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Linear Systems with Colored Noise

Ajith Anil Meera and Martijn Wisse

Abstract— The free energy principle (FEP) from neuroscience
provides a framework called active inference for the joint
estimation and control of state space systems, subjected to
colored noise. However, the active inference community has
been challenged with the critical task of manually tuning
the noise smoothness parameter. To solve this problem, we
introduce a novel online noise smoothness estimator based on
the idea of free energy principle. We mathematically show that
our estimator can converge to the free energy optimum during
smoothness estimation. Using this formulation, we introduce a
joint state and noise smoothness observer design called DEMs.
Through rigorous simulations, we show that DEMs outperforms
state-of-the-art state observers with least state estimation error.
Finally, we provide a proof of concept for DEMs by applying it
on a real life robotics problem - state estimation of a quadrotor
hovering in wind, demonstrating its practical use.

I. INTRODUCTION

The rising demand for autonomous drone delivery systems
has increased the need for accurate state observers that are
robust against uncertain events like strong wind currents.
These unmodelled wind currents induce colored noise to the
system, hindering the safe operation of drones. We take a
step in this direction by using the ideas from computational
neuroscience to introduce a novel state and noise smoothness
observer design for linear systems with colored noise.

The classical linear estimators like Kalman Filter (KF)
assumes the noises to be white. This assumption is often
violated in practice, resulting in a sub-optimal estimation
[1]. Many adaptations on KF have been introduced to over-
come this challenge, including Second Moment Information
Kalman filter (SMIKF) [2], State Augmentation (SA) [3],
Measurement Differencing (MD) [4] etc. Dynamic Expec-
tation Maximization (DEM) [5], based on Free Energy
Principle (FEP) [6] from neuroscience has recently been used
to design state and input observers [7] that has shown to
outperform the classical methods both in simulation and in
real robot experiments [8]. The main advantage of DEM is its
capability to seamlessly handle colored noise [7]. However,
DEM requires the prior knowledge of the noise smoothness
parameter for the accurate state estimation. To solve this
problem, we introduce a novel online noise smoothness
estimator based on FEP, for linear systems with colored
noise. The core contributions of the paper include:

1) introduction of an online smoothness estimator for the
state estimation of linear systems under colored noise,

2) extensive evaluation of the estimator in simulation and
its validation on a real robot (quadrotor flight) data.

Both authors are with the Department of Cognitive Robotics at TU Delft,
The Netherlands. Corresponding author: ajitham1994 @ gmail.com

II. RELATED WORK

This section highlights the interdisciplinary nature of FEP
with related works in neuroscience and robotics literature.

A. Neuroscience

According to FEP, all biological systems resist their nat-
ural tendency to disorder by minimizing an information
theoretic measure called free energy [6], which bounds its
sensory surprisal. FEP emerges as a unified theory of the
brain by providing a mathematical framework for brain
functions [9], unifying action and perception [10], explaining
Freudian ideas [11], and connecting memory and attention
[9]. The work closest to our proposed idea is the Generalized
filtering [12] that uses FEP for noise smoothness estimation
during the inversion of dynamic models of the brain (fMRI
data) [13]. We extend this idea into robotics to design an
online state and noise smoothness observer for applications
like quadrotor flights with wind as colored noise.

B. Robotics and control

Numerous approaches for state estimation under colored
noise exists in the control systems literature [1]. SA models
the colored process noise in a state space system as auto-
regressive (AR) noise. The system is then transformed into an
equivalent augmented system influenced by white noise [3].
Another approach is to incorporate the temporal correlations
of the AR noise into the prior covariance calculation of KF,
resulting in an extended KF called SMIKF [2]. MD [4]
approach deals with handling colored measurement noise.
However, the white noise assumption is prevalent in robotics
for the state estimation of a quadrotor [14], which might not
be effective in outdoor windy conditions [8]. Our work fills
this research gap by providing an online noise smoothness
estimator.

The brain inspired nature of FEP has already inspired the
development of intelligent agents [15] — body perception of
humanoid robots [16], estimation and control of manipulator
robot [17], system identification of a quadrotor [18], SLAM
[19], PID controller [20], KF [8], [21] etc. These active
inference applications can employ our noise estimator for
better estimation and control of robots during colored noise.

