rows corresponding to
the dependent output channels.

Reachability canonical form

Similar to the previous part, assume that RSS(F) is SISO and completely reach-
able. We introduce a new state basis, using

Tr = R
−1
nX , (2.57)

leading to a new state variable xr, obtained as

xr(t) = Trx(t), ∀t ∈ T. (2.58)

By applying the equivalence relation defined by Tr on RSS(F), the transformed
matrices are given as (Guidorzi 1981; Kalman 1963):

[
Ar = TrAT

−1
r Br = TrB

Cr = CT−1
r Dr = D

]

=











0 . . . 0 −αr
0 1

1
. . .

... −αr
1 0

...
. . . 0

...
...

0 . . . 1 −αr
nX−1 0

βr
nX−1 βr

nX−2 . . . βr
0 βr

nX










.

Then,

RR

SS(F) =

[
Ar Br

Cr Dr

]

, (2.59)

is called the reachability canonical state-space representation of F . Furthermore, the
reachability matrix of RR

SS(F) is the identity matrix.

As a second step, the MIMO case is considered as an extension of the previ-
ously derived formulation. Similar to the observability case, RnX is rewritten as
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Figure 2.2: Young’s selection scheme for RnX : nX = 3, nU = 2. Vectors represented
by dark cells must be selected if they are independent.

sequences of its column vectors. The selection of nX linearly independent vectors
from the nX×nU column vectors determine the state basis of the reachability form.
In the following, such a selection procedure is used that reproduces the structure
of the previously introduced SISO LTI reachability canonical form. According to
this, define B = [r1, . . . , rnU ]⊤ and select the rows of RnX in the order of

{
r1, Ar1, . . . , A

nX−1r1, r2, Ar2, . . .
}
,

which matches Young’s selection scheme I presented in Figure 2.2. Temporally
assume that rank(B) = nU meaning that {r1, r2, . . . , rnU} are linearly indepen-
dent. Then, the linear dependence of every vector from the ordered sequence can
be analyzed one after the other just like in the observability case. However, in
Young’s selection scheme I, the vectors {r1, r2, . . . , rnU} have to be selected to the
state transformation matrix even if the ordering would indicate else. The expla-
nation lies in that in the reachability canonical transform of B every row must be
zero or a standard basis in R1×nU , which needs that all {r1, r2, . . . , rnU} must be
the part of Tr. According to this, if τi ∈ InX1 is the smallest number such that Aτiri

is linearly dependent on the previous vectors, then there exists a set of unique
constants {αr

ijl}, such that

Aτiri =

i∑

j=1

τij−1
∑

l=0

αr
ijlA

lri, (2.60)

where, because of the ordering of the vectors, {τij} satisfies (2.54). Once that
all dependent vectors belonging all the nU input channels associated chains have
been found, a total of nX =

∑nU
i=1 τi independent vectors are selected due to the

complete reachability assumption. Furthermore, by the selection scheme, the nU
number of vectors of {r1, r2, . . . , rnU} are automatically selected, implying

max
i∈InU1

τi = τmax ≤ nX − nU + 1. (2.61)

The remaining linearly dependent relations (see (2.60)) are described by
∑nU

i=1

∑i
j=1 τij number of constants {αr

ijl}, and Tr is defined as:

Tr =
[
r1 . . . Aτ1−1r1 . . . rnU . . . AτnU−1rnU ]−1 (2.62)



48 Chapter 2 LTI systems and OBFs

Again, linear independence of the selected rows assures the existence of the in-
verse. The Tr equivalence relation yields the following transformed matrices:

[
Ar Br

Cr Dr

]

=












[
Ar

ij

]
, i, j ∈ InU1

e⊤1
0(τ1−1)×nU

...
e⊤nU

0(τnY−1)×nU
Cr

1 . . . Cr
nU D












,

where {ei}nUi=1 is the standard basis of R1×nU and

Ar
ii =









0 . . . 0 −αr
ii0

1
. . .

... −αr
ii1

...
. . . 0

...
0 . . . 1 −αr

ii(τi−1)









(τi×τi)

Ar
ij =
















0 . . . 0 −αr
ij0

...
...

...
...

... −αr
ij(τij−1)

...
... 0

...
...

...
0 . . . 0 0
















(τi×τj)

Cr
i =






βr
1i(τi−1) . . . βr

1i0

...
...

βr
nYi(τi−1) . . . βr

nYi0






(nY×τi)

Dr =






βr
11τ1

. . . βr
1nUτ1

...
...

βr
nY1τnY . . . βr

nYnUτnY (nY×nU)

Again, RR
SS(F) is equivalent with RSS(F). The following corollary also holds:

Corollary 2.3 RR
SS(F) is completely reachable.

Furthermore, if RSS(F) is minimal, then the resulting RR
SS(F) by the given con-

struction procedure is also minimal. In the case of dependent columns of B, the
state-transformation is constructed based on the independent input channels.

Companion canonical forms

The observability and reachability canonical form can be given in an other so
called companion or phase-variable form (Luenberger 1967). These are defined in
the SISO case as:

ROc

SS(F) =

[
Aco Bco

Cco Dco

]

=











0 . . . 0 −αco
0 βco

0

1
. . .

... −αco
1 βco

1
...

. . . 0
...

...
0 . . . 1 −αco

nX−1 βco
nX−1

0 . . . 0 1 βco
nX











,



2.1 General class of LTI systems 49

RRc

SS (F) =

[
Acr Bcr

Ccr Dcr

]

=










0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
−αcr

0 −αcr
1 . . . −αcr

nX−1 1

βcr
0 βcr

1 . . . βcr
nX−1 βcr

nX









,

with state-transformation matrices:

T−1
co =

[
o . . . AnX−1o

]
,

T⊤cr =
[

r⊤ . . .
(
AnX−1

)⊤
r⊤

]

.

Here o is the last column of O−1
nX and r is the last row of R−1

nX . In the MIMO case,
the companion forms are generated by selecting the linearly independent rows
(columns) based on a different ordering (Luenberger 1967). For the companion
observability case, the ordering of the rows of OnX matches with Young’s selection
scheme I presented in Figure 2.1, while in the companion reachability case, the
ordering of the columns of RnX matches with Young’s selection scheme II of Figure
2.2. Similar to the previous canonical forms, the observability companion form is
always observable and the reachability companion form is always reachable.

Transpose of SS representations

It is also important, that for a given SISO LTI system F , it holds that

RSS(F) =

[
A B
C D

]

and R⊤SS(F) =

[
A⊤ C⊤

B⊤ D

]

(2.63)

have equivalent manifest behaviors if they are both jointly minimal (Mason 1956).
Here R⊤SS(F) is called the transpose of RSS(F). This implies that the transpose of
RO

SS(F) is equivalent with RR
SS(F) in case of joint observability and reachability.

Hence, the corresponding matrix coefficients are equal. If RO
SS(F) or RR

SS(F) is
not jointly state-observable and state-reachable, then equality only holds for zero
initial conditions, as non-observable states are transformed to non-controllable
states. The same relation holds for the companion forms. In the MIMO case, the
construction of the equivalent transpose form needs the computation of a state-
transformation T (if it exists) such that A⊤T = TA.

Balanced SS realizations

In systems and control theory, complete state-observability and state-reachability
are also frequently discussed involving observability and reachability gramians.
These symmetric and positive semi-definit matrices also determine the state-ob-
servability or state-reachability of the SS representation:
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Definition 2.35 (Gramians) The observability gramian O and the reachability gramian
R of an asymptotically stable RSS(F) are symmetric matrices which are defined as:

O =

∫ ∞

0

eA⊤τC⊤CeAτdτ and R =

∫ ∞

0

eAτBB⊤eA⊤τdτ, (2.64)

in continuous-time. In the discrete-time case, O and R of an asymptotically stable RSS(F)
are defined as

O =

∞∑

k=0

(
A⊤
)k
C⊤CAk and R =

∞∑

k=0

AkBB⊤
(
A⊤
)k
. (2.65)

Theorem 2.13 (Induced observability/reachability) The SS representation RSS(F),
is completely state-observable (state-reachable), iff its observability (reachability) gramian
is full rank.

In practice, these gramians are computed by solving the following Lyapunov
equations:

AR + RA⊤ = −BB⊤ and A⊤O + OA = −C⊤C, (2.66)

in the CT case and

ARA⊤ + BB⊤ = R and A⊤OA+ C⊤C = O, (2.67)

in the DT case. Now we can introduce the concept of balancing:

Definition 2.36 (Balanced SS realization) Let RSS(F) be an asymptotically stable SS
representation of an LTI system F with observability gramian O and reachability gramian
R. If

R = O = H � 0, (2.68)

where H is a diagonal matrix, then we call RSS(F) (internally) balanced w.r.t. H.

It is immediate that a balanced realization is jointly minimal, i.e. completely state-
observable and reachable, if H ≻ 0. The non-zero diagonal elements of H =
diag(σ1, . . . , σnX) are called the Hankel singular values. It can be shown, that each
non-autonomous LTI system has a jointly minimal balanced SS realization (Glover
1984). Balanced realizations are important tools for model reduction and as we
will see, they play an important role for OBFs. To find the balanced realization of
a given F , the following theorem is important:

Theorem 2.14 (Balanced state transformation) (Glover 1984) Let RSS(F) be an
asymptotically stable and jointly minimal SS representation of an LTI system F with ob-
servability gramian O = LoL

⊤
o and reachability gramian R = LrL

⊤
r . Define the singular

value decomposition of L⊤r Lo as L⊤r Lo = L1H
2L⊤2 . Then the state-transformation

T = H1/2L1L
−1
r = H−1/2L2L

⊤
o , (2.69)

applied to RSS(F) gives a balanced realization of F w.r.t. H.
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2.1.7 Relation of state-space and input-output domains

In the previous part we have introduced SS and IO representations of LTI dynam-
ical systems. In many areas of systems and control, it is an important question to
find equivalent IO and SS representations of a given system. This means, that if
a representation of an LTI system F is available, e.g. a SS representation, how to
find or characterize representations of the system in other domains, e.g. among
IO representations, which define the same behavior. The theory for this, so called
realization problem, is again introduced without making distinction between the
CT and DT cases.

Input-output realization through elimination of the state

First consider the situation that the IO realization of a RSS(F) is sought. To estab-
lish IO realizations of SS representations, first it is shown that the state as a latent
variable can always be eliminated without changing the manifest behavior:

Theorem 2.15 (Elimination of the latent variable) (Polderman and Willems 1991)
Given a latent representation of S with manifest behavior B and polynomial matrices
R ∈ R[ξ]nr×nW , RL ∈ R[ξ]nr×nX . Let the unimodular matrix M ∈ R[ξ]nr×nr be such
that

MRL =

[
R′L
0

]

, MR =

[
R′

R′′

]

, (2.70)

with R′L of full row rank. Then, the manifest behavior defined by R′′(ξ)w = 0 is equal
with B.

Based on Theorem 2.15, the state vector as a latent variable can be eliminated
from RSS(F) with an unimodular transformation. Due to Theorem 2.3 such a
transformation does not change the manifest behavior, hence we call this latent
variable elimination an equivalence transformation. The next step to establish an IO
realization is to formulate the unimodular transformation and the resulting R′′ as
the combination of an output side polynomial Ry and an input side polynomial
Ru. Consider the SISO case first:

Corollary 2.4 (IO Equivalence transformation) (Polderman and Willems 1991)
Let RSS(F) be a SISO state-space representation. Define R̄y ∈ R[ξ] and R̄u ∈ R[ξ]1×nX
by

R̄y(ξ) = det(Iξ −A), R̄u(ξ) = R̄y(ξ)C(Iξ −A)−1. (2.71)

Let Rcom ∈ R[ξ] be the greatest common divisor of R̄y and R̄u. Define

Ry(ξ) =
R̄y(ξ)

Rcom(ξ)
and Ru(ξ) =

R̄u(ξ)

Rcom(ξ)
B +DRy(ξ). (2.72)

Then the IO representation of F , denoted by RIO(F), is given by

Ry(ξ)y = Ru(ξ)u. (2.73)
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The following property is important:

Property 2.1 (Polderman and Willems 1991) Assume that RSS(F) is minimal, i.e.
completely state-observable. Then the IO representation of F is given as

Ry(ξ) = det(Iξ −A), and Ru(ξ) = Ry(ξ)C(Iξ −A)−1B +DRy(ξ). (2.74)

In other words, for a minimal SS representation, the equivalence transformation
simplifies, as dynamics related to non-observable states are not needed to be elim-
inated (R̄y and R̄u are coprime). In case of the previously introduced canonical
forms, the state elimination results in the following conversion rules:

Corollary 2.5 (IO conversion rules) (Willems 2007) The IO realization of minimal
canonical SS representations of F is given as

RO
SS(F) ROc

SS(F) RR
SS(F) RRc

SS (F)

ai αo
i αco

i αr
i αcr

i

anX 1 1 1 1

bj βo
j +

nX−1∑

l=j

αo
l β

o
nX−l+j βco

j + αco
j β

co
nX βr

j +
nX−1∑

l=j

αr
lβ

r
nX−l+j βcr

j + αcr
j β

cr
nX

bnX βo
nX βco

nX βr
nX βcr

nX
with i, j ∈ InX−1

0 and na = nb = nX.

In the MIMO case, the realization is computed by applying the algorithm defined
by (2.71) and (2.72) for each output channel separately, i.e. for each R̄(i)

y = det(Iξ−
A) and R̄(i)

u (ξ) = e⊤i R̄
(i)
y (ξ)C(Iξ−A)−1, i ∈ InY1 polynomials. The common divisor

R
(i)
com in this case is the greatest common divisor of R̄(i)

y and R̄(i)
u .

State-space realization through cut & shift

Finding an equivalent SS representation of a given IO representation follows by
constructing a state-mapping. This construction can be seen as the reverse oper-
ation of the previous latent variable elimination. The actual aim is to introduce
a latent variable into (2.73) such that it satisfies the state-property, ergo it defines
a SS representation of the original system via Theorem 2.2. The central idea of
such a state-construction is the cut-and-shift-map ̺− : R[ξ]·×· → R[ξ]·×· that acts on
polynomial matrices in the same way as the backward time-shift operator acts on
time functions:

̺−(r0 + r1ξ + . . .+ rnξ
n

︸ ︷︷ ︸

R(ξ)

) = r1 + . . .+ rnξ
n−1. (2.75)

This operator can be seen as an intuitive way to introduce state-variables for a KR
representation of F associated with R, as wL = ̺−(R(ξ))w for a smooth w implies
that

R(ξ)w = r0w + ξwL. (2.76)
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Repeated use of ̺− and stacking the resulting polynomial matrices gives

Σ−(R) =










̺−(R)
̺2
−(R)

...
̺n−2
− (R)
̺n−1
− (R)










=










r1 + . . .+ rnξ
n−1

r2 + . . .+ rnξ
n−2

...
rn−1 + rnξ

rn










. (2.77)

In case R ∈ R[ξ]nr×nW with nr = 1, the rows Σ− are independent, thus it can be
shown that X = Σ−(R) defines a minimal state-map in the form of

x = X(ξ)w. (2.78)

Later it is shown that such a state-map implies a unique SS representation. Before
that, we characterize all possible minimal state-maps that lead to an equivalent SS
representation.

We continue to consider the case nr = 1. Denote the multiplication by ξ as
̺+, which acts in the same way as the forward time-shift operator acts on time-
functions:

̺+(r0 + r1ξ + . . .+ rnξ
n) = r0ξ + rqξ

2 + . . .+ rnξ
n+1. (2.79)

Note that ̺−̺+ = I , while ̺+(̺−(R)) = R(ξ)−R(0). Consequently

̺+

([
Σ−(R)

0

])

=

[
R

Σ−(R)

]

−








r0
r1
...
rn







. (2.80)

Denote by spanrowR (P ) the subspace spanned by the rows of P ∈ R[ξ]·×·, viewed
as a R-vector space of polynomial vectors. Also introduce moduleR[ξ](R), the R[ξ]-
module7 spanned by the rows of R(ξ):

moduleR[ξ](R) = spanrowR 









R
̺+(R)

...









 . (2.81)

This module represents the set of equivalence classes on spanrowR (Σ−(R)). LetX ∈R[ξ]·×nW be a polynomial matrix with independent rows and such that

spanrowR (X)⊕moduleR[ξ](R) = spanrowR (Σ−(R)) + moduleR[ξ](R). (2.82)

Then, X is a minimal state-map of the LTI system represented by the polynomial
R ∈ R[ξ]1×nW and it defines a state variable by (2.78) (Willems 2007). This way it
is possible to obtain all minimal equivalent SS realization of the system. The next
step is to characterize these SS representations with respect to an IO partition.

7R′ ∈ moduleR[ξ](R) if and only if ∃P ∈ R[ξ]1×· such that R′ = PR.
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An input-output partition (u, y) associated with R is obtained by choosing
a selector matrix8 Su ∈ R·×nW giving u = Suw and a complementary matrix
Sy ∈ R·×nW giving y = Syw. Then it can be shown, that there exist unique matri-
cesA,B,C,D and polynomial matricesXu(ξ), Xy(ξ) with appropriate dimensions
such that

ξX(ξ) = AX(ξ) +BSu +Xu(ξ)R(ξ), (2.83a)
Sy = CX(ξ) +DSu +Xy(ξ)R(ξ). (2.83b)

These imply that
[
A B
C D

]

∈
[ RnX×nX RnX×nURnY×nX RnY×nU ]

, (2.84)

is a minimal state-representation of the LTI system represented by the polynomial
R ∈ R[ξ]1×nW .

The algorithm described by (2.83a-b) also gives insight into the realization of
the classical SS canonical representations. Later we show that this mechanism can
also be used in the LPV case. We continue to consider the SISO case. Assume that
RIO(F) is given with polynomial matrices Ry and Ru, where Ry is monic. Then
Σ−([ Ry(ξ) −Ru(ξ) ]) gives:












a1 + a2ξ + . . .+ ξna−1 −b1 − b2ξ − . . .− bnb
ξnb−1

a2 + . . .+ ξna−2 −b2 − . . .− bnb
ξnb−2

...
...

ana−1 + ξ
...

1
...












. (2.85)

This na × 2 matrix has independent rows and the span of these rows is linearly
independent from moduleR[ξ]([ Ry −Ru ]). In terms of (2.82), the construction
of the state-map requires to choose X ∈ R[ξ]na×2 such that spanrowR (X) equals
to the rowspan of (2.85). As all rows of (2.85) are independent, X can be easily
constructed. The choice of selector matrices is also evident: Su = [ 0 1 ] and
Sy = [ 1 0 ]. A convenient choice for X is to take the rows of (2.85) in the given
order (top-to-bottom). Then, the algorithm defined by (2.83a-b) with such an X

leads to the companion-observability canonical form ROc

SS(F). Another choice of
X is

X(ξ) =










1 −βo
0

ξ −βo
1 − βo

0ξ
...

...
ξna−2 −βo

na−2 − . . .− βo
0ξ

na−2

ξna−1 −βo
na−1 − . . .− βo

0ξ
na−1










, (2.86)

where the {βo
j } coefficients are computed from the expansion

Ru(ξ)

Ry(ξ)
= βo

na
+ βo

na−1ξ
−1 + . . .+ βo

0ξ
−na + . . . (2.87)

8A matrix with one entry 1 in each row, at most one entry 1 in each column, and all other entries 0
is a selector matrix.



2.1 General class of LTI systems 55

Then, (2.86) leads to the observability-canonical form RO
SS(F). The following

claim also holds:

Claim 2.1 (Willems 2007) The RO
SS(F) and ROc

SS (F) SS realizations of a SISO RIO(F)
via (2.83a-b) are completely state-observable and hence minimal. They are also completely
state-reachable iff Ry and Ru are coprime.

To deduce reachability canonical forms, we investigate the SS realization of
RIO(F) with matrix polynomialsRu and monicRy in the following latent variable
form, the so called image representation:

[
u
y

]

=

[
Ru(ξ)
Ry(ξ)

]

︸ ︷︷ ︸

X̆(ξ)

wL, (2.88)

with ξ either being equal to d
dt or q . Applying the algorithm for state-construction

on (2.88) with variables (wL, u, y) leads to

Σ−(
[

X̆ −I2×2

]
) =

[

Σ−(X̆) 0 0
]
,

where

Σ−(X̆) =










a1 + a2ξ + . . .+ ξna−1

b1 + b2ξ + . . .+ bnb
ξnb−1

a2 + . . .+ ξna−2

b2 + . . .+ bnb
ξnb−2

...










.

A minimal state for (2.88) is therefore given by x = X(ξ)wL where X ∈ R[ξ]na×1

is a polynomial with independent rows such that spanrowR (X) = spanrowR (Σ−(X̆)).
The input is given as u = SuX̆(ξ)wL with Su an appropriate selector matrix. Then
choosing Sy complementary with respect to Su, it can be shown that there exist
unique matrices A,B,C,D and a polynomial matrix X such that

ξX(ξ) = AX(ξ) +BSuX̆(ξ), (2.89a)
SyX̆(ξ) = CX(ξ) +DSuX̆(ξ). (2.89b)

Such matrices (A,B,C,D) define a SS representation of the polynomial R(ξ) rep-
resented LTI system F . There are again convenient choices for X :

X(ξ) =
[

1 ξ . . . ξna−2 ξna−1
]⊤
, (2.90)

giving a realization of the companion-reachability canonical form RRc

SS (F), while
using

X(ξ) =










a1 + . . .+ ξna−1

a2 + . . .+ ξna−2

...
ana−1 + ξ

1










, (2.91)

gives RR
SS(F). The following claim also holds:
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Claim 2.2 (Willems 2007) The RR
SS(F) and RRc

SS (F) SS realizations of a SISO RIO(F)
via (2.89a-b) are completely state-reachable. They are also completely state-observable and
hence minimal iff Ry and Ru are coprime.

The direct coefficient relation of the canonical forms with the IO coefficients can
also be obtained in case Ru and Ry are coprime:

RO
SS(F) ROc

SS (F) RR
SS(F) RRc

SS (F)

αi ai ai ai ai

βj bj −
na−1∑

l=j

alβ
o
na−l+j bj − ajbna bj −

na−1∑

l=j

alβ
r
na−l+j bj − ajbna

βnX bna bna bna bna

where i, j ∈ InX−1
0 , nX = na, and bj = 0 if j > nb. It is an important observation

that the resulting relation of the coefficients is exactly the inverse of the previously
derived conversion rules of the IO realization case. Moreover, due to the minimal-
ity of the state-map, all the obtained canonical forms are minimal and belong to
the same equivalence class.

In the MIMO case, algorithm (2.83a-b) and (2.89a-b) also provides SS realiza-
tion of IO representations, however with different selector matrices (due to the
multi-dimension) and with a more complicated path to select independent rows
from the shift-map for X . It is only guaranteed that at least na number of rows
of the shift-map are independent, thus such selection is not evident. Similar to
selection schemes generating SS canonical representations, only certain selection
strategies for X lead to the MIMO observability and reachability canonical forms.
Therefore, depending on the selection scheme, it is not guaranteed in the general
sense that the obtained SS realization via algorithm (2.83a-b) or (2.89a-b) with the
chosen X is minimal.

2.1.8 Discretization of LTI system representations

Similar to the representation problem discussed previously, it is important to find
equivalent/adequate DT realizations of a given CT system. Such a transforma-
tion of continuous-time representations into a discrete-time counterpart is called
discretization and it is highly motivated by both identification and controller im-
plementation.

In the LTI framework, already extensive research has been dedicated to dis-
cretization methods. The developed techniques can be separated mainly into two
distinct classes: isolated and non-isolated methods (see Hanselmann (1987) for an
overview). Non-isolated techniques consider the discretization of a CT controller
acting on a plant in a closed-loop setting and they aim at the preservation of the
CT closed-loop performance. Isolated techniques consider the stand-alone dis-
cretization of a CT system aiming at only the preservation of the CT input-output
behavior. While isolated approaches are applicable to any LTI system, the non-
isolated techniques are only useful for controller discretization, but they generally
result in a better closed-loop performance (Hanselmann 1987).
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SamplingZOH

F
y(t)u(t)ud(k) yd(k)

Continuous
LTI system

Discrete LTI system

Figure 2.3: Zero-order hold discretization setting of general LTI systems.

In the following, a brief overview of the isolated discretization methods is
given with the intention to extend the introduced methods for the discretization
of LPV systems later on. To accomplish this, first the exact setting of the discretiza-
tion problem has to be established. We consider an ideal Zero-Order Hold (ZOH)
setting presented in Figure 2.3. In this formulation, we are given a CT-LTI system
F , with input-output partition (u, y), and we would like to steer/describe F in
a discrete way. Thus, we choose that u is generated by a ideal ZOH9 device and
y is sampled in a perfectly synchronized manner with sampling-time Td ∈ R+.
It is assumed that the ZOH and the instrument providing the output sampling
have infinite resolution so there is no quantization error10 and their processing
time is zero. In the following we use the notation ud and yd to denote the discrete-
time counterparts of the continuous-time signals u and y satisfying (2.20) with
sampling-time Td. Based on this, for the signals of Figure 2.3 it holds that

u(t) := ud (k) , ∀t ∈ [kTd, (k + 1)Td) , (2.92a)
yd (k) := y (kTd) , (2.92b)

for each k ∈ Z, meaning that u can only change at every sampling-time instant.
However in Section 2.1.3, equivalence of CT and DT behaviors under a given
sampling-time has been established without any restrictions on the variation of
the input signal. But in order to compute/describe the effect of u on F in a given
sample interval, its variation must be restricted to a certain class of functions
which is chosen here to be the piecewise constant (zero-order) class. By choosing
this class wider, including linear, 2nd-order polynomial, etc., higher-order hold
discretization settings of LTI systems can be derived (see Middleton and Good-
win (1990)). Moreover, ZOH based actuation is implemented in most actuation
devices and such a setting is quite realistic in the sense how computer controlled
physical systems behave (Hanselmann 1987).

9The ZOH device is a signal hold instrument providing a CT signal which is constant till the device
is commanded to change it to a new value in a piecewise constant manner.

10Due to digital nature and physical limitation of the equipment, the ZOH device has finite res-
olution in reality, which means that it can only generate finite number of signal values. Moreover,
sampling devices also store data digitally, making available only the representation of finite number of
different measured values. The actuation and sampling error introduced by these problems is called
quantization error. For more on quantization and its effects, see Gray and Neuhoff (1998).
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Discretization of state-space representations

In order to find an equivalent DT-SS realization of a given RSS(F) under the ZOH
setting, write the state equations (2.18a-b) as

d

dt
x (t) = Ax (t) +Bu (kTd) , (2.93a)

y (t) = Cx (t) +Du (kTd) , (2.93b)

for t ∈ [kTd, (k + 1) Td) with initial condition x (kTd). These equations describe
the state and output evolution of RSS(F) inside the kth sampling interval. Then
in the kth interval, the Ordinary Differential Equation (ODE) defined by (2.93a) has
the following solution:

x (t) = eA(t−kTd)x (kTd) +

∫ t−kTd

τ=0

eA(t−kTd−τ)Bu (kTd) dτ. (2.94)

By substituting t = (k + 1) Td, xd (k) = x (kTd), and ud (k) = u (kTd), formula
(2.94), under the restriction that A is invertible, results in:

xd (k + 1) = eATdxd (k) +A−1
(
eATd − I

)
Bud (k) , (2.95a)

yd (k) = Cxd (k) +Dud (k) , (2.95b)

where yd (k) = y (kTd) due to the ZOH setting. We call this discretization method
the complete method, giving the following DT equivalent of RSS(F):

RSS(F , Td) =

[
eATd A−1

(
eATd − I

)
B

C D

]

. (2.96)

Approximative state-space discretization methods

In order to avoid the computation of eATd , many different approximative methods
have been introduced:

• Rectangular (Euler’s forward) method

The simplest way of avoiding the computation of eATd is to use a first-order
approximation:

eATd ≈ I +ATd. (2.97)

Now introduce f(x, u, t) = Ax(t) +Bu(t) as the left hand side of (2.18a). Then

(k+1)Td∫

τ=kTd

f(x, u, τ) dτ =

(k+1)Td∫

τ=kTd

Ax (τ) +Bu (kTd) dτ, (2.98)

gives the solution of (2.93a) in [kTd, (k + 1)Td). By the left-hand rectangular evalua-
tion of this Riemann integral, (2.98) is approximated as

x ((k + 1) Td) ≈ x (kTd) + TdAx (kTd) + TdBu (kTd) , (2.99)
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coinciding with the suggested matrix exponential approximation of (2.97). Based
on this rectangular approach, the DT approximation of RSS(F) is given as:

RSS(F , Td) ≈
[
I + TdA TdB

C D

]

. (2.100)

Another interpretation of this method can be derived from Euler’s forward dis-
cretization, which uses that:

d

dt
x (t) = lim

Td→0

x (t+ Td)− x (t)

Td
. (2.101)

Then, by using (2.101) as an approximation with Td > 0 fixed:

d

dt
x (t) ≈ x ((k + 1)Td)− x (kTd)

Td
, (2.102)

for t ∈ [kTd, (k + 1)Td). Substitution of (2.102) into (2.93a) yields the previously
derived conversion rules.

• Polynomial (Hanselmann) method

Continuing the line of reasoning of the rectangular approach, it is possible to
develop other methods that achieve better approximation of the complete case at
the price of increasing complexity. As suggested by Hanselmann (1987), higher
order Taylor expansions of the matrix exponential term:

eATd ≈ I +

n∑

l=1

Tl
d

l!
Al, (2.103)

result in the so called polynomial discretization methods. Substituting (2.103) into
(2.93a) gives:

RSS(F , Td) ≈




I +

n∑

l=1

T
l
d

l! A
l Td

(

I +
n−1∑

l=1

T
l
d

l+1!A
l

)

B

C D



 . (2.104)

• Trapezoidal (Tustin) method

An alternative way to give a better approximation than the rectangular method
is to use a different (approximative) evaluation of the integral (2.98):

x ((k + 1) Td) ≈ x(kTd) +
Td

2
[f(x, u, kTd) + f(x, u, (k + 1)Td)] , (2.105)

which is the so called trapezoidal evaluation of the Riemann integral. This coincides
with the Extended Euler method and the 1-step Adams-Moulton method of numeri-
cal approximation of ODEs (Atkinson 1989) or the commonly used Tustin type of
discretization. The derivation is as follows:

Assume that (I − Td
2 A) is invertible and apply a change of variables

x̆d (k) =
1√
Td

(

I − Td

2
A

)

x (kTd)−
√
Td

2
Bu (kTd) , (2.106a)
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which defines an invertible state-transformation. Then, substitution of (2.106a)
into (2.105) gives

RSS(F , Td) ≈
[ (

I + Td
2 A
) (
I − Td

2 A
)−1 √

Td

(
I − Td

2 A
)−1

B
√
Td C

(
I − Td

2 A
)−1 Td

2 C
(
I − Td

2 A
)−1

B +D

]

.

It is important to note that the trapezoidal method only approximates the manifest
behavior of RSS(F , Td), as it gives an approximative DT-SS representation in terms
of the new latent variable x̆d.

• Multi-step methods

As an other alternative, consider the state evolution as the solution of the DE
defined by (2.18a). This solution can be numerically approximated via multi-step
formulas like the Runge-Kutta, Adams-Moulton, or the Adams-Bashforth type of
approaches (see Atkinson (1989)). In commercial engineering software packages,
like Matlab Simulink, commonly variable step-size implementation of these algo-
rithms assures accurate simulation of continuous-time systems. However in the
considered ZOH discretization setting, the step size, i.e. the sampling rate, is fixed
and sampled data is only available at past and present sampling instances. This
immediately excludes multi-step implicit methods like the Adams-Moulton ap-
proaches. Moreover f(x, u, t) can only be evaluated for integer multiples of the
sampling-time, as the input only changes at these time instances and the result-
ing model must be realized as a single rate (not multi-rate) system. Therefore it
is complicated to apply methods like the Runge-Kutta approach. The family of
Adams-Bashforth methods does fulfill these requirements (see Atkinson (1989)).
The 3-step version of this numerical approach uses the following approximation:

x ((k + 1) Td) ≈ xd (k + 1) = x (kTd) +
Td

12
[5f(x, u, (k − 2)Td)−

−16f(x, u, (k − 1)Td) + 23f(x, u, kTd)] . (2.107)

Then, formulating this state-space equation in an augmented SS form with the
new state-variable:

x̆d (k) = col (xd (k) , f(x, u, (k − 1)Td), f(x, u, (k − 2)Td)) , (2.108)

gives that

RSS(F , Td) ≈







I + 23Td
12 A − 16Td

12 I 5Td
12 I

23Td
12 B

A 0 0 B
0 I 0 0

C 0 0 D






.

The resulting DT-SS representation is an approximation of RSS(F , Td) in terms of
the new state variable x̆d.

Discretization of input-output representations

In order to find the equivalent DT-IO realization of a given RIO(F) under the ZOH
setting, commonly the transfer function F (s) of RIO(F) is used for derivation.
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Define:

F ′(z) =
z − 1

z
Z

{

L
−1

{
1

s
F (s)

}}∣
∣
∣
∣
Td

. (2.109)

Then it can be shown that RIO(F , Td) with transfer function F ′(z) is the DT equiv-
alent of RIO(F) in the ZOH setting under the sampling-time Td (Neuman and
Baradello 1979). Alternatively, discretization of IO representations can be carried
out in the SS domain by finding an equivalent SS realization of RIO(F). Many
approximative SS approaches have their equivalent formulation in terms of ap-
proximations of (2.109). These result in the well-known substitution formulas of s
for F (s) to approximate F ′(z).

Properties of approximative discretization methods

In the LTI case approximative discretization methods have been analyzed in many
quantitative studies (see Hanselmann (1987)), while their numerical properties
have been fully worked out by the numerical analysis community (see Atkinson
(1989)). The main focus of these investigations concentrated around the intro-
duced signal errors of the approximative DT projection and the numerical stability
of the applied methods. During the extension of the LTI methods for LPV system,
these properties will be revisited and thoughtfully investigated in Chapter 3.

2.2 Orthonormal basis functions

In LTI system theory, it is common to represent transfer functions of dynamical
systems in a series-expansion form. The most simplest of these expansions is the
Laurent expansion. Consider a DT-LTI system F and its transfer function F (z)
associated with an IO partition (y, u). Assume that F is stable, so the domain of
F (z) is the exterior of the unit circle. Then, the Laurent expansion of F (z) around
z =∞ is

F (z) =

∞∑

i=0

giz
−i. (2.110)

We have already discussed that the constants {gi}∞i=0 are called Markov param-
eters or expansion coefficients. These coefficients are unique with respect to the
system, regarding the IO partition associated with F (z). Note that in case of un-
stable systems, a Laurent expansion of F (z) is available but around z = 0, which
results in an expression in the positive powers of z. By substituting z−1 in (2.110)
with the backward-shift operator q−1, it holds that

y =

∞∑

i=0

giq
−iu, (2.111)

for all (u, y) ∈ B with left compact support. Thus (2.111) can be considered as a
representation of the system itself and will be denoted by RIM(F). (2.111) has a di-
rect relation with the impulse response of the system considering the IO partition
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(y, u) (see (2.26)). Therefore (2.111) is called the Impulse Response Representation
(IRR). Note that such a representation is available for unstable systems as well,
but in terms of the forward-shift operator q .

Finite truncations of the IRR are known as Finite Impulse Response (FIR) models,
which have proven their usefulness in many areas of engineering, ranging from
signal processing to control design and also in approximative system identifica-
tion. Despite numerous attractive properties of FIR models, these structures often
require a large number of expansion terms to adequately approximate the original
system dynamics. As an alternative, series-expansion models using general basis
functions have been introduced:

y ≈
n∑

i=1

w iφi(q)u. (2.112)

for a predefined set of rational basis functions {φi}ni=1 with φ0 = 1 and constant
coefficients {w i}∞i=0. Such models preserve all the advantages of FIR structures,
but in general they require much less expansion terms for adequate approxima-
tion due to the Infinite Impulse Response (IIR) characteristics of the basis functions.
In the following, the basic properties and the theory of Orthonormal Basis Func-
tions (OBF) are introduced briefly with the intention to derive OBFs based rep-
resentations/models of LPV systems later on. To simplify the following discus-
sion, which is based on Heuberger et al. (2005); Ninness and Gustafsson (1997)
and Heuberger et al. (1995), we restrict our attention to DT stable SISO systems,
however some hints are also given later how the theory extends to MIMO or CT
systems.

2.2.1 Signal spaces and inner functions

Before defining OBFs and their properties in system approximation, some prelim-
inaries are needed to be briefly covered. We denote by D = {z ∈ C | |z| < 1} the
open unit disk on the complex plane and by J = {z ∈ C | |z| = 1} the unit circle.
Also introduce E to represent the exterior of J. The function space we frequently
use in the sequel is the following:

Definition 2.37 (Hardy space on E) Denote by H2 (E) the Hardy space of complex
functions (transfer functions) F : C → C, which are analytic (holomorphic) on E, and
squared integrable on J:

‖F‖H2
:= sup

1<r

√

1

2π

∫ 2π

0

|F (reiω)|2 dω <∞, (2.113)

where ‖ . ‖H2
is a norm onH2 (E).

H2 (E) can be interpreted as the space of stable proper transfer functions. Addi-
tionally we denote byH2− (E) the subspace of strictly proper functions in H2 (E).
Introduce alsoRH2− (E) as the subspace of transfer functions inH2− (E) with real
valued impulse response. H2 (E) is equipped with the following inner product:
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Definition 2.38 (Inner product of H2 (E)) The inner product of F1, F2 ∈ H2 (E) is
defined as:

〈F1, F2〉 :=
1

2π

∫ +π

−π

F1(e
iω)F ∗2 (eiω) dω =

1

2iπ

∮J F1(z)F
∗
2 (

1

z∗
)
dz

z
, (2.114)

where ∗ denotes complex conjugation.

The norm of F ∈ H2 (E) satisfies

‖F‖H2
=
√

〈F, F 〉 . (2.115)

Two transfer functions F1, F2 ∈ H2 (E) are called orthonormal if the following
conditions hold:

〈F1, F2〉 = 0, ‖F1‖H2
= ‖F2‖H2

= 1. (2.116)

In this sense, the functions {z−k}nk=1 in H2 (E) are orthonormal, as they trivially
satisfy (2.116). Moreover, for a given transfer function F ∈ H2 (E), the Markov
parameters can be computed as

gi =
〈
F, z−i

〉
, (2.117)

yielding the Laurent series-expansion (2.110). This series-expansion is called con-
vergent if

‖F‖H2
=

√
√
√
√

∞∑

i=0

|gi|2 <∞. (2.118)

Relation (2.118) implies that {z−i}∞i=1 are complete in H2− (E). These functions,
often referred as the pulse basis, are the most simple OBFs in H2− (E) and they
generate the IIR of stable dynamical systems.

We distinguish a special set of functions inH2 (E), the so called inner functions.
A function G ∈ H2 (E) is called inner, if

G(z)G∗(1/z∗) = 1. (2.119)

Such a function is completely determined, modulo the sign, by its poles Λn =
{λi ∈ D}ni=1:

G(z) = ±
n∏

i=1

1− λ∗i z
z − λi

, (2.120)

often called a Blaschke product.

2.2.2 General class of orthonormal basis functions

First the class of DT stable basis functions is considered. Let G0 = 1 and {Gi}∞i=1

be a sequence of DT inner functions with McMillan degrees {ni}∞i=1. Let (Ai, Bi,



64 Chapter 2 LTI systems and OBFs

�G	 G� G

W W W

u

y

x	 �
�	
+

+ +
+

Balanced state 
readout

x
�
x�

+
+

W�
Figure 2.4: IO signal flow of OBFs based series-expansion models.

Ci, Di) be a jointly minimal balanced DT-SS representation11 of the transfer func-
tion Gi. Let {λ1, λ2, . . .} denote the collection of all poles of the inner functions
{Gi}∞i=1. Under the completeness (Szász) condition that

∑∞
i=1(1 − |λi|) = ∞, the

scalar elements of the sequence of vector functions

Mi(z) := (zI −Ai)
−1Bi

i−1∏

l=0

Gl(z), i > 0, (2.121)

constitute a basis for H2− (E), and each element φij = [Mi]j is orthonormal in
H2− (E) with respect to the entire sequence. An important aspect of these basis
functions {φij}∞,ni

i=1,j=1 is that they are uniquely determined, modulo the sign, by
the poles of the generating inner functions (see (2.120) and (2.121)). However, note
that (2.121) is only a particular way to construct OBFs and hence the generated
basis sequence is not unique with respect to {λ1, λ2, . . .} (Heuberger et al. 2005).

Any F ∈ H2 (E) can be written as

F (z) = W0 +

∞∑

i=1

WiMi(z), (2.122)

where W⊤i ∈ Cni (if F,Gi ∈ RH2 (E), then W⊤i ∈ Rni) and it can be shown
that the rate of convergence of this series is bounded. The IO relation of the
OBF parametrization (2.122) is illustrated by Figure 2.4. Note that in this figure,
the state signals {xi}∞i=1 are the state variables of the balanced SS realizations of
{Gi}∞i=1. Additionally, xi = Mi(q)u, i.e. the states are equal to the output of the
generated basis functions.

Basically, the class of OBFs generalized by (2.121) can be classified into five
function sets represented in Figure 2.5. These categories, which hierarchically
contain the smaller classes from pulse basis to the Takenaka-Malmquist class,
are defined as follows (see Heuberger et al. (2005) for detailed overview on these
classes):

11Note, that only inner functions in RH2− (E) have SS representations with real matrices. As an
abuse of the previously introduced terminology, we allow here SS representations, i.e. their matrices
to generalize to the complex case.
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Takenaka-Malmquist basis

Hambo basis

Kautz basis

Laguerre basis

Pulse
basis

Figure 2.5: Classification of orthonormal basis functions.

Takenaka-Malmquist basis

The functions (2.121) are often referred to as the Takenaka-Malmquist functions. For
a particular12 balanced realization of the inner functions, it can be shown that the
basis functions generated via (2.121) have the form of

φij(z) =

√

1− | λij |
z − λij

[
j−1
∏

l=1

1− zλ∗il
z − λil

][
i−1∏

k=0

nk∏

l=1

1− zλ∗kl

z − λkl

]

, (2.123)

where {λij}nij=1 ⊂ D are the poles of the inner function Gi.

Hambo basis

The special cases when all Gi are equal, i.e. Gi = G, ∀i > 0, where G is an inner
function with McMillan degree ng > 0, are known as Hambo functions or Gener-
alized Orthonormal Basis Functions (GOBFs). Let (A,B,C,D) be a jointly minimal
balanced SS representation of G. Define

MAB
i (z) := (zI −A)−1BGi−1(z), (2.124a)

MAC
i (z) := (zI −A⊤)−1C⊤Gi−1(z). (2.124b)

As system transposition is an equivalence transformation for jointly minimal sys-
tems, there exists a unitary13 T ∈ Cng×ng such that

MAB
1 = TMAC

1 . (2.125)

Now by using φj = [MAB
1 ]j , the Hambo basis consists of the functions

Φ∞ng
:= {φjG

i}i=0,··· ,∞
j=1,··· ,ng

. (2.126)

12Note that a balanced state-space realization of a inner function is non-unique.
13A square matrix T ∈ Cn×n is called unitary if TT ∗ = T ∗T = I , where ∗ denotes conjugate

transpose, also called Hermitian transpose.
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We also introduce
Φne

ng
:= {φjG

i}i=0,··· ,ne

j=1,··· ,ng
, ne ≥ 0, (2.127)

to denote the case when we talk only about a set of orthonormal functions gener-
ated by a finite extension of G. Note that by using MAC

1 to define φj , a different
basis sequence Φ̃∞ng

results. However, due to (2.125), these basis sequences can be
considered equivalent. In the following we use the MAB

1 based construction if not
indicated otherwise.

Similar to the previous generation method, G and hence Φ∞ng
are completely

determined by the poles of G, Λng = {λi, · · · , λng} and any F ∈ H2 (E) can be
written as

F (z) = w00 +

∞∑

i=0

ng∑

j=1

w ijφj(z)G
i(z), (2.128)

where w00 is associated with the unit gain φ00 = 1. It can be shown, that the rate
of convergence of this series-expansion is bounded by

ρ = max
k
|G(1/λ

(0)
k )|, (2.129)

where {λ(0)
k } are the poles of F . ρ is often called the convergence rate of the Hambo

series-expansion and it is an essential measure of the approximation quality of the
basis function set with respect to F . In the best case, where the poles of F are the
same (with multiplicity) as the poles of G, only the terms with i = 0 in (2.128) are
non-zero. Such a basis is commonly considered to be optimal for F .

Kautz basis

When Gi = G, ∀i > 0 with ng = 2, the resulting OBFs are called 2-parameter
Kautz functions. Such basis sequences can be considered to be adequate for the
expansion of systems with dominating second order modes.

Laguerre basis

The case when Gi = G, ∀i > 0 with ng = 1 are called Laguerre functions. As this
type of basis sequence inRH2− (E) has only a real pole λ, therefore it can provide
adequate basis for a F ∈ RH2− (E) with a dominating first-order mode.

Pulse basis

The case when Gi = z−1, ∀i > 0 are called pulse functions. Based on the expansion
of the transfer functions of LTI dynamical systems in terms of the pulse basis,
impulse response representation of LTI systems is available.
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Orthonormal basis functions of MIMO systems

In the MIMO case, two approaches have been introduced for the construction of
OBF functions inHnY×nU

2− (E). The generated functions provide a series-expansion
of any F ∈ H2− (E)nY×nU . In one of the approaches, the key idea is to use MIMO
functions that are composed from scalar basis sequences:

φ̆l(z) :=






φl11(z) . . . φl1nU (z)
...

. . .
...

φlnY1(z) . . . φlnYnU(z)




 (2.130)

where each {φlij}∞l=1 corresponds to a basis of H2− (E). Then any F ∈ HnY×nY
2 (E)

can be represented as

F (z) = W0 +

∞∑

i=0

Wi ⊙ φ̆i(z), (2.131)

where Wi ∈ CnY×nU and ⊙ denotes the element-by-element matrix product. Simi-
lar to the SISO case, with different basis sequences {φlij}∞l=1, different convergence
rates of the series-expansion can be achieved. However, the degree of freedom in
the basis selection is much higher in the MIMO case. Note, that it is not neces-
sary to use different basis sequences in the generation of (2.130), which gives the
possibility of several structural classifications of this type of MIMO bases (see van
Donkelaar (2000)).

Another formulation of MIMO orthonormal basis functions follows by using a
multivariable, specifically square, inner function G ∈ HnU×nU

2 (E). The derivation
is the same as the state-space construction approach presented by (2.121), but in
this case φi = Mi constitutes a basis for HnY×nU

2− (E) in the sense that any F ∈
HnY×nU

2 (E) can be written as

F (z) = W0 +
∞∑

i=1

WiMi(z), (2.132)

where Wi ∈ CnY×nU . An important issue here is the construction of the square
all-pass function G. Where in the scalar case, G can be written as a Blaschke prod-
uct and thus modulo the sign it is determined by the poles of the product, the
multivariable-case is more involved and inhibits more freedom. Here also the
structure and/or the dynamic directions are important (Heuberger et al. 2005).
See van Donkelaar (2000) and Heuberger (1990) for more on MIMO-OBFs of this
form.

Basis functions in continuous-time

All the results introduced so far are presented for DT systems as this time domain
is used to formulate OBFs based identification of LPV systems later on. There is
however a completely analogous theory for CT systems, where the Laplace trans-
form is used instead of the Z-transform. The exterior of the unit disk E is replaced
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by the right half plane C+ and the inner product (2.114) is defined as integration
over the imaginary axis:

〈F1, F2〉 :=
1

2iπ

∫

iR F1(s)F
∗
2 (−s∗)ds. (2.133)

It is possible to construct an explicit isomorphism between H2 (E) and H2(C+)
using the bilinear transformation

z 7→ s = γ
z − 1

z + 1
, γ > 0. (2.134)

In this way, most of the introduced concepts extend trivially.

2.3 Modeling and Identification of LTI systems

When identifying a dynamical system on the basis of experimentally measured
data records, the outline of the procedure is summarized in the so called identi-
fication cycle (see Table 1.1). The two most important steps of this cycle are the
choices of an appropriate model set and the identification criterion. While the pre-
vious describes the set in which the suitable description of the system is sought,
the latter defines the aimed performance of the model. The choice of the model set
is crucial as it directly influences the maximum achievable accuracy or quality of
the identified model in terms of the user-defined criterion. The model set should
be as large as possible in order to contain as many candidate models as possible,
which reduces the structural or bias error of the optimal model in the set. On the
other hand, the number of parameters of the model should be kept as small as
possible, because the variability of the identified models increases with increas-
ing number of parameters. The conflict between these issues is the well-known
bias/variance trade-off that is present in many estimation problems.

Model structures induced by orthonormal basis functions have attractive prop-
erties in terms of the variance/bias trade-off. When appropriately chosen, they re-
quire only a limited number of parameters to represent models that can accurately
describe the dynamics of the considered system. The choice of basis functions then
becomes a principle design issue. In this section, a brief coverage of DT predic-
tion error system identification is given, based on Ljung (1999) and Heuberger
et al. (2005). We focus on OBFs based model structures and concepts required for
the derivation of the identification approaches of this thesis.

2.3.1 Concepts of the identification setting

As a framework, the black-box setting of Ljung (1999) is adopted. In this setting,
identification of an unknown system is aimed at without the use of prior struc-
tural information. For simplicity, we assume that a predefined IO partition of the
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system is given, so it is clear which signals we call inputs and outputs of the un-
known system. An additional assumption is that the underlying, so called data
generating system, is an LTI discrete-time SISO process:

y = F0(q)u + v, (2.135)

where F ∈ H2 (E), u is a quasi-stationary signal, and v is a stationary stochastic
process (see Ljung (1999) for a definition of these properties). Furthermore v sat-
isfies

v = Q0(q)e, (2.136)

with monic transfer function Q0 such that Q0, Q
−1
0 ∈ H2 (E) and e is a zero-mean

white noise process with variance σ2
e . Assume furthermore that data sequences

DNd
= {u(k), y(k)}Nd−1

k=0 , generated by (2.135), are available. Under the given
assumptions, the so called one-step ahead prediction of y(k) based on {y(k−1), y(k−
2), . . .} and {u(k), u(k − 1), . . .} is

ŷ := (1−Q0(q)
−1)y +Q0(q)

−1F0(q)u. (2.137)

In prediction error identification, a parameterized model (F (q, θ), Q(q, θ)) is hy-
pothesized where θ ⊂ Θ represents the parameter vector, the coefficients of the
model, and Θ ∈ Rn is the allowed parameter space. This model structure leads to
the one-step ahead predictor:

ŷθ := (1 −Q(q, θ)−1)y +Q(q, θ)−1F (q, θ)u. (2.138)

Then in the prediction error setting, we would like to choose θ such that the re-
sulting ŷθ is a good approximation of y, i.e. the so called prediction error

ǫ(k, θ) := y(k)− ŷθ(k), (2.139)

is minimized. This is commonly performed by the minimization of the scalar
valued Least-Squares (LS) identification criterion

WNd
(θ,DNd

) =
1

Nd

Nd−1∑

k=0

ǫ2(k, θ), (2.140)

resulting in
θ̂Nd

= argmin
θ∈Θ
WNd

(θ,DNd
) , (2.141)

based on the available data record DNd
. Other criteria based on different signal

norms of ǫ can also be used or prefiltering can be applied on ǫ to deliver optimal
estimates of θ based on certain considerations (see Ljung (1999)). Optimization
of the identification criterion according to (2.141) is generally a non-convex op-
timization problem for which iterative (gradient) algorithms have to be applied.
This also implies that convergence to a global optimum can not be easily guaran-
teed. However, in specific cases of parametrization, the optimization reduces to a
convex problem with an analytical solution.
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Table 2.1: Black-box model structures

ARX ARMAX OE FIR BJ

F (q, θ) RB(q−1,θ)

RA(q−1,θ)

RB(q−1,θ)

RA(q−1,θ)

RB(q−1,θ)

RF(q−1,θ)
RB(q−1, θ) RB(q−1,θ)

RF(q−1,θ)

Q(q, θ) 1
RA(q−1,θ)

RC(q−1,θ)

RA(q−1,θ)
1 1 RC(q−1,θ)

RD(q−1,θ)

For dealing with quasi-stationary signals, we introduce the generalized expec-
tation operator Ē defined as

Ē{y} = lim
N→∞

1

N

N−1∑

k=0

E{y(k)}, (2.142)

where E represents the mean value operator. The related (cross)-covariance func-
tions are

Cy(τ) := Ē{y(t)y(t− τ)}, Cyu(τ) := Ē{y(t)u(t− τ)}. (2.143)

Additionally, the (cross)-power spectral densities are given as

Φy(e
iω) :=

∞∑

τ=−∞
Cy(τ)e

−iωτ , Φyu(e
iω) :=

∞∑

τ=−∞
Cyu(τ)e

−iωτ . (2.144)

2.3.2 Model structures

There are numerous different black-box model structures available for the para-
metrization of F (q, θ) andQ(q, θ). Most of them, collected in Table 2.1, parameter-
ize the two transfer functions in terms of ratio’s of polynomials RA, . . . , RF ∈ R[ξ]
in the backward time-shift operator q−1. These structures are known under the
acronyms given in the table. The parameter vector θ of these model structures
contains the collection of the coefficients of the polynomials. Commonly, the
denominator polynomials are assumed to be monic to ensure uniqueness of the
parametrization. Every model structure or parametrization induces a set of pre-
dictor models, commonly called the model set:

{(F (q, θ), Q(q, θ)) ∈ H2 (E)×H2 (E) | θ ∈ Θ ⊂ Rn} . (2.145)

This concept allows us to distinguish the following situations:

• The data generating system (F0(q), Q0(q)) is in the model set, i.e. an exact
representation of the data generating system can be found by the applied
model structure.

• (F0(q), Q0(q)) is not in the model set, i.e. no exact representation of the sys-
tem exists by the model structure.
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When the main attention is given to the IO dynamics of the system, i.e. the un-
derlying deterministic behavior with respect to the considered IO partition, it is
attractive to deal with the set of so called IO models:

{F (q, θ) ∈ H2 (E) | θ ∈ Θ ⊂ Rn} . (2.146)

This leads to situations when the IO relation of the plant F0(q) can be or can not be
captured within the chosen model set. Two important properties of the introduced
model structures are the following

• For some model structures, the expression of the output predictor (2.138) is
linear in the unknown parameters θ, i.e. both the terms (1 −Q(q, θ))−1 and
Q(q, θ)−1F (q, θ) are polynomials. This property holds for the ARX and FIR
structures and has the major benefit that the LS criterion can be minimized
by solving a set of linear equations.

• If F and Q are independently parameterized, the two transfer functions can
be estimated independently. This property holds for the FIR, OE, and BJ
model structures.

From these viewpoints it is particulary attractive to consider the FIR model, where
both these properties are satisfied.

2.3.3 Properties

Consistency and convergence

When applying the quadratic identification criterion (2.140), the asymptotic prop-
erties of the resulting parameter estimate can be derived in the situation when
Nd → ∞. If the noise in the measured data is normally distributed, the LS esti-
mator is equivalent with a maximum likelihood (statistically optimal in an asymp-
totic sense) estimator (Ljung 1999). With other noise distributions, attractive prop-
erties also hold:

• Convergence result - For Nd → ∞, the parameter estimate θ̂Nd
converges,

i.e. θ̂Nd
→ θ∗, with probability 1. The convergence point θ∗ is the mini-

mizing argument of the expected value of the squared residual error, θ∗ =
argminθ∈Θ Ē{ǫ2(θ)}. This implies that the asymptotic parameter estimate is
independent from the particular noise realization in the data sequence.

• Consistency result - If u is persistently exciting (PE) of a sufficient order, then
the asymptotic parameter estimate θ∗ has the following properties:

– If the data generating system is in the model set, then F0(q) = F (q, θ∗)
and Q0(q) = Q(q, θ∗).

– If F0(q) is in the IO model set and additionally F (q, θ) and Q(q, θ) are
independently parameterized, then F0(q) = F (q, θ∗). This means that
consistency of the estimate F is also obtained if Q is misspecified.
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Persistency of Excitation (PE) for an order n means in this context that the quasi-
stationary u, used for excitation during the experiment, satisfy that

det








Cu(0) Cu(1) . . . Cu(n− 1)
Cu(1) Cu(0) . . . Cu(n− 2)

...
. . . . . .

...
Cu(n− 1) . . . Cu(1) Cu(0)







6= 0. (2.147)

This condition guarantees that enough information on the dynamics of F0 is pre-
sent in the measured y to approximate n parameters of a model. In the LTI case
it is sufficient to require that Φu(e

iω) has a non-zero contribution in the frequency
range −π < ω ≤ π in at least as many points as there are parameters to be esti-
mated in F (q, θ).

Asymptotic bias and variance

In system identification, one also has to deal with estimation errors. This is due to
the fact that information on the system to be estimated is only partially available:
finite data records, effect of noise, etc. A well-accepted approach is to decompose
the estimation error for F (q, θ̂Nd

) as:

F0(q) − F (q, θ̂Nd
) = F0(q)− F (q, θ∗)

︸ ︷︷ ︸

bias

+ F (q, θ∗)− F (q, θ̂Nd
)

︸ ︷︷ ︸

variance

. (2.148)

In this decomposition, the first part is the structural or bias error, usually induced
by the fact that the model set is not rich enough to exactly represent the plant. The
second part is the noise induced or variance error which is due to noise contribution
on the measured data. The bias can be characterized in terms of integral formulas
over the frequency domain. Powerful formulas also exist to express variance error
if both Nd and the model order tend to infinity (Ljung 1999).

One of the most basic results on variance error is formulated in terms of the
variability of asymptotic parameter estimates. In the most general form, the char-
acterization follows from the central limit theorem, proving that

√

Nd (θ̂Nd
− θ∗)→ N (0,Qθ) as Nd →∞, (2.149)

i.e. the random variable
√
Nd (θ̂Nd

− θ∗) converges in distribution to a Gaussian
probability density function with zero mean and covariance matrix Qθ. Note that
Qθ can be calculated only in a limited number of situations. One of these is when
the data generating system is in the model set, leading to the consistent estimate
θ∗ = θ0. In this case:

Qθ = σ2
e

(
Ē
{
ϕ(k, θ0)ϕ

⊤(k, θ0)
})−1

, with ϕ(k, θ0) := − ∂

∂θ
ǫ(k, θ)

∣
∣
∣
∣
θ=θ0

.
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2.3.4 Linear regression

If the model structure has the property of being linear-in-the-parameters, then
the LS problem (2.141) becomes a convex optimization problem with the analytic
solution:

θ̂Nd
=

[
1

Nd
Γ⊤Nd

ΓNd

]−1 [
1

Nd
Γ⊤Nd

YNd

]

. (2.150)

where YNd
= [y (0) , . . . , y (Nd − 1)]⊤ is the collection of the measured output

samples and ΓNd
= [γ (0) , . . . , γ (Nd − 1)]⊤ contains the regressor vector γ that

describes the data relation according to the one-step-ahead predictor: ŷθ(k) =
γ⊤(k)θ. For the ARX case with deg(RA) = na and deg(RB) = nb, the regressor
vector is

γ⊤(k) =
[
y(k − 1) . . . y(k − na) u(k) . . . u(k − nb)

]
,

while in the FIR case with deg(RB) = nb, the regressor vector becomes

γ⊤(k) =
[
u(k) . . . u(k − nb)

]
.

Note that on the basis of numerical considerations regarding matrix inversion,
the solution (2.150) is not computed directly, but via a QR-algorithm. Moreover,
statistical analysis of this estimator results in non-asymptotic expressions of the
bias and variance error, which provide important advantages of linear-in-the-
parameter model structures over other model parameterizations.

2.3.5 Identification with OBFs

Considering the classical identification results described in the previous part, it
appears that there are two attractive properties of model structures: linear-in-the-
parameter property and independent parametrization of the process and noise
models. Among the presented classical structures a combination of these two
properties can only be found in the FIR structure. However, the main disadvan-
tage of this structure is that it generally requires a large number of parameters
to capture the dynamics of the physical system, which implies a relatively large
variance of the estimate. Using OBFs instead of the pulse basis like in (2.112) can
significantly decreases the number of required parameters and preserve all the
attractive properties. In this section we focus on the model structures:

F (q, θ) =

n∑

i=0

w iφi(q), Q(q, θ) = 1, (2.151)

where {φi}ni=1 with φ0 = 1 are orthonormal basis functions in RH2 (E) with pole
locations Λn = {λi}ni=1. The unknown series-expansion coefficients of (2.151) are
collected into the parameter vector

θ =
[
w0 . . . wn

]
⊂ Rn+1.
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In a general sense, different identification criteria and settings can be applied
for OBFs based model structures, like for example frequency domain identifica-
tion in H2/H∞, resulting in attractive alternatives of LTI system identification
(Heuberger et al. 2005). In the following we explore the LS prediction error set-
ting to compare the properties of this model structure to the classical results of
other structures. Later, these properties also form the basic motivation why this
model structure with the LS prediction error setting yields an attractive candidate
for LPV identification.

Least-squares identification

Due to the linear-in-the-parameter property of the OBF parametrization, estima-
tion of the parameters in the LS setting similarly follows as in the FIR or ARX
cases. The only difference with respect to these model structures is that the re-
gression vector is

γ⊤(k) =
[
u(k) (φ1(q)u)(k) . . . (φn(q)u)(k)

]
,

containing filtered versions of the input signal rather than delayed version of u or
y. This form of the regressor implies that the LS parameter estimate of (2.151) can
be obtained via (2.150). In terms of consistency/bias properties of the estimates
all the classical results about FIR structures hold, if u is a white noise signal, i.e.
Φu(e

iω) is constant. This means, that if F0(q) is in the IO model set and the input
is white noise, then the model estimate F (q, θ̂Nd

) is unbiased and consistent. This
is the case when the true system has a finite series-expansion in terms of the used
basis functions. In all other cases, the expansion coefficients of F0(q) in terms
of the finite basis functions are estimated consistently, but a bias results due to
the truncated tail of the required infinite expansion. Therefore there is a primal
emphasis on the selection of appropriate basis functions, to reduce the bias by
ensuring a fast convergence rate of the series-expansion.

A particularly interesting aspect results if the estimation of the parameters
is formulated in state-space. As indicated in (2.124a-b), a basis functions based
series-expansion model F (q, θ) can be realized efficiently in two SS forms:

[
A B
W w0

]

and
[
A (WT )⊤

C w0

]

, (2.152)

where (A,B,C,D) is the jointly minimal balanced SS realization of the inner func-
tion G generating the basis functions {φi}ni=1, W = [w1 . . . wn], and T ∈ Rn×n is
a unitary matrix such that (2.125) is satisfied. The SS realization in the left is often
called the AB-invariant while the representation in the right is recognized as the
AC-invariant form. Due to property (2.125), estimation in a AB-invariant form re-
sults in a parameter estimate θ̂Nd

, whose elements are the linear combinations of
a parameter estimate based on the AC-invariant form. An additional property is
that the initial condition of the AC-invariant form can be easily formulated as the
part of the parameter vector, due to the different formulation of the regressors in
that case. Thus, estimation of the initial condition is available by linear regression
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in the AC-invariant case. This property is important when, because of various
reasons, the experiment providing the data record can not be accomplished on the
system starting from zero initial state.

Asymptotic bias and variance

As indicated before, the classical results in terms of the FIR structure trivially ex-
tend to OBF model structures if the input sequence is a white noise signal. How-
ever, due to the fact that finite series expansions often result in the case where
F0(q) is not in the IO model set, it is important to investigate how the estimated
coefficients relate to the expansion coefficients of F0(q) in terms of the finite basis
function set. It can be shown that, if u is white, then the expansion coefficients of
F0(q) are identified consistently in the LS setting. This means that even if F0(q)
can not be identified consistently due to the truncated tail of the expansion, the
modeled dynamical part (the considered finite expansion) is consistently identi-
fied. Moreover, in this case θ∗ obeys:

θ∗ = arg min
θ∈Θ

1

2π

∫ π

−π

∣
∣F0(e

iω)− F (eiω, θ)
∣
∣
2 Φu(e

iω)
∑n

i=0 |φi(e
iω)|2

|Q0(eiω)|2 dω, (2.153)

which shows that the basis functions act as data prefilters, emphasizing the fit of
the estimated model on the frequency domain where the gain of the basis func-
tions is significant. The noise spectrum also does not appear in the expression due
to the fixed noise model, thus the convergence of θ is not influenced by the noise
just like in the case of FIR models. The bias, due to the undermodeling, can be
directly computed via the theory of reproducing kernels (Heuberger et al. 2005).
Furthermore, for specific transfer functions, like

F0(z) =

n0∑

j=1

bj

z − λ(0)
j

(2.154)

an upper bound on the approximation error can be computed with respect to
F (q, θ∗) with basis functions {φi}ni=1:

∣
∣F0(e

iω)− F (eiω, θ∗)
∣
∣ ≤

n0∑

j=1

∣
∣
∣
∣
∣

bj

eiω − λ(0)
j

∣
∣
∣
∣
∣

n∏

i=1

λ
(0)
j − λi

1− λ∗i λ
(0)
j

︸ ︷︷ ︸

ρ

, (2.155)

where {λi}ni=1 are the poles of {φi}ni=1. This expression shows a tight bound on
the approximation error in terms of the bias. If for each pole of the system, there
exists a matching pole of the basis λ(0)

j = λi, then the upperbound is zero (F0 has
a finite series-expansion in terms of the basis). In the general case, the truncation
error of the series-expansion is directly influenced by the convergence rate ρ (see
(2.155)), which expresses the natural distance between the basis and the system
poles. This implies that to minimize the bias, the poles of the basis should be as
close to the poles of the system to be identified as possible.
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The variance of the model estimate also obeys the classical results of FIR struc-
tures. In the frequency domain, if both Nd, n → ∞, n ≪ Nd, the variance of the
estimate F (q, θ̂Nd

) reads

var{F (q, θ̂Nd
)} ∼ 1

Nd

Φe(e
iω)

Φu(eiω)

n∑

i=1

|φi(e
iω)|2, (2.156)

where Φe(e
iω) is the noise spectrum. This expression shows the classical result

of FIR structures when the input is prefiltered. Note that by choosing the poles
{λi}ni=1 of {φi}ni=1 close to the poles of F0, the variance expression (2.156) peaks if
eiω comes to the close neighborhood of λi. This corresponds to the varaince/bias
trade-off.

As discussed in this section, OBFs-based parametrization can be effectively
used for LTI system representation with many fruitful properties, however it is
required that the basis function set is “well chosen” with respect to system to be
identified. In the next section, the concept of optimality of an OBF set with respect
to a set of LTI systems is established, giving the key theorem to solve the basis
selection problem of the identification scheme both in the LTI and in the LPV case
later on. Before that, some additional aspects of identification are reviewed.

Identification in the MIMO case

In case of MIMO systems, identification follows similar guidelines as in the SISO
case, except that the model structure (2.151) is formulated with MIMO basis func-
tions. Due to FIR structure of OBFs models, the analytical solution of (2.141) is still
obtained via a linear regression, however with a more extensive book keeping.

In case the MIMO basis are constructed from scalar basis functions (method
1), all properties in terms of identification trivially extend to MIMO case (Nin-
ness and Gómez 1996). However, this model structure has a major disadvantage,
namely that specific elements of {Wi} can be insignificantly small for every i > 0,
which can result in an over-parametrization, ergo in a significant bias of the es-
timate. MIMO basis sequences generated by square inner functions via (2.121)
(method 2) are not affected by the previous disadvantage, however bias and vari-
ance properties of the estimates are not yet clearly understood. See van Donkelaar
(2000) and Heuberger (1990) for more on identification properties of model struc-
tures based on this type of MIMO-OBFs.

2.3.6 Pole uncertainty of model estimates

In practical situations, identification is unavoidably effected by noise, resulting
in uncertainty of the model estimates. The resulting model uncertainties can be
characterized based on numerous concepts of uncertainty in the parameter or fre-
quency domain. See Hakvoort and Van den Hof (1997); Ljung (1999); Ninness
and Goodwin (1995) and Douma and Van den Hof (2005) for an overview on the
available approaches. A well-known fact in the LTI case is that pole locations
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of a model estimate are generally sensitive to parameter uncertainties, see e.g.
Guillaume et al. (1989). In the following, some basic concepts of pole uncertainty
regions are briefly introduced for DT model estimates in the LS setting. The de-
veloped concepts are essential for the formulation of the robust basis selection
approach in Chapter 8.

In the literature, many approaches have been developed for the calculation
of confidence bounds for the estimated parameters (for a survey see Pintelon
and Schoukens (2001)). However, commonly the first-order Taylor approxima-
tion based ellipsoidal bounds are used, like in the Matlab System Identification
Toolbox (Ljung 2006). Consider the LS setting with the model structures given in
Table 2.1. In this case, if the data generating system is in the model set, then this
implies that the parameter estimate θ̂Nd

is consistent and has an asymptotically
normal distribution with a covariance matrix Qθ (see Section 2.3.3). The previous
properties provide that

(θ̂Nd
− θ0)⊤Q

−1
θ (θ̂Nd

− θ0)→ χ2(n), as Nd →∞, (2.157)

where χ2(n) is a χ2-distribution with n-degrees of freedom and n is the num-
ber of parameters in θ. Let [a1, . . . , ana ] be the parameters in θ characterizing the
denominator part of the process model and let [b0, . . . , bnb

] be the denominator pa-
rameters. Denote△θ := (θ−θ0) for every θ ∈ Θ. Then for a given confidence level
α ∈ [0, 1], the parameter uncertainty of F (q, θ̂Nd

) can be defined as an ellipsoid

Eθ(Qθ, α) :=
{
θ ∈ Rn | △θ⊤Q

−1
θ △θ ≤ χ2

α(nθ)
}
, (2.158)

where χ2
α(n) denotes the α-percentile of χ2(n). This means that the probability of

θ̂Nd
∈ Eθ(Qθ, α) is equal to α as Nd →∞. Note that often Eθ(Qθ, α) is restricted to

Θ.

In order to establish an uncertainty region of poles associated with each config-
uration of the parameters inside the derived ellipsoidal bound, a nonlinear trans-
formation of the parameter confidence region Eθ(Qθ, α) is needed. This transfor-
mation can be accomplished through the method of Vuerinckx et al. (2001), which
gives a hypothesis test to decide wether a λ ∈ C is a pole location of a model with
θ ∈ Eθ(Qθ, α).

Denote by Λ0 ⊂ C the set of poles associated with F (q, θ0) and define △Λ :=
Λ − Λ0 for every Λ ∈ Cna . Let λ0 be a real valued pole in Λ0 with na > 1. Then,
define the perturbation of this pole as λ = λ0 +△λ such that a parameter vector
θ ∈ Θ exists whose associated pole vector contains λ. Note that θ is not unique
because λ only determines the denominator parameters. If θ ∈ Θ exists, then it
can be chosen such that the numerator parameters [b0, . . . , bnb

] of θ are equal to
numerator parameters of θ0. Write F (q, θ) as

F (q, θ) = F1(q, γ)F2(q, θ̌), (2.159)
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with

F1(q, γ) :=
1

1 + γq−1
=

1

1− λq−1
and F2(q, θ̌) :=

∑nb

j=0 bjq
−j

1 +
∑na−1

i=1 ǎiq−i
,

where θ̌ contains the parameters of F2. This factorization implies the existence of
the transformation

θ = T1(λ)θ̌ + T2(λ), (2.160)

where γ = −λ and

T1(λ) =











1 . . . 0 0

γ
. . .

... 0
. . . 1

...
0 . . . γ 0
0 . . . 0 I(n−na)×(n−na)











n×(n−1)

T2(λ) =








γ
0
...
0








n×1

In case of λ0 is complex valued, define the perturbation of the complex pole
pair λ0, λ

∗
0 as λ = λ0 +△λ and λ∗ = λ∗0 +△λ∗. Using the same mechanism, write

F (q, θ) as
F (q, θ̃) = F1(q, γ1, γ2)F2(q, θ̌),

with

F1(q, γ1, γ2) :=
1

1 + γ1q−1 + γ2q−2
=

1

1− 2Re(λ)q−1 + |λ|2q−2
,

F2(q, θ̌) :=

∑nb

j=0 bjq
−j

1 +
∑na−2

i=1 ǎiq−i
.

Again, this factorization implies the existence of the transformation (2.160) with

T1(λ) =
















1 0 . . . 0 0
γ1 1 . . . 0 0

γ2 γ1
. . .

... 0

0 γ2
. . . 1 0

...
. . . . . . γ1

...
0 . . . 0 γ2 0
0 0 . . . 0 I(n−na)×(n−na)
















n×(n−2)

T2(λ) =










γ1

γ2

0
...
0










n×1

where γ1 = −2Re(λ) and γ2 = |λ|2.

The above derived transformations qualify as a projection of a single pole or
complex pole pair perturbation to the parameter domain Θ through the free pa-
rameter θ̌ ∈ Rn−1 or θ̌ ∈ Rn−2. In order to test that the parameter variation in-
duced by △λ is inside the parameter uncertainty region Eθ(Qθ, α), it is sufficient
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to show that there exists a θ̌ ∈ Rn−1 (or θ̌ ∈ Rn−2) which minimizes

(
T1(λ)θ̌ + T2(λ)

)⊤
Q
−1
θ

(
T1(λ)θ̌ + T2(λ)

)
, (2.161)

and the minimum is smaller or equal than χ2
α(nθ) (see (2.158)). If this condition

is not satisfied, then this proves the hypothesis that the pole perturbation cannot
be associated with a parameter vector in Eθ(Qθ, α). The minimization problem of
(2.161) has an analytical solution:

θ̌ =
T⊤1 (λ)Q−1

θ θ0 − T⊤1 (λ)Q−1
θ T2(λ)

T⊤1 (λ)Q−1
θ T1(λ)

. (2.162)

Thus for a given pole perturbation △λ, if θ̌ resulting from (2.162) satisfies that
(2.161) is smaller or equal than χ2

α(n), then λ can be the pole of the asymptotic
model estimate with probability α.

Based on the derived hypothesis test, it is possible to calculate the pole uncer-
tainty region

P(Qθ, α) := {λ ∈ C | ∃θ ∈ Eθ(Qθ, α) s.t. λ is a pole of F (q, θ)} , (2.163)

associated with Eθ(Qθ, α). Note that P(Qθ, α) ⊂ C which means that the hyper
ellipsoid Eθ(Qθ, α) is projected to a lower dimensional space. This implies that for
a pole location set Λ, associated with θ ∈ Eθ(Qθ, α), Λ ∈ (P(Qθ, α))na holds. How-
ever, it is not true that any Λ ∈ (P(Qθ, α))na can be associated with a θ ∈ Eθ(Qθ, α).
So the projection is surjective. This is an advantage in the sense that with the
given hypothesis test, P(Qθ, α) can be efficiently computed and visualized. How-
ever, the surjective property is also a disadvantage. Instead of representing all
configuration of poles associated with Eθ(Qθ, α), the complex region P(Qθ, α) char-
acterizes the set of pole locations that can occur with the given probability level
in the model estimates. In this way, the perimeter bounds of P(Qθ, α) describe the
uncertain pole locations in a worst-case sense.

In practical situations, θ0 can be substituted by θ̂Nd
ifNd is large enough. Alter-

natively, using θ̂Nd
instead of θ0 results in the hypothesis test that the true poles

of the system are in the uncertainty region of the estimated poles with a given
confidence level. Note that the above given mechanism can be also used for the
calculation of the uncertainty region associated with the zeros of the model, by
varying the numerator part in (2.159) instead of the denominator.

Using this pole uncertainty concept, the uncertainty regions can take various
shapes in C, ranging from real segments (real pole) and ellipsoidal or banana
shaped forms to butterfly figures (complex pole pairs) as illustrated in Example
2.1. Therefore, it is not guaranteed that they constitute convex regions inC. The re-
gions can be all connected or separated into small sets due to the fact that they are
the nonlinear projection of a hyper dimensional ellipsoid. Increasing α often re-
sults in the merging of previously separated regions. For an increasing α, regions
can also popup unexpectedly in C, due to the higher possibility of parameter vari-
ation. This yields the need of special algorithms to ensure correct calculation of
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Figure 2.6: Pole-uncertainty regions P(Qθ, α) of estimated poles (green ◦) with
different confidence levels α (deep red 0.99↔ bright yellow 0.01). The true pole
locations Λ0 are denoted by blue squares.

the regions. For this purpose, an algorithm is developed in Tóth et al. (2008c) that
ensures calculation of possibly separated regions, unlike the existing solutions in
the literature.

Note that other concepts of pole uncertainty regions have been developed in
the literature as well. The commonly used ellipsoidal pole regions, also imple-
mented in the identification toolbox of Matlab, are calculated using a first order
Taylor approximation of the nonlinear projection of Eθ(Qθ, α) to C. This type of ap-
proximation can introduce significant errors in the calculation of P(Qθ, α), unlike
the previously presented approach. Other approaches, like discussed in Mårtens-
son and Hjalmarsson (2007), focus more on the quantification of the variance of
poles or zeros rather than on the actual calculation of their uncertainty regions.
Based on these, the previously presented approach provides the state-of-the-art
technique to calculate pole uncertainty regions associated with model estimates.

Example 2.1 (Pole uncertainty regions) Let the transfer function F0 of a discrete-time asymptotically stable
LTI system F with IO partition (u, y) be given as

F (z) =
1.4

1− 1.5z−1 + 0.83z−2 − 0.26z−3 + 0.05z−4 − 0.006z−5
z−1. (2.164)

For this system F , a 500 sample long data record has been collected with a white u based on a uniform distri-
bution U(−1, 1) and an additive white output noise ǫ with normal distribution N (0, 0.15). The LS prediction
error identification of F has been accomplished via OE parametrization with correct denominator and nominator

orders. The resulting pole uncertainty regions P(Qθ , α) of the estimate F (q, θ̂Nd
) have been calculated with the

approach of Section 2.3.6 using confidence levels (0.99↔ 0.01). The perimeter lines of these regions, calculated
with the algorithm of Tóth et al. (2008c), are presented in Figure 2.6.
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2.3.7 Validation in the prediction error setting

In the prediction error setting, commonly either simulation or prediction by the
model estimate based on a measured data record is used for (in)validation. One
approach is to investigate the correlation of the residual, i.e. the error of the pre-
diction, with respect to the input or itself. In other cases, error measures of the
difference between the measured y and the simulated output ŷ are calculated.
These measures are used to decide on the validity of the model estimate. Some
popular measures are the following:

Definition 2.39 (Mean squared error) (Ljung 1999) The Mean Squared Error (MSE)
is the expected value of the squared estimation error :

MSE := Ē{(y − ŷ)2}. (2.165)

Definition 2.40 (Best fit percentage) (Ljung 2006) The Best Fit (BFT) percentage is
defined as

BFT := 100% ·max

(

1− ‖y − ŷ‖2‖y − ȳ‖2
, 0

)

, (2.166)

where ȳ is the mean of y.

Definition 2.41 (Variance accounted for) The Variance Accounted For (VAF) percent-
age is the percentage of the output variation that is explained by the model:

VAF := 100% ·max

(

1− var {y − ŷ}
var {y} , 0

)

. (2.167)

Note that the MSE is equal to the LS criterion (2.140) evaluated for the simu-
lated ŷ, instead of the predicted output signal. In this way, a high value indicates
invalidity of the model. The BFT percentage is a relative measure, often used in
the identification toolbox of Matlab, and a low value of this measure indicates
invalidity of the model. The VAF measure describes how much of the output
variation is explained by the model, disregarding possible bias of the estimates.

2.4 The Kolmogorov n-width theory

In the identification cycle, one of the key steps is the choice of an adequate model
structure, i.e. the model set, which can represent the system to be identified with
a relatively small number of statistically meaningful parameters. In the identifi-
cation approach based on OBF model structures, finding an appropriate model
set translates to the search for a set of basis functions Φne

nb
, that gives a series-

expansion of the system with a fast convergence rate ρ. In LTI system identifica-
tion, one approach to find appropriate model sets is based on the n-width con-
cept (Pinkus 1985), which has been shown to result in appropriate model sets for
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robust modeling of linear systems (Mäkilä and Partington 1993). Using this con-
cept, Oliveira e Silva (1996) showed that OBF model structures are optimal in the
n-width sense for specific subsets of systems and finding the optimal OBF set for
a given system set can be formulated as an optimization problem. In the follow-
ing, the basic ingredients of this approach for discrete-time, stable, SISO systems
are described. Later, this theory is used as the backbone of OBFs selection for the
identification of LPV systems.

Let F denote a set of LTI SISO systems with transfer functions {F (z)} = F ⊆
H2− (E) that we want to approximate with a linear combination of n elements of
H2− (E). Let Φn = {φi}ni=1 be a sequence of n linearly independent elements of
H2− (E), and let Mn = span(Φn). Note that Mn describes all the possible linear
combinations of Φn that can be used for the approximation of the elements of F.
The distance dH2(F,Mn) between a F ∈ H2− (E) and Mn is defined as

dH2(F,Mn) = inf
F ′∈Mn

‖F−F ′‖H2
. (2.168)

This distance describes the best possible approximation error of a given F ∈
H2− (E) in terms of the H2 norm if the linear combination of Φn is used as an ap-
proximation. With respect to the transfer function set F, we can define the worst-
case approximation error by Φn as the maximum of (2.168) on F. Now we can
use this concept to look for a set Φn that has a minimal worst-case approximation
error for F. This minimum is called the Kolmogorov n-Width (KnW) of F.

Definition 2.42 (Kolmogorov n-width) (Pinkus 1985) Let Mn be the collection of
all n-dimensional subspaces of H2− (E). The Kolmogorov n-width of a function set F in
H2− (E) is

πn (F,H2− (E)) = inf
Mn∈Mn

sup
F∈F

dH2(F,Mn). (2.169)

In this way, πn (F,H2− (E)) describes the smallest possible dH2 that can be achieved
for all F in F by the linear combination of n independent elements ofH2− (E). The
subspace Mn ∈Mn, for which πn is minimal, is called the optimal subspace in the
KnW sense. This optimal subspace describes a Φn that can approximate F best in
the worst-case sense. Now we can formulate this concept for OBFs.

Proposition 2.1 (n-width optimal OBFs) (Oliveira e Silva 1996) Let G ∈ H2− (E)
be an inner function with McMillan degree ng > 0, with poles Λng , and let ne ≥ 0.
Consider the subspace

Mn = span
{
φj (z)Gi (z)

}i=0,...,ne

j=1,...,ng
(2.170)

where φj = [M1]j and M1 is defined by (2.121) with respect to G. Then the subspace Mn

is optimal in the Kolmogorov n-width sense with n = (ne + 1)ng for the set of systems
with transfer functions F analytic in the complement of the region

Ω
(
Λng , ρ

)
:= {z ∈ C | ∣∣G (z−1

)∣
∣ ≤ ρ}, (2.171)
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(a) G(z) = z−1, pole at the origin (b) G(z) with poles 0.5 and−0.5± 0.5i

Figure 2.7: The plot of the function
∣
∣G
(
z−1

)∣
∣ for different choices of the inner

function G and the convergence rate ρ (in dB). Level sets of
∣
∣G
(
z−1

)∣
∣ give the

boundaries of the regions {z ∈ C, ∣∣G (z−1
)∣
∣ ≤ ρ}. Optimality of the G generated

basis is ensured with a worst-case convergence rate ρne+1 for systems with pole
locations inside the regions defined by the level set boundaries.

and are square integrable on its boundary. The worst-case approximation error, i.e.
supF∈F dH2(F,Mn), is proportional to ρne+1.

This remarkable result means that the set of OBFs Φne
ng

= {φj(z)G
i(z)}i=0,...,ne

j=1,...,ng

is the best in the worst-case sense to approximate transfer functions with all pole
locations in Ω(Λng , ρ). So if in an identification scenario it is known that the system
poles lie in Ω(Λng , ρ), then the optimal choice of basis functions is the set of OBFs
associated with the poles Λng . Additionally, Proposition 2.1 shows that for the
specified region one can not improve on the worst-case error by adding new poles
to the ng basis poles. It also generalizes the well-know fact that the set of pulse
functions {z−i}ni=1 is optimal for the class of stable systems analytical outside the
region Ω(Λng , ρ) = {|z| ≤ ρ}, ρ > 0. The boundary of Ω(Λng , ρ) is displayed
in Figure 2.7a as a function of the convergence rate ρ. For a given ρ > 0, the
boundary of the region results as the level set of this function, like the contour
lines at the bottom of the figure. The worst-case approximation error in this case
is proportional to ρn. This implies the optimality of FIR model structures with
respect to the identification of such systems, which is a well-known result (Pinkus
1985). However, in case of arbitrary regions, like the regions in Figure 2.7b, the
level sets are commonly non-circular, containing separate regions that merge for
increasing values of ρ. For these regions, the optimal choice of a basis has to be
found among general basis functions (OBF model structures).

In an OBFs-based identification scenario we are dealing with the opposite
problem. We are given a rough idea about the possible pole locations of the sys-
tem described as a region Ω0 ⊂ D and we want to find a fixed n number of OBFs
that are optimal with respect to Ω0 in the KnW sense. This problem is referred to
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as the inverse Kolmogorov problem, where we want to find an inner function G to
describe/approximate a given region of non-analyticity Ω0 in the form Ω(Λng , ρ)
with ρ as small as possible. The reason is that in terms of Proposition 2.1, the in-
ner function G, associated with the best fitting Ω(Λng , ρ), generates the ng-width
optimal basis functions with respect to Ω0. Denote the inner function associated
with the poles Λng as GΛng

(z) and define

κng(z,Λng) := GΛng

(
z−1

)
=

ng∏

j=1

∣
∣
∣
∣
∣

z − λj

1− zλ∗j

∣
∣
∣
∣
∣
. (2.172)

Then the solution of the inverse Kolmogorov problem for a given number of poles
ng, comes down to the min-max optimization problem:

min
Λng⊂Dmax

z∈Ω
κng (z,Λng). (2.173)

See (Heuberger et al. 2005) for details on this non-linear optimization problem and
solution methods.

2.5 Fuzzy clustering

We will see in Chapter 8, that a key ingredient to develop a model structure, i.e.
a basis selection tool for the identification of LPV systems, is to solve a particular
data clustering14 problem. To tackle this problem, a weighting-function-based
separation, so called fuzzy clustering, is used. In the following, the main idea of
the conventional fuzzy clustering approach is briefly introduced .

Objective-function-based fuzzy clustering algorithms, such as the Fuzzy c-Me-
ans (FcM), have been used in a wide collection of applications like pattern recogni-
tion, data analysis, image processing and fuzzy modeling (see Bezdek (1981) and
Kaymak and Setnes (2002)). These methods have become dominant over hierar-
chical and graph-theoretical methods as they offer quick and reliable separation of
data. Generally, FcM partitions the data into overlapping groups, so called clus-
ters, where each data element is associated with a set of membership levels with
respect to these clusters. These indicate the strength of the association between
that data element and a particular cluster. In this way, fuzzy clustering is a pro-
cess of assigning these membership levels such that the resulting clusters describe
the underlying structure within the data (Jain and Dubes 1988).

Let nc > 1 be the number of clusters or data groups and let Z = {zk}Nz

k=1 ⊂V, be the set of data points for clustering where V denotes the clustering space
(commonly a subset of R· or C·) and Nz > 1 is the number of data points. In fuzzy
clustering, a cluster is defined by two ingredients: a center (or prototype) υi ∈ V,
i ∈ Inc

1 and a membership function µi : V → [0, 1]. While the former defines the
central point, the latter describes the “degree of membership” to the cluster for all

14Data clustering is the process of dividing data elements into classes or clusters so that items in the
same class are as similar as possible, and items in different classes are as dissimilar as possible.
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z ∈ V. Note that the shapes of fuzzy clusters are not described by hard borders
but by the commonly bell-like shape of the membership functions on V. Introduce
also the so called dissimilarity measure d := V×V→ R+

0 , where R+
0 denotes the set

of positive real numbers including 0. This dissimilarity measure is used to define
the memberships of the clusters, i.e. how the function set {µi}nc

i=1 is distributed onV. Now we can formalize the clustering problem we consider:

Problem 2.1 (FcM clustering) For a given data set Z and for a given number of clusters
nc, find a set of clusters, i.e. centers {υi}nc

i=1 and membership functions {µi}, and the
maximum of ε > 0 such that the region {z ∈ V | ∃i ∈ Inc

1 µi(z) ≥ ε} contains Z and it
describes the underlying distribution of Z in terms of a chosen dissimilarity measure d.

