

Delft University of Technology

Tensor network algorithms for image classification

Chen, Cong; Batselier, Kim; Wong, Ngai

DOI
10.1016/B978-0-12-824447-0.00014-5
Publication date
2022
Document Version
Final published version
Published in
Tensors for Data Processing

Citation (APA)
Chen, C., Batselier, K., & Wong, N. (2022). Tensor network algorithms for image classification. In Y. Liu
(Ed.), Tensors for Data Processing: Theory, Methods, and Applications (pp. 249-291). Elsevier.
https://doi.org/10.1016/B978-0-12-824447-0.00014-5

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/B978-0-12-824447-0.00014-5
https://doi.org/10.1016/B978-0-12-824447-0.00014-5

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

8
CHAPTER

Tensor network
algorithms for image
classification

Cong Chena, Kim Batselierb, and Ngai Wonga

aDepartment of Electrical and Electronic Engineering, The University of Hong Kong,
Pokfulam Road, Hong Kong

bDelft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands

CONTENTS

8.1 Introduction... 249
8.2 Background... 251

8.2.1 Tensor basics.. 251
8.2.2 Tensor decompositions .. 253
8.2.3 Support vector machines.. 256
8.2.4 Logistic regression ... 257

8.3 Tensorial extensions of support vector machine ... 258
8.3.1 Supervised tensor learning.. 258
8.3.2 Support tensor machines.. 260
8.3.3 Higher-rank support tensor machines 263
8.3.4 Support Tucker machines ... 265
8.3.5 Support tensor train machines ... 269
8.3.6 Kernelized support tensor train machines 275

8.4 Tensorial extension of logistic regression .. 284
8.4.1 Rank-1 logistic regression .. 285
8.4.2 Logistic tensor regression ... 286

8.5 Conclusion .. 288
References.. 289

8.1 Introduction
Classification algorithm design has been an important topic in machine learning, pat-
tern recognition, and computer vision for decades. Support vector machine (SVM) [1]
and logistic regression (LR) [2] are two representative and popular classifiers, which
achieve enormous success in pattern classification. However, standard SVM and LR
models are based on vector inputs and cannot directly deal with matrices or higher-
dimensional data structures (namely, tensors) which are very common in real-life
applications. For example, a grayscale picture is stored as a matrix, which is a second-
order tensor, while color pictures have a color axis and are naturally third-order

Tensors for Data Processing. https://doi.org/10.1016/B978-0-12-824447-0.00014-5
Copyright © 2022 Elsevier Inc. All rights reserved.

249

https://doi.org/10.1016/B978-0-12-824447-0.00014-5

250 CHAPTER 8 Tensor network algorithms for image classification

tensors. Therefore, tensorial data need to be vectorized before being fed into SVM or
LR. However, this breaks the original data structure information and results in loss of
the spatial relationship of nearby pixels [8], which may lead to poor classification per-
formance. Moreover, this vectorization can easily result in a very high-dimensional
vector, which results in the notorious curse of dimensionality problem. Consequently,
when the number of training samples is relatively small compared to the feature vec-
tor dimension, the classifier may easily produce poor classification performance due
to overfitting [5–7]. To alleviate overfitting, researchers have attempted to add sparse-
ness constraints during the classifier training procedure. For example, [44] proposed
a Bayesian LR approach to solve the overfitting problem. Specifically, this method
assumes a prior probability distribution that favors sparseness in the trained clas-
sifier. However, the useful tensorial data structure is still disregarded. To solve the
above two issues, researchers have focused on extending the traditional SVM and LR
into their tensor-formatted counterparts. By doing so, the tensorial versions take the
underlying data structural prior into account and at the same time reduce the num-
ber of model parameters. In fact, it can be observed that the tensor-based approaches
generally outperform the traditional ones [4,29].

In terms of SVM, Ref. [4] proposes a supervised tensor learning (STL) scheme
by replacing the vector inputs with tensor inputs and decomposing the correspond-
ing weight vector into a rank-1 tensor, which is trained by the alternating projection
optimization method. Based on this learning scheme, [4] extends the standard linear
SVM to a general tensor form called the support tensor machine (STM). Although
STM lifts the overfitting problem in traditional SVMs, the expressive power of a
rank-1 weight tensor is limited, which may not be powerful enough to classify com-
plicated data. In [15], the rank-1 weight tensor of STM is generalized to canonical
polyadic (CP) forms for stronger model expressive power. However, the determi-
nation of a good CP rank is NP-complete [3]. In [29], an STM is generalized to a
support Tucker machine (STuM), which replaces the rank-1 tensor in STM with a
Tucker-decomposed tensor. Nevertheless, the number of parameters in the Tucker
form is exponentially large, which still suffers from the curse of dimensionality. To
alleviate the issue in STuM, [31] proposed to reformulate SVM with a more scalable
tensor network called the tensor train (TT). The aforementioned tensorial extensions
of SVM are all based on the assumption that the given tensorial data are linearly sep-
arable. However, this is not the case in most real-world data. Therefore, [37] further
proposed the kernelized support TT machine (K-STTM), which employs the cus-
tomized kernel functions for the TT structure in order to handle nonlinear tensorial
classification problems.

As for LR, the tensorial extensions are similar to the cases in SVM. Ref. [38]
replaces the weight vector into a rank-1 tensor, and the authors argue that this set-
ting retains the structure of the spatial and spectral band information, which is a very
important aspect for hyperspectral data classification. However, this method suffers
from the same problems as in an STM. A more generalized tensor-based LR is pro-
posed by [39], in which the weight vector in LR is replaced by a CP-decomposed
tensor.