III. PROBLEM STATEMENT

Consider the linear plant dynamics given in Equation 1
where A, B and C are constant system matrices, X € R” is
the hidden state, v € R" is the input and y € R™ is the output.

X=Ax+Bv+w, y=Cx+z. 1
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Here w € R" and z € R"™ represent the process and mea-
surement noise with noise precision (inverse covariance) IT"
and IT* respectively. Variables of the plant are denoted in
boldface, while its estimates are denoted in non-boldface. In
this paper, the white noise is convoluted with a Gaussian
filter of kernel width s to generate the colored noise.

The problem considered in this paper is the state (x)
and noise smoothness (s) observer design (DEMs) for the
linear system given in Equation 1, subjected to colored noise.
We show that our observer outperforms state-of-the-art state
observers, both in simulation (Section VIII) and on real robot
data (Section IX).

IV. NOISE COLOR MODELLING

The two key concepts behind the success of DEM in
handling the colored noise are i) the use of generalized co-
ordinates and ii) the noise precision modelling. This section
aims to elaborate on these theoretical concepts.

A. Generalized coordinates

Generalized coordinates is a vector representation of the
trajectory of a time varying quantity (x,v,y) using a collection
of its higher order derivatives. For example, the state vector
in generalized coordinates is written using a tilde operator
as ¥ =[x x' ¥’ ....]T, where the dash operator represents the
derivatives. The key advantage is the capability to track the
trajectory of states, unlike the classical estimators that track
only the point estimates. This provides additional data for
DEM during estimation, resulting in its superior performance
during state estimation under colored noise. Since the noises
are colored, the higher derivatives of the system model can
be written as [5]:

X =Ax+Bv+w
X' =Ax +BV +w

y=Cx+z
y=Cx'+7 (2)

which can be compactly written as:

F=DF=Ai+Bi+w §=Ci+zZ (3)
01
01
wherer:l o1 RLyxn.
01 (p+1)x(p+1)

Here, D represents the shift matrix, which performs the
derivative operation on the generalized state vector. The
embedding order representing the number of derivatives
of hidden states and inputs used is denoted by p and
d respectively. The generalized system matrices are given
by A = 1 @A, B= pr1 @B, C’:Ier] ® C, where [
denotes the identity matrix and ® the Kronecker tensor
product.

B. Noise precision modelling

The second key concept is the modelling of generalized
noise precision (inverse covariance) matrix Il. Since the
noises are assumed to be Gaussian convoluted white noise,
the covariance matrix embedding the relation between noise

derivatives take a specific structure [5]. The smoothness
matrix defining this relation for p = 6 is calculated as [7]:

i % 0 %sz 0 %s“ 0 és6 1
0 ¥ 0 7% 0 s 0
%sz 0 %s‘* 0 12—9s6 0 58
Ss=10 7 o0 & 0 %8 0|, @&
%s4 0 12—9s6 0 13—758 0 %slo
0 & 0 3% 0 A0 o0
L és6 0 s8 0 _%slo 0 %slz_

where s is the kernel width of the Gaussian filter. s =~ 0 is
high frequency white noise. Since s < 1 second for practical
cases (sensors have high sampling rate), the first elements
in § matrix are higher than the last ones, implying a higher
correlation between the first noise derivatives (more smooth)
than the last derivatives (less smooth). The combined (gen-
eralized) noise precision matrix can be written using S as:

~ {S@Hz 0 ]

I=1"0  sem| )

With the key concepts in place, the next section derives the
free energy formulations that are necessary for the observer
design in Section VI.

V. FREE ENERGY OPTIMIZATION

FEP uses Bayesian Inference to estimate the posterior
probability p(d/y) = p(9d,y/ [ p(¥,y)dd, where © is the
component to be estimated (% = {X,s}), and y is the measure-
ment [22]. The presence of an intractable integral motivates
the use of a variational density ¢(?), called the recognition
density that approximates the posterior as g(9) = p(8/y).
This approximation is achieved by minimizing the Kullback-
Leibler (KL) divergence of the distributions given by
KL(g(9)||p(8/5)) = (Ing(8))y(0) — (Inp(8/¥)) g Where
(-)q(v) represents the expectation over g(®). Upon simplifi-
cation using p(¥/y) = p(3,y)/p(y), it reduces to [6]:

Inp(y) = F +KL(q(9)[|p(D]y)), (6)

where F = (Inp(8,y))(9) — (Inq()) ) is the free energy.
The minimization of KL divergence results in the maximiza-
tion of free energy, as In p(y) is independent of . This is the
core idea behind using free energy minimization as a proxy
for brain’s inference, thereby minimizing the brain’s sensory
surprisal [6].