In this problem, d represents a particular freedom to define the exact objective
we would like to solve through FcM clustering. By choosing d to be different
measures of V, like in case of V = Rn the Euclidian metric:

d(υ, z) = ‖υ − z‖2, (2.174)

or other Minkowski, Mahalanobis, exponential, etc. metrics, different objectives
of the clustering problem can be defined.

Denote V = [υi]
nc

i=1, and introduce the membership matrix U = [µik]nc×Nz
,

where µik is the degree of membership of zk to cluster i. Define also dik :=
d(υi, zk) as the distance between υi and zk in terms of the dissimilarity measure
d. In order to uniquely associate dik with a membership level µik , the set of mem-
bership functions we consider must be constrained. A particular way is to restrict
them to

∑nc

i=1 µi(z) = 1 for all z ∈ V, i.e. requiring that U ∈ UNz
nc

, where UNz
nc

,
defined as

{

U ∈ [0, 1]
nc×Nz |

nc∑

i=1

µik = 1, ∀k ∈ INz

1 , and 0 <

Nz∑

k=1

µik, ∀i ∈ Inc
1

}

, (2.175)

characterizes the fuzzy constraints. Then, the solution of Problem 2.1 with a given
choice of d, can be viewed as the minimization of the FcM-functional, Jm (U, V ) :
UNz

nc
× Vnc → R+

0 , which is formulated as

Jm (U, V ) =

Nz∑

k=1

nc∑

i=1

µm
ikd

2
ik. (2.176)

The FcM-functional defines a cost function, a criterion of the expected solution
and the design parameter15 m ∈ (1,∞) determines the “fuzziness”, the sharpness
of separation of the resulting partition (U, V ). It can be observed, that (2.176)
corresponds to a mean-squared-error criterion. The following theorem provides the
ingredients to minimize (2.176), i.e. to solve the corresponding clustering problem:

15In FcM clustering only m ≥ 1 is used as m < 1 gives unrealistic clustering of data sets. The m = 1
case is called hard clustering and treated separately due to minimization issues of the FcM functional
Bezdek (1981). For these reasons, only m ∈ (1,∞) is considered in the sequel.
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Theorem 2.16 (Optimal FcM Partition) (Bezdek 1981) Let m > 1, a data set Z ⊂ V
with Nz > 0, and a fuzzy partition (U, V ) ∈ UNz

nc
× Vnc be given. Additionally,

let dik = d(υi, zk) be the dissimilarity measure of zk with respect to υi and I∅

k =
{i ∈ Inc

1 | dik = 0} be the singularity set of zk with card(I∅

k ) = n∅

k (number of ele-

ments). Then (U, V ) is a local minimum of Jm, if for any (i, k) ∈ Inc
1 × INz

1 :

µik =







[
nc∑

j=1

(
d2
ik

d2
jk

) 1
m−1

]−1

if I∅

k = ∅;
1

n∅

k

if i ∈ I∅

k ;

0 if i /∈ I∅

k 6= ∅;

(2.177a)

υi =

Nz∑

k=1

µikzk

Nz∑

k=1

µik

. (2.177b)

To obtain an optimal partition, i.e. the solution of Problem 2.1 based on the choices
of d, m, and the cost function Jm, minimization of (2.176) subject to (2.175) is usu-
ally tackled by alternating optimization (Picard iteration). This iterative optimiza-
tion steers the solution towards a settling partition in the sense of Theorem 2.16.
For the FcM, this yields the following algorithm, where Vl andUl denote the actual
fuzzy partition in iteration step l.

Algorithm 2.1 (FcM clustering)

0. Initialization: Fix nc and m; and initialize V0 ∈ Vnc , l = 0.

1. Membership update: With (2.177a), solve Ul+1 = arg min
U∈UNz

nc

Jm (U, Vl).

2. Cluster center update: With (2.177b), solve Vl+1 = arg min
V ∈Vnc

Jm (Ul+1, V ).

3. Check of convergence: If Jm (Ul+1, Vl+1) has converged, then stop, else
l = l + 1 and goto Step 1.

The properties of the FcM algorithm have been extensively investigated by
several authors (Bezdek 1981; Jain and Dubes 1988). Based on the fact that the FcM
functional is bounded, monotonically decreasing and continuous both in V andU ,
it has been proved that Algorithm 2.1 always converges. The convergence point,
which is directly dependent on the initial V 0, can either be a local minimum or a
saddle point of Jm, fulfilling Theorem 2.16. Therefore in a practical application,
it is advisable to repeat the algorithm multiple times with different initial choices
for V0 to explore all possible local optima of (2.176).

To check the quality of the resulting (U, V ) partition in terms of the goal of
the clustering, several measures can be introduced that quantify the compact-
ness, separation, and validity of (U, V ) (see Backer and Jain (1981) and Davies
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and Bouldin (1979)). A measure that can jointly express these concepts and give a
common ground of comparison between different FcM partitions is the Xie-Beni
validity index (Xie and Beni 1991):

χ =
1

Nz

Nz∑

k=1

nc∑

i=1

µ2
ikd

2(υi, zk)

min
i,j∈Inc

1

d2(υi, υj)
. (2.178)

It can be proved that the smaller χ is, the better the corresponding fit of (U, V )
with respect to Z is.

The determination of the number of “natural” groups in Z , i.e. the best suitable
nc for clustering, is important for the successful application of the FcM method.
Similarity-based Adaptive Cluster Merging (ACM) is frequently used for this pur-
pose (Kaymak and Setnes 2002), but other strategies like cluster-splitting (Jain and
Dubes 1988; Schalkoff 1992) and supervised fuzzy clustering approaches (Setnes
1999) exist as well. ACM is more suitable for problems where little is known about
the statistical properties of the data, like in the pole clustering case. The basic idea
is the following: a measure of similarity is introduced with respect to cluster pairs.
Then, in each iteration step of Algorithm 2.1, a cluster pair is merged when its sim-
ilarity does not decrease between iterations and if also this pair is the most similar
of all cluster pairs. However, merging is only applied if the similarity measure
exceeds a certain threshold value, εa ∈ [0, 1]. In FcM clustering, most commonly
the following similarity measure is applied:

Definition 2.43 (Inclusion similarity measure) (Kaymak and Setnes 2002) The
fuzzy-inclusion-similarity measure (given point-wise on Z) for two fuzzy clusters i and j
is defined as

[Ss]ij :=

Nz∑

k=1

min (µik, µjk)

min

(
Nz∑

k=1

µik,
Nz∑

k=1

µjk

) . (2.179)

For the theoretical details, see Kaymak and Setnes (2002). Denote in iteration step
l the similarity matrix as S(l)

s . Then, the most similar cluster pair in iteration step
l is selected as

(ı̆, ̆) = argmax
(i,j)∈Inc

1 ×Inc
1 ,i>j

{

[S(l)
s ]ij

}

. (2.180)

Merging is applied if
∣
∣
∣[S

(l−1)
s ]ı̆,̆ − [S

(l)
s ]ı̆,̆

∣
∣
∣ < εs, where 0 < εs ≪ 1 is a threshold

value to judge the significance of decrease of cluster similarity between iterations.
However as the partition converges, similarity changes a little between iterations,
therefore merging is only applied if [S

(l)
s ]ı̆,̆ > ε

(l)
a where ε(l)a ∈ [0, 1] is an adaptive

threshold. In Kaymak and Setnes (2002), it is suggested to use ε(l)a = (n
(l)
c − 1)−1

which has been observed empirically to work well if the initial number of clusters
n

(0)
c satisfies: n(0)

c < 1
2Nz.
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In this way, the FcM algorithm with ACM gives the possibility to choose the
number of needed clusters automatically based on Z . So by starting from a large
nc, the algorithm converges to a partition which contains only the necessary num-
ber of clusters representing the data. However, based on the initialization of the
FcM algorithm, optimal partitions with different nc can be attractive solutions
of Algorithm 2.1 with ACM. To decide which of the solutions represents the un-
derlying data-structure best, the separation of the clusters can give an indication.
To quantify the quality of separation, commonly the Normalized Entropy is used
(Bezdek 1981):

Se = −

nc∑

i=1

Nz∑

k=1

µik log(µik
Nz

)

Nz − nc
. (2.181)

The smaller Se is, the more valid the hypothesis is that the clusters match with the
natural data groups (if they exist).

In the literature, many different structural modifications for FcM algorithms
has been developed, like volume prototypes (Kaymak and Setnes 2002) for dense
data sets or kernel based dissimilarity measures leading to the theory of learning
algorithms like support vector machines (Mizutani and Miyamoto 2005). Probabilis-
tic FcM clustering, on which the kernel approaches are based, has been introduced
to deal with stochastic data sets (Krishnapuram and Keller 2000). However, in this
thesis we restrict our attention to conventional FcM clustering, as this framework
gives an approach for the selection of OBFs based model structures for LPV sys-
tems.

2.6 Summary

In this introductory chapter, basic definitions, concepts, and mathematical tools
have been introduced to establish a solid background for the research questions
and problems this thesis addresses.

First, in Section 2.1, we have introduced the behavioral approach of LTI dy-
namical systems to give a clear framework where different concepts of system
theory can be brought to a common ground. In this context we have defined sev-
eral representations of dynamical systems both in continuous and discrete-time;
we have established equivalence transformations between them which preserve
the overall behavior; and we have investigated their properties in terms of stabil-
ity, state-observability and reachability, and minimality. We have derived canoni-
cal and balanced state-space realizations and reviewed the zero-order hold based
discretization theory of LTI systems. We have introduced all these concepts to
enable their extension later to LPV systems, which is needed for the developed
modeling and identification framework of this thesis. In Section 2.2, the concept
of OBFs has been introduced and their role in the series-expansion representation
of LTI systems has been investigated. This has served the purpose to motivate
why finite truncations of such series expansions can be used as attractive model
structures for the identification of both LTI and LPV systems. Then, in Section
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2.3, the LTI prediction error identification framework has been introduced and
analyzed with OBFs based model structures in the focus of the discussion. This
framework has been set to provide the concept of model identification that is used
for LPV systems later. Additionally, the concept of pole uncertainty regions has
been developed with respect to model estimates. In the context of OBF model
structures, the optimal choice of the model set has been discussed in Section 2.4,
in terms of the Kolmogorov n-width concept. This theory serves as the backbone
of the later developed OBF-model-structure-based model set selection approach
for LPV systems. The previously introduced pole uncertainty concept will be an
important ingredient for the robust formulation of this basis function selection
mechanism. To provide a clustering tool which is needed to solve the model set
selection problem in the LPV case, fuzzy c-means clustering has been introduced
in Section 2.5.

In the next chapter, we return to the system theoretical concepts of Section 2.1,
in order to extend them to the LPV system class. This contribution establishes the
details of the system theory which are needed for the foundation of a strong LPV
identification framework.
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3 CHAPTER

LPV systems and representations

I
n this chapter, we define the behavioral framework of LPV systems as
an extension of the LTI behavioral approach introduced in Chapter 2.

We do this with the intention to give a unified view on LPV system the-
ory, that enables to approach LPV system identification in a well-founded
system theoretic sense. First we define LPV dynamical systems from the
behavioral point of view. Then we introduce the algebraic structure in
which we formulate kernel, state-space, and input-output representations
of LPV systems. We also analyze the properties of LPV systems in terms
of state-observability, state-reachability, and dynamic stability.

3.1 General class of LPV systems

In this section, we establish the basics of a behavioral framework for Linear Parame-
ter-Varying (LPV) systems where concepts of the existing LPV system theory can
be brought to a common ground. Our main motivation is to set this framework as
a tool for the analysis of LPV system identification in a well-founded sense.

One of the key concepts that is required to establish the LPV behavioral frame-
work is an algebraic structure with elements describing differential equations (DE),
like R[ξ] (the ring of polynomials with real constant coefficients) used in the LTI
case. As we will see, the required structure in the LPV case is based on poly-
nomials with coefficients that are functions of the scheduling variable p and its
derivatives (continuous-time) or its time-shifts (discrete-time). The construction
of this structure, which is the main contribution of this section to the state-of-
the-art, enables to apply the results of the Linear Time-Varying (LTV) behavioral
approach, worked out by Zerz (2006) and Ilchmann and Mehrmann (2005). We
use these results to establish three key theorems: the existence of kernel represen-
tations, the existence of state-kernel forms, and later in Section 3.2 the concept of
left/right unimodular transformations, similar to the LTI case. These theorems

91
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Figure 3.1: The LPV modeling concept of the F-16 Fighting Falcon.

set the stage for the derivation of equivalence transformations between LPV rep-
resentations, treated in Chapter 4, which have paramount significance for system
identification.

Before venturing into the mathematical concepts and definitions, let’s investi-
gate what we call an LPV system from the behavioral point of view and what kind
of physical phenomena are represented by this modeling concept.

3.1.1 Parameter varying dynamical systems

In aerospace engineering, it is well-known that many airplanes, like the F-16 Fight-
ing Falcon presented in Figure 3.1, are nonlinear dynamical systems, but at a
constant altitude they can be well approximated as an LTI system (Stevens and
Lewis 2003; Cook 1997). Then, by viewing the aircraft as a collection of LTI be-
haviors corresponding to different altitude levels and using the altitude variable
as a scheduling between them, we can arrive at an approximation of the global
behavior. In this context, the concept of scheduling means the selection of the
LTI behavior associated with a specific altitude level. This behavior describes the
possible continuation of signal trajectories during the time interval in which the
aircraft remains at the same altitude. Thus, the resulting representation of the
global behavior involves coefficients that are functions of the scheduling. Such a
modeling approach, what we have already introduced in Chapter 1 as the gain-
scheduling principle, defines a parameter-varying (due to scheduling) and linear
(in signal relation) system. Such systems are referred as LPV. However, it is im-
portant that an LPV system is more than just an array of LTI systems, because
the governing scheduling rules or functions also define the dynamical behavior
between each scheduling point, i.e. altitude points of this example. The concept
of scheduling functions and “frozen” LTI behaviors is an essential viewpoint on
LPV systems and will be frequently used in the development of the identification
approach of this thesis.
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In the general Parameter-Varying (PV) framework, the scheduling variable, com-
monly denoted by p, is an external1, so called free signal of the system, that gov-
erns the dynamical behavior. In this way, p is similar to time, however its trajec-
tory is unknown in advance. This unknown trajectory of the scheduling variable
makes LPV systems different from the LTV system class, where the variation of
time follows a known linear trajectory. Based on this, by using the concept of dy-
namical systems (Definition 2.1), the class of PV systems can be defined as follows:

Definition 3.1 (Parameter-varying dynamical system) A parameter-varying dynam-
ical system GP is defined as a quadruple

GP = (T,P,W,B), (3.1)

with T the time-axis, P the scheduling space, W the signal space, and B ⊆ (W × P)T the
behavior.

The scheduling space P is usually a closed subset of a vector space on which the
scheduling variable p varies: p ∈ PT. In our example, P refers to the altitude
range of the aircraft, which is a subset of R, as the altitude of the aircraft must be
positive. On the other hand, its altitude range is also bounded by a maximum
height of operation, dependent on its engine and its aerodynamical construction.
Often, the admissible trajectories of p are also restricted to a subset of PT, as it is
not possible for an aircraft to have discontinuous jumps in altitude. Therefore,
this admissible set of scheduling trajectories is defined as the projected scheduling
behavior:

BP =
{
p ∈ PT | ∃w ∈ WT s.t. (w, p) ∈ B

}
. (3.2)

Similarly we can define the projected signal behavior BW. For a given, fixed
scheduling trajectory p ∈ BP, the projected behavior

Bp =
{
w ∈ WT | (w, p) ∈ B

}
, (3.3)

defines all the signal trajectories that are admissible with the fixed scheduling
trajectory p. This important projected behavior gives the possible course of actions
or maneuvers that the aircraft in our example can take to follow a fixed altitude
trajectory. In case of a constant scheduling trajectory, p ∈ Bp with p(t) = p̄ for
all t ∈ T where p̄ ∈ P, the projected behavior Bp is called a frozen behavior and
denoted as

Bp̄ =
{
w ∈ WT | (w, p) ∈ B with p(t) = p̄, ∀t ∈ T} . (3.4)

Building on the linearity and time-invariance concepts of the LTI system class, we
can define LPV systems as follows:

1Note that systems where p is an internal variable (like output, input, or state) are called quasi
parameter-varying systems. Still, such systems are commonly treated as a PV system with external
scheduling variable, therefore in the upcoming analysis, p is assumed to be an independent variable.
For more on quasi-PV systems, see Chapter 7.
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Definition 3.2 (LPV system) The parameter-varying system GP is called LPV, if the
following conditions are satisfied:

• W is a vector-space and Bp is a linear subspace of WT for all p ∈ BP (linearity).

• T is closed under addition.

• For any (w, p) ∈ B (a signal trajectory associated with a scheduling trajectory)
and any τ ∈ T, it holds that (w(� + τ), p(� + τ)) ∈ B, in other words qτB = B

(time-invariance).

Definition 3.2 does not imply that the dynamic system G = (T,W,Bp), associated
with the projected behavior Bp, is also time-invariant. However, for a constant
scheduling trajectory associated with p̄ ∈ P, time-invariance of GP implies time-
invariance of G = (T,W,Bp̄). Based on this and the linearity condition of Bp, it
holds for an LPV system that for each of its frozen behaviors Bp̄ the associated
system G = (T,W,Bp̄) is an LTI system. In this way, the projected behaviors of a
given LPV system S with respect to constant scheduling trajectories define a set
of LTI systems:

Definition 3.3 (Frozen system set) Let S = (T,P,W,B) be an LPV system. The set
of LTI systems

FP =
{
F = (T,W,B′) | ∃p̄ ∈ P s.t. B′ = Bp̄

}
(3.5)

is called the frozen system set of S.

This set refers in our example to the LTI behaviors of the aircraft for constant
altitude levels. We have already motivated that the LPV system concept is ad-
vantageous compared to nonlinear systems, as the relation of the signals is linear.
Definition 3.2 also reveals the advantage of this system class over LTV systems:
the variation of the system dynamics is not associated directly with time, but with
the variation of a free signal. Thus, the LPV modeling concept, compared to LTV
systems, is more suitable for non-stationary/coordinate dependent physical sys-
tems as it describes the underlying phenomena directly (see Example 3.1).

Example 3.1 (Varying mass on a spring) To emphasize the advantage of LPV systems, let’s investigate the
modeling of the motion of a varying mass connected to a spring (see Figure 3.2). This problem is one of the
typical phenomena occurring in systems with time-varying masses like in motion control (robotics, rotating
crankshafts, rockets, conveyor systems, excavators, cranes), biomechanics, and in fluid-structure interaction
problems. Denote by wx the position of the varying mass m. Let ks > 0 be the spring constant, introduce wF

as the force acting on the mass, and assume that there is no damping. By Newton’s second law of motion, the
following equation holds:

d

dt

(

m
d

dt
wx

)

= wF − kswx, (3.6)

or equivalently

kswx +

(
d

dt
m

)
d

dt
wx + m

d2

dt2
wx = wF. (3.7)

It is immediate that by taking m as a scheduling variable, the behavior of this plant can be described as an LPV
system, preserving the physical insight of Newton’s second law. On the other hand, viewing m as a time-varying
parameter, whose trajectory is fixed in time, would result in a LTV system. Such a system would explain the
behavior of the plant for only a fixed trajectory of the mass.
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m(t)

wx(t)

wF(t)

ks

Figure 3.2: Varying-mass connected to a spring.

It also holds that for any constant scheduling trajectory p(t) = p̄, i.e. constant m for all t ∈ R, the set of
admissible signal trajectories of (3.7) is defined as the weak solutions of

kswx −wF + p̄
d2

dt2
wx = 0. (3.8)

This yields that the frozen system set is the collection of LTI systems represented by (3.8) for all p̄ ∈ P, i.e. all
possible constant m.

Similar to the discussion in the LTI case, we restrict our attention again to sys-
tems with finite dimensional and real signal space (W = RnW , nW ∈ N) and with
finite dimensional, real, and closed scheduling space (P ⊆ RnP , nP ∈ N). In fact,
we consider LPV systems described by finite order linear differential or differ-
ence equations with parameter-varying effects in the coefficients, and we call such
systems Linear Parameter-Varying Differential/Difference systems and denote them
with S. A basic property of such systems is that their behaviors B are complete
((w, p) ∈ B ⇔ (w, p)|[t0,t1] ∈ B|[t0,t1], ∀[t0, t1] ⊂ T). In the sequel, if refer to LPV
systems, we refer to this system class.

3.1.2 Representations of continuous-time LPV systems

In the following we introduce kernel (KR), state-space (SS) and input-output (IO)
representations of continuous-time (CT) LPV systems. However, to define these
representations, we first have to clarify the algebraic structure in which we con-
sider PV differential equations. Similar to the LTI case, this requires two ingredi-
ents: the definition of the coefficients of these equations and the introduction of
polynomials with such coefficients.

A. Coefficient functions

As stated, the coefficients of the representations of LPV systems are functions of
the possibly multidimensional scheduling variable p. Thus, first we define the
class of functional dependencies that we consider in the sequel. In fact, we es-
tablish an algebraic field of a wide class of multivariable functions. As a main
contribution we show later that if the variables of these functions are assigned
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to the elements of p and their derivatives, then equivalence transformations be-
tween different representation domains become possible. To formulate the class
of multivariable functions that we consider, introduce the following definition:

Definition 3.4 (Real-meromorphic function) (Krantz 1999) A real-meromorphic
function f : Rn → R, n ∈ N, is a function in the form

f =
g

h
, (3.9)

where g, h : Rn → R are holomorphic (analytical) functions and h 6= 0 (not the zero
function).

Meromorphic functions consist of all rational, polynomial functions, trigonomet-
ric expressions, rational exponential functions etc., however functions like f(x) =
sin−1(1/x) are not meromorphic (x = 0 is an accumulation point of the singu-
larities). Therefore, this class contains the common functional dependencies that
result during LPV modeling of physical systems (see Chapter 1 and 7). Next we
formulate an algebraic field over all multivariable real-meromorphic functions.

Let Rn denote the field of real-meromorphic functions with n variables. De-
note the variables of a r ∈ Rn as ζ1, . . . ζn. Also define an operator ℧j onRn with
1 ≤ j ≤ n such that

℧j(r(ζ1, . . . , ζn)) := r(ζ1, . . . , ζj , 0, . . . , 0). (3.10)

Note that ℧j projects a meromorphic function to a lower dimensional domain.
Introduce R̄n, defined as

R̄n = {r ∈ Rn | ℧n−1(r) 6= r} . (3.11)

It is clear that R̄n consist of all functionsRn in which the variable ζn has a nonzero
contribution, i.e. it plays a role in the function. Also define the operator ℧∗ :
(∪i≥0Ri) → (∪i≥0R̄i), which associates a given r ∈ Rn with a r′ ∈ R̄n′ , n ≥ n′,
i.e. ℧∗(r) = r′, such that ℧n′(r) = r′ and n′ is minimal. In this way, ℧∗ reduces
the variables of a function till ζn′ can not be left out from the expression because it
has a nonzero contribution to the value of the function. Now define the collection
of all real-meromorphic functions with finite many variables as

R =
⋃

i≥0

R̄i, with R̄0 = R. (3.12)

In the sequel we consider R as the set of coefficient functions, giving the basic
building blocks of PV differential equations. A basic ingredient that is required
for this, is to show thatR is an algebraic field. Define the addition operator ⊞ and
the multiplication operator ⊡ onR as

Definition 3.5 (Addition/Multiplication operator on R) Let r1, r2 ∈ R such that
r1 ∈ R̄i and r2 ∈ R̄j with i ≥ j ≥ 0. Let r′2 ∈ Ri such that ℧∗(r′2) = r2 where r′2 is
unique. Then
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r1 ⊞ r2 := ℧∗(r1 + r′2), (3.13a)
r1 ⊡ r2 := ℧∗(r1 · r′2), (3.13b)

where + and · are the Euclidean addition and multiplication operators ofRi.

The following lemma holds:

Lemma 3.1 (Field property ofR) The set R is a field.

The proof is given in Appendix A.1. Denote by R·×· the matrices with elements
in R. Note that R·×· is also a field. In the following, if it is not necessary to em-
phasize the difference between the Euclidian addition and ⊞, we use + to denote
both operators in order to improve readability. The same abuse of notation is also
introduced for ⊡.

The next step towards the formal definition of PV differential equations and
the associated kernel representations, is to associate the variables of the coeffi-
cient functions with elements of p and its derivatives. This is required to handle
multiplication of coefficients by time operators. Given the scheduling dimension
nP > 0, denote the variables of r ∈ R̄n (n-dimensional function inR) as:

{ζij}nζ,nP,τ :=
{
ζ01, ζ02, . . . , ζ0nP , ζ11, ζ12, . . . , ζnζ1, . . . , ζnζτ

}
, (3.14)

where nζ ≥ 0 such that nζnP + τ = n and 0 < τ ≤ nP. In this way, the first
variable of r is denoted by ζ01, the second is denoted by ζ02, etc. Thus, (3.14) gives
a unique labeling of the variables for each R̄n with n ≥ 1. In continuous-time,
associate each variable ζij as

ζij =
di

dti
pj (3.15)

where pj is the jth element of the scheduling signal p. This association provides
the description of parameter-varying coefficients in R, where each coefficient is
a meromorphic function of the elements of p and their finite order derivatives
(see Example 3.2). We call such a coefficient dependence dynamic. To compare
this dependency class to class of dependencies used in the state-of-the-art of LPV
identification (see Chapter 1), define the subset of R for a given nP as R|nP =
⋃nP

i=0 R̄i. It is easy to show that R|nP is a field and it consists of meromorphic
coefficient functions dependent on the elements of p (without derivatives). This
dependence type is called static. It has already been discussed in Chapter 1, that
LPV representations based on coefficients in R|nP are inequivalent. This is the
main motivation to use coefficients inR as the building blocks of representations,
because with these, equivalency of representations can be re-established.

Example 3.2 (Coefficient function) Let p : R→ R2. Then the coefficient function

r(p1, p2, d
dt

p1) =
cos(p1)

sin( d
dt

p1)
,

is a real-meromorphic function r ∈ R̄3, with variables {ζ01, ζ02, ζ11}, i.e. r(ζ01, ζ02, ζ11) =
cos(ζ01)
sin(ζ11)

.
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To define PV differential equations based on coefficient functions in R, it is
also required to evaluate a given coefficient function r ∈ R along a scheduling
trajectory p ∈ BP and its associated derivatives. For this purpose, define the
operator ⋄ : (R,BP) → (RR) that associates r and p with a time function defined
as:

r ⋄ p = r

({
di

dti pj

}

nζ ,nP,τ

)

. (3.16)

B. Polynomials overR

In order to introduce representations of LPV systems, an other key ingredient
is needed, namely the formulation of polynomials with meromorphic coefficient
functions that have a finite number of variables. Polynomials of this type are used
to define PV differential equations describing the behavior of CT-LPV systems.
First we define the ring of such polynomials and we show that multiplication,
which corresponds to differentiation, is non-commutative over this ring. We also
analyze other key properties of this ring to show that the algebraic structure is
the same as in the LTV behavioral approach of Zerz (2006). The latter property
implies that key results of that framework also hold in the LPV case, enabling the
introduction of LPV system representations relatively easily.

Introduce R[ξ] as the collection of all polynomials in the indeterminant ξ and
with coefficients in R. Note that it is a general property of polynomial spaces
over a field, that they define a ring. Also introduce R[ξ]·×·, the ring of matrix
polynomial functions with elements inR[ξ]. WithR[ξ] formulated and operator ⋄
defined, we are now able to define a parameter-varying differential equation with
rows nr and signal dimension nW as follows:

(R(
d

dt
) ⋄ p)w :=

nξ∑

i=0

(ri ⋄ p)
di

dti
w = 0, (3.17)

whereR ∈ R[ξ]nr×nW , deg(R) = nξ, and ri ∈ Rnr×nW for all i ∈ Inξ0 . PV differential
equations in the form of (3.17) are used to define the class of CT-LPV systems we
consider in this thesis. It will be shown, that this class contains all the popular
definitions of LPV state-space and IO models. Furthermore this mathematical
structure also enables the transformation of a wide class of nonlinear systems to
an LPV form by preserving physical insight (see Example 3.3 and Chapter 7).

Example 3.3 (PV differential equation) Consider the mass-spring system of Example 3.1. Let p = m with
a scheduling space P = [1, 2] and let w = [wx wF]⊤ with W = R2. Then the possible signal trajectories are
defined as the solutions of

ksw1 −w2 +

(
d

dt
p

)
d

dt
w1 + p

d2

dt2
w1 = 0. (3.18)

and BP = C∞(R,P). Such a system equation can be written in the form (3.17) with nW = 2, nξ = 1,
nP = 1, and

r0 ⋄ p =
[

ks −1
]
, r1 ⋄ p =

[
d
dt

p 0
]
, r2 ⋄ p =

[
p 0

]
.
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Due to its algebraic structure, it is possible to show that R[ξ]·×· is a domain,
i.e. for all R1, R2 ∈ R[ξ]nr×nW it follows that

R1R2 = 0 ⇒ R1 = 0 or R2 = 0. (3.19)

On the other-hand, it is non-commutative due to the chain rule of differentia-
tion. To show this, introduce the dot operator on R to describe differentiation of
parameter-varying coefficient functions.

Definition 3.6 (Dot operator) Let r ∈ R̄n be a n variable meromorphic function in R.
For a given nP > 0, denote the variables of r as {ζij}nζ ,nP,τ based on (3.14). Then, in
continuous-time, the dot operator onR is introduced as

ṙ := ℧∗(r̆), (3.20)

where r̆ ∈ R̄n+nP and is given by

r̆({ζij}nζ+1,nP,τ ) =

nζ∑

k=0

nP∑
l=1

∂

∂ζkl
r({ζij}nζ ,nP,τ )ζ(k+1)l

+

τ∑

l=1

∂

∂ζnζ l
r({ζij}nζ ,nP,τ )ζ(nζ+1)l. (3.21)

Note that the chain rules of differentiation imply that the dot operator fulfills the
following rules for any r1, r2 ∈ R:







if r = r1 ± r2 then ṙ = ṙ1 ± ṙ2,
if r = r1r2 then ṙ = ṙ1r2 + r1ṙ2,
if r = r1

r2
then ṙ = ṙ1r2−r1ṙ2

r2
2

.

Due to the differentiation to which (3.21) corresponds, the number of variables in
the coefficient functions can grow, representing an increase in the order of deriva-
tives of p in the functional dependence. Multiplication on R[ξ] with ξ now can be
defined through the dot operator using the non-commutative rule:

ξr = ṙ + rξ, (3.22)

where r ∈ R (see Example 3.4). Additionally, the ring R[ξ] is simple (i.e. the only
ideals that are both right and left ideals are the trivial ones: 0 andR[ξ] itself) and it
is a left and right principle domain (i.e. every left and right ideal can be generated
by a single element). To show these properties, the argument similarly follows as
in the case of polynomial rings with rational coefficient functions (Gooderal and
Warfield 1989). In fact this ring is even a right and left Euclidian domain, which
means that there exist a right and left division with remainder (Chon 1971). Based
on these properties and with the non-commutative multiplication rule (3.22), it is
possible to show that R[ξ] defines an Ore algebra (Chyzak and Salvy 1998). With
these algebraic properties, there exists a categorial duality between the solution
spaces of PV differential equations and the polynomial modules associated with
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them, which is implied by a so called injective cogenerator property. This has been
showed for the solution spaces of the polynomial ring overR1 by Zerz (2006). Due
to the fact that all required algebraic properties are satisfied for R[ξ], the proof of
the injective cogenerator property similarly follows in this case. Based on these
facts, we will omit the rather heavy technicalities to prove certain theorems in the
following discussion as all proofs similarly follows in R1[ξ].

Example 3.4 (Non-commutativity and the dot operation) Consider again Example 3.1 and rewrite the
differential equation (3.6) into the form:

kswx − wF + ξ(r ⋄m)ξwx = 0, (3.23)

with ξ = d
dt

and r ∈ R is the identity function: r ⋄m = m. Then due to the non-commutative multiplication
rule (3.22), equation (3.23) is equivalent with

kswx − wF + (ṙ ⋄m)ξwx + (r ⋄m)ξ2wx = 0, (3.24)

where ṙ ⋄ m = d
dt

m. Note that (3.24) is identical to (3.7), and by using the signal substitution p = m and

w⊤ = [wx wF], it is in the identical polynomial form of (3.18).

C. Kernel representations

As a next step in the foundation of the LPV behavioral approach, we develop the
concept of KR representations of CT-LPV systems and investigate some relating
properties. To do so, first we define weak solutions of a PV differential equation.
Then, based on this concept of solutions, we introduce KR representations of the
LPV system behavior. Next, we clarify the concept of full row rank KR repre-
sentations and their existence based on the result of Zerz (2006) for LTV systems.
This requires the definition of the rank of polynomial matrices in R[ξ]·×· that we
develop beforehand.

So far we have defined PV differential equations in the form of

(R(
d

dt
) ⋄ p)w = 0, (3.25)

which for a given p corresponds to an ordinary differential equation in the vari-
able w. In the behavioral framework, a PV system is defined as the union of signal
trajectories w that are the solution of a differential equation resulting from (3.25)
for an admissible scheduling trajectory p. Thus to define a representation of a sys-
tem in terms of a PV differential equation, we require the concept of admissible
signal trajectories described by the PV differential equation. To define the admis-
sible trajectories, we again use the concept of weak solutions over Lloc

1 through
the theory of distributions (see Section 2.1.2 for the motivation):

Definition 3.7 (Weak solution) We call w ∈ Lloc
1 (R,RnW) a weak solution of (3.17)

for a given smooth scheduling trajectory p ∈ BP ⊆ Lloc
1 (R,RnP), if

〈w, (R†( d
dt

) ⋄ p)ϕ〉 :=

∫R w⊤(R†(
d

dt
) ⋄ p)ϕ dt = 0 (3.26)
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holds for every smooth, so called test function, ϕ : R→ Rnr with compact support, where
R† is

R†(ξ) =

nξ∑

i=0

(−1)iξir⊤i . (3.27)

In the following we only consider scheduling trajectories for which the coefficients
of R(ξ)⋄p are bounded, so the set of solutions associated withR is well defined in
terms of (3.26). Additionally, R† (also called the adjoint of R) results in the form
of (3.27), due to integrations by parts of (3.17) to transfer all differential operators
acting on w to differential operators acting on ϕ, similar to the LTI case (Evans
1998). Each integration by parts entails a multiplication by −1. To compute R† in
a form where the coefficients are right-side multiplied by ξ, repeated use of the
multiplication rule (3.22) is required in (3.27) (see Example 3.5).

Example 3.5 (Weak solution) Consider the parameter-varying differential equation (3.18). Then

R†(ξ) = r⊤0 − ξr⊤1 + ξ2r⊤2 =
(

r⊤0 − ṙ⊤1 + r̈⊤2
)

+
(

2ṙ⊤2 − r⊤1
)

ξ + r⊤2 ξ,

R†(ξ) ⋄ p =

[
ks

−1

]

+

[
d
dt

p
0

]

ξ +

[
p
0

]

ξ2.

Choose a particular scheduling trajectory p(t) = cos(t) and a test function ϕ(t) = cos(t). Then

(R†(
d

dt
) ⋄ p)(t) · ϕ(t) =

[
ks cos(t) + sin2(t) − cos2(t)

− cos(t)

]

,

which means that taking w(t) = [cos(t) ks cos(t) + sin2(t)− cos2(t)]⊤ gives 0 for (3.26). It can be shown,
that this holds for every ϕ, yielding that w is a weak solution. Substitution of w into (3.18) satisfies the differ-
ential equation with p(t) = cos(t) for all t ∈ R. This implies that w is a strong solution (satisfies (3.18) for all
t ∈ R) of the varying-mass and spring system. However, taking w(t) = [ 1

ks cos(t)−cos2(t)+sin2(t)
1

cos(t)
]⊤

also gives 0 for (3.26) with ϕ(t) = cos(t), but such a solution does not satisfies (3.18) for {k · π}k∈Z and as
a result it can be only a weak solution. By considering other test functions, it can be shown that (3.26) is not
satisfied in all cases, which proves that this choice of w is not a weak solution of (3.18).

Now we can give the definition of continuous-time KR representations of LPV
dynamic systems as follows:

Definition 3.8 (CT-KR-LPV representation) The parameter-varying differential
equation (3.17) is called a continuous-time kernel representation, denoted by RK(S), of
the LPV dynamical system S = (R,RnP ,RnW ,B) with scheduling vector p and signals
w, if

B =

{

(w, p) ∈ Lloc
1 (R,RnW × RnP) | (R(

d

dt
) ⋄ p)w = 0 holds weakly

}

.

Note that in the LPV system class, we consider LPV systems with T = R that
have a KR representation, so existence of such a representation is explicitly as-
sumed in the following. It is also important, that the trajectories of p are not de-
scribed/restricted by (3.25) (only those trajectories are omitted where a coefficient
becomes infinite) because p is assumed to be an external variable in the LPV mod-
eling concept. One can also include further restrictions on BP, like description
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of the admissible scheduling trajectories as solutions of a differential equation,
etc. However, to preserve the generalism of the developed framework, we do not
consider the latter case in the sequel.

An important concept to be established, is the concept of full row rank KR
representations. In the LTI case, we have seen that such a concept have been
required to introduce minimality and to handle equivalence transformations and
relations. However to define full row rank KR representations, we first need to
define the notion of division by reminder in R[ξ]·×·.

Due to the fact that R[ξ] is a right and left Euclidean domain, there exist left
and right division by remainder. This means, that ifR1, R2 ∈ R[ξ] with deg(R1) ≥
deg(R2) and R2 6= 0, then there exist unique polynomials R′, R′′ ∈ R[ξ] such that

R1 = R2R
′ +R′′, (3.28)

where deg(R2) > deg(R′′). Here we call R′′ the right-remainder. Furthermore, as
R[ξ] is simple, the rank of a matrix polynomialR ∈ R[ξ]nr×nW is well-defined (Lam
2000). Denote by spanrow

R (R) and spancol
R (R) the subspace spanned by the rows

(columns) of R ∈ R[ξ]·×·, viewed as a linear space of polynomial vector functions
with coefficients in R·×·. Then

rank(R) = dim(spanrow
R (R)) = dim(spancol

R (R)). (3.29)

Based on the concept of rank, the following theorem can be introduced:

Theorem 3.1 (Existence of full row rank KR representation) (Zerz 2006) Let B

be given with a KR representation (3.17). Then, B can also be represented by a R′ ∈
R[ξ]·×nW with full row rank.

Due to algebraic properties of R[ξ], the proof of this theorem similarly follows as
in Zerz (2006). Just as for LTI systems, the concept of minimality for KR represen-
tations is based on the full row rank of the associated matrix polynomials. (see
Chapter 3.2).

D. Input-output representations

Another key representation form is the IO representation, which we define from
the behavioral point of view in this subsection. Before establishing our definition,
we need the concept of IO partition for LPV systems.

In Section 2.1.2, the definition of IO partitions has been formulated for general
dynamic systems. This applies to the LPV case as well:

Definition 3.9 (IO partition of a LPV system) Let S = (T,RnP ,RnW ,B) be an LPV
system. The partition of the signal space as RnW = U × Y = RnU × RnY with nU, nY >
0 and partition of w ∈ Lloc

1 (T,RnW) correspondingly with u ∈ Lloc
1 (T,U) and y ∈

Lloc
1 (T,Y) is called an IO partition of S, if



3.1 General class of LPV systems 103

1. u is free, i.e. for all u ∈ Lloc
1 (T,U) and p ∈ BP, there exists a y ∈ Lloc

1 (T,Y) such
that (col(u, y), p) ∈ B.

2. y does not contain any further free component, i.e. given u, none of the components
of y can be chosen freely for every p ∈ BP (maximally free).

An IO partition implies the existence of matrix-polynomial functions Ry ∈
R[ξ]nY×nY and Ru ∈ R[ξ]nY×nU with Ry full row rank, such that (3.17) can be
written as

(Ry(
d

dt
) ⋄ p)y = (Ru(

d

dt
) ⋄ p)u, (3.30)

with nW = nU + nY. The corresponding behavior B is given by
{

(u, y, p) ∈ Lloc
1 (R,U× Y× P) | (Ry(

d

dt
) ⋄ p)y = (Ru(

d

dt
) ⋄ p)u holds weakly

}

,

with U = RnU and Y = RnY . For those scheduling trajectories p, for which the
maximum freedom of the input signal u holds in Bp, an IO partition defines a
causal mapping in case the solutions of (3.30) are restricted to have left compact
support. Otherwise, initial conditions also matter. Note that for some systems
with IO partition (u, y), it is not guaranteed for each p ∈ BP that u is maximally
free on Bp (see Definition 3.9). In other words, it can happen that some of the out-
puts become free for specific scheduling trajectories but not for all. However, such
variables cannot be treated as general inputs. Similar to the LTI case, LPV systems
with no IO partition are called autonomous. In case nU = nY = 1, systems are re-
ferred to as Single-Input Single-Output (SISO), while systems with nU > 1, nY > 1
are called Multiple-Input Multiple-Output (MIMO) systems.

Now it is possible to introduce IO representations of CT-LPV systems:

Definition 3.10 (CT-LPV-IO representation) The continuous-time IO representation
of S = (R,P ⊆ RnP ,RnU+nY ,B) with scheduling vector p and IO partition (u, y) is
denoted by RIO(S) and defined as a parameter-varying differential-equation system with
order na:

na∑

i=0

(ai ⋄ p)
di

dti
y =

nb∑

j=0

(bj ⋄ p)
dj

dtj
u, (3.31)

where aj ∈ RnY×nY and bj ∈ RnY×nU with ana 6= 0 and bnb
6= 0 are the meromorphic

parameter-varying coefficients of the matrix polynomialsRu andRy satisfying (3.30) with
Ry full row rank. As u is maximally free, such polynomials exist with na ≥ nb ≥ 0 and
na > 0.

In terms of Theorem 3.1, any KR representation has a full row-rank equivalent,
thus the existence of IO representations is guaranteed for any valid IO partition.

Example 3.6 (IO partition and representation) In Example 3.1, the force wF is free as it represents the
inhomogeneous part of (3.6). Thus, u = wF can be considered as the input and y = wx as the output of the
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system. Let w = [y u]⊤ be the IO partition and p = m be the scheduling signal. Then the behavior can be
represented in the form of (3.30) with polynomials

Ry(ξ) ⋄ p = ks +

(
d

dt
p

)

ξ + pξ2, Ru(ξ) ⋄ p = 1, (3.32)

Trivially, both Ry and Ru have full row rank. Then, (3.32) implies that the IO representation of the system is
defined by

a0 ⋄ p = ks, a1 ⋄ p =
d

dt
p, a2 ⋄ p = p, b0 ⋄ p = 1,

with na = 1 and nb = 0.

In case of continuous-time LPV systems, the notion of transfer function or fre-
quency response has no meaningful2 interpretation. By using the approximative
transfer function calculus of LTV systems (Matz and Hlawatsch 1998), some inter-
pretation of these notions can be given for LPV systems. However, these concepts
do not satisfy the relations of the LTI case. On the other hand, each element of the
frozen system set FP, is an LTI system. Therefore, each Fp̄ ∈ FP has a transfer
function Fp̄(s), a frequency response Fp̄(iω), and an impulse response hp̄(t) with
Markov parameters {g(p̄)

i }∞i=0. The notion of frozen transfer function set or im-
pulse response set can be established for any LPV system. The set of frozen poles
or zeros follows similarly.

F. State-space representations

The introduction of latent variables and their associated representations are also
essential for LPV systems as they give the mathematical concept of signals that
corresponds to inner variables or states of the system. This interpretation of the
global behavior directly follows the concept of the LTI case based on Definition
2.10. In the following we extend the definition of latent variables and the property
of state to the LPV case. Then we introduce the state-kernel form, proving that all
latent variable representations have a first order PV differential equation form.
The latter property is used to define SS representations of LPV systems.

If the continuous-time LPV system contains nL latent (eliminatable) and nW
manifest variables, then as a generalization of (3.17):

(R(
d

dt
) ⋄ p)w = (RL(

d

dt
) ⋄ p)wL (3.33)

holds, where w : R → RnW is the manifest variable, wL : R → RnL is the latent
variable, R ∈ R[ξ]nr×nW and RL ∈ R[ξ]nr×nL are polynomial matrices with mero-
morphic coefficients, and

BL =
{
(w,wL, p) ∈ Lloc

1 (R,RnW × RnL × RnP) | (3.33) holds weakly
}
,

2Some authors (Wei 2006; Paijmans et al. 2006; Nichols et al. 1993) introduce LPV transfer func-
tions with varying parameters. As they commonly refer only to the collection of transfer functions
associated with FP, this notion of the LPV transfer function is misleading.



3.1 General class of LPV systems 105

is the full behavior of the latent representation (3.33), while the associated mani-
fest behavior is defined as

B =
{
(w, p) ∈ Lloc

1 (R,RnW × RnP) | ∃wL ∈ Lloc
1 (R,RnL) s.t. (w,wL, p) ∈ BL

}
.

Based on the result of Zerz (2006) for LTV systems, it is possible to prove that elim-
ination of latent variables is always possible onR[ξ]·×·. This, so called, elimination
property implies that if BL corresponds to a LPV system, then B also corresponds
to an LPV system. Now it is possible to extend the concept of state in terms of
Definition 2.11 to LPV systems:

Definition 3.11 (Property of state for LPV systems) Consider a PV system GP with
a latent variable wL. Let (w1, wL,1, p), (w2, wL,2, p) ∈ BL and t0 ∈ T. In case T = R,
assume that wL,1 and wL,2 are continuous on R. Define

(w,wL) = (w1, wL,1) ∧
t0

((w2, wL,2), (3.34)

as the concatenation of (w1, wL,1) and (w2, wL,2) at t0 (see (2.16)). If every (w1, wL,1, p),
(w2, wL,2, p) ∈ BL with wL,1(t0) = wL,2(t0) implies that (w,wL, p) ∈ BL, then BL is
called a state-space behavior, and the latent variable wL is called the state.

In terms of Definition 3.11, wL needs to qualify as a state for each scheduling
trajectory of BP.

Example 3.7 (Latent variable representation) By considering the system in Example 3.1 with scheduling
p = m and P = [1, 2], the following latent variable representation of the model has the same manifest behavior:





−ks 1
0 0
1 0





[
wx

wF

]

=






d
dt

0

− 1
p

d
dt

0 1




wL. (3.35)

This can be proved by substituting the third row of (3.35) into the second row, giving

wL,1 = p
d

dt
wF.

Substitution of the previous equation into the first row of (3.35) gives a PV difference equation (DF) in the
variables wx and wF, which is equal to (3.18). Any wL ∈ Lloc

1 (R,R2) satisfying weakly the previous equations,
trivially fulfills the property of state.

To decide whether a latent variable is a state, the following theorem is impor-
tant:

Theorem 3.2 (State-kernel form) The latent variable wL is a state, iff there exist ma-
trices rw ∈ Rnr×nW and r0, r1 ∈ Rnr×nL such that the full behavior BL has the kernel
representation:

rww + r0wL + r1ξwL = 0. (3.36)

The proof is given in Appendix A.1. Again, as a convention, we assume that the
state latent variables are chosen in such way that in (3.33), deg(RL) = 1, while
deg(R) = 0 and RL is monic. In this way, a CT-LPV state-space (SS) behavior is de-
fined by a first-order meromorphic-coefficient DE. Now we can give the definition
of SS representations of a continuous-time S:
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Definition 3.12 (CT-LPV-SS representation) The continuous-time state-space repre-
sentation of S = (R,P ⊆ RnP ,RnU+nY ,B) with scheduling vector p is denoted by
RSS(S) and defined as a first-order parameter-varying differential equation system in
the latent variable x : R→ X:

d

dt
x = (A ⋄ p)x+ (B ⋄ p)u, (3.37a)

y = (C ⋄ p)x+ (D ⋄ p)u, (3.37b)

where (u, y) is the IO partition of S, x is the state-vector, X = RnX is the state-space,

BSS =
{
(u, x, y, p) ∈ Lloc

1 (R,U× X× Y× P) | (3.37a) & (3.37b) hold weakly
}
,

is the full behavior of the manifest behavior B, and

[
A B
C D

]

∈
[
RnX×nX RnX×nU
RnY×nX RnY×nU ]

,

represents the meromorphic parameter-varying state-space matrices (matrix functions) of
RSS(S).

Example 3.8 (SS representation) Continuing Example 3.7, the LPV state-space representation of the model
follows by taking [y u]⊤ = [wx wF]⊤ as the IO partition and x = wL as the state:

d

dt
x =

[
0 0
1
p

0

]

x +

[
−ks 1
0 0

] [
y
u

]

,

y =
[

0 1
]
x.

By substitution of the second equation into the first one, the state equation (3.37a) results, while the second
equation gives the output equation (3.37b). Thus the corresponding SS representation is

[
A ⋄ p B ⋄ p
C ⋄ p D ⋄ p

]

=






0 −ks 1
1
p

0 0

0 1 0




 .

Note that in the full behavior BSS, the latent variable x trivially fulfills the state
property in terms of Theorem 3.2. Additionally, this behavioral type of definition
of CT-SS representations includes the definition of LPV state-space models used
in the state-of-the-art of LPV control. In those models, the dependence of the
matrix functions are assumed to be rational and static, which is trivially included
inR. Similar to LPV-IO representations the notions of transfer function, frequency
response, and impulse response can only be defined in a frozen sense for LPV-SS
representations.

3.1.3 Representations of discrete-time LPV systems

The concept of discrete-time (DT) parameter-varying dynamical systems is also im-
portant for engineering applications. In the following we formulate the behavioral
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framework for DT-LPV systems. First we investigate the concept of DT parameter-
varying systems and then we define their KR, SS, IO representations. To do so, we
use the previously developed ring of polynomials R[ξ] with meromorphic coef-
ficient functions. Due to the time operator q substituted as the indeterminate of
these polynomials in the DT case, we show that the non-commutative multiplica-
tion rule in R[ξ] is different than in CT case, but the algebraic structure remains
the same. This property provides that the previously developed theories extend
to the DT case.

A. The discrete-time parameter-varying concept

In discrete-time, the time-axis is restricted to T = Z. Signals on this axis can be
viewed (but not necessarily) as observations of continuous-time signal trajectories
at equidistant time points. This concept is called periodic, equidistant sampling
that defines the DT projection of a CT signal w : R→ W as w′ : Z→ W satisfying

w′(k) = w(kTd), ∀k ∈ Z, (3.38)

with discretization-step Td ∈ R+. However in the parameter-varying case, the
scheduling signal is also restricted to the DT time-axis as its observations are only
available at the sampling instants. Thus, the DT projection of a CT scheduling
signal p : R→ P is defined as p′ : Z→ P satisfying

p′(k) = p(kTd), ∀k ∈ Z. (3.39)

In this way, we call G′ = (Z,W,P,B′) the DT equivalent of G = (R,W,P,B) under
the sampling time Td if

B′ =
{
(w′, p′) ∈ (W× P)Z | ∃(w, p) ∈ B s.t. (3.38) & (3.39) hold

}
. (3.40)

Note that for arbitrary Td it is not guaranteed that there exists a DT-LPV system
such that (3.40) is satisfied. On the other hand, not every DT-LPV system is equiv-
alent with a sampled CT-LPV system. Thus sampling provides only a particular
viewpoint for understanding DT systems and it must be emphasized that DT-LPV
systems are a stand alone mathematical concept of modeling just like in the LTI
case. Additionally, the time projection is defined on the signals and not on their
derivatives. This means that finding the DT equivalent of a G = (R,W,P,B), de-
scribed by a differential equation with meromorphic coefficients dependent on p
and its derivatives, is a non-trivial problem (see Section 6.2).

B. Polynomials overR

In the following, the DT analog of the concepts introduced in the CT-LPV case is
developed. Similar to the LTI case, the time operator that we use in the discrete-
time PV case to define difference equations is the forward-time shift operator q .
Such difference equations are used to describe the behavior of DT-LPV systems.
However, the operator q has different properties than d

dt , used in the CT case.
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Additionally, q being the time operator also implies that the coefficients in the DT
case are dependent on p and its time-shifted versions. Due to these differences, in
the following we reformulate concepts of coefficient dependence (association of
coefficient variables with the scheduling) and commutation rules of multiplication
in R[ξ] in order to define the analog of the concepts of the CT case.

As a first step, we define the variable association of the coefficient functions r ∈
Rwith elements of p and their forward and backward time-shifts. Note that in the
DT case, dependence on both forward and backward time-shifts of p is required
in order to establish equivalence transformations (state elimination/construction)
between SS and IO representations of the system. Thus, labeling of the variables
must contain positive and negative indexes as well.

For a fixed scheduling dimension nP > 0, denote the variables of a r ∈ R̄n

(n-dimensional function inR) as:

{ζij}nζ ,nP,τ := {ζ01, ζ02, . . . , ζ0τ},

with nζ = 0 and τ = n if n ≤ nP. In case of n > nP, denote the variables as

{ζij}nζ,nP,τ := {ζ0,1, . . . , ζ0,nP , ζ1,1, . . . , ζ1,nP , ζ−1,1, . . . , ζ−1,nP , ζ2,1, . . . , ζτ1,τ2}

where n = (2nζ − 1)nP + τ with nζ > 0 and 0 < τ ≤ 2nP and

(τ1, τ2) =

{
(nζ , τ) if τ ≤ nP;
(−nζ , τ − nP) if τ > nP. (3.41)

The basic mechanism of this variable labeling scheme is presented in Figure 3.3
for nP = 2 and n = 1, . . . , 6. In this figure in each row, the yellow dots represent
the labels of the variables for a n-variable coefficient function. Note that for all
finite dimensions, this labeling sequence is unique.

Now we can associate the variables {ζij}nP,nζ,τ of a r ∈ R as

ζij = qipj , (3.42)

where pj is the jth element of p, nP is the dimension of p, nζ ∈ N is the maximal
order of the shifted versions of p on which r is dependent. For an example of this
variable association and the associated coefficient dependence see Example 3.9.

Example 3.9 (Coefficient function) Let P = RnP with nP = 2. Consider the real-meromorphic coefficient
function r : R3 → R defined as

r(x1, x2, x3) =
1 + x3

1− x2
.

Associate {ζij}1,2,1 = {ζ01, ζ02, ζ11} with {x1, x2, x3}. Then for a scheduling trajectory p : R→ R2:

(r ⋄ p)(k) = r(p1, p2, qp1, )(k) =
1 + p1(k + 1)

1− p2(k)
.

In order to introduce PV difference equations in DT, it is required to evalu-
ate a given coefficient function r ∈ R for a given scheduling trajectory p ∈ BP
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Figure 3.3: Labeling scheme for the variables of meromorphic coefficient functions
r : R̄n for nP = 2 and n = 1, . . . , 6.

according to the association rule (3.42). For this purpose, define the operator
⋄ : (R,BP)→ (RZ) in DT as:

r ⋄ p = r
({
qipj

}

nζ ,nP,τ

)

= r(p, qp, q−1p, . . .). (3.43)

With the association rule (3.42) and evaluation operator (3.43) in mind, we
can use polynomial matrices in Rnr×nW to define a parameter-varying difference
equation with nr rows and signal dimension nW as follows:

(R(q) ⋄ p)w =

nξ∑

i=0

(ri ⋄ p)qiw = 0, (3.44)

whereR ∈ R[ξ]nr×nW , deg(R) = nξ, and ri ∈ Rnr×nW for all i ∈ Inξ0 . PV differential
equations in the form (3.44) are used to define the class of DT-LPV systems we
consider in this thesis. It will be shown, that this class contains all the popular
definitions of LPV-SS and IO models used in LPV system identification.

Example 3.10 (PV difference equation) Consider again Example 3.1. Let 0 < Td ≪ 1 and develop an
approximation of the CT behavior of this system through the Euler type of approximation:

d

dt
w ≈ qw′ − w′

Td
, (3.45)

where w′(k) = w(kTd) for all k ∈ Z. Repeated substitution of (3.45) for the derivatives of m, wx, and wF in
(3.6) yields3

(T2
dks + m(k))wx(k)− (m(k + 1) + m(k))wx(k + 1) + m(k + 1)wx(k + 2) = T

2
dwF(k), (3.46)

where the time index k denotes the values of the signals at kTd on R. We consider these signals as DT signals
in the following. Let p = m with a scheduling space P = [1, 2] and let w = [wx wF]⊤. Then the difference
equation (3.46), which defines the possible signal trajectories of the DT approximation of the mass-spring system,
can be written in the form of (3.44) with nW = 2, nξ = 1, nP = 1, and

p0 ⋄ p =
[

T2
dks + p −T2

d

]
, p1 ⋄ p =

[
−qp− p 0

]
, p2 ⋄ p =

[
qp 0

]
.

So far we have used the polynomials of the ringR[ξ]nr×nW to define parameter-
varying difference equations. Thus, by using the algebraic structure of this ring

3Note that applying the Euler derivative approximation on different representations (SS, IO, etc.)
can result in inequivalent DT descriptions.
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Figure 3.4: Variable assiment by the functions m1 and m2 in Definition 3.13.

we can develop the analog of the CT results using similar arguments. However,
an important difference with the CT case is that multiplication inR[ξ]nr×nW obeys
a different non-commutative rule in the DT case. To explore the non-commutative
multiplication rule by ξ = q , first introduce the shift operators on R, to describe
time-shifts of parameter-varying coefficient functions:

Definition 3.13 (Shift operators) Let r ∈ R̄n. For a given nP > 0, denote the variables
of r as {ζij}nζ ,nP,τ based on the previously introduced labeling. The forward-shift and
backward-shift operators onR are defined as

−→r = ℧∗(r ◦m1), (3.47a)
←−r = ℧∗(r ◦m2), (3.47b)

where ◦ denotes the function concatenation, m1,m2 ∈ Rn
n+2nP , and m1 assigns each

variable ζij to ζ(i+1)j , while m2 assigns each variable ζij to ζ(i−1)j as depicted in Figure
3.4.

In other words, if r⋄p is dependent on for example p and qp, then−→r is the “same”
function (disregarding the number of variables) except it is now dependent on
qp and q2p. Similarly, ←−r is also the “same” as r except it is now dependent on
q−1p and p. In this way, the shift operators describe time-shifts on the parameter-
varying coefficient functions just like the dot operator describe differentiation
in CT (see Example 3.11). The shift operators fulfill the following rules for any
r1, r2 ∈ R:







if r = r1 ± r2 then −→r = −→r1 ±−→r2 and ←−r =←−r1 ±←−r2 ,
if r = r1r2 then −→r = −→r 1

−→r 2 and ←−r =←−r1←−r2 ,
if r = r1

r2
then −→r =

−→r1−→r2
and ←−r =

←−r1←−r2
.
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Example 3.11 (Shift operators) Consider the coefficient function r given in Example 3.9. Then

−→r ({ζij}2,2,1) =
1 + ζ21

1− ζ12
, ←−r ({ζij}1,2,4) =

1 + ζ01

1− ζ−12
.

For a scheduling trajectory p : R→ R2, it holds that

(−→r ⋄ p)(k) =
1 + p1(k + 2)

1− p2(k + 1)
, (←−r ⋄ p)(k) =

1 + p1(k)

1− p2(k − 1)
.

Multiplication on R[ξ] with ξ now can be defined through the forward-shift
operator using the non-commutative rule:

ξr = −→r ξ, (3.48)

where r ∈ R. With the non-cumulative multiplication rule (3.48) it is possible to
show that R[ξ] still defines an Ore algebra (Chyzak and Salvy 1998). Due to the
fact that all required algebraic properties are still satisfied forR[ξ] the proof of the
injective cogenerator property similarly follows in DT. The latter property implies
that the theorems, introduced and used in Section 3.1.2, also hold in the DT case.

C. Kernel representations

As a next step, we develop the concept of KR representations of DT-LPV systems
following the same line of discussion as in the CT case.

In discrete-time, all trajectories in (W×P)Z that satisfy (3.44) are considered as
solutions. Now we can give the definition of KR representations of LPV dynamic
systems as follows:

Definition 3.14 (DT-KR-LPV representation) The parameter-varying difference
equation (3.44) is called a discrete-time kernel representation, denoted by RK(S), of the
LPV dynamical system S = (Z,RnP ,RnW ,B) with scheduling vector p and signals w, if

B =
{
(w, p) ∈ (RnW × RnP)Z | (R(q) ⋄ p)w = 0

}
.

Note that in the LPV system class, we consider LPV systems with T = Z that have
a KR representation, so existence of such a representation is explicitly assumed in
the following. We denote the DT-KR representation of a CT-LPV dynamical sys-
tem S = (R,P, RnW ,B) by RK(S, Td), if the DT behavior B′ of this representation
is equivalent in terms of (3.40) with B under Td.

The existence of full row rank representations follows directly:

Theorem 3.3 (Existence of full row rank KR representation) Let B be given with
a KR representation (3.44). Then B can also be represented by a R ∈ R[ξ]·×nW with full
row rank.

The proof follows similarly as in Zerz (2006) due to the algebraic properties of
R[ξ]. This theorem has a crucial importance as the concept of minimality for KR
representations is also based on the full row rank of the associated matrix polyno-
mials R. (see Chapter 3.2).
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D. Input-output representations

IO representations are also important for the DT behavioral framework of LPV
systems. Beside system theoretical aspects, this type of representations connects
the developed behavioral theory to IO models used in the-state-of-the-art of LPV
system identification. In this way, it enables comparison and analysis of IO iden-
tification methods. In the following, we define DT-IO representations from the
behavioral point of view, based on the same line of discussion as in the CT case.

For DT-LPV systems, IO partitions are also characterized by Definition 3.9.
The existence of IO partition (u, y) implies the existence of matrix polynomials
Ry ∈ R[ξ]nY×nY and Ru ∈ R[ξ]nY×nU with Ry full row rank, such that (3.44) can
be written in a similar form as (3.30). Based on this, it is possible to introduce IO
representations of DT-LPV systems as follows:

Definition 3.15 (DT-LPV-IO representation) The discrete-time IO representation of
S = (Z,P ⊆ RnP ,RnU+nY ,B) with IO partition (u, y) and scheduling vector p is denoted
by RIO(S) and defined as a parameter-varying difference-equation system with order na:

na∑

i=0

(ai ⋄ p)qiy =

nb∑

j=0

(bj ⋄ p)qju, (3.49)

where aj ∈ RnY×nY and bj ∈ RnY×nU with ana 6= 0 and bnb
6= 0 are the meromorphic

parameter-varying coefficients of the matrix polynomials Ru and full row rank Ry with
na ≥ nb ≥ 0 and na > 0.

Note that the coefficient dependencies in Definition 3.15 can be polynomial func-
tions of p. Thus the behavioral definition of IO representations also contains the
IO models used in LPV system identification (see Chapter 1). By defining u(k) :=
u(kTd) and y(k) := y(kTd), the DT-IO representation, denoted by RIO(S, Td), of a
CT-LPV system S with scheduling p and IO partition (u, y) can similarly be given
with equivalent behaviors in terms of (3.40) under the sampling-time Td. Note
that the discrete-time projection with arbitrary Td can change the validity of the IO
partition as dynamic components of the system can be lost due to slow sampling.
Thus, it is important to emphasize that existence of RIO(S, Td) is not guaranteed.

Example 3.12 (IO partition and representation) In Example 3.10, the sampled force variable wx is still a
free variable as it represents the inhomogen part of difference equation (3.46). Thus the choice of w = [y u]⊤ =
[wx wF]⊤ yields a valid IO partition. With m being the scheduling signal, the discrete-time PV behavior can
be represented in the form of (3.49) with polynomials

Ry(ξ) = a0 + a1ξ + a2ξ2, Ru(ξ) = b0,

which have coefficients:

a0 ⋄ p = T
2
dks + p, a1 ⋄ p = −p − qp, a2 ⋄ p = qp, b0 ⋄ p = T

2
d.

Obviously, Ry(ξ) have full row rank. This implies that Ry(ξ) and Ru(ξ) define an IO representation of the
model with coefficients as above.
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Similar to the CT-LPV case, the notion of transfer functions for DT-LPV sys-
tems is not well-defined. The introduction of a viable formulation can be tackled
via the formal series approach of Kamen et al. (1985), constructed for DT-SS sys-
tems of the LTV case. However, the extension of this approximative transfer func-
tion calculus to the class of systems considered here is not available. The notion
of frozen transfer functions, frequency responses, impulse responses, poles, and
zeros can be similarly defined for the frozen system set as in the CT case.

F. State-space representations

For the discrete-time LPV behavior B, we can also introduce latent variables with
the property of state (see Definition 3.11). Existence of latent variable represen-
tations with equivalent LPV manifest behaviors is guaranteed in the DT case as
Theorem 3.2 holds regardless wether ξ is associated with q or d

dt (see Example
3.13). Furthermore, the elimination property also applies for the DT case.

Example 3.13 (Latent variable representation) By considering the DT system in Example 3.10 with schedul-
ing p = m and P = [1, 2], the following latent variable representation of the model has the same manifest
behavior:





T2
dks + p −T2

d
(−p− q−1p) 0

(−q−1p) 0





[
wx
wF

]

=





q 0
−1 q
0 1



wL. (3.50)

This can be proved by substituting the third row of (3.50) into the second row, giving

wL,1 = (p + q−1p)w − pqw.

Substitution of the previous equation into the first row of (3.50) gives a PV difference equation in the variables
wx and wF, which is equal to (3.46). Note, that any wL ∈ (R2)Z satisfying (3.50) trivially fulfills the property
of state.

Now we can introduce SS representations of DT-LPV systems as follows:

Definition 3.16 (DT-LPV-SS representation) The discrete-time state-space represen-
tation of S = (Z,P ⊆ RnP ,RnU+nY ,B) with scheduling vector p is denoted by RSS(S)
and defined as a first-order parameter-varying difference equation system in the latent
variable x : Z→ X:

qx = (A ⋄ p)x+ (B ⋄ p)u, (3.51a)
y = (C ⋄ p)x+ (D ⋄ p)u, (3.51b)

where (u, y) is the IO partition of S, x is the state-vector, X ⊆ RnX is the state-space,

BSS =
{
(u, x, y, p) ∈ (U× X× Y× P)Z | (3.51a) & (3.51b) holds

}
,

is the full behavior of the manifest behavior B, and

[
A B
C D

]

∈
[
RnX×nX RnX×nU
RnY×nX RnY×nU ]

,
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represents the parameter-varying state-space matrices of RSS(S).

Again in the full behavior BSS, the latent variable x trivially fulfills the state prop-
erty. Also the class of SS representations formulated by Definition 3.16 contains
the SS models used in LPV system identification as the coefficient dependencies
in the behavioral definition can be linear functions of p. This enables the analysis
and comparison of the results of LPV-SS system identification. The DT-SS rep-
resentation of a CT-LPV dynamical system S = (R,P,RnU+nY , B) is denoted as
RSS(S, Td), where the manifest behavior of RSS(S, Td) is equivalent in terms of
(3.40) with B under the sampling-time Td. As before, existence of such represen-
tations is not guaranteed for arbitrary Td.

Example 3.14 (SS representation) Continuing Example 3.13, the LPV state-space representation of the
model follows by taking [y u]⊤ = [wx wF]⊤ as the IO partition and x = wL as the state:

qx =

[
0 0
1 0

]

x +

[
T2
dks − p −1
−p− q−1p 0

] [
y
u

]

, (3.52)

y =
[

0 1
−q−1p

]

x. (3.53)

By substitution of the second equation into the first one, the state equation in the form of (3.51a) results, while
the second equation gives the output equation in the form of (3.51b). Thus, the corresponding SS representation
is

[
A ⋄ p B ⋄ p
C ⋄ p D ⋄ p

]

=







0
p−T

2
dks

q−1p
−1

1 1 + p

q−1p
0

0 −1
q−1p

0







.

Similar to LPV-IO representations, the notion of transfer function, frequency
response, and impulse response can only be defined in a frozen sense for LPV-SS
representations.

3.2 Equivalence classes and relations

In this section, we continue the introduction of the LPV behavioral framework
by defining equivalence relations and classes for the introduced representation
forms. These are essential aspects of the theory as they characterize which rep-
resentations describe the same system, providing tools to compare and analyze
representation capabilities/validity of LPV models for identification. In the up-
coming discussion, we systematically extend the concepts introduced in Section
2.1.4. First we define equality of behaviors and investigate why this equality needs
to be understood in an almost everywhere sense to express equivalence of repre-
sentations. Then, we define equivalency, equivalence relations and equivalence
classes of all representation forms together with the concept of minimality and
canonical forms. To do so, we introduce key theorems of left/right side unimod-
ular transformations based on the results of the LTV behavioral framework. To
support these theorems, we also introduce the required concept of the Jacobson
form (similar to the Smith-McMillan form in the LTI case).
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The most important concept to begin with is to define equality with respect
to behaviors of PV systems. Based on Definition 2.16, we introduce the following
definition:

Definition 3.17 (Equal behaviors of PV systems) Let B1,B2 ⊆ (W × P)T withW = RnW , P ⊆ RnP , and with T equal to either R or Z. We call B1 and B2 equal, if in
case of T = R:

(w, p) ∈ B1 ∩ C∞(R,W× P)⇔ (w, p) ∈ B2 ∩ C∞(R,W× P), (3.54)

or in the discrete-time case (T = Z):

(w, p) ∈ B1 ⇔ (w, p) ∈ B2. (3.55)

Two systems are called equal if they have equal behaviors. However, it is impor-
tant to remark that Definition 3.17 establishes the concept of equal behaviors in
terms of internal, and hence not external equality. This means, that even if two
LPV systems have the same behavior in terms of IO signals for a particular IO
partition, they are not necessarily equal as their scheduling signals or latent vari-
ables can differ. In case of systems with latent variables, equality can be defined
in terms of the equality of the manifest behaviors (see Definition 3.26). On the
other hand, there also exist systems with equal signal behavior and isomorphic
projected scheduling behavior (see Example 3.15). However, due to technical rea-
sons, we do not consider such systems to be equal in the sequel.

Example 3.15 (Equal PV behaviors) Consider the varying-mass and spring system of Example 3.1 with m
as the scheduling function. We have seen in Example 3.3, that the PV differential equation (KR representation)

ksw1 −w2 +

(
d

dt
p

)
d

dt
w1 + p

d2

dt2
w1 = 0. (3.56)

is basically the same as the differential equation (3.6) describing the behavior of the varying-mass and spring
system. Based on the equivalence of the differential equations, the associated LPV behaviors are also equal. Now
consider the image representation in Example 3.7. The behavior associated with (3.56) is not equal with the
associated behavior of the image representation (3.35), as in the latter case the trajectories of the latent variable
are part of the behavior. Another example of inequality is

ksw1 −w2 −
(

d

dt
p̆

)
d

dt
w1 + (1− p̆)

d2

dt2
w1 = 0. (3.57)

with a scheduling variable p̆ = 1−m. In this case, the solution trajectories of w for this KR representation are
the same as for (3.56), but the behaviors are not equivalent due to the different scheduling function.

In order to characterize equivalent representations of the same system, another
key notion is required: the equality of behaviors in the almost everywhere sense. In
the LPV framework, we have introduced representations that have meromorphic
coefficient functions. Similar to the LTI framework, R1, R2 ∈ R[ξ] are expected to
define an equal behavior if they are equivalent up to multiplication by a r ∈ R,
r 6= 0. However, r can be a rational function for which (r ⋄ p)(t) = ∞ for some
scheduling trajectories p and t ∈ T. The behavior of a kernel representation is
defined to contain only those trajectories of p for which a (weak) solution exists
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and is well defined. The latter is guaranteed by the boundedness of r ⋄ p. In
this way, the behavior (solutions) of R1 is equal with the behavior of R2 = rR1

except for those trajectories for which r ⋄ p is unbounded. This type of almost-
everywhere-equality is what we use in the sequel to define equal behaviors.

Let a behavior B ⊆ (W × P)T be given with BP as its projected scheduling
behavior. Let B̄P ⊆ BP. Define the restriction of B to B̄P as

B |B̄P= {(w, p) ∈ B | p ∈ B̄P} . (3.58)

Then based on the previous considerations, the equivalence of LPV-KR represen-
tations is defined as follows:

Definition 3.18 (Equivalent KR representations) Given a R1 ∈ R[ξ]nr×nW and a
behavior B1 ⊆ (W × P)T with P = RnP and W = RnW such that B1 contains all the
(weak) solutions that satisfy

(R1(ξ) ⋄ p)w = 0. (3.59)

Let BP ⊆ Lloc
1 (R,P) (continuous-time) or BP ⊆ PZ (discrete-time) be the projected

scheduling behavior associated with B. Then the KR representation defined by R2 ∈
R[ξ]nr×nW :

(R2(ξ) ⋄ p)w = 0, (3.60)

with behavior B2 ⊆ (W× P)T and projected scheduling behavior B′P is called equivalent
with (3.59), if B1 and B2 are equal almost everywhere, i.e. for the common scheduling
behavior B̄P = BP ∩ B′P, the restricted behaviors B1 |B̄P and B2 |B̄P are equal in
terms of Definition 3.17. If equality holds with B′P = BP, then the equivalence of the
representations is called full equivalence.

Example 3.16 (Almost everywhere equivalence) By continuing Example 3.15, the KR representation

ks

p
w1 −

1

p
w2 −

1

p

(
d

dt
p

)
d

dt
w1 +

d2

dt2
w1 = 0.

has the same weak solutions as (3.56) except for those trajectories of p = m, where m(t) = 0 for some t ∈ T.
Thus, this KR representation and (3.56) are equivalent in the almost everywhere sense.

The existence of equivalent KR equations implies that, similar to the LTI case, rep-
resentations of PV dynamical systems are non-unique. Thus, we need to charac-
terize when two KR representations define the same behavior. This characteriza-
tion follows trough left/right unimodular transformations just like in the LTI case.
To derive these theories in the LPV case, we introduce the concept of unimodular
matrices inR[ξ]·×· and the Jacobson form.

Definition 3.19 (Unimodular polynomial matrix function) Let M ∈ R[ξ]n×n.
ThenM is called unimodular, if there exists aM † ∈ R[ξ]n×n, such thatM †(ξ)M(ξ) = I
and M(ξ)M †(ξ) = I .

It provides an important insight that any unimodular matrix operator inR[ξ]·×· is
equivalent to the product of finite many elementary row and column operations:
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1. Interchange row (column) i and row (column) j.

2. Multiply row (column) i by a r ∈ R, r 6= 0.

3. For i 6= j, add to row (column) i row (column) j multiplied by ξn, n > 0.

Example 3.17 (Unimodular polynomial matrix function) The matrix polynomials M, M† ∈ R[ξ]2×2,
defined as

M =

[
r2 r2ξ
r1ξ r1ξ2 + r1

]

, M† =

[
r1 + ξ2r1 −ξr2

−ξr1 r2

]
1

r1r2
,

are unimodular as MM† = M†M = I . Note that ξr1 6= r1ξ due to the non-commutative multiplication rule
of ξ onR[ξ].

Theorem 3.4 (Jacobson form) (Chon 1971) Let R ∈ R[ξ]nr×nW with n = rank(R).
Then there exist unimodular matrices M1 ∈ R[ξ]nr×nr and M2 ∈ R[ξ]nW×nW such that

M1RM2 =

[
R′ 0
0 0

]

,

where R′(ξ) = diag(1, . . . , 1, r) ∈ R[ξ]n×n for a 0 6= r ∈ R[ξ].

Due to the algebraic structure of R[ξ]·×·, the proof of Theorem 3.4 similarly fol-
lows as in Chon (1971). The Jacobson form, also called Teichmüller-Nakayama
form, gives a unique representation of the behavior, similar to the Smith-McMillan
form in the LTI case. This form plays a key role in proofs over the ringR[ξ]·×· as it
establishes the concept of isomorphism of behaviors, existence of full rank poly-
nomials with equivalent behavior, the injective cogenerator property of modules
in R[ξ], etc. (see Zerz (2006) and Ilchmann and Mehrmann (2005)).

Example 3.18 (Jacobson form) (Zerz 2006) Consider

R =

[
r + ξ −1 −1

1− d
dt

r − 1
r

+ ξ −r

]

∈ R[ξ]2×3,

where r is a meromorphic function and ξ = d
dt

. Then the Jacobson form of R is

M1RM2 =

[
1 0 0
0 r − 1

r
+ ξ 0

]

,

with

M1 =

[
1 0
−r 1

]

, M2 =





0 0 1
0 1 r
−1 −1 ξ



 .

Based on the concept of unimodular matrices and Theorem 3.4, it is possible
to show that the following theorem holds in the LPV case:

Theorem 3.5 (Left-side unimodular transformation) (Zerz 2006) LetR ∈ R[ξ]nr×nW
andM ∈ R[ξ]nr×nr withM unimodular. For a given nP ∈ N, defineR′ := MR. Denote
the behaviors corresponding to R and R′ by B and B′ with scheduling space P ⊆ RnP
and signal space W = RnW . Then B and B′ are equal (almost everywhere).
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Based on the Jacobson form, the proof similarly follows as in Zerz (2006) and
Ilchmann and Mehrmann (2005). Furthermore, if R ∈ R[ξ]nr×nW is not full row
rank, i.e. rank(R) = n < nr, then there exists an unimodular M ∈ R[ξ]nr×nr such
that

MR =

[
R′

0

]

, (3.61)

where R′ ∈ R[ξ]n×nW is full row rank and the corresponding behaviors are equiv-
alent in terms of Theorem 3.5. Note that this theorem establishes the concept when
two representations can be considered equivalent. However, to establish equiva-
lency of SS representations or latent variable systems, we require the concept of
right-side unimodular transformation just like in the LTI case. It can be showed
that the following theorem holds:

Theorem 3.6 (Right-side unimodular transformation) (Zerz 2006) Let R ∈
R[ξ]nr×nW and M ∈ R[ξ]nW×nW with M unimodular. Denote the behaviors defined
by R and R′ := RM as B and B′ with scheduling domain P ⊆ RnP and signal spaceW = RnW . If T = R, then B ∩ C∞(R,W × P) and B′ ∩ C∞(R,W × P) are isomorphic
in the almost everywhere sense. If T = Z, then B and B′ are isomorphic in the almost
everywhere sense.

Again, the proof, based on the Jacobson form, similarly follows as in Zerz (2006)
and Ilchmann and Mehrmann (2005). It is important that right-side unimodular
transformations do not change the underlying relation between the system signals
nor the projected scheduling behavior, but they do change the system signals, the
trajectories of the behavior. An important difference with respect to the LTI case
(see Theorem 2.4) is that if M ∈ RnW×nW (zero order polynomial), then only the
C∞ part of B and B′ are isomorphic for T = R, as M can introduce arbitrary finite
order of derivatives on p.

As all the required tools are established, it is now possible to introduce the
notion of equivalence relation for LPV kernel representations. Similar to the LTI
case, this relation is the key to characterize the set of equivalent representations
of the same behavior, which we call an equivalence class. In the LPV case, the
scheduling dimension nP plays an important role in R[ξ] as it defines the exact
coefficient dependence and also how the dot or shift operators behave onR. Thus,
an equivalence relation must be dependent on nP. Based on this, the following
definition is given:

Definition 3.20 (LPV Equivalence relation) Introduce the symbol
nP∼ to denote the

equivalence relation on
⋃R[ξ]·×· (all polynomial matrices with finite dimension) for an

nP-dimensional scheduling space. R1 ∈ R[ξ]n1×nW and R2 ∈ R[ξ]n2×nW with n1 ≥ n2

are called equivalent, i.e. R1
nP∼ R2, if there exists a unimodular matrix function M ∈

R[ξ]n1×n1 such that

MR1 =

[
R2

0

]
l n2

l n1 − n2
. (3.62)

This implies that if R1
nP∼ R2, then the corresponding behaviors with P ⊆ RnP

and W = RnW are equal (almost everywhere). Using nP∼ we can define equivalence
classes as follows:
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Definition 3.21 (LPV Equivalence class) For a givennP ∈ N, the set E nP ⊆ ⋃R[ξ]·×·

is called an equivalence class, if it is a maximal subset ofR[ξ]·×· such that for allR1, R2 ∈
E nP it holds that R1

nP∼ R2.

An equivalence class defines the set of all KR representations which have equal
behavior. An important subset of an equivalence class are the so called minimal
representations:

Definition 3.22 (Minimality) Let R ∈ R[ξ]nr×nW . Then R is called minimal if it has
full row rank, i.e. rank(R) = nr.

We call deg(r) in the Jacobson form of aR associated with RK(S), the degree of all
KR representations in the same equivalence class. This degree can be considered
as the order of S, hence we call it McMillan degree. Note that for a minimal RK(S)
with nW = 1, the McMillan degree of S is equal to nξ = deg(R). It is also important
to consider the subclass of representations, so called canonical forms, that can
uniquely identify each equivalence class:

Definition 3.23 (Canonical forms) For a given nP ∈ N, E nP
can ⊂

⋃R[ξ]·×· is called a

set of canonical forms, if each element of
⋃R[ξ]·×· is equivalent under

nP∼ with only one

element of E nP
can. (E nP

can is the class representative of
⋃R[ξ]·×· under

nP∼).

Example 3.19 (LPV equivalence relation and minimality) Let the KR representation RK(S) of an CT-
LPV system S with P ⊆ R given by

R(ξ) ⋄ p =

[

(sin(p)p − cos(p)) d
dt

p 0

p 1
cos(p)

]

+

[ − cos(p)p −1
1

cos(p)
0

]

ξ +

[
−1 0
0 0

]

ξ2.

Then, there exists a unimodular matrix M ∈ R[ξ]2×2 with

M(ξ) ⋄ p =

[
0 1

1 cos(p)ξ − sin(p) d
dt

p

]

s.t. (M(ξ)R(ξ)) ⋄ p =

[
p + 1

cos(p)
ξ 1

cos(p)

0 0

]

.

Note that this result is obtained by using (3.22), i.e ξr = ṙ + rξ, so

ξ
1

cos(p)
=

sin(p)

cos2(p)

(
d

dt
p

)

+
1

cos(p)
ξ.

From Theorem 3.5 it follows that R′, defined as [ (R′)⊤ 0 ]⊤ = MR, and R are equivalent for nP = 1.
Furthermore, as R is equivalent with R′ having row dimension 1, thus rank(R) = 1. This implies that R is
not minimal in terms of Proposition 3.22. However, R′ is trivially minimal. Hence, deg(R′) = 1 implies that
the McMillan degree of S is 1.

The introduced concepts generalize to LPV-IO representations as well:

Definition 3.24 (Equivalence relation of LPV-IO representations) Let Ru, R
′
u ∈

R[ξ]nY×nU andRy, R
′
y ∈ R[ξ]nY×nY withRy, R

′
y are full row rank, deg(Ry) ≥ deg(Ru),

and deg(R′y) ≥ deg(R′u). For a given nP ∈ N, we call (Ry, Ru) and (R′y, R
′
u) equivalent

(Ry, Ru)
nP∼ (R′y, R

′
u), (3.63)
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if there exists a unimodular matrix M ∈ R[ξ]nY×nY such that

R′y = MRy and R′u = MRu. (3.64)

Definition 3.25 (Minimal LPV-IO representation) An IO representation defined
through Ry ∈ R[ξ]nY×nY and Ru ∈ R[ξ]nY×nU is called minimal for a given schedul-
ing dimension nP, if there are no R′y ∈ R[ξ]nY×nY and R′u ∈ R[ξ]nY×nU polynomials
with deg(Ry) < deg(R′y) such that

(Ry, Ru)
nP∼ (R′y, R

′
u).

Using the IO equivalence relation and minimality, the definition of IO equivalence
classes and canonical forms follows naturally. Note that for a minimal RIO(S)
with nY = 1, the McMillan degree of S is equal to deg(Ry).

Example 3.20 (LPV-IO equivalence relation and minimality) Let the IO representation RIO(S) of an
CT-LPV system S with P ⊆ R be given by

Ry(ξ) ⋄ p =

[
sin2(p)ξ sin2(p)p

−2 cot(p) d
dt

pξ − ξ2 (1− p)ξ − d
dt

p (1 + 2 cot(p)p)

]

,

Ru(ξ) ⋄ p =

[
sin2(p)

p− 2 cot(p) d
dt

p− ξ

]

.

Then, there exists a unimodular matrix M ∈ R[ξ]2×2 being equal to

M(ξ) ⋄ p =

[
1

sin2(p)
0

1
sin2(p)

ξ 1

]

s.t.







(M(ξ)Ry(ξ)) ⋄ p =

[
ξ p
0 ξ

]

,

(M(ξ)Ru(ξ)) ⋄ p =

[
1
p

]

,

which can be verified by using
1

sin2(p)
ξ sin2(p) = 2 cot(p)

d

dt
p + ξ.

This implies that (R′
y, R′

u) = (MRy , MRu) and (Ry , Ru) are equivalent for nP = 1 in terms of Theorem 3.5.
From Proposition 3.25 it follows that RIO(S) is not minimal as deg(Ry) = 2 is greater than deg(R′

y) = 1.
On the other hand, it is trivial that (R′

y, R′
u) defines a minimal IO representation of S . Hence deg(R′

y) = 1
implies that the McMillan degree of S is 1.

We can also generalize the introduced concepts to LPV-SS representations. To
do so, we first have to clarify state-transformations in the LPV case which is the
required ingredient to formulate equivalence relations of SS representations. As a
contribution we prove that in the LPV case, state-transformations need dynamic
dependence in order to define an equivalence relation of SS representations.

By definition, the full behavior of a RSS(S) is represented by a zero-order and
a first-order polynomial matrix R ∈ R[ξ]nr×(nY+nU) and RL ∈ R[ξ]nr×nX in the
form of

(R(ξ) ⋄ p)col(u, y) = (RL(ξ) ⋄ p)x (3.65)

where ξ is either q or d
dt , (u, y) is an IO partition of S, x is the state variable of

RSS(S), and p is the scheduling signal. Similar to the LTI case, left and right side
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multiplication ofR andRL with unimodularM1 ∈ R[ξ]nr×nr andM2 ∈ R[ξ]nX×nX
leads to

R′ = M1R, R′L = M1RLM2. (3.66)

In terms of Theorem 3.5 and 3.6, the resulting polynomials R′ and R′L define an
equivalent latent variable representation of S. The new latent variable, given as

x′ = (M †2 (ξ) ⋄ p)x, (3.67)

fulfills the property of state as M †2 is unimodular. To guarantee that the result-
ing latent variable representation qualifies as a SS representation, R′L needs to be
monic and deg(R′) = 0 with deg(R′L) = 1 must be satisfied. This implies that the
unimodular matrices must have zero order, i.e. M1 ∈ Rnr×nr and M2 ∈ RnX×nX ,
and M1 has a special structure in order to guarantee that R′ and R′L correspond to
an equivalent SS representation. In that case, (3.67) is called a state-transformation

and T = M †2 is called the state-transformation matrix resulting in

x′ = (T ⋄ p)x. (3.68)

As we have seen, state-transformation for LPV-SS representations can be similarly
introduced as in the LTI case. However, a major difference with respect to LTI
state-transformations is that in the LPV case, T is inherently dependent on p and
this dependence is dynamic, i.e. T ∈ RnX×nX .

An invertible T ∈ RnX×nX used as a state-transformation is always equivalent
with a right and left-side multiplication by unimodular matrix functions yield-
ing a valid SS representation of the LPV system. This is also proved by the alge-
braic equivalency, see (3.68), of the original and the new state variables (Silverman
1971). The converse, namely that the state variables of any two SS representations
of the same LPV system are algebraically equivalent up to a state-transformation
follows directly from Theorem 3.5 and 3.6.