8.2 Background 251

The rest of this chapter is organized as follows. Some background knowledge
of this chapter is introduced in Section 8.2. In Section 8.3, the supervised learn-
ing scheme and different tensor-based SVM versions are demonstrated in detail.
The tensor-based LR models are briefly introduced in Section 8.4, which are quite
similar to the extension schemes in SVM. Lastly, the conclusion is drawn in Sec-
tion 8.5.

8.2 Background
In this section, some basic tensor computation operations and decomposition methods
are introduced. The ideas of traditional SVM and LR are also succinctly reviewed.

8.2.1 Tensor basics
Tensors are multidimensional arrays that are higher-order generalizations of vectors
(first-order tensors) and matrices (second-order tensors). A d-th-order or d-way ten-
sor is denoted as A ∈R

I1×I2×···×Id and the element of A by A(i1, i2, . . . , id), where
1 ≤ ik ≤ Ik , k = 1,2, . . . , d . The numbers I1, I2, . . . , Id are called the dimensions
of the tensor A. We use boldface capital calligraphic letters A, B, . . . to denote
tensors, boldface capital letters A, B, . . . to denote matrices, boldface letters a, b,
. . . to denote vectors, and roman letters a, b, . . . to denote scalars. AT and aT are
the transpose of a matrix A and a vector a, respectively. The unit matrix of order
n is denoted In. An intuitive and useful graphical representation of scalars, vectors,
matrices, and tensors is depicted in Fig. 8.1. The edges, also called free legs, are
the indices of the array. Therefore scalars have no free edge, while matrices have
two free edges. We will mainly employ these graphical representations to visualize
the tensor networks and operations in the following sections whenever possible and
refer to [18] for more details. We now briefly introduce some important tensor oper-
ations.

Definition 8.1. (Tensor k-mode product) The k-mode product of a d-way tensor
A ∈ R

I1×···×Ik×···×Id with a matrix U ∈ R
Pk×Ik is denoted as B = A ×k U and de-

fined by

B(i1, . . . , ik−1, j, ik+1, . . . , id) =
Ik∑

ik=1

U(j, ik)A(i1, . . . , ik, . . . , id),

where B ∈R
I1×···×Ik−1×Pk×Ik+1×···×Id .

The graphical representation of a three-mode product between a third-order tensor
A and a matrix U is shown in Fig. 8.2, where the summation over the i3 index is
indicated by the connected edge.

Definition 8.2. (Matricization) The matricization (also known as unfolding or
flattening of a tensor) is the reordering of the tensor elements into a matrix.

252 CHAPTER 8 Tensor network algorithms for image classification

FIGURE 8.1

Graphical representation of a scalar a, vector a, matrix A, and third-order tensor A.

FIGURE 8.2

Three-mode product between a three-way tensor A and matrix U .

The k-th mode matricization of a tensor A ∈ R
I1×···×Ik×···×Id , denoted by A(k) ∈

R
Ik×(

∏
k �=i Ii), arranges the k-th mode fibers to become the columns of the final ma-

trix. The element (i1, i2, . . . , id) in tensor A is mapped to the matrix element (ik, j),
where

j = 1 +
d∑

t=1,t �=k

(it − 1)Jt with Jt =
t−1∏

l=1,l �=k

Il .

Definition 8.3. (Reshaping) Employing MATLAB� notation, “reshape(A, [J1, J2,

. . . , Jd])” reshapes the tensor A into another tensor with dimensions J1, J2, . . . , Jd .
The total number of elements of the tensor A must be

∏d
k=1 Jk .

Definition 8.4. (Vectorization) Vectorization is a special reshaping operation that
reshapes a tensor A into a column vector, denoted as vec(A).

Definition 8.5. (Tensor inner product) For two tensors A,B ∈ R
I1×I2×···×Id , their

inner product 〈A,B〉 is defined as

〈A,B〉 =
I1∑

i1=1

I2∑
i2=1

· · ·
Id∑

id=1

A(i1, i2, · · · , id)B(i1, i2, · · · , id).

Definition 8.6. (Frobenius norm) The Frobenius norm of a tensor A ∈ R
I1×I2×···×Id

is defined as ||A||F = √〈A,A〉.

8.2 Background 253

8.2.2 Tensor decompositions
Here we introduce four related tensor decomposition methods in this chapter, namely
rank-1 tensor decomposition, CP decomposition, Tucker decomposition, and TT de-
composition.

8.2.2.1 Rank-1 tensor decomposition
A d-way tensor A ∈ R

I1×I2×···×Id is rank-1 if it can be written as the outer product
of d vectors

A = u(1) ◦ u(2) ◦ · · · ◦ u(d), (8.1)

where ◦ denotes the vector outer product and each element in A is the product of the
corresponding vector elements:

A(i1, . . . , id) = u(1)(i1)u
(2)(i2) · · ·u(d)(id).

Storing the component vectors u(1), . . . ,u(d) instead of the whole tensor A signif-
icantly reduces the required number of storage elements. However, a rank-1 tensor
is rare in real-world applications, so that a rank-1 approximation to a general tensor
usually results in unacceptably large approximation errors. This calls for a more gen-
eral and powerful tensor approximation, for which the following CP decomposition
serves as a more suitable choice.