We use this idea from free energy principle for the
joint observer design for ¥ and s through two fundamental
assumptions about g(9) = g(%,s): i) Mean field assumption
[5] that facilitates a conditional independence between the
subdensities, g(?%) = ¢g(¥)q(s), and ii) Laplace assumption
[23] that facilitates the use of Gaussian distributions with
mean [ and variance ¥ over these subdensities, g(X) =
N (% 15, 25 and g(s) = A (s : u¥, ). We refer to [24]
for an elaborate read on similar simplifications. Under these
assumptions, F reduces to the sum of precision weighted
prediction errors and the information entropy as:

loje. 1. - 1 1
F=——8"T+ - In|[1| — =&'TI*¢* + = In|IT* 7
> +5 n |I1] > +3 n[IT°[, (7
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where € is the combined prediction error for outputs and
states, and €° is the prediction error for s, given by:

g= {szy—figx—év} ,and & =51, ®)
Here n* and IT® are the prior (or initial) smoothness and
its prior precision (confidence). For this work, we use a
low prior * ~ 0 with a low precision I = 1 (practically,
0 < s < 1). Our observer design follows a constant precision
approach where IT® is kept constant throughout the estimation
(or updation) of s, unlike the precision update approach of
DEM [5], [24]. This reduces the number of update rules and
simplifies F from Equation 7 to:

lpn 1. - 1
F=——8"T&+ = In|[1| — =s%. 9
5 8+2n| | 2s 9)

The last term in Equation 9 is the novel term that we have
introduced for optimizing smoothness, and doesn’t appear
in FEP literature. Using this, we propose an online noise
smoothness estimation algorithm which estimates s through
the gradient ascend (maximization) of F, where %—’; ls=s, =0
and ‘?;Tﬂpso < 0, with s, being the smoothness value that
maximizes F. The free energy gradients necessary for this
scheme are obtained by differentiating Equation 9:

OF 1 ;oM. 1am|]
— &+ —s

827F771~T82ﬁ§+1821n|ﬁ| L
ds2 27 952 2 Js? ’

where the gradients of In|[1| can be computed as (refer
Appendix A) :
dln || 1 9%In|T| 1
P :42(n+m)g, 352 :—42(n+m)s—2. (11)
The usage of gradient ascent of free energy for the estimation

of s is motivated by the proof for the existence of a unique
maximum for F under practical bounds as follows.

Proposition V.1. The free energy F defined by Equation 9
has a unique maximum with respect to noise smoothness s,
under the practical range of noise smoothness (0 <s < 1).

Proof. Consider all the smoothness values of s with zero free
energy gradients (%—’;| s=s, = 0). Substituting Equation 11 in
10 and using %—fh:sﬂ = 0 yields the condition satisfied by all
maximum and minimum points:

1 21(n+m)

*(~Tﬁsé)|s:su =

> 5, 12)

— S,

where we use the shorthand I1; = %I} Since 0 <s < 1, we

have from Equation 12 that:

(8TT1,8) |y=, > 0.

(13)

The proof for the existence of a unique maximum is complete
i we hat 2£ 0, for all 5, satisfying Equati

prove that 3.2 |S:su <0, for all s, satistying Equation
13. The curvature of F at s =, is calculated from Equation
10 using Equation 11 as:

1/ 7~ _ 1
Evs|s=s(, = _E ((ernss£)|s=so +42(n+m)S7 + 1) (14)
o

Since IT = 0, from definition &7YI#2 > 0, and since
(ETT14E)|s=s, > 0, we can conclude that (87T1&)|s=y, > 0,
even though IT % 0 and Iy % O (refer Appendix B for
numerical analysis). From Equation 14, (E7TIE)[s=s, >
0 = Fyls=s, <0, completing the proof for the existence
of a unique maximum of free energy at s = s,. O