Similar to the LTI case, the SS representation resulting from the state-transfor-
mation of RSS(S), can be analytically computed from the meromorphic matrices
of RSS(S). However, different commutation rules in R[ξ] for the continuous and
discrete-time cases yield different consequences with respect to the system matri-
ces. Let RSS(S) be a given LPV-SS representation with X = RnX and state-equation

ξx = (A ⋄ p)x+ (B ⋄ p)u. (3.69)

Let T ∈ RnX×nX be an invertible matrix function and consider x′, given by (3.68),
as a new state variable. It is immediate, that substitution of (3.68) into (3.69) yields

ξ(T−1 ⋄ p)x′ = (A ⋄ p)(T−1 ⋄ p)x′ + (B ⋄ p)u. (3.70)

In the continuous-time case, the non-commutative multiplication by ξ = d
dt in

(3.70) gives that the state-equation in x′ is:

d

dt
x′ =

([

TAT−1 + Ṫ T−1
]

⋄ p
)

x′ + ([TB] ⋄ p)u. (3.71)
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Here we use the fact that Ṫ T−1 = −T Ṫ−1. In the discrete-time case, the non-
commutative multiplication by ξ = q in (3.70) yields:

qx′ =
([−→
T AT−1

]

⋄ p
)

x′ +
([−→
T B

]

⋄ p
)

u. (3.72)

In both cases, the new state-equation defines a LPV-SS representation with state-
vector x′. Note that due to the different commutation rules of the time-operators,
the transformation rules of the original system matrices are different in the CT and
in the DT cases. Now we can give the following definition of equivalence classes:

Definition 3.26 (Equivalence relation of LPV-SS representations) Let (A,B,
C,D) and (A′, B′, C′, D′) be quadruplets of matrices in R·×· defining LPV-SS repre-
sentations with nX ≥ n′X and with nP ∈ N. These representations are called equivalent,

[
A B
C D

]
nP∼ [ A′ B′

C′ D′

]

, (3.73)

if there exists an invertible T ∈ RnX×nX such that in case of T = R the following holds:

TAT−1 + Ṫ T−1 =

[
A′ 0
∗ ∗

]

, TB =

[
B′

∗

]

,
l n′X
l nX − n′X

CT−1 =
[
C′ 0

]
, D = D′,

(3.74a)

while in case of T = Z:

−→
T AT−1 =

[
A′ 0
∗ ∗

]

,
−→
T B =

[
B′

∗

]

,
l n′X
l nX − n′X

CT−1 =
[
C′ 0

]
, D = D′.

(3.74b)

Based on the previous considerations, the existence of a state-transformation
T between the matrices of two SS representations implies that they have the same
manifest behavior. Furthermore, the states are related as

(T ⋄ p)(t)x(t) =

[
x′(t)
∗

]

,
n′X l

nX − n′X l ∀t ∈ T. (3.75)

From the concept of LPV-SS equivalence the concept of minimality directly
follows:

Definition 3.27 (Minimal LPV-SS representation) For a given nP > 0, an SS rep-
resentation defined through the matrix functions (A,B,C,D) is called minimal, if there
exist no (A′, B′, C′, D′) such that

[
A B
C D

]
nP∼ [ A′ B′

C′ D′

]

,

with n′X < nX.
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Again, using the concept of SS equivalence relation and minimality, the definition
of LPV-SS equivalence classes and canonical forms follows naturally. In addition,
the state-dimension nX of a minimal RSS(S) is equal to the McMillan degree of S.

Example 3.21 (LPV-SS equivalence relation and minimality) Let the SS representation RSS(S) of an
DT-LPV system S with P ⊆ R be given by

[
A B
C D

]

⋄ p =






p 1 1
0 p p

1 1
p

p




 .

It is possible to show that RSS(S) is minimal (see Example 3.33). Thus the McMillan degree of S is nX = 2.
Let T ∈ R2×2 be an invertible state-transformation defined as

T ⋄ p =

[ 1
p

p

0 1

]

.

Then

T−1 ⋄ p =

[
p −p2

0 1

]

,
−→
T ⋄ p =

[ 1
qp

qp

0 1

]

,

implying

[ −→
T AT−1 −→

T B

CT−1 D

]

⋄ p =







p2

qp
1−p3
qp

+ p(qp) 1
qp

+ p(qp)

0 p p

p 1
p
− p2 p







.

The obtained SS representation is an equivalent minimal SS representation of S as it is in an equivalence relation
with RSS(S) and its state dimension is the same. As S has no autonomous part, this can be easily checked by
applying an impulsive input to the representations at time τ0, i.e. u(τ0) = 1 and u(k) = 0 for all k 6= τ0.
Then the resulting output trajectory: y(τ0) = (D ⋄ p)(τ0), y(τ0 + 1) = (C ⋄ p)(τ0 + 1)(B ⋄ p)(τ0), . . . is
the same for both representations for all τ0 ∈ Z and p ∈BP, which yields equivalence (Brockett 1970).

3.3 Properties of LPV systems & representations

In the previous section we have developed the basics of a LPV behavioral frame-
work. In order to use this framework as an analysis tool for LPV system identifi-
cation, we also need to investigate key properties of systems and representations
in terms of dynamic stability and state-observability/reachability. As a contribu-
tion, we analyze in this section these concepts using the results of LTV system
theory. We also compare the developed results with their counterparts in the ex-
isting LPV theory. As the developed behavioral approach addresses a larger set
of LPV systems than the state-of-the-art of LPV system theory, the existing LPV
concepts follow as special cases of the theory presented in this section.

3.3.1 State-observability and reachability

The concepts of state-observability and reachability of LPV-SS system representa-
tions are important properties in the LPV case. They are not only key concepts for
control and subspace-based identification, but they also provide the formulation



124 Chapter 3 LPV systems and representations

of special SS canonical forms. These so called observability or reachability canon-
ical forms are strongly connected to the observability and reachability matrices of
SS representations and they are required to develop equivalence transformation
between different representation domains (see Chapter 4).

In the following discussion, we explore complete state-observability and reach-
ability of LPV-SS representations both in CT and DT, based on concepts of the
LTV system theory. We show that these properties are equivalent with the exis-
tence of invertible linear maps for all time instances and scheduling trajectories.
Based on this, we define observability and reachability matrices of SS representa-
tions. We show that complete state-observability and reachability are very strong
properties in the LPV case as only a rather restricted class of representations ful-
fills them. Moreover, they are not required for minimality nor the generation of
observability or reachability canonical forms. We show that a weaker property,
the so called structural state-observability/reachability, which defines the state-
observability/reachability concept in an almost everywhere sense, is a necessary
and sufficient property to generate these canonical forms.

As a first step, we extended Definitions 2.30 and 2.31 of complete state-observ-
ability and reachability to the LPV case:

Definition 3.28 (Complete LPV state-observability) RSS(S) is called completely
state-observable, if for all (u, x, y, p), (u, x′, y, p) ∈ BSS it holds that x = x′.

Definition 3.29 (Complete LPV state-reachability)RSS(S) is called completely state-
reachable, if for any given two states x1, x2 ∈ X and any scheduling signal p ∈ BP,
there exist an input signal u and an output signal y such that (u, x, y, p) ∈ BSS with
x(t1) = x1 and x(t2) = x2 for some t1, t2 ∈ T.

The main difference of these definitions with respect to the LTI case follows from
the presence of the scheduling signal p that acts as an extra “time-axis” of the sys-
tem. By freezing this axis, i.e. using a constant scheduling, these concepts coincide
with Definitions 2.30 and 2.31.

To establish conditions when an LPV-SS representation is completely state-
observable or reachable, as a next step, the concept of state-observability and
reachability matrices is introduced. Appropriate conditions are derived to for-
mulate when and in which sense the full rank of these matrices implies complete
state-observability or reachability. However, the formulation of these matrices
follows a different track than in the LTI case, due to the non-commutative multi-
plication onR[ξ].

A. State-observability in continuous-time

First the CT observability case is investigated based on the results of LTV system
theory by Silverman and Meadows (1967) and Callier and Desoer (1991). Using
these approaches, we establish the concept of state-observability of RSS(S) on a
finite time interval and show that this property is equivalent with the existence of
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an invertible linear map. Then we define this linear map as the state-observability
matrix of RSS(S) and claim that state-observability (invertibility of the map) on
any finite time interval implies complete state-observability.

For a given continuous-time LPV-SS representation RSS(S) with matrix func-
tions (A,B,C,D), define A(t1, t0, p) as the state transition matrix function for ẋ =
(A ⋄ p)x. Then the state and output evolution of RSS(S) satisfy that

x(t1) = A(t1, t0, p)x(t0) +

∫ t1

t0

A(t1, τ, p)(B ⋄ p)(τ)u(τ)dτ, (3.76a)

y(t1) = (C ⋄ p)(t1)x(t1), (3.76b)

for all t1 ≥ t0 along a given scheduling trajectory p ∈ BP. Note that for LPV-
SS representations in general, the explicit form of A(t1, t0, p) is hard to derive
as it involves integration over the scheduling trajectory, while in the LTI case,
A(t1, t0) = eA(t1−t0).

Complete state-observability of RSS(S) can be described using the concept of
reconstructibility. For a given p ∈ BP, define the following linear map from X to
Lloc

1 ([t0, t1],Y):

y(t) = (C ⋄ p)(t))A(t, t0, p)
︸ ︷︷ ︸

C(t)

x, x ∈ X, t ∈ [t0, t1]. (3.77)

For the given p ∈ BP, the mapping y(t) = C(t)x defines the output evolution of
RSS(S) on the finite interval [t0, t1] ⊂ R with initial state x(t0) = x and with zero
input signal u = 0. The state x ∈ X is said to be reconstructible on [t0, t1], if x
lies in the kernel of the linear map (3.77). This means that if (3.77) is injective,
then every state is reconstructible on [t0, t1]. If (3.77) is injective for every p ∈ BP,
then RSS(S) is called state-observable on [t0, t1]. It is easy to show that RSS(S)
is completely state-observable, if it is state-observable for any finite interval of R.
Now we can introduce the following matrix function to describe the map (3.77):

Definition 3.30 (n-step CT state-observability matrix function) (Silverman and
Meadows 1969) In continuous-time, the n-step state-observability matrix function of
RSS(S) is defined as On ∈ R(nnY)×nX with

On =
[
o⊤1 o⊤2 . . . o⊤n

]⊤
, (3.78)

where o1 = C and
oi+1 = oiA+ ȯi, i > 1. (3.79)

The n-step state-observability matrix function has a similar role as the state-ob-
servability matrix for LTI representations, as in case of complete state-observability,
it provides an invertible map for the reconstruction of the state from the deriva-
tives of y.
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Example 3.22 (CT state-observability matrix function) Let the SS representation RSS(S) of a CT-LPV
system S with P ⊆ R+ be given by

[
A B
C D

]

⋄ p =






p 1 1
0 1

p
p

1 p p




 .

Then the observability matrices of RSS(S) for n = 1, 2, 3 are as follows:

O1 ⋄ p =
[

1 p
]
, O2 ⋄ p =

[
1 p

p 2 + d
dt

p

]

, O3 ⋄ p =






1 p

p 2 + d
dt

p

d
dt

p + p2 p2+2+ d
dt
p

p
+ d2

dt2
p




 .

These matrices were computed by using:

ȯ1 ⋄ p =
[

0 d
dt

p
]
, ȯ2 ⋄ p =

[
d
dt

p d2

dt2
p
]

.

Using the concept of observability matrices and intuition, based on the LTI
case, one could expect that full rank of OnX , i.e. rank(OnX) = nX (full rank in
a functional sense), is the necessary and sufficient condition for complete state-
observability. However, this not true in the LPV case. It can also be shown that
instead of the functional full rank, full rank of OnX for every time instance along
every scheduling trajectory, i.e. rank((OnX ⋄ p)(t)) = nX for all t ∈ R and p ∈ BP,
is a sufficient but not a necessary condition for complete state-observability. To
show this and to derive the sufficient and necessary condition for complete state-
observability, first introduce a weaker notion of state-observability:

Definition 3.31 (Structural state-observability) RSS(S) with state-dimension nX is
called structurally state-observable if its nX-step observability matrix OnX is full rank, i.e.
rank(OnX) = nX.

Note that full rank in a functional sense, does not guarantee that OnX is in-
vertible for all t ∈ R and p ∈ BP. Therefore, for specific scheduling trajec-
tories and time instances, reconstructibility of state x by the linear map OnX is
not guaranteed. In this way, complete state-observability is not implied. Even
if reconstructibility may fail for some scheduling trajectories, for the rest state-
observability holds on R. This gives that structural observability can be under-
stood as complete state-observability in an almost everywhere sense. In the fol-
lowing we show that in fact structural state-observability is a necessary condition
for complete state-observability.

To derive the appropriate conditions for complete state-observability the fol-
lowing lemma has a key importance:

Lemma 3.2 (Constant observability rank) (Silverman and Meadows 1969) Let a
representation RSS(S) be given with a projected scheduling behavior BP and observabil-
ity matrices On. For a scheduling trajectory p ∈ BP, it holds that, if there exists n > 0
such that

rank((On ⋄ p)(t)) = rank((On+1 ⋄ p)(t)) = γ, (3.80)

for all t ∈ T, then rank((Ol ⋄ p)(t)) = γ for all l ≥ n and t ∈ T.
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The proof is given in Silverman and Meadows (1969). The minimal n > 0, for
which (3.80) holds, is called the observability radius of RSS(S) with respect to the
scheduling trajectory p. This lemma has the obvious consequence that for a given
p ∈ BP, if the ranks of On ⋄ p and On+1 ⋄ p are constant and equal along the entire
trajectory of p, then the rank of Ol ⋄ p remains constant for all l ≥ n. Contrary
to the LTI case, it is not guaranteed that the rank of OnX ⋄ p is equal to the rank
of OnX+1 ⋄ p for all t, i.e. the observability radius is smaller or equal than nX. As
the observability radius can vary for each trajectory of p, the introduction of the
notion of constant observability rank representation is required:

Definition 3.32 (Constant observability rank representation) (Silverman and
Meadows 1969) A RSS(S) representation has constant observability rank, if there ex-
ist a n ∈ {1, . . . , nX} and a l > 0 such that

rank((On ⋄ p)(t)) = rank((On+1 ⋄ p)(t)) = l ≤ nX, (3.81)

for all p ∈ BP and t ∈ T.

Example 3.23 (CT non-constant observability rank representation) For Example 3.22 it holds, that
rank((O2 ⋄ p)(t)) = 2 for all possible scheduling signals and time instances, except when for a t ∈ R the

scheduling signal satisfies p2(t) = 2 + d
dt

p(t). At that time instant, rank((O2 ⋄ p)(t)) = 1. Hence it is not a
constant observability rank representation, but its minimal observability radius is 1. For a constant observability
rank representation see Example 3.24.

Using the previously introduced concepts the following theorem holds:

Theorem 3.7 (Induced complete LPV state-observability in CT) (Silverman and
Meadows 1967) The CT-LPV-SS representation RSS(S) is completely state-observable,
iff for every p ∈ C∞(R,P)∩BP there exists a 0 < n <∞ such that rank((On ⋄p)(τ)) =
nX for all τ ∈ R. If RSS(S) is a constant observability rank representation, then the
condition is rank((OnX ⋄ p)(τ)) = nX for all τ ∈ R.

The proof follows similarly as in Silverman and Meadows (1967). The clear inter-
pretation of this result is important. If a LPV-SS representation is completely state-
observable, then it is not guaranteed that the reconstruction of the state is available
for every time instance through the linear map (OnX ⋄ p)(τ), as it is not injective.
It can happen, that this property is only satisfied for n > nX. In case RSS(S) is a
constant observability rank representation, then similar to the LTI case, full rank
of (OnX ⋄ p)(τ) along every p ∈ BP guarantees complete state-observability. For
an SS representation with complete state-observability, see Example 3.24.

It can be shown that the class of LPV-SS representations with constant ob-
servability rank includes the class of LTI-SS representations, similar to the LTV
case (Silverman 1971). In LPV control design, instead of observability, the so called
detectability of the state is investigated together with stabilizibility (Lee 1997). These
concepts are formulated in a quadratic sense, similar to quadratic Lyapunov sta-
bility (see later in Section 3.3.2). It can be shown, that if quadratic detectability
is satisfied for a LPV-SS representation with static linear dependence, then it is a
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necessary condition in terms of Theorem 3.7 for complete state-observability. In
the existing LPV system theory, the notion of complete-state observability is only
considered in Balas et al. (2003), where invariant observability subspaces of LPV-
SS representations with static linear dependence are explored using the concepts
of nonlinear system theory. However, the connection of these results to Theorem
3.7 needs further investigation.

Example 3.24 (CT complete state-observability) Let the SS representation RSS(S) of an CT-LPV system
S with P = [− 1

2
, 1
2
] be given by

[
A B
C D

]

⋄ p =





tan(p) d
dt

p 0 1
sin(p) 2 1
cos(p) 1 0



 .

Then it follows that

O2 ⋄ p =

[
cos(p) 1
sin(p) 2

]

.

As cos(p) 6= 2 sin(p) on P, O2 has a constant rank of 2 for all p ∈ BP and t ∈ R . This means that RSS(S)
is completely state observable on P.

In case rank(OnX) = nX is satisfied, i.e. the SS representation is structurally
state-observable, then it holds that rank((OnX ⋄ p)(τ)) = nX for all t ∈ R except
for some p ∈ C∞(R,P) ∩BP. Then it is obvious that structural state-observability
is a necessary condition for complete state-observability (see Example 3.25). This
claim is also proved in Silverman (1971).

Example 3.25 (Structural state-observability) The representation defined in Example 3.22 has been shown
to be not completely state-observable as mint∈R rank((O2 ⋄ p)(t)) = 1 for scheduling trajectories that sat-

isfy p2(t) = 2 + d
dt

p(t) for a t ∈ R. However, it is obvious, that it is completely observable for all other
scheduling trajectories, as rank(O2) = 2 in the functional sense. This implies complete state-observability of
the representation in an almost everywhere sense, i.e. the representation defined in Example 3.22 is structurally
state-observable.

To check complete state-observability of a given RSS(S), an iterative computa-
tion strategy must be applied in terms of Theorem 3.7, checking the rank of Ol ⋄ p
for increasing l > 0. In step l of this iterative scheme, computation of the mini-
mum of rank((Ol ⋄ p)(τ)) for all p ∈ BP and τ ∈ R is required which is usually an
infinite dimensional and hence unsolvable optimization problem. An approxima-
tive solution may follow through the parametrization of p like polynomial, piece-
wise continuous, periodical, etc. and then using this parameterized scheduling to
set up a feasibility problem for the full rank of the matrix function on a large inter-
val of R. If in iteration step l it holds that rank((Ol ⋄p)(τ)) = rank((Ol−1 ⋄p)(τ)) for
all p ∈ BP and t ∈ R, then the observability rank of the representation is found. As
this condition cannot be checked in a non-conservative sense, the iterative scheme
can only prove complete state-observability if full rank of Ol ⋄ p can be showed in
a computationally feasible number of steps.

On the other hand, the rank test for structural state-observability can be ac-
complished in the SISO case based on symbolic computation of the determinant
of OnX . In case the result is a non-zero function, then structural state-observability
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is satisfied. In the MIMO case, full rank of OnX can be checked by forming square
matrices from the rows of OnX using all possible combinations and checking if any
of the determinants of these matrices is non-zero.

B. State-reachability in continuous-time

The concepts introduced in the observability case can be similarly introduced in
the reachability sense. The only difference is that to show the results, instead of
state-reconstructibility, we need to introduce the so called controllability map. By
introducing this map, we develop the analog of the results of the observability
case.

In terms of Definition 3.29, reachability of an LPV representation represents
the ability to transfer an arbitrary initial state to an arbitrary target state of X in
case of any scheduling trajectory. This can be explained using controllability maps
between the space of input signals and the state-space X. For a given p ∈ BP,
define the following linear map from Lloc

1 ([t2, t1],U) to X :

x =

∫ t1

t0

A(t1, τ, p)B(p(τ))u(τ)dτ, x ∈ X, t ∈ [t0, t1]. (3.82)

For the given p, the mapping (3.82) defines the state evolution of RSS(S) in the
finite interval [t0, t1] for an initial condition x(t0) = 0 and input u ∈ Lloc

1 ([t0, t1],U).
The state x ∈ X is said to be controllable on [t0, t1], if x lies in the image of the linear
map (3.82). Note that in case of initial condition x(t0) = x0 and target state x(t1) =
x1, linearity of the signal behavior implies that the input u ∈ Lloc

1 ([t0, t1],U) which
satisfies (3.82) for x = x1 − A(t1, t0, p)x0, transfers the state x0 to x1 in [t0, t1].
This means that if (3.82) is surjective, then every state can be reached from an
arbitrary state in the time-interval [t0, t1]. If (3.82) is surjective for every p ∈ BP,
then RSS(S) is called state-reachable on [t0, t1]. It is easy to show that RSS(S)
is completely state-reachable, if it is state-observable for any finite interval in R.
Now we can introduce the following matrix function to describe the linear map
(3.82):

Definition 3.33 (n-step CT state-reachability matrix function) (Silverman and
Meadows 1969) In continuous-time, the n-step state-reachability matrix function of
RSS(S) is defined as Rn ∈ RnX×(nnU) with

Rn =
[
r1 r2 . . . rn

]
, (3.83)

where r1 = B and
ri+1 = −Ari + ṙi, i > 1. (3.84)

The n-step state-reachability matrix function has similar role as the state-reachabi-
lity matrix for LTI representations.
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Example 3.26 (CT state-reachability matrix function) Consider the LPV-SS representation RSS(S) de-
fined in Example 3.22. The reachability matrices of RSS(S) for n = 1, 2, 3 are as follows:

R1 ⋄ p =

[
1
p

]

, R2 ⋄ p =

[
1 −2p

p d
dt

p− 1

]

, R3 ⋄ p =

[
1 −2p 1 + 2p2 − 3 d

dt
p

p d
dt

p− 1
1− d

dt
p

p
+ d2

dt2
p

]

.

These matrices were computed by using:

ṙ1 ⋄ p =
[

0 d
dt

p
]⊤

, ṙ2 ⋄ p =
[

−2 d
dt

p d2

dt2
p
]⊤

.

We can also introduce the notion of structural state-reachability:

Definition 3.34 (Structural state-reachability) RSS(S) with state-dimension nX is
called structurally state-reachable if its nX-step reachability matrix RnX is full rank, i.e.
rank(RnX) = nX.

Moreover it can be shown, that Lemma 3.2 holds also for Rn implying all the
properties that have been noted in the observability case (Silverman and Mead-
ows 1969). Similarly we can introduce the reachability radius of a given SS repre-
sentation with respect to a scheduling signal p ∈ BP. As the reachability radius
can vary for each trajectory of p, thus the notion of constant reachability rank rep-
resentation is introduced:

Definition 3.35 (Constant reachability rank representation) (Silverman and
Meadows 1969) A RSS(S) representation has constant reachability rank if there exist
a n ∈ {1, . . . , nX} and a l > 0 such that

rank((Rn ⋄ p)(t)) = rank((Rn+1 ⋄ p)(t)) = l ≤ nX, (3.85)

for all p ∈ BP and t ∈ T.

Example 3.27 (CT non-constant reachability rank representation) For Example 3.26 it holds, that
rank((R2⋄)p(t)) = 2 for all possible scheduling signals and time instances, except when for a t ∈ R the

scheduling signal satisfies 2p2(t) = − d
dt

p(t) + 1. At that time instant, rank((R2 ⋄ p)(t)) = 1. Hence
it is not a constant reachability rank representation, but its minimal reachability radius is 1. For a constant
reachability rank representation see Example 3.28.

Using the previously introduced concepts, the analog of Theorem 3.7 holds in the
reachability case as well:

Theorem 3.8 (Induced complete LPV state-reachability in CT) (Silverman and
Meadows 1967) The CT-LPV-SS representation RSS(S) is completely state-reachable, iff
for any p ∈ C∞(R,P) ∩BP it holds that there exists a 0 < n < ∞ such that rank((Rn ⋄
p)(τ)) = nX for all τ ∈ R. If RSS(S) has constant reachability rank, then the condition
is rank((RnX ⋄ p)(τ)) = nX for all τ ∈ R.
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The proof follows similarly as in Silverman and Meadows (1967). The interpre-
tation of this theorem is the same as in the observability case: an LPV-SS can be
completely state-reachable, even if the nX-step state-reachability matrix is not full
rank along every scheduling trajectory. In case RSS(S) is a constant reachability
rank representation, then similar to the LTI case, full rank of (RnX ⋄p)(τ) along ev-
ery p ∈ BP guarantees complete state-reachability. For an SS representation with
complete state-reachability, see Example 3.28.

It can be also shown that the class of LPV-SS representations with constant
reachability rank includes the class of LTI-SS representations (see Silverman
(1971)). It can be also shown, that if quadratic stabilizibility (see Lee (1997)) is
satisfied for a LPV-SS representation with static linear dependence, then it is a
necessary condition in terms of Theorem 3.8 for complete state-reachability.

Example 3.28 (CT complete state-reachability) Let the SS representation RSS(S) of an CT-LPV system
S with P = [− 1

2
, 1
2
] be given by

[
A B
C D

]

⋄ p =





− tan(p) d
dt

p sin(p) cos(p)
0 2 1
1 1 0



 .

Then it follows that

R2 ⋄ p =

[
cos(p) sin(p)

1 2

]

.

As 2 cos(p) 6= sin(p) on P, thus R2 has rank 2 for all p ∈ BP and t ∈ R. This means that RSS(S) is
completely state reachable on P.

In case rank(RnX) = nX is satisfied, i.e. the SS representation is structurally
state-reachable, then it holds that rank((Rn ⋄ p)(τ)) = nX for all t ∈ R except some
p ∈ C∞(R,P) ∩BP. Then similar to the previous case, it is obvious that structural
state-reachability is a necessary condition for complete state-reachability. To check
complete or structural state-reachability the computational considerations are the
same as discussed for the observability case.

C. State-observability in discrete-time

The concept of state-observability can be similarly investigated in DT for a given
LPV-SS representation RSS(S) with state and output equations (3.51a-b). By using
a similar line of reasoning, we explore the previously introduced concepts based
on the theory for DT-LTV systems in Gohberg et al. (1992). Define the state transi-
tion matrix as

A(k1, k0, p) =







k1−k0−1∏

i=0

(A ⋄ p)(k1 − i), if k1 > k0;

I, if k1 ≤ k0;

(3.86)



132 Chapter 3 LPV systems and representations

for k1, k0 ∈ Z. Then, based on (3.51a-b), the state and output evolution of RSS(S)
in the finite time interval [k0, k1] ⊂ Z satisfies

x(k1) = A(k1, k0, p)x(k0) +

k1∑

i=k0

A(k1, i, p)(B ⋄ p)(i)u(i), (3.87a)

y(k1) = (C ⋄ p)(k1)x(k1), (3.87b)

for all k1 ≥ k0 along a scheduling trajectory p ∈ BP. Again, complete state-
observability of RSS(S) can be considered as a reconstruction problem of any x0 =
x(k0) from a zero input response in the time interval [k0, k1] ⊂ Z. Then state-
observability on [k0, k1] requires that the linear map

y(k) = (C ⋄ p)(k)A(k, k0, p)x, x ∈ X, k ∈ [k0, k1], (3.88)

from X to Y[k0,k1] is injective for every p ∈ P[k0,k1]. It can be shown again, that
RSS(S) is completely state-observable if it is state-observable for any finite interval
of Z with nX ≤ k1 − k0 < ∞. Now we can introduce the following observability
matrix in DT to describe the linear map (3.88):

Definition 3.36 (n-step DT state-observability matrix function) (Gohberg et al.
1992) In discrete-time, the n-step state-observability matrix function On ∈ RnX×nnU of
RSS(S) is defined as (3.78) with

o1 = C, oi+1 = −→oiA, ∀i > 1. (3.89)

The n-step state-observability matrix function has a similar role as the state-observ-
ability matrix for LTI representations, as in case of complete state-observability, it
provides an invertible map for the reconstruction of the state from the samples
of y. Note that the difference in the structure of the discrete-time n-step state-
observability matrix with respect to its continuous-time counterpart is due to the
different commutation rules for the d

dt and q operators onR[ξ].

Example 3.29 (DT state-observability matrix function) Consider the DT-LPV-SS representation RSS(S)
of Example 3.21. This representation is given by

[
A B
C D

]

⋄ p =






p 1 1
0 p p

1 1
p

p




 ,

with P = [ 1
4
, 3
4
]. Then the observability matrices of RSS(S) for n = 1, 2, 3 are as follows:

O1 ⋄ p =
[

1 1
p

]

, O2 ⋄ p =

[

1 1
p

p 1 + p
qp

]

, O3 ⋄ p =







1 1
p

p 1 + p
qp

p(qp) p(1 + (qp)
(q2p)

) + qp







.

These matrices were computed by using:

−→
o 1 ⋄ p =

[

0 1
qp

]

, −→
o 2 ⋄ p =

[

qp 1 + (qp)
(q2p)

]

.
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Again we can introduce structural state-observability in terms of Definition
3.31. Similarly, Lemma 3.2 also holds in the DT case and by using the concepts
of n-step state-observability matrix and constant observability-rank representa-
tion, given by Definition 3.36 and 3.32, the induced complete state-observability,
Theorem 3.7, can be shown to hold in DT as well:

Theorem 3.9 (Induced complete LPV state-observability in DT) (Gohberg et al.
1992) The LPV-SS representation RSS(S) is completely state-observable, iff for any p ∈
BP it holds that there exists a 0 < n <∞ such that rank((On⋄p)(τ)) = nX for all τ ∈ Z.
If RSS(S) has constant observability rank, then the condition is rank((OnX ⋄p)(τ)) = nX
for all τ ∈ Z.

The proof follows similarly as in Gohberg et al. (1992). The consequences of this
theorem are similar as in the CT case, also implying that discrete-time LPV-SS rep-
resentations with constant observability rank include the class of DT-LTI-SS repre-
sentations (see Gohberg et al. (1992)). Furthermore it can be shown, that structural
state-observability is a necessary condition for complete state-observability also in
the DT case. Again, basic DT results of the existing LPV system theory follow as
special cases of Theorem 3.9.

Example 3.30 (DT complete state-observability) Consider Example 3.29. It is trivial that det(O2 ⋄ p) =
p
qp

can not be zero on P = [ 1
4
, 3
4
], thus rank((O2 ⋄ p)(k)) = 2 for all p ∈ BP and k ∈ Z. Naturally, the

same holds for O3. Hence the SS representation of Example 3.29 is completely state-observable.

Again an iterative test can be applied to check complete state-observability in
terms of Theorem 3.9. However in the DT case, computation of the minimal rank
of (On ⋄ p)(τ) can be accomplished by the generalization of the Popov-Belevitch-
Hautus (PBH) spectral test, resulting in an almost eigenvalue problem (Peters and
Iglesias 1999). As computation of the almost eigenvalue/eigenvectors (Beauzamy
1988) is difficult in most general cases, even for representations with linear de-
pendence, therefore in practice an approximative approach is suggested. By this
approach, the full rank condition of (On ⋄p)(τ) is checked for finite sequences of p,
like {p̄0, . . . , p̄N−1}. Each shifted instance of p in On, like qlp, is associated with the
appropriate element of the sequence, i.e. qlp = p̄l. In this way, the full rank test of
(On ⋄p)(τ), can be formulated as a feasibility problem on PN , which can be solved
via nonlinear optimization or by gridding. Note that this mechanism corresponds
to a conservative rank test, as the feasibility is checked for arbitrary variations of
p. To compute the actual rank of On, the previous method is applied iteratively,
checking the full rank of Ol for increasing l. This yields an approach that is eas-
ily computable for small dimensions. To check structural state-observability, the
same symbolic approach can be used as given in the CT case.

D. State-reachability in discrete-time

In discrete-time, the concept of complete state-reachability can be similarly in-
vestigated as in CT, except that in case of state-reachability on a discrete interval
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[k0, k1], it is required that the linear map

x =

k∑

i=k0

A(k, i, p)(B ⋄ p)(i)u(i), k ∈ [k0, k1], (3.90)

from U[k0,k1] to X is surjective for every p ∈ BP. Then, RSS(S) is completely state-
reachable, if it is state-reachable for any finite interval of Z. Similar to the CT case,
we can introduce the following matrix function to describe the linear map (3.90):

Definition 3.37 (n-step DT state-reachability matrix function) (Gohberg et al.
1992) In discrete-time, the n-step state-reachability matrix function Rn ∈ RnX×nnU of
RSS(S) is defined as (3.83) with

r1 = B, ri+1 = A←−ri , ∀i > 1. (3.91)

Similar to the previous part, the difference in the structure of the discrete-time
n-step state-reachability matrix with respect to its continuous-time counterpart is
due to the different commutation rules of the d

dt and q operators on R[ξ].

Example 3.31 (DT state-reachability matrix function) Consider the SS representation RSS(S) defined in
Example 3.29. The observability matrices of RSS(S) for n = 1, 2, 3 are as follows:

R1 ⋄ p =

[
1
p

]

, R2 ⋄ p =

[
1 p + q−1p
p p(q−1p)

]

,

R3 ⋄ p =

[
1 p + q−1p p(q−1p) + (p + q−1p)q−2p
p p(q−1p) p(q−1p)(q−2p)

]

.

These matrices were computed by using:

←−
r 1 =

[
0 q−1p

]⊤
, ←−

r 2 =
[

q−1p + q−2p q−1p(q−2p)
]⊤

.

Again we can introduce structural state-reachability in terms of Definition 3.34.
Additionally, using the previously introduced concepts, the induced complete
state-reachability, Theorem 3.8, holds in DT as well:

Theorem 3.10 (Induced complete LPV state-reachability in DT) (Gohberg et al.
1992) The discrete-time LPV-SS representation RSS(S) is completely state-reachable, iff
for any p ∈ BP it holds that there exists a 0 < n <∞ such that rank((Rn ⋄ p)(τ)) = nX
for all τ ∈ Z. If RSS(S) has constant reachability rank, then the condition is rank((RnX ⋄
p)(τ)) = nX for all τ ∈ Z.

The proof is follows similarly as in Gohberg et al. (1992). The consequences of
this theorem are the same as in the CT case, also implying that discrete-time LPV-
SS representations with constant reachability rank include the class of DT-LTI-SS
representations (Gohberg et al. 1992). Furthermore it can be shown, that structural
state-reachability is a necessary condition for complete state-reachability also in
the DT case. Again, basic DT results of the existing LPV systems theory follow
as special cases of Theorem 3.9. To check complete or structural state-reachability
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in discrete-time the computational considerations are the same as given in the
observability case.

Example 3.32 (DT complete state-reachability) Consider Example 3.31. det(R2 ⋄ p) = −p2 implies that
rank((R2⋄p)(k)) = 2 for all p ∈BP and k ∈ Z. Trivially, the same holds for R3. Hence the SS representation
of Example 3.29 is completely state-reachable.

F. General properties and minimality

As a next step we show that structural state-observability/reachability are the
necessary ingredients to develop observability and reachability canonical forms
of SS representations which are similar to their LTI counterparts. Additionally,
minimality of LPV-SS representations is implied by structural state-observability
instead of the complete concept.

Based on the definition of structural state-observability/reachability, an im-
portant corollary is the following:

Corollary 3.1 If RSS(S) is structurally state-observable (reachable), i.e. rank(OnX) =
nX (rank(RnX) = nX), then at least nX number of rows of OnX (columns of RnX) are
linearly independent in the functional sense. This implies that in the SISO case, OnX
(RnX) is invertible.

Based on this property, On and Rn can be used to define state-transformations in
the behavioral framework and, by using similar argumentation as in the LTI case
(see Section 2.1.6), to develop canonical forms for LPV-SS representations. Note
that in case of complete state-observability/reachability, On or Rn are invertible
for all scheduling trajectories and time instances, which is a much stronger prop-
erty than the previous one. Thus by requiring this stronger property to generate
canonical forms, we would exclude a large set of SS representations that have an
equivalent (in the almost everywhere sense) observability/reachability canonical
form (see Chapter 4).

A key theorem that enables construction of observability/reachability canoni-
cal forms in LPV case is the following:

Theorem 3.11 (Transformation of the state-observability/reachability structure)
(Silverman and Meadows 1965) If the matrices of two LPV-SS representations, with
state dimensions nX and with a common nP dimensional scheduling space, fulfill the

equivalence relation
nP∼ via state-transformation T ∈ RnX×nX , then for all n ∈ N:

{
for T = R, O′n = OnT

−1, R′n = TRn

for T = Z, O′n = OnT
−1 R′n =

−→
T Rn,

(3.92)

hold, where On and O′n, respectively Rn and R′n, are the corresponding n-step state-
observability/reachability matrices of the representations.
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The proof of this theorem similarly follows as in Silverman and Meadows (1965).
This means that the state-observability/reachability structure of equivalent repre-
sentations is projected through the state-transformation that connects them, which
is the required property to develop canonical forms with special structure of On

or Rn.

Similar to the LTI case, complete state-observability also implies minimality,
however in the LPV case, minimality only implies structural state-observability:

Theorem 3.12 (Induced PV-SS minimality) The representation RSS(S) is minimal
iff it is structurally state-observable.

The proof of this theorem similarly follows as in the LTI case. We can also define
the concept of joint minimality, meaning that RSS(S) is jointly minimal if it is
minimal and structurally state-reachable.

Example 3.33 (Induced minimality) Consider Example 3.29 and 3.31. Then the DT-SS representation is
minimal as it is completely state-observable. Additionally it is completely state-reachable, hence it is jointly
minimal. In case of Example 3.22, structural observability of the representation holds even if it is not completely
state-observable. Thus, this representation is also minimal.

3.3.2 Stability of LPV systems

In this subsection we study stability of LPV systems, expanding the concepts in-
troduced for the LTI case in Section 2.1.5. We follow a similar line of reasoning.
First, we define dynamic stability in the behavioral point of view, then we ex-
plore its connections with IO stability concepts like Bounded-Input Bounded-Output
(BIBO) stability. Then as a next step, we investigate stability in the Lyapunov
sense and we show the connection of the derived theory with the existing results
of LPV control design.

There exist various stability concepts of LPV systems, originating either from
the concepts of stability along frozen, i.e. constant scheduling trajectories (frozen
stability) or stability along arbitrary varying p (global stability). While the first as-
pect defines stability in the LTI sense of the frozen behaviors, the latter establishes
this concept on the full behavior. In many works, LPV stability issues are only
discussed for the state-space case with static dependence, involving the notion
of state equilibrium points and Lyapunov functions (Scherer 1996; Apkarian and
Gahinet 1995), or mixing the concepts of frozen and global stability by consider-
ing slow variations of p (Shamma 1990; Skoog and Lau 1972; Rosenbrock 1963).
Here we intend to define stability in the developed behavioral framework, inves-
tigating dynamic, IO, and Lyapunov stability both in a global and frozen sense.

Global stability

Global stability is the natural concept of stability for LPV systems, as it means that
small causes produce small effects for any scheduling trajectory. Historically, it
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originates from LTV system theory (Halanay and Ionescu 1994; Sreedhar and Rao
1968) and robust control synthesis (Zhou and Doyle 1998), where the problem of
stability over the variations of the system has been first encountered. From the
behavioral point of view, this concept extends the notion of dynamic stability (see
Definition 2.27) for LPV systems as follows:

Definition 3.38 (Global dynamic stability) The autonomous LPV dynamical system
S = (T,RnW ,P ⊆ RnP ,B) is said to be globally stable, if ((w, p) ∈ B) ⇒ (∃ε ∈ R+

0

such that ‖w(t)‖ ≤ ε for all t ≥ 0) (in an arbitrary norm ‖ � ‖). It is said to be globally
unstable, if it is not stable; it is said to be globally asymptotically stable, if ((w, p) ∈ B)⇒
(w(t)→ 0 as t→∞).

The definition strongly builds on the linearity (the only fixed point of the dynamic
relation is 0) and time-invariance (stability on t ≥ 0 implies stability on t ≥ t0 for
all t0 ∈ R) of the LPV system class. Note that in terms of Definition 3.38 any sig-
nal trajectory, i.e. signal evolution of the system on the half-line, is bounded no
matter the scheduling trajectory it is associated with, and the bound depends on
the particular solution w. It is obvious that global stability includes stability with
respect to frozen behaviors, as boundedness of w must hold for constant schedul-
ing trajectories as well. In this way, it generalizes the previously introduced LTI
concept of Definition 2.27. This also emphasizes the difference between LPV and
LTV systems, as in the latter case stability is defined with respect to only one,
linear-trajectory of the scheduling (p(t) = t).

Contrary to the LTI case, conditions of global dynamic stability for LPV-KR
representations can not be formulated in terms of eigenvalues or root conditions
of polynomials in R[ξ]. To show this, consider the following argument: In the
CT-LTI case, d

dtw = rw has solutions on the half-line in the form of w(t) = erw(0),
thus the condition r < 0 guarantees boundedness of the solutions. However in the
CT-LPV case d

dtw = (r ⋄ p)w with r ∈ R, has solutions on the half-line in the form
of w(t) = e(r⋄p)(t)w(0) only for constant p. Thus boundedness is not guaranteed
by (r ⋄ p)(t) < 0, t ≥ 0. In fact, it is often possible to find a scheduling trajectory p
such that the solution diverges even if (r ⋄ p)(t) < 0, t ≥ 0.

In case of an IO partition of S, the concept of dynamic stability is formulated
around the autonomous part of the behavior on the half line [0,∞), where u = 0.
Similarly, the notion of global dynamic stability generalizes for systems with state-
variables. Furthermore, global dynamic stability of LPV systems with IO partition
also implies BIBO stability in the ℓ∞ norm, and global asymptotic stability implies
BIBO stability in the ℓτ norm, 1 ≤ τ <∞:

Definition 3.39 (BIBO stability) The LPV dynamical system S = (T,RnW ,P ⊆ RnP ,
B) with IO partition (u, y) is said to be BIBO stable in the ℓτ norm with 1 ≤ τ < ∞, if
for all (u, y, p) ∈ B it holds that







for T = R, ∞∫

0

‖u(t)‖τdt <∞⇒
∞∫

0

‖y(t)‖τdt <∞;

for T = Z, ∞∑

k=0

‖u(k)‖τ <∞⇒
∞∑

k=0

‖y(k)‖τ <∞.
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It is said to be BIBO stable in the ℓ∞ norm, if for all (u, y, p) ∈ B it holds that

sup
t≥0
‖u(t)‖ <∞⇒ sup

t≥0
‖y(t)‖ <∞.

Dynamic stability implies BIBO stability in the ℓ∞ norm as all trajectories of y
are bounded in case of dynamic stability. This boundedness holds due to the fact
that the autonomous part of the behavior is bounded and B fulfills the linearity
and time-invariance properties in Definition 3.2. Similarly, asymptotic dynamic
stability implies BIBO stability in an arbitrary ℓτ norm as all trajectories of y in
the autonomous part of the behavior converge to zero. The concept of Bounded-
Input Bounded-State (BIBS) stability can be defined for LPV systems with both IO
partition and state variables in a similar manner as BIBO stability. Also in the LPV
case, BIBS stability always implies BIBO stability.

Another notion of stability follows through the direct method of Lyapunov,
extending the concepts that have been established in the LTI case (see Section
2.1.5). Let x ∈ XT be the solution of the autonomous part of a SS representation
RSS(S) for a given scheduling trajectory p ∈ BP:

ξx = (A ⋄ p)x, (3.93)

where ξ is either d
dt or q . Similar to the discussion in the LTI case (see Section 2.1.5)

we investigate dynamic stability of (3.93) by constructing a Lyapunov function
that fulfills certain properties. Again, consider the class of quadratic functions as
Lyapunov functions, but now assume that P ∈ RnX×nX , so V(τ, p) = τ⊤(P ⋄ p)τ ,
where τ ∈ RnX and P = P⊤ (symmetric). Then in continuous-time, using the
chain rule of differentiation, it holds that

d

dt
V(x, p) = x⊤((A⊤P + PA+ Ṗ

︸ ︷︷ ︸

Q

) ⋄ p)x, (3.94)

where Q ∈ RnX×nX is symmetric. The term Q = A⊤P + PA + Ṗ is called the
parameter-varying CT Lyapunov equation. In discrete-time, using a quadratic
Lyapunov function yields

V(qx, qp) − V(x, p) = x⊤((A⊤
−→
P A− P

︸ ︷︷ ︸

Q

) ⋄ p)x, (3.95)

where Q ∈ RnX×nX is also symmetric. Here the term Q = A⊤
−→
P A − P is the

parameter-varying DT Lyapunov equation. Similar to the LTI case, the concept
of stability is formulated around the “definiteness” property of (3.94) or (3.95)
and the quadratic Lyapunov function. In case of a quadratic parameter-varying
function V(τ, p) = τ⊤(P ⋄ p)τ with symmetric P ∈ RnX×nX , we can define for a
given p ∈ BP the positive definiteness of P . We call P positive definite for p, i.e.
(P ⋄ p) ≻ 0, if there exists a ε > 0 such that (P ⋄ p)(t) � εI for all t ≥ 0 (P ⋄ p
is bounded away from 0). The definition of negative definit, semi definit, etc.
similarly follows (see Definition 2.29). Then, based on Theorem 2.9, the following
holds:
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Theorem 3.13 (LPV Quadratic stability) Consider (3.93) and a projected scheduling
behavior BP. Assume that P ∈ RnX×nX , P = P⊤, and Q = Q⊤ satisfy the correspond-
ing Lyapunov equation (see (3.94) and (3.95)) and P ⋄ p is bounded for all p ∈ BP. If for
all p ∈ BP it holds that

• (P ⋄ p) ≻ 0 and (Q ⋄ p) � 0, then (3.93) is dynamically stable.

• (P ⋄ p) ≻ 0, (Q ⋄ p) � 0, and (A,Q) is completely state-observable, then (3.93) is
dynamically asymptotically stable.

• (P ⋄ p) ≺ 0, (Q ⋄ p) � 0, and (A,Q) is completely state-observable, then (3.93) is
dynamically unstable.

The proof of this theorem can be given according to Ravit et al. (1991) in CT and
Anderson (1982) in DT. However, there are two important facts to be noted. First,
complete state-observability is required to ensure that the behavior of all state tra-
jectories are characterized by the Lyapunov function. In this way, as V is bounded
away from zero with a positive ε and its derivative (difference) is bounded away
from zero with a non-positive ε along every state and scheduling trajectory, con-
vergence of the state to the origin is ensured. However, checking complete state-
observability of (A,Q) is a computationally difficult problem (see Section 3.3.1).
Second, due to the freedom of the functional dependence of P , the theorem is
non-constructive in the general case.

Based on the previous considerations, in practice RnX×nX can be found to be
too general for Lyapunov function construction. Especially in LPV control, the
search for quadratic Lyapunov functions is commonly restricted to either a con-
stant matrix P ∈ RnX×nX or to rational functions with static dependence on p.
This restriction introduces conservative use of the Lyapunov theorem: If such a
P ∈ RnX×nX can be found that either of the first two items of Theorem 3.13 is
satisfied, then stability of the system can be concluded, however, the lack of such
a P does not necessarily imply instability. What we gain by the restriction of
P ∈ RnX×nX , is that the parameter-varying Lyapunov equations are modified as

{

for T = R, A⊤ ⋄ p)P + P (A ⋄ p) ≺ 0,

for T = Z, (A⊤ ⋄ p)P (A ⋄ p)− P ≺ 0.
(3.96)

By assuming that A has linear and static dependence on p, then the inequalities
(3.96) become LMIs, defining an infinite dimensional Linear Semi-Definite Program-
ming (LSDP) problem on P for the synthesis of P . If additionally it is assumed
that P is a convex polytope4 in RnP , then (3.96) reduces to a finite LSDP problem,
where the feasibility of the Lyapunov equations is only checked at the vertices
of the polytope P (see Scherer (1996) and Apkarian and Gahinet (1995)). This
gives the foundation of the traditional H2 and H∞ LPV control synthesis. Addi-
tionally, the use of full-block multipliers also enables to handle A with rational
dependence through an LFT representation of the system (Scherer 2001). In some
works, parameter-varying Lyapunov functions with rational (Wu and Dong 2006)

4A convex polytope is the convex hull of a finite set of points, i.e. it is the intersection of half-spaces.
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or general (Apkarian and Adams 1998), static dependence are also considered to
overcome the restrictions of searching for a constant P . In the most simple case,
assuming linear dependence of both P andA on p and restricting the derivative of
p to a polytopic set, gives that the parameter-varying Lyapunov equations (3.94)
and (3.95) can be formulated as LMIs by the use of relaxations, which again trans-
lates to a finite LSDP problem .

Example 3.34 (Global LPV stability) Consider the DT-SS representation RSS(S), defined in Example 3.29.
Choose a quadratic Lyapunov function

V(τ, p) = τ⊤
[

0.1 0
0 1

]

︸ ︷︷ ︸

P

τ.

As all eigenvalues of P are positive, thus P ≻ 0. By computing the DT Lyapunov equation, it follows that

Q ⋄ p = (A⊤−→P A− P ) ⋄ p =
1

10

[
p2 − 1 p

p 10p2 − 9

]

.

Because P = [ 1
4
, 3
4
], it holds that there exists a ε < 0 such that (Q ⋄ p)(k) � εI for all k ∈ Z and p ∈ BP.

Furthermore (A, Q) is completely state-observable as the rank of Q is always 2 along any p ∈ BP. Thus the
chosen Lyapunov function proves asymptotic stability of S .

Frozen stability

Another important aspect of LPV stability is the so called frozen stability. Stability
analysis of the frozen behaviors has been in the focus of LPV control during the
gain-scheduling area, before the appearance of global LPV control synthesis tech-
niques. At that time, researchers concluded global stability of the system based
on the stability of the frozen behaviors by assuming appropriately slowly vary-
ing scheduling signals (Yaz and Niu 1989; Skoog and Lau 1972; Rosenbrock 1963).
This view has been found misleading as the term “appropriate” was not well-
defined (see the arguments of Rugh (1991) and Shamma and Athans (1992)). To-
day, frozen stability is still important in LPV analysis as it is a necessary ingredient
for global stability.

Definition 3.40 (Frozen stability) Let FP be the frozen system set (see Definition 3.3)
of the LPV system S with scheduling space P ⊆ RnP . Then, in the frozen sense, S is

• Uniformly asymptotically stable, if for all p̄ ∈ P Fp̄ ∈ FP is dynamically asymp-
totically stable.

• Uniformly stable, if for all p̄ ∈ P, Fp̄ is dynamically stable.

• Non-uniformly stable, if it is not uniformly stable but there exists a p̄ ∈ P s.t. Fp̄ is
dynamically stable.

• Uniformly unstable, if for all p̄ ∈ P, Fp̄ is dynamically unstable.
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Note that uniform frozen stability of S does not imply global dynamic stability,
though the converse is true. In terms of Definition 3.40, the stability of the frozen
aspects of the system is checked separately for each frozen behavior. For exam-
ple this means the construction of quadratic Lyapunov functions separately for
each p̄ ∈ P. If there exists such a common quadratic Lyapunov function which
proves stability for all p̄ ∈ P, where P is convex, then in case of linear and static
dependence of A, it also implies global stability in terms of Theorem 3.13. This
makes an important distinction for systems with dynamic dependence, where the
evaluation of A along a constant scheduling trajectory excludes the effect of the
dependence on the derivatives/time shifts of p. For these systems, a common
Lyapunov function of the frozen systems set does not imply global stability.

Example 3.35 (Frozen LPV stability) Consider again the DT-SS representation RSS(S), defined in Example
3.29. For every constant scheduling trajectory p ∈ BP, where p(k) = p̄, ∀k ∈ Z, it holds that the eigenvalues
of (A ⋄ p) are equal to p̄. As p̄ < 1 for all p̄ ∈ P, thus uniform frozen asymptotic stability of S holds.
This is a not surprising discovery, as global asymptotic stability of S , proved in Example 3.34, implies uniform
frozen asymptotic stability of S . Now consider the CT-SS representation defined in Example 3.24. For this
representation, eigenvalues of (A ⋄ p) are {0, 2} for any constant scheduling trajectory which proves uniform
frozen instability of the represented system. Uniform frozen instability also implies global instability.

3.3.3 Gramians of LPV state-space representations

Gramians are also important concepts for LPV-SS representations, as they de-
scribe the complete state-observability and reachability properties and they can
also characterize model reduction (see Wood et al. (1996)). Using the previously
developed linear input-map (3.77) and linear output-map (3.82) of the CT case,
and their DT equivalents (3.88) and (3.90), the concept of PV gramians is intro-
duced as follows:

Definition 3.41 (PV gramians) In CT, the observability gramian O and the reachability
gramian R of an asymptotically stable RSS(S) on the time interval [t0, t1] ⊂ R and along
a scheduling trajectory p ∈ BP are defined as:

O(t1, t0, p) =

∫ t1

t0

AT (τ, t0, p)(C
⊤ ⋄ p)(τ)(C ⋄ p)(τ)A(τ, t0, p)dτ, (3.97a)

R(t1, t0, p) =

∫ t1

t0

A(t1, τ, p)(B ⋄ p)(τ)(B⊤ ⋄ p)(τ)AT (t1, τ, p)dτ, (3.97b)

while in DT, they are given on the time interval [k0, k1] ⊂ Z as:

O(k1, k0, p) =

k1∑

i=k0

AT (i, k0, p)(C
⊤ ⋄ p)(i)(C ⋄ p)(i)A(i, k0, p), (3.98a)

R(k1, k0, p) =

k1∑

i=k0

A(k1, i, p)(B ⋄ p)(i)(B⊤ ⋄ p)(i)AT (k1, i, p). (3.98b)



142 Chapter 3 LPV systems and representations

Similar to the LTI case, the full rank property of gramians implies complete state-
observability and reachability on the considered time interval and scheduling tra-
jectory:

Theorem 3.14 (Induced PV observability/reachability) (Silverman and Meadows
1967) The LPV-SS representation RSS(S), is completely state-observable/reachable) iff
its observability/reachability gramian is full rank for any finite time interval and each
scheduling trajectory of BP.

See the proofs in (Silverman and Meadows 1967) for the CT case and in Gohberg
et al. (1992) for the DT case.

3.4 Summary

In this chapter, we have developed a behavioral framework of LPV systems as an
extension of the LTI behavioral approach introduced in Chapter 2. The introduced
theory has been established to give a unified view on LPV system theory and to
enable to approach LPV system identification in a well-founded system theoretic
sense.

First in Section 3.1, we have introduced the behavioral concept of LPV sys-
tems, setting this system theoretical concept as a modeling approach in terms of
the gain-scheduling principle. Then we have systematically built up the behav-
ioral framework by introducing kernel, state-space, and input-output represen-
tations of LPV systems both in continuous and discrete-time. We have analyzed
the notion of state and established three key theorems: the existence of kernel
representations, the existence of state-kernel forms, and later in Section 3.2 the
concept of left/right unimodular transformations based on the results of Zerz
(2006) and Ilchmann and Mehrmann (2005). We have also shown that the be-
havioral definition of these representations includes the existing LPV-SS and IO
model definitions of the literature. Our main contribution in this context is the
development of an algebraic structure upon which the previous results are based
on. By this structure, the behavior of LPV systems is described by polynomials in
the time operators d

dt (or q) and the coefficients of these polynomials are meromor-
phic functions of the scheduling variable p and its derivatives or time-shifts. This
type of coefficient dependence has been introduced as dynamic dependence and it
provides more freedom than the so called static dependence (dependence only on
the instantaneous value of p) used in the models of the-state-of-the-art of the LPV
literature. By establishing equivalence classes and relations of the introduced rep-
resentations in Section 3.2, a major conclusion resulted that dynamic dependence
is necessary to develop equivalent representations of the same system.

As a next step in Section 3.3, important properties of systems and representa-
tions have been investigated in terms dynamic stability and state-observability/re-
achability. Based on the results of LTV system theory, we have shown that com-
plete state-observability and reachability are very strong properties in the LPV
case as only a rather restricted class of representations fulfills them. Moreover,
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they are not required for minimality nor the generation of observability or reacha-
bility canonical forms. We have shown that a weaker property, the so called struc-
tural state-observability/reachability, which defines the state-observability/reach-
ability concept in an almost everywhere sense, is a necessary and sufficient prop-
erty to generate these canonical forms or to imply minimality. After this, we have
introduced dynamic stability of LPV systems in the behavioral sense and shown
that BIBO stability is implied by this concept. Then we have explored Lyapunov
stability of the considered LPV system class and we have shown that the devel-
oped theory includes the current Lyapunov theory of LPV control design as a
special case.

In the next chapter, we continue by extending the concept of equivalence trans-
formations between different representation domains, introduced in Section 2.1,
to the LPV system class. This contribution gives the finishing details of the devel-
oped behavioral framework and enables the comparison of different LPV model
structures.
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4 CHAPTER

LPV equivalence transformations

I
n this chapter, we continue the discussion of the LPV behavioral frame-
work by establishing equivalence transformations between the state-

space and the input-output representation domains. These equivalence
transformations enable the comparison and analysis of LPV model struc-
tures and provide essential tools to formulate the identification approach
of this thesis. First we define LPV canonical forms based on the concept
of observability and reachability canonical forms of the LTI case and we
give an algorithmic scheme to construct them from an existing SS rep-
resentation of the system. Then, transformations are introduced which
provide an equivalent IO representation of a SS representation and vice
versa. In both cases, the introduced LPV canonical forms are special cases
of the transformation problem, serving as a simple gateway between the
representation domains.

4.1 State-space canonical forms

Specially structured canonical forms of state-space representations of LPV sys-
tems are essential ingredients to accommodate equivalence transformations be-
tween the state-space (SS) and the input-output (IO) representation domains. One
set of these canonical forms are the so called observability/reachability canonical
forms which are also used in the state-of-the-art of LPV identification and control
design. In this section, LPV observability and reachability canonical forms are
developed in the introduced LPV behavioral framework, using the same line of
reasoning as in the LTI case (see Section 2.1.6).

The canonical forms in continuous-time (CT) and discrete-time (DT) are intro-
duced through a transformation mechanism applied on a given SS representa-
tion of the LPV system. Using the concept of structural state-observability/re-
achability, i.e. the associated observability/reachability matrices, state-transfor-
mations are defined in the SISO case, that result in an equivalent SS representa-
tion with special structure in the system matrices. It is shown that this special
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structure implies complete state-observability/reachability of the resulting repre-
sentation and hence it is called a LPV observability/reachability canonical form.
Additionally, the introduced canonical forms give a unique representation of their
associated equivalence class. The applied transformation mechanism is based on
the results of LTV systems theory and it can be seen as extension of the LTI canon-
ical form construction approach given in Section 2.1.6.

Besides the derivation of observability/reachability canonical forms, a con-
struction approach for their companion counterparts is also introduced. The con-
cept of transposition of SS representations is also investigated, with the main con-
clusion, that contrary to the LTI case, the transpose of a SS representation in the
LPV framework does not have an equal manifest behavior. This means that such
a transformation alters the dynamical relation.

It is also investigated how the developed concept of canonical forms relates
to applied theories of the current LPV literature. It is shown that the common
practice to use LTI theory to compute canonical forms for LPV systems results in
SS representations that do not have an equal manifest behavior. This underlines
that the correct formulation of observability/reachability canonical forms is an
essential contribution of this thesis to the general LPV systems theory.

4.1.1 The observability canonical form

At first, observability canonical forms are considered. It is assumed that a struc-
turally state-observable state-space representation RSS(S) is given for the SISO
LPV system S. Due to the structural state-observability, i.e. the full rank of OnX
associated with RSS(S), it is possible to introduce a new state-basis for the repre-
sentation with the parameter-varying transformation matrix, To ∈ RnX×nX :

To := OnX . (4.1)

This leads to a new state variable xo, obtained as

xo := (To ⋄ p)x, ∀p ∈ BP. (4.2)

Due to the full rank property of OnX , To is invertible inRnX×nX . If RSS(S) has con-
stant observability rank and it is completely state-observable, then To is invertible
for any scheduling trajectory and time instant. Thus in that case, (4.2) implies
algebraic equivalence between xo and x. If only structural observability holds,
then invertibility is guaranteed in a functional sense, which means that (4.2) im-
plies algebraic equivalence almost everywhere. However, the latter is a sufficient
property for To to be a PV state-transformation, which leads to an equivalent SS
representation of S in terms of nP∼ . Moreover, this transformation projects the ob-
servability structure in terms of Theorem 3.11 to the identity matrix (OnXO−1

nX = I).
Thus, similar to the LTI case, we call the equivalent SS representation, resulting by
the state transformation To, the observability canonical form.

To obtain the equivalent representation of S in terms of the new state vari-
able, To is applied to the system matrices in accordance with nP∼ , resulting in a SS
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representation with the following special structure:

[
Ao Bo

Co Do

]

:=











0 1 . . . 0 βo
nX−1

...
...

. . .
... βo

nX−2

0 0 . . . 1
...

−αo
0 −αo

1 . . . −αo
nX−1 βo

0

1 0 . . . 0 βo
nX











.

Then

RO

SS(S) :=

[
Ao Bo

Co Do

]

∈
[
RnX×nX RnX×1

R1×nX R

]

, (4.3)

is called the observability canonical state-space representation of S. Proof of that the
invertible state-transformation based on (4.2) always results in the above given
structure follows similarly as in the LTV case (see Silverman (1971) and Zenger
and Ylinen (2005) for the CT case and Marcovitz (1964) and Guidorzi and Diversi
(2003) for the DT case).

Example 4.1 (CT-LPV observability canonical form, SISO) Consider the structurally state-observable
CT-LPV-SS representation RSS(S) of Example 3.22. By applying state-transformation (4.2) in terms of Defi-
nition 3.26, the resulting observability canonical form is as follows:

RO
SS(S) =







0 1 1 + p2

p d
2

dt2
p−(2+p2+ d

dt
p) ddtp

p2−2− d
dt
p

− 1
p3−2p+p d

dt
p− d2

dt2
p

p2−2− d
dt
p

− 1
p

3p + p d
dt

p

1 0 p







.

Because the original representation RSS(S) is not completely state-observable, the resulting canonical repre-
sentation RO

SS(S) is equivalent with RSS(S) only in the almost everywhere sense. Furthermore, RO
SS(S) is

completely state-observable (its observability matrix is an identity matrix) even if RSS(S), used for its construc-
tion, is not.

It is important to note that due to the state-transformation (4.2), the complex-
ity of the dependence of the meromorphic coefficients of RO

SS(S) can increase con-
siderably. If in the representation RSS(S) all the coefficients/matrices are linear
static functions of p, then the matrix functions defining RO

SS(S) can have rational
dependence on p and its derivatives/forward time-shifts up to the order nX. This
property has been one of the reasons to define coefficient dependence of LPV sys-
tems over the field of meromorphic functions R with variables associated with p
and its derivatives/time-shifts in the introduced framework.

Example 4.2 (DT-LPV observability canonical form, SISO) As a DT example, we can consider the DT-
LPV-SS representation defined in Example 3.29. Again, by applying state-transformation (4.2) in terms of
Definition 3.26, the resulting observability canonical form of this representation is the following:

RO
SS(S) =







0 1 1 + p
qp

−
(
qp2

) p

q2p
qp + qp2

q2p

p(qp)

q2p
+ p + qp

1 0 p







.
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Figure 4.1: Young’s PV selection scheme for OnX : nX = 3, nY = 2. The rows of OnX
are indicated on the left and right side of the figures based on the generation rule
in continuous (3.79) or discrete-time (3.89). The vector functions represented by
dark cells must be selected if they are independent.

Due to the complete state-observability of the DT example, the resulting canonical form is fully equivalent with
the original representation and it is also completely state-observable. Note that in the following, we restrict
examples to the DT case to simplify the discussion.

As a next step the MIMO case is treated. According to theory given for LTV
systems in Guidorzi and Diversi (2003), observability type of canonical forms with
respect to a MIMO, structurally state-observable RSS(S) can be realized by a map-
ping rule of three steps, similar to the LTI case:

1. Choose nX-independent rows of the full column-rank OnX with a given or-
dering sequence.

2. Rearrange those nX-independent rows with a fixed order to form a nonsin-
gular state transformation matrix To ∈ RnX×nX .

3. By applying the equivalence transformation defined via To, compute the
canonical representation.

In the following, these steps form the line of reasoning for the introduction of a
MIMO observability canonical form through its construction mechanism.

According to Step 1 of the previous algorithm, write OnX as the sequence of
row vectors:

OnX =
[
o⊤11 . . . o⊤nY1 o⊤12 . . . o⊤nY2 . . .

]⊤
, (4.4)

where C = [o⊤11 . . . o
⊤
nY1]⊤. Each oj = [oij ]

nY
i=1, j > 1 is defined similarly as (3.79)

in the CT case and as (3.89) in the DT case. To complete Step 1 of the algorithm,
the selection of nX linearly independent vector functions from the nX × nY rows
of (4.4) is needed, to form the new state-basis of the canonical representation. Due
to the structural state-observability of the system, it is always possible to make
such a selection, but in general it is not unique (Guidorzi and Diversi 2003; Lu-
enberger 1967). Depending on the particular way of the selection procedure, dif-
ferent canonical forms can be obtained. In the following, the selection strategy
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that reproduces the structure of the previously introduced SISO LPV observabil-
ity canonical form is used. According to this, select the vectors of (4.4) in the order
of

{o11, o21, . . . , onY1, o12, o22, . . . , onY2, . . .} , (4.5)

which matches with the generalization of Young’s selection scheme II, discussed
in the LTI case (see Section 2.1.6). In the LPV case, this scheme is presented in Fig-
ure 4.1. For the sake of simplicity, temporally assume that rank(C) = nY, meaning
that {o11, o21, . . . , onY1} are linearly independent vector functions. Then, the lin-
ear dependence of every vector function from the ordered sequence (4.5) can be
analyzed one after the other: if τi ∈ Inx1 is the smallest number such that oiτi is
linearly dependent on the previous vectors, then there exists a set of unique func-
tions {αo

ijl ∈ R}, such that

oiτi =

nY∑
j=1

τij−1
∑

l=0

αo
ijl ojl, (4.6)

where the ordering of the vectors, similar to the LTI case, implies that τij satisfies
(2.54). Once all dependent vector functions have been found, a total of nX =
∑nY

i=1 τi independent vectors is selected due to the full rank assumption of OnX .
Furthermore, as the first nY vectors {o11, o21, . . . , onY1} are independent, they are
automatically selected, implying that τi satisfies (2.55). Moreover, the remaining
linearly dependent relations are described by

∑nY
i=1

∑nY
j=1 τij number of functions

{αo
ijl}. This accomplishes Step 1 of the algorithm.

Using the previously selected vectors, the new state-basis is defined by

To :=
[

o⊤11 . . . o⊤1(τi−1) . . . o⊤nY1 . . . o⊤nY(τnY−1)

]⊤
. (4.7)

Due to the linear independence of the rows, To is invertible and implies an equiv-
alence relation in terms of Definition 3.26. This completes Step 2 of the algorithm.

As a final step, applying the previously constructed equivalence relation on
RSS(S), yields the transformed matrices in the following form:

[
Ao Bo

Co Do

]

:=








[
Ao

ij

]
, i, j ∈ InY1

Bo
1

...
Bo

nY
e1 0nY×(τ1−1) . . . enY 0nY×(τnY−1) D







,

where {ei}nYi=1 is the standard basis of RnY , and

Ao
ii =









0 . . . 0 −αo
ii0

1
. . .

... −αo
ii1

...
. . . 0

...
0 . . . 1 −αo

ii(τi−1)









⊤

(τi×τi)

Ao
ij =
















0 . . . 0 −αo
ij0

...
...

...
...

... −αo
ij(τij−1)

...
... 0

...
...

...
0 . . . 0 0
















⊤

(τi×τj)
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Bo
i =






βo
i1(τi−1) . . . βo

inU(τi−1)

...
...

βo
i10 . . . βo

inU0






(τi×nU)

Do =






βo
11τ1

. . . βo
1nUτ1

...
...

βo
nY1τnY . . . βo

nYnUτnY (nY×nU)

Proof of that the invertible state-transformation based on (4.7) always results in
the above given structure follows similarly as in Guidorzi and Diversi (2003).
Based on this representation, the LTI system is separated to an interconnection of
subsystems characterized by the Ao

ii and Bo
i matrices and the connection of these

subsystems is defined through theAo
ij matrices. In this way, using the constructed

state-space transformation To applied on RSS(S), we have constructed a canoni-
cal SS representation of S. Due to the fact, that the projected nX-step observability
matrix of RO

SS(S) is the identity matrix (SISO case) or composed from zero row
vectors and the standard basis of R1×nX (MIMO case) such a canonical represen-
tation is always completely state-observable. Thus the following corollary holds
for all representations of S with the structural form of (Ao, Bo, Co, Do) both in the
SISO and the MIMO cases:

Corollary 4.1 RO
SS(S) is completely state-observable and hence minimal.

In case rank(C) 6= nY, the observability canonical form does not exist in the
previously introduced structure as Co cannot be a matrix composed from zero
vectors and standard bases. In this case, To is constructed by considering the sys-
tem only with output channels which are associated with the independent rows
of C. Then, To is applied to the original matrix functions. The resulting Co retains
the structure of the conventional canonical form for the linearly independent out-
put channels (containing only zero vectors and standard bases), however it also
contains meromorphic coefficient functions (the weights of the linear combination
of the independent channels) in the rows corresponding to the dependent output
channels. If the LPV-SS representation is not structurally state-observable, then
computation of an equivalent observability canonical form by the presented algo-
rithm requires to search for a SS representation of the LPV system with structural
state-observability. Then, such a representation can be converted to an observ-
ability canonical form. As we will see in the Section 4.3, the construction of such
a representation is always possible.

Example 4.3 (DT-LPV observability canonical form, MIMO) Let the SS representation RSS(S) of an
DT-LPV system S with P = [0.1, 0.3] be given by

[
A B
C D

]

⋄ p =












p 0 0 −0.5 1 1
0 −p 0 0 p p
0 0 −p 0 −1 0

0.5 0 0 p 0 1
0 p 0 0 0 0
0 0 1 p 0 0
p 1 0 0 0 0












.
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By computing the 2-step observability matrix of RSS(S),

O2 ⋄ p =















0 p 0 0

0 0 1 p

p 1 0 0

0 −p(qp) 0 0

0.5qp 0 −p p(qp)

p(qp) −p 0 −0.5qp















results. It is clear, that the first four rows of O2 are independent in the functional sense, thus RSS(S) is struc-
turally state-observable. However, the first three rows and the sixth are independent along all possible scheduling
trajectories on P, thus RSS(S) is also completely state-observable. Note that in this case, computation of O4

is not necessary to show these properties. By calculating the observability canonical form RO
SS(S) of RSS(S)

using the first three and the sixth rows of O2, the resulting matrices are the following (the sub-matrices are
denoted by dashed lines):

Ao ⋄ p =












qp 0 0 0

− qp
2+4p2+8p(qp)+4p2(qp2)

2p2(qp)
p − qp+4p3+4p2(qp)

2p
p(p+qp)

2qp

0 0 0 1

− (qp)(q2p)+4p2(qp2)+4p3(q3p)+8p2(qp)(q2p)

4p2(qp)
0

(1+4p2)q2p
4p

− (p+qp)q2p

q2p












Bo ⋄ p =










p(qp) p(qp)

−1 qp

p + qp p + qp

(q2p− p)qp
2(q2p−2p)qp−q2p

2










, Co ⋄ p =






1 0 0 0

0 1 0 0

0 0 1 0




 .

Note that the resulting LPV-SS representation is the interconnection of 3 subsystems, each associated with a
specific output channel. Furthermore, this observability canonical form is not generated using Young’s selection
scheme as in that case the first 4 rows of O2 would have been selected for the transformation. In opposite with the
used state-transformation, the transformation of the state, based on the first 4 rows, only provides an equivalent
representation in the almost everywhere sense, as independence of the rows only holds in the functional sense.
This underlines that in the MIMO case there is a freedom in the construction of observability canonical forms
and the provided selection scheme is only one from the available possibilities.

4.1.2 Reachability canonical form

As a next step, we extend the previously introduced mechanism to the reachability
case. Similar to the previous part, SISO systems are considered first. It is assumed
that a structurally state-reachable state-space representation RSS(S) is given for
the SISO LPV system S. Due to the full rank of RnX associated with RSS(S), it is
possible to introduce a new state-basis for the representation by using

T−1
r :=

{
RnX , if T = R,←−
RnX , if T = Z, (4.8)

that leads to a new state variable xr, obtained as

xr := (Tr ⋄ p)x, ∀p ∈ BP. (4.9)
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Again, the full rank property of RnX implies that Tr is invertible inRnX×nX . Thus,
(4.9) yields an equivalent SS representation of S in terms of nP∼ . In case of complete
state-reachability, (4.9) also implies algebraic equivalence of the original and the
new states. Moreover, this state-transformation projects the reachability structure
in terms of Theorem 3.11 to the identity matrix. Therefore, we call this equivalent
SS representation the reachability canonical form.

By applying the transformation associated with Tr on the matrices of RSS(S)

in accordance with nP∼ , the transformed matrices are given by:

[
Ar Br

Cr Dr

]

:=











0 . . . 0 −αr
0 1

1
. . .

... −αr
1 0

...
. . . 0

...
...

0 . . . 1 −αr
nX−1 0

βr
nX−1 βr

nX−2 . . . βr
0 βr

nX










.

Then,

RR

SS(S) :=

[
Ar Br

Cr Dr

]

∈
[ RnX×nX RnX×1

R1×nX R

]

, (4.10)

is called the reachability canonical state-space representation of S and it is equivalent
with RSS(S). Proof of the above given matrix operations similarly follows as for
LTV-SS representations (see Silverman (1971); Zenger and Ylinen (2005) for the CT
case and Marcovitz (1964); Park and Verriest (1990) for the DT case).

Example 4.4 (LPV reachability canonical form, SISO) Consider the completely state-reachable DT-LPV-
SS representation defined in Example 3.29. By applying state-transformation (4.9) in terms of Definition 3.26,
the resulting reachability canonical form of this representation is the following:

RR
SS(S) =






0 −q−1p2 1
1 q−1p + q−2p 0

1 + q−1p
p

(

1 + q−2p
p

)

q−1p + q−2p p




 .

Due to the complete state-reachability, the resulting canonical form is fully equivalent with the original repre-
sentation.

Note that the previously introduced algorithm can also be applied to generate
reachability-based MIMO canonical forms, but instead of the rows of OnX , the
columns of RnX are used in this case. According to Step 1 of this mechanism, RnX
is rewritten as a sequence of its column vectors:

RnX =
[
r11 . . . rnU1 r12 . . . rnU2 . . .

]
, (4.11)

whereB = [r11 . . . rnU1] and each rj = [rij ]
nU
i=1, j > 1 is defined similarly as (3.84)

for CT and as (3.91) for DT. To accomplish Step 1, the selection of nX linearly inde-
pendent vectors from the nX×nU column vectors is required in order to determine
the state-basis of the reachability canonical form. In the following, such a selection
strategy is used that reproduces the structure of the previously introduced SISO



4.1 State-space canonical forms 153

A
r

��

A
r

��

A
r

��
A
r

��
r

��
r

��−Ar��
r

��−Ar��
r

��
r

��−Ar��

r

��−Ar��

(a) Scheme I

A
r

��

A
r

��

A
r

��

A
r

��
r

��
r

��−Ar��

r

��−Ar��
r

��

r

��−Ar��

r

��−Ar��

(b) Scheme II

Figure 4.2: Young’s PV selection scheme for RnX : nX = 3, nU = 2. The columns of
RnX are indicated on the left and right side of the figures based on the generation
rule in continuous (3.84) or discrete-time (3.91). Vectors represented by dark cells
must be selected if they are independent.

LPV reachability canonical form. According to this, select the rows of RnX in the
order of {

r11, r12, . . . , r1(nXnU), r21, r22, . . .
}
,

which matches the extension of Young’s selection scheme I presented in Figure
4.2. Temporally assume that rank(B) = nU which means that {r11, r12, . . . , r1nU}
are linearly independent vector functions. Then, the linear dependence of every
vector function from the ordered sequence can be analyzed one after the other
just like in the observability case. However, in Young’s selection scheme I, the
vectors {r11, r21, . . . , rnU1} have to be selected to the state transformation even if
the ordering would indicate it else. The explanation follows similarly as in the LTI
case. According to this selection scheme, if τi ∈ Inx1 is the smallest number such
that riτi is linearly dependent on the previous vectors, then there exists a set of
unique meromorphic functions {αr

ijl ∈ R}, such that

riτi =

i∑

j=1

τij−1
∑

l=0

αr
ijl ril, (4.12)

where {τij} satisfies (2.54) because of the ordering of the vectors. Once that all
dependent vector functions have been found, a total of nX =

∑nU
i=1 τi independent

vector functions are selected due to the full rank assumption of RnX . Furthermore,
by the selection scheme, the nU number of vectors of {r11, r12, . . . , r1nU} are auto-
matically selected, thus τi satisfies the upperbound (2.61). The remaining linearly
dependent relations are described by

∑nU
i=1

∑i
j=1 τij rational functions {αr

ijl} ∈ R,
and Tr is defined as:

T−1
r :=

{ [
r11 . . . r1(τ1−1) . . . rnU1 . . . rnU(τnU−1)

]
, if T = R;

[ ←−
r 11 . . . ←−r 1(τ1−1) . . . ←−r nU1 . . . ←−r nU(τnU−1)

]
, if T = Z.
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which accomplishes Step 2. Again, linear independence of the selected vector
functions assures the existence of the inverse, thus Tr implies an equivalence re-
lation in terms of Definition 3.26. As a final step, applying the previously con-
structed equivalence relation on RSS(S), yields the transformed matrices in the
following form:

[
Ar Br

Cr Dr

]

:=












[
Ar

ij

]
, i, j ∈ InU1

e⊤1
0(τ1−1)×nU

...
e⊤nU

0(τnY−1)×nU
Cr

1 . . . Cr
nU D












,

where {ei}nUi=1 is the standard basis of RnU and

Ar
ii =









0 . . . 0 −αr
ii0

1
. . .

... −αr
ii1

...
. . . 0

...
0 . . . 1 −αr

ii(τi−1)









(τi×τi)

Ar
ij =
















0 . . . 0 −αr
ij0

...
...

...
...

... −αr
ij(τij−1)

...
... 0

...
...

...
0 . . . 0 0
















(τi×τj)

Cr
i =






βr
1i(τi−1) . . . βr

1i0

...
...

βr
nYi(τi−1) . . . βr

nYi0






(nY×τi)

Dr =






βr
11τ1

. . . βr
1nUτ1

...
...

βr
nY1τnY . . . βr

nYnUτnY (nY×nU)

Proof of that the invertible state-transformation Tr always results in the above
given structure follows similarly as in Park and Verriest (1990). Again, RR

SS(S) is
equivalent with RSS(S) and characterizes the decomposition of RR

SS(S) into state-
reachable subsystems associated with each output channels. Due to the fact, that
the projected nX-step reachability matrix of RR

SS(S) is the identity matrix (SISO
case) or composed from zero column vectors and the standard basis of RnX (MIMO
case) the resulting canonical representation is always completely state-reachable.
Thus the following corollary holds for all representations of S with the structural
form of (Ar, Br, Cr, Dr) both in the SISO and the MIMO cases:

Corollary 4.2 RR
SS(S) is completely state-reachable.

Furthermore it also holds that if RSS(S) is minimal, then the resulting RR
SS(S)

by the given construction procedure is also minimal. In the case of dependent
columns of B, the state transformation is constructed based on the independent
input channels. If the LPV-SS representation is not structurally state-reachable,
then computation of an equivalent reachability canonical form is possible by find-
ing an SS realization of the system which is structurally state-reachable. Similar
to the observability case, such a realization always exists, if S has no autonomous
dynamics.
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4.1.3 Companion canonical forms

The LPV observability and reachability canonical forms can also be given in an
other, so called companion or phase-variable form. These representations ROc

SS (S)

and RRc

SS (S) are defined in the SISO case as:

ROc

SS(S) :=

[
Aco Bco

Cco Dco

]

=











0 . . . 0 −αco
0 βco

0

1
. . .

... −αco
1 βco

1
...

. . . 0
...

...
0 . . . 1 −αco

nX−1 βco
nX−1

0 . . . 0 1 βco
nX











,

RRc

SS (S) :=

[
Acr Bcr

Ccr Dcr

]

=










0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
−αcr

0 −αcr
1 . . . −αcr

nX−1 1

βcr
0 βcr

1 . . . βcr
nX−1 βcr

nX









,

Again, it can be proved, based on Silverman (1966) and Weiss (2005), that every
LPV system S admits a state-variable representation in these forms and they are
equivalent with all SS representations of S. The state-transformations that lead to
these canonical forms can be constructed as:

T−1
co :=

{

[r1, r2, . . . , rnX ] , if T = R;

[←−r1,
←−
r2, . . . ,

←−
r nX ] , if T = Z;

(4.13a)

T⊤cr :=
[
o
⊤
1 , o

⊤
2 , . . . , o

⊤
nX] , (4.13b)

where r1 is the last column of O−1
nX which is additionally shifted forward in time

in case of T = Z, o1 is the last row of R−1
nX which is additionally shifted backward

in time in case of T = Z, and ri, oi are generated recursively by (3.79) and (3.84)
in continuous-time and by (3.89) and (3.91) in discrete-time. In the MIMO case,
the companion forms are generated by selecting the linearly independent rows
(columns) based on a different ordering. Similar to the LTI case, the ordering of
the rows of OnX by Young’s extended selection scheme I presented in Figure 4.1
results in the companion observability canonical form, while the ordering of the
columns of RnX by Young’s extended selection scheme II of Figure 4.2 results in
the companion reachability canonical form.

Example 4.5 (Companion canonical forms) Consider again the DT-LPV-SS representation defined in Ex-
ample 3.29. By constructing the state-transformations (4.13a-b) and applying them to the original SS represen-
tation, the following companion canonical forms result.

Tco ⋄ p =

[

− p2
qp

0

1 1
p

]

⇒ R
Oc
SS (S) =








0 −p qp
2

q2p
− qp

2

q2p

1 p + p2

qp
1 + p

qp

0 1 p








,
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Tcr ⋄ p =

[
1

q−1p
− 1
q−1p2

1 0

]

⇒ R
Rc
SS (S) =






0 1 0
−q−1p2 p + q−1p 1

− q−1p2

p
1 + q−1p

p
p




 .

4.1.4 Transpose of SS representations

An important difference with respect to the LTI case is that transposed LPV-SS
representations do not have an equal manifest behavior. To show this, consider
the following argument:

Let RSS(S) be a state-space representation of a given SISO LPV system. Then
the transposed SS representation, defined as

R⊤SS(S) :=

[
A⊤ C⊤

B⊤ D

]

when RSS(S) =

[
A B
C D

]

, (4.14)

is not a SS representation of S, because the associated output trajectories of these
representations are not equal in case of a varying scheduling signal (see Example
4.6). This can be proved by computing the output responses of the representations
for an impulsive input at k = 0, i.e u(0) = 1, and zero initial state x(0) = 0. Denote
the resulting output sequences by y for RSS(S) and y′ for R⊤SS(S). Then these
sequences reads as

y(0) = (D ⋄ p)(0), y′(0) = (D ⋄ p)(0),
y(1) = (C ⋄ p)(1)(B ⋄ p)(0), y′(1) = (B⊤ ⋄ p)(1)(C⊤ ⋄ p)(0),
y(2) = (C ⋄ p)(2)(A ⋄ p)(1)(B ⋄ p)(0), y′(2) = (B⊤ ⋄ p)(2)(A⊤ ⋄ p)(1)(C⊤ ⋄ p)(0),

It is obvious that these sequences are not equal if p is not a constant signal. The
reason for this phenomena is based on the non-commutativity of the multiplica-
tion onR[ξ].

Example 4.6 (LPV system transposition) In this example, the connection between LPV canonical forms
and their transpose is investigated. Consider the canonical forms derived in Example 4.2 and 4.4 which are
equivalent with the DT-SS representation of Example 3.29. The transpose of these canonical forms have been
obtained according to (4.14) by computing the transpose of the matrices. The output response of these transposed
representations, the canonical forms, and the original SS representation have been calculated for

u (k) = sin

(
1

4
k +

π

6

)

, p (k) =
1

2
+

1

4
sin

(
1

4
k +

π

2

)

,

and with zero initial conditions of the state variables at k = 0. The results are presented in Figure 4.3. From
the obtained signals one can conclude that the transposed forms are not equal to the original SS representation.
This proves that transposition of SS representations changes the manifest behavior of LPV-SS representations in
general.

4.1.5 LTI vs LPV state transformation

In the previous part, we have seen that through the developed behavioral frame-
work, canonical forms of LPV systems can be similarly formulated as in the LTI
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Figure 4.3: Comparison of the transpose of canonical representations given in Ex-
amples 4.2 and 4.4 in terms of their output response, i.e. their output error with
respect to the original representation. Transposed canonical observability form
(dashed blue), transposed canonical reachability form (dotted red), original rep-
resentation (solid green).

case. It has also been emphasized how this framework extends the concepts of LTI
system theory to LPV systems by proper handling of the time operators and their
effect on scheduling-dependent coefficient functions. Comparing the introduced
construction mechanism of LPV canonical forms to the state-of-the-art of the LPV
literature, similar mechanisms can be found, which have been developed for CT-
SS representations with linear dependence (see Kulcsár et al. (2008) as a notable
approach). Thus the develop algorithm can be seen as a generalization of these
approaches.

However in the general LPV literature, at many occasions the LTI theory is
used intuitively, applying-state transformations in the form:

A′ = T−1AT, (4.15)

where T is dependent on p. Such a state-transformation is equivalent to a state-
transformation applied separately for every constant scheduling signal of BP.
Based on Section 3.2, it is obvious that this transformation does not imply equiva-
lence in any sense if T is not constant. It is also common, that canonical forms are
usually “achieved” by generating OnX and RnX similar to the LTI case (see Defini-
tion 2.32 and 2.33). This corresponds to the observability/reachability matrices of
the representation with respect to constant scheduling signals. Using independent
rows (columns) of these matrices a state-transformation matrix T is formed. Then
T is applied according to (4.15) to calculate the “canonical” form (see Wassink
et al. (2004) and Steinbuch et al. (2003) as examples). It is not surprising that by
this methodology the resulting structures resemble the observability/reachability
canonical forms, however they are not equivalent in manifest behavior with the
original system. To illustrate this see Example 4.7.

Example 4.7 (LTI vs LPV state transformation) Consider the canonical forms of the DT-SS representation

derived in Example 4.2 and 4.4 for the DT-SS representation RSS(S) defined in Example 3.29. Let O
†
nX and

R
†
nX denote the “observability ” and “reachability ” matrices constructed for RSS(S) in the LTI sense:
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Figure 4.4: Comparison of global and frozen canonical representations of Example
4.7 in terms of their output response, i.e. their output error with respect to the orig-
inal representation. ROLTI

SS (S) (dashed blue), RRLTI

SS (S) (dotted red), RO
SS(S) (solid

green), RR
SS(S) (identical to green), original representation (identical to green).

O
†
nX =

[
C⊤ A⊤C⊤ ]⊤

, R
†
nX =

[
B AB

]

O
†
nX ⋄ p =

[
1 1

p

p 2

]

, R
†
nX ⋄ p =

[
1 2p
p p2

]

.

Now compute what would result by applying the state transformation (4.15) with T = O
†
nX or T−1 = R

†
nX

just like in the LTI case. This intuitive approach produces the following so called “frozen” canonical forms:

R
OLTI
SS (S) =





0 1 p
−p −p −p2

1 0 p



 , R
RLTI
SS (S) =

(

R
OLTI
SS (S)

)⊤

Generally in the literature some follow this approach (see Wassink et al. (2004); Steinbuch et al. (2003)). It is
important to note that the two sets of LPV representations derived here and in Example 4.2 and 4.4 are equivalent
for constant scheduling trajectories, but they are unequal globally. To show this phenomenon, the output response
of these frozen canonical representations, the global canonical forms, and the original SS representation have been
calculated for the signals p and u indicated in Example 4.6. The results are presented in Figure 4.4. As can be
seen, the global canonical forms RO

SS(S) and RR
SS(S) completely reproduce the original output with zero error.

However, R
OLTI
SS (S) and R

RLTI
SS (S) have a relatively huge representation error in the magnitude of 35% even

for these very smooth and slowly varying p and u, which mainly comes from a scheduling dependent phase and
gain lag with respect to y.

4.2 From state-space to the input-output domain

Equivalence transformations between SS and IO representations in the LPV be-
havioral framework are of paramount importance. Such transformations are not
only necessary to provide representations of a given system in these domains, but
they are also the key elements to compare LPV model structures in terms of rep-
resentation capabilities, to compare identified models in different representation
domains, and also to convert results of IO identification approaches to SS models
applicable for control.