8.2.2.2 Canonical polyadic decomposition
The CP decomposition factorizes a tensor into a sum of constituent rank-1 tensors.
For example, a d-way tensor A ∈R

I1×I2×···×Id can be written as

A =
R∑

r=1

u(1)
r ◦ u(2)

r ◦ · · · ◦ u(d)
r , (8.2)

where R is a positive integer and u
(1)
r ∈ R

I1 , u
(2)
r ∈ R

I2 , . . ., u
(d)
r ∈ R

Id , for r =
1, . . . ,R. If the mode j components u

(j)
r , r = 1, . . . ,R, are stacked together in a

matrix U (j) as

U (j) = [
u

(j)

1 ,u
(j)

2 , . . . ,u
(j)
R

]
, j = 1, . . . , d, (8.3)

then the j -th mode matricization of A can be computed as

A(j) = U (j)
[
U (d) 	 · · · 	 U (j+1) 	 U (j−1) · · · 	 U (1)

]T
. (8.4)

If we define

U (−j) = U (d) 	 · · · 	 U (j+1) 	 U (j−1) · · · 	 U (1), (8.5)

254 CHAPTER 8 Tensor network algorithms for image classification

Eq. (8.4) can be written as

A(j) = U (j)
[
U (−j)

]T
. (8.6)

The inner product between A and itself can then be written as

〈A,A〉 = T r
[
A(j)A

T
(j)

] = vec(A(j))
T vec(A(j)), (8.7)

where T r[·] denotes the trace of a matrix.

8.2.2.3 Tucker decomposition
The Tucker decomposition represents a tensor A ∈ R

I1×I2×···×Id as

A = G ×1 P (1) ×2 P (2) · · · ×d P (d), (8.8)

where G is the Tucker core tensor and P (1), . . . ,P (d) are a set of (factor) matrices that
are multiplied to the core tensor G along each tensor mode. The Kronecker product
of all d matrices is defined as

P ⊗ = P (d) ⊗ · · · ⊗ P (1), (8.9)

while the Kronecker product of d − 1 matrices is defined as

P
(−j)
⊗ = P (d) ⊗ · · · ⊗ P (j+1) ⊗ P (j−1) ⊗ · · · ⊗ P (1). (8.10)

Therefore, the j -th mode matricization of A is

A(j) = P (j)G(j)

(
P (d) ⊗ · · · ⊗ P (j+1) ⊗ P (j−1) ⊗ · · · ⊗ P (1)

)T

= P (j)G(j)

(
P

(−j)
⊗

)T
. (8.11)

Eq. (8.11) can be further rewritten into the vectorized version when j = 1,

vec(A(1)) = P ⊗vec(G(1)). (8.12)

8.2.2.4 Tensor train decomposition
A TT decomposition [33] represents a d-way tensor A as d third-order tensors A(1),
A(2), . . . , A(d) such that a particular entry of A is written as the following matrix
product:

A(i1, . . . , id) = A(1)(:, i1, :) · · ·A(d)(:, id , :). (8.13)

Each tensor A(k), k = 1, . . . , d , is called a TT core and has dimensions Rk ×
Ik × Rk+1. Storage of a tensor as a TT therefore reduces from

∏d
i=1 Ii down to∑d

i=1 RiIiRi+1. In order for the left-hand side of (8.13) to be a scalar we require
that R1 = Rd+1 = 1. The remaining Rk values are called the TT ranks. A simple il-
lustration of utilizing TT decomposition to factorize a three-way tensor A is shown

8.2 Background 255

FIGURE 8.3

The TT cores of a three-way tensor A are two matrices A(1), A(3) and a three-way tensor
A(2).

FIGURE 8.4

Tensor train decomposition of a d-way tensor A into d three-way tensors
A(1),A(2) . . . ,A(d).

FIGURE 8.5

The inner product between two d-way tensor trains.

in Fig. 8.3. Note that the first and last TT cores are matrices since R1 = R4 = 1.
A specific element in A is then computed as a vector–matrix–vector product. Fig. 8.4
demonstrates the general TT decomposition of a d-way tensor A, where the edges
connecting the different circles indicate the matrix–matrix products of (8.13). The
simplifying notation T T (A) denotes a TT decomposition of a d-way tensor A with
user-specified TT ranks of (8.13).

Definition 8.7. (TT inner product) The inner product between two TTs T T (A) and
T T (B) is denoted as 〈T T (A), T T (B)〉.

The tensor network diagram of the inner product of two TTs is shown in Fig. 8.5.
The absence of free edges in Fig. 8.5 implies that 〈T T (A), T T (B)〉 is a scalar.

256 CHAPTER 8 Tensor network algorithms for image classification

Definition 8.8. (Left orthogonal and right orthogonal TT cores) A TT core A(k)(1 ≤
k ≤ d) is left orthogonal when reshaped into an RkIk × Rk+1 matrix A we have

AT A = IRk+1 .

Similarly, a TT core A(k) is right orthogonal when reshaped into an Rk × IkRk+1
matrix A we have

AAT = IRk
.

Those two properties facilitate the computation of the Frobenius norm of a TT
format tensor, as we will show later.

Definition 8.9. (Site-k-mixed-canonical tensor train) A TT is in site-k-mixed-
canonical form [20] when all TT cores {A(l) | l = 1, . . . , k − 1} are left orthogonal
and {A(l) | l = k + 1, . . . , d} are right orthogonal.

Turning a TT into its site-k-mixed-canonical form requires d − 1 QR decompo-
sitions of the reshaped TT cores. Changing k in a site-k-mixed-canonical form to
either k − 1 or k + 1 requires one QR factorization of A(k). It can be shown that the
Frobenius norm of a tensor A in a site-k-mixed-canonical form is easily computed
from

||A||2F = ||A(k)||2F = vec
(
A(k)

)T
vec

(
A(k)

)
.