VI. OBSERVER DESIGN

This section aims to introduce a novel observer design
(DEMs) for the joint state and noise smoothness estimation
of a linear system with colored noise. We formulate the noise
smoothness estimator from the previous section (gradient
ascend on F), using the Newton-Gauss update scheme:

s(t+dt) = s(r) +ds,

_ 15)
ds = (er.r|S:S(¢)df - 1)(FSS|s:s(t)) 1FS‘s:s(t)7

where s(¢) is the smoothness at time ¢, and ds is the smooth-
ness increment for a time increment of df. We combine
this observer design with the standard DEM observer design
for state estimation [7], where the update equation in the
continuous time is given by:

(16)

where A, = [D¥ — K"CTTIC — k(D — A)TTM*(D* — A)), By =
k*[CTTIF (D*—A)TI1VB], and k* is the learning rate which
is set to 1 throughout this paper. Since Equation 16 is a linear
differential equation, an exact algebraic discretization can be
performed for the observer as:

F(t+dt) = M50+ AT (N 1By [zgﬂ (17)
Equations 15 and 17 together complete our observer design.
Note that A; and B; are nonlinear functions of s due
to the presence of IT" and IT° in it. Moreover, the state
updates enter Equation 15 through the F terms. Therefore,
the update equations of state and noise smoothness observers
are coupled. Since this heavily complicates the stability proof
of the joint estimator, we leave it for future research.

VII. WORKING EXAMPLE

This section aims to provide a working example in sim-
ulation to show the capabilities of our observer design. We
use simulation data at different s levels to show that DEMs
can accurately estimate ¥ and s.

A. Simulation settings

) 0.0484 0.7535
A random system with A = _07617 —0.2187] B=
0.2265 —0.4786
0.3604 0.4066 —0.2641
[0.0776]’ and C — 03871 03817 | Was used to
—0.1630 —0.9290

generate the synthetic data for a total time of T = 32s
with increments df = 0.1s, and a Gaussian bump input
v = 025012 The colored noise was generated using
IT" = €%, and IT¢ = ¢°Iy. This simulation setting will be
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o o
=) ®

Estimated s
o
D

Fig. 1: The maximization of F successfully estimates s for 8
simulations with different s,,,;. The colored solid lines represent the
online estimation of s, whereas the dotted lines represent s,,,;. The
estimation starts from n* =0.001 at time ¢ = O for all simulations
and converges close to s,,, With a bias, within a few samples.

used throughout the paper, unless mentioned otherwise. We
generate eight such time series data using different levels of
noise smoothness s, ranging from 0.1 to 0.8 and use it for
the analysis in this section.

300 = Spg =01 ===55=0-5

200 Srea=0-2 =506
w - Sreal=0'3 Sreal=0'7
§ 100 S04 ——5,55=08
[}
c
[}
o 0
o
w

-100

-200 / ’\

0 0.2 0.4 0.6 0.8 1

S

Fig. 2: Free energy vs s plot for 8 different simulations (with 8
different real s values) from Figure 1 at r = 5s. All 8 free energy
curves show a clear maximum around the real s values. This shows
the effectiveness of our noise smoothness observer.

B. Test example

Figure 1 shows the results of our noise smoothness es-
timator for all eight simulations. All simulations start with
the prior n° =0.001 and quickly stabilises around the correct
smoothness value (s,.,; in dashed black), showing the success
of our estimator for a range of noise smoothness values.
Figure 2 shows the free energy vs s curve at t = 5s for all
eight simulations. The clear peaks of the free energy curve
around the correct noise smoothness value (s,.,;) shows that
free energy could be used as the objective function for noise
estimation for the operational ranges of s. The importance
of estimating the correct s is shown in Figure 3, where the
minimum state estimation error is achieved when s,., is
known. Therefore, Figure 3, 1 and 2, together demonstrates
the validity of our observer design in simulation. In the next
section, we will benchmark our observer against the state-
of-the-art observers.