As one of the main contributions of this thesis, in the following we develop
these transformations. We show that they generalize the theory presented for LTI
systems in case the coefficient dependence on the scheduling vector is meromor-
phic and dynamic. It is also shown that the canonical forms, developed in the
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previous part, give special cases of the transformation problem, thus they serve
as a simple gateway between the SS and the IO representation domains. Again,
it is proved that the common practice of the current LPV literature, namely to ap-
ply LTI theory to convert IO models to SS models, provides results which have an
unequal manifest behavior.

At first the equivalence transformation from the SS to the IO representation
domain is considered. The equivalence transformation in this context means the
search for an equivalence class of IO realizations with the same manifest behavior.
To derive such a transformation, it is first shown that the state as a latent variable
can always be eliminated without changing the manifest behavior. Then a spe-
cific algorithm is established which provides a minimal realization of a given SS
representation in the IO domain. According to this plan, consider the following
theorem:

Theorem 4.1 (Elimination of the latent variable in the LPV case) (Zerz 2006)
Given a latent representation (see (3.33)) of S with manifest behavior B and polynomial
matrices R ∈ R[ξ]nr×nW , RL ∈ R[ξ]nr×nX . Let the unimodular matrix M ∈ R[ξ]nr×nr

be such that

MRL =

[
R′L
0

]

, MR =

[
R′

R′′

]

, (4.16)

with R′L of full row rank. The manifest behavior defined by (R′′(ξ) ⋄ p)w = 0 is equal
(almost everywhere) with B.

Due to the algebraic structure of R[ξ], the proof of this theorem follows similarly
as in Zerz (2006). Based on Theorem 4.1, the state vector as a latent variable can
be eliminated from a given RSS(S) with an unimodular transformation. Note that
due to the latent nature of the eliminated variable, this elimination is always possi-
ble. Furthermore, Theorem 3.5 implies that such a transformation does not change
the manifest behavior, hence in analogy with the LTI case, this transformation is
an equivalence transformation.

The next step to establish an IO realization is to formulate the unimodular
transformation of Theorem 4.1 and the resulting R′′ in the form of an output side
polynomial Ry and an input side polynomial Ru. Write the LPV state-space rep-
resentation RSS(S) with matrix functions (A,B,C,D) into the latent form (3.33):

[
Iξ −A
−C

]

︸ ︷︷ ︸

RL(ξ)

x =

[
0 B
−I D

]

︸ ︷︷ ︸

R(ξ)

[
y
u

]

. (4.17)

The resulting polynomialsR ∈ R[ξ](nX+nY)×(nY+nU) andRL ∈ R[ξ](nX+nY)×nX give
an equivalent representation of the full behavior of RSS(S). Now by applying
Theorem 4.1, we are looking for a unimodular matrix M ∈ R[ξ](nX+nY)×(nX+nY)
such that [

M11(ξ) M12(ξ)
M21(ξ) M22(ξ)

]

︸ ︷︷ ︸

M(ξ)

[
Iξ −A
−C

]

=

[
∗
0

]

, (4.18)
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where deg(M22) = nX and deg(M21) ≤ nX − 1. Note that there is a particular free-
dom in choosing M to satisfy (4.18), however by restricting M22(ξ) to be monic,
M21(ξ) and M22(ξ) can be uniquely determined. Multiplying (4.17) with the re-
sulting M(ξ) yields

[
∗
0

]

x =

[
∗ ∗

−M21(ξ) M21(ξ)B +M22(ξ)D

] [
y
u

]

, (4.19)

from which the polynomials of a equivalent IO representation can be trivially de-
termined.

Corollary 4.3 (IO Equivalence transformation) Let RSS(S) be a state-space repre-
sentation with manifest behavior B and system matrices (A,B,C,D). Then there ex-
ists a unique monic polynomial R̄y ∈ R[ξ]nY×nY with deg(R̄y) = nX and a unique
R̄u ∈ R[ξ]nY×nX with deg(R̄u) ≤ nX − 1 such that

R̄y(ξ)C = R̄u(Iξ −A). (4.20)

Let Rcom = diag(r1, . . . , rnY), ri ∈ R[ξ], be the greatest common divisor of R̄y and R̄u

such that there exist Ry, Ru ∈ R[ξ] satisfying

R̄y(ξ) = Rcom(ξ)Ry(ξ) and Rcom(ξ)Ru(ξ) = R̄u(ξ)B + R̄y(ξ)D. (4.21)

Then the IO representation of S, denoted by RIO(S), is given by

(Ry(ξ) ⋄ p)y = (Ru(ξ) ⋄ p)u. (4.22)

In this way, similar to Corollary 2.4 in the LTI case, an equivalent, minimal IO
representation of S is obtained, based on the given SS representation RSS(S) (see
Example 4.8). Note that the algorithm defined by (4.20) and (4.21) is more compli-
cated than in the LTI case, as it involves multiplication with the time operators on
the coefficients. Thus, this transformation can result in an increased complexity of
the coefficient functions in the equivalent IO representation, e.g. if RSS(S) has a
static dependence on p, then its equivalent IO realization commonly has dynamic
dependence on p. The following property also holds in the LPV case:

Corollary 4.4 Assume that RSS(S) is minimal, i.e. structurally state-observable. Then
the polynomials R̄u and R̄y satisfying (4.20) are left-coprime (their greatest common di-
visor Rcom is 1).

Corollary 4.4 means that the equivalence transformation between the SS and IO
domain results in the elimination of dynamics related to unobservable states.
Thus in case of a structurally state-observable SS representation, like the observ-
ability canonical forms, the equivalence transformation simplifies. However, dy-
namics related to unreachable states are preserved. This underlines the validity
of the proposed minimality concept of LPV-SS representations, namely that mini-
mality is equivalent with structural state-observability.
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Example 4.8 (IO realization of a LPV-SS representation) Consider the observability canonical form given
in Example 4.2. Note that

Ao =

[
0 1
−αo

0 −αo
1

]

and Iξ − Ao =

[
ξ −1

αo
0 ξ + αo

1

]

,

with αo
0 ⋄ p = p qp

2

q2p
and αo

1 ⋄ p = −qp− qp2

q2p
. In terms of (4.20), we are looking for a R̄u ∈ R[ξ]1×2 with

deg(R̄u) = 1 and a monic polynomial R̄y ∈ R[ξ] with deg(R̄y) = 2. Parameterize these polynomials as

R̄y(ξ) = ξ2 + a1ξ + a0, R̄u(ξ) =
[

b11ξ + b12 b21ξ + b22
]
.

Then in terms of (4.20):

(ξ2 + a1ξ + a0)
[

1 0
]

=
[

b11ξ + b12 b21ξ + b22
]
[

ξ −1
αo

0 ξ + αo
1

]

.

Solving this equation system it follows that

a1 = αo
1, b11 = 1, b12 = αo

1,
a0 = αo

0, b21 = 0, b22 = 1.

The resulting polynomials R̄u and R̄y are left coprime, hence

Ry(ξ) = R̄y(ξ) = ξ2 + αo
1ξ + αo

0

Ru(ξ) = R̄u(ξ)Bo + R̄y(ξ)Do =
−→−→
βo
2ξ2 + (αo

1

−→
βo
2 +
−→
βo
1)ξ + αo

0βo
2 + αo

1βo
1 + βo

0 ,

where βo
2 ⋄ p = p, βo

1 ⋄ p = 1 + p
qp

, and βo
0 ⋄ p = p qp

q2p
+ p + qp. The above given polynomials provide an

IO representation of S with coefficients

a2 ⋄ p = 1 b2 ⋄ p = q2p,

a1 ⋄ p = −qp
(

1 + qp

q2p

)

, b1 ⋄ p =
(
1− qp2

) (

1 + qp

q2p

)

,

a0 ⋄ p = p qp
2

q2p
, b0 ⋄ p = qp2 p

2−1
q2p

.

After this simplified example, consider the DT-LPV-SS representation defined in Example 3.29, which is
equivalent with the above considered observability canonical form. In this case

A ⋄ p =

[
p 1
0 p

]

and (Iξ − A) ⋄ p =

[
ξ − p −1

0 ξ − p

]

.

In terms of (4.20), we are again looking for a R̄u ∈ R[ξ]1×2 with deg(R̄u) = 1 and a monic polynomial
R̄y ∈ R[ξ] with deg(R̄y) = 2. By using the previously introduced parametrization of these polynomials,
(4.20) reads as

((ξ2 + a1ξ + a0) ⋄ p)
[

1 1
p

]

= (
[

b11ξ + b12 b21ξ + b22
]
⋄ p)

[
ξ − p −1

0 ξ − p

]

.

Solving this equation system it follows that

a1 ⋄ p = −qp
(

1 + qp

q2p

)

, b11 ⋄ p = 1, b12 ⋄ p = − qp
2

q2p
,

a0 ⋄ p = p qp
2

q2p
, b21 ⋄ p = 1

q2p
, b22 ⋄ p = 0.

Additionally, R̄u and R̄y are left coprime and they result in exactly the same IO realization as the previous
example.

Contrary to the LTI case, closed formula on the conversion rules between the
parameters of the previously introduced canonical forms and the resulting IO re-
alization can only be given for the observability canonical form and its companion
version in DT. Even if the algorithm defined by (4.20) and (4.21) is always solv-
able for the reachability canonical forms, the resulting formulas of the {bj} coef-
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ficients are complicated rational functions of the original matrix coefficients. The
reason of this phenomenon is again the non-commutativity of multiplication by
ξ on R[ξ]. In CT, the chain-rule of differentiation gives also complicated expres-
sions. Therefore the conversion rules are only stated for the observability forms
in discrete-time:

Corollary 4.5 (IO conversion rules) The IO realization of canonical SS representa-
tions of the discrete-time SISO LPV system S is given by

RO
SS(S) ROc

SS(S)

ai αo
i [αco

i ](i)

anX 1 1

bj
[
βo

j

](j)
+

nX−1∑

l=j

αo
l

[

βo
nX−l+j

](j) [
βco

j + αco
j β

co
nX](j)

bnX [
βo

nX](nX) [
βo

nX](nX)

with [ � ]
(n)

denoting the forward-shift operation applied to the coefficients n times, i, j ∈InX−1
0 , and na = nb = nX.

Note that in the reachability and reachability companion cases, the conversion
formulas are the same for all parameters except {bj}nX−1

j=0 .

4.3 From the input-output to the state-space domain

As a next step, the equivalence transformation from the IO to the SS representa-
tion domain is considered. To derive such a transformation, a vital ingredient is to
construct a state-map for a given IO representation that defines an equivalent SS
representation. This construction can be seen as the reverse operation of the previ-
ous latent variable elimination. The actual aim is to introduce a latent variable into
(4.22) such that it satisfies the state-property, ergo it defines a SS representation of
the original system via Theorem 3.2.

Generation of a state-map is more involved in the LPV case than for time-
invariant systems as the scheduling dependence of the coefficients does not com-
mute with time operators as integration, derivation, and time-shift. In order to
improve readability of the upcoming rather technical discussion, we first investi-
gate the intuitive idea behind the used state-construction mechanism, the so called
cut-and-shift operation. Then this operation is formally defined over the ring R[ξ]
both in CT and in DT. As a next step, state-maps generated by the cut-and-shift
procedure are constructed and it is shown that they introduce latent variables sat-
isfying the state property. Minimality of the resulting state kernel forms is also
shown in the SISO case. Finally, algorithms are derived that provide realization of
a given IO representation in terms of the previously introduced canonical forms.
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The idea of recursive state-construction

The central idea of state-construction for LPV-IO representations is the extension
of the previously introduced cut-and-shift mechanism of the LTI case (see Section
2.1.7). However, before venturing into the technicalities, we explain the intuitive
idea of the cut-and-shift-map based state-construction through a simple example.
Assume that, in continuous-time, a kernel representation RK(S) with P = R is
given. RK(S) is described by R ∈ R[ξ], providing the differential equation

(r0 ⋄ p)w + (r1 ⋄ p)
d

dt
w + (r2 ⋄ p)

d2

dt2
w = 0. (4.23)

In the following, we construct an equivalent SS representation of RK(S). This
requires a state-construction, where our aim is the elimination of the derivatives
of w in (4.23) through the introduction of state-variables. Introduce the latent
variable x1 : R→ R, defined by

x1 = ((r1 − ṙ2) ⋄ p)w + (r2 ⋄ p)
d

dt
w. (4.24)

Then equation (4.23) can be rewritten as

d

dt
x1 + ((r0 − ṙ1 + r̈2) ⋄ p)w = 0, (4.25)

using the rule of chain-derivation. It is obvious, that the resulting equations (4.24)
and (4.25) define the same manifest behavior as (4.23). In this way, we have elimi-
nated the derivatives of w from (4.23), however the resulting extra equation (4.24)
still contains a first order derivative of w. Thus, introduce the latent variable
x2 : R→ R such that

x2 = (r2 ⋄ p)w. (4.26)

Then, equation (4.24) can be rewritten as

d

dt
x2 − x1 + ((r1 − 2ṙ2) ⋄ p)w = 0. (4.27)

We have arrived at the following equation system

−









r0 − ṙ1 + r̈2
r1 − 2ṙ2

r2



 ⋄ p



w =





d
dt 0
−1 d

dt
0 −1





[
x1

x2

]

, (4.28)

which is equivalent with (4.23). Due to the fact that the left side is a zero-order
while the right side is first-order polynomial, (4.28) is a state-kernel form and x =
[x1 x2]

⊤ trivially fulfills the property of state (see Theorem 3.2). Additionally,
the algebraic equivalence of the introduced state-relations (4.24) and (4.26) implies
that there exists an unimodular transformation in terms of Theorem 4.1, which can
eliminate x from (4.28) such that (4.23) is reobtained. Thus, the manifest behavior
of (4.28) is equivalent with the behavior of RK(S). Note that in this way, we have
defined an equivalent state-map of the original system. Using this state-map, one
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choice of SS realization follows through the use of (4.26) as the output equation
and by the substitution of this equation into (4.28). This results in the state-space
representation

d

dt
x =

([

0 − r0−ṙ1+r̈2

r2

1 − r1−2ṙ2

r2

]

⋄ p
)

x, (4.29a)

w =
([

0 1
r2

]
⋄ p
)
x, (4.29b)

which is a companion observability canonical form if r2 = 1, i.e. ifR is monic. This
SS realization is equivalent with (4.23) only for those scheduling trajectories where
(r2 ⋄ p)(t) 6= 0 (see (4.26)). Thus, (4.29a-b) is equivalent in an almost everywhere
sense with (4.23). If r2 is unequal to zero for all scheduling trajectories, then full
equivalence holds.

The intuitive idea behind the state construction that we exposed in this exam-
ple can be formalized as the following recursive scheme. For a given continuous-
time SISO kernel representation RK(S), the behavior is described by

(R0(
d

dt
) ⋄ p)w = 0. (4.30)

Let l = 1 and define a latent variable as

xl := (Rl(
d

dt
) ⋄ p)w, s.t. R(l−1)(ξ) := R̄l + ξRl(ξ), (4.31)

where R̄l ∈ R, Rl ∈ R[ξ], and due to the multiplication rules, R̄0 is chosen as:

R̄0 := r0 +

nξ∑

i=1

(−1)iṙ
(i)
i , (4.32)

where ṙ(i) denotes the dot operation applied to r ∈ R for i-times (see equations
(4.25) and (4.27) as examples). According to this mechanism

{
for l = 1, d

dtx1 = −(R̄0 ⋄ p)w,
for 1 < l ≤ nξ,

d
dtxl = xl−1 − (R̄l−1 ⋄ p)w.

(4.33)

holds and (4.31) with (4.33) give a latent variable representation of S. Repeat these
steps recursively on (4.31) till l = nξ which results in Rnξ(ξ) = 0. Then the ob-
tained polynomials {Rl(ξ)}nξl=1 define a state map and {R̄l}nξl=1 give the coefficients
of the associated SS representation, as it holds that

{

for 1 ≤ l < nξ,
d
dtx(l+1) = xl − (R̄l ⋄ p)w,

for l = nξ, (R̄nξ ⋄ p)w = xnξ .
(4.34)

The procedure, defined by (4.31), gives the algorithm of state-construction which
we call the parameter-varying cut-and-shift map ̺− : R[ξ]·×· → R[ξ]·×·. In this
terminology, R̄l corresponds to the cut term while ξRl(ξ) is the shift term. Similar
to the LTI case, the PV cut-and-shift operator ̺− acts on polynomial matrices but
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with meromorphic coefficient functions. Another difference with the LTI case is
that the cut-and-shift-map is defined differently for the CT and DT time-axis, due
to the different non-commutative multiplication rules of derivation and time-shift
with respect to the scheduling dependent coefficients. In the following, the tech-
nical definition of ̺− is given both in the CT and DT cases, using the idea of the
recursive scheme introduced before.

Cut-and-shift in continuous-time

In the CT case, the indeterminant ξ is associated with d
dt , implying that multipli-

cation with ξ on R[ξ]·×· gives the non-commutative rule of (3.22). The reverse
operation, multiplication by ξ−1, results in integration, which yields:

ξ−1
[

rξi + (−1)iṙ(i)
]

=

i−1∑

j=0

(−1)j ṙ(j)ξi−j−1. (4.35)

This operation is the same as what is used in (4.31). Based on this, the cut-and-
shift-map in continuous-time is defined onR[ξ]·×· as

̺−(r0 + r1ξ + . . .+ rnξ
n

︸ ︷︷ ︸

R(ξ)

) = r′1 + . . .+ r′nξ
n−1

︸ ︷︷ ︸

R′(ξ)

, (4.36)

where R,R′ ∈ R[ξ]·×· and each new meromorphic coefficient function of R′ is
computed as the result of elementary cut-and-shift operations:

̺−(rξi) =







i−1∑

j=0

(−1)j ṙ(j)ξi−j−1, if i > 1;

0, if i = 0.

(4.37)

This yields that

r′i =

n−i∑

j=0

(−1)j ṙ
(j)
i+j . (4.38)

Cut-and-shift in discrete-time

In the DT case, ξ is associated with the forward time-shift operator q , implying
that multiplication with ξ onR[ξ]·×· gives the non-commutative rule of (3.42). The
reverse operation, multiplication by ξ−1, results in backward time-shift, giving:

ξ−1
[
rξi
]

=←−r ξi−1. (4.39)

This implies that in discrete-time, the cut-and-shift-map is defined on R[ξ]·×· in
the form of (4.36), where each new meromorphic coefficient function is computed
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as the result of elementary cut-and-shift operations:

̺−(rξi) =

{ ←−r ξi−1, if i > 1;
0, if i = 0.

(4.40)

giving that r′i =←−ri where←−� is the backward shift operation on R.

State-maps and polynomial modules

As a next step we formulate the construction of a state-map, i.e. the generation of
state variables, for a given kernel representation, as the recursive use of the cut-
and-shift operation on the polynomials of R[ξ]. This procedure is the analog of
the introduced recursive-scheme of state-construction in the CT case (see (4.33)).
The resulting state-map characterizes a state-kernel representation of the system,
which is minimal in the SISO case. In order to describe all equivalent (minimal)
state-kernel representations of the system, equivalence classes of the state-map are
established in terms of polynomial modules over R[ξ].

Let R ∈ R[ξ]nr×nW be the associated polynomial of the kernel presentation
RK(S). Assume that R is monic and given as

R(ξ) = r
[0]
0 + r

[0]
1 ξ + . . .+ r[0]n ξn, (4.41)

where superscript �
[0] denotes an additional index of the coefficients. Repeated

use of ̺− on R and stacking the resulting polynomial matrices leads to

Σ−(R) =










̺−(R)
̺2
−(R)

...
̺n−2
− (R)
̺n−1
− (R)










=












r
[1]
1 + . . .+ r

[1]
n−1ξ

n−2 + ξn−1

r
[2]
2 + . . .+ r

[2]
n−1ξ

n−3 + ξn−2

...

r
[n−1]
n−1 + ξ

1












. (4.42)

where each coefficient function r
[j]
i is computed according to the local cut-and-

shift rules based on {r[j−1]
i }ni=n−j+1 recursively. It is obvious, that if nr = 1 (SISO

case if additionally nW = 2), the rows of Σ− are independent, thus it can be shown
that X = Σ−(R) defines a minimal state-map in the form of

x = (X(ξ) ⋄ p)w. (4.43)

Later it is shown, that such a state-map implies a unique SS representation. Before
that, we characterize all possible minimal state-maps that lead to an equivalent SS
representation.

Denote the multiplication by ξ as ̺+, which acts in the same way as as defined
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by (3.22) and (3.42): Consequently

̺+

([
Σ−(R)

0

])

=

[
R

Σ−(R)

]

−









r
[0]
0

r
[1]
1
...
1









. (4.44)

Note that ̺−̺+ = I , while ̺+(̺−(R)) = R(ξ)−R(0).

Following a similar path as in the LTI case, denote by spanrow
R (R) the sub-

space spanned by the rows of R ∈ R[ξ]·×·, viewed as a linear space of polynomial
vector functions with coefficients in R·×·. Also introduce moduleR[ξ](R) as the
left-module inR[ξ]nr×nW spanned by the rows of R ∈ R[ξ]nr×nW :

moduleR[ξ](R) = R[ξ]1×nW�R[ξ]1×nrR, (4.45a)

= spanrow
R











R
̺+(R)

...









 . (4.45b)

This module represents the set of equivalence classes on spanrow
R (Σ−(R)). LetX ∈

R[ξ]·×nW be a polynomial matrix with independent rows (full row-rank) and such
that

spanrow
R (X)⊕moduleR[ξ](R) = spanrow

R (Σ−(R)) + moduleR[ξ](R). (4.46)

Then similar to the LTI case, it is possible to show that X is a minimal state-map
of the LPV system S and it defines a state variable by (4.43). This way it is pos-
sible to obtain all minimal SS realizations of S that are equivalent with the kernel
representation associated with R.

State-maps based on kernel representations

In the previous part, we have established state-map constructions for kernel rep-
resentations based on the cut-and-shift operation and characterized the class of all
state-maps that result in an equivalent SS representation. The next step is to char-
acterize these SS representations with respect to an IO partition. We develop an
algorithm which, based on a given state-map, provides a SS realization of a ker-
nel representation for a chosen IO partition. We show that, for specific choices of
the state-map, the algorithm provides the SS realization in terms of the previously
introduce observability and companion observability canonical forms.

For a given kernel representation RK(S) associated with the polynomial R ∈
R[ξ]nr×nW , the input-output partition of R is characterized by choosing a selector
matrix Su ∈ R·×nW giving u = Suw and a complementary matrix Sy ∈ R·×nW
giving y = Syw. In case of an unknown IO partition, the construction of Su follows
by computing the subspace of R1×nW consisting of the R-span of the elements
with degree zero in spanrow

R (Σ−(R)) + moduleR[ξ](R) and choosing Su such that
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the rows of Su span a complement of this subspace relative to RnW . Then, Sy is
chosen complementary to Su.

Assume that a full row rank X ∈ R[ξ]·×nW is given which satisfies (4.46). Then
the matrix polynomial X and the matrix Su jointly lead to the direct sum decom-
position:

spanrow
R (InW×nW) + spanrow

R (Σ−(R)) + moduleR[ξ](R) =

spanrow
R (Σ−(Su))⊕ spanrow

R (Σ−(X))⊕moduleR[ξ](R). (4.47)

From (4.44), it follows that

spanrow
R (̺+(Σ−(X))) ⊆ spanrow

R (InW×nW)+

spanrow
R (Σ−(R)) + moduleR[ξ](R), (4.48)

which implies

spanrow
R (̺+(X)) ⊆ spanrow

R (X)⊕ spanrow
R (Su)⊕moduleR[ξ](R). (4.49)

On the other hand, Sy gives

spanrow
R (Sy) ⊆ spanrow

R (X)⊕ spanrow
R (Su)⊕moduleR[ξ](R). (4.50)

These inclusions imply, that there exist unique matrix functions (A,B,C,D) in
R·×· and polynomial matrix functions Xu, Xy ∈ R[ξ]·×· with appropriate dimen-
sions such that

ξX = AX +BSu +XuR, (4.51a)
Sy = CX +DSu +XyR. (4.51b)

Then [
A B
C D

]

∈
[
RnX×nX RnX×nU
RnY×nX RnY×nU ]

, (4.52)

is a minimal state-representation of the LPV system S. This algorithm provides
an SS realization of both LPV-IO and LPV-KR representations.

As a next step, we show that specific choices of X lead to the construction
of the observability and the reachability canonical forms via algorithm (4.51a-b).
Consider the SISO case. Assume that RIO(S) is given with polynomial matrices
Ry, Ru ∈ R:

Ry(ξ) = a
[0]
0 + a

[0]
1 ξ + . . .+ a[0]

na
ξna , (4.53)

Ru(ξ) = b
[0]
0 + b

[0]
1 ξ + . . .+ b[0]nb

ξnb . (4.54)

where na = nb. Additionally, let R be monic, i.e. a[0]
na = 1, otherwise redefine the

polynomials by dividing by the coefficient function a
[0]
na . Then Σ− ([Ry −Ru])
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gives:











a
[1]
1 + . . .+ a

[1]
na−1ξ

na−2 + ξna−1 −b[1]1 − . . .− b
[1]
na−1ξ

na−1

a
[2]
2 + . . .+ a

[2]
na−1ξ

na−3 + ξna−2 −b[2]2 − . . .− a
[2]
na−1ξ

na−2

...
...

a
[na−1]
na−1 + ξ −b[na−1]

na−1 − b
[na−1]
na ξ

1 −b[na]
na












. (4.55)

Obviously, this na × 2 matrix has independent rows and the span of these rows is
linearly independent from moduleR[ξ]([Ry −Ru]). Thus, the construction of the
state-map in terms of (4.46) requires to choose X ∈ R[ξ]na×2 such that spanrow

R (X)
equals the rowspan of (4.55). As all rows of (4.55) are independent, therefore X
can be easily constructed. The selector matrices are also evident: Su = [ 0 1 ]
and Sy = [ 1 0 ].

A convenient choice for X is to take the rows of (4.55) in the given order (top-
to-bottom). Application of the algorithm defined by (4.51a-b) with such a X leads
to the companion-observability canonical form ROc

SS (S). This can be shown by
solving the corresponding equation system of (4.51a-b). Note that the resulting
conversion rules in DT are exactly the same as in Corollary 4.5.

To derive a realization in terms of the observability canonical form, define
β0, . . . , βna ∈ R such that

Ru(ξ) = β[0]
na
Ry(ξ) + β

[0]
na−1ξ

−1Ry(ξ) + . . .+ β
[0]
0 ξ−naRy(ξ) + . . . (4.56)

These functions are the resulting expansion coefficients (left-fractions) of Ru in
terms of Ry. Then, by choosing X as

X(ξ) =












1 −β[na]
na

ξ −β[na−1]
na−1 − β

[na−1]
na ξ

...
...

ξna−2 −β[2]
2 − . . .− β

[2]
naξ

na−2

ξna−1 −β[1]
1 − . . .− β

[1]
naξ

na−1












, (4.57)

results in RO
SS(S) via the algorithm defined by (4.51a-b). The resulting coefficients

in this case are
αo

i = a
[0]
i , βo

j = β
[j]
j , (4.58)

where i, j ∈ InX1 , nX = na, βo
na

= b
[na]
na . Again, it can be shown that the resulting

conversion rules in DT are exactly the same as in Corollary 4.5.

The following claim obviously holds in the LPV case as well:

Claim 4.1 The RO
SS(S) and ROc

SS (S) SS realizations of a SISO RIO(S) via (4.51a-b) are
completely state-observable and hence minimal. They are also structurally state-reachable
iff Ry and Ru are left-coprime onR[ξ].
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State-maps based on image-representations

The previously developed algorithm provides SS realizations based on kernel rep-
resentations. However it is also possible to derive another algorithm that is based
on state-maps generated from the so called image representations. In this part, we
develop this algorithm and we show that for specific choices of the state-map it
provides the SS realization in terms of the previously introduced reachability and
companion reachability canonical forms.

To deduce reachability canonical forms, investigate RIO(S) with matrix poly-
nomial functions Ru and monic Ry in the following, so called image representation:

[
u
y

]

= (

[
Ru(ξ)
Ry(ξ)

]

︸ ︷︷ ︸

X̆(ξ)

⋄ p)wL. (4.59)

with ξ either equal to d
dt or q . Note that any LPV system has an image represen-

tation in the form of (4.59) with equal manifest behavior (see Zerz (2006) for a
proof). Applying the cut-and-shift based state-construction mechanism on (4.59)
with system variables (wL, u, y) leads to

Σ−(
[

X̆ I2×2

]
) =

[

Σ−(X̆) 0 0
]
,

where

Σ−(X̆) =

















a
[1]
1 + a

[1]
2 ξ + . . .+ ξna−1

b
[1]
1 + b

[1]
2 ξ + . . .+ b

[1]
nbξ

nb−1

a
[2]
2 + . . .+ ξna−2

b
[2]
2 + . . .+ b

[2]
nbξ

nb−2

...
1

b
[na]
na

















.

A minimal state for (4.59) is therefore given by

x = (X(ξ) ⋄ p)wL, (4.60)

where X ∈ R[ξ]na×1 has independent rows and satisfies

spanrow
R (X) = spanrow

R (Σ−(X̆)). (4.61)

The input is given as u = Su(X̆(ξ) ⋄ p)wL with Su a selector matrix such that
spanrow

R (X) and spanrow
R (SuX̆) are direct summands. This implies that Su = [ 0 1 ]

and Sy = [ 1 0 ]. Then again, it can be seen that

spanrow
R (̺+(X)) ⊆ spanrow

R (X)⊕ spanrow
R (SuX̆), (4.62a)

spanrow
R (SyX̆) ⊆ spanrow

R (X)⊕ spanrow
R (SuX̆). (4.62b)
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These inclusions imply the existence of unique matrices (A,B,C,D) in R·×· and
a polynomial matrix X ∈ R[ξ]·×· with appropriate dimensions such that

ξX = AX +BSuX̆, (4.63a)
SyX̆ = CX +DSuX̆, (4.63b)

giving a state-representation of the LPV system S.

Consider again the SISO case. By choosing X as

X(ξ) =
[

1 ξ . . . ξna−2 ξna−1
]⊤
, (4.64)

algorithm (4.63a-b) results in the companion-reachability canonical form RRc

SS (S),
while, using

X =












a
[1]
1 + . . .+ ξna−1

a
[2]
2 + . . .+ ξna−2

...

a
[na−1]
na−1 + ξ

1












, (4.65)

gives RR
SS(S). Unfortunately, due to the same reasons as in the state-elimination

case, closed formulas of the coefficient relations can not be given for the reachabil-
ity and its companion canonical forms. However, the transformed coefficients can
always be uniquely obtained through algorithm (4.63a-b). The following claim
also holds:

Claim 4.2 The RR
SS(S) and RRc

SS (S) SS realizations of a SISO RIO(S) via (4.63a-b) are
completely state-reachable. They are also structurally state-observable and hence minimal
iff Ry and Ru are coprime.

State-construction in the MIMO case

In the MIMO case, algorithms (4.51a-b) and (4.63a-b) also provide SS realization
of IO representations, however with different selector matrices (due to the multi-
dimension) and with a more complicated path to select independent rows from
the shift-map for X . It is only guaranteed that at least na number of rows of the
shift-map are independent, thus such selection is not evident. Similar to the se-
lection schemes generating the SS MIMO canonical representations, only certain
selection strategies for X lead to the MIMO observability and reachability canoni-
cal forms. Thus minimality of the obtained SS realizations via algorithm (4.51a-b)
and (4.63a-b) is not guaranteed in the general sense.

Example 4.9 (SS realization of LPV-IO representations) Consider the following DT-LPV-IO representa-
tion RIO(S):

y + pq−1y + pq−2y = pq−1u,



172 Chapter 4 LPV equivalence transformations

with P = [1, 2]. Then the polynomial form of this representation is characterized as

R(ξ) ⋄ p =
[

Ry(ξ) ⋄ p −Ru(ξ) ⋄ p
]

=
[

ξ2 + (q2p)ξ + q2p −(q2p)ξ
]
.

In the following we derive a SS realization of this representation in an observability canonical form. According
to (3.42), associate the involved scheduling dependencies as

ζ01 = p, ζ11 = qp, ζ21 = q2p.

In terms of these variables, R reads as

R(ξ) =
[

Ry(ξ) −Ru(ξ)
]

=
[

ξ2 + ζ21ξ + ζ21 −ζ21ξ
]
.

By solving (4.56), it follows that

β
[0]
2 = 0, β

[0]
1 = ζ21.

Then, by generating X(ξ) in terms of (4.57), we obtain

X(ξ) =

[
1 0
ξ −ζ11

]

.

Now with Sy =
[

1 0
]

and Su =
[

0 1
]
, equations (4.51a-b) read as

[
ξ 0
ξ2 −ζ21ξ

]

︸ ︷︷ ︸

ξX(ξ)

=

[
α11 α12

α21 α22

]

︸ ︷︷ ︸

A

·
[

1 0
ξ −ζ11

]

︸ ︷︷ ︸

X(ξ)

+

[
0 β1

0 β2

]

︸ ︷︷ ︸

BSu

+

[
Xu1(ξ)
Xu2(ξ)

]

R(ξ),

[
1 0

]

︸ ︷︷ ︸

Sy

=
[

c1 c2
]

︸ ︷︷ ︸

C

·
[

1 0
ξ −ζ11

]

︸ ︷︷ ︸

X(ξ)

+
[

0 d1
]

︸ ︷︷ ︸

DSu

+ Xy(ξ)R(ξ),

These give the following

ξ = α11 + α12ξ + Xu1(ξ)Ry(ξ), ⇒ Xu1(ξ) = 0, α11 = 0, α12 = 1,
0 = −ζ11α12 + β1 −Xu1(ξ)Ru(ξ), ⇒ β1 = ζ11,

ξ2 = α21 + α22ξ + Xu2(ξ)Ry(ξ), ⇒ Xu2(ξ) = 1, α21 = α22 = −ζ21,
−ζ21ξ = −ζ11α22 + β2 −Xu2(ξ)Ru(ξ), ⇒ β2 = −ζ11ζ21,

1 = c1 + c2ξ + Xy(ξ)Ry(ξ), ⇒ Xy(ξ) = 0, c1 = 1, c2 = 0,
0 = −ζ11c2 + d1 −Xy(ξ)Ru(ξ), ⇒ d1 = 0.

Then, the observability canonical form results as

RO
SS(S) =





0 1 qp
−q2p −q2p −(qp)(q2p)

1 0 0



 .

Similarly, the reachability canonical form can be obtained, giving

RR
SS(S) =





0 −q−1p 1
1 −q−1p 0

p −p(q−1p) 0



 .

4.4 Summary

In this chapter, we have established equivalence transformations between the
state-space and the input-output representation domains. These transformations
have been introduced to enable comparison of LPV model structures and identi-
fied models later on and also to provide essential tools for the identification ap-
proach of this thesis. Additionally, we have defined observability and reachability



4.4 Summary 173

canonical SS representations of LPV systems and we have shown that they pro-
vide a simple gateway for the conversion between the representation domains.

First in Section 4.1, we introduced the observability/reachability canonical SS
representation trough a transformation mechanism applied on a given SS repre-
sentation of the LPV system. It has been shown that in case of structural state-
observability/reachability of the SS representation, state-transformations can be
computed both in the SISO and in the MIMO case that result in observability/re-
achability canonical representations. It has been pointed out that the matrix struc-
ture of these canonical forms imply complete state-observability/reachability and
the canonical forms provide a unique representation of their associated equiva-
lence class. This means that, using the weak property of structural observabil-
ity/reachability of the given SS representation, such representations of the sys-
tem can be computed that have these properties in the complete-sense. The lat-
ter property is a consequence of the almost-everywhere-equality concept of the
equivalence relations introduced in Section 3.2.

Besides the observability/reachability canonical forms, their companion coun-
terparts have also been introduced. Furthermore, it has been shown that the trans-
pose of a LPV-SS representation does not have the same manifest behavior, which
is a notable difference with respect to the LTI theory. This property also proves
that coefficients of canonical forms that structurally seem to be the transpose of
each other (like the reachability and observability forms), are not equal. The con-
nection of the introduced canonical forms with the applied theories of the current
LPV literature has been also investigated. This has resulted in the conclusion that
the common practice to use LTI theory to compute canonical forms for LPV sys-
tems yields SS representations that do not have an equal manifest behavior. Thus,
the correct formulation of observability/reachability canonical forms is an essen-
tial contribution of this thesis to the general LPV systems theory.

In Section 4.2, we have introduced an equivalence transformation from the
SS to the IO representation domain, extending the results of the LTI case. Us-
ing the concept of latent variable elimination, we have derived an algorithm that
results in a minimal IO realization of a given SS representation. Using the algo-
rithm, we have also provided simple conversion rules between the coefficients of
observability and companion observability canonical forms and the resulting IO
representation.

Continuing the line of reasoning, in Section 4.3 we have introduced an equiv-
alence transformation from the IO to the SS representation domain as a reverse
operation of the previously used latent variable elimination. We have studied a re-
cursive scheme of state variable construction using elementary operations called
cut-and-shift. Then, we constructed state-maps based on this mechanism, and
formalized the equivalence class of all equivalent (minimal) SS representations.
Using the previously developed concepts, we have introduced algorithms which,
for special choices of the state-maps, result in the introduced canonical forms. In
this way, simple conversion between the representation domains is accomplished.
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LPV series expansion representations

I
n this chapter, series-expansion representations of LPV systems for a
given IO partition are developed using the framework of the behavioral

approach. In fact, expansion of DT asymptotically stable LPV systems
is considered in terms of OBFs and the connection between this type of
expansion and the gain-scheduling principle is explored. It is shown that
this series-expansion representation is unique and always exists for the
considered system class and in some cases only a finite number of the
expansion coefficients are nonzero. This implies that finite truncation of
a OBFs-based series-expansion can be used as a model structure for the
identification of asymptotically stable DT-LPV systems just like in the LTI
case.

5.1 Introduction

In the LTI framework, series-expansion representations have proved their useful-
ness in a number of contexts. They not only characterize a unique representation
of the input-output (IO) system dynamics, like impulse-response representations,
but they also provide model structures, like Orthonormal Basis Functions (OBFs)-
based models, that provide an efficient alternative for LTI system identification.
Using such model structures for the identification of LPV systems has a number
of attractive proprieties and it would also allow the extension of the OBFs based
identification approaches to the LPV case (see the argument of Chapter 1). Based
on this, we develop in this chapter the concept of series-expansion of LPV sys-
tems in terms of OBFs, providing a unique perspective on the representation of
the system dynamics with respect to an IO partition. This contribution of the the-
sis enables the introduction of model structures as the finite truncation of a OBF
series-expansion with respect to a LPV system. These model structures are vital
ingredients of the LPV identification approach developed later.

To simplify the discussion and to avoid cases that are complicated but unim-
portant for our identification approach, we restrict the discussion to discrete-time

175
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(DT) asymptotically-stable LPV systems. For this type of systems, we first develop
in Section 5.2 the series-expansion representation for a given IO partition in terms
of the pulse basis. We investigate convergence of the expansion and we show that
it uniquely characterizes the behavior for signals with left compact support. Next
in Section 5.3, by using basic relations of OBFs with respect to the pulse basis, we
develop LPV series-expansion representations in terms of general LTI orthonor-
mal basis functions. We claim that these representations also uniquely charac-
terize the behavior and the convergence rate of the OBFs expansion depends on
the used basis sequence. As a next step in Section 5.4, we explore the connec-
tion between series-expansion representations and the gain-scheduling principle,
showing that the expansion coefficients characterizes the scheduling function part
of the LPV system, while the basis functions are strongly related to the frozen sys-
tem set. It is also shown,that Kolmogorov n-Width (KnW) optimality of the OBFs,
with respect to the transfer functions of the frozen system set, implies optimal
convergence rate of the basis sequence based series-expansion of the LPV system
for constant scheduling trajectories. Furthermore, it is motivated that for systems
with minimal input-output (IO) representation having static dependence, the opti-
mal convergence rate of the series-expansion with respect to such basis also holds
for arbitrary scheduling trajectories. We will see later, that these observations en-
able to accommodate OBFs-based model structure selection in practice for LPV
identification.

5.2 Impulse response representation of LPV systems

As a first step, we develop the series-expansion representation of DT asymptoti-
cally stable LPV systems based on a pulse basis (see Section 2.2 for the definition
of pulse basis). LPV systems can not be handled in the frequency domain, thus
we develop the concept of series-expansion in terms of the time operator form of
the pulse basis. To do so, we first introduce the filter form of an LPV-IO represen-
tation. Then we generate the expansion in terms of the pulse basis by recursive
substitution of the filter form. We show the uniqueness and the convergence of
the resulting expansion coefficients. Additionally we briefly cover how this series-
expansion can be generalized to unstable and continuous-time (CT) systems.

Filter form of LPV-IO representations

Based on the previously given line of discussion, first the filter form of LPV-IO
representations is introduced. Let a discrete-time LPV system S = (Z,P,W,B)
be given with a IO partition w = col(u, y) and scheduling variable p. Assume
that S is asymptotically dynamically stable and that a minimal IO representation
RIO(S) of S is given, characterized by the polynomial Ru ∈ R[ξ]nY×nU and the
full row rank Ry ∈ R[ξ]nY×nY with deg(Ry) = na ≥ nb = deg(Ru). In this way, the
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behavior B is described by the relation

na∑

i=0

(ai ⋄ p)qiy =

nb∑

j=0

(bj ⋄ p)qju. (5.1)

for every (u, y, p) ∈ B with left compact support. Without loss of generality, as-
sume thatRy is monic and multiply (5.1) by q−na according to the non-commutati-
ve multiplication rules in discrete-time (see Definition 3.13). The resulting expres-
sion reads as

y = −
na−1∑

i=0

([ai]
na ⋄ p)qi−nay +

nb∑

j=0

([bj ]
na ⋄ p)qj−nau, (5.2)

where [ � ]na denotes the backward shift operator applied on the coefficient func-
tion for na times. As only the backward time-shifted versions of y appear on the
right side of (5.2), the relation (5.2) is called the filter form of (5.1).

Series expansion by pulse basis

Assume that na = nb, which can be realized by including extra coefficients
{bj}na

j=nb+1 that are zero functions. By substituting the relation (5.2) recursively
into itself to eliminate the shifted versions of y we obtain:

y = (g0 ⋄ p)u+ (g1 ⋄ p)q−1u+ (g2 ⋄ p)q−2u+ . . . (5.3)

where

g0 = [bna ]
na ,

g1 = [bna−1]
na − [ana−1]

na [bna ]
na+1,

g2 = [bna−2]
na − [ana−1]

na [bna−1]
na+1 − [ana−2]

na [bna ]
na+2 +

+[ana−1]
na [ana−1]

na+1[bna ]
na+2.

It is obvious that {g0, g1, g2, . . .} are meromorphic coefficient functions. Further-
more, they are backward-shifted combinations of the coefficients of RIO(S) and
due to the minimality of RIO(S) they are unique with respect to the considered
IO partition of S. In addition, the signal trajectories (u, y, p) ∈ B described by
(5.1) have left-compact support. This means, that there exists a n ∈ N, such that
after n substitutions of the relation (5.2) recursively into itself, y vanishes from the
expression (5.3). This shows, that by this recursive substitution we have obtained
an infinite expansion of (5.2) in terms of the LTI pulse basis {1, q−1, q−2, . . .} with
coefficients gi ∈ RnY×nU for i = 1, 2, . . .. If the coefficients of RIO(S) have static
dependence or they are all dependent only on the backward shifted versions of p,
then each gi depends only on the past values of p.

Furthermore, in case of a given scheduling trajectory p ∈ BP, and a pulse input
at k = 0, the output trajectory of S satisfies

y(0) = (g0 ⋄ p)(0), y(1) = (g1 ⋄ p)(1), y(2) = (g2 ⋄ p)(2), . . .
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thus {gi}∞i=0 can be considered as the impulse response coefficients of S for the con-
sidered IO partition. Additionally, the asymptotic stability of S implies that

y(k)→ 0, as k→∞, (5.4)

which means that the sequence of coefficients {gi}∞i=0 converges to zero along
every scheduling trajectory p ∈ BP. Thus

lim
i→∞

(gi ⋄ p)(i) = 0, ∀p ∈ BP. (5.5)

This implies that due to the shift-invariant property of B:

lim
i→∞

(gi ⋄ p) = 0, ∀p ∈ BP, (5.6)

holds, which means that the sequence of coefficient functions {g0, g1, g2, . . .} con-
verges to the zero function with respect to BP. It is also important that asymptotic
stability of S implies BIBO stability in the ℓ∞ norm:

sup
k≥0
‖u(k)‖ <∞⇒ sup

k≥0
‖y(k)‖ <∞.

As (5.3) holds for any (u, y, p) ∈ B with left compact support,

(

sup
k≥0
‖u(k)‖ <∞ and sup

k≥0
‖y(k)‖ <∞

)

⇒ sup
k≥0

∞∑

i=0

‖(gi ⋄ p)(k)‖ <∞. (5.7)

These properties yield the following theorem:

Theorem 5.1 (Existence of series-expansion representation, pulse basis) Any
asymptotically stable, discrete-time LPV system S = (Z,P,W,B) with an IO partition
(u, y) has a unique, convergent series-expansion in terms of the pulse-basis {q−i}∞i=0 and
coefficients gi ∈ RnY×nU , such that

y =
∞∑

i=0

(gi ⋄ p)q−iu, (5.8)

is satisfied for all (u, y, p) ∈ BP with left compact support.

For a proof see Appendix A.2. The LPV series-expansion in terms of the pulse
basis is similar to the series-expansion in the LTI case (see (2.111)). This means
that the LPV system has a convergent series-expansion in terms of an LTI basis,
which has a strong connection to the gain-scheduling concept of LPV systems.
Furthermore it is a general property of the expansion coefficients {gi}∞i=0 that they
have dynamic dependence even if the original IO representation, used for their
computation, has coefficients with static dependence.

Note that in case of a uniformly unstable LPV system (S is unstable for every
constant scheduling trajectory in BP), a series-expansion representation can also
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be derived in terms of the pulse basis {q1, q2, q3, . . .}. If the system is only non-
uniformly stable, then the series-expansion follows by taking the two sided pulse
basis {. . . , q−1, 1, q1, . . .}. These cases are not treated here as we consider only the
identification of asymptotically-stable LPV systems in this thesis. Furthermore,
the continuous-time case of series expansions is also not covered in the following.
One of the reasons is that in the introduced behavioral framework it would be
cumbersome to handle ξ−1, which corresponds to an integral operator in CT. An
additional problem is that the unit-step function, which is associated with ξ−1 =
s−1 in the LTI case, is not an H2 function, thus it does not correspond to a basis
function sequence. Remember, that a CT basis is related to its DT counterpart by
the bilinear transformation (2.134). Based on these considerations, we only treat
the asymptotically stable DT case.

The impulse response representation

Based on Theorem 5.1, it is possible to define the series-expansion representation
of S in terms of the LTI pulse basis {1, q−1, q−2, . . .} as follows:

Definition 5.1 (LPV series-expansion representation, pulse basis) The pulse ba-
sis series-expansion representation of a discrete-time asymptotically stable S = (Z,P ⊆RnP ,RnU+nY ,B) with scheduling signal p and IO partition (u, y) is denoted by RIM(S)
and defined as:

y =

∞∑

i=0

(gi ⋄ p)q−iu (5.9)

where gi ∈ RnY×nU , i ∈ I∞0 are the meromorphic expansion coefficients.

In the following, we call this representation the Impulse Response Representation
(IRR) of the LPV system. Note that RIM(S), similar to the IO representations, de-
scribes the behavior of S restricted to signal trajectories with left-compact support.
However, in contrast with other LPV representations, it is unique. It is also impor-
tant that an equivalence transformation exists from IO representations to the IRR
domain, i.e. RIO(S) can be always transformed to RIM(S) if S is asymptotically
stable, however realization of a IO representation from the IRR is unsolved yet.
See Example 5.1 for the construction of a IRR.

Example 5.1 (Pulse basis series-expansion representation of an DT-LPV system) Consider the DT-
LPV-IO representation RIO(S) given in the following filter form:

y = −0.1pq−1y − 0.2pq−2y + sin(p)q−1u,

with P = [0, 1]. By recursive substitution of this equation for q−1y, q−2y, . . . , the following series-expansion
in terms of the pulse basis functions {q−1, q−2, . . .} results:

y = sin(p)
︸ ︷︷ ︸

g1⋄p

q−1u +
(
−0.1 sin(q−1p)

)

︸ ︷︷ ︸

g2⋄p

q−2u +
(
0.02p(q−1p)− 0.2

)
sin(q−2p)

︸ ︷︷ ︸

g3⋄p

q−3u . . .

The resulting expansion coefficients are uniquely defined by the above expression with g0 = 0. As RIO(S)
corresponds to an asymptotically stable behavior, the above series-expansion is convergent. This can be seen from
the increasing power of −0.1 and −0.2 in the resulting expression.
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5.3 LPV series-expansion by OBFs

As a next step, we generalize the series-expansion concept to general OBFs in
RH2− (E). To do so, we first show that each element of the pulse basis sequence
can be written in a series-expansion form of an orthonormal basis Φ∞ ofRH2− (E).
By substituting each pulse function by its expansion in terms of a Φ∞, the series-
expansion of a RIO(S) can be obtained for general orthonormal basis functions in
a similar way as before.

Expansion of pulse functions by OBFs

Consider an OBF set Φ∞ ⊂ RH2− (E). Then, based on the LTI transfer function
theory, a pulse basis function q−i, i > 0 has a unique series-expansion in terms of
Φ∞ = {φi}∞i=1:

q−i =

∞∑

j=1

wijφj(q), (5.10)

where wij ∈ R, i, j ∈ I∞1 , are the expansion coefficients. This series-expansion
is convergent and it is a well-known property that for all i ∈ I∞1 , the sequence
{wij}∞j=1 is an ℓ2 sequence. Additionally, the same property holds for each {wij}∞i=1

sequence.

Series expansion by OBFs

As a next step, by using the relation derived in the previous part, we develop the
series-expansion of a minimal RIO(S) in terms of an OBF set Φ∞ = {φj}∞j=1 in
RH2− (E). Let S be asymptotically stable and assume that the pulse basis expan-
sion of RIO(S) has been already derived in the form of (5.9). Then by substituting
(5.10) into the expansion (5.9), we obtain

y = (g0 ⋄ p)u+ (g1 ⋄ p)
∞∑

j=1

w1jφj(q)u + (g2 ⋄ p)
∞∑

j=1

w2jφj(q)u + . . .

By rearranging this expression we arrive at

y = (g0 ⋄ p)u+

( ∞∑

i=1

wi1gi ⋄ p
)

︸ ︷︷ ︸

w1⋄p

φ1(q)u +

( ∞∑

i=1

wi2gi ⋄ p
)

︸ ︷︷ ︸

w2⋄p

φ2(q)u + . . .

where {w1,w2, . . .} are the coefficient functions of the new series-expansion in
terms of the basis Φ∞. Note that for each j ∈ I∞1 , {wij}∞i=1 is an ℓ2 sequence.
Furthermore the expansion coefficients satisfy (5.6) and (5.7) for every p ∈ BP.
Thus, each w i exists and it is an element of RnY×nU . Furthermore, zero conver-
gence of all {wij}∞j=1 and (5.7) implies that the sequence {w1,w2, . . .} converges
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to zero for every p ∈ BP similarly as in the pulse-basis case. Based on this, the
following theorem holds:

Theorem 5.2 (Existence of series-expansion representation, OBFs) Any asymp-
totically stable, discrete-time LPV system S = (Z,P,W,B) with an IO partition (u, y)
has a unique series-expansion in terms of a orthonormal basis sequence Φ∞ = {φj}∞j=1

inRH2− (E) and coefficients w i ∈ RnY×nU , such that

y = (w0 ⋄ p)u+

∞∑

i=1

(w i ⋄ p)φi(q)u, (5.11)

is satisfied for all (u, y, p) ∈ BP with left compact support.

For a proof see Appendix A.2. Note that the rate of convergence of the series-
expansion directly depends on the basis sequence Φ∞. Moreover, it is a gen-
eral property of the expansion coefficients {w i}∞i=0 that they have dynamic de-
pendence. In contrast with the LTI case, commonly the analytical computation of
these coefficients is only available in an approximative manner by truncating their
infinite sum relation with respect to the impulse response coefficients.

The OBF expansion representation

Based on the previously developed series-expansion concept, the following defi-
nition follows as the extension of Definition 5.1:

Definition 5.2 (DT-LPV series-expansion representation, OBFs) Let Φ∞ =
{φi}∞i=1 be a collection of orthonormal basis functions inRH2− (E) with poles {λ1, λ2, . . .}
satisfying the completeness condition

∑∞
i=1(1 − |λi|) = ∞. Then, in terms of the basis

Φ∞, the series-expansion representation of a discrete-time asymptotically stable LPV sys-
tem S = (Z,P ⊆ RnP ,RnU+nY ,B) with scheduling vector p and IO partition (u, y) is
denoted by ROBF(S,Φ∞) and defined as:

y = (w0 ⋄ p)u+

∞∑

i=1

(w i ⋄ p)φi(q)u, (5.12)

where w i ∈ RnY×nU are the meromorphic expansion coefficients.

In the following we call this representation the OBF expansion representation of the
LPV system. Again, ROBF(S,Φ∞) is unique and describes the behavior of S re-
stricted to signal trajectories with left-compact support. Similar to the IRR case,
equivalence transformation from IO representations to the expansion representa-
tion domain exists, however realization in the other direction is unsolved. See
Example 5.1 for the construction of a LPV expansion representation.

Example 5.2 (Hambo basis series-expansion representation of an LPV system) Continue Example 5.1
to develop the series-expansion of the considered RIO(S) in terms of the Laguerre basis Φ∞

1 = {φi}∞i=1 with
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poles Λ1 = 0.5. Based on the LTI transfer function theory, the pulse basis {q−1, q−2, . . . } has the following
series-expansion in terms of Φ∞

1 :

q−1 = 0.866φ1(q)− 0.433φ2(q) + 0.217φ3(q) + . . .

q−2 = 0.433φ1(q) + 0.433φ2(q)− 0.541φ3(q) + . . .

q−3 = 0.217φ1(q) + 0.541φ2(q)− 0.108φ3(q) + . . .

Then by substituting these series expansions into the pulse basis expansion of Example 5.1, it follows that

y =
(
0.866 sin(p)− 0.0433 sin(q−1p) + 0.0433

(
0.1p(q−1p)− 1

)
sin(q−2p) + . . .

)

︸ ︷︷ ︸

w1⋄p

φ1(q)u

+
(
−0.433 sin(p)− 0.0433 sin(q−1p) + 0.1082

(
0.1p(q−1p)− 1

)
sin(q−2p) + . . .

)

︸ ︷︷ ︸

w2⋄p

φ2(q)u

+ . . .

Note that the infinite sum expression of the coefficients {w1, w2, . . .} converges as the expansion coefficients
of each Laguerre basis φi(q) with respect to the pulse basis corresponds to an ℓ2 sequence. In this way, the
resulting expression is the series-expansion of RIO(S) in terms of Φ∞

1 . Note that the coefficients {w1, w2, . . .}
of this new series-expansion are linear combinations of the coefficients of the IRR. The weights of these linear
combinations are uniquely determined by the series-expansion of the pulse basis functions in terms of Φ∞

1 .

Similar to the LTI case, expansion representations haves the property that the
relative contribution of the basis, i.e. the w i functions, converge to the zero func-
tion on BP as i → ∞. In this way, for an asymptotically stable LPV system, it
is always possible to find a finite Φn ⊂ Φ∞, i.e. the truncation of (5.12), with
a relatively small number of functions, such that the representation error for all
(u, y, p) ∈ B is negligible. This provides an efficient approximation of the system.
Based on this, finite truncation of a OBF based expansion representation can be
used as a model structure for the identification of asymptotically stable DT-LPV
systems. Similar to the LTI case, identification based on this type of model struc-
ture reduces to the estimation of the meromorphic coefficient functions {w i}ni=0

which appear linearly in the dynamic relation. This vital result provides the basic
concept for the identification approach of this thesis.

5.4 Series expansions and gain-scheduling

There is an interesting relation of the OBF expansion representation and the gain-
scheduling principle. This relation helps to understand whether an orthonormal
basis is adequate for the series-expansion of the LPV system, i.e. how the rate of
convergence of the expansion can be characterized. In the following, we explore
this relation by first showing that for constant scheduling trajectories the OBF
expansion representation is equivalent with the series-expansion representations
of the frozen system set. As a next step we show, that this equivalence implies
that for some LPV systems, KnW optimality of the basis with respect to the frozen
system set implies an optimal convergence rate of the series-expansion in the LPV
case.
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The role of gain-scheduling

Let ROBF(S,Φ∞) be the expansion representation of a discrete-time asymptoti-
cally stable S in terms of an orthonormal basis Φ∞ ⊂ RH2− (E). Denote by FP the
frozen system set of S, and introduce F as the set of transfer functions associated
with each Fp̄ ∈ FP for the IO partition (u, y). As S is asymptotically stable, each
Fp̄ ∈ F is inRH2 (E) and its strictly proper part has a convergent series-expansion
in terms of Φ∞. It is obvious, that in case of a constant scheduling signal p(k) = p̄,
the expansion coefficients {w i}∞i=0 of ROBF(S,Φ∞) satisfy that

w i ⋄ p = w
(p̄)
i , (5.13)

where w (p̄)
i ∈ R, i ∈ I∞0 are the expansion coefficients of the transfer function Fp̄

with respect to Φ∞. In this way, Φ∞ with coefficients {w (p̄)
i }∞i=0 characterizes the

behavior of each Fp̄ ∈ FP in terms of an LTI expansion representation. We have
already discussed that by the gain-scheduling principle, an LPV system can be
viewed as a collection of LTI behaviors (frozen system set) and a scheduling sig-
nal dependent function set (scheduling functions) that selects one of the behaviors
to describe the possible continuation of the signal trajectories at every time in-
stant. Form the previous observation it is clear, that the basis Φ∞ with coefficients
w

(p̄)
i characterizes all frozen systems FP, while the remaining part of the LPV dy-

namic relation is in the global expansion coefficients {w i}∞i=0. This provides the
conclusion that from the gain-scheduling perspective, series-expansion separates
the LPV system into a frozen behavior set, described as the linear combination
of the basis functions, and a scheduling function set, which is represented by the
coefficient functions.

Optimality of the basis in the frozen sense

Now we can use this insight to consider the question, how the basis should be
chosen to achieve a fast convergence rate of the LPV series-expansion. This prob-
lem has a key importance in using truncated series expansions as model structures
for LPV system identification as it formulates the optimality of a model structure
with respect to a given system. To simplify the following discussion, we only
investigate the SISO case.

Consider the optimality concept of OBFs in terms of the Kolmogorov n-width
theory discussed in Section 2.4. By this concept, for a given transfer function set
F ⊂ RH2 (E) with pole locations

Ω = {λ ∈ C | λ is a pole of F ∈ F} , (5.14)

the finite set of OBFs Φn is called optimal in the n-width sense, if the subspace

Mn = span(Φn), (5.15)

has the minimal distance in terms of (2.168) for the worst-case F ∈ F. Denote
by Φ∞ng

the Hambo basis generated by the inner function G with ng number of
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poles and let Φne
ng

describe the Hambo functions obtained with ne as the number
of extensions of G (finite truncation of Φ∞ng

). It has been shown, that if Φne
ng

with
ne ≥ 0 is optimal in the n = (ne +1)ng-width sense with respect to F, then the rate
of convergence of the series-expansion of each F ∈ F in terms of Φ∞ng

is optimal
and it is bounded by ρne+1 where

ρ = sup
λ∈Ω
|G(1/λ)| . (5.16)

This means that in the series-expansion of any F ∈ F with a n = (ne + 1)ng-
width optimal Hambo basis Φ∞ng

= {φij}i=1,...,∞
j=1,...,ng

, there exists a γ > 0 such that all
expansion coefficients w ij satisfy:

|w ij | ≤ γρ(ne+1)(i+1)j . (5.17)

It is obvious that if F corresponds to the transfer function set of FP with respect
to a given IO partition and the Hambo basis Φ∞ng

is n = (ne + 1)ng-width optimal
with respect to F, then there exists a γ > 0 such that the expansion coefficients of
the LPV system in terms of Φ∞ng

with respect to the considered IO partition satisfy
that

|(w ij ⋄ p)(k)| ≤ γρ(ne+1)(i+1)j ∀k ∈ Z. (5.18)

for any constant scheduling trajectory p(k) = p̄. This means that if the basis is
optimal with respect to the frozen behaviors of the LPV system, then fast con-
vergence rate of the expansion coefficients holds in the frozen sense. However,
this does not imply fast convergence for non-frozen scheduling trajectories in the
general case. This leads to the conclusion, that to achieve a fast convergence rate
for the expansion of general LPV systems, a necessary condition is to have fast
convergence with respect to the frozen system set.

Optimality of the basis in the global sense

As a next step, we investigate when it is possible to characterize the convergence
rate of the global expansion coefficients based on the KnW optimality in the frozen
sense. Though, we have not been able yet to prove it, we strongly believe that
optimality with respect to the frozen system set is also a sufficient condition if the
LPV system has a IO representation with static coefficient dependence. This is
formalized in the following conjecture:

Conjecture 5.1 (Optimal basis) Given a discrete-time asymptotically stable SISO sys-
tem S = (Z,P ⊆ RnP ,R2,B) with scheduling vector p and IO partition (u, y). Assume
that there exists a minimal RIO(S) such that all coefficient dependencies in RIO(S) are
static. Denote by FP the frozen system set of S and let F be its associated transfer function

set with respect to the IO partition (u, y). Let Φ∞ng
= {φij}i=1,...,∞

j=1,...,ng
be a Hambo basis

which is n = (ne + 1)ng-width optimal with respect to F with convergence rate ρ. Then,
there exists a set of meromorphic expansion coefficients w ij ∈ R and γ > 0, such that for
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all (u, y, p) ∈ B with left compact support:

y = (w00 ⋄ p)u+

∞∑

i=0

ng∑

j=1

(w ij ⋄ p)φij(q)u, (5.19)

and
|(w ij ⋄ p)(k)| ≤ γρ(i+1)j(ne+1) ∀p ∈ BP and ∀k ∈ Z. (5.20)

If additionally,
F ⊆ span{Φne

ng
}, (5.21)

is satisfied, then
w ij ⋄ p = 0, (5.22)

for all i > ne and j ∈ Ing

1 .

Conjecture 5.1 is of crucial importance even if its proof is an open problem for the
general case. By this concept, under the condition of a minimal IO representation
with static dependence, the KnW optimality of the basis with respect to the frozen
system set can imply optimality of the basis in the series-expansion of the LPV
system. Optimality in the latter case means that the same convergence rate of the
expansion coefficients is satisfied both in the global and in the frozen sense. Fur-
thermore, an asymptotically stable LPV system can have a finite series-expansion
in terms of a basis that can represent all the frozen transfer functions of the system
by linear combinations. For example in case of LPV systems with a minimal SS
representation where the A andB matrices are constant and the C andD matrices
have static dependence, (5.21) is satisfied for a basis function set with poles equal
to the eigenvalues of A. In that case, a series-expansion exists with finite nonzero
expansion coefficients. This gives the conclusion, that to achieve a fast conver-
gence rate for the expansion of this subclass of LPV systems, it is both a necessary
and a sufficient condition to have fast convergence with respect to the frozen local
system set.

5.5 Summary

In this chapter, series-expansion representations of DT asymptotically stable LPV
systems for a given IO partition have been developed based on the concepts of the
behavioral approach. We investigated expansions in terms of orthonormal basis
functions with the intention to use finite truncation of these expansion represen-
tations as a model structure for the identification of asymptotically stable DT-LPV
systems later on. This contribution enables the use of the LTI OBF-based identi-
fication approach in the LPV case, which is of crucial importance in providing an
efficient and theoretically well-founded LPV identification method.

First in Section 5.2, we have develop series-expansion representations for DT
asymptotically stable LPV systems in terms of the pulse basis, which uniquely
characterizes the behavior for signals with left compact support. It has been
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shown that such an expansion always exists for these systems and it can be uniqu-
ely generated from a minimal IO representation. Additionally, asymptotic stabil-
ity of the system implies zero convergence of the expansion coefficients, which are
meromorphic coefficient functions.

As a next step, in Section 5.3 we have develop LPV series-expansion repre-
sentations in terms of general LTI orthonormal basis functions. We have shown
that series-expansion of each element of the pulse basis in terms of arbitrary OBFs
of RH2− (E) implies that OBFs expansion representations of LPV systems can al-
ways be generated uniquely from their pulse basis expansion. It has been shown
that the resulting representations also uniquely characterize the behavior and the
associated expansion coefficients are convergent with respect to the projected
scheduling behavior.

As a next step in Section 5.4, the connection between series-expansion repre-
sentation and the gain-scheduling principle has been explored, showing that the
expansion coefficients of the basis sequence characterizes the scheduling function
part of the LPV system, while the basis functions are strongly related to the frozen
system set. Based on this connection, it has been proved that KnW optimality of
the basis sequence with respect to the frozen system set associated transfer func-
tions implies optimal convergence rate of the LPV series-expansion with these ba-
sis functions for every constant scheduling trajectory. It has been also motivated
that for systems with minimal IO representations having static coefficient depen-
dence, optimal convergence rate of the LPV series-expansion with such basis also
holds for every scheduling trajectories. These properties have a paramount im-
portance for OBFs-based model structure selection in LPV identification.
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Discretization of LPV systems

T
his chapter is devoted to the discretization of LPV systems through
the discrete-time projection of their state-space representations. Both

exact and approximative approaches are developed in a zero-order hold
setting, where the continuous-time input and scheduling trajectories are
restricted to be piecewise constant. Primary attention is given to the
discretization of state-space representations with static coefficient de-
pendence. For this case, criteria are derived to assist the choice of the
sampling-time in terms of preservation of frozen dynamic stability and
acceptable upperbound on the discretization error. Discretization of rep-
resentations with dynamic dependence is briefly investigated with the
main conclusion that their adequate discretization requires a higher-order
hold setting with respect to the scheduling variable. In such a setting, the
scheduling trajectories are restricted to be piecewise polynomial with a
given order.

6.1 The importance of discretization

Transformation between LPV systems represented on the continuous-time (CT) and
the discrete-time (DT) axis, has primary importance both for control and identifica-
tion in the LPV framework:

Implementation of LPV control designs in physical hardware often meets sig-
nificant difficulties, as CT control design approaches (see Packard and Becker
(1992) and Scherer (1996)) are preferred in the literature over DT solutions (see
Apkarian and Gahinet (1995) and Packard (1994)). The main motivation for this
preference is that stability and performance requirements for LPV systems can
be expressed significantly easier in CT, like in a mixed sensitivity setting (Zhou
and Doyle (1998)). As a result, the current design tools focus on continuous-time
LPV state-space (SS) controller synthesis, requiring efficient discretization of such
representations for implementation purposes.

187
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In the LPV modeling framework, first principle LPV models of nonlinear sys-
tems are also often derived in a CT form. In LPV system identification, such mod-
els serve as a primary source of information to assist adequate model structure
selection in terms of order, type of coefficient dependence, etc. However, current
LPV identification methods are developed exclusively for DT. This means that
DT projection of first principle LPV models is required to assist model structure
selection for practical identification.

These issues imply that general discretization of LPV representations is a cru-
cial topic, which must be well explored and analyzed. However, the existing
literature about LPV discretization is very limited. In the early work of Apkar-
ian (1997), three different approaches have been introduced based on an isolated
(stand-alone discretization of a CT system aiming at only the preservation of the
CT input-output behavior) zero-order-hold (variation of free CT signals is restricted
to be piecewise-constant) setting. These approaches: the complete, the rectan-
gular, and the trapezoidal methods have been developed for the discretization
of LPV-SS representations by extending the concepts of the LTI framework (see
Section 2.1.8). However, only a limited discussion on the discretization error of
the introduced approaches and on their applicability for specific LPV systems has
been provided. In Hallouzi et al. (2006), an attempt has been made to characterize
the discretization error of the rectangular method by expressing the approxima-
tion error of the involved state-space matrices. Other types of discretization tech-
niques or criteria for the selection of sampling-time have not been investigated,
leaving the-state-of-the-art of LPV discretization incomplete.

In this chapter, we aim to complete the extension of the isolated discretiza-
tion approaches of the LTI framework (see Section 2.1.8). Additionally, we aim to
compare the properties of the resulting methods with questions of sampling-time
choice, preservation of stability, and discretization errors. Our main purpose is
to give tools for the use of CT first principle knowledge in the model structure
selection of DT-LPV identification approaches.

First in Section 6.2, we clarify the zero-order-hold (ZOH) discretization setting in
the LPV case and we motivate why such a setting is adequate for the discretization
of LPV representations with static dependence. Focusing on LPV-SS representa-
tions with static dependence, in Section 6.3 we develop the extension of both exact
and approximative discretization methods of the ZOH setting, which have been
discussed in the LTI case (see Section 2.1.8). To give these extensions an important
assumption is made, namely that the switching behavior of the signal trajectories
takes place smoothly in the ZOH setting. As a next step, in Section 6.4 we analyze
the discretization error and numerical properties of the derived methods based
on the results of the numerical analysis field (see Atkinson (1989)). Using the
introduced concepts, we derive criteria for the choice of sampling-time in terms
of preservation of dynamic stability of the discretized representation and guar-
anteed upperbound of the discretization error. This contribution enables the use
of the developed discretization methods to assist the adequate choice of a model
structure in the LPV identification framework. Additionally, important proper-
ties of the discretization approaches are also discussed in Section 6.5 from the
viewpoint of identification and control. In Section 6.4.4, the result of the assump-
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Figure 6.1: Ideal zero-order hold discretization setting of general LPV systems.

tion about the smooth switching behavior is analyzed, with the main conclusion
that this assumption has no significant consequences in practical situations. As
a final step in Section 6.6, it is investigated how the introduced theory can be
applied to the discretization of LPV-IO or LPV-SS representations with dynamic
dependence. It is concluded that adequate discretization of such representations
requires a higher-order hold setting with respect to the scheduling variable. In
that setting, the scheduling trajectories are restricted to be piecewise polynomial
with a given order. To illustrate the introduced methods and the applicability of
the derived criteria, a numerical example is presented.

6.2 Discretization of LPV system representations

As a first step of the previously given line of discussion, the exact characterization
of the applied discretization setting is given. Similar to the LTI case, we consider
an isolated approach in an ideal ZOH setting presented in Figure 6.1 where the
following assumption holds:

Assumption 6.1 We are given a CT-LPV system S, with input-output partition (u, y)
and with scheduling signal p, where u and p are generated by an ideal ZOH and y is
sampled in a perfectly synchronized manner with Td ∈ R+. The ZOH and the instrument
providing the output sampling have infinite resolution (no quantization error) and their
processing time is zero.

In this way, the problem we intend to solve in the following part is to find the
DT equivalent of a given CT-LPV system according to Assumption 6.1. Introduce
subscript “d” to denote sampled/discretized signals. Then it holds for the signals
of Figure 6.1 that

u(t) := ud (k) , ∀t ∈ [kTd, (k + 1)Td) , (6.1a)
p(t) := pd (k) , ∀t ∈ [kTd, (k + 1)Td) , (6.1b)

yd (k) := y (kTd) , (6.1c)
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for each k ∈ Z, meaning that u and p can only change at every sampling-time
instant. However, in the LPV framework p is considered to be a measurable ex-
ternal/environmental effect (general-LPV) or some function of the states or out-
puts of the system S (quasi-LPV). Therefore, possibly it can not be fully influ-
enced by the digitally controlled actuators of the plant which contain the ZOH.
Furthermore in Section 3.1.3, equivalence of CT and DT behaviors under a given
sampling-time has been established without any restrictions on the variation of u
or p.

On the other hand, the variation of u and p inside a sample interval must be
restricted to exactly characterize the effect of these signals on the plant. The reason
is similar as in the LTI case. In DT, observations of the CT signals u and p are only
available at each sampling-time instant. Thus there is no information about the
trajectory of these signals during the sample interval. This means that the output
signal can not be uniquely determined, unless the variation of the signals u and p
is restricted to a certain class of functions. In the ZOH setting, this function class is
chosen to be the piecewise constant (zero-order) class. It is also possible to choose
this class wider, including linear, 2nd-order polynomial, etc., functions and in this
way to define higher-order hold discretization settings of LPV systems. However,
in conclusion it holds true that in any LPV discretization setting, the variation of
the scheduling signals must be restricted.

By applying the ZOH setting for the discretization of a given LPV representa-
tion, the piecewise-constant variation of p implies that coefficients with dynamic
dependence simplify as the derivatives of p are zero inside the sampling inter-
val. This means, that unless the representation has static dependence, the ZOH
setting may result in the loss of certain parts of the original behavior. Based on
this, we assume that the CT representation to be discretized has static coefficient
dependence. Later we explore how this limitation can be overcome, i.e. how the
discretization of representations with dynamic dependence can be properly han-
dled.

In conclusion, the introduced discretization setting coincides with the conven-
tional setting of the LTI framework. Moreover, the presented setting is also appli-
cable to closed-loop controllers in the structure given in Figure 6.2. This closed-
loop setting has also been used in Apkarian (1997). Note that the assumption that
the scheduling vector of the continuous LPV controller is affected by the ZOH
setting, i.e. it can only vary in piece-wise manner, also holds in this case.

6.3 Discretization of state-space representations

Based on the previously introduced discretization setting, the isolated approaches
of the LTI framework are extended to the LPV case. We only give this extension
with respect to LPV-SS representations. In case the system description is avail-
able in the form of an other representation, using the equivalence transformations
developed in Chapter 4, an equivalent SS realization can always be obtained. Ad-
ditionally, we assume that the SS representation has only static coefficient depen-
dence. Investigation of the discretization errors and other properties is postponed



6.3 Discretization of state-space representations 191

Sampling

SamplingZOH

K
yd(k)ud(k)

u(t) y(t)

Discrete
LPV controller

pd(k)

p(t)

Continuous LPV controller

N

Continuous Plant

Figure 6.2: Ideal ZOH discretization setting of closed-loop LPV controllers.

till Sections 6.4 and 6.5. Before venturing into the derivation of discretization
methods, consider the following phenomenon:

For the continuous-time signals u, p defined through (6.1a-b) it holds that

u (t) =
∞∑

k=−∞
1 (t− kTd) [ud (k)− ud (k − 1)] , (6.2a)

p (t) =

∞∑

k=−∞
1 (t− kTd) [pd (k)− pd (k − 1)] , (6.2b)

where 1 (t) is the unit-step function (positive zero assumption based Heaviside
function) defined as

1 (t) :=

{
0, if t < 0;
1, if t ≥ 0.

(6.3)

The result of 1 (t− kTd) on RSS(S) in every sampling period is called the switch-
ing effect of the ZOH actuation. Based on this, the following important assump-
tion is made:

Assumption 6.2 The switching behavior of the ZOH actuation has no effect on the CT
plant, i.e. the switching of the signals is assumed to take place smoothly.

The analysis of the consequence of this assumption is postponed till Section 6.4.
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Complete method

First the complete signal evolution approach of the LTI framework is extended to
the LPV case. Let a continuous-time RSS(S) be given in the ZOH setting. Based
on Assumption 6.1, i.e. p and u are constant signals inside each sampling interval,
the state-equations (3.37a-b) of RSS(S) can be written as

ẋ (t) = (A ⋄ p) (kTd)x (t) + (B ⋄ p) (kTd)u (kTd) , (6.4a)
y(t) = (C ⋄ p) (kTd)x (t) + (D ⋄ p) (kTd)u (kTd) , (6.4b)

for t ∈ [kTd, (k + 1)Td) with initial condition x (kTd). Assume that, {A,B,C,D}
have static dependence on p. Then the DT signal pd satisfies that

(A ⋄ p)(kTd) = (A ⋄ pd)(k), (B ⋄ p)(kTd) = (B ⋄ pd)(k),
(C ⋄ p)(kTd) = (C ⋄ pd)(k), (D ⋄ p)(kTd) = (D ⋄ pd)(k).

(6.5)

The state-equation (6.4a), associated with the kth sampling interval, is an Ordinary
Differential Equation (ODE) which has the following solution:

x (t) = e(t−kTd)(A ⋄ pd)(k)x (kTd)+

∫ t−kTd

τ=0

e(t−kTd−τ)(A ⋄ pd)(k)(B ⋄ pd)(k)u (kTd) dτ.

By substituting t = (k + 1) Td, xd (k) = x (kTd), and ud (k) = u (kTd), the previous
formula results in

xd (k + 1) = eTd(A⋄pd)(k)xd (k)+ eTd(A⋄pd)(k)

∫ Td

τ=0

e−τ(A⋄pd)(k) (B ⋄ pd) (k)ud (k) dτ.

Assume that A (p̄) is invertible1 for ∀p̄ ∈ P. Then by evaluating the integral it
follows that

qxd = eTd(A ⋄ pd)xd +
(
A−1 ⋄ pd

) [

eTd(A ⋄ pd) − I
]

(B ⋄ pd)ud, (6.6a)

yd = (C ⋄ pd)xd + (D ⋄ pd)ud, (6.6b)

where xd (k) = x (kTd) and yd (k) = y (kTd). Then the complete method gives that
the DT equivalent of RSS(S) under Assumptions 6.1 and 6.2 is (Apkarian 1997):

RSS(S, Td) :=

[
eTdA A−1

(
eTdA − I

)
B

C D

]

. (6.7)

Example 6.1 (Complete discretization) Consider the CT-SS representation

RSS(S) =





2p− 1 p 0
0 −1 1
1 p 0





with P = [−1, 1] . The above representation has static linear dependence and it can be shown that it is uni-
formly frozen stable. By applying the complete method to RSS(S), it follows that the DT equivalent of this

1Due to the assumed static dependence of A, i.e. A ∈ R|nX×nXnP , it holds that (A ⋄ p)(t) = A(p(t)).
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representation under the sampling-time Td is

RSS(S, Td) =







eTd(2pd−1) 1
2
eTd(2pd−1) − 1

2
e−Td

eTd(2pd−1)+(2pd−1)e−Td−2pd
4pd−2

0 e−Td 1− e−Td

1 pd 0







.

Even for this simple LPV state-space representation, the DT projection results in a complicated rational/expo-
nential dependence on the samples of the scheduling signal.

6.3.1 Approximative state-space discretization methods

The complete method is commonly not favored in the LPV literature as it intro-
duces heavy nonlinear dependence on pd, like eTdA, which is the main drawback of
this approach. Many identification and control design techniques build on the as-
sumption of linear or polynomial static dependence on p, and hence it is required
to develop approximative discretization methods that try to achieve good repre-
sentation of the original behavior, but with a low complexity of the coefficient
dependence. To do that, we systematically extend the approximative discretiza-
tion methods of the LTI case, by using different approximations of the integral
that describes the state-evolution inside the sample-interval.

Rectangular (Euler’s forward) method

The simplest way to avoid the appearance of eTdA is to apply a first-order approx-
imation:

eTd(A ⋄ pd)(k) ≈ I + Td (A ⋄ pd) (k) . (6.8)

Introduce f(x, u, p, t) as the right hand side of (3.37a). Under Assumptions 6.1 and
6.2 it holds that

(k+1)Td∫

τ=kTd

f(x, u, p, τ) dτ =

(k+1)Td∫

τ=kTd

(A ⋄ pd)(k)x (τ) + (B ⋄ pd)(k)u (kTd) dτ, (6.9)

which defines the solution of (6.4a) in [kTd, (k + 1) Td). Left-hand rectangular eval-
uation of the integral (6.9) gives

x ((k + 1)Td) ≈ x (kTd) + Td (A ⋄ pd) (k)x (kTd) + Td (B ⋄ pd) (k)u (kTd) , (6.10)

coinciding with the suggested matrix exponential approximation of (6.8). Based
on this rectangular approach, the DT approximation of RSS(S) is:

RSS(S, Td) ≈
[
I + TdA TdB

C D

]

. (6.11)

Another interpretation of this method follows from Euler’s forward discretization
formula (2.102) substituted into (6.4a) (see Apkarian (1997)).
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Example 6.2 (Rectangular discretization) Continuing Example 6.1, the rectangular discretization method
applied to RSS(S) results in

RSS(S, Td) ≈





2Tdpd + 1− Td Tdpd 0
0 1− Td Td

1 pd 0



 .

Comparing this DT approximation with the result of the complete method given in Example 6.1 illustrates well
the difference in complexity of the resulting coefficient dependencies.

Polynomial (Hanselmann) method

It is also possible to develop other methods that achieve better approximation of
the complete case but with increasing complexity. One way leads through the use
of higher order Taylor expansion of the matrix exponential term:

eTd(A ⋄ pd)(k) ≈ I +

n∑

l=1

Tl
d

l!

(
Al ⋄ pd

)
(k) , (6.12)

This results in the extension of the LTI polynomial discretization methods (see
Section 2.1.8). Substituting (6.12) into (6.6a) gives the following SS representation:

RSS(S, Td) ≈




I +

n∑

l=1

T
l
d

l! A
l Td

(

I +
n−1∑

l=1

T
l
d

l+1!A
l

)

B

C D



 . (6.13)

Example 6.3 (Polynomial discretization) Approximating the LPV-SS representation of Example 6.1 by the
2nd-order polynomial method results in

RSS(S, Td) ≈






1 + Td(2pd − 1) + 1
2
T2
d(2pd − 1)2 (Td − T2

d)pd + T2
dp2

d
1
2
T2
dpd

0 1− Td + 1
2
T2
d Td − 1

2
T2
d

1 pd 0




 .

Due to the polynomial approximation, the originally linear coefficient dependencies are transformed to polyno-
mial functions with order 2.

Trapezoidal (Tustin) method

An alternative way of approximation leads through the extension of the Tustin
method. By using a trapezoidal evaluation of integral (6.9) we obtain:

x ((k + 1)Td) ≈ x (kTd) +
Td

2
[f(x, u, p, kTd) + f(x, u, p, (k + 1)Td)] , (6.14)

Using this approximation, the derivation of the LPV Tustin method can be given
similarly as in Apkarian (1997). The key concept is to apply a change of variables:

x̆d (k) =
1√
Td

[

I − Td

2
(A ⋄ pd) (k)

]

x (kTd)−
√
Td

2
(B ⋄ pd) (k)ud (k) . (6.15)
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If [I − Td
2 A (p̄)] is invertible for ∀p̄ ∈ P, then substitution of (6.15) into (6.14)

gives a DT state-equation after some algebraic manipulations. Based on this state-
equation, the resulting SS representation reads as

RSS(S, Td) ≈





(
I + Td

2 A
) (
I − Td

2 A
)−1 √

Td

(
I − Td

2 A
)−1

B
√
Td C

(
I − Td

2 A
)−1 Td

2 C
(
I − Td

2 A
)−1

B +D



 .

It is important to note that, like in the LTI case, the trapezoidal method approxi-
mates only the manifest behavior of RSS(S, Td), as it gives an approximative DT-
SS representation in terms of the new state variable x̆d.

Example 6.4 (Trapezoidal discretization) Applying the trapezoidal method to the LPV-SS representation of
Example 6.1 results in

RSS(S, Td) ≈









2+2Tdpd−Td
2−2Tdpd+Td

4Tdpd
(2−2Tdpd+Td)·(2+Td)

2T
3/2
d

pd
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0 2−Td
2+Td

2
√
Td

2+Td

2
√
Td

2−2Tdpd+Td
4
√
Td pd

Td+1−Tdpd
(2−2Tdpd+Td)·(2+Td)

2Tdpd
Td+1−Tdpd

(2−2Tdpd+Td)·(2+Td)









.

Due to the discretization method, the originally linear coefficient dependencies are transformed to rational func-
tions.

Multi-step methods

Next, the multistep approximation of the LTI case is extended. Consider the state
evolution as the solution of the DE defined by (3.37a), where all the coefficients
are assumed to have static dependence. Then, this solution can be numerically
approximated via multi-step formulas. Due to the reasons discussed in Section
2.1.8, in the ZOH setting of the LPV case, the family of Adams-Bashforth methods
represent a viable approach for such a discretization method. The 3-step version
of this type of numerical approach yields the following approximation:

x ((k + 1)Td) ≈ xd (k + 1) = x (kTd) +
Td

12
[5f(x, u, p, (k − 2)Td)−

−16f(x, u, p, (k − 1)Td) + 23f(x, u, p, kTd)] . (6.16)

Then, formulating this state-space equation in an augmented SS form with the
new state-variable:

x̆d (k) = col (xd (k) , f(xd, u, p, (k − 1)Td), f(xd, u, p, (k − 2)Td)) , (6.17)

leads to

RSS(S, Td) ≈







I + 23Td
12 A − 16Td

12 I 5Td
12 I

23Td
12 B

A 0 0 B
0 I 0 0
C 0 0 D






.
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The resulting DT-SS representation is an approximation of RSS(S, Td) in terms
of the new state variable x̆d. Note that multi-step discretization results in linear
conversion rules but the state-dimension is increased.

Example 6.5 (3-step Adams-Bashforth discretization) Applying the 3-step Adams-Bashforth method to
the LPV-SS representation of Example 6.1, results in













1 + 23
6
Tdpd − 23

12
Td

23
12

Tdpd − 16
12

Td 0 5
12

Td 0 0 0

0 1− 23
12

Td 0 − 16
12
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12

Td
23
12

Td

2pd − 1 pd 0 0 0 0 0
0 −1 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 pd 0 0 0 0 0













.

As expected, the obtained DT projection preserves the originally linear coefficient dependence. However, the
resulting DT representation has a 6 dimensional state-variable compared to the 2-dimensional state-variable of
the original CT representation.

6.4 Discretization errors and performance criteria

In the following part, as a main contribution, the introduced methods are in-
vestigated in terms of the generated discretization error, numerical convergence,
and numerical stability. These are used to derive upperbounds on the sampling-
time Td, that guarantee a user-defined bounded discretization error and stability
preservation with respect to the original CT system. Moreover, the influence of
the assumption that no switching effects result from the ZOH actuation is investi-
gated.

6.4.1 Local discretization errors

Characterization of the discretization error for each of the introduced approaches
is important in order to study how adequate the used approximation is with re-
spect to the original CT behavior. It has been already emphasized that, due to the
considered assumptions, the complete method theoretically gives errorless dis-
cretization in terms of the ZOH setting. For other approaches we investigate the
discretization error in terms of the Local Unit Truncation (LUT) error, which is of-
ten applied in numerical analysis (see Atkinson (1989)). This concept describes
the error that results in each sampling interval due to discretization. Thus in this
section, we define LUT error with respect to all approaches and introduce the con-
cept of consistency in terms of this error. We claim that consistency holds for all
approaches and we also derive upperbounds on the LUT error.

As a first step, the LUT error, denoted by εk ∈ R, is formally introduced. Let
RSS(S) be the SS representation of the CT-LPV system S, with P ⊆ RnP and with
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LUT

x

x�
kT� (k+1)T�

Figure 6.3: Local unit truncation error of the discretized representation associated
state-signal x̂d with respect to the CT state-signal x at the time-step (k + 1)Td.

meromorphic matrix functions
[
A B
C D

]

∈
[

(R|nP)nX×nX (R|nP)nX×nU
(R|nP)nY×nX (R|nP )nY×nU ]

,

defining static dependence on p. Denote by (Ad, Bd, Cd, Dd) the SS matrices of
the DT representation resulting by the discretization methods of Section 6.3.1 ap-
plied to RSS(S). Note that, due to static dependence of the original representation,
these matrix functions also have static dependence on pd. In the rectangular and
the polynomial case, the state-basis of this representation is equal to the state-basis
of the original CT representation. However, in the trapezoidal and in the multi-
step cases, the resulting DT projection also includes a state-transformation. In or-
der to formulate the approximation error of the discretization methods based on
the error of the approximation of the state evolution, those discretization results
which involve state transformation must be brought back to the original state-
basis. Introduce the matrix polynomialsRx ∈ R[ξ]nX×nX andRu ∈ R[ξ]nX×nU , that
formulate the discrete-time state update of the DT approximations on the same
state-basis as in RSS(S). In the rectangular and the polynomial case, Rx(q) = Ad

and Ru(q) = Bd, but in the other cases, they also include the appropriate state-
transformation. For example in the trapezoidal case, (6.14) implies that:

Rx(q) =

(

I +
Td

2
A

)(

I − Td

2

−→
A

)−1

, (6.18)

Ru(q) =
Td

2

(

I − Td

2

−→
A

)−1 (

B +
−→
Bq
)

. (6.19)

Then for each sampling interval, εk is defined by

Tdεk+1 := [qxd − (Rx(q) ⋄ pd)xd − (Ru(q) ⋄ pd)ud] (k). (6.20)

Note, that LUT represents the relative approximation error of the sampled state
signal xd of the CT representation by the state x̂d of the DT representation, when
past samples of xd and ud are used to calculate x̂d via the DT state-equation (see
Figure 6.3). Hence the name "local". In the theory of numerical approximation of
differential equations, εk is considered as the measure of accuracy. The following
definition is important:
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Definition 6.1 (N-consistency) (based on Atkinson (1989)) Let RSS(S) be the SS rep-
resentation of the LPV system S with full behavior BSS. The discrete-time approx-
imation of the state-space equation (3.37a) is called numerically consistent, if for any
(u, x, y, p) ∈ BSS, it holds that

lim
Td→0

sup
k∈Z ‖εk‖ = 0. (6.21)

This means that - in case of N-consistency - the local approximation error reduces
with decreasing Td. However, this does not imply that the supremum of the global
approximation error,

ηk+1 = [qxd − (Rx(q) ⋄ pd) x̂d − (Ru(q) ⋄ pd)ud] (k), (6.22)

where x̂d is the discrete-time approximation of the state, decreases/converges to
zero too. As a next step, the LUT error of each discretization method is investi-
gated together with the N-consistency.