8.2.3 Support vector machines
We briefly introduce linear SVMs before discussing STMs. Assume we have a
dataset D={xi , yi}M

i=1 of M labeled samples, where xi ∈R
n are the samples or fea-

ture vectors with labels yi ∈ {−1,1}. Learning a linear SVM is to find a discriminant
hyperplane

f (x) = wT x + b (8.14)

that maximizes the margin between the two classes where w and b are the weight
vector and bias, respectively. In practice, the data are seldom linearly separable due
to measurement noise. A more robust classifier can then be found by introducing
the slack variables ξ1, . . . , ξM and writing the learning problem as an optimization
problem

min
w,b,ξ

1

2
||w||2F + C

M∑
i=1

ξi

subject to yi

(
wT xi + b

) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . ,M. (8.15)

8.2 Background 257

The parameter C controls the trade-off between the size of the weight vector w and
the size of the slack variables. It is common to solve the dual problem of (8.15) with
quadratic programming, especially when the feature size n is larger than the sample
size M . The dual problem of (8.15) is

min
α1,α2,··· ,αM

M∑
i=1

αi−1

2

M∑
i,j=1

αiαjyiyj 〈xi ,xj 〉

subject to
M∑
i=1

αiyi = 0,

0 ≤ αi ≤ C, i = 1, . . . ,M, (8.16)

where 〈xi ,xj 〉 represents the inner product between vectors xi and xj and αi (i =
1, . . . ,M) are the Lagrange multipliers.

To solve a nonlinear classification problem with SVM, a nonlinear mapping
function φ is introduced that projects the original vectorial data onto a much higher-
dimensional feature space. In that feature space, the data generally become more
(linearly) separable. Specifically, the optimization in (8.16) is transformed into

min
α1,α2,··· ,αM

M∑
i=1

αi−1

2

M∑
i,j=1

αiαjyiyj

〈
φ(xi), φ(xj)

〉
(8.17)

with the same constraints as in (8.16). The kernel trick allows us to compute the
inner product term 〈φ(xi), φ(xj)〉 with a kernel function k(xi ,xj), thus avoiding
the explicit construction of the possibly infinite-dimensional φ(xi) vectors.

8.2.4 Logistic regression
LR [2] is a well-known binary classification approach. Given the same training
dataset as in Section 8.2.3, the probability that a sample belongs to the positive class
is of the form

p(yi = +1|w, b,xi) = 1

1 + exp(−wT xi − b)
. (8.18)

The model parameter w and b are then estimated by solving the following maximum
log-likelihood problem:

min
w,b

M∑
i=1

log
(
1 + exp

(−yi

(
wT xi + b

)))
. (8.19)

Based on this, some regularization norms are often applied to alleviate overfitting
when implementing model training, e.g., the l1-norm regularizer is a common choice

258 CHAPTER 8 Tensor network algorithms for image classification

to deal with high-dimensional features and obtain a robust and sparse classifier. As a
result, the regularized LR optimization function can be written as

min
w,b

M∑
i=1

log
(
1 + exp

(−yi

(
wT xi + b

))) + λ(||w||1 + |b|), (8.20)

where λ > 0 is a tuning parameter used to control the sparsity.

8.3 Tensorial extensions of support vector machine
In this section, the STL [4] scheme is first described. Some typical tensorial exten-
sions of SVM are then introduced.

8.3.1 Supervised tensor learning
In the STL scheme, a general formula for vector-based convex optimization problems
is first assumed with a format of

min
w,b,ξ

f (w, b, ξ)

subject to yici

(
wT xi + b

) ≥ ξi,

i = 1, . . . ,M, (8.21)

where f : Rn+M+1 → R is a convex function for classification, ci : Rn+M+1 →R,
1 ≤ i ≤ M are convex constraint function with inputs w, b, ξ , xi ∈ R

n, 1 ≤ i ≤ M ,
are training samples and the corresponding labels are represented by yi ∈ {+1,−1},
ξ = [ξ1, ξ2, . . . , ξM] ∈ R

M are slack variables, and w and b are the classification
hyperplane parameters, namely y(x) = sign(wT x + b).

STL extends the above vector-based optimization problem into tensorial format,
in which the training samples are tensors. Specifically, given M training samples
X i ∈ R

I1×I2×···×Id and the corresponding labels yi ∈ {+1,−1},1 ≤ i ≤ M , STL
trains the classifier by solving the following optimization problem:

min
w(k)|dk=1,b,ξ

f
(
w(k)|dk=1, b, ξ

)
subject to yici

(
X i

d∏
k=1

×kw
(k) + b

)
≥ ξi,

i = 1, . . . ,M. (8.22)

Note that the input xi in (8.21) is extended to X i in (8.22), while the model param-
eter w is replaced by w(k),1 ≤ k ≤ d . The trained classification hyperplane func-

tion through (8.22) is formed as y(X i) = sign(X i

d∏
k=1

×kw
(k) + b). The Lagrangian

8.3 Tensorial extensions of support vector machine 259

for (8.22) can be written as

L
(
w(k)|dk=1, b, ξ ,α

)
= f

(
w(k)|dk=1, b, ξ

) −
M∑
i=1

αi

(
yici

(
X i

d∏
k=1

×kw
(k) + b

)
− ξi

)

= f
(
w(k)|dk=1, b, ξ

) −
M∑
i=1

αiyici

(
X i

d∏
k=1

×kw
(k) + b

)
+ αT ξ (8.23)

with Lagrangian multipliers α = [α1, . . . , αM]T ,αi ≥ 0. The solution is determined
by the saddle point of the Lagrangian, namely,

max
α

min
w(k)|dk=1,b,ξ

L
(
w(k)|dk=1, b, ξ ,α

)
. (8.24)

The derivatives of L(w(k)|dk=1, b, ξ) with respect to w(j) and b can then be derived as

∂w(j)L = ∂w(j)f −
M∑
i=1

αiyi∂w(j)ci

(
X i

d∏
k=1

×kw
(k) + b

)

= ∂w(j)f −
M∑
i=1

αiyi

dci

dz
∂w(j)

(
X i

d∏
k=1

×kw
(k) + b

)

= ∂w(j)f −
M∑
i=1

αiyi

dci

dz

(
X i×jw

(j)
)

(8.25)

and

∂bL = ∂bf −
M∑
i=1

αiyi∂wj
ci

(
X i

d∏
k=1

×kw
(k) + b

)

= ∂bf −
M∑
i=1

αiyi

dci

dz
∂b

(
X i

d∏
k=1

×kw
(k) + b

)

= ∂bf −
M∑
i=1

αiyi

dci

dz
, (8.26)

where z = X i

d∏
k=1

×kw
(k) + b. Setting ∂w(j)L = 0 and ∂bL = 0, we have

∂w(j)L = 0 ⇒ ∂w(j)f =
M∑
i=1

αiyi

dci

dz

(
X i×jw

(j)
)
, (8.27)

260 CHAPTER 8 Tensor network algorithms for image classification

Algorithm 1 STL algorithm.