4F 1

35k ——DEM, Srea\=0'1 - — KF, Sreal:0'1 ]

3t ——DEM,s =02 — — KF,s_ =0.2|]
DEM s |=0.3 KF,s |=0.3

o5l real real ]
. ——DEM sreaI=0'4 - — KF, sreal:0'4

SSE of state estimation

o
0.1 0.2 0.3 0.4 0.5
simulated s

Fig. 3: The sum of squared error (SSE) in state estimation of DEM
deteriorates when the noise smoothness s used is different from the
real noise smoothness s,.,. The solid and dotted lines denote the
SSE of DEM and KF for different simulated s. The SSE for DEM
takes a minimum when s = s,,,. For lower s (0.1 for example),
KF outperforms DEM if s is not close to s,.,, emphasizing the
importance of an online noise smoothness observer.

VIII. BENCHMARKING

This section aims to benchmark the performance of
our smoothness estimator for a state estimation problem.
Through rigorous simulations, we show that our observer
provides competitive performance during high colored noise.

A. Embedding order of states

In this section, we use rigorous simulations to show that
our observer design can enable state estimation under a
wide range of noises — at different embedding orders and
smoothness levels. We manipulate on the dimension and
component values of the S matrix in Equation 4 through
different p and s values, under the same simulation setup
described in Section VII-A with dt = 0.05s. The size of S
matrix increases with increasing p, whereas the components
inside it increases with increasing s. Figure 4 shows the
results of state estimation using 150 experiments (5 randomly
generated noises each for five s values and six p values).
The estimation error decreases with increasing p for different
noise smoothness values, highlighting the importance of us-
ing higher order generalized coordination during estimation.
This shows the applicability of our observer for a wide range
of noise smoothness, embedding orders and noises.

lp-1 [p=3 @@ p=5
I p-2 Illp-4 [p=6

Jif]
m Il || II
o |
s=0.1 s=0.3 s=0.5 s=0.7 s=0.9
Fig. 4: The error in state estimation decreases as the embedding
order of states p increases, for a range of noise smoothness s.

This shows that our smoothness estimation aids an accurate state
estimation till an embedding order of p =4 for a wide range of s.

(&)

IS

SSE of state estimation
n w
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B. Benchmark state observer

In this section, we benchmark our observer against other
state-of-the-art observers like KF, SA and SMIKF, to show
its competitiveness. 50 time series data (10 each for 5
smoothness values with dt = 0.05s) were generated using
the simulation setup in Section VII-A and the SSE in state
estimation was computed for KF, SA, SMIFK and DEMs.
The SMIKF and SA implementation accommodated an AR
model of order 1 and 6 respectively for the noise modelling,
whereas the DEM implementation used an embedding order
of p =6 for states and d = 2 for inputs. Figure 5 shows
the results, clearly indicating the superior performance of
DEMs with minimum error in state estimation for higher
s. DEMs outperforms other observers for a wide range of
s values. However, for low noise color (s = 0.1), SA and
SMIKEF outperforms DEMs. In all cases, DEMs outperforms
KF in the presence of colored noise.

SSE of state estimation

s=0.1 s=0.3 s=0.5 s=0.7 s=0.9

Fig. 5: DEMs outperform KF, SA and SMIKF with minimal
estimation error during state estimation under high colored noise
(s > 0.1). For low colored noise (s around 0.1), DEMs outperforms
KF, but SA and SMIKF performs better. Solutions of SA is unstable
for higher s.

IX. PROOF OF CONCEPT - QUADROTOR FLIGHT

This section aims to provide a proof of concept for our
observer design by employing it for the state estimation of
a real quadrotor flying under wind conditions. We use the
experimental design from [8] to obtain the quadrotor flight
data. The experiment consist of a quadrotor hovering at a
fixed location, under the strong influence of wind generated
by a blower. The linearized quadrotor model relating the
input motor signals to the output roll angle (¢) of the
quadcopter, without accounting for the wind dynamics is
given by [8]:

B % 5 HE
ol [0 ol o] "7 -7 -7 T[]