LUT error of the rectangular method

For the rectangular method, (6.20) gives

x ((k + 1)Td) = [I + Td (A ⋄ pd) (k)]x (kTd) + Td (B ⋄ pd) (k)u (kTd) + Tdεk+1.
(6.23)

Define the first-order Taylor approximation of x around the time instant kTd as

x(t) = x(kTd) +

(
d

dt
x

)

(kTd) · (t− kTd) +
1

2

(
d2

dt2
x

)

(τ), τ ∈ (kTd, t), (6.24)

for t > kTd. Substraction of (6.24) for t = (k + 1)Td from (6.23) yields that Tdεk+1

is equal to the residual term, giving

εk+1 =
Td

2

(
d2

dt2
x

)

(τ) τ ∈ (kTd, (k + 1)Td). (6.25)

This shows that in the ZOH setting, the rectangular method is consistent in first-
order (in Td) if

∥
∥
∥

(
d2

dt2x
)

(t)
∥
∥
∥ < ∞ for all x ∈ BX and t ∈ R, where BX denotes

the projected signal behavior of BSS on the variable x. As the meromorphic co-
efficients functions in (3.37a) are partially differentiable in p, the state evolution
f(x, u, p, t) is partially differentiable in each variable. Then

d2

dt2
x =

∂f

∂x

d

dt
x

︸︷︷︸

f

+
∂f

∂u

d

dt
u+

∂f

∂p

d

dt
p. (6.26)

Due to Assumptions 6.1 and 6.2, it holds true that
(

d
dtu
)
(t) = 0 and

(
d
dtp
)
(t) = 0

in each sampling interval. Thus, (6.26) gives that for τ ∈ (kTd, (k + 1) Td):
∥
∥
∥
∥

(
d2

dt2
x

)

(τ)

∥
∥
∥
∥

= ‖(A ⋄ pd) (τ) · f(x, u, p, τ)‖

≤ max
p̄∈P,x∈X,u∈U∥∥A2 (p̄) x +A (p̄)B (p̄) u

∥
∥ , (6.27)
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where ‖ �‖ is an arbitrary norm. Note that in (6.27), X and U must be bounded sets
to be able to compute an upperbound. If this is not the case, then commonly X andU can be restricted to a bounded subset corresponding to the image of the typical
trajectories of the system variables. Then the previous bound can be formulated
for this region of interest. In the sequel, we denote the upperbound (6.27) by
M (1) and call it the first-order numerical sensitivity (N-sensitivity) constant. Note,
that M (1) can be computed via nonlinear optimization or alternatively it can be
approximated through gridding. In case of an approximation, gridding of the setsP, X, and U can be demanding, requiring significant computational power.

The derived result can also be compared with the existing error characteriza-
tion of the rectangular method given in Hallouzi et al. (2006). In this work, an
upperbound on the matrix approximation error of (6.8) has been introduced us-
ing basic algebra. This bound describes the discretization error also in the local
sense, however it can not describe directly the approximation error of the state
evolution. The latter is essentially needed to derive useful criteria for choosing
adequate sampling-times (see Section 6.4.3). Therefore, the error concept of Hal-
louzi et al. (2006) is not considered here.

LUT error of other approximative methods

Using similar arguments, the LUT error of other discretization methods can be
formulated based on Atkinson (1989). The results are given in the first row of Table
6.1, showing that each method is consistent with varying orders. Moreover, using
(6.26) and the chain rule of differentiation, higher order N-sensitivity constants
can be derived:

M (n) = max
p̄∈P,x∈X,u∈U∥∥An+1 (p̄) x +An (p̄)B (p̄) u

∥
∥ . (6.28)

6.4.2 Global convergence and preservation of stability

So far, only the LUT error of the introduced methods has been investigated, giv-
ing basic proofs of consistency. As a next step, we investigate global convergence
of approximative methods together with their numerical stability (N-stability). The
latter concept means that small errors in the initial condition of the discrete-time
approximation do not cause the solution to diverge. We show that for the single-
step approximative discretization methods, N-stability is identical with the preser-
vation of the frozen stability of the original representation. This means that in
case of numerical stability, the discretization method does not changes the frozen
stability properties of the discretized model, which is a prime requirement of a
successful DT approximation of a CT system. To derive adequate criteria for
the largest sampling-time for which this property holds (N-stability radius), each
method is analyzed and computable formulas are derived.

According to the previously explained line of discussion, we introduce the
following concepts:
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Table 6.1: Local truncation error εk with τ ∈ ((k − 1)Td, kTd), sampling bound-
ary of stability T̆d, and sampling upperbound of performance T̂d of LPV-SS ZOH
discretization methods.

Rectangular nth-polynomial
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2

(
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dt2
x
)
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(
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∣
∣
∣
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)
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λ∈σ(A(p̄)), Im(λ)=0

2
Re(λ)

argmin
Td∈R+

0

∣
∣
∣
∣

max
p̄0,...,p̄n∈Pλ̄(R̆p̄0,...,p̄n (ξ, Td)
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∣
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Definition 6.2 (N-convergence) (based on Atkinson (1989)) Let RSS(S) be the SS
representation of the LPV system S with state-signal x and projected state behavior BX,
and let x̂d denote the DT approximation of x with Td ∈ R+. Then a discretization method
is called numerically convergent, if for any x ∈ BX, the approximation x̂d satisfies that

lim
Td→0

sup
k∈Z−

0

‖x̂d (k)− x (kTd)‖ = 0, (6.29)

implies
lim
Td→0

sup
k∈Z+

‖x̂d (k)− x (kTd)‖ = 0. (6.30)

Note that in the trapezoidal and multi-step cases, x̂d is the appropriate state-
transform of x̆d with respect to x. In terms of Definition 6.2, N-convergence means
that the discretized solution of the state-equation can get arbitrary close to the
original CT behavior by decreasing Td (see Figure 6.4).

Definition 6.3 (N-stability) (based on Atkinson (1989)) A discretization method is
called numerically stable, if for sufficiently small values of Td and ǫ, any two state-
trajectories x̂d, x̂′d of the discretized representation associated with the same input-trajec-
tory on the half line Z+, satisfy that ‖x̂′d(0)− x̂d(0)‖ < ǫ implies the existence of a γ ≥ 0
such that ‖x̂′d(k)− x̂d(k)‖ < γǫ for ∀k ∈ Z+.

The notion of N-stability means that small errors in the initial condition do not
cause divergence as the solution is iterated (see Figure 6.5). For the approximative
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0

converges
x

xd

t
Td

converges

Figure 6.4: N-convergence of the DT approximation. The DT state-signal x̂d con-
verges to the CT state-signal x of the approximated representation, if the error on
the initial conditions (past) of the approximation converges to zero.

0

bounded

xd

xd

t
Td

bounded

Figure 6.5: N-stability of the DT approximation. If the difference between the ini-
tial conditions of two state trajectories x̂d and x̂′d, provided by the approximation
method for the same input on the half line Z+, is bounded, then the difference of
the two trajectories on Z+ is also bounded.

methods, N-convergence and N-stability are questions of main importance. To
analyze these notions for the introduced discretization approaches, first consider
the single-step methods. Introduce the characteristic polynomial R̆p̄ ∈ R[ξ] of the
frozen aspects of RSS(S) as

R̆p̄ (ξ, Td) = det(ξI −A ⋄ p), p(t) = p̄, ∀t ∈ R, (6.31)

where the indeterminant ξ is associated with q . Due to the multi-step nature of
the Adams-Bashforth method - to avoid conservatism of the upcoming analysis
- R̆ is defined to reflect the multi-step nature of the state-evolution. In the n-
step Adams-Bashforth case, the state evolution with respect to discretized original
state xd is characterized by

ξnI − Td

n−1∑

l=0

γlξ
lA, (6.32)

with {γl}n−1
l=1 ⊂ R the Adams-Bashforth approximation coefficients (values of

these coefficients for any n > 0 are given in Atkinson (1989)). The form of (6.32)
results due to the augmented state vector x̆d. However, even if RSS(S) has static
dependence, the resulting polynomial in (6.32) becomes dynamically dependent
on pd. To express this, the following local characteristic polynomial is introduced
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in the “frozen” sense for a scheduling sequence p̄0, . . . , p̄n ∈ P:

R̆p̄0,...,p̄n (ξ, Td) = det

(

ξnI − Td

n−1∑

l=0

γlA(p̄l)ξ
l

)

, (6.33)

Now we can formulate the following theorem to characterize N-stability of the
introduced discretization methods:

Theorem 6.1 (Strong root-condition) (based on Atkinson (1989)) Discretization meth-
ods are N-convergent and N-stable, if for all λ ∈ C satisfying

∃p̄1, . . . , p̄n ∈ P such that R̆p̄0,...,p̄n (λ, 0) = 0, (6.34)

it holds that |λ| ≤ 1 and if |λ| = 1, then ∂
∂ξ R̆p̄0,...,p̄n (λ, 0) 6= 0.

Note that for the single-step formulas n = 1 in Theorem 6.1. It can be shown, that
all of the introduced LPV-SS discretization methods satisfy Theorem 6.1, as the
proofs given in Atkinson (1989) also hold in this case. This means that all methods
discussed in the previous part are N-convergent and N-stable. Now we can extend
the root-condition to compute an exact upperbound T̆d of the “sufficiently small”
Td that provides N-stability (see Definition 6.3):

Definition 6.4 (N-Stability-radius) (Atkinson 1989) The N-stability radius T̆d is de-
fined as the largest Td ∈ R+

0 for which all λ ∈ C with ∃p̄1, . . . , p̄n ∈ P such that

R̆p̄0,...,p̄n (λ, Td) = 0, (6.35)

satisfy that |λ| ≤ 1.

This theorem has an interesting consequence for the discretization of LPV-SS rep-
resentations. Namely, that through the characteristic polynomial R̆, it implies that,
if Td ≤ T̆d, then in the single-step cases, the resulting DT representation defines a
uniformly frozen stable system (see Section 3.3.2), as for this Td it is satisfied that

max
p̄∈P σ̄ (Ad (p̄)) ≤ 1, (6.36)

where σ̄ (�) = max |σ (�)| is the spectral radius and σ (�) is the eigenvalue operator.
If the original CT system S is globally stable (dynamic, BIBO, etc.), then commonly
it is desirable that its DT approximation is also globally stable. For such a property,
it is needed that uniform frozen stability of RSS(S):

max
p̄∈P max

λ∈σ(A(p̄))
Re{λ} < 0, (6.37)

is preserved, resulting in the uniform frozen stability of the DT representation.
This gives the important observation that, for the introduced single-step discretiza-
tion methods, preservation of global stability of the original system and N-stability
of the discretization method both require uniform frozen stability of the resulting
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DT representation. For N-stability it is a sufficient, for preservation of global sta-
bility of S it is a necessary condition. Note, that this condition of N-stability is
sufficient only for representations with static dependence. In the following, we
analyze the N-stability radius of each discretization method to give computable
bounds for the selection of Td by which the discretization method preserves frozen
stability of the original system, i.e. it has N-stability.

Stability radius of the rectangular method

In case of the rectangular method, (6.36) is equivalent with

max
p̄∈P σ̄ (I + TdA (p̄)) ≤ 1. (6.38)

Due to the basic properties of eigenvalues, it can be shown that (6.38) holds iff

max
p̄∈P max

λ∈σ(A(p̄))

∣
∣
∣
∣

1

Td
+ λ

∣
∣
∣
∣
<

1

Td
. (6.39)

From (6.39), the stability radius is

T̆d = min
p̄∈P min

λ∈σ(A(p̄))
− 2Re (λ)

|λ|2
. (6.40)

Note that T̆d = 0 in case of non-uniformly frozen stable RSS(S), meaning that the
rectangular DT approximation of non-uniformly frozen stable systems is not N-
stable. Computation of the bound (6.40) is a nonlinear optimization problem for
which an approximative solution may follow by the gridding of P.

Stability radius of the polynomial method

In case of the polynomial method, (6.36) translates to

max
p̄∈P σ̄

(

I +
n∑

l=1

Tl
d

l!
Al (p̄)

)

≤ 1. (6.41)

From (6.41), the stability radius reads as

T̆d = arg min
Td∈R+

0

∣
∣
∣
∣
∣
max
p̄∈P σ̄

(
n∑

l=0

Tl
d

l!
Al (p̄)

)

− 1

∣
∣
∣
∣
∣
. (6.42)

Again, a possible approximation of T̆d can be given by applying bisection based
search in Td on (6.42) over a grid of P. Note, that in case of non-uniform frozen
stability, T̆d = 0 with this method as well.

Stability radius of the trapezoidal method

For the trapezoidal method, condition (6.36) becomes quite complicated due to
the inverse term

[
I − Td

2 A
]−1 in Ad. First it must be guaranteed that this inverse



204 Chapter 6 Discretization of LPV systems

exists for all scheduling signals, meaning that

det
(
I − Td

2 A (p̄)
)
6= 0, ∀p̄ ∈ P, (6.43)

or equivalently
min
p̄∈P σ (I − Td

2 A (p̄)
)
> 0, (6.44)

where σ (�) = min |σ (�)|. Again, the eigenvalue properties yield that (6.44) is
equivalent with

min
p̄∈P min

λ∈σ(A(p̄))

∣
∣
∣
∣

2

Td
− λ
∣
∣
∣
∣
> 0,

which is guaranteed for every 0 ≤ Td < T̆d, where

T̆d = max
p̄∈P max

λ∈σ(A(p̄)),Im(λ)=0

2

Re (λ)
. (6.45)

Instead of N-stability, here T̆d ensures the existence of the DT projection (existence
of Ad). It is shown later, that if the DT projection exists, then N-stability and
N-convergence hold. Note that, in case of Im (λ) 6= 0 for all λ ∈ σ (A (p̄)) and
p̄ ∈ P, meaning that every frozen representation of the original CT system has
only complex poles, condition (6.43) is guaranteed for arbitrary Td, resulting in
T̆d = ∞. Similarly, uniform frozen stability of RSS(S), meaning that every frozen
representation has poles with only negative or zero real part, gives T̆d = ∞. In
Apkarian (1997), the condition

Td ≤ max
p̄∈P 2

σ̄ (A (p̄))
, (6.46)

was proposed to guarantee invertibility, which is a rather conservative upper-
bound of (6.45). In case 0 ≤ Td < T̆d holds and RSS(S) has uniform frozen stability,
then (6.36) holds, as in this case

max
p̄∈P σ̄

([

I +
Td

2
A (p̄)

] [

I − Td

2
A (p̄)

]−1
)

≤ 1. (6.47)

See Glover (1984) for the proof. Thus, for uniformly frozen stable LPV-SS rep-
resentations with static dependence, the trapezoidal method always guarantees
N-stability and N-convergence if Td satisfies condition (6.45).

Stability radius of the Adams-Bashforth method

In case of the Adams-Bashforth method, the concept of N-stability means that for
a given Td,

max
p̄0,...,p̄n∈Pλ̄(R̆p̄0,...,p̄n (ξ, Td)

)

≤ 1. (6.48)

where
λ̄(R (ξ)) = max

λ∈C,R(λ)=0
|λ| . (6.49)
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A necessary condition for (6.48) is that the resulting DT representation has uni-
form frozen stability:

max
p̄∈P σ̄ (Ad (p̄)) ≤ 1. (6.50)

This means, that in the multi-step case, preservation of frozen stability is not suf-
ficient to imply N-stability. From (6.48) it follows that the N-stability radius reads
as

T̆d = arg min
Td∈R+

0

∣
∣
∣
∣

max
p̄0,...,p̄n∈Pλ̄(R̆p̄0,...,p̄n (ξ, Td)

)

− 1

∣
∣
∣
∣
, (6.51)

which is a too complicated expression to be further analyzed. However in prac-
tice, it can be solved in an approximative manner based on gridding and bisection
based search.

6.4.3 Guaranteeing a desired level of discretization error

In the previous part we have investigated the numerical properties of the intro-
duced discretion methods and derived criteria on Td in order to guarantee the
preservation of frozen stability of the original CT system. However, the appropri-
ate choice of Td to arrive at a specific performance in terms of the discretization
error is also important from a practical point of view. By utilizing the LUT er-
ror expressions developed in Section 6.4.1, in this section upperbounds of Td are
derived that guarantee a certain bound on the LUT error in terms of a chosen mea-
sure ‖ � ‖. Then it is investigated, how such expressions can be used to achieve a
level of global discretization error.

As a first step, we formulate the concept of desired performance in terms of the
LUT error. For a given continuous-time full behavior BSS, which is approximated
via a discretization method, define

ε∗ := sup
x∈BX sup

k∈Z ‖εk‖ (6.52)

as the maximal LUT error in a given, arbitrary norm ‖ � ‖. Note that his quantity
describes the maximum of the truncation error with respect to all possible state
trajectories of BSS. Also introduce

Mmax
x := sup

x∈BXmax
t∈R ‖x (t)‖ = max

x∈X ‖x‖ , (6.53)

as the maximum “amplitude” of the state signal for any u and p in BSS. Denote
εmax as the maximal acceptable relative local error of the discretization in terms of
percentage. Then a Td ∈ R+ is searched for, that satisfies

ε∗ ≤
εmaxM

max
x

100 · Td
. (6.54)

Here 1/Td is introduced on the right side of (6.54) as εk is scaled by Td (see (6.23)).
Next, we formulate upperbounds of Td with respect to each method, such that
(6.54) is satisfied for the desired εmax percentage. Note that to derive these criteria,
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(6.53) must be bounded, i.e. X must be confined in a ball (bounded region) of RnX .
Such an assumption is not unrealistic in case of global asymptotic stability of S
and bounded P and U.

Performance criterion for the rectangular method

Based on (6.25), it holds in the rectangular case that

ε∗ = sup
x∈BX sup

τ∈R Td

2

∥
∥
∥
∥

(
d2

dt2
x

)

(τ)

∥
∥
∥
∥
. (6.55)

By using the sensitivity constant M (1) (see (6.27)), inequality (6.54) holds for any
0 ≤ Td ≤ T̂d where

T̂d =

√

2
εmaxMmax

x

100 ·M (1)
. (6.56)

Criterion (6.56) gives an upperbound estimate of the required Td, that achieves
εmax percentage local discretization error of the state variable of the approximated
representation in terms of a chosen measure ‖ � ‖.

Performance criteria of other approximative methods

Similar criteria can be developed for the other methods by using the LUT error
expressions of Table 6.1 and the higher-order sensitivity constants M (n). These
upperbounds are presented in Table 6.1. Note that similar expressions can also be
worked out with respect to the approximation error of the output trajectories.

Guaranteeing bounds on the global error

In practical situations, one may be concerned about the maximum relative global
error as a performance measure. Define

η∗ := sup
x∈BX sup

k∈Z ‖ηk‖ (6.57)

as the maximum global error (see (6.22) for the definition of ηk). Also define ηmax

as the maximal acceptable relative global error of the discretization in terms of
percentage. Then one would like to choose Td, such that the global error ηk satis-
fies

η∗ ≤
ηmaxM

max
x

100
. (6.58)

Unfortunately, characterization of η∗ for the introduced discretization methods
requires the introduction of serious restrictions of the considered CT behaviors.
However, in case of Td ≤ T̆d i.e. N-stability, εmax can be used as a good ap-
proximation of ηmax, therefore the performance bound T̂d can be used to approxi-
mate/guarantee a global error bound as well.
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6.4.4 Switching effects

In the previous part, the effect of neglecting the switching phenomena of the ZOH
actuation has not been considered. Here we investigate the case when the signals
u and p described by (6.2a-b) are applied to RSS(S). First we show the effect
of these discontinuous signals on the state evolution of RSS(S) inside a sample
interval and the error that results by neglecting these terms. Then we motivate
why this phenomenon is negligible in practical situations.

Consider the ODE corresponding to (3.37a) in the kth sample interval. By using
the bilateral Laplace transform of this differential equation with reference time
t0 = kTd and assuming that the dependence on p is commutative under addition2,
it follows that for a fixed k:

sX(s) = xd(k) +
[

(A⋄pd)(k)+(s−1)(A⋄pd)(k−1)
s

]

X(s) + (B⋄pd)(k)
s ud(k) +

+
[

(B⋄pd)(k)+(s−1)(B⋄pd)(k−1)
s

]

ud(k − 1). (6.59)

where X(s) is the Laplace transform of the solution of the ODE (the behavior of
the state in the kth sample interval). It is immediate that in the given sample in-
terval, (6.59) does not correspond to (6.6a). (6.59) has a dynamic dependence, and
it is not realizable as a LPV-SS representation directly without associating q−1ud

with a new state-variable. In this way, it becomes clear that neglecting the switch-
ing effects introduces discretization errors in the LPV case, which can be even
more significant if Td is decreased (more discontinuous switches in the dynam-
ics). On the other hand, it is true that the discontinuous phenomenon which is
described by (6.59) never happens in reality. One reason is that usually p is not
actuated by ZOH and it changes smoothly/relatively slowly with respect to the
actual dynamics of the plant. Additionally, ZOH actuation has a transient in prac-
tice as the underlying physical device needs to build up the new signal value,
preventing sudden changes of the signals. In conclusion, for the considered class
of LPV representations, the introduced discretization methods of this section give
no step-invariant discretization in the ZOH setting (meaning equivalence even
in case of switching effects), however they are well applicable methods for prac-
tical use. It is important to note that derivation of LPV discretization methods
with step-invariant property is also possible, however the resulting discretization
approaches are technical and their actual performance gain compared to the pre-
viously developed approaches is insignificant in practice.

6.5 Properties of the discretization approaches

Beside stability and discretization error characteristics, there are other proper-
ties of the derived discretization methods which could assist or hinder further
use of the resulting DT model. With the previously obtained results, these vital

2Without this assumption, the formulation of the Laplace transform becomes complicated, but the
core problem that results in the general case is illustrated well by (6.59).
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Table 6.2: Properties of the derived discretization methods in terms of: (a) con-
sistency/convergence; (b) preservation of stability/N-stability; (c) preservation of
instability; (d) existence; (e) complexity; (f) preservation of linear dependence; (g)
computational load; (h) system order.

Prop. Complete Rectangular nth-polynomial Trapezoidal Adams-Bash.

(a) always 1st-order nth-order 2nd-order 3rd-order

(b) always global frozen with T̆d frozen with T̆d always frozen frozen with T̆d

(c) + - - + -

(d) always always always conditional always

(e) exponential linear polynomial rational linear

(f) - + - - +

(g) high low moderate high low

(h) preserved preserved preserved preserved increased

properties are summarized in Table 6.2. From this table it is apparent that the
complete method gives errorless conversion at the price of heavy nonlinear de-
pendence of the DT model on pd. As in LPV control synthesis low complexity
of the p-dependence is assumed (like linear, polynomial, or rational functions,
see Scherer (1996)), both for modeling and controller discretization purposes - be-
side the preservation of stability - the preservation of linear dependence over the
scheduling is preferred. This favors approximative methods that give acceptable
performance, but with less complexity of the new coefficient dependence on the
scheduling. Complicated coefficient functions, like inversion or matrix exponen-
tial, also results in a serious increase of the computation time, which gives a pref-
erence towards the linear methods like the rectangular or the Adams-Bashforth
approach. In the latter case, the order increase of the DT representation requires
extra memory storage or more complicated controller design depending on the
intended use. If the quality of the DT model has priority, then the trapezoidal and
the polynomial methods are suggested due to their fast convergence and large sta-
bility radius. In terms of identification, linear dependence of the suggested model
structures is also important as it simplifies parametrization.

6.6 Discretization and dynamic dependence

So far, the discretization of LPV-SS representations with static dependence has
been considered in a ZOH setting. It has been already discussed that using the
ZOH setting for the discretization of representations with dynamic dependence
may result in the loss of significant parts of the original behavior. These parts,
which are associated with the dynamic nature of the coefficient dependencies, are
lost because in each sample interval the derivatives of p are assumed to be zero.
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In this way, dynamic dependence of the original coefficients simplifies to a static
dependence.

To show this phenomenon, consider the case when A ⋄ p = rp d
dtp with r ∈ R

and P = R. Then in the ZOH setting, the following holds in each sample interval:

(A ⋄ p)(t) =

{
0, if t 6= kTd, k ∈ Z;
±∞, if t = kTd, k ∈ Z;

(6.60)

If the switching effect is neglected, then A is approximated in DT as an identity
matrix by all of the introduced discretization methods. Thus, the original behavior
of the CT representation is lost due to the ZOH setting. However in practice, one
would try to use the approximation

d

dt
p(t) ≈ p((k + 1)Td)− p(kTd)

Td
, (6.61)

for each t ∈ [kTd, (k + 1)Td). In fact, (6.61) means that p is assumed to be a
linear function in the sample interval. Then, using this assumption, a better DT
approximation of the original CT representation can be derived. This shows that
in case of dynamic dependence, the ZOH assumption on p is not appropriate and
instead of that, a first or higher order hold discretization setting is necessary for
the scheduling variable.

Based on the previous example, consider the case when (u, y) are assumed
to satisfy the ZOH setting, but p varies linearly in each sampling interval t ∈
[kTd, (k + 1)Td)):

p(t) =
pd(k + 1)− pd(k)

Td
︸ ︷︷ ︸

p̄1k

(t− kTd) + pd(k). (6.62)

Additionally, define p̄0k = pd(k) − kTdpd(k). This assumption on the scheduling
is called the first-order hold setting. Let RSS(S) be a continuous-time LPV-SS repre-
sentation and consider it in the above defined first-order hold setting. In case the
matrices of RSS(S) are dependent on p and d

dtp, like A ⋄ p = A(p, d
dtp) (dynamic

dependence), then the state-evolution in the kth sampling interval satisfies:

d

dt
x(t) = A(p̄1kt+ p̄0k, p̄1k)x(t) +B(p̄1kt+ p̄0k, p̄1k)ud(k). (6.63)

The solution of this ODE can be obtained in the time interval t ∈ [kTd, (k + 1)Td))
for particular meromorphic functions A and B. Similarly to the complete method
of the ZOH setting in Section 6.3, this analytical solution results in a complete type
of discretization of the continuous-time LPV-SS representation. The resulting DT
counterpart has also dynamic dependence on pd and its time-shifted versions, and
yields a better approximation of the CT representation than what would result in a
pure ZOH setting. This suggests that for the discretization of LPV representations
with dynamic dependence, the order of the hold setting with respect to p should
be greater or equal than the maximal order of derivatives in the coefficient depen-
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dencies. With some trivial modifications, the approximative methods treated in
this paper, except the trapezoidal method, can be extended to this hybrid higher-
order hold case, but the exact formulation of these extensions is not considered
in this thesis. Unfortunately, for the extended approaches, the deduced formulas
for the approximation error and the step-size bounds do not apply. Solving dis-
cretization of LPV representations with dynamic dependence in a general sense
and giving compact formulas of discretization remains the objective of further re-
search.

6.7 Numerical example

In the following a simple example is presented to visualize/compare the prop-
erties of the analyzed discretization methods and the performance of the sample-
bound criteria. Consider the following state-space representation of a continuous-
time SISO LPV system S with IO partition (u, y):

RSS(S) =

[
A ⋄ p B ⋄ p
C ⋄ p D ⋄ p

]

=





19.98p− 20 202− 182p 1 + p
45p− 50 0 1 + p

1 + p 1 + p 1+p
10





where P = [−1, 1] . The above representation has static linear dependence on the
scheduling signal p. Furthermore, for a constant scheduling p(t) = p̄ for all t ∈ R,
RSS(S) is equivalent with an LTI representation that has poles

σ(A(p̄)) = 9.99p̄− 10± i
√

104 − 17990.2p̄+ 8090.2p̄2 . (6.64)

From (6.64), it is obvious that S is uniformly frozen stable on P.

Assume that S is in a ZOH setting with sampling rate Td = 0.02. By applying
the discretization methods of Section 6.3, approximative discrete-time representa-
tions of S have been calculated. In order to show the performance of the investi-
gated discretization methods, the output of the original and its discrete approxi-
mations have been simulated on the [0, 1] time interval for zero initial conditions
and for 100 different realizations of white ud and pd with uniform distribution
U(−1, 1). For fair comparison, the achieved MSE (see (2.165)) of the resulting out-
put signals ŷd has been calculated with respect to the output y of RSS(S) and pre-
sented in Table 6.3. Beside the MSE of the output evolution, the relative worst-case
maximum global error η̂max = 100 · η∗/Mmax

x of the DT state-signals x̂d associated
with the discrete-time SS representations has been also computed with respect to
the state signal x of RSS(S) and presented in Table 6.3. From these error measures
it is immediate that, except for the complete and the trapezoidal method, all ap-
proximations diverge. As expected, the error of the complete method is extremely
small and the trapezoidal method gives a moderate, but acceptable performance.
Note that the response of the original CT RSS(S) has been calculated via a 5th-
order Runge-Kutta numerical approximation (see Atkinson (1989)) with step size
10−8. This implies that the switching effect of the ZOH actuation does not show
up in the calculated response.
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Table 6.3: Discretization error of S, given in terms of the achieved MSE and η̂max =
100 · η∗/Mmax

x (relative worst-case ηk) for 100 simulations. (∗) indicates unstable
projection to the discrete domain.

MSE of yd

Td Complete Rectangular 2nd-polynom. Trapezoidal Adams-Bash.

2 · 10−2 , (50Hz) 1.68 · 10−10 (∗) (∗) 1.97 · 10−3 (∗)

5 · 10−3 , (0.2kHz) 1.69 · 10−10 (∗) 4.70 · 10−4 3.81 · 10−5 2.14 · 10−1

10−4 , (10kHz) 1.68 · 10−10 2.27 · 10−6 1.05 · 10−10 1.53 · 10−8 1.6 · 10−8

η̂max of x̂d

Td Complete Rectangular 2nd-polynom. Trapezoidal Adams-Bash.

2 · 10−2 , (50Hz) 0.053% (∗) (∗) 106.12% (∗)

5 · 10−3 , (0.2kHz) 0.060% (∗) 40.31% 8.02% 665.94%

10−4 , (10kHz) 0.063% 2.62% 0.06% 0.19% 0.76%

Table 6.4: Stability (T̆d) and performance (T̂d) bounds provided by the criterion
functions of Table 6.1. The results here are presented in terms of the Euclidian
norm and εmax = 1%.

Criteria

Rectangular 2nd-polynomial Trapezoidal Adams-Bashforth

T̆d 2 · 10−4, (5kHz) 5.60 · 10−3, (0.2kHz) ∞ 1.77 · 10−3, (0.6kHz)

T̂d 6.87 · 10−5, (15kHz) 1.73 · 10−3, (0.6kHz) 1.28 · 10−3, (0.8kHz) 1.21 · 10−3, (0.8kHz)
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As a second step, we calculate sampling bounds T̆d and T̂d by choosing the
Euclidian norm as an error measure and εmax = 1%, with the intention to achieve
ηmax = 1%. The calculated sampling bounds are presented in Table 6.4. Dur-
ing the calculation of T̂d it has been assumed that X = [−0.1, 0.1]2, which has
been verified by several simulations of Rc

SS (S1, p) based on ud, pd ∈ U(−1, 1).
By these results, the rectangular method needs a fast sampling rate to achieve a
stable projection and even a faster sampling to obtain the required performance.
The 2nd-order polynomial projection has significantly better bounds due to the
2nd-order accuracy of this method. For the trapezoidal case, the existence of the
transformation is always guaranteed because RSS(S) is uniformly frozen stable.
For comparison, the bound of Apkarian (1997) given by (6.46), would have re-
sulted in T̆d = 0.2.

Now we use the derived bounds to choose a new Td for the calculation of
the discrete projections. As the T̆d bounds of Table 6.4 represent the boundary
of stability, therefore Td < T̆d is used as a new sampling-time in each case. Dis-
cretization of RSS(S) with Td = 0.005, almost the stability bound of the polyno-
mial method, provides the simulation results given in the second row of Table 6.3.
The rectangular method again results in an unstable projection, while the Adams-
Bashforth method is on the brink of instability due to frozen instability of Ad for
some p̄ ∈ P. The polynomial method gives a stable, convergent approximation,
in accordance with its T̆d bound. The trapezoidal method also improves signifi-
cantly in performance. The achieved η̂max of each approximative method is above
the aimed 1 % which is in accordance with their T̂d.

As a next step, discretizations of RSS(S) with Td = 10−4, the half of the T̆d

bound of the rectangular method, are calculated. The results are given in the third
row of Table 6.3. Finally, the rectangular method converges and also the approx-
imation capabilities of the other methods improve. By looking at the achieved
η̂max, all the methods, except the rectangular, obtain the aimed 1 % error perfor-
mance which is in accordance with their T̂d bound, while in the rectangular case
the achieved η̂max is larger than 1 % as 10−4 is larger than its T̂d bound. An in-
teresting phenomenon is that the approximation error of the complete method is
non-zero and it is slightly increasing by lowering the sampling-time. This increas-
ing approximation error is due to numerical errors of the digital computation.
However, the resulting approximation error is significantly less than the step size
of the numerical approximation used for the simulation of RSS(S), thus it can be
considered zero.

6.8 Summary

In this chapter, discretization of LPV state-space representations has been inves-
tigated in a zero-order hold setting, where the continuous-time input and sche-
duling trajectories are restricted to be piecewise constant. It has been shown that
the ZOH setting provides an adequate discretization concept for SS representa-
tions with static dependence.
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Figure 6.6: Output signal y of RSS(S) (green) in a ZOH setting with Td = 0.02 and
its discrete-time approximations with different sampling-times.
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Extending the approaches of the LTI discretization theory introduced in Sec-
tion 6.2, both exact and approximative methods have been developed in the ZOH
setting for the discretization of LPV-SS representations with static dependence.
These approaches have been developed for the LPV identification framework of
this thesis to provide tools that assist model structure selection based on first-
principle CT models.

Using the results of the numerical analysis field, the introduced methods have
been investigated in terms of numerical consistency, convergence, and stability in
Section 6.4.2. It has been shown that all methods fulfill these properties and for
the single-step approximation methods numerical stability is equivalent with the
preservation of the frozen stability of the original behavior. Powerful criteria have
been developed to give upperbounds on the sampling-time for which numerical
stability, i.e. preservation of frozen stability holds. Additionally, the approxima-
tion error of the introduced approaches has been analyzed in terms of the local
truncation error in Section 6.4.1. Criteria have been developed in Section 6.4.3 for
the choice of sampling-time that guarantees a user defined maximum of the trun-
cation error. It has been also motivated how the developed criteria can be used to
bound the global error of the approximation.

In Section 6.4.4, the result of the assumption of smooth switching behavior of
the ZOH actuated signals has been analyzed. This assumption has been vital to
enable the derivation of the introduced approaches. It has been shown that this as-
sumption has no significant consequences in practical situations, as sharp steps of
the input and scheduling signals seldom happen in reality. Additionally, impor-
tant properties of the discretization approaches have been discussed in Section
6.5 from the viewpoint of identification and control. Comparing these proper-
ties, a clear trade-of has been identified between approximation quality and the
complexity of coefficient dependencies of the resulting DT representation. It has
been shown, that multi-step methods like the Adams-Bashforth approach provide
simple and good quality of DT approximation at the expanse of increased state-
dimensions. Thus, for low order LPV systems, this method appears an attractive
approach both for control and identification applications.

As a final step in Section 6.6, it has been investigated how the introduced the-
ory can be applied to the discretization of LPV-SS representations with dynamic
dependence. It has been shown that adequate discretization of such representa-
tions requires a higher-order hold setting with respect to the scheduling variable.
In such a setting, the scheduling trajectories are restricted to be piecewise poly-
nomial with a given order. It has also been pointed out that this order must be
equal to the maximal order of the derivatives of the scheduling on which the co-
efficients of the original CT representation are dependent. To illustrate the intro-
duced methods and the applicability of the derived criteria, a numerical example
has been presented.
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LPV modeling of physical systems

W
ith the motivation to provide tools for model-structure selection
in LPV identification, in this section, modeling of physical sys-

tems described by nonlinear differential equations is studied in the LPV
framework. It is investigated how such a nonlinear system can be re-
alized or approximated by a LPV system, giving models of the original
behavior in terms of LPV representations. First an overview is presented
of the available LPV modeling methods. Then, an algorithmic approach
is introduced that ensures errorless conversion of nonlinear differential
equations into LPV kernel representations. The approach explores ade-
quate choices of the scheduling variable. Using the previously developed
behavioral framework, equivalent realizations of the derived kernel form
are available in the SS, IO, and OBF expansion representation domains.
Based on these equivalent representations, an adequate choice of a model
structure can be obtained for the LPV identification of the physical sys-
tem.

7.1 Introduction

A crucial ingredient of any system identification procedure is the choice of model
parametrization, that describes the model set in which the optimal candidate is
to be found. If this structure is well-founded with respect to the system to be
identified, then all other ingredients, like experiment design, criterion selection,
estimation, etc. can contribute successfully to the validity of the end result. Com-
monly, a poor choice of the model set directly results in a poor estimate of the
system.

LPV models have considerably more freedom in parametrization than the class
of LTI models. This is due to the presence of functional and often dynamic depen-
dence of the model parameters on the scheduling. Thus LPV model-structure
selection is even a more sensitive question than in the LTI case. Furthermore, due

215
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to the lack of a general LPV validation theory, mismodeled dynamics only show
up in the performance loss of the designed controllers.

In LPV identification, methods that assist model-structure selection based on
measured data have not been developed yet, thus the only source of information
available for this decision is in the form of first principle laws or expert’s knowl-
edge. Such knowledge is most often presented in terms of nonlinear differential
equations, which must be transformed to or approximated by an LPV represen-
tation to facilitate model structure selection in this setting. In this chapter, the
concept of LPV modeling of nonlinear dynamical systems is investigated. The in-
tention is to give a practical way of using first principle laws and knowledge in the
decision process of LPV model structures, appropriate for the identification of the
underlying system. Such a process is inevitable for successful identification in the
general LPV framework, as it interprets key information about the order and type
of functional dynamical dependencies on the scheduling signal and even about
which signal(s) can be used for scheduling purposes.

First in Section 7.2, the general questions of LPV modeling are investigated
and it is shown how the gain-scheduling principle has shaped LPV modeling of
physical systems. It is also motivated why it has become necessary both for con-
trol and identification to explore approximation free LPV descriptions of the orig-
inal behavior. Then in Section 7.3, existing LPV modeling techniques are studied
and compared. This overview, which is also a contribution of the thesis, provides
the conclusion that all of the available approaches are either too restricted or ad
hoc to support LPV model structure selection in a general, well founded sense.
Additionally, the result of these approaches is a continuous-time (CT) description,
while existing techniques of LPV identification are based on discrete-time (DT). To
fill this obvious gap of the identification cycle, an automated modeling procedure
is proposed in Section 7.4, which uses the strength of the previously developed
LPV behavioral framework and discretization approaches to deliver the required
structural information. The developed technique is a crucial contribution for the
general LPV framework as it can assist all identification methods of the field with
structural information about the plant. The procedure is also a necessary ingre-
dient of the identification approach of this thesis as it can assist the choice of Or-
thonormal Basis Functions (OBFs), adequate for the series-expansion representation
of the system dynamics, and also the choice of the structure of functional depen-
dencies for the parameterization of the expansion coefficients.

7.2 General questions of LPV modeling

Before the first papers on LPV identification methods appeared, modeling of phys-
ical systems in a LPV form had been dominated by the gain-scheduling principle
(see Chapter 1). Motivated by the early approaches of LPV control, the avail-
able nonlinear (NL) description of the system was linearized in several operat-
ing/equilibrium points resulting in a collection of local LTI descriptions of the
plant. Then these “local ” descriptions were interpolated to obtain a global ap-
proximation of the physical system on the entire operation regime. However,
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unknown coefficients/relations of the NL model still had to be estimated before-
hand. This concept has resulted in many linearization-based LPV modeling ap-
proaches trying to approximate the NL system in a LPV state-space (SS) form.

For direct approximation of the NL system with an LPV model, LPV identifi-
cation methods has appeared soon (see Chapter 1). However, these approaches
only aim at the identification of an underlying “true LPV system” with com-
pletely known structural information. It has been seemingly forgotten that the
true aim has always been the approximation of the NL physical system. Addi-
tionally, many of these approaches has followed the gain-scheduling principle by
identifying local LTI models and interpolating them.

Due to higher performance demands and the still existing gap between LPV
identification methods and practical application, a new generation of LPV mod-
eling approaches have appeared, formulating LPV modeling from a different per-
spective than gain-scheduling. These approaches aim at the transformation of the
original NL representation into a particular LPV form by using substitution or
other mathematical manipulations. However, the resulting methods are only able
to handle certain sub-classes of NL systems. So the natural question that what
kind of systems can the LPV framework describe accurately has remained unan-
swered.

Till today, both the control and identification literature on LPV systems typi-
cally takes the existence of the plant in a LPV form as a starting point. It is com-
monly not pointed out how the underlying nonlinear system is transformed to
this LPV form. On the other hand, the available LPV modeling approaches are
focusing only on particular subclasses of LPV representations. The question that
whether a significant loss of generality is introduced by the used assumptions
usually remains uninvestigated. This shows that LPV modeling of NL systems
deserves much more attention and research in order to understand what can be
represented by LPV systems and how the best description for a given NL sys-
tem can be found in the LPV system class. This is why we give in this section an
overview on the available approaches, comparing and evaluating their modeling
concepts.

To set the stage for the upcoming discussion we state the following questions
that are intrinsical for the analysis or development of an LPV description with
respect to a physical system:

• The scheduling variable, that governs the dynamics of LPV models, has a
crucial role in the validity or in the approximation quality of the LPV de-
scription. Thus, in the process of formulating a LPV model, one of the most
important questions is which variables of the original system can be selected
as the scheduling variable in order to obtain an equivalent LPV description.

• Another question is that whether LPV modeling needs to be formulated in
terms of systems or in terms of particular representations. The latter con-
cept formulates LPV modeling as an approximation of a given state-space
equation, which is a subjective description of the NL system. On the other
hand, the former concept focuses on the approximatoion/description of the



218 Chapter 7 LPV modeling of physical systems

original behavior. Thus the latter case provides more freedom and focuses
on the “natural aim” of a modeling problem.

These general considerations are the guidelines by which we explore in the
following how a a reliable model-transformation approach can be formulated to
support both identification and control design in the LPV framework.

7.3 Modeling of NL systems in the LPV framework

In the following, an overview is presented about the state-of-the-art methods of
approximation/equivalent realization of NL systems by an LPV form. Our inten-
tion is to give a general picture about the difficulties and the available solutions of
this task. To do so, first we define the class of NL systems we consider. These non-
linear systems characterize the first-principle laws of the behavior that we want to
capture in the LPV framework. Then we define a particular class of LPV systems,
the so called quasi-LPV systems, that commonly result in the presented model-
ing approaches. As a next step, we give a SS representation of the introduced
NL systems. This representation is often the starting point of the existing LPV
modeling methods. We also motivate that using such a representation as a start-
ing point implies the assumption of prior chosen state variables and IO partition,
which might restrict the generality of the resulting LPV description. After this, we
systematically present the available approaches, sorted into categories.

As first principle laws are commonly (exclusively) available in continuous-
time, we restrict our attention in the sequel to this domain. We consider real,
finite dimensional, continuous-time NL systems in the following form:

Definition 7.1 (Nonlinear dynamic systems) A dynamical system GNL = (R,W,B)
is called a nonlinear, continuous-time, dynamical system, if W = RnW , B ⊆ WT, and
there exists a nonlinear function f : R(n+1)nW → Rnr , such that

B =

{

w ∈ Lloc
1 (R,W)

∣
∣
∣
∣
f

(

w,
d

dt
w,

d2

dt2
w, . . . ,

dn

dtn
w

)

= 0, holds weakly

}

.

Weak solutions of

f

(

w,
d

dt
w,

d2

dt2
w, . . . ,

dn

dtn
w

)

= 0, (7.1)

are defined in terms of distributions. Note that Definition 7.1 is wide enough
to encompass of many physical systems and represent their dynamic behavior,
however it does not describe every system which is non-LTI. This class of systems
is considered with the main purpose to illustrate the problem of transformation of
first-principle laws to LPV representations. In the sequel we consider the problem
of finding an equivalent or a well approximating LPV system with respect to a
given GNL. Without going into details, for the considered class of NL systems we
can also define the set of free variables and IO partitions, similarly as in the LTI
case. During transformation of these systems to an LPV form, such free signals
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are the prime candidates for scheduling or input signals depending on their role
in the nonlinear relationship (7.1).

In the LPV framework, models commonly originate from nonlinear dynamic
system representations via the gain-scheduling approach. However, linearization
of GNL at different operating points in W and then interpolating the resulting LTI
models by an operating point dependent function implies that the scheduling sig-
nal p of the obtained LPV description is dependent on w. In this way, the funda-
mental assumption of the LPV framework, namely the property of freedom for p
does not hold in this case. Therefore, these descriptions are often referred to as
quasi-LPV systems (see Leith and Leithhead (1999)). In the developed LPV frame-
work, we define these systems in the following way:

Definition 7.2 (Quasi-LPV system) A parameter-varying dynamical system GP =
(T,P,W,B) with signals w and scheduling variable p is called quasi-LPV, if it satisfies
Definition 3.2 without p being a free variable, i.e. Bp̄ is not a linear subspace of WT.

Note that if some components of p are free signals, then the system is still consid-
ered to be quasi-LPV.

During the dawn of the gain-scheduling era, LPV systems have been defined
with the concept of exogenous/external and thus free scheduling signal (see
Shamma and Athans (1991)), opening the possibility of the later development of
popular and theoretically well-founded optimal control solutions for such sys-
tems. However in the practical application, this assumption has been commonly
neglected, treating LPV models with non-free scheduling signal as if their schedul-
ing signal would be a free variable of the system (Becker et al. 1993). Even if such
an assumption introduces conservatism into the model, and thus the control de-
sign applied to it, this masking of the dynamical relation made reliable control of
many heavily nonlinear processes possible. In the upcoming analysis, we also in-
tend to follow this tradition, by seeking out ways of transformation of NL systems
into a quasi-LPV or a true LPV form.

In the existing literature on gain-scheduling based modeling, the class of NL
systems of Definition 7.1 is often found to be too broad. Commonly a subclass of
state-space realizations is investigated with a prior selection of the state variable
x and the IO partition (u, y):

d

dt
x = f(x, u), (7.2a)

y = g(x, u), (7.2b)

where f and g are partially differentiable (smooth) functions and w = col(u, y).
Note that in our problem setting, where our goal is to obtain an equivalent or a
well approximating LPV system with respect to a given GNL, prior selection of a
state variable may severely restrict the search space, i.e. the transformation prop-
erties. Choosing a state variable or an IO partition in a priori sense is also not
motivated from the viewpoint of first principle laws as in the laws of physics or
chemistry there are no dedicated state variables, nor predefined inputs or outputs.
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There are only system variables that are connected by algebraic and differential
equations. Therefore, it must be pointed out that any latent-variable-based repre-
sentation is just a particular and subjective description of the system. As we will
see later, such a state-variable based description is not necessary to arrive at an
equivalent LPV description of the considered NL system. Additionally, an impor-
tant concept for the linearization based methods is the equilibrium point of (7.2a),
which is defined as (x, u) ∈ (X× U) satisfying:

0 = f(x, u). (7.3)

Note that equilibrium points can be stable or unstable depending on the partial
derivatives of f in their neighborhood.

Using the previously introduced concepts and notions, the existing LPV mod-
eling approaches fall into the following categories:

7.3.1 Linearization based approximation methods

The family of these methods applies linearization theory on a given SS represen-
tation (7.2a-b) of the NL system to obtain local LTI models in a state-space form
and then interpolates these models to derive an LPV approximation. Thus, the
scheduling of the resulting LPV description is equal to those components of x and
u that the linearization is based on. If we introduce selector matrices Sx and Su,
which select these components, then we can write that p = col(Sxx, Suu). The
following subcategories of these methods are distinguished:

A. Linearization around a set of equilibrium points

Application of classical linearization theory requires that each linearization cor-
responds to an equilibrium of (7.2a). Thus it is a common approach in the LPV
modeling process to use first-order (Jacobian) linearization of (7.2a-b) at a set of
equilibrium points. This approach is followed in many works like Åström and
Wittenmark (1989); Hyde and Glover (1993); Shamma and Athans (1990); Rugh
(1991); Lawrence and Rugh (1995); and Leith and Leithhead (1999). Based on this
concept, the LPV model is formulated as follows:

First, the equilibrium points (xi, ui) ∈ (X × U), i ∈ In1 of (7.2a) are computed,
then

Ai =
∂f

∂x
(p̄i), Bi =

∂f

∂u
(p̄i), Ci =

∂g

∂x
(p̄i), Di =

∂g

∂u
(p̄i), (7.4)

are obtained with p̄i = col(xi, ui). Around the equilibrium point p̄i, the state and
output evolution are approximated by applying a first-order Taylor expansion of
f and g:

d

dt
x ≈ Ai(x − xi) +Bi(u − ui), (7.5a)

y ≈ Ci(x− xi) +Di(u− ui) + g(p̄i). (7.5b)
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Then (7.5a-b) can be seen as a local LTI model of the system. Define p = col(x, u)
and P = X × U with a set of normalized interpolation (scheduling) functions gi :P → [0, 1], like radial basis, triangular functions, etc. with

∑n
i=1 gi(p̄) = 1 for all

p̄ ∈ P. Then, the PV model is formulated as

d

dt
x̆ =

n∑

i=1

gi(p)Aix̆+

n∑

i=1

gi(p)Biu− γx(p), (7.6a)

y̆ =

n∑

i=1

gi(p)Cix̆+

n∑

i=1

gi(p)Diu− γy(p), (7.6b)

where x̆ and y̆ are the approximations of the original x and y and the remainder
terms are given as

γx(p) =

n∑

i=1

gi(p)(Aixi +Biui), (7.7a)

γu(p) =
n∑

i=1

gi(p)(Cixi +Diui − g(p̄i)). (7.7b)

It is obvious that for p(t) = p̄i, (7.6a-b) is equivalent with (7.5a-b), i.e. for each
equilibrium point the global PV model is equal to the local LTI description. Note
that in some cases all the partial derivatives in (7.4) are constants with respect
to some elements of x and u. This means that these partial derivatives have the
same value for all equilibrium points. This observation implies that the associated
elements of x and u can be left out from p, i.e. from the interpolation space to
formulate (7.6a-b).

Additionally, it is an important observation that the PV differential equation
(7.6a-b) is not an LPV-SS representation as it contains the remainder terms γx and
γu. These remainder terms can not be eliminated in general due to their time
dependent nature. In many cases, the remainder terms are eliminated locally in
(7.5a-b) by subtracting them from the signal variables (u, y, x) or they are just left
out from the expression. Then, the locally altered LTI models are interpolated to
obtain a global model. However, this results in an alteration of the state-space
as, due to the local transformations, the local states do not have the same mean-
ing any more. This may lead to a complete misfit of the approximation. An ex-
ceptional case is when n = 1, so the system is linearized in only one point. In
such case no interpolation is needed, i.e. g1 = 1. Then by redefining the state as
x̆ = x− x1, the input as ŭ = u− u1, and the output as y̆ = y − g(p̄1) an LTI-SS ap-
proximation of GNL results via (7.6a-b). Proper elimination of the remainder terms
is only available in this case.

In the general sense, linearization in the equilibrium points is a serious restric-
tion that may lead to poor transient performance and inability to preserve sta-
bility characteristics of (7.2a-b). Therefore, an adequate approximation capability
requires the assumption of slowly varying scheduling. However, such an assump-
tion is often unrealistic as x and u are not slowly varying signals. To improve the
approximation capabilities of this approach many alternative linearization meth-
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ods have been considered like higher order series-expansion based linearization
(Banks and Al-Jurani 1996) or the reformulation of the mean value theorem (Boyd
et al. 1994).

Furthermore, interpolation has its own pitfalls as well. If the local LTI models
resulting from the linearization are transformed to a canonical form to accomplish
interpolation, then the effect of local transformations can completely alter the be-
havior (see Nobakhti and Munro (2002) for an example). In this way, the resulting
LPV representation may not even be able to reproduce basic dynamical aspects of
the original NL form (see Example 7.1). Similar errors result if the interpolation
is applied through the transfer functions of the local LTI models and then LTI re-
alization theory is applied to obtain the LPV form (see Nichols et al. (1993) for an
example).

Example 7.1 (Pitfalls of Interpolation) In this example, one of the merits of local transformations is illus-
trated. Assume that the linearization of the NL system has resulted in two local LTI-SS representations

[
α1 1
β1 0

]

if p̄ = 0,

[
α2 1
β2 0

]

if p̄ = 1,

with P = [0, 1]. If S1 represents the LPV approximation of the considered NL system, then a RSS(S1) can be
formulated as

[
A ⋄ p B ⋄ p
C ⋄ p D ⋄ p

]

=
2∑

i=1

[
gi(p)αi 0.5
gi(p)βi 0

]

, (7.8)

where gi(p) = 1 − p and gi(p) = p are the linear interpolation functions. The two local models can also be
interpolated based on their IO representation. By using the same interpolation functions, the resulting RIO(S2)
is

d

dt
y − (a0 ⋄ p)y = (b0 ⋄ p)u, (7.9)

with a0 =
∑2
i=1 giαi and b0 =

∑2
i=1 giβi. However, the IO representation of RSS(S1) reads as:

d

dt
y −

((

a0 +
ḃ0

b0

)

⋄ p

)

y = (b0 ⋄ p)u. (7.10)

One can conclude that RSS(S1) and RIO(S2) are the representations of two different LPV systems S1 and
S2. This phenomenon clearly emphasizes that interpolation must be carried out in the representation where the
linearization was performed, otherwise unexpected alteration of the behavior can occur.

B. Multiple linearizations around a single equilibrium point

This approach originates from the Fuzzy control framework, where it is used to
obtain linear Takagi-Sugeno (TS) dynamic fuzzy models, which can be viewed as
quasi-LPV systems (Korba 2000). The basic idea is to linearize the NL-SS repre-
sentation at multiple points of X × U around a single equilibrium point. Then
the resulting local models are interpolated in a similar fashion as in the previous
part. The method leads to a LPV model that performs well during transient oper-
ation, because the framework allows some of the local LTI models to be associated
with transient operating regimes. If the system stays close to the used equilibrium
point, no restrictions concerning slowly varying trajectories is needed. However,
a principal disadvantage is that this approach is not suited for NL models with
multiple equilibria.
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C. Linearization along a nominal trajectory

This approach was introduced in the early 1990s when LPV controllers were typ-
ical scheduled in a open-loop sense based on a chosen reference trajectory (in-
tended operation trajectory of the plant) or fixed auxiliary input variables (typical
operation trajectories). These user-defined signals were used to describe a nomi-
nal trajectory of system operation. Linearizing the NL model along this nominal
signal trajectory gives an LPV model (see Shamma and Athans (1990) and Leith
and Leithhead (1999) for examples of this approach). It is an advantage of this
approach that the resulting LPV description can cover transient operation of the
plant along the used nominal trajectory, however such a description also suffers
from the drawback that the performance may be poor when the system is oper-
ating far away from it. As the time-variation of the system is considered along
a pre-chosen trajectory of scheduling variation, the resulting models resemble a
LTV system rather than a LPV system.

D. Off-equilibrium linearization around a set of operating points

Linearization of the NL system at points of the state-space that may not be equi-
libria has been considered in numerous approaches (see (Hunt et al. 1997; Leith
and Leithhead 1999; Murray-Smith and Johansen 1997) and Murray-Smith et al.
(1999a)) The benefit of this concept is that the transient (off-equilibrium) dynamics
of the LPV approximation may be significantly improved. The LPV model is ob-
tained by selecting a set of linearization points p̄i = col(xi, ui) with (xi, ui) ∈ X×U,
i ∈ IN1 and using Jacobian linearization of the nonlinear functions f and g around
these points in the sense of (7.5a-b). The only difference is that in (7.5a) an extra
term f(p̄i) appears if p̄i is not an equilibrium point. Then the local models are
interpolated as described by (7.6a-b) and the remainder terms are neglected or lo-
cally eliminated to form a global LPV model. This approach has the same features
as the equilibrium-points-based linearization with all the pitfalls of interpolation
and local state transformations. An additional problem rises however from the
selection of linearization points {p̄i}ni=1. Equidistant selection on the space X × U
may seem tempting, but it might happen that due to the dynamical changes of
GNL, a non-equidistant selection with dense samples in specific regions of X × U
can lead to far better approximations (see Murray-Smith et al. (1999b) for details).

7.3.2 Multiple model design procedures

Multiple model design techniques investigate the LPV approximation of the NL
system given by the state-space representation

d

dt
x = A(x, u)x +B(x, u)u, (7.11a)

y = C(x, u)x +D(x, u)u. (7.11b)

The LPV modeling of (7.11a-b) is accomplished by selecting a set of interpolation
functions {gi}ni=1. Then the model approximation problem becomes a search for
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a set of constant matrices {(Ai, Bi, Ci, Di)}ni=1 such that the nonlinear functions
(A,B,C,D) are approximated optimally by the weighted sum of the constant ma-
trices, like

A(x, u) ≈
n∑

i=1

gi(p)Ai, where p = col(x, u). (7.12)

However, these kind of techniques are most often considered to be model reduc-
tion tools rather than LPV model transformation methods as with the scheduling
signal p = col(x, u) the SS equations (7.11a-b) already define a quasi-LPV model.
Notable approaches that fall into this category are the orthogonal decomposition
based methods like Bos et al. (2005); Setnes and Babuška (2001) and Yen and Wang
(1999), the convex polytope methods like Kanev (2006) and Korba (2000), and the
radial basis functions based optimization techniques of Kiriakidis (2007) and Ver-
dult (2002).

7.3.3 Substitution based transformation methods

Methods of this category use substitution techniques on an available SS repre-
sentation of the NL system to generate a quasi-LPV model without the need of
approximation. The PV coefficients appear as substituted functions of (x, u) and
the resulting scheduling is p = col(Sxx, Suu), where Sx and Su are the selector
matrices of the components of (x, u) used for the substitution. The subcategories
of these approaches are the following:

A. The “state-transformation” method

The “state-transformation” method was first introduced by Shamma and Cloutier
(1993) followed by many successful applications in aerospace engineering (see
Papageorgiou et al. (2000); Shin (2000) and Papageorgiou (1998)). A class of non-
linear systems that qualifies for this method is described by the following SS equa-
tion:

d

dt

[
x1

x2

]

=

[
f1(x1)
f2(x1)

]

+

[
A11(x1) A21(x1)
A21(x1) A22(x1)

] [
x1

x2

]

+

[
B1(x1)
B2(x1)

]

u, (7.13)

where x = col(x1, x2), (A11, A12, A21, A22) and (B1, B2) are nonlinear matrix func-
tions. Additionally, f1, f2 represent nonlinear matrix function terms which cannot
be written as f1(x1) = f̃1(x1)x1 with f̃1 bounded in the origin. Assume that there
exist differentiable functions γx and γu, such that:
[

0
0

]

=

[
f1(x1)
f2(x1)

]

+

[
A11(x1) A12(x1)
A21(x1) A22(x1)

] [
x1

γx(x1)

]

+

[
B1(x1)
B2(x1)

]

γu(x1),

(7.14)
holds for all x1 ∈ Lloc

1 (R,Rn1), which are the solutions of (7.13), i.e. for which there
exist signals (x2, u) ∈ Lloc

1 (R,Rn2 × U) such that (7.13) is satisfied. Subtracting



7.3 Modeling of NL systems in the LPV framework 225

(7.14) from (7.13) with some rearrangement of the signals yields:

d

dt

[
x1

x̆2

]

=

[
0 A12(x1)

0 A22(x1)− ∂γx(x1)
∂x1

A12(x1)

][
x1

x̆2

]

+

+

(
B1(x1)

B2(x1)− ∂γx(x1)
∂x1

B1(x1)

)

ŭ, (7.15)

where x̆2 = x2 − γx(x1) and ŭ = u − γu(x1). In this way the state-transformation
method has transformed the state-equation (7.13) into the quasi-LPV form (7.15)
with scheduling signal p = x1. Note that there are no approximations involved
in this procedure, but it is only applicable to a limited class of NL-SS representa-
tions and often the resulting LPV representation is non-minimal. Furthermore, no
constructive procedure to find γx and γu is available.

B. Substitution by virtual scheduling

Based on ad hoc mathematical treatment, some nonlinear equations in the form of
(7.2a-b) can be rewritten as (7.11a-b). Then, assigning virtual scheduling signals
for each nonlinear function element of the resulting matrix functions (A,B,C,D),
a quasi-LPV SS representation of the system results with static linear dependence.
Due to the several possibilities of assignment, the result of the transformation is
non-unique. Commonly, the methods that fall into this category can only be ap-
plied for specific NL systems without any generality. In most cases, the number
of associated scheduling signals increases rapidly with the system order and it re-
mains to the skill and insight of the modeler to find an economical representation.
Despite its ad-hoc nature, this method is preferred for mildly-nonlinear systems
as it involves no approximation of the system dynamics, delivering efficient mod-
eling solutions in many applications (see (Gáspár et al. 2007; Tóth and Fodor 2004)
and Rugh and Shamma (2000) for examples). At the same time, many pitfalls are
present for unexperienced users. To illustrate one of these pitfalls, consider

d

dt
x = x2 − 1, (7.16)

and represent this differential equation in a LPV form

d

dt
x = px, where p = x− 1

x
. (7.17)

Seemingly, the two differential equations are equivalent. However, the resulting
behaviors are different for x(t) = 0. Thus using the LPV model (7.17), to design a
stabilizing LPV controller for the original NL system is dangerous as it is unpre-
dictable how the closed loop system will behave when x approaches 0.

C. Velocity based scheduling technique

The velocity based method of Leith and Leithhead (1998a,b) associates a linear
system with every operating point of a NL system, rather than just the equilibrium
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points or pre-specified reference points. This is called local linear equivalence in
Leith and Leithhead (1996). Assume that a representation of the NL system is
given in the form

d

dt
x = Ax+Bu+ f̆(γ(x, u)), (7.18a)

y = Cx+Du+ ğ(γ(x, u)), (7.18b)

where (A,B,C,D) are constant matrices, f̆ : Rn → RnX , ğ : Rn → RnU are partially
differentiable nonlinear functions, and the function γ is given by

γ(x, u) = Exx+ Euu, (7.19)

where Ex ∈ Rn×nX and Eu ∈ Rn×nU . This reformulation of (7.2a-b) can always
be achieved. Introduce p = col(x, u) as the scheduling signal. Differentiating
equations (7.18a-b) gives the following alternative reformulation:

d2

dt2
x =

(

A+
∂

∂γ
f̆(γ(p))Ex

)
d

dt
x+

(

B +
∂

∂γ
f̆(γ(p))Eu

)
d

dt
u, (7.20a)

d

dt
y =

(

C +
∂

∂γ
ğ(γ(p))Ex

)
d

dt
x+

(

D +
∂

∂γ
ğ(γ(p))Eu

)
d

dt
u. (7.20b)

By restricting the behavior of (7.2a-b) to signals that are differentiable, the set of
signals satisfying (7.20a-b) is equivalent with the solution set of (7.2a-b) for appro-
priate initial conditions. Substitution by x̆ = d

dtx, ŭ = d
dtu, and y̆ = d

dty delivers a
quasi-LPV form of (7.20a-b), suggesting the conclusion that every nonlinear sys-
tem (7.18a-b) can be reformulated in this way as an quasi-LPV SS representation.
However, by masking differentiation of the system signals into new variables,
the behavior of the resulting quasi-LPV system is different. Additionally, in the
practical use of the suggested LPV description, if instead of d

dtu and d
dty, only the

measurements of u and y are available in the physical system, the amplification of
noise is inevitable by the differentiation of u and y. Such a phenomenon can have
serious impact on identification or control of the underlying system. Moreover,
there is little hope of controlling the original NL system only via its differentiated
description.

D. Function substitution

Another way of quasi-LPV model generation leads through the idea of approx-
imating the nonlinear functions f and g in (7.2a-b) by a linear combination of
scheduling dependent functions multiplied by x and u. To decompose nonlin-
ear functions in this form, an equilibrium point is used, with the result that the
generated LPV model is strongly dependent on this single reference point. The
formulation is as follows:

Consider the NL system described by the state-equation

d

dt
x = A(x1)x+B(x1)u+ f(x1), (7.21)
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where x = col(x1, x2). To perform the substitution method, choose an equilibrium
point (x1, x2, u) and transform the variables as

x̆1 = x1 − x1, x̆2 = x2 − x2, ŭ = u− u. (7.22)

Using these new variables, (7.21) can be rewritten as

d

dt

[
x̆1

x̆2

]

= A(x1)

[
x̆1

x̆2

]

+B(x1)u+ f̆(x1), (7.23)

where

f̆(x1) = A(x1)

[
x1

x2

]

+B(x1)u + f(x1). (7.24)

The next step is to reformulate f̆ into a PV functional form such that

f̆(x1) ≈ Γ(p)x̆1, (7.25)

where p = x1 and Γ is an unknown matrix function. Then, the goal of the mod-
eling approach is to determine Γ such that the approximation (7.25) is adequate
for every trajectory of x1. It is obvious that solutions of (7.25) are not unique
since this is an under-determined problem. In many applications of this idea like
Tan (1997); Tan et al. (2000); Shin et al. (2002); and Marcos and Balas (2004), Γ
is calculated based on a particular functional parameterization, to minimize the
approximation error of (7.25) on the entire operating envelope X1. The solution
of this minimization problem is obtained by linear programming. Then, the final
quasi-LPV approximation of (7.21) is given as

d

dt
x̆ =

(
A(p) +

[
Γ(p) 0

])
x̆+B(p)ŭ (7.26)

with p = x1. The behavior of (7.26) can approximate the behavior of the original
NL representation if (7.25) is satisfied adequately. A disadvantage of this method
is the strong dependence on the equilibrium point (with different reference points
different representations can be obtained) and that the model may not capture the
local stability of the original NL model at other equilibrium points. In Shin (2007),
an improved version of the method has been developed to preserve local stability
over the entire operation envelope. In this modified approach, the search for Γ is
formulated as a bilinear-matrix-inequality based optimization problem including
stability constraints.

7.3.4 Automated model transformation

Automated model transformation is based on the exploration of all possible ways
of reformulating the NL system as a quasi-LPV model with the smallest possi-
ble conservatism. Such a technique can also be seen as a substitution method.
Recently the approach of Kwiatkowski et al. (2006) has appeared in this context,
formulating the basic idea of this approach as an algorithm. The proposed proce-
dure consists of the following steps:
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Algorithm 7.1 (Automated model transformation) (Kwiatkowski et al. 2006)

Step 1. Write (7.2a) as a summation of additive nonlinear terms (summands) for
each row separately. This refers to the symbolic separation of nonlinear
terms that add together to form for example the ith row of f as:

[f(x, u)]i =

ni∑

j=1

fij(x, u). (7.27)

Step 2. Each summand is written in a rational form and the numerator is factor-
ized as the product of powers of state and input elements and a coefficient
γij that is a non-factorizable function of x and u.

fij(x, u) =
γij(x, u)

∏nX
k=1 x

n1k

k

∏nU
l=1 u

n2l

l

ϕ(x, u)
. (7.28)

Step 3. The summands are distinguished based on that their numerators are fac-
torizable, i.e. not all powers n1k and n2l in (7.28) are zero.

Step 4. Summands are assigned to state-space matrices A andB. If the summand
is non-factorizable, then it is multiplied by 1

xk
or 1

ul
to be able to write it for

example as

fij(x, u) =
fij(x, u)

xk
xk. (7.29)

The obtained expression (7.29) is assigned to the kth state as a coefficient
αijk(x, u) =

fij(x,u)
xk

in the ith row and kth column of A. This assignment
gives nX +nU possibilities depending on which component of x or u is used
to make the division in (7.29).

If the summand fij is factorizable, then it can be divided by any element
xk or ul which has nonzero power in (7.28), in order to assign it to a state-
matrix. For example if n21 > 0 in (7.28), then by dividing fij with u1 the
resulting function is

βij1(x, u) =
fij(x, u)

u1
=
γij(x, u)

∏nX
k=1 x

n1k

k

∏nU
l=2 u

n2l

l

ϕ(x, u)
un21−1

1 . (7.30)

This function can be assigned to u1 as a coefficient in the ith row and the 1th

column of B. For each summand, this gives as many assignment possibili-
ties as the number of states and input components in the product expression
with non-zero power.

Step 5. Each of the assigned coefficient functions, i.e. {αijk} and {βijk}, are asso-
ciated with a virtual scheduling signal pl. The SS matrices are formed as the
linear combination of these virtual scheduling signals (direct assignment).
To avoid a large number of virtual scheduling signals associated directly
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with {αijk} and {βijk}, alternatively the linear combination of these func-
tion expressions in each element of the resulting A and B is recognized as a
virtual scheduling signal (superposition). This results in a LPV state-space
representation.

Step 6. By using all assignment possibilities, a set of LPV-SS representations are
generated, each corresponding to (7.2a). These representations are tested for
complexity and the most adequate LPV description is selected by the user.
The exact way of this test and the selection of the most suitable assignment
is not formulated in the approach. Thus, these tests remain to the intuition
of the user.

The same procedure can be executed for the output equation (7.2b) as well. The
whole approach depends on how well the simplification of the nonlinear terms
can be archived. As simplification of symbolic terms is not unique in general, the
complexity of the resulting model can vary with different symbolic solvers (see
Hecker and Varga (2006) for an overview of the required symbolic manipulation
techniques). A more serious problem, which has been already mentioned in the
linearization part, arises when non-factorizable terms are divided by signal com-
ponents to achieve the form (7.29). Such operations can result in the alteration
of the behavior around the origin. It can also happen that no element of u can
be lifted out from any summands in the form of (7.28) and thus the generation
procedure results in an autonomous quasi-LPV description.

Another technique that falls into this category develops an automated trans-
formation of a nonlinear model to an Linear Fractional Transform (LFT) form by
using symbolic manipulation techniques (see (Hecker and Varga 2006; Varga et al.
1998)). A big disadvantage of this method is that it assumes the nonlinear model
to be in the form (7.11a-b). In this way it avoids the crucial part of the modeling,
namely the generation of the quasi-LPV form (7.11a-b). This technique shows re-
semblance with other multiple modeling techniques and implements a particular
way of model reduction with respect to LFT forms.

7.3.5 Summary of existing techniques

In conclusion, the existing techniques for transformation of NL systems to a quasi-
LPV form are either based on linearization-based approximation or substitution
techniques. Linearization techniques are commonly easily applicable for this pur-
pose, but they suffer from serious disadvantages in terms of non-eliminatable
affine reminder terms, pitfalls of interpolation, selection of adequate lineariza-
tion points, and the loss of general representation of the nonlinear dynamics. On
the other hand, substitution techniques are based on mathematical manipulations
that are only applicable for some class of NL systems. Commonly they preserve
the original dynamic behavior, however for the general class of NL systems they
may result in loss of validity or even stability (e.g. division by signal elements).
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A common feature of all approaches is that they use a SS representation of the
system as a starting point, thus they try to achieve good approximation with re-
spect to a prior chosen state variable. As a consequence the scheduling variable of
the resulting LPV description is composed from the priori chosen state and input
variables. This restriction can severely reduce the search-space where an adequate
LPV representation of the original NL behavior can be found as rewriting (7.2a-b)
to another state-basis may result in a simplified/better transformation to a LPV
form.

All of the approaches do not pay attention how the scheduling variable is cho-
sen and what kind of effects a particular choice of p has on the obtained LPV
behavior. Seemingly it does not matter that components of xwhich are inner vari-
ables or components of u which are free variables are used for p.

As a general conclusion, existing transformation possibilities to a LPV form
are conservative, non-unique, and the validity of the resulting model is based on
the skill of the user. On the other hand, to support LPV identification of physi-
cal systems, the LPV modeling phase must be accomplished carefully, exploring
the best possibility of transformation of the first principle laws into an LPV form,
without ad hoc selection of state signals and scheduling variables. Based on this
conclusion, in the next section, the possibilities to accomplish this task are inves-
tigated and a model transformation procedure is proposed, that can tackle this
problem using the powerful theoretical framework of the developed LPV behav-
ioral approach.

7.4 Translation of first principle models to LPV sys-
tems

As a next step, a transformation method is investigated that converts first princi-
ple laws represented by (7.1) into a LPV kernel (KR) representation. The procedure
gives the freedom to consider all possibilities of transformation, not restricted by
preselected state or IO partition or particular formulation of the nonlinear dynam-
ical relationship like a SS representation. In fact, the method explores all possible
transformations that are applicable for general NL dynamical systems, to convert
the specific NL behavior into an LPV behavior. Then the obtained LPV-KR rep-
resentations are categorized by complexity and transformed to an LPV-SS or IO
realization based on the equivalence transformation theory of Chapter 3. To assist
LPV model structure selection, the discretization theory developed in Chapter 6
is applied to obtain DT descriptions of the original behavior.

The developed transformation mechanism is based on similar concepts like
the approach of Kwiatkowski et al. (2006), however the proposed method is con-
structed in a more structured way, where the validity of the transformation is
guaranteed in the applied formulas. In the following, a brief outline of the proce-
dure is presented to give insight into the theoretical concept instead of technicali-
ties. First we define the exact problem setting we consider.
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7.4.1 Problem statement

Consider a NL dynamical system GNL = (R,W,B) with signal space W = RnW and
behavior B ⊆ WT, where B is represented by (7.1). Assume that f is a meromor-
phic function: f ∈ Rnr×1. Then as a short hand notation, introduce

f ⋄ w = f

(

w,
d

dt
w,

d2

dt2
w, . . . ,

dn

dtn
w

)

, (7.31)

as the evaluation of f along the signal trajectory w ∈ B. In this way, we asso-
ciate variables of f with specific signal elements of w and their derivatives, sim-
ilar to the mechanism of Chapter 3. Furthermore, assume that each element of
the variable w is of prime interest to the user (they are non-latent variables) and
the functional relation described by f can not be simplified without changing the
behavior B. The latter assumption means that (7.1) is minimal in the sense that
no equation can be eliminated from (7.1) by simple row operations like addition
or multiplication by functional terms, similar to left-side unimodular transforma-
tions in the LPV case. Additionally, if for any i ∈ InW1 there exists a f̂ ∈ Rnr×1, a
partition w = col(w1, w2) with dim(w2) = n2 and a invertible holomorphic func-
tion g : RnW → Rn2 such that

f ⋄ w = f̂ ⋄ col(w1, g(w)), (7.32)

for all w ∈ B and f̂ is a less complicated function than f , then redefine w2 as g(w)
to achieve simplification of f . This operation is similar to right-side unimodular
transformations in the LPV case. By applying such a simplification, the resulting
behavior is isomorphic with B. Now we define our transformation problem as
follows:

Problem 7.1 (Translation of dynamic NL systems to LPV systems) For a given
NL dynamical system GNL = (R,RnW ,B) with signal variable w, find an LPV system
S′ = (R,P′,W′,B′) with signal variable w′ and scheduling variable p′ such that there
exist selector matrices Sp, Sw ∈ R·×nW satisfying w′ = Sww and p′ = Spw and it holds
that

w ∈ B ∩ C∞(R,W) ⇔ (w′, p′) ∈ B′ ∩ C∞(R,W′ × P′).
Based on this problem setting, we are looking for such an LPV system that has a
behavior equal to the behavior of the original NL system.

7.4.2 The transformation algorithm

In the following, an algorithm is applied on the simplified differential equation to
explore all possibilities of its transformation to an LPV form and in this way to
solve Problem 7.1. We follow a similar strategy as the algorithm of Kwiatkowski
et al. (2006) but in a different setting. First we separate the rows of f into sum-
mands. Then we factorize the nominator of these summands in a specific way to
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lift out signal variables in a product form. Next we collect all factorization pos-
sibilities and their associated coefficients in terms of factors into a decision tree.
By selecting a route in the resulting tree we assign elements of w to signals or
scheduling variables and use their associated coefficients to form a LPV-KR rep-
resentation. In the process we assume that all summands are factorizable. This
assumption is relaxed later. The proposed algorithm reads as follows:

Algorithm 7.2 (Translation to LPV-KR representations)

Step 1. Write f as a summation of additive functional terms (summands) for each
row separately. The ith row is written as

[f ⋄ w]i =

ni∑

j=1

fij ⋄ w, (7.33)

where each fij ∈ R is not separable to further summands. This assumes
that ideal symbolic recognition of additive terms is available. The results
of this operation are unique up to multiplication by a constant. Store the
summands in a graph structure, as shown in Figure 7.1 where each node
represents a specific summand or a row of f .

Step 2. Each summand is written in the form of

fij =
ĝij

ǧij
, (7.34)

where ĝij , ǧij : R(n+1)nW → R are coprime holomorphic functions with n
denoting the highest derivative order in (7.31). Such a formulation is again
unique up to multiplication by a constant.

Step 3. For each i ∈ Inr
1 , j ∈ Ini1 , k ∈ InW1 , and l ∈ In0 , it is investigated if the

summand fij is factorizable to the form

fij ⋄ w =

(
ğijlk

ǧij
⋄ w
)
dl

dtl
wk, (7.35)

where ğijkl : RnnW → R is holomorphic. Contrary to Algorithm 7.1, factor-
ization in this case only involves first-order product terms, as any higher
order relation is not interesting for the further procedure. Denote

f̆ijkl =
ğijlk

ǧij
. (7.36)

Note that f̆ijkl ∈ R. Assume for the moment that each fij can be factorized
by at least one dl

dtl
wk. The results of the factorization are stored in the graph

structure of Figure 7.1. In this graph each node representing a summand fij
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gets a leaf for each dl

dtl
wk it can be factorized with. The edges, that connect

the leafs to their associated summand, receive a label, which is the set of
the specific variables {w1, . . . , wn} that are involved in the remaining f̆ijkl

expression. All other edges of the graph get a label of an empty set. Note
that leafs with an edge having an empty set label are the linear terms of the
nonlinear equation. The resulting graph describes a decision tree.

Step 4. As a next step, possible LPV-KR representations are generated based on
the previously developed decision tree. All possible routes in this graph
are considered, which involve all nodes and a single leaf for each node if
it has one. Routes are only considered to be different if they consist of dif-
ferent leafs. This yields all realization possibilities of (7.1) as a PV differ-
ential equation in the following way. For a specific route (see Figure 7.1),
compute the union of the sets of variables associated with a label along the
edges of the route. This gives a subset of all variables {w1, . . . , wnW}. These
variables are recognized as scheduling signals and denoted as {p1, . . . , pnP}
where nP ≤ nW. Define p = [p1 . . . pnP ] as the scheduling variable for the
specific route. Additionally, let P be the projected subspace of W with re-
spect to p. Consider all leaves in the route. Define index sets Iikl, containing
all indexes j ∈ Ini1 for which the node, associated with the summand fij ,
has a leaf of dl

dtl
wk in the considered route. For each leaf in the route, collect

the remainder terms {f̆ijlk} of the factorization into meromorphic coefficient
functions rl ∈ Rnr×nW , l ∈ In0 where

[rl]ik =
∑

j∈Iikl
f̆ijlk, ∀(i, k) ∈ Inr

1 × InW1 . (7.37)

With the resulting coefficients {ri}ni=1 the NL differential equation (7.1) is
formulated as an LPV-KR representation:

(R(
d

dt
) ⋄ p)w =

n∑

i=0

(ri ⋄ p)
di

dti
w = 0, (7.38)

where R ∈ R[ξ]nr×nW . Now define w̆ as the vector containing the subset
of the variables {w1, . . . , wnW}, such that for each variable wi in w̆, there is
a a leaf in the route where the label of the leaf contains wi or its deriva-
tive. Those signals that do not satisfy this property are simply presented
with 0 weights in (7.38), thus they do not participate in the signal relation as
variables. To eliminate such superfluous terms, (7.38) is rewritten in terms
of w̆ by deleting from R the zero columns associated with the additional
variables. Furthermore the signal space associated with w̆ is defined as the
projected subspace of W with respect to the variables presented in w̆.

Step 5. As a result of the previous step, numerous PV differential equation forms
of (7.1) are formulated based on all possible routes in the graph structure.
However, it is not guaranteed that all of them preserve the dynamical as-
pects of the original nonlinear behavior B. To ensure validity of the transfor-
mation, the freedom of the remaining signal variables w̆ for each PV descrip-
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tion has to be checked. If for every IO partition w̆ = (ŭ, y̆) of the resulting
LPV-KR representation RK(S), there exists an IO partition w = (u, y) for the
original NL system such that y̆ = y and the elements of ŭ are a subset of u
and the maximal order of derivatives of y in each row of RK(S) are the same
as in f , then the LPV representation can be considered as a valid transform
of the original system. Otherwise alteration of the dynamical behavior oc-
curred during the process by masking essential dynamics into coefficients.
If it is also true for every IO partition of RK(S), that u = col(p, ŭ), meaning
that all elements of p are free variables of the original system and they are in-
dependent from ŭ, then the model corresponds to a true LPV system S, not
just a quasi-LPV, and it is a prime candidate for representing the original
system behavior.

Step 6. The resulting LPV representations can be ranked based on the correspond-
ing routes in the graph. Representations which involve the smallest cost in
terms of the number of variables associated with scheduling signals give the
simplest models of the NL system. From these candidates, representations
with free scheduling signals have priority. Further distinction can be the
maximal order of derivatives of the leafs. Based on these, the resulting valid
representations can be ordered in terms of complexity, to assist selection by
the user.

For each LPV-KR representation, that has been found to be a valid representation
of GNL, the PV behavior can be considered to be equal with the original NL behav-
ior B. Then the most attractive representation can be selected by the user based on
the complexity ordering derived in Step 6. In this way, a solution for our transfor-
mation problem, i.e. for Problem 7.1 is obtained. Next, the behavioral approach is
applied on the chosen representation to obtain a full row rank KR representation
together with an SS or IO realization of the resulting LPV system. With the intro-
duced discretization theory, this methodology serves as a model selection tool for
DT-LPV identification routines.

Example 7.2 (Transformation of an NL model to LPV) Consider the nonlinear system GNL = (R,R4, B)
with w⊤ =

[
w1 w2 w3 w4

]
in the form:

f

(

w,
d

dt
w,

d2

dt2
w

)

= 0,

where

f ⋄ w =












f11
︷ ︸︸ ︷

w1 cos2(w3) +

f12
︷ ︸︸ ︷

sin2(w3)
d

dt
w1 +

f13
︷ ︸︸ ︷

2w3w4 +

f14
︷ ︸︸ ︷

2
d

dt
w2 +

f15
︷ ︸︸ ︷
(

d

dt
w2

)
d

dt
w3 +

f16
︷ ︸︸ ︷

w3
d2

dt2
w1

w3
d

dt
w1

︸ ︷︷ ︸

f21

+ w2
︸︷︷︸

f22












.

Note that for this nonlinear system the only available IO partition is y = col(w1, w2) and u = col(w3, w4).
This is easy to show by writing the equation in the second row as
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w2 = −w3
d

dt
w1,

and substituting it into the first row of f . Then a differential equation results where only the derivatives of
w1 appear. Thus w1 is an obvious output of the system and therefore w2 is also an output as its trajectory is
described by the used substitution rule. The remaining variables w3 and w4 are free in the resulting description
and thus they are the obvious inputs of the system. However, the second equation written as

w3 = −w2/
d2

dt2
w1,

cannot be used for substitution as it would exclude trajectories of w1 with d
dt

w1 = 0. Hence w3 cannot be the
output of the system instead of w2.

Additionally, the nonlinear equations of the above given representation have already been separated to min-
imal summand terms and it can be shown that no further symbolic simplification of the equations is possible. A
further property is that all summand terms are factorizable. By applying the decision tree generation procedure
described in the previous part, the resulting tree is presented in Figure 7.1. This completes Step 1 to Step 3 of the
proposed algorithm.

In terms of Step 4, now we generate all possible routes that contain all nodes and one leaf for each node.
There are 25 = 32 possibilities. One of these routes is given by bold lines in Figure 7.1. By using this specific
route, a LPV-KR representation is generated in terms of Step 4. The resulting scheduling variable is the collection
of variables in the labels along the route: p = w3 and the new signal variable is the collection of variables of
the leafs along the route: w̆ =

[
w1 w2 w4

]
. Then by these choices, the LPV-KR representation has the

following form
[

cos2(p1) 0 2p1

0 1 0

]

w̆ +

[

sin2(p1) 2 + d
dt

p1 0

p1 0 0

]

d

dt
w̆ +

[

p1 0 0

0 0 0

]

d2

dt2
w̆ = 0.

Note that the IO partition of the obtained LPV-KR representation is y =
[

w1 w2
]

and u = w4, and the
maximal order of the derivatives of w1 and w2 in the representation is the same as in f , thus it corresponds a
valid LPV model of the original nonlinear system. As the chosen scheduling variable is a free variable in the
original system and is independent from w̆, the obtained representation corresponds to a true (non-quasi) LPV
system. This completes Step 5 of the proposed algorithm.

Another choice of route is similar to the previous one except taking the right branch at f16. The resulting
scheduling variable is p =

[
w3 w1

]
and the signal variable is w̆ =

[
w1 w2 w3 w4

]
. Then by

these choices, the following LPV-KR representation results:
[

cos2(p1) 0 d2

dt2
p2 2p1

0 1 0 0

]

w̆ +

[

sin2(p1) 2 + d
dt

p1 0 0

p1 0 0 0

]

d

dt
w̆ = 0.

A valid IO partition of the obtained LPV-KR representation is y = col(w1, w2) and u = (w3, w4), the IO
partition of the original nonlinear system. However, the maximal order of derivatives with respect to w1 is
1. This means that the dynamics of f has been simplified, i.e. masked into coefficient dependence, during the
transformation process. Thus the resulting LPV representation is not a valid representation of the nonlinear
system.

A third choice is to use the route given with bold lines but to take the left branch at f13. The resulting
scheduling variable is p =

[
w3 w4

]
and the signal variable is w̆ =

[
w1 w2 w3

]
. Then by these

choices, the following LPV-KR representation results:
[

cos2(p1) 0 2p2

0 1 0

]

w̆ +

[

sin2(p1) 2 + d
dt

p1 0

p1 0 0

]

d

dt
w̆ +

[

p1 0 0

0 0 0

]

d2

dt2
w̆ = 0.

Note that the resulting LPV-KR representation with IO partition y = (w1, w2) and u = w3 is a valid rep-
resentation of the nonlinear system similarly as the representation associated with the bold lines, but with an
increased scheduling dimension and a free but not independent scheduling variable p.