Input: Training dataset {X i ∈ R
I1×···×Id , yi ∈ {−1,1}}M

i=1.
Output: The classification hyperplane parameters w(k)|dk=1; The bias b.

1: Initialize w(k) ∈ R
Ik as a random vector for k = 1,2, . . . , d .

2: Repeat steps 3–5 iteratively until convergence.
3: for j = 1, . . . , d do
4: Derive w(j) by optimizing (8.29).
5: end for

∂bL = 0 ⇒ ∂bf =
M∑
i=1

αiyi

dci

dz
. (8.28)

From (8.27), we observe that the solution for w(j) depends on w(k), 1 ≤ k ≤ d , k �= j ,
and we cannot derive the solution directly. STL proposes to utilize an alternating
projection optimization scheme to tackle this. Specifically, STL derives w(j) by as-
suming w(k),1 ≤ k ≤ d, k �= j are known. Therefore, the optimization problem is
rewritten as

min
w(j),b,ξ

f
(
w(j), b, ξ

)
subject to yici

[(
w(j)

)T (
X i×jw

(k)
) + b

] ≥ ξi,

i = 1, . . . ,M. (8.29)

After updating w(j), w(j+1) is then updated in a similar way. The algorithm is sum-
marized in Algorithm 1, whose convergence proof can be found in [4].

8.3.2 Support tensor machines
Base on the STL scheme, we now present the STM.

8.3.2.1 Methodology
Suppose the input samples in the dataset D={X i , yi}M

i=1 are tensors X i ∈
R

I1×I2×···×Id . Following the STL scheme, a linear STM extends a linear SVM by
defining d weight vectors w(k) ∈R

Ii (k = 1, . . . , d) and rewriting (8.14) as

f (X) = X ×1 w(1) ×2 · · · ×d w(d) + b. (8.30)

The graphical representation of (8.30) is shown in Fig. 8.6. The tensor X is con-
tracted along each of its modes with the weight vectors w(1), . . . ,w(d), resulting in
a scalar that is added to the bias b. The weight vectors of the STM are computed by
the alternating projection optimization procedure, which comprises d optimization
problems. The main idea is to optimize each w(k) in turn by fixing all weight vectors

8.3 Tensorial extensions of support vector machine 261

FIGURE 8.6

Graphical representation of an STM hyperplane function.

but w(k). The k-th optimization problem is

min
w(k),b,ξ

1

2
β ||w(k)||2F + C

M∑
i=1

ξi

subject to yi

((
w(k)

)T
x̂i + b

) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . ,M, (8.31)

where

β =
l �=k∏

1≤l≤d

||w(l)||2F and x̂i = X i

l �=k∏
1≤l≤d

×l w(l).

The optimization problem (8.31) is equivalent to (8.15) for the linear SVM problem.
This implies that any SVM learning algorithm can also be used for the linear STM.
Each of the weight vectors of the linear STM is updated consecutively until the loss
function of (8.31) converges. Each single optimization problem in learning an STM
requires the estimation of only a few weight parameters, which alleviates the overfit-
ting problem when M is relatively small. The weight tensor obtained from the outer
product of the weight vectors

W = w(1) ◦ w(2) ◦ · · · ◦ w(d) (8.32)

is per definition rank-1 and allows us to rewrite (8.30) as

f (X) = 〈W,X 〉 + b. (8.33)

8.3.2.2 Examples
Ref. [9] employs STM for text categorization. Different from traditional text catego-
rization algorithms which consider a text document as a vector in R

n based on the
vector space model, the work [9] considers a document as a second-order tensor in

262 CHAPTER 8 Tensor network algorithms for image classification

Table 8.1 Performance comparison in Reuters-
21578.
Train & test split Method micro F1 macro F1

5% Training SVM 0.8490 0.3355

STM 0.8666 0.4818

Table 8.2 Performance comparison in TDT2.

Train & test split Method micro F1 macro F1

5% Training SVM 0.8881 0.6477

STM 0.9064 0.7507

R
I1×I2 , where I1 × I2 = n. Two standard document datasets are used in [9], namely

Reuters-215781 and TDT22.
The classification performance is evaluated by comparing the predicted label of

each test document with the true label. Specifically, F1 measure is used here which
combines recall (r) and precision (p) with an equal weight in the following form:

F1(r,p) = 2rp

r + p
.

To measure the overall classification performance, Ref. [9] employs the following
two metrics. The first is to simply average the F1 scores of different categories and
then derive a mean F1 score, namely the macro-averaging F1 score. In the second
way, instead of calculating each category’s F1 score, the authors consider the global
F1 score over all the n × m binary decisions, where n is the total number of test
documents and m is the number of categories under consideration, which is known
as the micro-averaging score. Both scores are the larger the better.

5% documents are used as the training set for both Reuters-21578 and TDT2.
Tables 8.1 and 8.2 show the classification results on two datasets. As can be seen
from the results, STM outperforms SVM on both micro-averaged F1 and macro-
averaged F1 with a large margin. The experimental results demonstrate the greater
performance of STM on small training sample cases over SVM.