Ly Ly Ly L

(18)
where pwm; is the Pulse Width Modulation signal provided
to the i motor by the controller for stable hovering, I, =
3.4-10~3kgm? is the quadcopter’s moment of inertia around
the x-axis, and cgy = 1.274- 10~3Nm is the thrust coefficient

that models the relation between the PWM values and the
thrust generated by the quadcopter rotors. ¢ was recorded
using the Optitrack system, and was used for the state
estimation for a time sequence of T = 15s with dt = 0.0083s.
The influence of wind dynamics on the quadrotor states
(¢ and ¢) is unmodelled in Equation 18. Therefore, the
wind dynamics induces strong colored noise (w) in the
data [18]. The higher process noise (IT" = e%), and a lower
measurement noise (IT? = ¢!'%) were used to represent high
unmodelled wind noise and low Optitrack noise respectively.
p =2 and d =2 were used to capture the noise color.

0.1

0.05
N
5 0
o
L
g 0.05
8 -01f
2
©
2-0.15
@ ——Ideal ——KF
0o l—DEMs ——sn
SMIKF
0 5 10 15

Time (s)

Fig. 6: DEMs outperforms other benchmarks in state estimation
on the quadrotor flight data where it hovers under the influence of
wind, introducing colored noise into the system. DEMs (in red) is
closer to the ground truth Optitrack measurement (ideal in blue),
when compared to other benchmarks. KF, SA and SMIKF shows
coinciding estimation plots.

Free energy F

s x107°

Fig. 7: The free energy vs s plot for different time instances during
the quadrotor flight (data from Figure 6). The curves show a clear
maximum, similar to the simulation results from Figure 2. This
provides an experimental validation for using the gradient ascend
over free energy for smoothness estimation.

Figure 6 shows the superior state estimation capabilities
of DEMs. DEMs (in red) is closer to the ground truth (in
blue) when compared to other benchmarks. KF, SMIKF and
SA have coinciding state estimation curves. Figure 7 shows
the free energy vs s curve at different time instances ¢ of
the quadrotor flight, showing a clear maximum, similar to
the simulation results in Figure 2, validating the practical
application of our estimator.

X. CONCLUSION

A novel observer (DEMs) for the joint state and noise
smoothness estimation of linear systems with colored noise
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was introduced. Through rigorous simulations, DEMs was
shown to outperform the benchmarks like KF, SMIKF and
SA in state estimation under colored noise with minimum
estimation error. The observer was face validated by applying
it on a practical robotics application - the state estimation of a
quadrotor hovering in unmodelled wind conditions, to show
that DEMs is a competitive observer. The main limitation
of this work is the absence of a stability proof for the joint
state and noise smoothness observer, which can be the focus
of future research. The estimator can be extended for a
confident smoothness estimation with precision updates for
IT°. It can also be extended to solve the active inference
problem for the control of systems with colored noise.
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APPENDIX
A. Gradients of In|T|

The log determinant of IT can be calculated using Equations 4 and 5 as:
In[fI] =In[S®TF| +In|SIT"|
=In(JS|"|IF|7D) + In(|s|" 1| 7+1) (19)
=(p+1)(In|IF|+In|I1"|) + (n+m)In|S|.

The derivative of In|TT| with respect to s becomes:

dn|11| dIn|S| 92In|II| d%1n|S|
= = . 20
ds (n+m) ds ' 0s? (n+m) 0s? @0)
2
Frqm Equgtion 4, 18| = %342, resulting in al;ls‘ = % nd 2 al:z‘s‘ = —;%2.
This simplifies Equation 20 to:
dIn 11| 1 d%In|M| 1
S = wem) s S = w5, @D

B. Numerical analysis on the nature of &' T1&

We recorded the first two gradients of the polynomial &7 TI with respect
to s for 20,000 combinations of randomly sampled & and s such that
| < 1 and s € (0,1]. From the results shown in Figure 8, the data points
predominantly lie on the first quadrant, suggesting that the function has
positive gradients, which is a sign of monotonically increasing function.
The absence of any points on the fourth quadrant motivates the conclusion:
if 8711, > 0 then &"TI,& > 0. The results remain the same for different
norm lengths of €.
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Fig. 8: The plot demonstrating that the function 7TIZ is mostly
monotonically increasing with respect to s in the domain (0,1] for

|&] < 1. Moreover, when &7T1,& > 0, 71 < 0, since there are
no data points on the fourth quadrant as shown in the zoomed plot.
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