The remaining choices of available routes are the combinations of the previous ones with no interesting
further property. Thus in conclusion, the best choice of LPV-KR representation of the system follows through the
decision route indicated by bold lines in Figure 7.1. This concludes the final step of the algorithmic scheme.
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   w2
d
dt

f

f1

f2

f13

w3 w4

f14

w4

f11

w1

f12

   w1 w3

w3

f16

w1 w3
d
dt

w3 w1 w3 w3

f21

   w1 w3

f22

w2

w3

d
dt

w3 w1

w1

d
dt

   w2 w3
d
dt

w3 w2

f15

d
dt 2

2

Figure 7.1: Decision tree of NL model transformation to LPV-KR representations

7.4.3 Handling non-factorizable terms

Now we investigate the case, when not all summand terms {fij} are factorizable.
In that case, there is little chance for the elimination of these terms and to en-
able the use of the previously introduced mechanism without any approximation.
Variable substitution to eliminate these terms (see Example 7.3) generally does not
work, as the substitution must satisfy the equation for all derivative relations of
the substituted variables. This may result in ad hoc operations, cancelations of
terms and alteration of the behavior. This unfortunate phenomenon even holds
for constant terms in general (see Example 7.3).

Example 7.3 (Elimination of non-factorizable terms) Consider the case when fij = 1. Then this constant
term is a non-factorizable expression in the nonlinear differential equation described by f . If f reads as

f ⋄ w = w2
d

dt
w1 + w1 + 1,

then the non factorizable term 1 can be eliminated by substituting w1 with w̆1 = w1 + 1, which gives

w2
d

dt
w̆1 + w̆1 = 0.

Such an expression contains only factorizable summands thus the previously described procedure can be applied
on this new differential equation to obtain an LPV representation in terms of (w̆1, w2). However, if f is

f ⋄ w =

[
w2

d
dt

w1 + w1 + 1

w1 + d
dt

w2

]

,
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then this elimination cannot be applied on the upper equation as it would introduce a nonfactorizable term −1
in the lower one. In case of other non-factorizable terms, it is generally true that elimination through variable
substitution can be applied if it satisfies all the equations without introducing new non-factorizable terms.

A sound possibility is however to approximate the non-factorizable terms in
the following way:

1. Let fij be a non-factorizable summand. Let Iij be an index set containing all
indexes (k, l) ∈ InW1 × In0 such that fij is dependent on dl

dtlwk .

2. For each (k, l) ∈ Iij , try to approximate the function fij as

(fij ⋄ w)(t) ≈
(

(f̆ijkl ⋄w)
dl

dtl
wk

)

(t) ∀w ∈ B ∀t ∈ R, (7.39)

where f̆ijkl ∈ R.

3. If such approximation exists for some (k, l) ∈ Iij , then treat them as valid
factorizations of fij and proceed with the original algorithm, else transfor-
mation to a PV form does not exist with the given precision.

The resulting LPV representation can be considered as the approximation of the
original NL system if the conditions described in Step 5 are satisfied. Note that
what is considered to be an appropriate approximation is highly dependent on the
intended accuracy. For some specific non-factorizable functions like sin(�), such an
approximation can be carried out even in an exact sense (see Example 7.4). If the
non-factorizable term is a constant fij = γ ∈ R\{0}, then no sound approximation
exists and one may risk to either use an approximation fij = γ

wk
wk or multiply

the ith row of f with wk and restart the transformation procedure from the first
step. Both approaches may result in alteration of the original NL behavior.

Note that in the LPV behavioral approach, the terminology of almost every-
where equivalence has been introduced to handle singularities of the coefficient
functions that result or change due to transformations inR[ξ]. One can sense that
in case of non-factorizable terms, we face the same situation as by dividing with
a wi any non-factorizable term can be turned to a factorized relation. However,
the price to be paid is an almost everywhere equivalence of the resulting repre-
sentation if wi is a free signal. However in case wi is non-free, division by wi can
destabilize the origin of the signal-space, critically altering the dynamical behav-
ior of the system.

Example 7.4 (Approximation of non-factorizable terms) Consider the case, when the non-factorizable
term is sin(w). Then by writing this term as

sin(w) = sinc(w)w,

where sinc(w) = sin(w)
w

and sinc(0) = 1, we get an exact factorization. However in case of cos(w),

cos(w) =
cos(w)

w
w,
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where limx→0
cos(x)

x
=∞. Thus this form can only be considered a factorization if w is a non-zero signal. As

an alternative, a finite Taylor expansion of cos(�) is suggested

cos(w) = 1 +
1

2
w2 +

1

24
w4 + . . .

where if the non-factorizable term 1 can be eliminated, then the remaining tail contains only factorizable parts.
This holds for all common functions like trigonometric, exponential, logarithmic, etc. It holds in general that
approximation problems of non-factorizable terms relate to the question, how constant terms can be eliminated
or approximated with a factorized expression.

7.4.4 Properties of the transformation procedure

It can be concluded that the proposed method can transform a wide class of NL
systems satisfying Definition 7.1. An advantage of the method is that it provides
a systematic way of conversion, examining all possibilities of an equivalent LPV
realization. By checking validity of the derived LPV representation with respect to
the behavior of the original NL system, it provides a successful tool to solve Prob-
lem 7.1. Additionally, the algorithm gives a structured selection of the scheduling
variable p highlighting when not only a quasi-LPV but a true LPV formulation is
possible.

However, the approach has disadvantages as well. One of them is the heavy
dependence on symbolic recognition of summands and possible ways of factor-
ization. Thus the performance of the algorithm is clearly limited by the available
symbolic computational tools. Another disadvantage is that investigating all pos-
sible LPV-KR representations that can be obtained from the generated decision
tree can be quite demanding in case of large signal dimensions or a complicated
f . Moreover, in case of large scale systems, computing and comparing the possible
IO partitions of the resulting LPV descriptions is hopeless.

It may also happen for some cases that no valid transformation of the NL dy-
namic system is available via the proposed algorithm. Commonly, there is little
chance of any ad-hoc transformation to succeed if the proposed method does not
work as the original system description is minimal and all possibilities are investi-
gated. That means that some sort of approximation technique must be applied in
advance. Alternatively, signal relations can be replaced by virtual variables in the
original expression to simplify the structure and the model transformation pro-
cess can be executed on the substituted relations. However, such a substitution
by virtual variables may result in the masking of dynamical aspects of the system.
Thus, the substituted terms must be identified or modeled separately in order to
represent the original behavior. Such an approach is ad hoc and out of the scope
of the current process as it is assumed that all signals are important for the mod-
eling purpose. Moreover, it must be accepted that not every NL system can be
appropriately transformed to an LPV form, which is especially true for systems
not satisfying Definition 7.1. Examples for such dynamical relations are systems
with delays, hysteresis, or non-functional signal relations like if-then rules. In
such cases, the LPV framework may be inappropriate for dealing with the system
dynamics without considerable approximation.
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Comparing the proposed approach of model transformation to the available
approaches presented in Section 7.3, it can be concluded that this method gives
adequate transformation for a much wider class of NL systems. The selection of
the scheduling variable follows a more structured procedure, without the ad hoc
selection of input, output, or latent variables. This gives the flexibility to find
the most efficient form of transformation. In case of non-factorizable terms, ap-
proximation is inherently involved in the transformation, similar to the methods
of Section 7.3, which result in an approximation of the original behavior up to a
specific precision.

7.5 Summary

In this chapter, modeling of physical systems described by nonlinear differential
equations has been studied in the LPV framework. Our motivation has been to
derive tools that can assist model structure selection LPV identification.

First in Section 7.2, general questions of LPV modeling have been investigated.
One of the major conclusions has been that instead of the transformation of a given
mathematical description of the NL system to a LPV description, the modeling
problem needs to be approached from the perspective of a search for a LPV sys-
tem with equal behavior. This also implies that there is a prime emphasis on the
selection of the scheduling vector, i.e. which variables of the original system are
used as a scheduling in order to find an equivalent LPV description.

Next in Section 7.3, existing LPV modeling techniques have been studied and
compared. In this overview, it has been shown that available approaches use a
state-space representation of the NL system as a starting point. Thus, instead of
the representation or approximation of the original behavior they aim at the LPV
formulation of the state-equation of the assumed representation. Such a start-
ing point has the danger that the prespecified state variable, which is only a la-
tent variable of the original system, can seriously lower the realization possibil-
ities in the LPV system class. The available approaches have been categorized
into groups, based on the used linearization or substitution concept. The former
concept aims at the approximation of the NL-SS representation and it originates
from the gain-scheduling principle: linearization of the SS representation at given
points of the signals space and then interpolation of the resulting LTI models. The
latter concept formulates the modeling problem as a transformation of a subclass
of NL-SS representations to a LPV form without any approximation. It has been
shown that for the linearization based methods any local transformation of the
obtained linearized models can seriously alter the result of their interpolation, i.e.
the behavior of the obtained LPV description may not even resemble the original
NL system.

By showing the open problems of LPV modeling, in Section 7.4 a transfor-
mation algorithm has been proposed that aims at the exploration of all possible
LPV systems that are equivalent with respect to a given dynamical NL system.
The algorithm, using the concepts of Kwiatkowski et al. (2006), converts the NL
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differential equation, which defines the behavior of the NL system, into possi-
ble LPV-KR representations. During the process, it automates the choice of the
scheduling vector, distinguishing the cases when an exact (non quasi) LPV real-
ization is possible. In the derived approach, all possibilities of transformation are
investigated with the applied strategy. By comparing IO partitions of the result-
ing LPV representations and the maximal order of derivatives with respect to the
non-free variables, it can be expected that no alteration of the behavior has re-
sulted. In this way, the results of the modeling procedure are validated. The valid
solutions are ordered in terms of complexity to assist the user to chose the most
adequate representation. For the case, when no exact transformation is possible,
approximation possibilities of the troublesome parts of the NL description have
been discussed.

The developed technique is a crucial contribution for the general LPV frame-
work as it can assist the identification methods of the field with structural infor-
mation about the plant. The procedure is also a necessary ingredient of the iden-
tification approach of this thesis as it can assist the choice of OBFs based model
structures.



8 CHAPTER

Optimal selection of OBFs

I
n this chapter, selection of the optimal basis, i.e. the basis with the
fastest convergence rate, for the series-expansion of LPV systems is in-

vestigated. In fact, we consider the situation when information about the
system is only available in terms of measured data records of the frozen
signal behavior. Solution of this problem is crucial to provide a model
structure selection tool for LPV identification based on truncated series-
expansion models. In case of an optimal basis, a fast convergence rate of
the expansion representation implies that only the estimation of a few ex-
pansion coefficients is necessary for a good approximation of the system.
By using the concept of Kolmogorov n-width optimality of the basis with
respect to the frozen behaviors, we derive a practically applicable algo-
rithm, that provides optimal basis selection based on fuzzy clustering of
estimated “frozen” poles. The pole estimates are the results of LTI iden-
tification of the system with constant scheduling trajectories. To consider
the effect of noise on the estimation of the frozen poles, a robust version
of the algorithm is also developed using the strong relation between Kol-
mogorov n-width theory and hyperbolic geometry.

8.1 Perspectives of OBFs selection

The concept of modeling discrete-time asymptotically stable LPV systems with
OBFs based truncated series expansions has been introduced in Chapter 5 to de-
velop an effective model structure for LPV identification. However, practical ap-
plication of this concept requires the selection of basis functions that guarantees a
fast convergence rate of the LPV expansion representation of a system. The reason
is that using a truncated expansion with a fast convergence rate, i.e. only a finite
number of OBFs from the basis sequence, a model results that approximates the
system well with only a few expansion coefficients.

In Section 5.4, it has been motivated that to achieve a fast convergence rate of
the LPV expansion representation, a necessary condition is to use a basis which
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has optimal convergence rate with respect to FP, the set of transfer functions of the
frozen system set for the considered IO partition. In order to characterize optimal-
ity of the convergence rate with respect to a given transfer function set, like FP, we
have introduced the worst-case concept of the Kolmogorov n-width (KnW) theory
in Section 2.4. However, to use this concept to choose an n-width optimal basis,
it is required to know the pole locations of FP, i.e. the region ΩP, which contains
the points where not all transfer functions in FP are analytic. In an identification
scenario, such knowledge might not be available. This underlines that in order to
accommodate an effective model structure selection for the identification of LPV
systems with truncated expansion models, a practically applicable approach is
needed to chose KnW optimal OBFs.

In Chapter 7, we have introduced a modeling procedure, which provides an
LPV representation of a NL system based on first principle information. If the
parameters of the original system are considered to be known, such a procedure
can be used to calculate the pole locations ΩP of FP. Then by solving the min-
max problem of (2.173), optimal basis selection in the KnW sense can be achieved
for the system, which provides an efficient model structure selection for its iden-
tification. If no first-principle information is available or the uncertainty of the
parameters is large, selection of the basis must be based on measured data records
of the system. In this chapter, we consider the situation when data records of some
frozen behaviors of the LPV system are available. Estimating LTI models based
on these data records, gives pole samples of ΩP. Based on these sample poles, we
aim at the derivation of a basis selection mechanism, that is capable to accomplish
the following objectives:

• Reconstruction of ΩP based on the sample pole locations.

• Determination of the set of OBFs, that are optimal in the KnW sense with
respect to ΩP.

The proposed method solves these objectives simultaneously by the fusion of the
KnW theory and the Fuzzy c-Means (FcM) clustering approach (see Section 2.5).
These theories are applied together to derive KnW optimal basis functions by the
clustering of the sample pole locations. The resulting mechanism guarantees opti-
mality in the KnW sense for the obtained basis functions with poles at the cluster
centers, in case the fuzzyness parameter approaches infinity. In this way it pro-
vides a trade off between the optimality of the chosen basis and the complexity of
the optimization. The introduced method characterizes the model structure selec-
tion phase of the identification cycle in our approach. The chapter is organized as
follows:

To assist the formulation of the basis selection as a clustering problem, in Sec-
tion 8.2, the KnW concept is revisited to highlight important details of the theory
with respect to LPV systems. Then in Section 8.3, both the reconstruction prob-
lem of ΩP and the KnW problem with respect to ΩP are formulated as a clustering
problem of the sample pole locations. To solve the clustering problem, a modified
FcM algorithm is developed and its properties are investigated in terms of opti-
mality of the solution, numerical convergence, calculation issues, and termination
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conditions. Furthermore, the use of adaptive cluster-merging is investigated for
the introduced algorithm, showing that it provides an effective tool to choose the
width of the KnW problem in which the optimal basis is searched for. In order
to handle the effect of pole uncertainties that result during the estimation of the
sample pole locations, in Section 8.4 a robust formulation of the introduced basis
selection approach is developed. To do so, first important connections of hyper-
bolic geometry and the KnW theory are explored which give effective tools to
handle the basis selection with respect to pole uncertainty regions on the complex
plain. In both the robust and non-robust cases, simulation examples are given to
show the effectiveness of the proposed approaches.

8.2 Kolmogorov n-width optimality in the frozen sense

As a first step, we investigate the KnW optimality concept of orthonormal basis
functions with respect to a LPV system in a frozen sense. To do so we revisit the
KnW theory presented in Section 2.4 and we highlight properties that are impor-
tant for the discussion of the basis selection mechanism. As the presented KnW
theory is formulated in the SISO case, we restrict the discussion to SISO asymptot-
ically stable LPV systems in the following. The basis selection problem for MIMO
LPV systems is postponed till Chapter 9.

Let FP denote the set of transfer functions corresponding to FP for a given
IO partition of the LPV system S. In Section 2.4 it has been already discussed
that the KnW concept provides the selection of ng poles of an inner function G ∈
H2− (E), such that the Hambo basis sequence Φ∞ng

generated by G is optimal in
the n = ng(ne + 1)-width sense with respect to a given transfer function set. This
optimality means that among all Hambo bases, the linear combination of the set of
ng(ne+1) functions Φne

ng
has the smallest worst-case representation error (in theH2

norm). In this sense, optimality means also the fastest worst-case convergence rate
ρ of the expansion of these transfer functions with the basis sequence Φ∞ng

. In other
words, a KnW optimal basis for FP provides series-expansion representations of
all frozen systems FP, such that the convergence rate of the coefficients is optimal
for the considered width. Note that n, i.e. the width in which the optimality of
the basis is considered represents a particular freedom. In fact, it is a trade of
between ρ and the number of poles required for G to achieve it. By using a KnW
optimal basis where both the optimal convergence rate ρ and the width n is small,
it is guaranteed that truncated expansion representations of all FP need only a
few expansion coefficients to approximate each frozen behavior adequately. This
means that beside finding n-width optimal OBFs for a fixed n, it is also important
to search for an adequate n. The latter problem indirectly refers to the question
how many basis functions are required for the truncated expansion representation
to achieve a good approximation.

Introduce the pole manifest set

ΩP =
{
λ ∈ C | ∃p̄ ∈ P, such that λ is a pole of Fp̄ ∈ FP} , (8.1)
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the collection of pole locations belonging to FP. For a given ΩP and a fixed n = ng,
the KnW basis selection problem with respect to FP comes down to the inverse
Kolmogorov problem (see Section 2.4): finding the best fitting hull of ΩP in the
form

Ω
(
Λng , ρ

)
:= {z ∈ C | ∣∣G (z−1

)∣
∣ ≤ ρ}, (8.2)

where G is defined by the poles Λng = [ λ1 . . . λng ] and ρ > 0 is as small
as possible. Then, in terms of Proposition 2.1, the inner function G, associated
with the best fitting Ω(Λng , ρ), generates the n-width optimal basis functions with
respect to FP. For a given inner function G with pole set Λng , define

κng(z,Λng) :=
∣
∣G
(
z−1
)∣
∣ =

ng∏

j=1

∣
∣
∣
∣
∣

z − λj

1− zλ∗j

∣
∣
∣
∣
∣
, (8.3)

the so called Kolmogorov cost. Then for a given ng > 0, the solution of the inverse
Kolmogorov problem is equivalent with the min-max problem (2.173), formulated
in this case as an optimization:

minimize ρ = maxz∈ΩP κng(z,Λng),

such that Λng =
[
λ1 . . . λng

]
∈ Dng .

(8.4)

The minimizer of (8.4), is a set of pole locations Λng which defines the best inner
function, i.e. Hambo basis in the KnW sense. If the resulting Ω(Λng , ρ) is equal
to ΩP, then in terms of Proposition 2.1, the generated basis is also optimal in the
kng-width sense for any k ∈ N. Otherwise, higher width optimality of the basis
does not hold in the general case (see Example 8.1). This underlines that to find
an optimal OBF set for ΩP, an optimal choice of ng is also needed. We will see
that by using powerful results in hyperbolic geometry, in some cases, an optimal
choice of the width is available. The latter result is an important contribution of
this thesis.

Example 8.1 (Optimal n-widths) In this example, we show that a basis sequence which is optimal in the
KnW sense is not necessary optimal in the 2n-width or other higher width cases. Let an inner function G be
given with poles

Λ4 = {0.55± 0.55i, 0.25± 0.25i}.
For ρ = 0.1, G defines the complex region Ω(Λ4, ρ) whose perimeter is given with a blue line in Figure 8.1. Any
strictly proper transfer function (and associated LTI system) with all poles in Ω(Λ4, ρ) has a series-expansion
in terms of the inner function G generated Hambo basis Φ∞

4 with a worst-case convergence rate 0.1. Denote by
ΩP = Ω(Λ4, ρ), the region for which we would like to find optimal OBFs in the KnW sense. It is obvious that
in the 4-width sense, the Hambo functions Φ0

4 are optimal with respect to ΩP and the convergence rate is 0.1.

Now we would like to derive a 2-width optimal basis with respect to ΩP. By applying nonlinear optimization
in terms of (8.4), the resulting optimal Hambo functions Φ0

2 are associated with the pole locations

Λ2 = {0.2995 ± 0.3318i}.
In this case, the convergence rate, i.e. the minimal ρ > 0 such that ΩP ⊆ Ω(Λ2, ρ) is 0.5333. With this ρ, the
perimeter bound of Ω(Λ2, ρ) is given with a red line in Figure 8.1.

Now we can see that series-expansion of any strictly proper transfer function with all poles in ΩP has a
convergence rate 0.1 in case of the 4-width optimal basis Φ∞

4 and 0.5333 in case of the 2-width optimal basis

Φ∞
2 . This clearly shows that the worst-case decay rate of a Hambo basis Φ

′∞
4 generated by a inner function with
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Figure 8.1: Kolmogorov 2-width optimal basis functions Φ0
2 with poles Λ2 (de-

noted by red �) and Kolmogorov 4-width optimal basis functions Φ0
4 with poles

Λ4 (denoted by blue ×) with respect to the pole manifest region ΩP (shaded blue
area). The perimeter of the associated minimal regions Ω(Λ2, 0.5333) (red line)
and Ω(Λ2, 0.1) (identical to ΩP) is indicated with contour lines.

poles Λ′
4 = {Λ2,Λ2} (repetition of the 2-width optimal poles) has a convergence rate (0.5333)2 = 0.2844.

Comparing this to the convergence rate 0.1 of Φ0
4 it is clear that the Hambo functions Φ

′0
4 are not optimal

in the 4-width sense. In general it is true that higher width optimality is only guaranteed for basis functions
with Ω(Λ, ρ) = ΩP. From Figure 8.1 it follows that this is not the case for Λ2. However in case of Λ4,
this equivalence is satisfied, thus with respect to ΩP, Φ1

4 is optimal in the 8-width sense, Φ2
4 is optimal in the

12-width sense, etc.

If ΩP is known, then a solution of (8.4) for a fixed ng can be obtained via the
gradient-search based method of Heuberger et al. (2005). However, in case of an
identification scenario, when ΩP is not available, the gradient approach is not ap-
plicable unless ΩP is reconstructed from some estimated samples. The method
that is proposed solves both objectives (reconstruction and KnW optimization)
and gives a practical solution for the basis selection step. This method also en-
ables an effective choice of the number OBFs, i.e. in which width-sense it is best
to search for KnW optimal OBFs, by the use of adaptive cluster merging.

8.3 The Fuzzy-Kolmogorov c-Max clustering approach

In the following we propose a particular data clustering algorithm as the exten-
sion of the conventional FcM approach, which can effectively handle the recon-
struction problem of ΩP jointly with the solution of (8.4). To do so, first in section
8.3.1 we formulate the exact problem setting for the clustering approach to inter-
pret our basis selection goal. Then, we characterize the optimal solution of the
clustering problem and introduce the extension of the FcM algorithm (Algorithm



246 Chapter 8 Optimal selection of OBFs

2.1) to calculate it. As a next step, in Section 8.3.2 we show how the derived opti-
mal solution provides an answer for the original basis selection problem of Section
8.2. Numerical properties of the derived algorithm are investigated together with
practical aspects, like the use of Adaptive Cluster Merging (ACM) in this setting. At
last, a simulation example is presented to show the effectiveness of the introduced
basis selection mechanism.

8.3.1 The pole clustering algorithm

Let nc > 1 be the number of clusters (pole regions) to be used to reconstruct ΩP.
Note that due to the uniform frozen asymptotic stability of FP, it is guaranteed
that ΩP ⊆ D, i.e. all sample poles zk are in D. Thus, let D be the clustering space,
i.e. V = D, and let Z = {zk}Nz

k=1 ⊂ D, be the set of observed poles for clustering.
Similar to the FcM case, we introduce membership functions µi : D → [0, 1] that
determine the “degree of membership” to the clusters for all z ∈ D. By using a
threshold value ε, we can obtain a set

Ωε = {z ∈ D | ∃i ∈ Inc
1 , µi(z) ≥ ε}. (8.5)

This set characterizes the region approximated by the clusters for the minimal
membership level ε. Now we formulate the clustering problem that is considered.

Problem 8.1 (Pole clustering problem) For a set of sampled pole locations Z and for
a given number of clusters nc, find a set of cluster centers {υi}nc

i=1, a set of membership
functions {µi}nc

i=1, and the maximum of ε, such that

• Ωε contains Z .

• With respect to Ωε, the OBFs, with poles Λnc in the cluster centers {υi}nc

i=1, are
optimal in the KnW sense, where n = nc.

The solution is based on finding clusters in accordance with the KnW concept
and subsequently finding a maximal value for ε, such that all sampled poles are
inside Ωε. The latter is equivalent to minimizing ρ in the optimization problem
of (8.4). Note that optimality of the OBFs is considered with ne = 0. According
to the principle of KnW theory, this might result in repetitive optimal poles and
therefore similar clusters. In the following we focus on finding n-width-based
clusters. Additionally, in case nc ≥ Nz, the solution of Problem 8.1 is trivial: the
cluster centers are associated with the sample poles. Thus only the case when
nc < Nz is considered in the sequel.

Similar to the FcM case, denote V = [υi]
nc

i=1 the vector of cluster centers and
introduce the membership matrix U = [µik]nc×Nz

, where µik is the degree of mem-
bership of zk to cluster i, i.e. µik := µi(zk). Furthermore, distances dik are intro-
duced between υi and zk to measure dissimilarity of Z with respect to each can-
didate cluster. The distance is formulated in terms of the 1-width version of the
n-width Kolmogorov cost (2.172), which is also called the Kolmogorov Measure:
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Definition 8.1 (Kolmogorov measure)

κ1(x, y) :=

∣
∣
∣
∣

x− y

1− xy∗

∣
∣
∣
∣
: D× D→ R+

0 , (8.6)

is called the Kolmogorov measure (KM) on D.

Later we show that κ1 is a metric in D. As notation,

dik = κ1(υi, zk), (8.7)

is introduced. In the following discussion it is shown how the KM relates the
FcM clustering asymptotically to the KnW theory, and in this way to the solution
of Problem 8.1. In order to uniquely associate each dik with a membership level
µik , the set of membership functions is restricted to satisfy

∑nc

i=1 µi(z) = 1, which
requires that U ∈ UNz

nc
(see (2.175)).

The fuzzy-functional Jm (U, V ) : UNz
nc
× Vnc → R+

0 , for Problem 8.1 is formu-
lated as

Jm (U, V ) := max
k∈INz

1

nc∑

i=1

µm
ikdik. (8.8)

This functional defines the cost function, i.e. the criterion of the expected solution
for Problem 8.1. It can be observed that (8.8) corresponds to a worst-case (max) sum-
of-error criterion, contrary to the mean-squared-error criterion of the original FcM,
see Section 2.5. Hence, we call the algorithm that minimizes the fuzzy-functional
(8.8) Fuzzy-Kolmogorov c-Max (FKcM) clustering. The exact relation of (8.8) with
the KnW optimality of a partition (U, V ) is explained later (see Theorem 8.2). The
design parameterm ∈ (1,∞), which is called the fuzzyness, determines the sharp-
ness of the separation in the global minima of (8.8). This means that for low values
of m, the clusters in the optimal partition (U, V ) are separated, i.e. even for a low
value of ε they contribute disjoint regions to Ωε. For large values of m, the con-
tribution of the regions are indistinguishable in almost every point of D. This
gives the intuition that for low m, we try to achieve the reconstruction of ΩP with
the clusters in an “individual” sense, while for large m in a “cooperative” sense.
Based on this, the following theorem yields the ingredients to solve Problem 8.1:

Theorem 8.1 (Optimal Partition) Let m > 1, a data set Z ⊂ D with Nz > 0, and a
fuzzy partition (U, V ) ∈ UNz

nc
× Dnc be given. Denote [V ]i = υi and [U ]ij = µij . Define

γi(ν, U) as the minimal value of τ ∈ [0, 1] fulfilling the quadratic constraints:

[
|1− z∗kν|2 µm

ik · (zk − ν)
µm

ik · (zk − ν)∗ τ2

]

� 0, ∀zk ∈ Z, (8.9)

where ν ∈ D. Additionally, let dik = κ1(υi, zk) be the dissimilarity measure of zk with
respect to V and I∅

k = {i ∈ Inc
1 | dik = 0} be the singularity set of zk with card(I∅

k ) =
n∅

k (number of elements). Then (U, V ) is a local minimum of Jm, if for any (i, k) ∈
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1 × INz

1 :

µik =







[
nc∑

j=1

(
dik
djk

) 1
m−1

]−1

if I∅

k = ∅;
1

n∅

k

if i ∈ I∅

k ;

0 if i /∈ I∅

k 6= ∅;

(8.10a)

υi = arg min
ν∈D γi(ν, U). (8.10b)

The proof is given in Appendix A.3. Using the approach of the FcM case, min-
imization of (8.8) subject to (2.175) is tackled by alternating optimization (Picard
iteration), steering the solution towards a settling partition in the sense of The-
orem 8.1. For the FKcM, this yields Algorithm 8.1, which is based on the same
mechanism as Algorithm 2.1 in the FcM case.

Algorithm 8.1 (FKcM clustering)

0. Initialization: Fix nc and m; and initialize V0 ∈ Dnc , l = 0.

1. Membership update: With (8.10a), solve Ul+1 = arg min
U∈UNz

nc

Jm (U, Vl).

2. Cluster center update: With (8.10b), solve Vl+1 = arg min
V ∈Dnc

Jm (Ul+1, V ).

3. Check of convergence: If Jm (Ul+1, Vl+1) has converged, then stop, else
l = l + 1 and goto Step 1.

8.3.2 Properties of the FKcM

Next,we investigate the properties of the introduced algorithm, showing that KnW
optimality of the resulting cluster centers (if the solution is the global minima of
(8.8)) holds in an asymptotic sense (m → ∞). It is also discussed how Algorithm
8.1 can be implemented in practice, how convergence of the solution can be de-
tected, and how numerical conditioning problems can be avoided.

Asymptotic property

In order to explain the specific choices for the fuzzy functional (8.8) and the dis-
similarity measure dik, we use the following theorem.

Theorem 8.2 (Asymptotic property of Jm) Given a data set Z ⊂ D withNz > 0, and
a vector of cluster centers V ∈ Dnc , with nc > 0, such that dik = κ1(υi, zk) 6= 0 for all
(i, k) ∈ INz

1 × Inc
1 (no singularity). Define Um as a membership matrix of V satisfying

(8.10a) for m > 1. Then
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a. limm→1 Jm(Um, V ) = maxk∈INz
1

mini∈Inc
1
{dik}, which corresponds to the hard

partitioning of Z , i.e. µik ∈ {0, 1}, ∀ (i, k) ∈ Inc
1 × INz

1 .

b. J2(U2, V ) = maxk∈INz
1

[
∑nc

i=1 dik]
−1

, which is the maximum of the harmonic-

means-based distance of each zk with respect to the clusters.

c. Jm(Um, V ) = n1−m
c maxk∈INz

1
[
∏nc

i=1 dik]
1/nc+O(e−m). Furthermore, Jm(Um, V )

decreases monotonically with m, and J∞(U∞, V ) = 0.

The proof is presented in Appendix A.3. Theorem 8.2 shows that the value of
m has great impact on what the minimization of the fuzzy-functional (8.8) repre-
sents. If m = 1, each sample pole is assigned exactly to one cluster. Thus, min-
imizing the KM distance of the cluster center with respect to only the assigned
poles yields that the resulting cluster center is the pole of the 1-width optimal
basis function with respect to the assigned sample poles. In this way, the opti-
mal partition corresponds to a collection of 1-width optimal basis functions with
respect to each separated groups of the sample poles. In case m > 1, each of
the sample poles belongs to all clusters with different membership levels. Thus
minimizing the KM distance of each cluster center with respect to the sample
poles with these membership weights (see (8.8)), yields a set of pole locations
that approximates the poles of the KnW optimal solution. If m → ∞, then these
weights/memberships become equal, and all cluster centers try to decrease the
KM distance for all sampled poles in a cooperative manner, which is equivalent
with the KnW optimization problem (8.4). In this way, the minimization of Jm

corresponds to a close approximation of (8.4) for large m. This property enables
the FKcM to solve Problem 8.1 directly and explains all the particular choices (dis-
similarity measure, modified fuzzy-functional) we made during its introduction.
In this way, as a clustering mechanism, the algorithm solves the reconstruction of
the possible ΩP and at the same time it solves the optimization problem (8.4) in an
approximative manner.

It should be noted that, in case m → ∞, µik → 1/nc for all (i, k) ∈ Inc
1 × INz

1 in
the optimal partition, which can cause numerical problems in the minimization of
(8.10b). Therefore m acts as a trade-off parameter: to obtain a well approximating
solution of Problem 8.1, an appropriately large value of m ∈ (1,∞) should be
used, but at the same time m must be as low as possible to reduce the complexity
of the optimization. Based on experience in the application of the algorithm, m ∈
[5, 10] usually yields satisfactory results.

Form > 1, the FKcM-functional (8.8) is a bounded (0 ≤ Jm ≤ 1) monotonically
decreasing function both in {dik} and U , which allows Algorithm 8.1 to converge
in practice1. The convergence point, which directly depends on the initial V0, can
either be a local minimum or a saddle point of Jm, fulfilling Theorem 8.1. There-
fore, just like for FcM clustering, it is advisable to repeat the algorithm multiple
times with different initial choices for V0 and then select the best resulting set of

1For the standard FcM, convergence to a local minimum can be shown Bezdek (1981), but the un-
derlying reasoning does not hold for the FKcM case as Jm is discontinuous on UNz

nc .
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OBFs. The performance comparison of the resulting clusters is available by com-
puting the Kolmogorov cost (8.3), i.e. associated decay rate, ρ̆ of the cluster centers
with respect to the sample poles:

ρ̆ := max
z∈Ω

κng(z,Λng) = max
z∈Z

nc∏

i=1

∣
∣
∣
∣

z− υi

1− zυ∗i

∣
∣
∣
∣
, (8.11)

and by visual inspection of the boundary region Ω(ρ̆,Λnc = V ) (see (8.1)) with
respect to Z . In practice, uniformly random choices for V0 are suggested. Initial
partitions based on the distribution of Z can also be used (V0 chosen as random
elements of Z , V0 is given as the points of a circle around the mean of Z , etc.)
however they limit the possibilities to explore all local minima, while random
initialization based on a uniform distribution gives equal probability.

In the rare case of singularity of the resulting partition (some dik = 0), Theo-
rem 8.2 does not hold. Such a phenomenon can only happen in extreme situations
when for example nc ≈ Nz. In that case, an optimal partition can contain some
clusters whose cluster center is equal to sample pole locations. Singularity of the
partition can also result if the samples of ΩP do not describe any data coherency,
suggesting that ΩP is not a region but a finite set of isolated points. In such cases,
the best solution in the KnW sense is to assign a dedicated OBF with respect to
some sampled poles. However, when ΩP is a region, this solution should be
avoided, as the reconstruction of ΩP is required based on the pole samples be-
fore choosing the basis functions. Thus, to assist the validity of the reconstruction,
nc must be chosen a priori such that it correctly describes the separated pole re-
gions of ΩP. This can be achieved by visual inspection of the sampled poles or by
trial-and-error.

Optimization and numerical conditioning

While Step 2 in Algorithm 8.1, i.e. the membership update, can be analytically
computed through (8.10a), Step 3, i.e. the cluster center update, requires the so-
lution of (8.10b). The optimization defined by (8.10b) is a minimization problem
with Quadratic Constraints (QC)s, where γ is the optimization variable and ν is the
decision variable. Based on Scherer and Hol (2006), it is possible to derive Sum-of-
Squares (SoS) relaxations of such constraints, through which (8.9) is turned into a
Linear Matrix Inequality (LMI). The resulting convex minimization of γ, based on
these constrains, is a Linear Semi Definite Programming (LSDP) problem that can be
efficiently solved by a variety of (interior-point-based) solvers like SeDuMi (Sturm
1999) or CSDP etc. Alternatively, bisection-based recursive search (see Atkinson
(1989)) can also be used to obtain the minimization of {γi}with respect to (8.9). In
each step of this bisection-based minimization, every QCs with a fixed τ is rewrit-
ten as a LMI constraint. Checking feasibility of the constraints indicates how to
proceed with the minimization of γi.

For high values of m, the QCs (8.9) become numerically ill-conditioned, which
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can be avoided by the normalization of {µm
ik}

Nz

k=1:

µ̄ik =
µm

ik

µ̆i
, with µ̆i =

Nz∑

k=1

µm
ik. (8.12)

Termination criterion

In Algorithm 8.1, the cost function Jm “flattens ” when m increases. This yields
that for high values of m, Jm is almost constant for all points of UNz

nc
× Dnc except

in the close neighborhood of its local minima where its value decreases quickly.
To avoid unnecessary termination of the algorithm on the flat surface of the cost
function, the relative evolution of Jm, in each iteration step l, has to be checked in
a windowed sense:

1− maxk [Jm (Uk, Vk)− Jm (Uk−1, Vk−1)]

maxk Jm (Uk, Vk)
< εt (8.13)

where k ∈ Ill−n, n > 0 is the length of the window, and 0≪ εt < 1 is a user defined
termination constant. If in step l (8.13) is satisfied, then the relative evolution of
Jm has been small in the considered window, so the optimization is terminated.
Experience has shown, that for m ∈ [5, 10], the threshold εt = 0.99 with n = 3
usually works well.

Cluster merging

The determination of the number of “natural” pole groups in Z , i.e. the best suit-
able nc for clustering, is important for the successful application of the FKcM
method. Similarity-based Adaptive Cluster Merging (ACM) can be effectively used
for this purpose (see Section 2.5). Starting from a large nc, the use of the ACM
strategy in the FKcM algorithm gives the possibility to choose the number of clus-
ters to describe the region ΩP, associated with the samples Z , “adequately”. In the
considered problem setting, adequateness means that for the reconstructed region
Ωε, in which width sense we search for KnW optimal OBFs, where the basis func-
tions are associated with the cluster centers. If the available information, the sam-
pling of ΩP, is dense, then in the optimal solution of Problem 8.1: Ωε ≈ ΩP. This
implies that the ACM provides an effective choice of the width, i.e. the value of
n in which the KnW basis is searched for ΩP with the proposed algorithm. How-
ever in terms of Proposition 2.1, the setting of Problem (8.1) implies that repetitive
basis poles can also be part of the optimal solution. With ACM, these solutions
are not accessible as repetitive poles result in perfectly similar clusters which are
immediately joined. As a result, the ACM only yields convergence to partitions
with distinct cluster centers. This means that the choice of the adequate width
in the KnW sense is restricted such that the optimal basis poles for the adequate
width must be distinct.
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8.3.3 Simulation example

To allow insight into the basis selection method an extensive example is studied.

The data generating system

Consider an asymptotically stable discrete-time SISO LPV system S with IO par-
tition (u, y) and scheduling signal p. Let a minimal IO representation of S, RIO(S)
be given as:

5∑

i=0

(ai ⋄ p) qiy = (b4 ⋄ p) q4u, (8.14)

with P = [0.6, 0.8] and coefficients

a0 ⋄ p = −0.003, a3 ⋄ p = 61
110 − 0.2 sin(q5p),

a1 ⋄ p = 12
125 − 0.1 sin(q5p), a4 ⋄ p = − 511+192q5p2−258(cos(q5p)−sin(q5p))

860 ,

a2 ⋄ p = − 23
85 + 0.2 sin(q5p), a5 ⋄ p = 0.58− 0.1q5p,

b4 ⋄ p = cos(q5p).

In Figure 8.2a, the pole manifest set ΩP of RIO(S) is presented with a solid red
line, while in Figure 8.2b the first 15 Markov parameters of the frozen impulse
responses of RIO(S) are given for all constant scheduling trajectories p(k) = p̄.
These frozen impulse responses are associated with the behaviors of the frozen
system set FP of S for the considered IO partition. These pictures show that the
dynamic changes of S are quite heavy for different constant scheduling trajecto-
ries.

By using constant scheduling signals with values {0.6; 0.6+ τ ; . . . ; 0.8}, where
τ = 0.02, 11 frozen LTI representations of S are obtained, whose pole locations
are samples of ΩP. These samples are given with yellow ⋆ in Figure 8.2a. In our
basis selection approach, these LTI representation are considered to be the results
of identification of S with constant p.

FKcM clustering of the sample poles

By using the obtained Nz = 11 · 5 sample pole locations as a data set Z , the FKcM
algorithm has been executed with different values of m and both with a fixed
number of clusters and also with the application of ACM starting from n

(0)
c =

27 ≈ Nz/2. In the fixed case, nc = 8 is used and the obtained solution is denoted
as m2nc8 for a fuzzyness m = 2. In case of ACM, if the algorithm has resulted in
nc = 11 clusters for a fixed m, like m = 8, then the solution is denoted by m8ad11.
Note that in the fixed case we use the particular choice of 8 clusters as this number
of clusters agrees with the number of sets by visual inspection (two times 3 sets
for the complex and 2 sets for the real poles). It is shown in the sequel that this
number of clusters is also selected by the ACM.
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Figure 8.2: (a) The pole manifest set ΩP (solid red line) of the LPV-IO representa-
tion RIO(S). Sampled pole locations are denoted by ⋆. (b) First 15 Markov param-
eters of the impulse responses of RIO(S) with respect to all constant scheduling
trajectories p(k) = p̄.

The results of the algorithm are presented in Table 8.1 and in Figure 8.3. The
comparison in Table 8.1 is presented in terms of Nav, the average number of itera-
tions based on 10 runs of the algorithm starting from random V0; nc, the number of
obtained clusters; Se, the Normalized Entropy (see (2.181)); χ, the Xie-Beni valid-
ity index (see (2.178)); ρ̆, the achieved decay rate (see (8.11)); and ǫne

max, the worst-
case absolute error of the impulse responses of the truncated series-expansion rep-
resentation of each Fp̄ ∈ FP in terms of the resulting OBFs with ne repetitions. In
Figure 8.3, the resulting basis poles are given by blue × for each solutions to-
gether with the sampled poles (red ◦). By using the cluster centers as basis poles,
Λnc = V , the resulting boundary of Ω (Λnc , ρ̆) is also given in Figure 8.3. Based on
these, the following observations can be made:

Analysis of the results

• The values of Nav, which are based on the results of 10 runs starting from
random V0, are relatively low, but they are growing withm. Explanation lies
in Theorem 8.2, by which Jm → 0 as m→∞. This property introduces both
increased computational error and flat shapes of membership surfaces for
largem (compare Fig. 8.4a to 8.4b). Flat surfaces give smaller improvements
towards the minimum of Jm in each iteration of Algorithm 8.1, than the
smooth slope of the m = 2 case.

• The FKcM with ACM (εs = −15dB), starting from n
(0)
c = Nz/2, converges

to a 8-cluster-based partition for low m, but in case of higher values of
m, the optimization has different attractive solutions, like the m8ad8 and
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(c) m8ad11
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Figure 8.3: Results of FKcM clustering in the considered cases: sampled poles
(red o), resulting cluster centers (blue ⋆), and boundaries of Ω (Λnc , ρ̆) (green bold
lines).
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Table 8.1: Comparison of algorithmic results in terms of Nav, the average number
of iterations based on 10 runs of the algorithm starting from random V0; nc, the
number of obtained clusters; Se, the Normalized Entropy; χ, the Xie-Beni validity
index; ρ̆, the achieved decay rate; and ǫne

max, the worst-case absolute error of the
impulse responses of the truncated series-expansion representation of each Fp̄ ∈
FP in terms of the cluster centers generated OBFs with ne repetition.

Test case Nav nc χ (dB) ρ̆ (dB) Se ǫne=1
max (dB) ǫne=3

max (dB)

m2nc8 21 8 −17.49 −55.86 1.79 −43.73 −146.61

m8ad8 37 8 −12.42 −58.38 2.41 −46.90 −171.41

m8ad11 65 11 −8.44 −83.11 2.94 −77.33 −249.63

m25nc8 56 8 −13.20 −61.36 2.43 −45.34 −168.83

(a) m = 2, nc = 8 (b) m = 25, nc = 8

Figure 8.4: Membership functions of the 8th cluster for different m. In the second
case the point corresponding to υ8 is not shown due to the peaking nature of the
function to 1 (only a straight line to 1 from a flat surface would be presented).
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(a) m2nc8 (b) m8ad8

(c) m8ad11 (d) m25nc8

Figure 8.5: Approximation error of the frozen impulse responses of RIO(S) by the
impulse responses of the truncated expansion representations of each Fp̄ ∈ FP in
terms of the FKcM clustering obtained OBFs.
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m8ad11 cases. Here both the 8 and the 11 cluster-based partitions are at-
tractive, depending on the initial position of the cluster centers. However,
m8ad8 achieves a lower entropy Se thanm8ad11, suggesting thatm8ad8 cor-
responds better to the natural data structure. As different initial conditions
can drive the FKcM with ACM to converge to partitions with different nc,
it is suggested to the user to choose the one with the lowest Se, as it most
likely yields the “best” partition (see Chapter 2.5).

• χ is small in all cases, showing that each partition represents the underly-
ing structure well. However, χ is not comparable for different m. χ has a
decreasing tendency with growing nc and an increasing tendency for grow-
ing m, therefore the fact that χm25nc8 < χm8ad8 supports that m25nc8 corre-
sponds better to the underlying data structure in the KnW sense thanm8ad8.
However, such a comparison can not be made with respect to the m8ad11-
case.

• The region Ω (Λnc , ρ̆) describes the pole locations of all transfer functions
that have a series-expansion with a worst-case convergence rate of ρ̆ in terms
of the Λnc associated OBFs. For the resulting cluster centers, the boundary of
Ω (Λnc , ρ̆) is relatively tight in all cases except for m2nc8 and it also includes
ΩP (see Figure 8.2). This means that the convergence rate of the basis has
been focused/optimized for LTI systems with transfer functions that have
poles close to the frozen poles of RIO(S). ρ̆ is also acceptable, which means
small modeling error, i.e. fast convergence rate if the corresponding poles
generated orthonormal basis are used for the series-expansion representa-
tion of the frozen behaviors of S. In terms of Section 5.4, this implies fast
convergence rate of the series-expansion of S with respect to the derived ba-
sis. In the m8ad11-case, ρ̆ is the best, which is the consequence of the larger
(nc = 11) number of OBFs only. By repeating both the obtained pole sets in
the Hambo generation of the basis functions, i.e. using ne > 0, such that the
number of generated basis functions are equal, comparison of the KnW per-
formance of these cases becomes available. Based on such a comparison, it
follows that m25nc8 is better in the KnW sense, which is in agreement with
Theorem 8.2. The partition m2nc8 is the worst among these results, which
suggests that only larger values of m can ensure the quality of the obtained
solution.

• Figure 8.5 and Table 8.1 show the representation errors of the frozen im-
pulse responses of RIO(S) by the impulse responses of the truncated series-
expansion representation of each Fp̄ ∈ FP in terms of the OBFs generated
by the cluster centers with ne repetitions. From these results it follows that
the obtained set of OBFs has negligible representation error with respect to
FP, which has been our main objective (see Section 8.3.1). Among the so-
lutions with 8 basis functions, surprisingly m8nc8 has the lowest represen-
tation error of the frozen impulse responses instead of m25nc8. Based on
the previous results, one would expect that the representation error of the
frozen impulse responses is less for OBFs generated with higher m, how-
ever this is not the case here, due to the fact that ΩP is sampled. Even if
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m25nc8 delivers a better choice with respect to the sampled pole locations,
it is not guaranteed that the reconstruction of ΩP, based on the sample poles,
resulted in a better estimate than in the other cases. By comparing the results
in terms of Se, such a phenomenon is clearly indicated. The quality of the
information, i.e. how well the pole samples describe ΩP is highly significant
in establishing optimality between the sampled-poles-based OBFs and the
original system.

In conclusion, the FKcM solutions for the considered example are converging
relatively fast to optimal partitions in terms of Theorem 8.1. In accordance with
Theorem 8.2, as m increases, these partitions give better solutions of Problem 8.1.
ACM also ensures proper selection of an efficient number of OBFs in the KnW
sense, if the different settling partitions are compared in terms of Se. Furthermore,
validity of the derived partitions is supported by low χ in all cases.

Comparison of results to solutions obtained by the gradient search method
(Heuberger et al. 2005, Ch. 11), is only possible if the number of available sam-
ples of ΩP is so high that there is no need for the reconstruction of ΩP. Thus an
advantage of the FKcM approach is that it gives a solution for the practical case
when only few samples of ΩP are available. In the unrealistic case, when ΩP is
known, both algorithms converge to similar solutions, but with a lower compu-
tational time in the FKcM case. The two algorithms also have similar properties
in the sense that they only yield convergence to local minima. As online selection
of the efficient number of OBFs is very difficult to implement into the gradient
search method, the FKcM approach, with strategies like the ACM, has a second
advantage over gradient approaches.

8.4 Robust extension of the FKcM approach

During the development of the FKcM approach, we have assumed that some sam-
ples of ΩP are given. These samples have been used as a data set, i.e. a source of
information on which the developed basis selection tool is based on. We have mo-
tivated that such samples are available in practice either based on first principle
information or as the poles of model estimates of the frozen system set FP. These
model estimates are considered to be the result of LTI identification of the LPV
system with constant scheduling signals. However, system identification is in
practice always affected by noise, thus the pole locations of the estimated models
are the realizations of an underlying probability function of the frozen poles. This
means that selecting basis functions, based on estimated poles, carries the risk that
the result of the basis selection by the FKcM method is significantly effected by the
noise. In this section, we aim to provide a robust solution of the previously con-
sidered basis selection problem by reformulating the developed FKcM approach,
such that it takes into account the uncertainty of the pole estimates.
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8.4.1 Questions of robustness

In prediction-error identification, each estimated pole can be associated with an
uncertainty region in the complex plain for a certain level of confidence. In the
classical literature, ellipsoidal regions are quantified that are the results of the lin-
earization of the map from parameters θ to pole locations {λ}. In Section 2.3.6, an
alternative approach of Vuerinckx et al. (2001) has been introduced that charac-
terizes pole uncertainty regions of the model estimates without linearization. The
approach leads to a (possibly disconnected) uncertainty region P(Qθ, α) ⊂ C for
which it holds that

λ̂1, . . . , λ̂n ∈ P(Qθ, α), with probability ≥ α (8.15)

where {λ̂1, . . . , λ̂n} are the poles of the model estimate. Note that this uncertainty
concept is still necessarily conservative as it disregards covariance of the pole es-
timates. However, later it will be shown that the locations of the possible pole
estimates, i.e. possible poles of a transfer function set, are formulated in the same
worst-case sense as the KnW theory. Based on this, it is clear that by using the
uncertainty regions provided by this approach as data objects in both the recon-
struction problem of ΩP and the KnW optimization problem, the basis selection
task can be solved in a robust sense.

In the original problem of FKcM clustering, the samples of ΩP form a finite
set of points Z in D. Because of the fact that the set Z is finite, both the recon-
struction problem and the minimization of (8.4) can be analytically computed and
solved via the proposed algorithm. However, if Z is not a finite set but a collec-
tion of complex regions, i.e. uncertainty sets, it is not trivial how to calculate ρ in
(8.4) with respect to these regions or how to obtain the worst-case KM distance
involved in the FKcM as the dissimilarity measure dik . Subsequently the problem
rises how to solve the selection problem of the OBFs poles by using the FKcM
mechanism.

To provide answers for these questions, in Section 8.4.2 we first show that by
using results of hyperbolic geometry, (8.3) and its 1-width version, the so called
Kolmogorov measure, can be analytically computed if the regions in Z are hy-
perbolic circles or hyperbolic segments. However, shapes of uncertainty regions
can vary arbitrary, thus to use the developed hyperbolic results, the regions must
be covered by a collection of hyperbolic circles or hyperbolic segments. Thus, in
Section 8.4.2 also a practically applicable multistep procedure is developed that
covers complex regions with the union of hyperbolic circles. In this way, the KnW
optimization problem (8.4) and also the reconstruction problem of ΩP by the clus-
tering of pole uncertainty regions can be solved along a similar line of reasoning
as in Section 8.3. This robust extension of the FKcM clustering is developed in
Section 8.4.4 and its properties are investigated again in terms of optimality of the
solution, numerical convergence, etc. Based on this, it is shown that the result-
ing algorithm provides the selection of asymptotically optimal OBFs in the KnW
sense for the local behaviors of S even in case of significant measurement noise.
This property is also illustrated through an example.
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Figure 8.6: Hyperbolic objects of the Poincaré disc model.

8.4.2 Basic concepts of hyperbolic geometry

In order to develop the required geometrical tools, the basic aspects of the 2-
dimensional Poincaré disc model of hyperbolic geometry are introduced in the se-
quel. Based on new results, it is also shown that hyperbolic geometry generalizes
results of the KnW theory.

The 2-dimensional Poincaré model provides a conformal disc model, where
points of the geometry are in a complex disc. The lines are segments of circles that
lie inside the disc, where the circles themselves are orthogonal to the boundary of
the disc, or the segments are part of a diameter of the disc (see Figure 8.6). Before
defining these objects, it is motivated why this geometric model has important
relations to the KnW theory.

We have already discussed that the Kolmogorov measure (see Definition 8.1) is
equal to the cost function of the 1-width Kolmogorov problem (ng = 1) (see (8.3)).
Based on this property, the KM had an important role as a dissimilarity measure in
the FKcM algorithm to formulate KnW optimality of the obtained solution in an
asymptotic sense. Additionally, this observation has an important consequence
for geometrical objects in D which are convex in terms of the KM. Namely, that
in the ng = 1 case, the solution of (8.4) with respect to regions equivalent with
these objects can be found through LMI’s based optimization. We will see that
this property provides an efficient way to solve the heavy nonlinear optimization
problem that (8.4) represents and is also the key ingredient to handle the robust
basis selection problem. In the following, we first introduce some simple convex
objects in the KM sense and additional geometrical tools that are required in the
second part to develop three key results for the above mentioned property.

The most simplest of the convex objects in the KM sense are the segments of
hyperbolic lines which are introduced through the concept of i-lines (see Figure
8.6.a) and their orthogonality in C:

Definition 8.2 (i-line) (Brannan et al. 1999) In C, an i-line L is either an Euclidian
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line E:

L = E (e, r) :=

{

z ∈ C ∣∣∣
∣

if r <∞, Im (z) = rRe (z) + e

else, Re (z) = e

}

, (8.16)

with y-intercept e ∈ C and slope r ∈ R+
0 ∪ {∞}, or Euclidian circle K

L = K (e, r) := {z ∈ C | |z − e| = r} , (8.17)

with center e ∈ C and radius r ∈ R+, such that L ∩ D 6= ∅.
Definition 8.3 (Orthogonality) (Brannan et al. 1999) Two i-lines L1 and L2 are or-
thogonal, iff

L1 L2 L1⊥L2

line line Euclidian orthogonality

circle line if L1 = K (e1, r1), then e1 ∈ L2

circle circle ∀z ∈ L1 ∩ L2 6= ∅, the radii of

L1 and L2 through z are orthogonal

Now it is possible to define hyperbolic lines and segments (see Figure 8.6):

Definition 8.4 (h-line & h-segment) (Brannan et al. 1999) A hyperbolic line (h-line)
is defined as H = L ∩ D, where L is an i-line, L ⊥ J (orthogonal to the unit circle),
and D is the unit disc. The section of H between x, y ∈ H is denoted as Hxy and called a
hyperbolic segment (h-segment).

Lemma 8.1 (Uniqueness of h-lines) (Brannan et al. 1999) If x 6= y and x, y ∈ D,
then there is a unique h-line H such that x, y ∈ H .

Hence h-lines are part of Euclidean circles orthogonal to the unit circle or part of
Euclidian lines through the origin, where the part is strictly inside D. The con-
cept of h-bisectors of h-segments (see Figure 8.6.b) is also important to develop
connections of Euclidian and hyperbolic geometry.

Definition 8.5 (h-bisector) (Brannan et al. 1999) The h-bisector of the h-segment Hxy

(segment of h-line H), is an h-line H⊥(xy) containing the midpoint (in the KM sense) of
Hxy and H⊥(xy)⊥H , meaning that their corresponding i-lines are orthogonal.

Circles are convex geometrical objects in Euclidian geometry. Their counterpart
in hyperbolic geometry (see Figure 8.6.b) is defined as follows:

Definition 8.6 (h-circle & h-disc) (Brannan et al. 1999) A hyperbolic circle (h-circle)
Kh (eh, rh) and a hyperbolic disc (h-disc)Dh (eh, rh) with h-center eh ∈ D and h-radius
rh ∈ (0, 1) are defined as

Kh (eh, rh) := {z ∈ D | κ1 (z, eh) = rh} , (8.18a)
Dh (eh, rh) := {z ∈ D | κ1 (z, eh) ≤ rh} . (8.18b)
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To establish connection with the Euclidian geometry, the following lemmas are
important:

Lemma 8.2 (h-circle equivalence) (Brannan et al. 1999) For any Euclidian circle
K(e, r) ⊂ D with r > 0, there exists a unique h-circleKh (eh, rh), such thatKh (eh, rh)
= K(e, r) and eh is strictly inside K(e, r), i.e. | eh − e |< r.

Lemma 8.3 (h-center relation) For any h-circle Kh (eh, rh) and its Euclidian equiva-
lent K(e, r), there exists a ϕh ∈ R, such that e = ϕheh.

The proof of Lemma 8.3 is given in Appendix A.3. From Lemma 8.2, it follows
that the same equivalence holds between discs and h-discs. Furthermore, Lemma
8.3 states that the h-center and the Euclidian center of a circle or a disc lie on the
same Euclidian line connecting them to the origin. Note that hyperbolic circles are
defined through the KM measure. Therefore, based on (2.173) and Proposition 2.1,
for any circular pole region Ω = Dh (eh, rh), the optimal Λn in the Kolmogorov n-
width sense is Λn = [eh, . . . , eh]1×n with ρ = rn

h . This important consequence
generalizes the result of Pinkus (1985) for the pulse basis (see Section 2.4):

Theorem 8.3 (KnW optimal OBFs for circular regions of non-analyticity) For
the class of stable transfer functions analytical outside the disc Dh (eh, rh), the set of
(complex) OBFs

{√

1− | eh |2
z − eh

Gi(z)

}n−1

i=0

, with G(z) =
1− ze∗h
z − eh

, (8.19)

are optimal in the KnW sense.

The proof of Theorem 8.3 is trivial from the previously described motivation. To
utilize this property of h-circles in the sequel, the following concepts are crucial:

Definition 8.7 (Angle of h-lines) (Brannan et al. 1999) Let H1 andH2 be two h-lines
intersecting in point x and let H3 be an h-line intersecting H1 in y and H2 in z. Then the
angle γh between H1 and H2 is defined by the cosine rule:

sin(κ1(x, y)) sin(κ1(x, z)) cos (γh) = cos(κ1(x, y)) cos(κ1(x, z))− cos(κ1(y, z)),

By convention, γh is the acute angle between H1 and H2 (if γh >
π
4 , then γh := π

2 − γh).

Definition 8.8 (h-inversion) (Brannan et al. 1999) hH : D→ D is called an inversion
with respect to the h-line H , iff hH maps h-lines to h-lines, preserves angles between h-
lines, and hH(z) = z for ∀z ∈ H .

The following properties are immediate:
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Lemma 8.4 (h-inversion uniqueness) (Brannan et al. 1999) For ∀x ∈ D, there exists
an h-inversion hH , such that hH(x) = 0 and hH(0) = x. If x 6= 0, then the h-line H
associated with hH is unique and H = H⊥(x,0) , otherwise H can be any h-line through
the origin.

In the sequel, the notation hx is used to denote the h-inversion associated with x.

Lemma 8.5 (Hyperbolic group) (Brannan et al. 1999) The h-inversions generate a
hyperbolic group D whose elements h : D → D are called hyperbolic transformations.
Each h ∈ D is a conformal mapping of D.

These give the following crucial observations:

Lemma 8.6 (h-circle transformation) (Brannan et al. 1999) For any h ∈ D and h-
circle Kh (eh, rh),

h (Kh (eh, rh)) = Kh (h (eh) , rh) . (8.20)

Corollary 8.1 (κ1-invariance) (Brannan et al. 1999) κ1(x, y) is invariant under D,
meaning that κ1(x, y) = κ1 (h (x) , h (y)), for all h ∈ D and x, y ∈ D.

Now it is possible to develop three key results that are used for the robust solution
of the basis selection problem.

Theorem 8.4 (κ1-metric) The Kolmogorov measure κ1 is a metric on D.

The proof is given in Appendix A.3. This shows that KM is a natural “distance2”
on D.

Theorem 8.5 (h-segment worst-case distance) Given x, y ∈ D, x 6= y, defining the
h-segment Hxy, then for any v ∈ D

max
z∈Hxy

κ1(v, z) = max
z∈{x,y}

κ1(v, z). (8.21)

The proof is given in Appendix A.3. This shows (see Figure 8.7a), that the worst-
case KM of any point in D with respect to an h-segment can be calculated as the
maximum of the KMs with respect to the endpoints of the segment. In Section
8.4.4, this result is used in the solution of the KnW optimization problem for cal-
culating the worst-case cost of basis pole candidates with respect to uncertainty
regions associated with real pole estimates.

Theorem 8.6 (h-disc worst-case distance) Let Dh (eh, rh) be an h-disc and v ∈ D.
Denote by Kh (eh, rh) the perimeter circle of Dh (eh, rh) and by H the unique h-line
through v and eh. Then,

max
z∈Dh

κ1(v, z) =

{
max

z∈{x,y}
κ1(v, z), if v 6= eh;

rh, if v = eh;
(8.22)

2Note that KM is not a distance on D in the geometrical sense; only 2arctanh (κ1(x, y)) bears this
property and is called the Poincaré distance (Brannan et al. 1999).
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where {x, y} = Kh (eh, rh) ∩H (see Figure 8.7b).

The proof is given in Appendix A.3. Again this key result is used in the solu-
tion of the KnW optimization problem for calculating the worst-case cost of basis
pole candidates with respect to uncertainty regions associated with complex pole
estimates. Furthermore:

Theorem 8.7 (Convexity) h-segments and h-discs are convex inD in terms of the metric
KM.

The proof is given in Appendix A.3. In conclusion, the importance of hyperbolic
geometry with respect to the KnW theory is twofold. First of all, it can be shown
that the metric associated with this geometry is equal to the cost function of the
Kolmogorov ng = 1-width optimization problem described by (8.3). This equality
is a key property used during the derivation of the FcM based basis selection al-
gorithm (see Section 8.3). The second importance is that by using convex objects
of the hyperbolic geometry as h-lines and h-circles, the solution of (8.4) over these
regions can be turned into a convex optimization problem with LMI constraints.
The latter property is essential to the robust basis selection algorithm developed
later.

8.4.3 Pole uncertainty regions as hyperbolic objects

In the robust basis selection problem the results of hyperbolic geometry will be
applied on pole uncertainty regions. However, the pole uncertainty regions of
Section 2.3.6 do not necessary coincide with hyperbolic objects. Thus, it is required
to approximate these regions by a coverage of hyperbolic objects in order to apply
the developed results. In the following, a simple pragmatic procedure for this
approximation is briefly explained.

In principle it is true that, if an identified transfer function F (q, θ̂Nd
) has a real

valued pole, then the pole-uncertainty region P(Qθ, α) of F (q, θ̂Nd
) (for a given
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confidence level α) contains segments of the real axis. Therefore, these segment
parts of P(Qθ, α) can be associated with h-segments without the need of any ap-
proximation. In case F (q, θ̂Nd

) has a complex pole pair, then P(Qθ, α) contains
complex regions which come in complex conjugate pairs. Depending on the un-
certainty of the model estimate, these complex regions can merge into one another,
and can also encircle parts of D which seemingly do not contain any of the esti-
mated or original pole locations (see Section 2.3.6). Thus complex pole uncertainty
regions can occur in complicated shapes. However, with a simple methodology,
quite effective coverage of such shapes can be achieved by h-discs.

Let Ω be a separate, complex region in P(Qθ, α). Due to the method of Tóth
et al. (2008c), the separated regions are distinguished during the calculation of
P(Qθ, α). Assume that an equidistant gridding of D is given with step size τ ∈ R+

and the set of grid points is denoted by Q. Let Q+ = Ω ∩Q be the grid points in Ω
and let Q− = Q\Q+. Next, define D0 as a collection of equidistant Euclidian discs
with centers at each points of Q+ and with radii r =

√
2
2 τ . In this way, a coverage

of Ω is obtained by an unnecessary large number of Euclidian discs determining
uniquely their h-disc counterparts. This is used as the initialization of the iterative
optimization procedure of Algorithm 8.2 to find an efficient disc-coverage based
on a fixed number of n discs with unequal radii.

In Step 1 of this algorithm, a disc is selected from the coverage which is the fur-
thest from the points of Q− and its radii can be increased by

√
2
2 τ , without causing

the discs to contain any point of Q−. In case of a tie, an arbitrary disc is selected
from the possible choices. The radius of the selected disc is increased with

√
2
2 τ in

Step 2. If a disc contains other discs after its radius was increased, then those discs
are removed from the coverage in Step 3. The procedure is repeated till there is
no disc whose radius can be increased by

√
2
2 τ without containing a point of Q−.

The optimization results in a h-disc coverage that gives an “optimal” coverage for
the grid-points Q+ with a minimal number of circles, however this number can be
much larger than desired. Therefore a second optimization is initiated in Step 5,
which gives a suboptimal approximation of this coverage by a predefined num-
ber of discs n. In Step 6, two discs that have the smallest dissimilarity in terms
of εij = |ej − ei| + |rj − ri|, where ej, ei are the Euclidean centers and rj , ri the
Euclidian radiuses of the discs, are selected. These discs are merged in Step 7 by
increasing the radii of the larger disc with εij . If a disc contains other discs after
merging, then the contained discs are removed from the coverage. Merging is re-
peated till the desired number of circles is achieved. Example 8.2 shows how the
method works in practice.

Example 8.2 (Hyperbolic coverage of pole-uncertainty regions) Continue Example 2.1 by computing the
hyperbolic coverage of the pole uncertainty regions with Algorithm 8.2 using τ = 10−3 . For regions associated
with different confidence levels, the results are given in Figure 8.8. As can be seen, even the complicated butterfly
region is rather well approximated with a small number of h-discs.
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Figure 8.8: (a) 20 h-discs based coverage of a non-connected uncertainty region
of Figure 2.6 with confidence level 1%. The overfit in area is 4.55%. (b) 40 h-discs
based coverage of a connected uncertainty region of Figure 2.6 with confidence
level 99%. The overfit in area is 4.35%.

Algorithm 8.2 (Disc coverage of complex regions)

0. Initialization: Let D0 := {D(e,
√

2
2 τ)}e∈Q+ be a disc coverage of

Ω based on the step size τ > 0. Let n > 0 and l := 0.

1. Furthest h-discs: Find a D(e, r) ∈ Dl such that min
v∈Q−

min
z∈D(e,r)

|v− z| is

maximal on Dl and D(e, r+
√

2
2 τ) ∩ Q− = ∅. Let

D̂l = D(e, r +
√

2
2 τ) otherwise D̂l = ∅.

2. h-disc extension: If such D exists, then Dl+1 = (Dl \D) ∪ D̂l.

3. Remove discs: Remove all D from Dl+1 which satisfy D ⊆ D̂l.

4. Check of convergence: If D̂l 6= ∅, then set l := l + 1 and goto Step 1.

5. Check of cardinality: If card(Dl+1) ≤ n, then stop, else set l := l+ 1 and
continue with Step 6.

6. Most similar h-discs: Find Di(ei, ri), Dj(ej , rj) ∈ Dl such that Di 6= Dj ,
ri ≥ rj , and εij = |ej − ei|+ |rj − ri| is minimal.

7. Merging: D̂l = D(ei, ri + εij) and Dl+1 = (Dl \ {Di, Dj}) ∪ D̂l.
Perform Step 3 and goto Step 5.
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8.4.4 The robust pole clustering algorithm

In the following, the robust extension of the original FKcM approach is discussed.
As the mechanism of the clustering remains the same in the robust extension, we
will follow the same line of reasoning as in Section 8.3. However, we investigate
and derive these results in a different problem setting.

Let {F̂p̄i}nloc
i=1 be a set of nloc ≥ 1 estimated frozen transfer functions of the LPV

system S identified for constant scheduling signals: p̄i ∈ P and IO partition (u, y).
Each F̂p̄i is associated with a pole uncertainty region Pp̄i containing a number of
regions in D. Let {Ωk}Nz

k=1 denote the collection of these regions and introduce Zk

as the set of hyperbolic objects describing/approximating each Ωk, as has been
discussed in Section 8.4.3. If Ωk is a segment on the real axis (real pole), then
associate Zk with an h-segment being equal to Ωk, else associate it with a union
of h-discs covering Ωk (complex case). Denote Z = {Zk}Nz

k=1 and call it the data
set. Similar to the original FKcM algorithm, introduce 1 < nc < Nz as the number
of clusters or data groups, υi ∈ D as the cluster centers, and µi : D → [0, 1] as the
membership functions of the clusters for all z ∈ D. By using the threshold value
ε, we again obtain the set

Ωε = {z ∈ D | ∃i ∈ Inc
1 , µi(z) ≥ ε}, (8.23)

which is used to formulate the robust variant of Problem 8.1:

Problem 8.2 For a set of pole uncertainty regions {Pp̄i}nloc

i=1 , described by a set of hyper-
bolic objects Z , and for a given number of clusters nc, find a set of cluster centers {υi}nc

i=1,
a set of membership functions {µi}nc

i=1, and the maximum of ε, such that

• Ωε contains Z .

• With respect to Ωε, the OBFs, with poles Λnc in the cluster centers {υi}nc

i=1, are
optimal in the KnW sense, where n = nc.

Again, the solution is based on finding clusters in accordance with the KnW con-
cept and subsequently finding a maximal value for ε, such that all uncertainty re-
gions are inside Ωε. It is obvious that the only difference between the robust and
non-robust clustering problem is in terms of the data objects, which are points
(poles) of the complex plane in the non-robust case and regions of the complex
plane in the robust case.

Denote V = [υi]
nc

i=1 and U = [µik]nc×Nz
, where µik = maxz∈Zk µi(z) is the

degree of membership of Zk to cluster i. Furthermore, “distances” dik between υi

and Zk are also introduced to measure dissimilarity of Z with respect to each clus-
ter. To derive an algorithmic solution of Problem 8.2, this dissimilarity measure is
defined as the Kolmogorov measure, the cost function of the 1-width version of
(8.4), but instead of pointwise, it is defined with respect to each Zk in a worst-case
sense:

dik = max
z∈Zk

κ1 (υi, z) . (8.24)
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Note that by applying Theorems 8.5 and 8.6, dik can be computed analytically with
respect to each Zk ∈ Z . If Zk is a h-segment between points zk1, zk2 ∈ (−1, 1), then
dik is the maximum of the Euclidian distance between υi and these end-points. In
case Zk is a union of h-discs, then first the intersection points are computed for
each disc between the perimeter of the disc and the h-line connecting its h-center
with υi. Then dik results by calculating the maximum of the KM between these
points and υi. In all cases dik > 0, as the worst-case “distance” over regions can
never drop to zero. In the sequel, it is shown that similar to the original FKcM
approach, this specific choice of dissimilarity measure relates the FcM asymptot-
ically to the KnW theory, and in this way to the solution of Problem 8.2. In order
to uniquely associate each dik with a membership level µik the set of membership
function is restricted to satisfy

∑nc

i=1 µi(z) = 1, which requires again that U ∈ UNz
nc

(see (2.175))

In the robust FKcM case, the fuzzy-functional Jm (U, V ) is formulated as

Jm (U, V ) := max
k∈INz

1

nc∑

i=1

µm
ikdik = max

k∈INz
1

max
z∈Zk

nc∑

i=1

µm
ikκ1(υi, z), (8.25)

where the design parameter m ∈ (1,∞) determines the fuzziness of the resulting
partition. This functional defines the cost function, i.e. the criterion of the expected
solution for Problem 8.2. The intuition behind the choice of m is similar as in the
non-robust case. (8.25) also corresponds to a worst-case (max) sum of error criterion
and its relation with the KnW optimality of (U, V ) is the same as in the FKcM
algorithm except that here the KnW problem is considered for regions and not for
points of D. Based on these, the following theorem yields the solution of Problem
8.2:

Theorem 8.8 (Optimal Robust Partition) Let m > 1, a fuzzy partition (U, V ) ∈
UNz

nc
× Dnc , and a data set Z = {Zk}Nz

k=1 be given, where Zk is either an h-segment
between points zk1,zk2 ∈ (−1, 1) or a union of nk h-discs with h-centers {ekl}nkl=1 and
h-radii {rkl}nkl=1. Denote [V ]i = υi and [U ]ij = µij . Define γi(ν, U) as the minimal
value of τ ∈ [0, 1] fulfilling the quadratic constraints:

[
|1− z∗ν|2 µm

ik · (z− ν)
µm

ik · (z− ν)∗ τ2

]

� 0, ∀z ∈ Zk, (8.26)

for all k ∈ IN1 , where ν ∈ D. Additionally, let dik = maxz∈Zk κ1(υi, z) be the dissimi-
larity measure of Zk with respect to V . Then (U, V ) is a local minimum of Jm, if for any
(i, k) ∈ Inc

1 × INz

1 :

µik =





nc∑

j=1

(
dik

djk

) 1
m−1





−1

, (8.27a)

υi = arg min
ν∈D γi(ν, U). (8.27b)

The proof is given in Appendix A.3. Similar to the FcM case, minimization of
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(8.25), subject to (2.175), is tackled by alternating optimization which yields the
same algorithm as Algorithm 8.1, except in Step 2 and Step 3 the solutions are
obtained via (8.27a) and (8.27b).

8.4.5 Properties of the robust FKcM

As a next step we investigate the properties of the robust extension of the FKcM
algorithm. It is shown that KnW optimality of the resulting cluster centers (if
the solution is the global minima of (8.25)) holds again in an asymptotic sense
(m → ∞). Practical implementation of the algorithm is also discussed together
with how the conservatism of the used pole uncertainty concept influences the
procedure.

Asymptotic property

We use the asymptotic properties of Jm to explain the specific choices for the fuzzy
functional (8.25) and the dissimilarity measure (8.24).

Theorem 8.9 (Asymptotic property of Jm in the robust FKcM) Given a data set

Z = {Zk}Nz

k=1, Nz > 0, and a set of cluster centers V ∈ Dnc , nc > 0. Define Um as a
membership matrix of V satisfying (8.27a) for m > 1. Then

Jm(Um, V ) = n1−m
c max

k∈INz
1

[∏nc

i=1
dik

]1/nc

+O(e−m) (8.28)

Furthermore, Jm(Um, V ) decreases monotonically with m, and J∞(U∞, V ) = 0.

As the proof is not affected by the specific choice of dik, the same proof can be
exploited as in the original FKcM case (see Theorem 8.2). Based on Theorem 8.9,
for large m and for a U satisfying (8.27a), Jm corresponds to

Jm(U, V ) ≈ n1−m
c max

k∈INz
1

max
z∈Zk

[∏nc

i=1
κ1 (υi, z)

]1/nc

, (8.29)

thus its minimization gives a close approximation of (8.4), enabling the FKcM to
solve Problem 8.2 directly. However, if m → ∞, then again numerical problems
can occur in the minimization of (8.27b). Therefore, to obtain a well approximating
solution of Problem 8.2, an appropriately large value of m ∈ (1,∞) should be
used. Just like for the original FKcM,m ∈ [5, 10] usually yields satisfactory results.

Similar to the previous case, form > 1 the FKcM-functional (8.25) is a bounded
(0 ≤ Jm ≤ 1) monotonically decreasing function both in {dik} and U , which al-
lows Algorithm 8.1 to converge in practice in the same sense as has been discussed
in the non-robust case. By using different initial choices of V0, all local minima of
(8.25) can be explored. From these multiple runs, the best set of the obtained OBFs
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can be selected by comparison of the achieved decay rate, which is formulated in
the robust case as:

ρ̆ = max
k∈INz

1

max
z∈Zk

nc∏

i=1

∣
∣
∣
∣

z − υi

1− zυ∗i

∣
∣
∣
∣
. (8.30)

Comparison can also be made by visual inspection of the boundary region of
Ω (Λnc , ρ̆). In practice, uniformly random choices for V0 are suggested.

Optimization

In order to derive an algorithmic solution of Problem 8.2 in terms of Theorem
8.8, it is important to define the regions Zk as inequality constrains. Such form
would enable to use (8.26) as a quadratic constraint and apply the same LMIs
based optimization as in the FKcM case. Using the hyperbolic geometry, each
uncertainty region can be represented in the following way:

• If Zk is an h-segment then for z ∈ Zk it holds that

zk1 ≤ z ≤ zk2. (8.31)

• If Zk is the union of h-disks then for a z ∈ Zk there exists a l ∈ Ink1 such that
[
| 1− z∗ekl |2 z− ekl

z∗ − e∗kl r2
kl

]

� 0. (8.32)

As the resulting descriptions define an inequality (see 8.31) or a set of quadratic
constraints (see 8.32) thus (8.27b) is equivalent with a minimization problem with
QCs where γ is the optimization variable and ν is the decision variable. As the
structure of these constraints is similar as in the non-robust case, it is possible
to derive SoS relaxations through which (8.26) and (8.31) turn into LMIs. The
resulting LSDP can be efficiently solved by LMI solvers. Alternatively, bisection-
based recursive search can be used to obtain the minimization of γi in (8.27b).
Also numerical conditioning of Ul can relax the computational need of the LMI’s
based optimization and the termination criterion of the overall algorithm can be
established similar to the original FKcM method. For details on these items see
Section 8.3.2. Similarity-based ACM (see Section 2.5) can also be used for the
determination of the number of “natural” groups in Z , i.e. the best suitable nc

for clustering, which is also important for the successful application of the robust
FKcM method.

Conservatism of the pole uncertainty concept

The approach of calculating pole uncertainty regions, presented in Section 2.3.6,
projects ellipsoidal uncertainty regions of parameter estimates to regions in the
complex plane. It has been already explained in Section 2.3.6 that these regions
represent the set of possible pole locations of the model with respect to the pa-
rameter uncertainties with the given confidence level. However, the covariance



8.4 Robust extension of the FKcM approach 271

of the poles, i.e. which poles occur together in the model estimate with the given
confidence level, is disregarded in this representation. Thus, the projection is in-
herently conservative as for a pole uncertainty region P of a 5th order system it is
not guaranteed that for any 5 arbitrary chosen points {λ1, . . . , λ5} in P there ex-
ists a parameter vector θ in the ellipsoidal parameter uncertainty region such that
the model associated with θ has poles {λ1, . . . , λ5}. In other words, neglecting
the covariance between the pole estimates introduces conservatism. However, it
is true that for any point in P it is guaranteed that there exist 4 other points in P,
such that these 5 points correspond to the pole locations of a model whose pa-
rameters are in the ellipsoidal parameter uncertainty region. This means that the
pole uncertainty regions obtained by this method contain all possible, including
the worst-case pole locations that can occur due to the uncertainty of the obtained
model. However, such worst-case conservatism completely matches the worst-
case concept of the KnW theory (see Section 2.4). Thus the conservatism of the
projection does not affect the basis selection mechanism. This is an important
observation which underlines the validity of the presented approach.

8.4.6 Simulation example

In the following an example is given to visualize the applicability of the robust ba-
sis selection mechanism and to enable comparison with the original FKcM method.
In this example it is shown that disregarding pole uncertainties during the basis
selection process can result in a lower worst-case convergence rate of the obtained
basis functions.

Data generation

Consider again the asymptotically stable SISO LPV system S given by the LPV-
IO representation (8.14). By using constant scheduling signals with values {0.6;
0.6 + τ ; . . . ; 0.8}, where τ = 0.04, 6 local LTI-IO representations of S are obtained,
whose pole locations are samples of ΩP (see Figure 8.2a). We use fewer constant
scheduling points in this case than before, to make the results and the figures
more transparent. The LTI models, associated with constant scheduling signals,
in this example are estimated. The identification of each frozen model has been
based on a OE parametrization and 250 samples long measured IO signals of the
system. The measurements contained additive white output noise ǫ with nor-
mal distribution N (0, 0.1) and a white input signal u with uniform distribution
U(−1, 1). Using the pole uncertainty concept of Section 2.3.6, the pole uncertainty
regions {Pi}6i=1 of the estimated models have been calculated with confidence
level α = 99%. The resulting uncertainty regions consist of Nz = 6 · 5 complex
regions {Ωk}Nz

k=1 which are presented in Figures 8.9a-b. In Figure 8.9a, the esti-
mated frozen poles are denoted by ◦with a color indicating the constant schedul-
ing trajectory they are associated with (deep red p̄1 = 0.6 ↔ yellow p̄6 = 0.8).
The perimeter lines of the pole uncertainty regions are given in Figure 8.9b with
a color indicating which poles they are associated with. Based on these figures,
the resulting uncertainty regions are relatively large, prognosticating that using
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only the estimated poles by the non-robust algorithm can result in a serious per-
formance degradation of the obtained solution. In order to derive an OBF set
for S based on the robust FKcM mechanism, a hyperbolic coverage {Zk}Nz

k=1 has
been generated with respect to each region Ωk, using gridding step size 0.01 and
20 h-discs per complex region. The average overfit in area has been 4.5% of the
resulting coverage (see Section 8.4.3 for details on this algorithm).

Robust and non-robust pole clustering

For the identified pole locations, the non-robust FKcM algorithm has been applied
withm = 8 and nc = 8 (denoted bym8nc8), while for the obtained hyperbolic cov-
erage, the robust FKcM with the same fuzzyness m and number of clusters nc has
been executed (denoted by rob-m8nc8). Note that m = 8 has been used to guaran-
tee close approximation of the asymptotic case similar to the choices of the exam-
ple presented in Section 8.3.3. Moreover, nc = 8 has been used in both algorithms
to enable comparison to the previous example. Note that the estimated poles form
more or less 8 groups in this case as well (see Figure 8.9a), however this is not true
for their associated uncertainty regions where only 5 groups can be detected (see
Figure 8.9b). The results of the clustering are presented in Figures 8.10a-b and
also in Table 8.2. In these figures, the resulting cluster centers are given by blue
×. To visualize the performance of the associated OBFs, the perimeter of their
Ω(Λnc , ρ̆) region with respect to the uncertainty regions/pole estimates is given
with a green bold line. Additionally, to compare the performance of the result-
ing OBFs the achieved Ω(Λnc , ρ̆id) regions (green bold line) of the basis functions
with worst-case convergence rate ρ̆id are given in Figures 8.11a-b with respect to
the estimated pole locations. The performance is also compared in terms of their
achieved Ω(Λnc , ρ̆unc) regions given with respect to the uncertainty regions in Fig-
ures 8.12a-b, and also in terms of their achieved Ω(Λnc , ρ̆true) regions given with
respect to the true frozen poles in Figures 8.13a-b. These figures have been gener-
ated for comparison purposes to show why the use of the robust FKcM clustering
delivers a better basis for the frozen behaviors than the non-robust solution. In
Table 8.2, the comparison of the results is presented in terms of the previously
used indicators like χ, the Xie-Beni validity index and Se, the normalized entropy
together with the achieved decay rate with respect to the estimated pole loca-
tions: ρ̆id, to the uncertainty regions: ρ̆unc, and to the true pole location of the local
systems: ρ̆true. Additionally, ǫne

max, the worst-case absolute error of the impulse
responses of the truncated series-expansion representation of each Fp̄ ∈ FP in
terms of the generated OBFs with ne repetitions, is also given. Based on these and
the previous results of Section 8.3.3, the following observations can be made:

Analyzing the results

The resulting partitions of the non-robust (m8nc8) and the robust FKcM cluster-
ing (rob-m8nc8) solve the basis selection problem for the identified pole locations
/ pole uncertainty regions. This follows from the tight fit of the resulting bound-
ary regions (see Figures 8.10a-b) with respect tot the data sets and the achieved
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Table 8.2: Comparison of algorithmic results in terms of χ, the Xie-Beni validity
index; Se, the Normalized Entropy; the achieved decay rate with respect to the
estimated pole locations: ρ̆id, to the uncertainty regions: ρ̆unc, and to the true
pole location of the local systems: ρ̆true; and ǫne

max, the worst-case absolute error
of the impulse responses of the truncated series-expansion representation of each
Fp̄ ∈ FP in terms of the cluster centers generated OBFs with ne repetition. All
results are given in dB.

Test case χ ρ̆id ρ̆unc ρ̆true Se ǫne=1
max ǫne=3

max

rob-m8nc8 38.958 −52.444 −43.695 −47.012 2.830 −37.326 −140.919

m8nc8 −5.003 −62.809 −32.165 −44.052 2.828 −32.165 −131.207
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Figure 8.9: Estimated frozen poles of RIO(S) and their associated uncertainty re-
gions. The poles are denoted by ◦ in subfigure (a) with a color indicating the con-
stant scheduling trajectory they are associated with (deep red p̄1 = 0.6↔ yellow
p̄6 = 0.8). The perimeter lines of the pole uncertainty regions are given in sub-
figure (b) with a color indicating that which estimated poles they are associated
with.
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Figure 8.10: Resulting cluster centers (blue ×) of robust FKcM clustering of the
pole uncertainty regions (deep red for p̄1 = 0.6↔ light orange for p̄6 = 0.8) and
non-robust FKcM clustering of the estimated poles (red ◦). To visualize the per-
formance of the cluster centers associated OBFs, the perimeter of their Ω(Λnc , ρ̆)
region with respect to the uncertainty regions/pole estimates is given with green
bold line.
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Figure 8.11: Performance comparison of the resulting cluster centers (blue ×) as-
sociated OBFs in terms of the perimeter of their Ω(Λnc , ρ̆id) region (green bold
line) with respect to the estimated frozen poles (red ◦) of RIO(S).
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Figure 8.12: Performance comparison of the resulting cluster centers (blue ×) as-
sociated OBFs in terms of the perimeter of their Ω(Λnc , ρ̆unc) region (green bold
line) with respect to the uncertainty regions of the estimated frozen poles.
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Figure 8.13: Performance comparison of the resulting cluster centers (blue ×) as-
sociated OBFs in terms of the perimeter of their Ω(Λnc , ρ̆true) region (green bold
line) with respect to the true frozen poles (red ◦) of RIO(S).
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small value of the worst-case convergence rate with respect to the used estimated
poles/uncertainty regions (see ρ̆unc for rob-m8nc8 and ρ̆id for m8nc8 in Table 8.2).
However, the OBFs represented by the rob-m8nc8 partition are better basis func-
tions for S than the m8nc8 solution, as the worst-case convergence rate (ρ̆true)
of the basis poles with respect to the true frozen pole locations is smaller in the
former case. This is also shown in Figure 8.13a, where the rob-m8nc8 solution
achieves a relatively tight Ω(Λnc , ρ̆true) on the true pole locations, while them8nc8
case has quite high performance degradation resulting in a loose bound (see in
Figure 8.13b). This yields a smaller representation error if the rob-m8nc8 OBFs
are used for a truncated series-expansion representation of S, which is proved by
comparing the worst-case impulse response representation errors (εne

max) in Table
8.2. The reason why rob-m8nc8 outperforms the m8nc8 solution, comes from the
fact that the m8nc8 solution is based on only one realization of the probability den-
sity function (pdf) associated with the pole estimation, while rob-m8nc8 is based
on pole regions associated with a level set of the pdf through the pole uncertainty
concept of Section 2.3.6. Therefore, if the realization, i.e. the estimated poles, is far
from the true pole locations, then there is no guarantee about the true performance
of the non-robust OBF selection (ρ̆true > ρ̆id). Contrary, the robust solution obtains
guaranteed performance for any realization inside the used uncertainty regions,
giving a high probability in terms of α, that this guaranteed performance is the
upper bound of the achieved performance with respect to the true pole locations.
This is clearly shown by comparing ρ̆true to ρ̆unc in the robust case. Obviously,
the optimal performance of the non-robust solution with respect to the true pole
locations, ρ̆true = −58.38 dB (see Table 8.1) can be achieved in the noiseless case
only.

χ is quite high in the rob-m8nc8 case and also moderately high in the m8nc8
case, showing that each partition represents the underlying structure inefficiently.
Moreover, the relatively high value of Se in both cases suggests also that a smaller
number of clusters is more suitable to describe the underlying data structure,
which agrees with the visual inspection of the almost colliding cluster centers (see
Figure 8.10). This phenomenon is due to the noise uncertainty: the originally re-
quired 8 clusters (see Section 8.3.3) to describe the samples of ΩP are more than the
number of clusters suggested by the identified poles, i.e. their associated uncer-
tainty regions. Using the ACM, the solution converges to a partition that consist
of 7 clusters in the non-robust case and 5 clusters in the robust case which agrees
with visual inspection. By comparing properties of clustering with varying m, the
same conclusions can be drawn as in the non-robust case Section 8.3.3, except that
the computation time increases more rapidly with increasing m.

8.5 Summary

In this chapter, optimal basis selection for series-expansion of LPV systems has
been investigated in the case when only measured data records of the frozen sig-
nal behavior are available. The solution of this problem is crucial to provide a
practical model structure selection tool for LPV identification based on truncated
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series-expansion models. In case of an optimal basis, a fast convergence rate of
the expansion representation implies that only the estimation of a few coefficients
is necessary for a good approximation of the system.