8.3.2.3 Conclusion
Based on the STL scheme, STM accepts tensors as input and therefore keeps the
useful structural information in data. However, the constraint that the weight tensor
W in STM is a rank-1 tensor has a significant impact on the expressive power of the
STM, resulting in usually unsatisfactory classification accuracy for more complicated

1 The Reuters-21578 corpus can be found at http://www.daviddlewis.com/resources/testcollections/
reuters21578/.
2 The Nist Topic Detection and Tracking corpus can be found at http://www.nist.gov/speech/tests/tdt/
tdt98/index.html.

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.nist.gov/speech/tests/tdt/tdt98/index.html
http://www.nist.gov/speech/tests/tdt/tdt98/index.html

8.3 Tensorial extensions of support vector machine 263

data. Therefore, it is necessary to generalize the rank-1 tensor in STM into a more
general tensorial format.

8.3.3 Higher-rank support tensor machines
As mentioned, an STM assumes a simple rank-1 tensor as the classifier hyperplane
parameter, which might not be powerful enough to model the hyperplane function.
In [15], the authors propose a higher-rank STM wherein the classifier parameter is
formulated as a sum of rank-1 tensors, namely the general CP tensor format. By doing
so, the classification capability is significantly enhanced.

8.3.3.1 Methodology
Consider the following general higher-rank STM optimization problem:

min
W,b,ξ

1

2
〈W,W〉 + C

M∑
i=1

ξi

subject to yi

(〈W,X i〉 + b
) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . ,M, (8.34)

where W is a general d-way parameter tensor with the same dimensions as the train-
ing sample X . Adopting the alternating optimization scheme as in STL, each time
only the parameters that are associated with the j -th tensor mode of W are updated,
while fixing all other parameters. According to (8.7), (8.34) can be rewritten into the
following format:

min
W (j),b,ξ

1

2
T r

[
W (j)W

T
(j)

] + C

M∑
i=1

ξi

subject to yi

(
T r

[
W (j)X

T
(j)i

] + b
) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . ,M, (8.35)

where XT
(j)i represents the j -th mode matricization of the i-th training sample. Under

the assumption that the weight parameter tensor W can be decomposed into its CP
tensor format as in (8.2), W (j) in (8.35) can be rewritten as U (j)(U (−j))T according
to (8.6). Therefore, (8.35) can be rewritten as

min
U (j),b,ξ

1

2
T r

[
U (j)

(
U (−j)

)T
U (−j)

(
U (j)

)T] + C

M∑
i=1

ξi

subject to yi

(
T r

[
U (j)

(
U (−j)

)T
XT

(j)i

] + b
) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . ,M. (8.36)

With the above optimization problem, we can iteratively update U (j), j = 1, . . . , d ,
employing the idea of STL. To further facilitate the implementation of (8.36), we

264 CHAPTER 8 Tensor network algorithms for image classification

Algorithm 2 Higher-rank STM algorithm.

Input: Training dataset {X i ∈ R
I1×···×Id , yi ∈ {−1,1}}Mi=1.

Output: The classification hyperplane parameters W ; The bias b.

1: Initialize W as a sum of random rank-1 tensors.
2: Repeat steps 3–6 iteratively until convergence.
3: for j = 1, . . . , d do
4: Derive Ũ

(j)
by optimizing (8.39).

5: Update U (j) = Ũ
(j)

B− 1
2

6: end for

transfer it into a classic vector-based SVM format. By doing so, any existing SVM
solver can be employed to readily solve the higher-rank STM problem.

Let B = (U (−j))T U (−j) such that B is a positive-definite matrix. Defining

Ũ
(j) = U (j)B

1
2 , we have

T r
[
U (j)

(
U (−j)

)T
U (−j)

(
U (j)

)T] = T r
[
Ũ

(j)(
Ũ

(j))T] = vec
(
Ũ

(j))T
vec

(
Ũ

(j))
.

(8.37)

Also, letting X̃(j)i = X(j)iU
(−j)B− 1

2 , we have

T r
[
U (j)

(
U (−j)

)T
XT

(j)i

] = T r
[
Ũ

(j)
X̃

T
(j)i

] = vec
(
Ũ

(j))T
vec(X̃(j)i). (8.38)

Therefore, (8.36) can be rewritten as

min
Ũ

(j)
,b,ξ

1

2
vec

(
Ũ

(j))T
vec

(
Ũ

(j)) + C

M∑
i=1

ξi

subject to yi

(
vec

(
Ũ

(j))T
vec(X̃(j)i) + b

) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . ,M. (8.39)

Eq. (8.39) is a classic vector-based SVM problem. After deriving the solution of Ũ
(j)

in each iteration, the model parameter U (j) is updated with U (j) = Ũ
(j)

B− 1
2 . The

overall procedure for implementing higher-rank STM is summarized in Algorithm 2.

8.3.3.2 Complexity analysis
Because the subproblem (8.39) of the higher-rank STM optimization problem is nat-
urally an SVM problem, we analyze the computation complexity of SVM first. When
there are M training samples and each sample is in R

n, after constructing the linear
kernel matrix, the worst case of the computation complexity of an SVM is O(M3).
When it comes to higher-rank STM, the overall optimization problem is separated
into d subproblems, where d is the mode number of the training sample. Furthermore,

8.3 Tensorial extensions of support vector machine 265

Table 8.3 Accuracies (%) achieved by various
methods for the KTH action database.
Method SVM STM Higher-rank STM
Accuracy 88.5 89.3 93.3

these subproblems would be solved for p iterations until convergence. Therefore, the
complexity of solving a higher-rank STM problem is O(dpM3).

8.3.3.3 Examples
Considering the fact that there is no known closed-form solution to determine the rank
R of a tensor and that rank determination of a tensor is still an open problem [12,13],
in higher-rank STM, the common way to determine the optimal weight tensor rank is
by utilizing grid search.

Ref. [15] utilizes the higher-rank STM for human action recognition. Specifically,
the KTH [27] dataset is employed to check the performance of higher-rank STM. The
KTH Action Dataset depicts 25 subjects performing six different activities, namely,
“boxing,” “handclapping,” “handwaving,” “jogging,” “running,” and “walking.” Each
training sample is a three-way tensor with modes pixel–pixel–time. For a fair compar-
ison, a linear kernel is applied in traditional SVM considering STM and higher-rank
STM are all linear classifiers. The classification results are shown in Table 8.3. We
note that the higher-rank STM achieves a 4% accuracy enhancement over STM, and
they both perform better than traditional SVM.

Ref. [14] tests the performance of higher-rank STM on human face classifica-
tion. Specifically, nine second-order face recognition datasets, namely Yale32×32,
Yale64×64, ORL32×32, ORL64×64, C05, C07, C09, C27, and C29, from http://
www.zjucadcg.cn/dengcai/Data/FaceData.html are employed. Moreover, since an
SVM can naturally utilize the kernel trick and empower its classification capabil-
ity, [14] compares the higher-rank STM with kernel SVM employing a Gaussian
radial basis function (RBF) kernel. Table 8.4 shows the experimental results. We ob-
serve that in terms of test accuracy, STM outperforms SVM only in one dataset, while
higher-rank STM outperforms SVM and STM in all nine datasets.

8.3.3.4 Conclusion
Higher-rank STM assumes the parameters defining the separating hyperplane form a
tensor that can be written as a sum of rank-1 terms according to the CP decomposi-
tion. This generalizes STM and achieves better classification performance on several
complicated tensorial data classification tasks.

8.3.4 Support Tucker machines
Apart from higher-rank STM, STuM [29] is another approach that generalizes STM
by employing the Tucker tensor format to replace the rank-1 weight tensor.

http://www.zjucadcg.cn/dengcai/Data/FaceData.html
http://www.zjucadcg.cn/dengcai/Data/FaceData.html

266 CHAPTER 8 Tensor network algorithms for image classification

Table 8.4 Comparison of the accuracies (%)
of SVM, STM, and higher-rank STM on nine
experimental datasets.

Dataset SVM STM Higher-rank STM
Yale32 × 32 77.3 74.0 79.0

Yale64 × 64 84.3 82.3 85.3

ORL32 × 32 97.8 97.0 98.0

ORL64 × 64 97.8 76.5 98.5

C05 98.6 98.1 98.8

C07 96.5 95.4 96.7

C09 97.4 96.2 97.5

C27 96.7 95.1 96.7

C29 96.6 94.8 96.6

8.3.4.1 Methodology
Starting from (8.35), we now assume the weight tensor W is represented by a Tucker
tensor decomposition. According to (8.11), (8.35) can be rewritten as

min
P (j),b,ξ

1

2
T r

[
P (j)G(j)

(
P

(−j)
⊗

)T
P

(−j)
⊗ GT

(j)

(
P (j)

)T] + C

M∑
i=1

ξi

subject to yi

(
T r

[
P (j)G(j)

(
P

(−j)
⊗

)T
XT

(j)i

] + b
) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . ,M. (8.40)

It is desirable to reformulate the above optimization problem such that the clas-
sic vector-based SVM implementation can be employed to solve it. We let H (j) =
G(j)(P

(−j)
⊗)T . Now (8.40) can be rewritten as

min
P (j),b,ξ

1

2
T r

[
P (j)H (j)

(
H (j)

)T (
P (j)

)T] + C

M∑
i=1

ξi

subject to yi

(
T r

[
P (j)H (j)XT

(j)i

] + b
) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . ,M. (8.41)

We further define K = H (j)(H (j))T . Obviously, K is positive-definite. Also, letting

P̃
(j) = P (j)K

1
2 , we have

T r
[
P (j)H (j)

(
H (j)

)T (
P (j)

)T] = T r
[
P̃

(j)(
P̃

(j))T] = vec
(
P̃

(j))T
vec

(
P̃

(j))
.

(8.42)

8.3 Tensorial extensions of support vector machine 267

Algorithm 3 STuM algorithm.

Input: Training dataset {X i ∈ R
I1×···×Id , yi ∈ {−1,1}}M

i=1; the given Tucker ranks
Output: The classification hyperplane parameters G,P (1),P (2), . . . ,P (d); The

bias b.

1: Initialize G,P (1),P (2), . . . ,P (d) randomly.
2: Repeat steps 3–8 iteratively until convergence.
3: for j = 1, . . . , d do
4: Derive P̃

(j)
by optimizing (8.44).

5: Update P (j) = P̃
(j)

K− 1
2

6: end for
7: Derive G(1) by optimizing (8.45)
8: Reshape G(1) back and derive G

By defining X̃(j)i = X(j)i(H
(j))T K− 1

2 , we have

T r
[
P (j)H (j)XT

(j)i

] = T r
[
P̃

(j)
X̃

T
(j)i

] = vec
(
P̃

(j))T
vec(X̃(j)i). (8.43)

Therefore, (8.41) can be rewritten as

min
P̃

(j)
,b,ξ

1

2
vec

(
P̃

(j))T
vec

(
P̃

(j)) + C

M∑
i=1

ξi

subject to yi

(
vec

(
P̃

(j))T
vec(X̃(j)i) + b

) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . ,M. (8.44)

We note that (8.44) is a classic vector-based SVM problem. By solving it, we can

derive P̃
(j)

and update P (j) = P̃
(j)

K− 1
2 . After updating P (1),P (2), . . . ,P (d), we

then formulate the optimization problem for the Tucker core tensor G. According
to (8.7) and (8.12), the optimization problem (8.35) can be rewritten in terms of G as
follows:

min
G(1),b,ξ

1

2

(
P ⊗vec(G(1))

)T
P ⊗vec(G(1)) + C

M∑
i=1

ξi

subject to yi

((
P ⊗vec(G(1))

)T
vec(X(j)i) + b

) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . ,M. (8.45)

This problem can be solved by any classic vector-based SVM solver. The overall
procedure for STuM is summarized in Algorithm 3.