It has been shown previously that Kolmogorov n-width optimality of the basis
with respect to the transfer functions associated with the frozen behaviors is a
necessary condition for fast convergence rate of the global expansion. Thus, it
has been motivated, that a prime objective of the developed model selection is
to find a KnW optimal basis in the frozen sense for the unknown LPV system.
However, the KnW theory is formulated on the fact that the set of pole locations of
the frozen behaviors associated transfer functions is known. As this pole manifest
set is generally unknown in practice, it must be reconstructed from measured data.
It has been proposed that, using measured data records of the frozen behaviors,
some samples of the pole manifest set can be estimated from which reconstruction
of the whole pole set is possible through data clustering algorithms, like FcM. This
has lead to the conclusion that solving these objectives: reconstruction of the pole
manifest set and finding the KnW optimal basis with respect to the reconstructed
set are both required for a practically applicable basis selection tool.

To develop this tool, in Section 8.2 the KnW theory has been revisited, showing
how the underlying optimality concept corresponds to the adequate approxima-
tion quality of truncated series-expansion models in the frozen sense. It has been
motivated that beside finding an optimal basis for a fixed n-width, it is also of
crucial importance to find an adequate n. While the former objective corresponds
to the optimal worst-case approximation error of the truncated series-expansion,
the latter determines how many basis functions, i.e. expansion coefficients, are
required for that. Thus to provide an efficient selection of a truncated expansion
model structure for the identification of LPV systems, both questions must be con-
sidered.

In Section 8.3, both the reconstruction problem and the KnW problem with
respect to the frozen transfer function set have been formulated as a clustering
problem of the sample pole locations. It has been shown that this clustering prob-
lem can be efficiently solved by a modified Fuzzy c-Means algorithm. The devel-
oped algorithm, the so called Fuzzy-Kolmogorov c-Max (FKcM) clustering, has been
shown to give KnW optimal selection of the basis on the reconstructed pole man-
ifest set if the fuzzyness m tends to infinity. In this way, the method involves m as
a user defined trade-off between the optimality of the solution and the required
computational load. It has also been motivated that the alternating optimization
on which the algorithm is based always converges in practice, even if proof of
this property is still need to be found. Additionally, we have explored that the
optimization steps of the FKcM approach can be formulated as Linear Matrix In-
equalities (LMI)s, which can be solved efficiently in practice based on the available
interior point methods. Besides other practical aspect, it has been also discussed
that the use of adaptive cluster-merging provides an effective tool to choose the
width of the KnW problem. In this way, this contribution of the thesis has been
shown to provide an effective basis selection tool for truncated expansion model
selection of LPV system identification.

In order to handle the effect of pole uncertainties that result during the esti-
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mation of the sample pole locations, in Section 8.4 a robust formulation of the in-
troduced basis selection approach has been introduced. However, to develop the
tools that are needed for this extension, first important connections of hyperbolic
geometry and the KnW theory have been explored in Section 8.4.2. The main mes-
sage has been that hyperbolic concepts generalize the results of the Kolmogorov
n-width theory with respect to OBFs and also provide simple and efficient ways of
solving the underlying optimization problem with respect to specific regions, like
hyperbolic segments or disks. As a contribution, a theory has been developed in
this section to prove this connection and to provide the ingredients for the robust
solution of the basis selection problem in the LPV case. It has been shown that the
Kolmogorov n-width optimality result of the pulse basis with respect to circular
regions of non-analycity around the origin can be extended. The extended the-
ory proves the optimality of general orthonormal basis functions with respect to
any circular region or h-segment of the unit-disk. As an additional ingredient of
the robust basis selection tool, an algorithm has been developed which provides
efficient coverage of pole uncertainty regions with h-discs.

Using the hyperbolic geometry results, the robust formulation of the FKcM ap-
proach has been developed showing that the main difference of the two problem
setting lies in the fact that clustering of uncertainty regions is required in the ro-
bust case instead of just the estimated poles. It has been shown, that the robust
algorithm has the same properties in terms of KnW optimality, numerical con-
vergence, etc. as the original FKcM algorithm. However, the robust formulation
provides optimal selection of the basis even in case of considerable measurement
noise, i.e. pole uncertainty. The latter property has been illustrated in a simulation
example.

The algorithms, developed in this chapter, provide effective tools for model
structure selection for LPV identification based on truncated series-expansion mod-
els.



9 CHAPTER

LPV identification via OBFs

A
ll the theory that has been introduced so far has served the sole pur-
pose of providing tools to formulate identification of general LPV

systems in a well-established manner. Finally in this chapter, the iden-
tification approach of this thesis is proposed, which is based on model
structures that originate from truncated OBF expansion representations
of LPV systems. By assuming static dependence of the expansion coeffi-
cients, two identification methods, a local and global one, are developed
for the introduced model structures. While the local approach uses the
gain-scheduling principle: identification with constant scheduling signals
and interpolation of the resulting LTI models, the global approach pro-
vides a direct LPV model estimate via linear regression based on data
records with varying scheduling trajectories. The introduced approaches
are analyzed in terms of variance, bias, consistency, and validation of the
model estimates is also investigated. To enable the estimation of modes
with dynamic coefficient dependencies, a modified feedback-based OBF
model structure is proposed, which, by using static dependence, is able to
represent a truncated series-expansion with coefficients having dynamic
dependence. Estimation of the parameters of such a model structure is
formulated through a separable least-squares strategy and the resulting
approach is analyzed in terms of its properties.

9.1 Introduction

In the previous chapters we have built up an extensive LPV system theoretical
framework to provide understanding of model structures and to develop tools for
their analysis. Based on this framework it has been shown that a series-expansion
representation of discrete-time asymptotically stable LPV systems is available in
terms of Orthonormal Basis Functions (OBFs). By the motivation given in Chapter
1, we have set up our research goal to use finite truncations of such representa-
tions as models for the identification of LPV systems. We aim to fulfill this goal

279
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here, by formulating finite truncation based expansion model structures and by
developing approaches and algorithms that solve the estimation problem of these
models in the classical Least-Squared (LS) setting (see Section 2.3).

First in Section 9.2, we show that truncated OBF expansion model structures
have many advantages over the model structures used in the state-of-the-art of
LPV system identification (see Section 1.3). In fact we motivate that the devel-
oped structures provide an easily scalable trade-off between model complexity
and accuracy of the estimate; simplify control design and identification; do not
suffer from locally changing system order; and that they extend the results of LTI
system identification. As a major contribution, we also formulate the prediction-
error setting for LPV identification, analyzing the one-step-ahead predictor and
possible noise model concepts. This provides the final tools in order to compare
identification algorithms of the LPV identification field.

It has already been shown that the convergence rate of a LPV series-expansion
is directly influenced by the used basis. Hence the number of terms required in
a truncated expansion to achieve a good approximation of the system (low bias)
is dependent on the basis. In this way, there is a prime emphasis on appropriate
selection of the basis for these model structures. In Chapter 7 we have developed
an algorithm to assist this selection task based on first principle information, while
in Chapter 8, a basis selection mechanism has been introduced that solves this
problem based on measured data. In this chapter, we treat these approaches as
the part of the model structure selection phase of our identification approach, and
in the sequel we continue the discussion by searching solutions for the remaining
steps of the identification cycle.

In Section 9.3, we develop discrete-time identification algorithms for the pro-
posed model structures in the LS setting. We motivate that the freedom of dy-
namic dependence, which is required in all model structures for the representation
of general LPV systems, is too vast to handle black-box identification effectively.
Additionally, static dependence of the identified system models is most often as-
sumed by the currently available LPV control design tools. Thus, to narrow the
search space and to provide models directly applicable for control, the coefficient
functions of the OBF model structures are restricted to have static dependence in
the developed approaches of Section 9.3. Based on this restricted model class and
the LS setting, two identification approaches, a local and a global one, are intro-
duced. The local method uses the gain-scheduling type of identification strategy:
for some constant scheduling trajectories, LTI truncated expansion models of the
system based on a fixed set of OBFs are identified and then the expansion coef-
ficients of the estimated models are interpolated on the scheduling space P. It
is shown that in comparison with other gain-scheduling based identification ap-
proaches, the interpolation problem is well formulated in this case. The global
method uses a data record collected from the system for a varying scheduling tra-
jectory, and formulates the estimation of the expansion coefficients by a linear re-
gression. To do so, the expansion coefficients in this case are assumed to be linear
in the parameters, i.e. to be the linear combination of a prior chosen set of mero-
morphic functions. The introduced approaches are analyzed in terms of variance,
bias, consistency, and validation of the model estimates is also investigated.
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To enable the estimation of truncated expansion models with dynamic coeffi-
cient dependencies, but at the same time still provide applicable models for con-
trol, feedback-based OBF model structures are proposed in Section 9.4. It is shown
that, by using static dependence, the introduced models are able to represent trun-
cated expansion models with dynamic coefficient dependencies. For the identifi-
cation of such feedback-based model structures, the previously developed global
approach is extended, formulating the parameter estimation through a separable
least-squares approach. Finally, in Section 9.5, the extension of the introduced
approaches to MIMO systems is investigated, which concludes the chapter.

The aim of this chapter is to give a set of identification approaches that are
capable to deliver theoretically well-founded model estimates in the LPV frame-
work, accomplishing the primary objective of this thesis. Here we do not pursue
the proper exploration of the other two steps of the identification cycle: experi-
ment design and model validation, though some basic results about these issues
are briefly covered in the analysis of the identification approaches. The proper
treatment of these steps is reserved for further studies. Our intention is to open
a new sound alternative of the existing identification literature and to give fur-
ther possibilities for the development of a future generation of LPV identification
approaches.

9.2 OBFs based LPV model structures

LPV model structures based on truncated OBF expansion representations are in-
troduced in this section. The structures are defined by using the concepts of the
classical prediction error setting. Thus first, characterization of this setting is de-
veloped in the LPV case. Due to the absence of a transfer function type of descrip-
tion of LPV systems, the process and noise models are formulated based on their
impulse response presentation. This gives the possibility to develop one-step-
ahead predictors in this framework. As a next step, the proposed model struc-
tures, as truncated OBF expansion representations are formulated with Output-
Error (OE) type of noise models. Based on the fact that the coefficients can appear
on the left or on the right-side of the basis functions in the expansion, different
type of model structures can be introduced. Finally, important properties of the
proposed model structures are investigated and compared to other model struc-
tures of the LPV identification field. Similarity of the introduced structures to
nonlinear Wiener and Hammerstein models is also explored.

9.2.1 The LPV prediction error framework

As a starting point, we assume that a non-autonomous, SISO, asymptotically sta-
ble LPV system S = (Z,P,W,B) is given in discrete-time (DT) with scheduling
signal p. We aim at the identification of this system based on a predefined input-
output (IO) partition (u, y). We suppose that S is equivalent with the deterministic
part of the data generating physical system (i.e. the deterministic part of the phys-
ical system corresponds to an LPV system with the considered scheduling signal).
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Figure 9.1: Data generating system in the LPV prediction error framework.

Based on first principles information, it is possible in practice to select scheduling
variables for a plant that yield an LPV equivalent (see the procedure developed in
Section 7.4).

Prediction error setting

First we clarify the identification setting in which we position our models. Using
the concept of the classical prediction error identification (see Section 2.3), it is
assumed that the data generating system, illustrated in Figure 9.1, is given as

y = (F0(q) ⋄ p)u+ v, (9.1)

where the process part, i.e. the LPV system S, is represented in a impulse response
form RIM(S):

F0(q) ⋄ p =
∞∑

i=0

(gi ⋄ p)q−i, (9.2)

with gi ∈ R. Note that due to the asymptotic stability assumption, every con-
sidered discrete-time LPV system has a Impulse Response Representation (IRR) (see
Section 5.3). The reason why we use the IRR to define the data generating equa-
tion (9.1) is due to the fact that a transfer function form of the dynamic relation,
like in the LTI counterpart (2.135), is not available for LPV systems. Additionally,
the noise part of (9.1) is given as v, satisfying

(QA0(q) ⋄ p)v = (QB0(q) ⋄ p)e, (9.3)

where e is a zero-mean white noise process with variance σ2
e and QA0 , QB0 ∈

R[ξ] are polynomial functions such that deg(QA0) ≥ deg(QB0). Similar to the LTI
case, it is assumed that the IO representation (9.3) defines an asymptotically stable
system in the deterministic sense, otherwise the identification of F0 in (9.1) is not
meaningful. Under this assumption, the representation of the noise structure (9.3)
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has a pulse basis series-expansion, which is denoted by Q0(q) and satisfies

v = (Q0(q) ⋄ p)e with Q0(q) =
∞∑

i=0

(hi ⋄ p)q−i, (9.4)

where hi ∈ R.

One-step-ahead prediction of v

Similar to the LTI case, to formulate a one-step-ahead predictor with respect to y,
it is required to clarify how we can predict v(k) at a given time step k, if we have
observed v(τ) for τ ≤ k − 1. A crucial property of (9.4) what we will impose to
enable an answer to this question is that it should be invertible, i.e. there exists
a stable inverse Q†0(q, p) of Q0(q, p), where Q†0(q, p) is a convergent LPV series-
expansion and

e = (Q†0(q) ⋄ p)v. (9.5)

Note that by taking QB0 , QA0 ∈ R[ξ], which is a subspace ofR[ξ], Q0 is equivalent
with a transfer function and Q†0 is its stable inverse. This results in the LTI case
discussed in Section 2.3.

As a next step, write (9.4) as

v(k) = (h0 ⋄ p)(k)e(k) +

∞∑

i=1

(hi ⋄ p)(k)e(k − i). (9.6)

Now the knowledge of {v(τ)}τ≤k−1 and a given trajectory of p implies the knowl-
edge of {e(τ)}τ≤k−1 in the view of (9.6). Based on this relation, there are many
ways to define the prediction of v(k), like the maximum a posteriori prediction or
the mean value of the distribution in question, etc. The classical approach we use
in the following is to view the prediction of v(k) as the conditional expectation of
v(k) based on {e(τ)}τ≤k−1 and a fixed trajectory of p ∈ BP:

v̂(k|k − 1) := E {v(k) | {e(τ)}τ≤k−1, {p(τ)}τ∈Z} , (9.7)

where E is the expectation operator. Assume that p is deterministic and h0 = 1,
which also implies that the feedthrough term in Q†0 is 1. Then the conditional
expectation of v(k) is given as

v̂(k|k − 1) =

∞∑

i=1

(hi ⋄ p)(k)e(k − i). (9.8)

It is also easy to establish that the conditional expectation minimizes the mean-
squared error of the prediction:

min
v̂(k)

E {v(k)− v̂(k)}2 ⇒ v̂(k) = v̂(k|k − 1), (9.9)
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where the minimization is carried out over all functions v̂ ∈ RZ (see Ljung (1999)).
Additionally, using (9.5) we can write

v̂ = ((Q0(q) ⋄ p)− 1) e = (1− (Q†0(q) ⋄ p))v, (9.10)

which gives the classical one-step-ahead predictor result of v. In case p is a stochas-
tic process, it is a difficult problem to establish conditional expectation of v(k), as
each Markov parameter hi can be a nonlinear function of p(k − l) where l ∈ Z ,
i.e. it contains forward and backward samples of p. Due to this fact, in the future
analysis p is considered to be a deterministic signal.

One-step-ahead prediction of y

As a next objective, we develop the one-step-ahead prediction of y(k) based on
{y(τ)}τ≤k−1, {u(τ)}τ≤k and a given scheduling trajectory p ∈ BP. Since

v(k) = y(k)−
∞∑

i=0

(gi ⋄ p)(k)u(k − i), (9.11)

this means that also v(τ) is known for τ ≤ k−1. We would like to predict the value
of y(k) based on this information. Using the reasoning of the previous discussion,
the conditional expectation ŷ(k|k − 1) of y(k) is

ŷ = (F0(q) ⋄ p)u+ v̂

= (F0(q) ⋄ p)u+ (1− (Q†0(q) ⋄ p))v
= (F0(q) ⋄ p)u+ (1− (Q†0(q) ⋄ p))(y − (F0(q) ⋄ p)u)
= ((Q†0(q)F0(q)) ⋄ p)u+ (1− (Q†0(q) ⋄ p))y. (9.12)

This gives that in the view of the developed IRR representation of LPV systems,
the classical result of the one-step-ahead predictor also holds in the LPV case,
giving a powerful tool to develop and analyze identification methods.

Prediction error models

Following a similar reasoning as in the LTI case, we can introduce the parameter-
ized model

(F (q, θ), Q(q, θ)), (9.13)

where θ ∈ Rn represents the “parameter vector”, the collection of meromorphic
coefficients associated with F and Q (in case Q is not dependent on p, then θ con-
tains the real constant coefficients of Q). Note that these coefficients are not neces-
sarily associated with Markov parameters. So θ can correspond to the coefficients
of the process and the noise models given in a SS or IO representation. Then,
these parameterized structures are represented in a series-expansion form by F
and Q. The parameterized model of (9.13) leads to the following one-step-ahead
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parameter-varying (PV) predictor based on (9.12):

ŷθ := (1−Q†(q, θ) ⋄ p)y + (Q†(q, θ) ⋄ p)(F (q, θ) ⋄ p)u. (9.14)

In this case, the allowed parameter space is Θ ⊆ Rn. Now again, we are looking
for an estimate of θ such that ŷθ is a good approximation of y, i.e. the prediction
error:

ǫ(k, θ) := y(k)− ŷθ(k), (9.15)

is minimized. Just like in the LTI case, it is possible to apply the LS criterion (2.140)
for this purpose based on an available data record DNd

= {y(k), u(k), p(k)}Nd−1
k=0 .

9.2.2 The Wiener and the Hammerstein OBF models

In the introduced prediction error setting, we aim to develop model structures in
which the process model F is a finite truncation of a OBF expansion representa-
tion and the noise model Q is equal to identity. The motivation is similar as in
the LTI case (see Section 2.3.5), namely that with this particular choice of the pro-
cess and noise models the coefficients of F appear linearly in (9.14) and the noise
model Q is parameterized independently from F . The model structures that can
be deduced from this choice are the key elements for the identification approaches
of this thesis.

Assume that we are given a set of Hambo orthonormal basis functions Φ∞ng
,

defined as
Φ∞ng

:= {φj(z)G
i(z)}i=0,··· ,∞

j=1,··· ,ng
, (9.16)

where G is an inner function in H2 (E). Note that Φ∞ng
can be arbitrary or chosen

by a basis selection mechanism, as described in Chapter 8. In terms of these basis
functions, a series-expansion representation of S, i.e. the process part of (9.1), is
available in the form of (5.19), implying that:

y = e+ (w00 ⋄ p)u+

∞∑

i=0

ng∑

j=1

(w ij ⋄ p)φj(q)G
i(q)u, (9.17)

where w ij ∈ R and the feedthrough-term w00 ∈ R are meromorphic coefficient
functions. As a next step, we define model structures as the finite truncation of
the series-expansion in (9.17). Here, one should realize that (9.17) can be formu-
lated in an alternative way, where the expansion coefficients appear after the basis
functions. Since multiplication by the time operator q is non-commutative with
respect to w ij (see Section 3.1.3), a finite truncation of that alternative form would
lead to a model with different approximation capabilities. To show that the alter-
native formulation of (9.17) exists, consider (5.3). It is obvious that this pulse basis
expansion can be also written as

y = (g0 ⋄ p)u+ q−1(−→g 1 ⋄ p)u+ q−2(
−→−→g 2 ⋄ p)u+ . . . (9.18)

where −→� is the forward-shift operator on R (see Definition 3.13). Using this al-
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Figure 9.2: IO signal flow graph of (a) the W-LPV OBF model described by (9.21)
and (b) the H-LPV OBF model described by (9.24) with W = [w01 . . . wneng ] and
without a feedthrough term (w00 = 0).

ternative formulation of (5.3) to derive OBF expansions of asymptotically LPV
systems via the substitution rule (5.10), leads to

y = e+ (w00 ⋄ p)u+

∞∑

i=0

ng∑

j=1

φj(q)G
i(q)(w ij ⋄ p)u. (9.19)

Note that in (9.19), the coefficient functions {w ij} are generally not equal to the
coefficients of (9.17) due to the non-commutativity of q .

Now consider the finite truncation of the Hambo basis Φ∞ng
:

Φne
ng

:= {φj(z)G
i(z)}i=0,··· ,ne

j=1,··· ,ng
, (9.20)

with ne ≤ ∞. In terms of this truncation, (9.17) or (9.19) provide an approxima-
tion of the data generating system (9.1), i.e the LPV system S. The resulting struc-
tures, presented in Figure 9.2a-b, can be viewed as a filter bank of OBFs, which
is a LTI system, followed or preceded by a meromorphic weighting function set
with dynamic dependence on p. Thus, these structures have some resemblance
with nonlinear Wiener (NW) and nonlinear Hammerstein (NH) models, important
model classes for chemical, biological, and sensor/actuator systems (Billings and
Fakhouri 1982). An LTI model with static nonlinearity on its output is called a
Wiener model (see Figure 9.3a) while an LTI model with static nonlinearity on its
input is called a Hammerstein model (see Figure 9.3b). The consequences of this
similarity are investigated later on, but for the time being, to respect this relation,
the introduced structures are called a Wiener LPV OBF model (W-LPV OBF) and a
Hammerstein LPV OBF model (W-LPV OBF). These model structures are formally
defined as follows:

• Wiener LPV OBF model (W-LPV OBF)

F (q, θ) ⋄ p = w00 ⋄ p+

ne∑

i=0

ng∑

j=1

(w ij ⋄ p)φj(q)G
i(q), Q(q, θ) = 1, (9.21)

with θ =
[
w00 w01 . . . wneng

]⊤ ∈ R1+(ne+1)ng and p ∈ BP, where BP



9.2 OBFs based LPV model structures 287

Static non-
linearity

LTI 
system

F(q)
u(k) y(k)

w(.)
y(k)

(a) Wiener model

LTI
system

Static non-
linearity

w(.)
u(k) y(k)

F(q)
u(k)

(b) Hammerstein model

Figure 9.3: IO signal flow graph of (a) nonlinear Wiener models and (b) nonlinear
Hammerstein models.

is considered to be known. This model, given in Figure 9.2a, is called the
W-LPV OBF model and denoted by MW(Φne

ng
, θ,BP). Based on (9.21), the

predictor model reads as

ŷθ = (w00 ⋄ p) u
︸︷︷︸

y̆00

+

ne∑

i=0

ng∑

j=1

(w ij ⋄ p)φj(q)G
i(q)u

︸ ︷︷ ︸

y̆ij

. (9.22)

Let (A,B,C,D) be a minimal balanced LTI state-space (SS) realization of Φne
ng

.
Using this realization, the SS equivalent representation of (9.22), is given by

qx = Ax+Bu, (9.23a)
ŷθ = (W ⋄ p)x+ (w00 ⋄ p)u, (9.23b)

where x =
[
y̆01 . . . y̆neng

]⊤ and W =
[
w01 . . . wneng

]
.

• Hammerstein LPV OBF model (H-LPV OBF)

F (q, θ) ⋄ p = w00 ⋄ p+

ne∑

i=0

ng∑

j=1

φj(q)G
i(q)(w ij ⋄ p), Q(q, θ) = 1, (9.24)

with θ =
[
w00 w01 . . . wneng

]⊤ ∈ R1+(ne+1)ng and p ∈ BP, where BP
is considered to be known. This model, given in Figure 9.2b, is called the H-
LPV OBF model and denoted by MH(Φne

ng
, θ,BP). In this case, the predictor

reads as

ŷθ = (w00 ⋄ p)u
︸ ︷︷ ︸

ŭ00

+

ne∑

i=0

ng∑

j=1

φj(q)G
i(q)(w ij ⋄ p)u

︸ ︷︷ ︸

ŭij

. (9.25)

The SS equivalent representation of (9.25), is given by

qx = Ax+ (W ⋄ p)⊤u, (9.26a)
ŷθ = Cx + (w00 ⋄ p)u, (9.26b)

where
[
ŭ01 . . . ŭneng

]⊤
= (W ⋄ p)⊤u.

These model structures are the PV forms of the (A,B) and the (A,C) invariant



288 Chapter 9 LPV identification via OBFs

Hambo OBFs based model parameterizations in the LTI case (see Section 2.2).
Those LTI model parameterizations are considered to be equivalent in a SISO
setting, as their coefficients are equivalent up to a linear transformation (Section
2.3.5). However, this does not hold in the LPV case due to the absence of the
transposition property (Section 4.1.4), therefore the coefficients {w ij}i=0,...,ne

j=1,...,ng
are

generally not equivalent in (9.21) and (9.24). Thus, these model structures are
distinguished in the sequel.

9.2.3 Properties of Wiener and the Hammerstein OBF models

As a next step, important properties of the introduced models are investigated
from the viewpoint of system identification. First we prove that the W-LPV OBF
and H-LPV OBF models are general approximators of LPV systems, so by these
models, LPV systems can be approximated with arbitrary precision. Then we ex-
plore how a locally changing McMillan degree of the system, which is a crucial
problem in the interpolation-based identification methods, affects these model
structures. Next we show why these model structures are beneficial in the pre-
diction error setting and how estimates in these structural forms can be used for
control design, i.e. that these models are compatible with the existing LPV control
theory.

General approximation property

It has been show in Chapter 5 that an asymptotically stable discrete-time LPV
systems has a series-expansion representation in terms of an arbitrary basis for
RH2− (E). For such an approximation-free representation, infinitely many basis
functions, Φ∞ng

, are required in the general case. This implies that using a finite
number of basis functions, Φne

ng
, restricts the class of realizable LPV systems. Thus,

it is important to investigate the approximation capabilities of these models.

In the work of Boyd and Chua (1985), it has been proved for nonlinear Wiener
models that, if the LTI part is an OBF filter bank, then such models are general
approximators of nonlinear systems with fading memory (NL dynamic systems
with convolution representation). This means that, if the number of the OBFs in
the filter bank tends to infinity, then the best achievable approximation error of
the output trajectories in terms of the choice of the static nonlinearity converges
to zero in an arbitrary norm.

Now consider the LPV case. In Chapter 5 it has been shown that the series-
expansion of asymptotically stable LPV systems in terms of an orthonormal basis
Φ∞ng

is convergent. It has also been highlighted, that such series expansions in gen-
eral only exist, if the expansion coefficients have dynamic dependence. Further-
more, it has been shown that the expansion coefficients yield a sequence, which
converges to zero for each scheduling trajectory. For a given basis sequence Φ∞ng

,
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the worst-case approximation error of a truncated expansion representation is

sup
(y,u,p)∈B

∥
∥
∥
∥
∥
∥

∞∑

i=ne+1

ng∑

j=1

(w ij ⋄ p)φj(q)G
i(q)u

∥
∥
∥
∥
∥
∥

. (9.27)

Based on the previous, it holds that this worst-case approximation error satisfies
that

lim
ne→∞

sup
(y,u,p)∈B

∥
∥
∥
∥
∥
∥

∞∑

i=ne+1

ng∑

j=1

(w ij ⋄ p)φj(q)G
i(q)u

∥
∥
∥
∥
∥
∥

= 0. (9.28)

W-LPV and H-LPV OBF models are formulated based on finite truncation of LPV
expansion representations, thus (9.28) proves the following property:

Property 9.1 (General LPV approximation) W-LPV and H-LPV OBF models are
general approximators of LPV systems.

This result means that, by extending the basis function set of these models, ap-
proximation of general LPV systems can be achieved with arbitrary precision. An
additional property is that, in practice, careful selection of the basis functions can
ensure almost error free representation of the frozen transfer function set FP of S
with a limited number of OBFs (see Chapter 8). Such a basis function set has fast
convergence rate in the series-expansion of S. This provides the conclusion that
with the general approximator property, the proposed model structures offer an
efficient approximation structure for identification.

There is also an important difference with respect to the previously mentioned
nonlinear counterpart of this result. In the nonlinear case, a necessary condition
for the general approximator property is that the static nonlinearity must contain
all possible combinations of the products of the output signals y̆ij of the filter
bank. Due to the linear signal relation of the LPV setting, this condition is not
required for Property 9.1, i.e. the linear combination of y̆ij with meromorphic PV
coefficients is sufficient.

McMillan degree property

An additional property of the introduced model structures is that they are well
structured against changes of the McMillan degree in the frozen system set FP
of S. It is generally true that, if for a constant scheduling signal p(t) = p̄ the
associated Fp̄ ∈ FP has a lower McMillan degree than the rest of the systems in
FP, then this does not imply that any of the coefficient functions {w ij} of the OBF
series-expansion is zero for p̄. This shows that these model parameterizations are
not affected by problems that are common for LPV-SS or IO representations based
model structures (see Chapter 1).
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Linear in the coefficients property

The third, but equally important property of W-LPV OBF and H-LPV OBF models
is that they are linear in the coefficients θ, i.e. both in predictor equations (9.22) and
(9.25) the coefficients {w ij} appear linearly. This means that for a LS identification
criterion and with a linear parametrization of {w ij}, the estimation problem of
these coefficient functions has an analytic solution.

Models for control

The proposed models are also efficiently applicable for LPV control design. Thro-
ugh (9.23a-b) and (9.26a-b), a SS realization of the estimated models is available
and therefore the existing LPV control approaches, which are exclusively formu-
lated for SS representations, can be directly applied. Due to the fact, that both in
(9.23a) and (9.26a) the matrix A is constant, optimal control design greatly sim-
plifies with respect to these model estimates. The reason is that global dynamic
stability of models with constant A can be always expressed by a Lyapunov equa-
tion with non-parameter dependent, i.e. constant P (see Section (3.3.2)). The only
disadvantage is that many control approaches assumes static dependence of the
matrices. This implies, that dependence of {w ij} must be restricted to static de-
pendence, i.e. w ij ∈ R|nP , to provide models to which these control solutions
can be applied. However, for the general approximator property, dynamic de-
pendence of the coefficients is required, which means that the restriction to static
dependence reduces the representation capabilities of the models. This issue is
explored further in Section 9.3 and 9.4.

9.2.4 OBF models vs other model structures

The prediction-error setting with the one-step-ahead predictor (9.14) enables the
comparison with other model structures used in the LPV identification literature.
Hence in the following, the properties of LPV-IO and SS models, introduced in
Chapter 1, are discussed in the prediction-error setting and compared to OBFs
models. As we will show, there are hidden assumptions in these LPV model struc-
tures in terms of the noise models.

Comparison to LPV-IO models

Consider

y = −
na∑

i=1

(ai ⋄ p)q−iy +

nb∑

j=0

(bj ⋄ p)q−iu+ e, (9.29)

the LPV-IO filter model of the IO identification approaches (see Chapter 1). The
parameter vector for this ARX model consists of the coefficients in (9.29):

θ =
[
a1 . . . ana b0 . . . bnb

]
,
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where each coefficient has static dependence. It can be easily shown that the one-
step-ahead predictor of y reads as

ŷθ = −
na∑

i=1

(ai ⋄ p)q−iy +

nb∑

j=0

(bj ⋄ p)q−iu, (9.30)

if the noise model Q is chosen in a way that

Q†(q, θ) ⋄ p = 1 +

na∑

i=1

(ai ⋄ p)q−i. (9.31)

Note that, similar to the OBF models, this model structure is also linear in the
coefficients, but its noise model is not independently parameterized from the pro-
cesses part, as it is well-known for the LTI case. However, the suggested noise
model

e = v +

na∑

i=1

(ai ⋄ p)q−iv, (9.32)

reveals that

Q(q, θ) ⋄ p = 1−
na∑

i=1

(ai ⋄ p)q−i +

(
na∑

i=1

(ai ⋄ p)q−i

)(
na∑

i=1

(ai ⋄ p)q−i

)

− . . .

This shows that, even if each ai has static dependence, the noise model Q(q, θ)
has dynamic dependence, i.e. v is dependent on the entire past of the scheduling
signal p. Thus the assumed noise structure of an ARX model is rather artificial, im-
plying much more conservatism than in the LTI case. It must be noted, that in the
cited works (Wei and Del Re 2006; Wei 2006; Bamieh and Giarré 2000, 1999), only
the estimation problem (9.29) has been solved in the LS setting, while the assumed
noise model of this model structure and its effects have not been investigated.

Comparison to LPV-SS models

In the SS case, the model structure of the global identification methods, like the
global subspace techniques and gradient methods, is given by

qx = (A ⋄ p)x+ (B ⋄ p)u+ (E1 ⋄ p)e, (9.33a)
y = (C ⋄ p)x+ (D ⋄ p)u+ (E2 ⋄ p)e, (9.33b)

where the matrices (A,B,C,D) define a DT-LPV-SS representation, E1, E2

∈ RnX×1, and e is a vector of independent zero-mean white noise processes (see
Chapter 1). Commonly it is assumed that all coefficients of the model has static
dependence. In the SISO case, by applying pulse basis expansion on this model,
the process model F and the noise model Q trivially follow:

F (q, θ) = D +

∞∑

i=1

C





i−1∏

j=1

A[j]



B[i]q−i, (9.34a)
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Q(q, θ) = E2 +

∞∑

i=1

C





i−1∏

j=1

A[j]



E
[i]
1 q
−i, (9.34b)

where �
[j] denotes that the backward-shift operator (see Definition 3.13) applied j-

times on the matrix. Note that the noise model (9.34b) involves all matrices of the
process part, thus it is obvious that its not independently parameterized from F
and it depends on the entire past of scheduling signal p. Furthermore, the coeffi-
cients, i.e. the matrices, do not appear linearly in (9.34a). Thus, the model (9.33a-b)
can be efficiently used in the prediction error identification setting by either ap-
plying a (complicated) nonlinear estimation procedure, like gradient search (Lee
(1997); Lee and Poolla (1996); Verdult et al. (2002) and Verdult et al. (2003)) or in the
unrealistic case, when the state signals x are measurable. In the latter case, predic-
tion of the state and output signals becomes linear in the coefficients, thus in a LS
setting, linear regression can be used to derive a model estimate (see Nemani et al.
(1995); Lovera et al. (1998); Lovera (1997)). Based on this, LPV-SS models are com-
monly estimated in a non-prediction error setting like the subspace approaches of
van Wingerden et al. (2007); Felici et al. (2006) and Verdult and Verhaegen (2005).

Comparison of the proposed model structures with the considered model struc-
tures underlines that the introduced OBFs-based series-expansion models are at-
tractive candidates in the prediction-error identification setting of LPV systems as
they are linear in the coefficients and their noise model is independently parame-
terized from the process part and independent from the scheduling.

Similarity to the nonlinear Wiener and Hammerstein models

By comparing NW and NH models to the introduced structures (see Figure 9.2
and 9.3), the structural similarity is immediate. However, there are some funda-
mental differences:

• In the NW and NH case, a static nonlinearity is assumed on the output/in-
put of the LTI part. In the W-LPV and H-LPV OBF case, the “nonlinearity”
is entering through a dynamic dependence on p, which can be composed
of external (strict LPV systems) and internal (quasi-LPV systems) variables
alike. Assuming that p is equal to u or y, NW and NH models can be viewed
as special cases of W-LPV and H-LPV OBF models. This is illustrated by
Example 9.1

• LTI parts of W-LPV and H-LPV OBF are single-input multiple-output (SIMO)
and multiple-input single-output (MISO) systems as opposed to the SISO LTI
part of NW and NH models1.

1Originally both Wiener and Hammerstein proposed their models with SIMO and MISO LTI parts,
but because of the complexity of the problem, the LTI part has been simplified to be SISO (Billings and
Fakhouri 1982; Ljung 1999).
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Example 9.1 (NW as a special case of W-LPV OBF) Given a nonlinear Wiener model defined by an asymp-
totically stable LTI transfer function F and static nonlinearity w (y) = sin(y). F can be viewed as a linear
combination of basis functions Φne

ng with coefficients
{
w01, . . . , wneng

}
. If we can write the static nonlinearity

w (y) as w (y) = f(y)y where f is meromorphic, then the NL model can be transformed to a W-LPV OBF model
with p = y. Similar to Example 7.4, we can rewrite the considered nonlinearity as

w (y) = sinc (p) y with p = y.

This leads to a W-LPV OBF structure, which is characterized by the basis functions Φne
ng and the parameter-

varying coefficients
{
w01sinc (p) , . . . , wneng sinc (p)

}

However, if the output nonlinearity is cos(y), then the previous mechanism cannot be applied as

lim
y→0

cos(y)

y
=∞.

In such cases, it is advisable to convert the NL model through its differential equation description to a LPV form.
This procedure might result only in an approximation of the original model (see Chapter 8).

9.2.5 Identification of W-LPV and H-LPV OBF models

In the following, a general outline of LPV identification based on W-LPV and H-
LPV OBF models is presented. The major steps of the identification cycle: model
structure selection, identification criterion selection, and estimation are consid-
ered. Our aim is to set the stage for the upcoming discussion of the identification
approaches of this thesis, which are based on particular choices with respect to
these steps.

OBF selection

In case of W-LPV and H-LPV OBF models, there is a primal emphasis on the
model structure selection step of the identification cycle. This is due to the fact that
selection of the finite OBF set, that defines the structure, effects the approximation
capabilities in terms of the convergence rate of the series-expansion with respect
to these basis. With an adequate selection of the basis functions, i.e. with high
convergence rate, negligible approximation error, i.e. bias can be achieved.

Tools to provide adequate selection of the basis functions have been already
worked out. In Chapter 7, an algorithm has been proposed to assist basis selection
based on first principle information. By using this algorithm, the set of frozen
pole locations of the system can be characterized, and based on this pole set, the
optimal choice of a orthonormal basis follows in the Kolmogorov n-width (KnW)
sense. Additionally, in Chapter 8, a clustering algorithm has been introduced, that
solves the KnW optimal basis selection problem based on measured data. The
latter approach is useful in a black-box identification scenario, where no useful
structural information about the LPV system/physical plant is presented. This
practically applicable tool, which accomplishes the model structure selection in
terms of the basis functions can be summarized in the following algorithm:
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Algorithm 9.1 (OBFs based LPV identification, model structure selection)

Step 1. Estimation of samples of the pole manifest set ΩP associated with the LPV
system S. The estimation is accomplished by LTI identification of each Fp̄i ∈
FP of S for a given set of scheduling points {p̄i}Np

i=1 ⊂ P.

Step 2. Based on FKcM clustering of the sample poles, determination of an ade-
quate (optimal) OBF set Φne

ng
⊂ RH2− (E) with respect to S.

Parameterization of coefficient dependencies

Beside the selection of basis functions, model structure selection with respect to W-
LPV and H-LPV OBF also contains an equally important part: the parametrization
of the functional dependence of the coefficients w ij on the scheduling signal p:

w ij = ψij(θ), (9.35)

where ψij ∈ R is meromorphic with constant parameters θ ∈ Rn. Then the aim
of the identification is to estimate θ based on a measured data record. If first
principle information is available which is transformed into an LPV form, then
series-expansion of this LPV model in terms of the chosen basis functions can
provide vital information about the structure of {ψij}. Considering that the class
of meromorphic functions R presents degrees of freedom in terms of the order of
dynamic dependence and in terms of functions, any structural information about
the coefficients can considerably reduce the search space for an optimal choice of
{ψij}. In case of a black-box scenario, the choice of ψij can be arbitrary. One can
consider all ψij to be rational functions or polynomials with a fixed degree and a
fixed order of dynamic dependence.

Criteria selection and estimation

Based on the predictor form (9.14), many different classical identification criteria
can be applied for the selected model structure. A particularly interesting choice
is the Least-Squared (LS) prediction error criterion

WNd
(θ,DNd

) =
1

Nd

Nd−1∑

k=0

ǫ2(k, θ). (9.36)

where the residual ǫ is given by (9.15). If the parametrization of the coefficients is
linear, e.g. w ij is a linear combination of fixed meromorphic functions ψijl ∈ R|nP :

w ij =

nij∑

l=0

θijlψijl, (9.37)
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then with respect to (9.36), the estimation of {θijl}, similar to the LTI case, reduces
to a linear regression problem for the W-LPV and H-LPV OBF models. In other
cases, when parameterization of the coefficients is nonlinear, e.g. rational depen-
dence, then estimation corresponds to a nonlinear optimization problem.

9.3 Identification with static dependence

In the previous part, we have developed truncated OBF expansion models, as the
basic ingredients of a well-posed LPV identification approach. As a next step,
we show how these model structures can be efficiently identified in the predic-
tion error setting, such that the obtained models are directly applicable for control
design. First, we clarify the exact identification setting (parameterization, iden-
tification criterion, etc.) in which we aim to derive the model estimates. Then
we develop our approaches using either the gain-scheduling type of identifica-
tion strategy (local approach) or a linear regression based strategy with varying
scheduling trajectory (global approach). We only treat the SISO case. The MIMO
extension of the developed approaches is covered later. The methods are analyzed
in terms of variance, bias, consistency and validation of the model estimates is also
investigated. Finally, a simulation example is studied to visualize the performance
of the approaches.

9.3.1 The identification setting

In the previous parts, we have seen that a common problem of all LPV model
structures, either based on SS, IO, or series-expansion representations, is that to
represent general LPV systems they need dynamic dependence in the parameteri-
zation of their coefficients. However, LPV control design approaches require static
dependence of the model estimate and it is also hard to handle the extra degree
of freedom that dynamic dependence constitutes in an estimation problem. This
gives the motivation to investigate identification in the special case, when the coef-
ficients of W-LPV and H-LPV OBF model structures are parameterized with static
dependence, i.e in (9.35) the chosen structural dependence ψij is only dependent
on the instantaneous value of p. To make a clear distinction when we talk about
static and respectively dynamic dependence, we use w (p) to express evaluation of
a static coefficient dependence along a scheduling trajectory p, contrary to w ⋄ p.

We have already motivated that using a linear parametrization of the expan-
sion coefficients (see (9.37)), estimation of the parameters can be formulated as a
linear regression if the LS identification criterion (9.36) is used. Based on this, in
this section we aim at the identification of LPV systems by the MW(Φne

ng
, θ,BP)

and MH(Φne
ng
, θ,BP) model structures, where the process part F is parameterized

as:
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F (q, θ) ⋄ p =

n00∑

l=0

θ00lψ00l(p)

︸ ︷︷ ︸

w00⋄p

+

ne∑

i=0

ng∑

j=1

nij∑

l=0

θijlψijl(p)

︸ ︷︷ ︸

w ij⋄p

φij(q), (9.38a)

in the Wiener case and

F (q, θ) ⋄ p =

n00∑

l=0

θ00lψ00l(p)

︸ ︷︷ ︸

w00⋄p

+

ne∑

i=0

ng∑

j=1

φij(q)

nij∑

l=0

θijlψijl(p)

︸ ︷︷ ︸

w ij⋄p

. (9.38b)

in the Hammerstein case, where θijl ∈ R, ψijl ∈ R|nP , and Φne
ng

= {φij}i=0,...,ne

j=1,...,ng
.

In these parameterizations, the basis functions Φne
ng

are considered to be the result
of a basis selection and hence they are fixed, while the functions ψijl are either
chosen by the user, or derived from first-principle information (like by the use of
the approach given in Chapter 7). This yields that in this case the unknowns in
the model are the real parameters {θijl} which appear linearly in the structures.
Thus by using the LS criterion they can be identified by linear regression. Here
we do not consider the identification or optimal choice of the functions ψijl, which
remains an subject for future research.

9.3.2 LPV identification with fixed OBFs

Based on the choice of linear parametrization with static dependence and the LS
criterion, two pragmatical approaches are available for the identification of the
LPV system S via W-LPV and H-LPV OBF models:

Local approach Identify wij =
∑nij

l θijlψijl(p̄) for several p̄ ∈ P and interpolate
the obtained estimates to calculate {θijl}. This gives the freedom to choose
the functions ψijl(p̄) based on the local estimates wij . However, an apparent
disadvantage is that many experiments with different constant scheduling
trajectories are needed for successful interpolation.

Global approach Using a data record with varying p, formulate a linear regres-
sion problem with respect {θijl}. The resulting problem has an analytic so-
lution, giving a direct estimate of the parameters without the need of inter-
polation.

In the following the detailed description of these approaches is presented. The
approaches are formulated by assuming that the basis selection phase has been
already accomplished, so we pick up the line of reasoning right after Step 2 in
Section 9.2.5. Figure 9.4 illustrates the basic steps of the approaches. For reasons
of simplicity, we assume that no feedthrough term is present, w00 = 0, however
later, the estimation of w00 is also investigated for both algorithms.
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Figure 9.4: Block diagram of local and global identification methods

9.3.3 Local approach

Assume that a set of constant scheduling points P = {p̄τ}Nloc
τ=1 ⊂ P, with Nloc ∈ N,

is given for S, where it is assumed that P is well covered, meaning that
maxi minj 6=i |p̄i − p̄j|, i, j ∈ INloc

1 is small enough. This is required for success-
ful interpolation by most numerical methods. Assume also that measured data
records DNd,p̄τ = {y (k) , u (k) , p̄}Nd−1

k=0 with length Nd ∈ N are available with u
that is PE with the required order. Then the identification of S is solved as (con-
tinuing from Step 2 in Section 9.2.5):

Algorithm 9.2 (OBFs based LPV identification, local method)

Step 3a. For a given OBF set Φne
ng

= {φij}i=0,...,ne

j=1,...,ng
, scheduling points P = {p̄τ}Nloc

τ=1

⊂ P, and identification criterion W, identify each frozen system Fp̄τ ∈ FP,
τ ∈ INloc

1 based on the LTI-OBF model structure:

Fp̄τ (q, θ) =

ne∑

i=0

ng∑

j=1

wijτφij(q), Q(q, θ) = 1, (9.39)

and data records DNd,p̄τ of S collected with constant scheduling trajectories.
This results in a set of estimated coefficients

{ŵijτ}ne,ng,Nloc

i=0,j=1,τ=1 ⊂ R, (9.40)
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where {ŵijτ}ne,ng

i=0,j=1 describes the coefficients of Φne
ng

with respect to Fp̄τ .

Step 4a. Interpolation of the frozen OBF coefficients {wijτ}. For each (i, j) ∈ Ine
0 ×Ing

1 , choose a set of interpolation functions

{ψ̂l}nijl=0, (9.41)

being a set of meromorphic functions over P, i.e. ψ̂τ ∈ R|nP , and a set of
constants {θ̂ijl}nijl=0 such that

ŵijτ =

nij∑

l

θ̂ijlψ̂l(p̄τ ), ∀τ ∈ INloc
1 . (9.42)

In this way the estimate of the expansion coefficients results as

ŵ ij :=

nij∑

l=0

θ̂ijlψ̂l. (9.43)

In general, any interpolation technique can be used to approximate the coef-
ficient functions {w ij}, however most commonly polynomial, rational, or Cheby-
shev interpolation provides adequate results (see Sakhnovich (1997)). Of course
specific choices of the interpolation functions result in different estimates of (9.43).
Validation of the model estimate is required to verify these choices.

9.3.4 Global approach

Opposite to the local approach, the global approach utilizes only one data set
which is collected from S with varying scheduling, i.e. one global experiment.
Assume that measured IO data of S as DNd

= {y (k) , u (k) , p (k)}Nd−1
k=0 is available

and informative for S. Informative means in this case that with the considered
parametrization (9.38a-b), a unique model in the model class can be found such
that (9.36) is minimal. Using this data set, the global identification of S is solved
in the W-LPV OBF case as

Algorithm 9.3 (OBFs based LPV identification, global method, Wiener case)

Step 3b. For a given OBF set Φne
ng

= {φij}i=0,...,ne

j=1,...,ng
and data record DNd

, generate
y̆ = [y̆ij ]

i=0,...,ne

j=1...ng
with y̆ij = φij(q)u. Denote by (A,B,C,D) the minimal

balanced SS realization of Φne
ng

. By computing the state evolution (9.23a) in
the time interval [0, Nd − 1] with respect to {u (k)}Nd−1

k=0 and x(0) = 0, the
signal y̆ on [0, Nd − 1] follows as y̆ = x.
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Step 4b. Choose a row vector of meromorphic functions Ψ = [ψl]
nψ
l=0 for the pa-

rameterization of each w ij in (9.21) as w ij =
∑nψ

l=0 θijlψl where {θijl} are real
unknown parameters, ψl ∈ R|nP , and ψ0 = 1.

Step 5b. Based on the data set DNd
, estimate the parameter set {θijl}ne,ng,nψ

i=0,j=1,l=1

by linear regression. Based on the predictor (9.22), define the regressors as

γ⊤ (k) = y̆⊤ (k)⊗Ψ(p(k)), ∀k ∈ [0, Nd − 1], (9.44)

with ⊗ denoting the Kronecker tensor product. Collect the data into

ΓNd
= [γ (0) , . . . , γ (Nd − 1)]

⊤
,

YNd
= [y (0) , . . . , y (Nd − 1)]

⊤
.

Arrange the parameters to be estimated into a column vector

θ =
[
θ010 . . . θ01nr . . . θnengnψ

]⊤
. (9.45)

Then, to minimize the LS prediction error criterion

WNd
(θ,DNd

) =
1

Nd
‖YNd

− ΓNd
θ‖22 , (9.46)

the analytic solution is obtained by

θ̂Nd
=

[
1

Nd
Γ⊤Nd

ΓNd

]−1 [
1

Nd
Γ⊤Nd

YNd

]

. (9.47)

In this way the estimates of the expansion coefficients result in the form of:

ŵ ij :=

nψ∑

l=0

θ̂ijlψl. (9.48)

In the H-LPV OBF case, the identification procedure is similar. However, the
formulation of the regressor is more complicated as the coefficients appear linearly
at the input side. Next, it is described how ΓNd

can be formulated for the H-LPV
OBF case. The first step is the calculation of the parameter-varying Toeplitz matrix
of the predictor (9.25-b):

ŶNd
=








0 0 . . .
CW (p(0)) 0 . . .
CAW (p(0)) CW (p(1))

...
...

. . .







UNd

, (9.49)
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where ŶNd
= [ ŷθ(0) . . . ŷθ(Nd − 1) ]⊤ is the stacked predicted output vector

of the H-LPV OBF structure. By simple rearrangement it follows that

ŶNd
=








0 0 . . .
CIu (0) 0 . . .
CAIu (0) CIu (1)

...
...

. . .








︸ ︷︷ ︸

ĤNd






W (p(0))
W (p(1))

...




 . (9.50)

Let δ be the Kronecker delta function, i.e. pulse input at k = 0. Now define h =

[hij ]
i=0,...,ne

j=1...ng
as the state evolution of

qh = A⊤h+ C⊤δ, (9.51)

on the interval [0, Nd − 1] with h (0) = 0. Then h is used to calculate the columns
of the previously derived transition matrix ĤNd

. By combining each column of
HNd

in a Kronecker product with Ψ, the parameters {θijl} to be estimated are
separated, giving the regressor matrix as

ΓNd
= [Ĥ0 . . . ĤnP ] (9.52)

where

Ĥl =

Nd−1∑

k=0

Hku (k)ψl (p (k)) , (9.53)

and

Hk =
[

0 . . . 0 h⊤ (0) . . . h⊤ (Nd − k − 1)
]⊤ ∈ RNd×ng(ne+1). (9.54)

Algorithm 9.3 can also be extended for both model structures to estimate a
direct feedthrough term. The extension is obtained by defining w00 =

∑nψ
l=0 θ00lψl

and formulating the regressor matrix as

Γ′Nd
=






u(0)⊗ ψ(p(0)
...

u(Nd − 1)⊗ ψ(p(Nd − 1))

ΓNd




 . (9.55)

Including {θ00l} into θ implies that the estimate follows via (9.47).

9.3.5 Properties

In this part the properties of the introduced identification approaches are inves-
tigated. First we analyze the restriction of the used linear parametrization with
static dependence in the identification of general LPV systems and we characterize
that subclass of LPV systems where no bias results. Then we show convergence
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and consistency of the parameter estimates. By using similarity of the identifica-
tion methods with respect to LTI prediction error identification, we characterize
basic results about variance and bias of the estimates. Finally, (in)validation issues
are discussed in the introduced framework together with the estimation of initial
conditions.

Representation capabilities via static dependence

It is important to investigate the effects of the linear parametrization with static
dependence on the representation capabilities of the models. From the SS rep-
resentation form of the models (see (9.23a-b) and (9.26a-b)) it is obvious that the
assumption of static dependence restricts the class of representable LPV systems
to systems which have a SS representation with static p-dependence only in the C
(see (9.23a)-b) or in the B (see (9.26a)-b) system matrices. This means that systems
that have no representation that satisfies these conditions are not in the model
class. Hence, due to parametrization, a modeling error inevitably occurs during
the identification process in these cases. Additionally, the linear parametrization
of the expansion coefficients (see (9.38a-b)) implies that systems that are identifi-
able in the considered way are further restricted to have a SS representation where
only the C (or B) matrix depends on p and the functional dependence is the lin-
ear combination of the used ψij functions. This underlines that selection of these
functions based on prior information is an important part of the model structure
selection process. Note that the NL model conversion tool, developed in Section
7.4 provides a practically applicable method to assist this selection.

A second consequence of the parametrization (9.38a-b) rises with respect to
the general approximator property of the W-LPV and H-LPV OBF models. We
have seen in the general case that increasing ne lowers the achievable approxima-
tion error with these models. However, in case of static dependence, increasing ne

enlarges span{Φne
ng
} which means that the worst-case representation error in the

KnW sense is lowered with respect to the frozen system set of the data generat-
ing system. However, an increase in ne may not lower the representation error
of the LPV system in a global sense as the modeling error can be significantly
dominated by the missing non-static p-dependence of the expansion coefficients.
This destroys the general approximator property, meaning that the approxima-
tion capability of the model is restricted by the absence of dynamic coefficient
dependence. Thus increasing ne in the hope of better accuracy can easily result in
over-parametrization in this case.

We will see that despite the theoretically presented restrictions of the applied
parametrization, commonly in a practical situation, adequate approximation of
the data generating system can be achieved by the resulting model estimates. It
is an important remark that the global method is also applicable in the situations
where the coefficients of the W-LPV and H-LPV OBF model structures are not as-
sumed to be static. As the estimation algorithm is independent from the choice
of the ψij functions, these functions can be considered with dynamic dependence.
Then with a data record containing sufficiently exciting p, estimation of the pa-
rameters is similarly available as in the static case. Unfortunately, this property
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does not apply for the local method, as in that case, interpolation with dynamic
dependence based on frozen estimates is an ill-conditioned problem.

Consistency and convergence

Similar to the classical LTI identification framework, it is possible to show that un-
der minor conditions, the parameter estimates by both approaches are convergent
and consistent. Convergence means that for Nd → ∞ the parameter estimate θ̂Nd

converges, i.e. θ̂Nd
→ θ∗ with probability 1, while consistency means that the con-

vergence point θ∗ is equal with the parameters of the data generating system (9.1).
Obviously, the latter property requires that the data generating system is in the
model class of the MW(Φne

ng
, θ,BP) and MW(Φne

ng
, θ,BP) structures. For a given

OBF set Φne
ng

and LPV system S, this means that for the considered IO partition, S
has a series-expansion in terms of Φ∞ng

where only the first (ne + 1)ng expansion
coefficients are not zero. Furthermore these expansion coefficients {w o

ij}i=0,...,ne

j=1,...,ng
,

appearing on the left (or the right) side of the basis functions, are the linear com-
bination of the functions {ψijl} used in the parametrization (9.38a-b):

w
o
ij =

nij∑

l=0

θoijlψijl. (9.56)

Collect these true parameters {θoijl} into the parameter vector θ0. Then, consis-
tency means that θ̂Nd

→ θ0 with probability 1.

In the local case, assume that in the measurements D
p̄

Nd
, the noise is uncor-

related with u and D
p̄

Nd
is informative with respect to the considered model set.

Then, convergence and consistency of the estimated LTI models with parameters
{wijτ} is well-known (Heuberger et al. 2005; Ljung 1999). This implies the follow-
ing theorem:

Theorem 9.1 (Convergence and consistency, local method) Given a model struc-
ture MW(Φne

ng
, θ,BP), with OBFs Φne

ng
and coefficient parametrization (9.38a), where

θijl ∈ R and each ψijl : P → R is a Lipschitz continuous function. Consider the es-

timate θ̂Nd
determined by the local method for Nd long informative data records gath-

ered for Nloc frozen scheduling signals. If Nloc → ∞ and Nd → ∞ then θ̂Nd
→ θ∗

where θ∗ is the minimizing argument of the expected value of the squared residual error,
θ∗ = arg minθ∈Θ Ē{ǫ2(θ)}. Furthermore, if S is in the model class with parameters θ0,
then θ∗ = θ0.

Theorem (9.1) similarly holds in the H-LPV OBF case. This theorem implies that
the asymptotic parameter estimate is independent from the particular noise re-
alization in the data sequence and identification of the true system is possible if
it is in the model class. Proof of the theorem follows from the consistency and
convergence of the local model estimates together with the convergence of the in-
terpolation in case of Lipschitz continuous functions (for the latter property see
Atkinson (1989)).
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Consider the global approach. Assume that the available data record is infor-
mative with respect to the considered model. Then based on the OE structure of
the W-LPV and H-LPV OBF models and the applied linear parametrization of the
coefficient functions, it is well-known in the nonlinear case (see Ljung (1999)), that
under these conditions, the least-squares estimate of θ is strongly convergent and
consistent. So the following theorem obviously holds:

Theorem 9.2 (Convergence and consistency, global method) Consider the esti-

mate θ̂Nd
determined by (9.47) with respect to the model structure MW(Φne

ng
, θ,BP) or

MH(Φne
ng
, θ,BP). Assume that the data record D∞ is informative. If Nd → ∞, then

θ̂Nd
→ θ∗ with probability 1 where θ∗ is the minimizing argument of the expected value

of the squared residual error, θ∗ = arg minθ∈Θ Ē{ǫ2(θ)}. Furthermore, if S is in the
model class with parameters θ0, then θ∗ = θ0.

The concept of variance and bias

Estimation errors of the resulting model estimates can be decomposed into vari-
ance and bias parts:

F0(q)− F (q, θ̂Nd
) = F0(q)− F (q, θ∗)

︸ ︷︷ ︸

bias

+ F (q, θ∗)− F (q, θ̂Nd
)

︸ ︷︷ ︸

variance

. (9.57)

where F0(q) is the pulse basis expansion of the process part of the data generating
system (9.1), while F (q, θ̂Nd

) corresponds to the truncated OBF expansion form
of the estimated model MW(Φne

ng
, θ̂Nd

,BP) or MH(Φne
ng
, θ̂Nd

,BP). Similar to the
LTI case, the bias part corresponds to the structural error, i.e. the modeling error
introduced by the finite truncation of the expansion and the applied coefficient
parametrization, while the variance corresponds to the error which is due to the
noise contribution on the data.

Variance

In case of the local approach, the concepts of variance and bias can be formu-
lated in the frozen sense. By viewing the result of each frozen identification as a
LTI model estimate in terms of the considered basis functions, all results of the
LTI framework apply in terms of variance and bias (see Section 2.3.5). However,
due to interpolation of these local model estimates through their expansion co-
efficients, there is a little hope to characterize the variance and the bias of the
resulting LPV model estimate. In terms of the bias, the main difficulty is that the
number of frozen models, i.e. the number of interpolation points has a significant,
but not well understood effect on the bias. For the variance, the problem is that,
by knowing the distribution of {ŵijτ}, it is a difficult problem in general to de-
duce the distribution of {θ̂ijl} in (9.42). Based on these, variance and bias are only
characterized in the frozen sense with respect to the estimates by the local method.



304 Chapter 9 LPV identification via OBFs

In the global case, we face a different situation. We have already shown that
the parameter estimates in this case are consistent. Let D∞ be informative with re-
spect to S. Then due to the prediction-error setting of the estimation, the classical
result of the LTI framework holds:

Theorem 9.3 (Asymptotic variance, global method) Consider the estimate θ̂Nd
de-

termined by (9.47) with respect to the model structure MW(Φne
ng
, θ,BP) or MH(Φne

ng
, θ,

BP). Assume that the data record D∞ is informative. Due to the convergence of θ̂Nd
,

there exists a θ∗ ∈ Θ such that θ̂Nd
→ θ∗ with probability 1 if Nd →∞. Then

√

Nd (θ̂Nd
− θ∗)→ N (0,Qθ) as Nd →∞, (9.58)

where

Qθ = lim
Nd→∞

Nd · E
{[

∂

∂θ
WNd

(θ∗,DNd
)

] [
∂

∂θ
WNd

(θ∗,DNd
)
⊤
]}

Note that the proof follows similarly as in the LTI case Ljung (1999), due to the fact
that the considered model sets correspond to asymptotically stable models with
respect to all θ ∈ Θ, the estimates of θ are convergent, and the considered predic-
tion error framework is equivalent with the classical formulation. This basic result
on the variance of the parameter estimates provides some insights, however fur-
ther properties in terms of asymptotic model order or frequency characterization
of the variance are hard to derive due to the parameter-varying nature of the plant.
Developing more informative expression for the asymptotic variance are the aims
of future research.

Bias

Consider the bias of the estimated models MW(Φne
ng
, θ̂Nd

,BP) and MH(Φne
ng
, θ̂Nd

,
BP). In the global case it holds that, if the data record DNd

is informative and the
data generating system is in the model class, then the classical results of prediction
error identification imply that the estimate θ̂Nd

of the parameters θ is unbiased. In
case the process part F0, i.e. the LPV system S, in (9.1) is not in the model class, i.e.
either in the series-expansion of S by Φ∞ng

the coefficients {w o
ij} are non-zero in the

truncated part (w ij 6= 0 for i > ne), or the coefficients have different dependence
than the used parametrization (9.38a-b), then for the asymptotic estimate θ∗ it
holds that for a given p ∈ BP

(F0(q)− F (q, θ∗)) ⋄ p =

ne∑

i=0

ng∑

j=1

[(

w
o
ij −

nij∑

l=0

θ∗ijlψijl

)

⋄ p
]

φij(q)

︸ ︷︷ ︸

parametrization bias

+

∞∑

i=ne+1

ng∑

j=1

[w ij ⋄ p]φij(q)

︸ ︷︷ ︸

truncation bias

, (9.59)
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where {w o
ij} are the expansion coefficients of S in terms of Φ∞ne

and θ∗ =

[θ∗ijl]
ne,ng,nij
i=0,j=1,l=0. The first part in expression (9.59) describes bias due to improper

assumptions on the scheduling dependence while the right side describes bias
due to the non-considered tail of the series-expansion. Based on (9.59), it can be
concluded that by extending the basis functions, i.e. increasing ne, the truncation
bias can be arbitrary decreased. However, increasing ne means that more coeffi-
cients appear in the parametrization associated bias, which results in an eventual
increase of this term. This underlines that choosing a good coefficient dependence
in terms of {ψijl} is equally important to the choice of a OBF set with fast conver-
gence rate. Fortunately, due to the model transformation approach of Chapter 7,
first principle information can be used to assist the adequate choice of ψijl with
respect to a given basis Φne

ng
.

(In)validation

In general, reliable (in)validation of LPV model estimates is a theoretically hard
task. One problem is that uncertainty of the model estimates has not been inves-
tigated in the LPV framework and on the other hand, it is difficult to judge how
the estimated model relates or fits to the available first principle knowledge.

In general, only (in)validation through the simulation of the model is avail-
able, comparing the model output with respect to measured data records which
are assumed to be informative. Here the richness of p in terms of excitation has
a prime importance, as with slowly varying scheduling trajectories, model esti-
mates with significantly different transient behavior can seem to be both valid
models of the plant. Error measures like MSE, BFT, VAF introduced in Section
2.3.7, can be successfully used to accommodate comparison of the simulated and
measured signals and to decide on the validity of the model estimates. However,
in case of an invalidated model estimate, it is hard to give any indication about
how to identify the system with a better end result (reconfiguration of the model
structure, more exciting (u, p), other type of identification method, etc.).

Additionally, for the introduced models, (in)validation can also be accom-
plished based on the residual signal ǫ in the one-step-ahead prediction error (9.14).
The residual can be easily computed for the proposed models as the inverse of the
noise model is 1. Applying residual analysis, similar to the LTI case, the hypoth-
esis that ǫ is white noise or ǫ is uncorrelated with the past inputs can be tested. If
these hypothesis tests result in rejection, then the deficiency of the applied model
structure is implied. The only problem is that due to the approximative nature
of the applied model structure (both in terms of the finite series-expansion and in
terms of the assumption of static dependence), some unmodeled dynamics of the
system always contribute to the residual term. This implies that based on residual
analysis, the models are most likely to be rejected. Thus in the following, we only
consider (in)validation in terms of simulations and error measures.
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Initial conditions

In practice, slow dynamics of the system, safety considerations, or high costs of
long measurements often result in data records which are collected with non-zero
initial conditions of the plant. For these data sets, the initial conditions need to
be estimated during the identification process. In the LTI case, the identification
framework of OBFs supports estimation of initial conditions (Heuberger et al.
2005), which can be efficiently applied in the local algorithm to estimate initial
conditions of the frozen systems of S. Therefore, further investigation of initial
condition estimation is only interesting for the global identification approach.

In the global method, the SS form of the H-LPV OBF model structure, can be
used to formulate an extended data matrix which involves the initial condition
x(0) of the model. The extended data matrix Ŷ ′Nd

is introduced as

Ŷ ′Nd
=






Cx (0)
...

CANd−1x (0)




+ ŶNd

. (9.60)

where ŶNd
satisfies (9.49), i.e. it is the predicted output of MH(Φne

ng
, θ,BP) with

zero initial condition. By extending θ with x (0) as parameters and including
[
C⊤ A⊤C⊤ . . .

]⊤ into ΓNd
, estimation of x (0) becomes available through linear

regression. In the W-LPV OBF case, the extended data matrix is

Ŷ ′Nd
=






W (p(0))x (0)
...

W (p(Nd))ANd−1x (0)




+ ŶNd

. (9.61)

Based on (9.61), simultaneous estimation of θ and x(0) is a bilinear optimization
problem for the LS criterion. This optimization is solvable by the application of
a separable least-squares strategy (see Golub and Pereyra (1973)), however the
obtained solutions are only local minima of the involved cost function.

(Quasi) LPV system identification

There is an important aspect of the proposed identification methods if the data
generating system is a quasi LPV system. For quasi LPV systems, generally, p
cannot be held constant, as the scheduling is an internal signal of the system like
elements of the state or output variables. Thus for this case, only he global method
is applicable, as the local approach needs identification of the system with respect
to constant scheduling trajectories.

Similarity to nonlinear identification methods

In Chapter 1 it has been discussed that the attractive properties of truncated OBF
expansion representations inspired some identification approaches of the NL and
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the fuzzy field. In order to position the developed approaches with respect to
these methods, i.e. to clarify the connection or the dissimilarities, the following
properties are important:

• In the nonlinear case, the method of Gómez and Baeyens (2004) uses Wiener
and Hammerstein type of models where the LTI part is the linear combi-
nation of a filter bank of OBFs. We have already shown that these models
result as “special cases”of W-LPV and H-LPV OBF models in the quasi-LPV
case. In Sbárbaro and Johansen (1997), the used model structure contains
fuzzy membership functions associated with a (Laguerre) basis function in
the filter bank.

• In our approach, the OBFs, the backbone of the model structures, are op-
timized for S, while in the methods of Sbárbaro and Johansen (1997) and
Gómez and Baeyens (2004) they are assumed to be chosen by the user.

• In Gómez and Baeyens (2004), the LTI part is parameterized and estimated
as a linear combination of the chosen basis simultaneously with the esti-
mation of the static nonlinearity. Similarly in Sbárbaro and Johansen (1997),
both the LTI part and the fuzzy part are identified together. In our approach,
the parametrization is focused on the expansion coefficients while the LTI
part is fixed, thus the complicated estimation structure of the fuzzy and NL
methods is not required in this case.

• Both the proposed and the NL/fuzzy approaches use the least-squares cri-
terion for the identification of the system, however, the proposed LPV ap-
proach is simpler as it solves the estimation problem by linear regression.

9.3.6 Examples

In this section, the applicability of the introduced identification methods is shown
in three different examples.

SS example with invariant (A,B)

As a first example, consider an asymptotically stable LPV system S1, with an
RSS(S1) equal to

[
A B

C ⋄ p 0

]

=







0.3 0.2 0.4 1
−0.1 0.2 0.2 1
0.4 −0.1 0.5 1
2p −p2 sin(p) 0






,

and P = [−1, 1]. Note that in this representation, only C depends on p and the
underlying dependence is static. Using the poles of A to generate Hambo basis
functions Φ0

3, the resulting OBFs are complete with respect to the frozen transfer
function set FP of RSS(S1). As only C is dependent on p and Φ0

3 is complete,
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Table 9.1: Validation results of 100 identification experiments by the global and
local methods using the W-LPV and H-LPV OBF model structures in the consid-
ered examples. The results are given in terms of the MSE and the average BFT and
VAF of the simulated output signals of the model estimates.

Model Case MSE (dB) BTF (%) VAF (%)

W-LPV S1 loc.
glob.

−94.99
−62.35

99.84%
98.54%

99.99%
98.98%

H-LPV S2 loc.
glob.

−95.90
−62.78

99.71%
98.39%

99.99%
99.97%

W-LPV S3 loc.
glob.

−18.01
−31.03

75.82%
86.34%

94.12%
98.23%

H-LPV S3 loc.
glob.

−10.16
−26.41

62.13%
82.11%

85.69%
96.18%

the system lies in the model class of the W-LPV OBF structure with these basis
functions. Furthermore, the expansion coefficients of RSS(S1) in terms of the basis
functions Φ0

3 have static dependence, thus choosing the parametrization of the W-
LPV OBF model with static dependence still implies that the system lies in the
model class.

Based on the OBF set Φ0
3 and 100 experiments with varying p, global identifi-

cation of S with the W-LPV OBF structure has been carried out 100 times. In each
experiment, aNd = 500 sample long data record of the system has been generated,
based on white u and p with uniform distribution U(−1, 1). For each data record,
a white output noise e with distributionN (0, 0.5) has been added, which matches
with the noise concept of the prediction error setting (see Section 9.2.1). The
resulting Signal-to-Noise Ratio (SNR) has been 29.5 dB, while the relative signal-
to-noise amplitude has been 26 %. Using the same conditions in the local case,
DNd,p̄ data records have been collected 100 times with constant scheduling points
P11 = {−1 + 0.2τ}10τ=0. Based on these data records, 11 local estimates of RSS(S)
have been produced using an LTI-OBF model structure with Φ0

3. The resulting
“frozen” basis coefficients have been interpolated in each of the 100 cases. In both
the global and local methods, a 2nd-order polynomial based parametrization has
been used in the estimation of W (see (9.38a) with ψijl(p) = pl and nij = 2).

In the first row of Table 9.1, the (in)validation results of the resulting 100 model
estimates are shown in both the local and global cases. The (in)validation results
are given in terms of MSE and average BFT and VAF of the simulated output sig-
nals of the models (see Section 2.3) for realizations of u and p that are different
from the ones used during the identification. In Figure 9.5, a typical plot of the
simulated output signals and the resulting output-error of the models are pre-
sented. As expected, both approaches identified the system with adequate valida-
tion results. This underlines, that with respect systems that are in the considered
W-LPV OBF model class, both approaches provide reliable estimates even in case
of significant output noise. By further investigating the results it is obvious that
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Figure 9.5: Comparison of the identified models of S1 by their responses for white
u, p with distribution U(−1, 1): RSS(S) (green), W-LPV OBF local (blue), W-LPV
OBF global (red).

the global approach has produced a slightly worse result than the local approach.
Explanation of this phenomena lies in the much larger amount of data (11 · Nd)
available in the local case.

SS example with invariant (A,C)

As a second example, consider an asymptotically stable LPV system S2, with an
RSS(S2) equal to the transpose of RSS(S1):

[
A2 B2

C2 0

]

=

[
A⊤1 C⊤1
B⊤1 0

]

.

Note that RSS(S1) and RSS(S2) are not equivalent. However, the OBF set Φ0
3 of

the previous example is still complete with respect to the frozen transfer function
set FP of RSS(S2). So also in this case, the true system lies in the model class of
the H-LPV OBF structure with the basis functions Φ0

3 and with static coefficient
dependence. By using the same setting of data sequences and local model esti-
mates as in the previous example, identification of S2 has been accomplished by
the H-LPV OBF model structure with Φ0

3. The (in)validation results in terms of
simulation are shown in Figure 9.6 and in the second row of Table 9.1. As ex-
pected, both approaches identified the system adequately just like in the previous
example.

IO example

As a third example, the asymptotically stable LPV system S3 for which OBF se-
lection has been extensively studied in Section 8.3.3 is identified. Consider the IO
representation RIO(S3) defined by (8.14) and with P = [0.6, 0.8]. Using the poles
obtained via the FKcM algorithm with fuzzynessm = 25 and nc = 8, a OBF set Φ0

8

has resulted, which has been found adequate for the truncated series-expansion
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Figure 9.6: Comparison of the identified models of S2 by their responses for white
u, p with distribution U(−1, 1): RSS(S2) (green), H-LPV OBF local (blue), H-LPV
OBF global (red).

based approximation of the system. Using this basis function set and the pro-
posed identification algorithms, we show that quite accurate estimated models of
the system can be derived.

Based on Φ0
8 and a 2nd-order polynomial based parametrization of the coef-

ficients, identification of S3 with both methods and structures has been accom-
plished 100 times. The used data sequences have been based on the same setting
and conditions as in the previous examples, except p has been generated with a
distribution U(0.6, 0.8). The resulting SNR has been 20 dB in the resulting data
records with a relative signal-to-noise amplitude of 25 %. Calculation time of the
algorithms has been a few seconds on a Pentium 4, 2.8 GHz PC.

In Figure 9.7 and 9.8 and in the last two rows of Table 9.1, the (in)validation
results are shown for different realizations of u, p than used during the identifi-
cation. As expected, the W-LPV and H-LPV OBF structures based on coefficients
with static dependence could not fully cope with the variations in the {al}5l=0 pa-
rameters. However, the global W-LPV OBF identification provided quite accept-
able results for such a heavily nonlinear system. The explanation why the H-LPV
OBF structure gave a worse result lies in the different approximation capabilities
of these models. By computing the left-side expansion coefficients of (8.14) in
terms of the used basis, which corresponds to the true coefficients of the system
with respect to the W-LPV OBF model structure, the resulting expansion coeffi-
cients have a dominant part with static dependence. This means that a good ap-
proximation of the system can be found among the used W-LPV OBF models with
static dependence (both the parametrization and truncation bias are small). On the
other hand, the right-side expansion coefficients of (8.14) in terms of Φ∞8 have a
dominant part with dynamic dependence. This means that the parametrization
bias of H-LPV OBF models with static dependence must be larger than in the pre-
vious case. This implies that with the considered parametrization, W-LPV OBF
model structures are generally better for systems with a IO representation where
the dynamics are dominated by the variation of the {ai} coefficients, while H-LPV
OBF model structures are better for the cases, where {bj} are dominant.
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Figure 9.7: Comparison of the identified models of S3 by their responses for white
(u, p) with distribution (U(−1, 1),U(0.6, 0.8)): S3 (green), W-LPV OBF global (red),
H-LPV OBF global (blue).
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Figure 9.8: Comparison of the identified models of S3 by their responses for white
(u, p) with distribution (U(−1, 1),U(0.6, 0.8)): S3 (green), W-LPV OBF local (red),
H-LPV OBF local (blue).

In this example global methods are prevailed, because they have been able to
capture the transient dynamics of the system between frozen scheduling points
of P, while in the local case the 11 local model estimates have been not enough
for correct interpolation. By using Nloc > 11, the local method quickly improves.
Note, that in the asymptotic sense (in Nloc), the local and global method con-
verge to the same optimal model in the utilized model class. Extension of Φ8 with
ne = 1, 2, . . . has not improved the results as Φ8 is well chosen with respect to S3,
i.e. the local modeling error is negligible due to the optimal choice by the FKcM.
Therefore, the error in Table 9.1 is mainly governed by the modeling error of the
used parametrization (9.59). Using higher order polynomials in Ψ produces a 2-
5% percentage improvement in the results of Table 9.1, but in order to achieve full
representation with the proposed models, incorporation of dynamic dependence
on p is needed.
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9.4 Approximation of dynamic dependence

In the previous part, OBFs-based model structures have been introduced for the
identification of LPV systems, with the main intention to give flexible models that
are able to describe general LPV systems, simplify identification, are useful for
control, and are unaffected by the difficulties present in the identification of LPV-
SS or IO models. It has been shown that to describe any LPV system, the coeffi-
cients of the W-LPV and H-LPV OBF models, similar to the coefficients of other
LPV models, need to have dynamic dependence on p. We have motivated, that
dynamic dependence presents an extra freedom of the parametrization and is not
supported by the existing control approaches. To overcome this problem, in Sec-
tion 9.3 the coefficients have been restricted to static dependence. This assump-
tion led to a novel and efficient identification approach of W-LPV and H-LPV
OBF model structures based on the LS criterion. However, the drawback of the
assumption has been also pointed out: it limits the class of representable LPV
systems. In this section, an alternative of LPV truncated OBF expansion mod-
els and its identification approach is introduced with the intention to improve
the representation capabilities of the previously considered model structures and
parametrization, but without the use of dynamic dependence. In fact the idea that
we will apply is the introduction of an additional feedback-loop around each basis
component of the W-LPV and H-LPV OBF model structures with a gain incorpo-
rating also static dependence (see Figures 9.9 and 9.10). In this way, the filter bank
of OBFs as a dynamical LTI system is “reused”to provide dynamic expansion co-
efficients. This implies that these modified structures can approximate a much
wider class of LPV systems, than W-LPV and H-LPV OBF models with static de-
pendence. The introduction of feedback-based weighting leads to two new model
structures given in Figure 9.9 and 9.10, which we call Wiener Feedback (WF) and
Hammerstein Feedback (HF) LPV OBF models.

9.4.1 Feedback-based OBF model structures

Again we consider the prediction-error setting of Section 9.2.1. Let Φne
ng

be a set of
Hambo basis functions in RH2− (E). Denote the input and output of each basis
function in Φne

ng
by ŭij and y̆ij satisfying:

y̆ij = φj(q)G
i(q)ŭij . (9.62)

Additionally, let (Aij , Bij , Cij , Dij) be the minimal balanced SS realization of each
basis function φjG

i and introduce A = diag(A01, . . . , Aneng). Similarly define B
and C. Denote ŭ = [ŭ01 . . . ŭneng ]

⊤ and y̆ = [y̆01 . . . y̆neng ]
⊤. Then, the SS

form of the IO relations (9.62) is

qx = Ax +Bŭ, (9.63a)
y̆ = Cx. (9.63b)
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Figure 9.9: IO signal flow graph of WF-LPV OBF models with feedback coeffi-
cients V = [v01 . . . vneng ] and output-side coefficients W = [w01 . . . wneng ] with-
out a feedthrough term. All coefficients are considered with static dependence.
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Figure 9.10: IO signal flow graph of HF-LPV OBF models with feedback coeffi-
cients V = [v01 . . . vneng ] and input-side coefficients W = [w01 . . . wneng ] without
a feedthrough term. All coefficients are considered with static dependence.
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Note that this is a non-minimal SS representation, but it is needed to introduce the
feedback loops around each basis function separately (see Figures 9.9 and 9.10).

Let S be an asymptotically stable SISO LPV system with scheduling spaceP ⊆ RnP , scheduling signal p, and IO partition (u, y). Then the feedback model
structures of Figures 9.9 and 9.10 are formulated as follows:

• Wiener feedback LPV OBF model (WF-LPV OBF)

y̆ij = φj(q)G
i(q)u − φj(q)G

i(q)vij(p)y̆ij , (9.64a)

y = e+ w00(p)u+

ne∑

i=0

ng∑

j=1

w ij(p)y̆ij , (9.64b)

with p ∈ BP, where BP is considered to be known and with

θ =
[
w00 w01 . . . wneng v01 . . . vneng

]⊤ ∈ (R|nP)1+2(ne+1)ng .

This model, given in Figure 9.9, is called the WF-LPV OBF model and de-
noted by MWF(Φne

ng
, θ,BP). As y̆ij is independent from e (u and p are as-

sumed to be deterministic), the one-step-ahead predictor in this case reads
as

y̆ij = φj(q)G
i(q)u − φj(q)G

i(q)vij(p)y̆ij , (9.65a)

ŷθ = w00(p)u+

ne∑

i=0

ng∑

j=1

w ij(p)y̆ij . (9.65b)

Denote W = diag(w01, . . . , wneng ) and V accordingly and let E = [1 . . . 1].
Then, the SS equivalent of (9.65a-b) is given by

qx = [A−BV (p)C)] x+BE⊤u, (9.66a)
ŷθ = W (p)Cx + w00(p)u. (9.66b)

• Hammerstein feedback LPV OBF model (HF-LPV OBF)

ŭij = w ij(p)u− vij(p)φj(q)G
i(q)ŭij , (9.67a)

y = e+ w00(p)u+

ne∑

i=0

ng∑

j=1

φj(q)G
i(q)ŭij . (9.67b)

with p ∈ BP, where BP is considered to be known and with

θ =
[
w00 w01 . . . wneng v01 . . . vneng

]⊤ ∈ (R|nP)1+2(ne+1)ng .

This model, given in Figure 9.10, is called the HF-LPV OBF model and de-
noted by MHF(Φne

ng
, θ,BP). As ŭij is independent from e, the one-step-ahead
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predictor reads as

ŭij = w ij(p)u− vij(p)φj(q)G
i(q)ŭij , (9.68a)

ŷθ = w00(p)u+

ne∑

i=0

ng∑

j=1

φj(q)G
i(q)ŭij . (9.68b)

Following a similar formulation as in the Wiener case, the SS equivalent of
(9.68a-b) is given by

qx = [A−BV (p)C)] x+BW (p)u, (9.69a)
ŷθ = ECx + w00(p)u, (9.69b)

Note that the weighting functions {w ij}, {vij} are not necessarily equivalent in
(9.64a-b) and (9.67a-b). Thus similar to the previous case, these model structures
are distinguished in the sequel.

9.4.2 Properties of Wiener and Hammerstein feedback models

Representation of dynamic dependence

First, an important property of the introduced feedback based model structures is
discussed:

Property 9.2 (Representation of dynamic dependence) Let S be an asymptotically
stable LPV system and Φ∞ng

⊂ RH2− (E) be a Hambo basis. Given a Wiener-feedback
model MWF(Φne

ng
, θ,BP) or Hammerstein-feedback model MHF(Φne

ng
, θ,BP) of S with

truncation ne > 0 and coefficients w ij , vij ∈ R|nP having static dependence. If
MWF(Φne

ng
, θ,BP) (MHF(Φne

ng
, θ,BP)) is asymptotically stable, then its process model

(deterministic part) has a convergent series-expansion in terms of Φ∞ng
. If there is an

(i, j) ∈ Ine
0 × Ing

1 such that vij is dependent on p, i.e. not all feedback terms are con-
stant, then the coefficients of the series-expansion have dynamic dependence otherwise all
expansion coefficients have static dependence.

For a proof see Appendix A.4. Note that in terms of Property 9.2, a WF-LPV or
a HF-LPV OBF model can be considered to be equivalent with a W-LPV or a H-
LPV OBF model with dynamic coefficient dependence. However, the converse
does not hold in general. Thus, through feedback-based static weighting func-
tions w ij , vij ∈ R|nP the feedback based OBF models can approximate general
LPV systems. It is trivial that such an approximation is more adequate than us-
ing W-LPV and H-LPV OBF models with static coefficient dependence. In fact,
those models are special cases of the WF-LPV OBF and HF-LPV OBF structures.
Equations (9.66a-b) and (9.69a-b) imply that the WF-LPV and HF-LPV OBF struc-
tures can approximate static scheduling dependence in the A matrix as well as
static scheduling dependence in the autoregressive part, see (9.64a-b) and (9.67a-
b). However, this improved representation capability comes at a price, namely
that due to the feedback, stability of the model is not internally guaranteed like in
the W-LPV or the H-LPV OBF case.
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General approximation property

Based on the previous part, a WF-LPV or a HF-LPV OBF model can only approx-
imate and not represent an arbitrary LPV system S. So the general approximator
property does not hold in this case as it would require dynamic dependence of W
and V . However, these models have a series-expansion representation with coef-
ficients incorporating dynamic dependence, thus they give better approximation
of general LPV systems than W-LPV and H-LPV OBF models restricted to have
static dependence.

Loss of linearity in the coefficients

The second price to be paid is that by the introduction of the feedback loop, the
linear-in-the-coefficients property of the original series-expansion structure is lost.
The resulting predictors (9.65a-b) and (9.68a-b) are bilinear in the coefficients.

McMillan degree property

Due to the fact, that the introduced feedback based structures are still based on
truncated series expansions, just like the W-LPV and H-LPV OBF models, they
are well structured against changes of the McMillan degree in the frozen system
set FP of S.

Models for control

The existing approaches of LPV control theory are also directly applicable for es-
timates with the introduced model structures. Through (9.66a-b) and (9.69a-b),
immediate SS realizations of estimated models are available where all dependen-
cies are static. Opposite to the previous case, in (9.66a) and (9.69a) the resulting
A matrix is dependent on p, thus control design does not simplify for these mod-
els. However, the specific structure of the dependence may be exploited during
control design.

9.4.3 Identification by dynamic dependence approximation

In the following, an approach is proposed for the identification with the intro-
duced WF-LPV and HF-LPV OBF model structures based on a LS criterion. This
identification approach is the extension of the global method of Section 9.3. Again
we consider the parametrization of each w ij and vij as

w ij =

nw∑

l=0

θwijlψ
w
l , vij =

nv∑

l=0

θvijlψ
v
l , (9.70)

where {θwijl} and {θvijl} are real-valued unknown coefficients and ψw
l , ψ

v
l ∈ R|nP ,

with ψw
0 = ψv

0 = 1, are given meromorphic functions with static dependence.
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We also assume that no feedthrough term is present, w00 = 0, however later, the
estimation of w00 is also investigated for the algorithm. Similar to the previous
case, the approach is formulated by assuming that the basis selection phase has
already been accomplished, so we pick up the line of reasoning right after Step 2
in Section 9.2.5.

Similar to the global approach of Section 9.3, the estimation phase of the iden-
tification approach based on WF-LPV and HF-LPV OBF model structures uses
only one data set DNd

= {y (k) , u (k) , p (k)}Nd−1
k=0 which is collected from S with

varying scheduling and it is assumed to be informative. Note that due to the lin-
ear parametrization of the coefficients, the unknown parameters {θvijl} and {θvijl}
appear in a bilinear relationship in the predictors (9.65a-b) and (9.68a-b). This im-
plies that by using the LS criterion (9.36) as an identification criterion with residual
(9.15), the minimization of (9.36) can be tackled by a separable least squares algo-
rithm. In each step of this iterative solution, either {θvijl} or {θvijl} is fixed, while
the other parameter set is estimated by linear regression. This iterative scheme is
repeated, till (9.36) converges. The procedure for the Wiener case is given in detail
as follows:

Algorithm 9.4 (OBFs based LPV identification, Wiener-Feedback case)

Step 3c. Given an OBF set Φne
ng

= {φij}i=0,...,ne

j=1,...,ng
and data record DNd

of S. Param-
eterize each w ij and vij of (9.64a-b) according to (9.70) where ψw

l , ψ
v
l ∈ R|nP

are meromorphic functional dependencies chosen by the user with ψw
0 =

ψv
0 = 1. Collect these functions as

Ψw = [ψw
0 . . . ψ

w
nw

],

Ψv = [ψv
0 . . . ψ

v
nv

],

and also the real parameters, associated with the parametrization (9.70), into
the vectors:

θw =
[
θw010 θw011 . . . θwnengnw

]⊤
,

θv =
[
θv010 θv011 . . . θvnengnv

]⊤
.

Step 4c. Choose an initial set of values for the parameters {θvijl}, like θvijl = 0.

Step 5c. Based on DNd
, compute y̆ = [y̆ij ]

i=0,...,ne

j=1...ng
via (9.64a) with respect to the

OBF set Φne
ng

.

Step 6c. Estimate the parameter set {θwijl}
ne,ng,nψ
i=0,j=1,l=0 by linear regression with re-

spect to fixed {θvijl}
ne,ng,nψ
i=0,j=1,l=0. This is done by defining the regressors as

γ⊤ (k) = y̆ (k)⊗Ψw (p (k)) , k ∈ [0, Nd − 1], (9.73)
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Collect the data into

ΓNd
= [γ (0) . . . γ (Nd − 1)]

⊤
,

YNd
= [y (0) . . . y (Nd − 1)]

⊤
.

Then, to minimize the prediction error criterion (9.46), the analytic solution
θ is obtained via (9.47).

Step 7c. Fix {θwijl} to θ̂wNd
and estimate the parameters {θvijl} in the following it-

erative way. In each iteration step we calculate an update for each θvij =
[θvij0 . . . θvijnv

] and choose that estimate which gives the best improvement
on the prediction error of the model. This is formalized in the following
steps:

1. For each basis function φjG
i, compute

ỹij = 1
w ij(p)



y −
ne∑

k=0,k 6=i

ng∑

l=1,l 6=j

wkl(p)y̆kl



 . (9.75)

If w ij(p(k)) = 0 for some k, then do not consider those time instants in
the further procedure.

2. Collect each ỹij into Ỹ (ij)
Nd

and u into UNd
similar to YNd

. Let Hij be the
lower triangular Toeplitz matrix of the Markov parameters associated
with (Aij , Bij , Cij):

Hij =








0 0 . . . . . .
CijBij 0 . . . . . .

CijAijBij CijBij 0 . . .
...

...
...

. . .







. (9.76)

Define
γ⊤ij (k) = y̆ij (k)⊗ ψv (p (k)) , k ∈ [0, Nd − 1], (9.77)

and collect it into Γ
(ij)
Nd

. Then, based on (9.66a-b), it holds that

Ŷ
(ij)
Nd

= HijUNd
− HijΓ

(ij)
Nd

θvij , (9.78)

where
Ŷ

(ij)
Nd

[

ŷ
(ij)
θ (0) ŷ

(ij)
θ (1) . . . ŷ

(ij)
θ (Nd − 1)

]⊤
(9.79)

is the predicted output of the basis function φjG
i. Estimation of θvij can

be formulated as a linear regression, similarly as in Step 6.c, to mini-
mize the residual of Ỹ (ij)

Nd
− Ŷ (ij)

Nd
. The regressor in this case is HijΓ

(ij)
Nd

and the data matrix is HijUNd
− Ỹ (ij)

Nd
.

3. For each θ̂vij , compute the prediction error with only this element up-
dated in θv. Choose the θ̂vij which renders the smallest error and only
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update the value of θv with this element.

4. If the overall prediction error did not converge, then goto Step 7.c.1.

Step 8c. If the prediction error converged with respect to both {θwijl} and {θvijl},
then stop, else goto 5.c.

In the HF-LPV OBF case, the identification procedure is similar. However, the
formulation of the regressor is accomplished differently just like in Section 9.3.
Based on (9.69a-b), for x(0) = 0 and w00 = 0, the predicted output of the HF-LPV
OBF model

ŶNd
=
[
ŷθ(0) ŷθ(1) . . . ŷθ(Nd − 1)

]⊤

satisfies

ŶNd
=








0 0 . . .
ECBW (p(0)) 0 . . .

EC [A−BV (p(1))C]BW (p(0)) ECBW (p(1))
...

...
. . .







UNd

.

By simple rearrangement it follows that

ŶNd
=








0 0 . . .
ECBIu(0) 0 . . .

EC [A−BV (p(1))C]BIu(0) ECBIu(1)
...

...
. . .








︸ ︷︷ ︸

ĤNd






W (p (0))
W (p (1))

...






Now similar to the global method of Section 9.3, formulation of the regressor can
be accomplished based on ĤNd

and the estimate of {θwijl} follows via linear regres-
sion.

The other difference occurs in Step 7.c.1 where due to the Hammerstein struc-
ture of the model, (9.75) simplifies to

ỹij = y −
ne∑

k=0,k 6=i

ng∑

l=1,l 6=j

y̆kl. (9.80)

Furthermore, (9.78) is translated to

Ŷ
(ij)
Nd

= HijÛ
(ij)
Nd
− HijΓ

(ij)
Nd

θvij , (9.81)

where

Û
(ij)
Nd

=
[
w ij(p(0))u(0) w ij(p(1))u(1) . . . w ij(p(Nd − 1))u(Nd − 1)

]⊤
.
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The procedure can also be extended to estimate a direct feedthrough in the
same way as discussed in Section 9.3.

9.4.4 Properties

In the following important properties of the introduced identification approach of
WF-LPV and HF-LPV OBF models are investigated. It is motivated that the sep-
arable least-squares estimation scheme is convergent and the obtained parameter
estimates are local minima or saddle point of the LS criterion.

Convergence of the iterative estimation scheme

In the proposed identification scheme, the coefficients w ij and vij are parameter-
ized linearly via (9.70), resulting in a set of unknown parameters {θwijl} and {θvijl}.
Due to the bilinear relationship in which these parameters appear in the one-step-
ahead predictors (9.65a) and (9.68a), a separable-least squares algorithm is applied
to tackle the minimization of the LS criterion. It is a cardinal question if this iter-
ative scheme is convergent, i.e. is it guaranteed that the value of the LS criterion
decreases in each consecutive iteration step. In each iteration cycle of this scheme,
one set of the parameters is fixed, {θwijl} or {θvijl}, in order to form a linear regres-
sion based estimation of the other set by minimizing the mean squared error of
the residual. This results in a steepest descend type of iterative optimization in
the search for the optimal LS prediction error. For such a separable least squares
strategy, it is well known that it is convergent and the convergence point is a sad-
dle point or a local minimum of the cost function (Golub and Pereyra 1973). The
exact convergence point is characterized by the initial choice of {θvijl} in Step 3c.
The estimates converge to that point of the parameter space Θ whose associated
region of attraction, based on the given data set, contains the initial choice of {θvijl}.
Similar to the numerical optimization schemes of LTI OE or Box-Jenkins models,
the global optimum of (9.36) can only be obtained by starting the iterative search
from different initial values and comparing the results (Ljung 1999).

Unstable model estimates

A further problem may arise in cases where the resulting model estimate is un-
stable, even if S is asymptotically stable. This phenomenon is due to the fact that
the feedback weighting is tuned on a particular, finite scheduling trajectory. As
this feedback tuning can be thought of as the reoptimization of the basis with re-
spect to DNd

, the finite data length and the excitation capabilities of the input and
scheduling signals directly effect the estimation. Thus, even if the resulting model
is stable with respect to the scheduling trajectory in DNd

it is not guaranteed that
it is stable for any other p ∈ BP.
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Practical use and (in)validation

Local minima and the possibility of unstable model estimates do not necessarily
create problems in practice. If the resulting model passes the validation test it
should be an acceptable model (Ljung 1999). The problem is that the only theo-
retically sound (in)validation approach of the model estimates is based on simu-
lation. By computing error measures of the difference of simulated and measured
outputs, the qualities of the model estimates can be compared. As is shown in the
example of Section 9.4.5, the proposed method quickly converges in practice and
provides a reliable estimate of LPV systems.

Consistency, variance, and bias of the estimates

In the previous section, the linear-in-the-parameter property of the used model
structures in the one-step-ahead predictor enabled results on the consistency, vari-
ance, and bias of the resulting model estimates. In the feedback case, the linear-in-
the-parameter property is lost, due to the bilinear relationship of the coefficients.
Thus the previously developed results do not hold in this case. In nonlinear sys-
tem identification, there are many results on the consistency, variance, and bias of
model estimates obtained via different types of separable least-squares strategies.
However, none of these results seems to apply to the considered model structures
and estimation strategies used here. Investigation of consistency, variance, and
bias of the estimation mechanism remains the subject of future research for the
feedback based model structures.

9.4.5 Example

In this section, applicability of WF-LPV OBF model structure and identification
approach for the approximation of general LPV systems is shown through an ex-
ample. Comparison is made with the static-coefficient-function based Wiener OBF
model structure to show that by using the proposed feedback structure, better per-
formance of the model estimates can be achieved.

As in the previous case, the asymptotically stable LPV system S3 is considered
which has been studied in Section 8.3.3. The IO representation of S3, RIO(S3) is
defined by (8.14). This system has been also identified in Section 9.3.6 by using the
basis functions set Φ0

8 obtained via the FKcM algorithm with fuzzyness m = 25
and nc = 8.

Here we aim at the identification of S3 with the WF-LPV and W-LPV OBF
model structures. To ensure fair comparison of the results, both model structures
are used with basis functions Φ0

8 and the coefficients in W are parameterized as
2nd-order polynomials in p. In the feedback case, the coefficients in V are param-
eterized as 3rd-order polynomials. These orders have been found optimal after
several trial and error experiments.

Identification of S3 with the global approach has been accomplished 100 times
in 4 different noise settings with both the Wiener and the Wiener-feedback model
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Table 9.2: Validation results of 100 identification experiments with the Wiener (W)
and the Wiener Feedback (WF) model structures. The results are given in terms
of the MSE and the average BFT and VAF of the simulated output signals of the
model estimates.

Validation by multisine

MSE (dB) BFT (%) VAF (%)

SNR W WF W WF W WF

no noise -18.23 -31.32 85.39 94.04 97.84 99.55

35 dB -18.21 -31.30 85.38 93.64 97.82 99.53

20 dB -17.81 -21.60 85.17 89.30 97.75 98.52

10 dB -20.68 -22.60 86.27 88.44 98.47 98.98

Validation by uniform noise + multisine

MSE (dB) BFT (%) VAF (%)

SNR W WF W WF W WF

no noise -34.96 -39.75 90.04 92.40 99.00 99.42

35 dB -34.77 -39.17 89.92 92.15 98.99 99.39

20 dB -32.75 -35.01 88.69 90.06 98.71 99.00

10 dB -31.81 -32.38 87.73 88.15 98.19 98.59
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Figure 9.11: Typical convergence plot of the prediction error in terms of (9.36) for
the iterative WF-LPV OBF identification algorithm.

structures. The data records for each identification have been generated by a white
(u, p) with uniform distribution (U(−0.5, 0.5),U(0.65, 0.75) superimposed on ran-
dom multisines (3 sines with random phase in [0, π] and frequency in [0, π/5] and
with overall amplitude of 0.5 and 0.05). The reason why this particular excita-
tion has been used is explained later. For each data record, the identification has
been accomplished in a noiseless setting and also with additive zero mean white
output noise with normal distribution and variance σ2

e = 0.01, 0.1, and 0.5. The
resulting SNR has been 35 dB, 20 dB, and 10 dB, while the relative noise amplitude
has been 7%, 25%, and 54% in average for the three noise cases. For the σ2 = 0.5
noise case Nd = 1000, and in the other cases Nd = 500 samples long data records
have been used. In the iterative identification method, the feedback weights have
been initialized at zero. The iterative identification method converged in an av-
erage of 14 iterations for the 4 × 100 runs. A typical convergence plot is given in
Figure 9.11 and the typical output trajectories of the resulting estimates are shown
in Figure 9.12. Calculation time for each data set has been approximately 2 min-
utes with the WF-LPV OBF structure and only a few seconds with the W-LPV
OBF structure on a Pentium 4, 2.8 GHz PC. In Table 9.2, the (in)validation results
are shown for multisine (u, p) with random frequencies and phases and also for
uniform noise superimposed on random multisine, similarly generated like the
identification data. As expected, both approaches identified the system with ade-
quate MSE and average BFT, VAF even in case of extremely heavy output noise,
which underlines the effectiveness of the proposed OBF identification philosophy.
For all measures, validation signals, and noise cases, the WF-LPV OBF model pro-
vided better estimates than the pure static dependence based W-LPV OBF model
estimate. This clearly shows the improvement in the approximation capability
due to the approximation of dynamic dependence with feedback-based weight-
ing. Additional extension of Φ0

8 with ne = 1, 2, . . . has not improved the results
as Φ0

8 is well chosen with respect to S, i.e. the local modeling error is negligible
due to the FKcM (see Section 8.3.3). Even in the SNR= 10dB case, the model esti-
mates proved to be accurate, showing that the proposed identification scheme is
applicable even in the presence of significant measurement noise.

It has been observed that by using multisines superimposed on the realization
of a noise sequence for the excitation of the system, the results have been better
with the feedback-based structures in the presence of output additive noise. Ex-
planation lies in the presence of the feedback gain of the model structure. In case
significant noise is present in short data records, it is possible that the feedback
weights are fitted to the noise process during the iterative optimization. By using
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Figure 9.12: Typical validation results of identified WF-LPV OBF (red) and W-
LPV OBF (blue) models in the SNR = 20dB case. The response of the true system
is given in green.

multisines that emphasizes certain frequencies in the input and the scheduling
signal, this effect can be attenuated. This underlines that much more understand-
ing of feedback-based OBF models, especially in terms of sufficient excitation, is
needed to achieve high quality model estimates. This remains the target of future
research.

9.5 Extension towards MIMO systems

Next, we investigate how the developed approaches and model structures can be
used for identification in the MIMO case. We show that by different choices of
the basis (scalar or multivariable) different extensions of the previously studied
approaches are available.

Extension by using scalar basis

For asymptotically stable MIMO LPV systems, the formulation of the W-LPV and
H-LPV OBF model structures follows similarly as in Section 9.2. In Section 5.3,
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the OBF expansion representation of asymptotically stable LPV systems has been
introduced also for the MIMO case. These representations are based on the expan-
sion of the IO map of the system in terms of scalar basis functions. This implies
that by using the concept of truncation of multivariable expansion representations
based on scalar basis functions, the MIMO W-LPV OBF structure like (9.21) or a
MIMO H-LPV OBF model like (9.24) can be formulated with w ij ∈ RnY×nU . By as-
suming static dependence of these coefficients, identification follows by applying
the algorithms of Section 9.3 with some extra book keeping due to the multidi-
mensional input and output signals. Additionally, the basis selection algorithm of
Chapter 8 is also applicable in this case, by selecting the scalar basis with respect
to the pole manifest set of the MIMO frozen systems of S.

Note, that a multidimensional p results in a multidimensional interpolation in
the local case or the use of multidimensional ψ (p) in the global case. Multidi-
mensional interpolation problems are hard to be solved and they require many
interpolation points, i.e. many local experiments. Therefore, the global method is
practically applicable for large scheduling dimensions. Note that the global ap-
proach is even applicable for significantly large scheduling dimensions which is
an advantageous property with respect to LPV subspace identification methods
due to the serious increase of block dimensions in such cases.

Extension by using multivariable basis

Due to the scalar basis sequence, it can happen that a MIMO series-expansion
converges fast with respect to specific input-output channels, but quite slow for
others just like in the LTI case (see Section 2.2.2). As a result, some elements of the
resulting coefficient matrices can have negligibly small amplitudes over all trajec-
tories of the scheduling behavior BP. This implies that their estimation can result
in a considerable variance. To overcome this effect, series-expansion of asymptot-
ically stable multivariable LPV systems can be introduced using a MIMO basis of
RH2− (E). Again, the key idea is to use MIMO basis functions that are composed
from scalar basis sequences (see Section 2.2.2):

φ̆l(q) :=






φl11(q) . . . φl1nU (q)
...

. . .
...

φlnY1(q) . . . φlnYnU(q)




 , (9.82)

where each {φlij}∞l=1 corresponds to a basis of RH2− (E). Then, in terms of Theo-
rem 5.2, an asymptotically stable LPV system, with respect to a given IO partition,
can be represented as

y = (W0 ⋄ p)u+

∞∑

i=0

[

(Wi ⋄ p)⊙ φ̆i(q)
]

u, (9.83)

where Wi ∈ RnY×nU and ⊙ denotes the element-by-element matrix product. By
choosing the basis sequences appropriately, a fast convergence rate can be achieved
for each IO channel. The basis selection can follow by applying the OBF selection
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procedure of Chapter 8, with respect to each input-output channel separately. This
means that the method is applied for a set of pole samples that are associated with
the set of SISO systems describing the frozen behavior of S restricted to the con-
sidered IO channel. As a next step, we formulate these model structures for a
given MIMO basis sequence Φn = {φ̆i}ni=1 composed from these scalar elements.
Note that in this case, each basis sequence {φlij}∞l=1 is generated with a different
inner function, thus Φn denotes the first n functions in each sequence.

• MIMO Wiener LPV-OBF model, MW(Φn, θ,BP)

F (q, θ) ⋄ p = W0 ⋄ p+

n∑

i=0

(Wi ⋄ p)⊙ φ̆i(q), Q(q, θ) = I, (9.84)

where Wi ∈ RnY×nU and e in this case is a vector of independent zero mean
white noise processes. The parameter vector of the coefficients is

θ =
[

W0 W1 . . . Wn

]⊤
. (9.85)

The one-step-ahead predictor is formulated in this case as

ŷθ = (W0 ⋄ p)u+

n∑

i=0

[

(Wi ⋄ p)⊙ φ̆j(q)
]

u. (9.86)

Let E = [1 . . . 1]⊤ and introduce y̆i : Z→ RnY×nU defined as

y̆i = φ̆j(q) ⊙ (Eu⊤). (9.87)

These signals are the multidimensional counterparts of the output signals of
the filter bank part of the model structures in the SISO case (see Figure 9.2).

• MIMO Hammerstein LPV-OBF model, MH(Φn, θ,BP)

F (q, θ) ⋄ p = W0 ⋄ p+

n∑

i=0

φ̆i(q) ⊙ (Wi ⋄ p), Q(q, θ) = I, (9.88)

where Wi ∈ RnY×nU . The one-step-ahead predictor is formulated in this
case as

ŷθ = (W0 ⋄ p)u+
n∑

i=0

[

φ̆j(q)⊙ (Wi ⋄ p)
]

u. (9.89)

Additionally, the multidimensional ŭi : Z → RnY×nU (see Figure 9.3) are
introduced as

ŭi = (Wi ⋄ p)⊙ (Eu⊤). (9.90)
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By assuming static dependence of the matrix coefficients {Wi} and introducing
a parametrization of {Wi} in terms of linear combination of predefined functions:

Wi =

ni∑

l=0

θl ⊙ ψl (9.91)

where θl ∈ RnY×nU and ψl ∈ (R|nP)nY×nU , identification follows by applying the
algorithms of Section 9.3 with an extended matrix regressor γ and a stacked out-
put record YNd

formulated as

YNd
=
[
y1(0) . . . ynY(0) y1(1) . . . ynY(Nd − 1)

]⊤
. (9.92)

All results in this case about consistency, bias, variance, etc. obviously extend to
the MIMO case.

Extension by using multivariable basis in the feedback case

In case of the feedback structures of Section 9.4, the MIMO version of the model
structures based on a given MIMO basis sequence Φn composed from scalar ele-
ments can also be formulated.

• MIMO WF-LPV OBF model, MWF(Φn, θ,BP)

y̆i = φ̆i(q)⊙ (Eyu
⊤)− φ̆i(q)⊙ (Vi ⋄ p)⊙ y̆i (9.93a)

y = e+ (W0 ⋄ p)u+

n∑

i=0

[(Wi ⋄ p)⊙ y̆i]Eu, (9.93b)

where Ey ∈ RnY , Ey = [1 . . . 1]⊤ and Eu ∈ RnU , Eu = [1 . . . 1]⊤. Further-
more, each y̆i : Z → RnY×nU is a multidimensional signal, Wi, Vj ∈ RnY×nU
and e is a vector of independent zero-mean white noise processes. Again as
each y̆i is independent from e, the one-step-ahead predictor reads as

ŷθ = (W0 ⋄ p)u+

n∑

i=0

[(Wi ⋄ p)⊙ y̆i]Eu, (9.94)

• MIMO HF-LPV OBF model, MHF(Φn, θ,BP)

ŭi = (Wi ⋄ p)⊙ (Eyu
⊤)− (Vi ⋄ p)⊙ φ̆i(q) ⊙ ŭi, (9.95a)

y = e+ (W0 ⋄ p)u+

n∑

i=0

(φ̆i(q)⊙ ŭi)Eu. (9.95b)
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where each ŭi : Z→ RnY×nU is a multidimensional signal, Wi, Vj ∈ RnY×nU .
The one-step-ahead predictor reads as

ŷθ = (W0 ⋄ p)u+

n∑

i=0

(φ̆i(q)⊙ ŭi)Eu. (9.96)

Assume that each element of the coefficient matrix functions of these struc-
tures is parameterized as a linear combination of functions with static depen-
dence. Then the specific structure of the used MIMO forms enables the application
of the separable least-squares algorithm for the estimation of the coefficient func-
tions. Note that the crucial point of the algorithm is the propagation of the error
backwards to the output of a basis function (see (9.75) or (9.80)). The propagated
error can be computed for each element of the basis function matrix separately.
As each OBF has a separate feedback via (9.95a) or (9.93a), thus re-optimization of
each feedback weight on a output channel can be done in parallel.

General remarks on the MIMO extension

Similar to the LTI case, OBFs based identification of MIMO LPV systems has a
much larger freedom than the LTI case. There are different approaches that can be
applied to derive a MIMO basis expansion, to formulate MIMO version of W-LPV
and H-LPV OBF models, and to develop identification algorithms that can de-
liver the estimate. We have taken here specific choices in order to be able to apply
the introduced estimation mechanisms of Section 9.3 and 9.4 without any modi-
fication or reformulation. However, there are numerous possibilities that may be
interesting for further investigation. For example, by considering left or right side
placement of the expansion coefficients for specific IO channels, like mixing the
structures of H-LPV OBF and W-LPV OBF models, or using other formulation of
MIMO orthonormal basis functions, like presented in Section 2.2.2.

In conclusion, it can be stated that the introduced identification approaches of
this thesis can be directly applied to MIMO LPV systems without the need of any
modification or further assumptions. This implies that the proposed identification
scheme in terms of model structure selection, parametrization, and estimation of-
fers an effectively and easily applicable identification scheme for a wide variety
of LPV systems.

9.6 Summary

In this chapter we have introduced OBF based model structures and identification
methods in discrete-time to solve the primary objective of this thesis: the devel-
opment of an efficient identification approach of LPV systems.

By using the concept of series-expansion of LPV systems in terms of OBFs we
have first introduced model structures in Section 9.2 that approximate the system
dynamics based on a truncation of the expansion representation. As it is possible
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to formulate LPV expansions with coefficients on the right and on the left side of
the basis functions, finite truncation of such expansions results in different model
structures. Due to the non-commutativity of the multiplication with the time-shift
operator in the expansion representations, such models have different approxi-
mation capabilities. The resulting structures can be seen as a LTI filter bank fol-
lowed or preceded by a weighing functions set with dynamic dependence on the
scheduling, thus the introduced structures are named as Wiener and Hammer-
stein LPV-OBF models. It has been shown that similar to their nonlinear counter-
parts, these structures can approximate any LPV system with arbitrary accuracy
if the coefficients have dynamic dependence. Furthermore, these models are not
effected by changing McMillan degree of the frozen aspects of the LPV system,
which represents a significant difficulty for the identification of other type of LPV
model structures. We have motivated that the introduced models are effectively
applicable for control as they have a direct state-space realization, however to sat-
isfy assumptions of the control approaches, their coefficient dependencies must
be restricted to be static.

As a significant contribution, we have extended the classical prediction error
setting to the LPV framework. Due to the absence of a transfer function type of
description of LPV systems, the process and noise models are formulated based
on their impulse response presentation. This has been used to define the one-step
ahead predictor in this framework for both the proposed model structures and
other LPV model types. We have analyzed the notion of noise model in this set-
ting showing that to formulate the predictor in the classical sense, the scheduling
variable must be a deterministic signal. It has been also shown that the introduced
model structures are linear-in-the coefficients with respect to the predictor and the
noise model is independently parameterized from the process model. These imply
that similar to the LTI case, estimation of the coefficients is available through lin-
ear regression if the least-squared error criterion is used. Additionally, it has been
discussed how other LPV model structures, used in the literature, are formulated
in the prediction error setting and how their associated noise models influence the
parameter estimation in this setting.

Using the previously derived properties and the prediction error framework,
we have developed in Section 9.3 discrete-time identification algorithms for the
proposed model structures in the least-squares setting. To narrow the search space
and to provide models directly applicable for control, the coefficient functions of
the OBF model structures have been restricted to have static dependence in de-
veloped approaches of Section 9.3. Based on the linear and static parametrization
of the model coefficients (each coefficient is a linear combination of a priori cho-
sen set of meromorphic functions with static dependence) and by the use of the
least-squares prediction-error setting, two identification approaches: a local and
a global one are introduced for the SISO case. The local method uses the gain-
scheduling type of identification strategy: for some constant scheduling trajecto-
ries, LTI truncated expansion models of the system based on a fixed set of OBFs
are identified and then the expansion coefficients of the resulting models are in-
terpolated on the scheduling space P. It has been shown that in comparison with
other gain-scheduling-based identification approaches the interpolation problem



330 Chapter 9 LPV identification via OBFs

is well formulated in this case. The global method uses a data record collected
from the system for a varying scheduling trajectory, and formulates the estima-
tion of the parameters of the coefficients by a linear regression. The introduced
approaches are analyzed in terms of variance, bias, and consistency.

To enable the estimation of truncated expansion models with dynamic coeffi-
cient dependencies, but at the same time still provide applicable models for con-
trol, feedback-based OBF model structures have been proposed in Section 9.4. It
has been shown, that by using static dependence, the introduced model structure
is equivalent to OBF expansion models with dynamic coefficient dependencies.
For the identification with such feedback-based model structures, the previously
developed global approach is extended, formulating the parameter estimation
through a separable least-squares approach. Finally, in Section 9.5, the extension
of the introduced approaches to MIMO systems is investigated. It has been con-
cluded, that for OBF models, based on MIMO functions composed from scalar
basis sequences, the developed approaches and results are applicable.

This concludes that, by the developed identification algorithms, the research
objective of this thesis is completed, giving an alternative, practically applicable
approach for identification of LPV systems as models of an underlying physical
process.



10 CHAPTER

Conclusions and Recommendations

I
n this thesis, we have aimed at the development of a framework and
structural approach for the identification of general LPV systems as

models of an underlying physical process. This chapter is dedicated to
the main conclusions of the presented research and to investigate which
aspects of the aimed objectives have been fulfilled. In addition, sugges-
tions for future research are given.

10.1 Conclusions

This thesis has been motivated by the research goal to develop an improved frame-
work and approach for the identification of Linear Parameter-Varying (LPV) sys-
tems. LPV systems can incorporate and describe both nonlinear (NL) and time-
varying (TV) aspects of physical phenomena and the framework of LPV control is
well worked out and industrially reputed. However, identification of such sys-
tems is still in an immature state. Thus, development of an improved LPV identi-
fication approach could provide models which fulfill the increasing expectations
of industrial applications. In view of the state-of-the-art LPV identification, the
motivation for improvement has been based on the following observations:

• The LPV identification field is dispersed, as available methods focus mainly
on estimation in specific model structures while the steps of the classical
identification cycle often remain uninvestigated.

• The main obstacles in the analysis of methods and model structures are the
gaps of LPV system theory. Dynamic dependence seems to play a crucial
role, but its formalization and effects have not been investigated yet.

• The use of Orthonormal Basis Functions (OBF)s-based model structures for
LPV identification is promising, due to their attractive parametrization, wide
representation capabilities, and easy application for control. Identification,
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based on these structures, might avoid problematic issues connected to the
use of other LPV model structures.

Based on these observations, we have established several sub-objectives (see Sec-
tion 1.6) which had to be investigated to fulfill our primary research goal. In the re-
search plan, that has been followed throughout this thesis, emphasis has been laid
on the investigation of identification using OBF model structures as prime candi-
dates to fulfill our primary objective. A major conclusion of this thesis is that trun-
cated OBF expansion models and the associated identification approaches give an
attractive and useful way of identifying LPV systems in practice. In this final
chapter, we summarize the results of our research, the achieved contributions,
and the conclusions that we have developed in our work and which have led to
the above stated result.

Subgoal 1: Model structure selection

In the scope of our first research goal, we have investigated LPV model struc-
tures and how model-structure selection can be accomplished. We observed that
the main obstacles to answer these questions are the missing system theoretical
concepts, like transformation theory of LPV representations, equivalence classes,
canonical forms, etc. and a clear understanding how NL differential equations
translate to LPV models. Based on the similarity with the Linear Time-Varying
(LTV) system theory, the question was raised wether it would be necessary to in-
troduce dynamic dependence on the scheduling variable to enable equivalence
relations between representations of an LPV system.

In Chapter 3, we have shown that dynamic dependence is the key ingredient
to establish a well founded system theory. We have developed the LPV behavioral
approach, which enables comparison of LPV model structures and their analysis.
A major conclusion has been that LPV model structures need dynamic coefficient
dependence to enable approximation of general LPV systems. We have defined
representations of LPV systems, formalized their equivalence classes, and inves-
tigated their general properties in terms of stability and state-observability and
reachability. We have used the concepts of LTV system theory to characterize our
framework, formulating algebraic structures and concepts that made the exten-
sion of these theories to the LPV case possible. We have also shown that the intro-
duced framework is compatible with the existing results of LPV system theory.

In Chapter 4, we have introduced state-space canonical forms and equivalence
transformations between SS and IO representations. It has been shown that for the
LPV formulation of the classical canonical forms, which are the gateways of equiv-
alence transformations, the concept of structural state-observability and reacha-
bility is the key concept instead of complete state-observability and reachability.
The theory on equivalence transformations between SS and IO representations
enabled the comparison of model structures, which has been subgoal 1.a of our
research plan. We have also concluded that equality of behaviors must be un-
derstood in an almost-everywhere sense. It has been proven that several relations
of LTI system theory, like canonical form construction, realization theory, etc. do
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not hold in the LPV case, showing that the intuitive use of LTI theory in the LPV
identification field can result in unexpected errors.

In Chapter 5 we have shown that an asymptotically stable LPV system has
a series-expansion representation in terms of LTI basis functions. This has di-
rectly answered our research question 1.c, implying that truncated versions of
such model structures can be used for the identification of LPV systems. We have
also motivated that a fast convergence rate of this expansion can be achieved, by
choosing the basis functions such that they are optimal with respect to the frozen
transfer function set of the LPV system. This proved to be the key concept to
facilitate model-structure selection based on OBF models for the LPV case.

In the scope of research goal 1.b, we have studied in Chapter 6 discretization
approaches of LPV-SS representations in a zero-order-hold (ZOH) setting and de-
rived criteria to choose an adequate discretization step-size. A major conclusion
has been that the ZOH setting for the scheduling variable is only adequate for the
discretization of SS representations with static dependence. A higher-order hold
setting has been proposed for the discretization of representations with dynamic
dependence.

In the ZOH case, there is a trade-off between accuracy of the discretization
and the resulting complexity of the coefficient dependence. This has motivated
the introduction of approximative methods that provide less complicated DT re-
alizations. It has been also shown that numerical stability and preservation of
the frozen stability of the original system are equivalent in case of single-step dis-
cretization methods.

In Chapter 7, our research goal 1.b has been fulfilled by developing a model
transformation approach that converts first-principle knowledge, given in terms
of NL differential equations, to a LPV description. It was shown that the se-
lection of scheduling variables is restricted if predefined state-signals, inputs or
outputs, or representations are considered. We has developed an approach that
investigates all possible conversions to a parameter-varying (PV) differential equa-
tion form. Using the behavioral framework, the resulting PV description (if it
exists) can be realized as an arbitrary model representation and assist the model-
structure-selection phase of the identification cycle.

In order to deal with research objective 1.c, it has been shown in Chapter 8
that adequate selection of basis functions for OBF model structures can be ac-
complished by the combined use of fuzzy clustering and the Kolmogorov n-width
(KnW) theory. If the pole locations of the frozen transfer functions of the LPV
system are known, then an OBF set can be derived which achieves the smallest
possible upperbound on the representation error with respect to the frozen trans-
fer function set. This also holds if the region of pole locations, associated with the
frozen transfer functions, can be reconstructed based on experimental data. For
this purpose we have developed the Fuzzy Kolmogorov c-Max (FKcM) clustering
approach and showed that both reconstruction and optimal basis selection can
be solved simultaneously by this approach. To take the effect of noise and dis-
turbances into account, we have developed also a robust extension of the FKcM
procedure via the use of hyperbolic geometry.
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Subgoal 2: LPV prediction error framework

Using the developed concept of series-expansions of LPV systems in terms of the
pulse basis, we have introduced in Chapter 9 a LPV prediction-error framework,
establishing research objective 2. It has been shown that, due to the absence of
a transfer function description of LPV systems, series-expansion representations
are crucial to formulate this framework. An important conclusion has been that
the scheduling signal must be deterministic to enable the definition of output pre-
dictors.

With respect to noise models in the LPV setting we have observed that a prime
advantage of OBFs-based models is that the assumed noise model is indepen-
dent of the scheduling and that the models are linear-in-the-coefficients. For ARX
models, often used in LPV-IO identification, the noise model does depend on the
scheduling, which is quite unrealistic from a practical point of view. As other
model structures are not linear-in-the-coefficients, we have concluded that OBF
expansion models are attractive candidates for LPV prediction-error identifica-
tion.

Subgoal 3: Improved LPV identification approach

Finally, in Chapter 9, the LPV identification procedure, intended to fulfill the pri-
mary research objective and hence sub-objective 3, has been formalized. Model
structures in terms of OBFs-based series-expansions have been formally defined
and analyzed. The similarity of these structures with respect to nonlinear Wiener
and Hammerstein models has been explained, and as a dual of the nonlinear re-
sult, it has been proven that OBF models are general approximators of LPV sys-
tems. Furthermore, it has been shown that it is straightforward to derive a SS real-
ization of these models, enabling the application of LPV control approaches. Con-
cepts to identify OBF models have been derived in a two-step procedure, where
first the OBFs are selected for the model structure, based on first-principle infor-
mation or the FKcM mechanism. As a second step, the parameterization of the
model coefficients is chosen and the estimates are obtained. The estimation phase
has been explored by using both a gain-scheduling type of identification mech-
anism (local approach) and linear regression in the prediction-error framework
(global approach), yielding answers to sub-objectives 3.a-b.

The developed approaches have been formulated by assuming static depen-
dence of the coefficients, which has been motivated both from a control and a
parametrization perspective. Convergence and consistency of the estimates have
been investigated proving that both approaches are consistent under minor con-
ditions. Asymptotic variance and bias expressions of the model estimates have
been derived for the global approach, showing that the introduced mechanism
generalizes the classical asymptotic results of the LTI framework.

To overcome the restrictions of static dependence, a new model structure based
on feedback has been proposed, which, by using only static dependence, is capa-
ble to approximate series-expansion models with dynamic dependence. The basic
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issues and properties of this modeling concept have been analyzed and an identi-
fication approach has been given based on separable least-squares. These models
can approximate general LPV system better than expansion models with static
dependence and they are also easily applicable for control. However, due to the
feedback structure, stability of the model estimates is not guaranteed and results
on consistency, variance and bias are hard to be drawn. Finally, it has been shown
that all introduced approaches can easily be extended to the MIMO case.

Based on these observations, it can be concluded that the developed iden-
tification framework and approaches of this thesis fulfill the primary objective:
development of a low-complexity and reliable identification mechanism of LPV
systems as models of physical plants, where the model estimates are directly ap-
plicable for control.

10.2 Contributions to the state-of-the-art

As solutions for the presented research objectives, the main contributions of this
thesis are the following:

Unified LPV system theory

• A unified system theoretical framework of LPV systems is developed, where
notions of representation, equivalency and minimality can be defined thro-
ugh the concepts of behaviors and dynamic dependence (Chapter 3). A
transformation theory between IO and SS representations is established and
a new state-construction algorithm is introduced which delivers a minimal
SS representation in the SISO case (Chapter 4). Concepts of state-observabi-
lity, state-reachability, stability, and canonical forms are also reformulated
in this setting, yielding a common basis for the analysis of LPV system rep-
resentations. The presented theoretical framework enables the comparison
and analysis of model estimates and identification algorithms in the LPV
context.

• Discretization theory of LPV systems is worked out in a zero-order-hold set-
ting with respect to models with static dependence (Chapter 6). Criteria are
given to choose a discretization step size, guaranteing stability preservation
or a specific approximation error. The concepts of discretization of general
LPV systems with dynamic dependence are also established. This contribu-
tion enables the use of first-principle information about continuous-time dy-
namics of the system in the model-structure selection of discrete-time iden-
tification methods.

• The modeling capabilities of LPV systems with respect to NL systems are
studied and a new method for automatic model conversion of NL differen-
tial equations to LPV models is given (Chapter 7). The procedure formulates
an effective way of modeling NL systems in the LPV framework and the use
of first-principle knowledge in model-structure selection.
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LPV-OBF expansion model structures

• It is shown, in Chapter 7, that asymptotically stable LPV systems have series-
expansion representations in terms of OBFs.

• In Chapter 9, OBFs based LPV model structures are introduced and ana-
lyzed in terms of representation and properties, with the conclusion that in
many aspects these model structures are attractive for LPV identification.

The LPV prediction-error setting

• An LPV prediction-error setting is formalized, based on the concepts of the
classical identification framework (Chapter 9). This includes the definition
of predictors and noise models and the analysis of these concepts for the
LPV case.

• A comparison of LPV model structures in the introduced prediction-error
framework is carried out, showing that OBF models are attractive as they
are linear-in-the-coefficients and their noise model is independently param-
eterized and does not depend on the scheduling. This enables an efficient
estimation of OBF models by linear regression.

LPV identification based on OBF models

• Two novel approximative LPV identification approaches, a local and a global
approach, are proposed, based on OBFs models with static-scheduling de-
pendence. The methods extend the concept of LTI predication-error identi-
fication and can also be applied for the identification of MIMO systems. The
local method exploits the principle of gain-scheduling to formulate the LPV
identification as a well-posed interpolation problem of identified LTI mod-
els with constant scheduling signals. The global method relies on a prior
chosen parameterization of the scheduling dependence to provide a global
estimate via linear regression and a varying scheduling signal.

• Feedback-based model structures are introduced, which can approximate
dynamic dependence of the coefficients of LPV series-expansions by using
static dependence. The identification problem with these structures is solved
via a separable least-squares strategy.

• A novel OBFs-selection mechanism and its robust extension are developed.
These mechanisms provide the basis selection, i.e. the model-structure se-
lection, phase for the proposed OBFs-based LPV identification approach
(Chapter 8).

• By using the concepts of hyperbolic geometry, the Kolmogorov n-width op-
timality result of the pulse basis with respect to circular regions of non-
analycity around the origin is extended. This contribution gives more in-
sight in the understanding of Kolmogorov n-width optimality of OBFs with
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respect to specific regions of non-analycity and enables the robust extension
of the basis-selection tool.

10.3 Recommendations for future research

As a continuation of the presented results and in view of our research goals the
following problems/challenges are suggested for future research:

• In the LTI behavioral framework, a considerable amount of theory is dedi-
cated to the investigation of observability and reachability of behaviors and
system representations. Such notions are inevitable to formulate and under-
stand control in the behavioral concept. In this thesis, such notions have
been left unexplored as they have been not necessary ingredients for the
developed theory. However, to achieve a complete foundation of the LPV
behavioral approach, such notions must be worked out as well. This in-
vestigation might be based on the compatible theories of Zerz (2006) and
Ilchmann and Mehrmann (2005).

• Beside the proposed cut & shift procedure, the development of a state con-
struction mechanism for the realization of LPV-SS representations with min-
imal complexity of coefficient dependence can also be important from a
number of aspects. It would establish the concept of minimality both in
terms of state dimensions and complexity of the coefficient dependence.
Furthermore, it would provide the most simple realization of a given model
in a SS representation, making comparison and further use much more effi-
cient.

• In this thesis, series-expansions representations of LPV models have been es-
tablished in terms of LTI basis functions. It is an interesting question wether
such basis functions can be defined in a parameter-varying sense. Such a
mathematical concept might enable the full extension of the theory on or-
thonormal basis functions with respect to LPV systems.

• The developed discretization theory focuses on static dependence of the co-
efficients in a zero-order-hold setting. Foundations for discretization of rep-
resentations with dynamic dependence are given in a higher-order-hold set-
ting. However, for a well-established theory, further investigation of this
setting is needed. The performance of the methods in a higher-order-hold
setting together with the derivation of criteria to assist the step-size selection
could be an interesting target of future research.

• Instead of the isolated discretization concept, treated in this thesis, the de-
velopment of discretization procedures that focus on preservation of the
closed-loop performance, would provide valuable tools for the LPV control
community.
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• In the proposed transformation mechanism of NL models to LPV descrip-
tions, the approximation of non-factorizable terms leaves a considerable a-
mount of freedom. By analyzing and categorizing efficient approximation of
common non-factorizable nonlinear terms, a fully automatized model con-
version tool could result.

• Strong concepts of identifiability, persistency of excitation, and validation of
the proposed model structures and LPV systems in general have been left
unanswered. General results about the asymptotic variance and bias of the
estimates have been derived, but developing more informative expressions
remains a subject for future research. The exploration and analysis of these
issues, together with an experiment-design theory, are inevitable to accom-
plish the identification cycle and give a complete theory of LPV modeling
and identification.

• Further investigation of relations of hyperbolic geometry, pole uncertainties,
and the Kolmogorov theory also presents an interesting objective. These
investigations may provide a better understanding of model uncertainties
or define well-established metrics for investigating similarity or distance of
LTI models.

• In the proposed identification scheme, one of the major difficulties is the de-
cision about the parameterization of coefficient dependencies both in terms
of functional and dynamic dependence, in the absence of structural infor-
mation. In the NL case, especially for Wiener models (Hagenblad 1999),
recently some theories appeared to choose appropriate functional forms for
the coefficients, based on measured data sequences. Due to the similarity
of the proposed model structures to this system class, such results could be
useful to solve similar questions in the LPV case as well.

• Commonly, unstable systems are identified in a closed-loop setting. Con-
sidering that the primary objective of control is stabilization of such sys-
tems, the identification of unstable phenomena is also a vital problem in the
LPV case. Based on this, investigation of LPV closed-loop identification with
series-expansion model structures is proposed as one of the most crucial ob-
jectives of future research.

• Finally, testing the developed approaches and theories in practice is required
for verification of their usefulness. Establishing model estimates based on
measured data and synthesizing LPV control with these models are essential
steps to be taken. This may lead to further insight and experience to develop
the LPV identification field into a well-established framework.



A APPENDIX

Proofs

I
n this appendix, the proofs of the theories and lemmas of this thesis
are presented. The proofs relay heavily on the notation and concepts

introduced in the previous chapters.

A.1 Proofs of Chapter 3

Proof: (Field property of R, Lemma 3.1) To prove that R is a field the following
properties have to be satisfied by the operators ⊞ and ⊡.

• Closure ofR under ⊞ and ⊡.
We need to prove that

(∀r1, r2 ∈ R)⇒ (r1 ⊞ r2 ∈ R) and (r1 ⊡ r2 ∈ R). (A.1)

Let r1, r2 ∈ R such that r1 ∈ R̄i and r2 ∈ R̄j with i ≥ j ≥ 0. Let r′2 ∈ Ri

such that ℧∗(r′2) = r2. Note that r′2 is unique. InRi it holds that r1 + r′2 ∈ Ri

and r1 ·r′2 ∈ Ri. Furthermore the results of these operators are unique inRi.
For any r ∈ Ri it also trivially holds that ℧∗(r) ∈ R and it is unique. These
imply that r1 ⊞ r2 ∈ R and r1 ⊡ r2 ∈ R and the results of these operators are
also unique inR. This proves (A.1).

• Commutativity of ⊞ and ⊡.
This property follows from the commutativity of the Euclidean operators.

• Associativity of ⊞ and ⊡.
We need to prove that for all r1, r2, r2 ∈ R

r1 ⊞ (r2 ⊞ r3) = (r1 ⊞ r2) ⊞ r3 and r1 ⊡ (r2 ⊡ r3) = (r1 ⊡ r2) ⊡ r3.

Due to the fact that + and · are associative in Rn for n ≥ 0, it is enough to
show that ℧∗(r1 + r2) = ℧∗(r1) ⊞ ℧∗(r2) and ℧∗(r1 · r2) = ℧∗(r1) ⊡ ℧∗(r2).
As for all r ∈ R it holds that r = ℧∗(r) these properties are trivially satisfied.
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• Operation ⊡ is distributive over ⊞.
We need to prove that for all r1, r2, r2 ∈ R

r1 ⊡ (r2 ⊞ r3) = (r1 ⊡ r2) ⊞ (r1 ⊡ r3).

Due to the fact that · is distributive over + in Rn for n ≥ 0, the argument
that proves this property is similar to the previous case.

• Existence of additive identity.
Due to construction (3.12), the additive identity in R is unique and equal to
0 ∈ R. This is proved by the following argument. In Rn for n ≥ 0, the zero
element r0 is unique and satisfies r0 + r = r for all r ∈ Rn. It also holds that
r0 is not in R̄n except for n = 0 because ℧∗(r0) = 0 ∈ R.

• Existence of multiplicative identity.
Due to construction (3.12), the multiplicative identity in R is unique and
equal to 1 ∈ R. This is proved by a similar argument as in the previous case.

• Existence of additive/multiplicative inverse.
For any r ∈ Rn, there exists a unique −r ∈ Rn such that r + (−r) = r0
where r0 is the zero element inRn. If ℧∗(r) = r, then it trivially implies that
℧∗(−r) = −r. Thus for all r ∈ R̄n, it holds that its additive inverse exists
in R̄n and it is unique. This proves the existence of additive inverse in R
which is also unique. Similar arguments hold for the multiplicative inverse.

�

Proof: (State-kernel form, Theorem 3.2) The concept of the proof is based on
Rapisarda and Willems (1997). To simplify the discussion, we prove only the so
called Markovian case as the state case follows trivially from this concept due to the
linearity and time-invariance of LPV systems. We call the continuous-time LPV
system S = (R,P,W,B) Markovian, if for all p ∈ BP
(w1, w2 ∈ Bp) ∧ (w1, w2 continuous at 0) ∧ (w1(0) = w2(0))⇒ (w1 ∧

0
w2) ∈ Bp.

In case of a discrete-time S, i.e. T = Z, the definition is similar except continuity
of w1 and w2 is not required at 0. In the following, we prove that S is Markovian,
iff there exist matrices r0, r1 ∈ Rnr×nW such that B has the kernel representation:

r0w + r1ξw = 0. (A.2)

For the sake of simplicity we consider only the continuous-time case as the DT
case follows similarly. For T = R, ξ = d

dt , the “if” part is trivial. To show the
“only if” case, assume that a KR representation of S is given with R ∈ R[ξ]nr×nW
for which the solutions of (3.17) satisfy the above given connectability condition.
Without loss of generality it can be assumed that R is full row rank. Also, there
exists a unimodular M ∈ R[ξ]·×nr such that R′ = MR is in a row reduced form,
meaning that the matrix formed by the coefficient functions of the highest powers
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in ξ of the rows R′(ξ) has full row rank. Due to the fact that M is a left-side
unimodular transformation, the behaviors of R and R′ are equivalent.

We show now that deg(R′) = 1. Assume the contrary and write R′ in the IO
form:

(R1(
d

dt
) ⋄ p)w1 = (R2(

d

dt
) ⋄ p)w2, (A.3)

where col(w1, w2) = w corresponds to an IO partition and deg(R1) ≥ deg(R2). The
assumption that deg(R′) > 1 implies that deg(R1) > 1. Similarly, the assumption
of (R′( d

dt) ⋄ p)w = 0 is Markovian implies that (R1(
d
dt) ⋄ p)w1 = 0 is Markovian.

Now let w′1, w
′′
1 be the solutions of (R1(

d
dt) ⋄ p)w1 = 0 for a p ∈ BP with

w′1(0) = w′′1 (0). Since (w1, w2) is an IO partition of S, thus col(w′1, 0) and col(w′′1 , 0)
are also solutions of (R′( d

dt ) ⋄ p)w = 0 and due to Markovian property, they are
connectable. This implies that in order to obtain contradiction it suffices to prove
contradiction for autonomous systems. Let nξ = deg(R1) and by assumption
nξ > 1. Introduce auxiliary variables w̆ij defined as

w̆ij :=
di

dti
wj , (i, j) ∈ Inξ0 × InW1 , (A.4)

where w = [w1 . . . wnW ]⊤. Collect these variables in a column vector

w̆ =
[
w̆01 w̆02 . . . w̆0nW w̆11 . . . w̆nξnW ]⊤

. (A.5)

Now consider the system with latent variable w̆ as

d

dt
w̆ = (r ⋄ p)w̆, (A.6a)

wj = w̆0j , ∀j ∈ InW1 . (A.6b)

where the coefficient r ∈ R(nξnW)×(nξnW) is determined from the coefficients of
R1(ξ) and the definition (A.4). The manifest behavior of (A.6a) is equivalent with
the manifest behavior of R1(ξ), which can be checked by elimination of the la-
tent variables of (A.6a-b). However, the manifest behavior can not be Marko-
vian as (A.6a-b) has exactly one solution (w, w̆) for each initial condition w̆(0) and
scheduling trajectory p ∈ BP. This contradicts Markovianity, since two solutions
(w, w̆) and (w′, w̆′) with w̆0j(0) = w̆′0j(0), ∀j ∈ InW1 cannot be connected unless also
w̆ij(0) = w̆′ij(0), ∀(i, j) ∈ Inξ−1

1 × InW1 . �

A.2 Proofs of Chapter 5

Proof: (LPV series expansion, pulse basis, Theorem 5.1) In the introduced LPV
behavioral framework it has been shown that any discrete-time non-autonomous
LPV system S = (Z,P ⊆ RnP ,RnW ,B) has non-unique IO representations. Denote
the scheduling variable of S as p. For a given IO partition with output dimen-
sion nY and input dimension nU, a IO representation of S is characterized by the
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polynomials Ru ∈ R[ξ]nY×nU and full row rank Ry ∈ R[ξ]nY×nY . Among the IO
representations that belong to the equivalence class of S for this IO partition, there
exists a subset of representations whereRy andRu are coprime. Those representa-
tions are called minimal. Among these minimal representations the representation
with monic Ry is unique. Consider this unique, minimal IO representation of S
and denote its polynomials with Ry and Ru. Then the dynamic relation reads as

qnay +

na−1∑

i=0

(ai ⋄ p)qiy =

nb∑

j=0

(bj ⋄ p)qju, (A.7)

where ai ∈ RnY×nY , i ∈ Ina−1
0 and bj ∈ RnY×nU , j ∈ Inb

0 are the coefficients of
Ry and Ru. Due to the maximum freedom of u in the IO partition, it holds that
deg(Ry) = na ≥ nb = deg(Ru).

Assume that S is asymptotically stable. Multiply the expression (A.7) with
q−na which according to the non-commutative multiplication rules in discrete
time (see Definition 3.13) results in

y = −
na−1∑

i=0

([ai]
na ⋄ p)qi−nay +

nb∑

j=0

([bj ]
na ⋄ p)qj−nau, (A.8)

where [ � ]na denotes the backward shift operator applied on the coefficient func-
tion for na times. We call (A.8) the filter form of (A.7). Now substitute q−1y in
(A.8) by the left-hand side of (A.8) multiplied by q−1. This results in the following
expression:

y = −[ana−1]
na



−
na−1∑

i=0

([ai]
na+1 ⋄ p)qi−1−nay +

nb∑

j=0

([bj ]
na+1 ⋄ p)qj−1−nau





−
na−2∑

i=0

([ai]
na ⋄ p)qi−nay +

nb∑

j=0

([bj ]
na ⋄ p)qj−nau, (A.9)

Notice that in (A.9), the smallest time-shift of y has the order of −2 and that all
coefficient relations with (A.8) are uniquely determined. Note that (A.7) repre-
sents B restricted to signals y and u with left compact support. Thus, by apply-
ing this procedure recursively on q−2y, q−3y, etc., there exists a n ∈ N for every
(u, y, p) ∈ B such that y vanishes after substitution of q−ny. This yields, that the
recursive procedure results in a Laurent-like series expansion of (A.7).

Denote by gi the resulting expressions of the coefficients of Ry and Ru associ-
ated with each q−iu in (A.9). It is obvious that gi ∈ RnY×nU . However, it is not
obvious how this coefficient sequence behaves for increasing i and if it is conver-
gent or not. As a next step, we investigate this property.

Due to the asymptotic stability of S, it holds that for all p ∈ BP and k ∈ Z
lim

i→∞
(gi ⋄ p)(k) = 0. (A.10)
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Otherwise there exists a k0 ∈ Z, and an input signal

u(k) =

{
1, if k = k0;
0, else. (A.11)

such that the associated output trajectory y in terms of the IO representation does
not converge to the origin when k → ∞, which contradicts with the asymptotic
stability. This implies that

lim
i→∞

(gi ⋄ p) = 0 ∀p ∈ BP, (A.12)

meaning that the coefficient sequence of the expansion converges to the zero func-
tion on BP. In this way, the limit of the function sequence {g0, g1, g2, . . .} can be
considered zero.

Asymptotic stability of S also implies BIBO stability in the ℓ∞ norm:

sup
k≥0
‖u(k)‖ <∞⇒ sup

k≥0
‖y(k)‖ <∞.

In the view of ℓ∞ BIBO stability, the resulting series expansion form satisfies

sup
k≥0
‖y(k)‖ = sup

k≥0
‖(g0 ⋄ p)(k)u(k) + (g1 ⋄ p)(k)u(k − 1) + . . . ‖.

As supk≥0 ‖u(k)‖ <∞ and supk≥0 ‖y(k)‖ <∞, the above equation implies that

sup
k≥0

∞∑

i=0

‖(gi ⋄ p)(k)‖ <∞. (A.13)

These properties prove that

y =

∞∑

i=0

(gi ⋄ p)q−iu, (A.14)

exists and it is satisfied for all (u, y, p) ∈ B with left compact support. In this
way, an asymptotically stable discrete-time LPV system has a unique, convergent
series expansion in terms of the LTI pulse basis {1, q−1, q−2, . . .} with expansion
coefficients inRnY×nU . �

Proof: (LPV series expansion, OBFs, Theorem 5.2) In the LTI theory, it is proven
that any pulse basis function z−i, i > 0, has a unique series expansion in terms
of a arbitrary basis sequence Φ∞ = {φi}∞i=1 in RH2− (E) (Heuberger et al. 2005).
This implies that








q−1

q−2

q−3

...








=








w11 w12 w13 . . .
w21 w22 w23 . . .
w31 w32 w33 . . .

...
...

...
. . .















φ1(q)
φ2(q)
φ3(q)

...







, (A.15)
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where wij ∈ R, i, j ∈ I∞1 , are the expansion coefficients. It holds for all i ∈ I∞1 ,
that the sequence {wij}∞j=1 is an ℓ2 sequence (Heuberger et al. 2005). The same
property also holds for each sequence {wij}∞i=1.

Based on Theorem 5.1, there exists a pulse basis series expansion of any discrete-
time asymptotically stable LPV system S = (Z,P,W,B) with IO partition (u, y).
This series expansion can be written in the form of

y = g0u+
([

g1 g2 g3 . . .
]
⋄ p
)








q−1

q−2

q−3

...







u. (A.16)

Now by substituting (A.15) into (A.16) it follows that

y = g0u+
([
w1 w2 w3 . . .

]
⋄ p
)








φ1

φ2

φ3

...







u, (A.17)

where

[
w1 w2 w3 . . .

]
=
[

g1 g2 g3 . . .
]








w11 w12 w13 . . .
w21 w22 w23 . . .
w31 w32 w33 . . .

...
...

...
. . .







. (A.18)

Due to the fact that {gi}∞i=1 converges to zero and it satisfies (A.13) for all p ∈ BP
and each {wij}∞i=1 is an ℓ2 sequence, each w i ∈ RnY×nU is unique and well defined.
On the other hand, zero convergence of each {wij}∞j=1 implies that

lim
i→∞

(w i ⋄ p) = 0 ∀p ∈ BP, (A.19)

meaning that the new coefficient sequence converges to the zero function on BP.
This provides that (A.17) is a unique, convergent series expansion of the LPV
system in terms of Φ∞ ⊂ RH2− (E). As in the considered system class any
system has a convergent series expansion in terms of the pulse basis, therefore
any of these systems has a convergent series expansion in terms of an arbitrary
Φ∞ ⊂ RH2− (E) basis. �

A.3 Proofs of Chapter 8

Proof: (Optimal Partition, Theorem 8.1) The proof is given in an alternating
minimization sense. First, fix V and define Ĵm (U) = Jm(U, V ), for U ∈ UNz

nc
. Since

the membership values [µik]
nc

i=1 of zk to the fixed clusters are not depending on
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the memberships of other data points, therefore the columns of U are degenerate
to each other (decoupled) in the minimization of Ĵm (U), therefore:

min
U∈UNz

nc

Ĵm (U) = min
U∈UNz

nc

max
k∈INz

1

nc∑

i=1

µm
ikdik = max

k∈Inc
1

min
U∈UNz

nc

Nz∑

i=1

µm
ikdik. (A.20)

Denote Ĵ (k)
m (U) =

∑nc

i=1 µ
m
ikdik. To introduce the constraints UNz

nc
, the Lagrangian

∆k (δk, U) of Ĵ (k)
m (U) is defined for each k ∈ INz

1 as

∆k (δk, U) =

nc∑

i=1

µm
ikdik − δk

[(
nc∑

i=1

µik

)

− 1

]

. (A.21)

Assume that I∅

k = ∅, then (δk, U) is a stationary point for ∆k, only if

∂

∂(δ, U)
∆k (δk, U) =

(
0Nz , 0nc×Nz

)
, (A.22)

for all k ∈ INz

1 . Setting all of these gradients equal to zero yields that

∂∆k (δk, U)

∂δk
=

nc∑

i=1

µik − 1 = 0, (A.23a)

∂∆k (δk, U)

∂µik
= mµm−1

ik dik − δk = 0, (A.23b)

for every k ∈ INz

1 and i ∈ Inc
1 . From (A.23b), it follows that

µik =

(
δk
mdik

) 1
m−1

. (A.24)

Moreover, by substitution of (A.24) into (A.23a):

0 =

nc∑

l=1

(
δk
m

) 1
m−1

(
1

dlk

) 1
m−1

− 1 (A.25a)

(
δk
m

) 1
m−1

=

[
nc∑

l=1

(
1

dlk

) 1
m−1

]−1

. (A.25b)

If (A.25b) is substituted back into (A.24), then

µik =

(
1

dik

) 1
m−1

nc∑

l=1

(
1

dlk

) 1
m−1

=
1

nc∑

l=1

(
dik
dlk

) 1
m−1

. (A.26)

In this way we have proved that in a local minima of Jm(U, V ), all µik has to satisfy
(8.10a). If I∅

k 6= ∅, then (A.26) is singular. In this situation, choosing µik as given
by (8.10a) results in Ĵ (k)

m (U) = 0, because the non-zero weights are placed on zero
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distances, while positive distances with nonzero weights would increase Ĵ (k)
m (U),

contradicting to minimality. As the zero-distances can have arbitrary weights,
for the shake of simplicity equal weights are considered fulfilling (8.10a). Note,
that such singularity hardly occurs in reality, since machine round-off prevents its
encounter.

To establish (8.10b), fix U ∈ UNz
nc

and define J̌m (V ) = Jm(U, V ). Minimization
of J̌m (V ) is unconstrained on Dnc , and it is decoupled for each υi. Therefore

min
V ∈Dnc

J̌m (V ) = min
V ∈Dnc

max
k∈INz

1

nc∑

i=1

µm
ikdik =

nc∑

i=1

min
V ∈Dnc

J̌ (i)
m (V ) , (A.27)

where J̌ (i)
m (V ) = maxk∈INz

1
µm

ikdik , depending only on υi. This means that

υi = arg min
V ∈Dnc

J̌ (i)
m (V ) = arg min

υi∈D max
k∈INz

1

µm
ikdik. (A.28)

Optimization (A.28) can be formulated as a matrix inequalities constrained mini-
mization problem. Denote

γi = J̌ (i)
m (V ) = max

k∈INz
1

µm
ikdik, (A.29)

then the solution of (A.28) can be obtained by solving

minimize γi ≥ 0,

subject to µm
ik

∣
∣
∣
zk−υ
1−z∗kυ

∣
∣
∣ ≤ γi, ∀k ∈ INz

1 ,

υ ∈ D.
The constraints of this minimization can be written for each k as

µm
ik

∣
∣
∣
∣

zk − υ
1− z∗kυ

∣
∣
∣
∣
≤ γi, (A.30a)

µ2m
ik |zk − υ|2 |1− z∗kυ|−2 ≤ γ2

i . (A.30b)

From the Schurr-complement of (A.30b) it follows that (A.30a) holds iff
[
|1− z∗kυ|2 µm

ik(zk − υ)
µm

ik(zk − υ)∗ γ2
i

]

� 0, ∀k ∈ INz

1 , (A.31)

where υ ∈ D. Then a sufficient but not necessary condition for (U, V ) being lo-
cal minima of Jm is to satisfy (A.26) and (A.28). This concludes the proof. It is
important to remark that Jm (U, V ) has more stationary points than what can be
reached through alternating minimization, however all points fulfilling Theorem
8.1 are stationary points of Jm (U, V ). �



A.3 Proofs of Chapter 8 347

Proof: (Asymptotic property of Jm, Theorem 8.2) As the cluster centers of V are
assumed to be “nonsingular” with respect to Z , i.e. dik > 0 for all (i, k) ∈ Inc

1 × INz

1 ,
thus based on the optimality of Um, substitution of (A.26) into (8.8) implies, that
for m > 1:

Jm(Um, V ) = max
k∈INz

1

nc∑

i=1

µm
ikdik = max

k∈INz
1

nc∑

i=1

µikµ
m−1
ik dik =

= max
k∈INz

1

nc∑

i=1

µik
dik

dik

[
nc∑

l=1

(
1

dlk

) 1
m−1

]m−1 =

= max
k∈INz

1

[
nc∑

l=1

(dlk)
1

1−m

]1−m

,

holds as
∑nc

i=1 µik = 1. Now introduce

J̄ (k)
τ (V ) =

[
c∑

i=1

1

c
(dik)

τ

]1/τ

, (A.32)

with τ = 1
1−m . Then

Jm(Um, V ) = J τ−1
τ

(U τ−1
τ
, V ) = n1/τ

c max
k∈INz

1

J̄ (k)
τ (V ). (A.33)

Equation (A.32) is called the Hölder or generalized mean (Bullen 2003) of dik . Based
on the properties of the generalized mean in terms of τ , the following hold:

Case m→ 1⇔ τ → −∞⇒ J̄
(k)
τ (V )→ min

i∈Inc
1

{dik} for all k ∈ INz

1 . Since n1−m
c → 1,

the minimum over Inc
1 is unique for each k:

lim
m→1

Jm(Um, V ) = max
k∈INz

1

min
i∈Inc

1

{dik} . (A.34)

Case m = 2 ⇔ τ = −1. Then J̄ (k)
−1 (V ) is the harmonic mean of {dik}nc

i=1 for each
k ∈ INz

1 , so

J2(U2, V ) =
1

nc
max
k∈INz

1

nc
∑nc

i=1
1

dik

. (A.35)

Case m → ∞ ⇔ τ → 0. Then, the asymptotic convergence of the generalized
mean to the geometric mean yields: J̄ (k)

τ (V ) = [
∏nc

i=1 dik]
1/nc +O(e

1
τ ), which

gives

Jm(Um, V ) = n1−m
c max

k∈INz
1

[∏nc

i=1
dik

] 1
nc

+O(e−m), (A.36)
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and since n1−m
c → 0, therefore

lim
m→∞

Jm(Um, V ) = 0. (A.37)

�

Proof: (h-center relation, Lemma 8.3) From Lemma 8.2 we obtain that for any
Kh (eh, rh), there exists a K (e, r), such that all z ∈ Kh (eh, rh) satisfies both

∣
∣
∣
∣

z − eh

1− z∗eh

∣
∣
∣
∣
= rh, |z − e| = r. (A.38)

Straightforward calculus leads to

e =
1− r2

h

1− r2
h |eh|2

eh, r =
1− |eh|2

1− r2
h |eh|2

rh, (A.39)

concluding that

ϕh =
1− r2

h

1− r2
h |eh|2

∈ R ⇒ e = ϕheh. (A.40)

�

Proof: (κ1-metric, Theorem 8.4) In order to prove that KM is a metric on D, the
following 3 properties have to be verified for all x, y, z ∈ D:

(i) Zero metricity: κ1(x, x) = 0. By substitution:

κ1(x, x) =

∣
∣
∣
∣

x− x

1− x∗x

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

0

1− |x|2

∣
∣
∣
∣
∣
= 0, ∀x ∈ D. (A.41)

(ii) Symmetry: κ1(x, y) = κ1(y, x). Let x, y ∈ D be arbitrary, then:

κ1(x, y) =
|x− y|
|1− x∗y| =

|−(y− x)|
∣
∣(1− (x∗y))∗

∣
∣

= κ1(y, x). (A.42)

(iii) Triangular inequality: κ1(x, y) ≤ κ1(z, x) + κ1(z, y). Assume that x, y ∈ D and
z ∈ Hxy (see Figure A.1.a). If x = y, then (iii) holds trivially as κ1(x, x) =
0 ≤ 2κ1(z, x). Moreover, if z = x or z = y then (iii) holds with equality as
κ1(x, y) = κ1(x, x) + κ1(x, y) = κ1(x, y) or κ1(x, y) = κ1(y, y) + κ1(x, y) =
κ1(x, y). Now assume that x, y, z are distinct points. Define x̂ = hz(x) and
ŷ = hz(y), where hz is the h-inversion that maps z→ 0. Then, hz(Hxy) = Hx̂ŷ

is a segment of an Euclidian line, a diameter of J (blue line in Figure A.1.a).
Let H̃ be the diameter line (also an h-line) bisecting the angle between H0x̂

and the real axis. Then hH̃(x̂) = x̃ and hH̃(ŷ) = ỹ are points of the real
axis and hH̃(Hx̂ŷ) = Hx̃ỹ ⊂ (−1, 1) with 0 ∈ Hx̃ỹ (green in Figure A.1.a).
As hH̃ ◦ hz ∈ D, then by Corollary 8.1, (iii) can be written as κ1(x̃, ỹ) ≤
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Figure A.1: Inversion of h-lines and points proving the Triangular equality.

κ1(0, x̃) + κ1(0, ỹ). Assuming that x̃ and ỹ are ordered as x̃ ∈ (−1, 0) and
ỹ ∈ (0, 1), then

|x̃− ỹ|
|1− x̃∗ỹ| ≤ −x̃ + ỹ,

ỹ− x̃

1 + |x̃| ỹ ≤ ỹ− x̃,

1 ≤ 1 + |x̃| ỹ,
0 ≤ |x̃| ỹ.

In the second part of the proof assume that z /∈ Hxy. Define h-circles
Kh1(x, rh1) and Kh2(y, rh2) such that z ∈ Kh1,Kh2 (red in Figure A.1.b).
Note that κ1(z, x) = rh1 and κ1(z, y) = rh2. If max (rh1, rh2) ≤ κ1 (x, y),
then Kh1 ∩ Hxy = x̃ and Kh2 ∩ Hxy = ỹ exist (blue in Figure A.1.b). Since
x̃, z ∈ Kh1, therefore κ1 (x̃, x) = κ1 (z, x) and since ỹ, z ∈ Kh2, therefore
κ1 (ỹ, y) = κ1 (z, y). Moreover, κ1 (x̃, x) > κ1 (ỹ, x) and κ1 (ỹ, y) > κ1 (x̃, y),
otherwise Kh1 ∩Kh2 = ∅. Then, κ1(x, y) ≤ κ1 (x̃, x) + κ1 (x̃, y), which gives
κ1(x, y) ≤ κ1 (z, x)+ κ1 (ỹ, y) implying (iii). If max (rh1, rh2) > κ1 (x, y), then
either x̃ /∈ Hxy or ỹ /∈ Hxy. x̃ /∈ Hxy means that the circle Kh1 is containing
the circle Kh(x, κ1(x, y)), so κ1(x, y) < rh1 = κ1 (z, x) . This implies that (iii)
holds. The case of ỹ /∈ Hxy analogously follows.

�

Proof: (h-segment worst-case distance, Theorem 8.5) Define x̂ = hv (x), ŷ =
hv (y), Hx̂ŷ = hv

(
Hxy

)
. As hv (v) = 0, then κ1 (0, ẑ) = |ẑ| for all ẑ ∈ Hx̂ŷ. Moreover,

hv keeps distances in the Kolmogorov sense (Corollary 8.1), therefore

max
z∈Hxy

κ1 (v, z) = max
ẑ∈Hx̂ŷ

|ẑ| . (A.43)

In accordance to this, the most distant point ofHx̂ŷ in the Euclidian sense from the
origin represents the furthest point of Hxy in the Kolmogorov sense from v. Based
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on the Euclidian geometry:

max
ẑ∈Hx̂ŷ

|ẑ| = max (|x̂| , |ŷ|) = max (κ1 (x, v) , κ1 (y, v)) . (A.44)

�

Proof: (h-disc worst-case distance, Theorem 8.6) Define êh = hv (eh), then due
to Lemma 8.6, hv (Dh (eh, rh)) = Dh (êh, rh). As hv (v) = 0, thus κ1 (0, ẑ) = |ẑ| for
every ẑ ∈ Dh (êh, rh). Due to Corollary 8.1:

z̆ = arg max
z∈Dh(eh,rh)

κ1(v, z) = hv(arg max
ẑ∈Dh(êh,rh)

|ẑ|). (A.45)

Assume that v = eh, then êh = 0 and hv (Dh (eh, rh)) is equal to the Euclidean disc
D (0, rh). Then

arg max
ẑ∈D(0,rh)

|ẑ| = K (0, rh) , (A.46)

and z̆ = hv (K (0, rh)) = Kh (eh, rh), i.e. all the perimeter points of Dh (eh, rh),
with

max
z∈Dh(eh,rh)

κ1(v, z) = rh. (A.47)

If v 6= eh, then due to Lemma 8.3, êh and the Euclidian center of Dh (êh, rh) are
on the same Euclidian line from the origin. Therefore, based on the Euclidian
geometry:

z̆ = hv(arg max
ẑ∈{ẑ1,ẑ2}

|ẑ|) (A.48)

where {ẑ1, ẑ2} = E (0, r̂) ∩Kh (êh, rh) with E (0, r̂), the Euclidian line connecting
the origin with êh. Furthermore,

max
z∈Dh(eh,rh)

κ1(v, z) = max (|ẑ1| , |ẑ2|) . (A.49)

Moreover as hv (E (0, r̂)) = Hveh the h-line connecting v with eh, therefore Hveh ∩
Kh (eh, rh) = {hv (ẑ1) , hv (ẑ2)}. �

Proof: (Convexity, Theorem 8.7) Any conformal mapping in D preserves convex-
ity of subsets of D (Blair 2000). As any he, with e ∈ D, is a conformal mapping,
therefore he preserves convexity of sets in D (convexity preservation in the KM
sense). Let an arbitrary h-segment Hxy be given. Then e = Hxy ∩ H⊥(xy) is the
midpoint of Hxy and Hx̂ŷ = he

(
Hxy

)
is the part of a diameter of D. Then based

on the convexity of Euclidian lines, for any z1, z2 ∈ Hx̂ŷ and r ∈ [0, 1] it holds
that rz1 + (1− r) z2 ∈ Hx̂ŷ. Therefore convexity holds for Hxy in the KM sense.
Furthermore, for anyDh (eh, rh), there exists an equivalent Euclidian discD (e, r).
Based on the convexity of Euclidian discs, the convexity of Dh (eh, rh) is straight-
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forward. �

Proof: (Optimal Robust Partition, Theorem 8.8) Similar to the proof of Theo-
rem 8.1 an alternating minimization approach is utilized. First, fix V and define
Ĵm (U) = Jm(U, V ), for U ∈ UNz

nc
. Since the minimization of Ĵm (U) does not

depend on the actual computation of {dik}, therefore the first part of the proof
deriving the condition (8.27a) is the same as given for the proof of Theorem 8.1
with the exception, that in this case no singularity can occur as dik > 0 for all
(i, j) ∈ Inc

1 × INz

1 . See Section 8.3 for details. To establish (8.27b), fix U ∈ UNz
nc

and define J̌m (V ) = Jm(U, V ). Minimization of J̌m (V ) is decoupled for each υi,
therefore

min
V ∈DcJ̌m (V ) = min

V ∈Dnc
max
k∈INz

1

nc∑

i=1

µm
ikdik =

nc∑

i=1

min
V ∈Dnc

J̌ (i)
m (V ) , (A.50)

where J̌ (i)
m (V ) = maxk∈INz

1
µm

ikdik , depending only on υi. As the elements of V

are degenerate to each other (decoupled) in the minimization of J̌ (i)
m (V ), the min-

imizer of J̌ (i)
m is obtained as

υi = arg min
υi∈D max

k∈INz
1

max
zk∈Zk

µm
ikκ1(υi, zk). (A.51)

Optimization (A.51) can be formulated as a QCs’ constrained minimization prob-
lem. Denote

γi = J̌ (i)
m (V ) = max

k∈INz
1

µm
ikdik, (A.52)

then the solution of (A.51) can be obtained by solving

minimize γi ≥ 0,

subject to µm
ik

∣
∣
∣

z−ν
1−z∗ν

∣
∣
∣ ≤ γi, ∀k ∈ Inc

1 , ∀z ∈ Zk

ν ∈ D.

Moreover, the constraints of the minimization can be rewritten for each k as (A.30a-
b). The same holds for the h-discs induced constraints. From the Schurr-comple-
ment it follows that (A.30a) holds iff (8.26) is fulfilled and the h-disc coverage
induced constraints hold iff (8.32) is fulfilled. Then a sufficient but not necessary
condition for (U, V ) being a local minimum of Jm is to satisfy (8.27a) and (8.27b).

�

A.4 Proofs of Chapter 9

Proof: (Representation of dynamic dependence, Property 9.2) LetS be an asymp-
totically stable SISO LPV system and Φ∞ng

⊂ RH2− (E) be a Hambo basis. For a
ne > 0, consider the Wiener-feedback model MWF(Φne

ng
, θ,BP). The process model
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of MWF(Φne
ng
, θ,BP) has the representation:

y̆ij = φj(q)G
i(q)u− φj(q)G

i(q)vij(p)y̆ij , (A.53a)

y = w00(p)u +

ne∑

i=0

ng∑

j=1

w ij(p)y̆ij , (A.53b)

where w ij , vij ∈ R|nP are meromorphic coefficients with static dependency. S is
asymptotically stable which implies that (A.53a-b) has a convergent series expan-
sion in terms of Φ∞ng

. By substituting (A.53a) into (A.53b) recursively, this series
expansion reads as:

y = w00(p)u+

ne∑

i=0

ng∑

j=1

w ij(p)φj(q)G
i(q)u

−
ne∑

i=0

ng∑

j=1

w ij(p)φj(q)G
i(q)vijφj(q)G

i(q)u + . . .

From this expression it follows that

w ij(p)φj(q)G
i(q)vij(p) = (fij ⋄ p)φj(q)G

i(q), (A.54)

where fij ∈ R has dynamic dependence. This implies that the resulting expan-
sion coefficients of φj(q)G

i, with i > ne, have dynamic dependence. If each vij
is constant, then in (A.54) fij = w ij , which means that the resulting expansion
coefficients of φj(q)G

i, i > ne have static dependence. This concludes the proof
in the WF-LPV OBF case. With respect to HF-LPV OBF models, the proof follows
similarly.

�
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Summary

T
he constant need to improve efficiency of plants and processes in terms of
performance or energy consumption challenges the system identification

field to provide simple but more accurate models of physical/chemical phenom-
ena. This leads to the need of system descriptions of nonlinear/time-varying
plants that go beyond the framework of Linear Time-Invariant (LTI) systems. The
model class of Linear Parameter-Varying (LPV) systems provides an attractive can-
didate for this purpose. The philosophy of LPV systems is to represent the physi-
cal reality as a set of LTI systems from which one is selected at every time instance
to describe the continuation of the signal trajectories. This selection is based on
the variation of an external signal of the system called the scheduling variable. The
LPV system class has a wide representation capability of physical processes and
is supported by a well worked-out and industrially reputed control theory.

Despite the advances of the LPV control field, identification/modeling of plants
in an LPV form based on measured data is still not well-developed. The main
problem is that a unified view on LPV system identification is missing as most
methods only focus on the estimation of models in particular model structures.
The question whether the used model structure is an adequate choice for the plant
is commonly left unanswered. Furthermore, it is not well understood how a given
nonlinear system can be efficiently described by a LPV model. Often extensions
of classical LTI identification methods are used for the LPV case, but these ap-
proaches are applied as an optimization tool instead of estimation in a stochastic
sense. Most methods have significant computational load, that makes their prac-
tical use difficult. There is even not a well-accepted definition of the concept of
an LPV system. The question whether different LPV model representations are
equivalent or how they are related is generally left unanswered due to the lack of
a well-founded LPV system theory.

The aim of this thesis is to find solutions for these problems by focusing on
the development of an LPV identification framework that provides reliable LPV
model estimates with low computational load. In order to establish such a frame-
work, it is first necessary to understand how different model structures relate to
each other and what type of dynamical relation they describe. When analyzing
system equivalence between different models and system representations it turns
out that time-shifted versions/derivatives of the scheduling signal (dynamic de-
pendence) need to be taken into account.
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In order to construct a parametrization-free description of LPV systems, a be-
havioral approach is introduced in this thesis that serves as a solid basis for speci-
fying system theoretic properties. This behavioral setting yields a framework that
enables a unified view on the concepts of LPV identification and control. LPV
systems are defined as the collection of valid trajectories of system variables (like
inputs and outputs) and scheduling variables. Kernel, input-output, and state-
space representations are introduced as well as appropriate equivalence trans-
formations between these representations, both in discrete and continuous time.
Using the developed framework it is shown that - similar to LTI systems - asymp-
totically stable LPV systems have a convergent series expansion representation in
terms of Orthonormal Basis Functions (OBFs). This observation supports the use of
such models for identification purposes.

In order to understand how nonlinear first-principle models can be used to
facilitate LPV model structure selection in discrete-time, based on prior informa-
tion, the discretization of LPV systems is investigated in a zero-order-hold set-
ting. Complete and approximative methods are explored together with criteria to
choose adequate sampling times. As a major contribution, an algorithm is devel-
oped to convert nonlinear differential equations into LPV system representations.
The algorithm induces the selection of suitable scheduling signals.

Building on the previously introduced tools and concepts, an identification
framework is introduced in a well-established sense that uses truncated LPV se-
ries expansions in terms of OBFs as model structures. Such models have attrac-
tive properties in identification and they are general approximatiors of nonlinear
systems with fading memory. Identification approaches based on several differ-
ent OBF model structures are developed and analyzed in an LPV prediction-error
framework. The general idea of OBFs based identification results in a two-step
procedure, where first the OBFs are selected, based on measured data or first-
principle information. This basis selection is accomplished by a combination of
fuzzy clustering of estimated pole locations. For the estimation two approaches
are proposed:

• A local method, using locally identified LTI models (constant scheduling)
followed by interpolation of the resulting model coefficients.

• A global approach, based on linear regression using varying scheduling sig-
nals.

The developed framework provides an efficient (in terms of reliability and
complexity) LPV identification approach from model structure selection till de-
livering the model estimate. Issues of variance and bias are investigated, extend-
ing the classical results of the LTI framework. Besides the practical investigation
of the presented results, exploration of the other steps of the identification cycle,
like experiment design and validation is targeted for future research in the LPV
framework.



Samenvatting

D
e hedendaagse systeem en regeltechniek wordt gekenmerkt door een voort-
durende vraag naar efficiëntieverhoging van de beschouwde processen en

systemen in termen van prestatie of energieverbruik. Voor het gebied van de sys-
teemidentificatie betekent dit een vraag naar meer accurate, maar tegelijkertijd
eenvoudige, modellen van fysisch/chemische processen. Het klassieke raamw-
erk van Lineaire Tijd-Invariante (LTI) systemen dient daartoe te worden uitgebreid
om ook niet-lineaire en tijdvariërende processen accuraat te kunnen beschrijven.
De klasse van Lineaire Parameter-Varierende (LPV) systemen vormt een aantrekke-
lijke kandidaat voor deze uitbreiding. Het idee achter deze klasse van modellen is
de weergave van de fysische realiteit als een verzameling LTI systemen, waaruit
op elk moment één wordt gekozen voor de beschrijving van de systeemdynamica.
Deze keuze is gebaseerd op een extern systeemsignaal, aangeduid als de schedul-
ing variabele. Met deze klasse van LPV systemen kan een breed spectrum van fy-
sische processen op adequate wijze beschreven worden. Daarbij is van belang dat
er een uitgebreide en goed gefundeerde theorie beschikbaar is voor het regelen
van deze systemen.

Daartegenover staat dat de theorie rond het modelleren en identificeren van
deze systemen nog niet goed ontwikkeld is. De gebruikte methodieken zijn mees-
tal generalisaties van LTI identificatiemethoden en focussen vaak op zeer speci-
fieke modelstructuren, zonder afdoende motivatie en inzicht in de onderliggende
problematiek. Daarnaast wordt nauwelijks aandacht besteed aan de vraag hoe
en in hoeverre een niet-lineair proces op efficiënte wijze gemodelleerd kan wor-
den als een LPV systeem. Diverse methoden vergen een grote rekentechnische
inspanning, wat praktische toepassing belemmert. Een fundamenteel probleem is
dat er geen algemeen aanvaarde definitie van LPV systemen voorhanden is en dat
het onduidelijk is in hoeverre de gebruikte definities en representaties met elkaar
overeenkomen of juist niet. In feite ontbreekt het aan een goede gefundeerde LPV
systeemtheorie.

Het doel van dit proefschrift is om oplossingen voor deze problematiek aan
te dragen, waarbij de aandacht met name ligt op het ontwikkelen van een goed
gestructureerd LPV identificatie-raamwerk, waarmee betrouwbare LPV modellen
kunnen worden bepaald met een beperkte rekentechnische inspanning. Hiervoor
is het essentieel om inzicht te verkrijgen in the relaties tussen de verschillende
modelstructuren en de dynamica die door deze structuren beschreven wordt. Uit
de analyse van deze problematiek volgt dat equivalentie tussen de verschillende
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model- en systeemrepresentaties alleen mogelijk is indien er wordt uitgegaan van
zogenaamde dynamische afhankelijkheid van het scheduling signaal. Dit betekent
dat niet alleen de instantane waarde van dit signaal van belang is, maar ook
afgeleiden, dan wel in de tijd verschoven waarden een rol spelen.

In dit proefschrift wordt een niet-parametrische beschrijving van LPV syste-
men, de zogenaamde behavioral approach, geïntroduceerd en geanalyseerd. Dit
leidt tot een solide raamwerk voor het beschrijven van systeemtheoretische eigen-
schappen en maakt het mogelijk om te komen tot een algemene theorie van iden-
tificatie en regeling van LPV systemen. Deze systemen worden in dit raamwerk
beschreven als een verzameling van alle mogelijk signalen (zoals input-, output-
en scheduling signalen). Er worden diverse representaties geïntroduceerd en ge-
analyseerd, zowel in het continue als discrete tijddomein en de transformaties
tussen deze representaties worden beschreven. Met dit raamwerk wordt aange-
toond dat LPV systemen beschreven kunnen worden door middel van een reek-
sontwikkeling in termen van Orthogonale Basis Functies (OBF’s). Dit resultaat maakt
het mogelijk om efficiënte modelstructuren te ontwikkelen die toegepast kunnen
worden bij het identificeren van LPV systemen.

Cruciaal bij de keuze van een LPV modelstructuur is inzicht in de mogelijke
vertaling van niet-lineaire relaties en modelbeschrijvingen, mogelijk in continue
tijd, naar een LPV vorm. In dit kader is de discretisatie van LPV systemen onder-
zocht, waarbij zowel complete als benaderende methoden zijn verkend en criteria
voor adequate sampletijden zijn afgeleid. Een belangrijke bijdrage is een algo-
ritme waarmee niet-lineaire differentiaalvergelijkingen worden getransformeerd
naar een LPV formulering, inclusief de keuze van de scheduling signalen.

Met behulp van de ontwikkelde concepten is een raamwerk ontwikkeld voor
de identificatie van LPV systemen, dat gebruik maakt van modelstructuren ge-
baseerd op reeksontwikkelingen in termen van OBF’s. Deze structuren hebben
aantrekkelijke eigenschappen en zijn tevens geschikt voor het benaderen van een
brede klasse van niet-lineaire systemen. Er zijn meerdere identificatiealgoritmes
op basis van deze modestructuren ontwikkeld en geanalyseerd. Deze methoden
worden gekenmerkt door een aanpak in 2 stappen. Hierbij worden eerst de bas-
isfuncties geselecteerd op basis van meetdata, voorkennis of fysisch inzicht. Deze
selectiestap maakt gebruik van fuzzy clustering technieken. In de tweede stap
worden modellen geschat. Daarbij worden twee aanpakken onderscheiden:

• Een locale aanpak, waarbij eerst een aantal LTI modellen geschat wordt voor
contante scheduling signalen. Door middel van interpolatie van de model-
coëfficiënten wordt vervolgens een LPV model bepaald.

• Een globale methode, waarbij de relatie van de modelcoëfficiënten met de
scheduling variabele eerst op lineaire wijze wordt geparametriseerd, en waar-
bij de resulterende parameters worden geschat op basis van globale meet-
data, met een variërend scheduling signaal.

Dit raamwerk resulteert in een efficiënte LPV identificatieprocedure, vanaf de
keuze van modelstructuur tot het schatten van modellen. Toekomstig onderzoek
zal gericht zijn op de praktische toepassing van de ontwikkelde concepten, eve-
nals op andere belangrijke onderdelen van het identificatieproces, zoals experi-
mentontwerp en modelvalidatie.
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Operators

q Forward time shift
d
dt

Differentiation

̺− Shift and cut

̺+ Inverse shift and cut

Σ− Shift map

⋄ Function evaluation along a trajectory

⊕ Direct sum

⊙ Element by element product

⊞ Addition on R

⊡ Multiplication on R

< �, � > Inner product

[ � ]ij Element of the i-th row and j-th column

�
T Transposition

�
∗ Complex conjugate

�
−1 Inverse

≻, (�) Positive (semi)-definite

≻, (�) Negative (semi)-definite

Re Real part

Im Imaginary part

inf Infinum

sup Supremum

min Minimum

max Maximum

var Variance

E{�} Mean/Expectation

Ē{�} Generalized expectation
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dim Dimension

det Determinant

adj Matrix adjoint

diag Diagonal matrix operator

span Algebraic span

spanrowR Row span on the ring R[ξ], subspace in R[ξ]·×·

spanrow
R Row span on the ring R[ξ], subspace in R[ξ]·×·

spancol
R Column span on the ring R[ξ], subspace in R[ξ]·×·

grad Gradient

card Cardinality

col Column composition

deg Degree

rank Rank

moduleR[ξ] Left module in R[ξ]·×·

moduleR[ξ] Left module in R[ξ]·×·

∧
t

Concatenation of signals at time instant t

L Laplace transformation

Z Z-transformation

Geometrical objects

E Euclidian line

L i-line

H h-line

K Euclidian circle

Kh Hyperbolic circle

D Euclidean disc

Dh Hyperbolic disc

D Set of Euclidian discs

e Euclidian center

r Euclidian radius

eh Hyperbolic center

rh Hyperbolic radius

x, y, z, u, v Points

ϕh Hyperbolic coefficient

γh Hyperbolic angle

hH Hyperbolic inversion with respect to H

hx Hyperbolic inversion s.t. hx(z) = 0
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Z Hyperbolic coverage

Dynamical systems

G Dynamical system

GL Dynamical system with latent variables

GNL Nonlinear dynamical system

GP Parameter-varying dynamical system

GPL Parameter-varying dynamical system with latent variables

S LPV system

F LTI system

F LTI system set

FP Frozen system set of an LPV system

Behaviors

B Behavior

BL Latent Behavior

BSS State-space Behavior

Bp̄ Frozen behavior for constant scheduling p̄

BP Scheduling behavior (projected)

BW Signal behavior (projected)

BX Sate signal behavior (projected)

Bp Projected behavior on a scheduling trajectory

Representations and models

RSS(�) State-space system representation

R⊤
SS(�) Transpose of a state-space system representation

RO

SS(�) State-space representation, observability

RR

SS(�) State-space representation, reachability

R
Oc
SS (�) State-space representation, companion-observability

R
Rc
SS (�) State-space representation, companion-reachability

R
OLTI
SS (�) State-space representation, observability, generated via LTI rules
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