268 CHAPTER 8 Tensor network algorithms for image classification

Table 8.5 Comparison of proposed methods with state-of-the-art (CS-1/CS-5).

Test set HMM
[10]

LTN
[25]

GEI
[11]

ETG
[23]

ETGLDA
[23]

SVM STM STuM

A 99/100 94/99 100/100 92/96 99/100 80/97 92/100 99/100

B 89/90 83/85 85/85 85/90 88/93 79/93 81/90 85/93

C 78/90 78/83 80/88 76/81 83/88 68/85 73/88 79/90

D 35/65 33/65 30/55 39/55 36/71 30/54 47/67 53/71

E 29/65 24/67 33/55 29/52 29/60 23/46 48/79 63/86

F 18/60 17/58 21/41 21/58 21/59 24/49 29/49 42/63

G 24/50 21/48 29/48 21/50 21/60 12/37 31/71 52/87

Mean 53/74 50/72 54/67 52/69 54/76 45/62 57/68 68/84

Table 8.6 Accuracies (%) achieved by various methods
for the KTH action database.
Method [22] [21] [17] [16] SVM STM STuM
Accuracy 90.5 91.7 87.7 95.3 88.5 89.3 92.3

8.3.4.2 Examples
To prove the superiority of STuM, Ref. [29] implements experiments on gait and
human action recognition.

For gait recognition, the USF HumanID Gait Challenge dataset [23] is used. The
database consists of 452 sequences of 74 subjects walking in elliptical paths in front
of the camera. Therefore, each sequence is a third-order tensor. The datasets are sepa-
rated into one training set and seven test sets (A–G). The detailed experimental setting
can be found in [24]. The results are shown in Table 8.5. Apart from SVM with lin-
ear kernel and STM, some common gait recognition methods are also included. The
results are evaluated using the Cumulative Scores 1 and 5 (CS-1/CS-5, respectively)
similarly to [23,25]. The results of STuM are reported by setting the Tucker core
tensor with dimensions 18 × 18 × 18 as in [29]. From Table 8.5, we observe that
tensor-based methods largely outperform vector-based ones. We can also see that the
STuMs outperform the classical STMs with a large margin.

For the human action recognition experiments, Ref. [29] employed the commonly
used KTH dataset [27]. The KTH Action Dataset depicts 25 subjects performing
six different activities, namely, “boxing,” “handclapping,” “handwaving,” “jogging,”
“running,” and “walking.” The Tucker ranks are set to 6 for all modes in STuM, so
that the Tucker core tensor is of size 6 × 6 × 6. The comparison results are listed in
Table 8.6. Again, STuMs perform significantly better than other methods.

8.3 Tensorial extensions of support vector machine 269

FIGURE 8.7

Tensor graphical representation of an STTM hyperplane function.

FIGURE 8.8

The computation diagram of x̂.

8.3.5 Support tensor train machines
Although higher-rank STM and STuM generalize STM and achieve a better classi-
fication performance in high-dimensional data, they still suffer from various issues.
First, determining the CP rank in higher-rank STM is NP-complete. Second, the num-
ber of model parameters in STuM is still exponentially large since the Tucker core
tensor G has the same tensor modes as the original parameter tensor W . To solve
these issues, Ref. [31] proposes a support TT machine (STTM) wherein the rank-1
weight tensor of an STM is replaced by a TT that can approximate any tensor with
a scalable number of parameters. Moreover, a TT mixed-canonical form has been
exploited to speed up algorithmic convergence.

8.3.5.1 Methodology
As mentioned in Section 8.3.2, an STM suffers from its weak expressive power due to
its rank-1 weight tensor W . In [31], the proposed STTM replaces the rank-1 weight
tensor by a TT with prescribed TT ranks. Moreover, most real-world data contain
redundancies and uninformative parts. Based on this knowledge, STTM also utilizes
a TT decomposition to approximate the original data tensor and further alleviates the
overfitting problem. The conversion of the training samples into a TT can be done
using the TT-SVD algorithm [33, p. 2301], which allows the user to determine the
relative error of the approximation. A graphical representation of the STTM hyper-
plane equation is shown in Fig. 8.7. Both the data tensor X and the weight tensor
W are represented by TTs, and the summations correspond to computing the inner
product 〈X ,W〉.

270 CHAPTER 8 Tensor network algorithms for image classification

The TT cores W(1), W(2), . . ., W(d) are also computed using an alternating
projection optimization procedure [4], namely, iteratively fixing d − 1 TT cores and
updating the remaining cores until convergence. This updating occurs in a “sweep-
ing” fashion, namely, first update W (1) and proceed towards W(d). Once the core
W(d) is updated, the algorithm sweeps back to W (1) and repeats this procedure until
the termination criterion is met.

Suppose we want to update W (k). First, the TT of the weight tensor W is brought
into site-k-mixed-canonical form (see Definition 8.9). From Section 8.2.2.4, the norm
of the whole weight tensor is located in the W (k) TT core. To reformulate the op-
timization problem (8.31) in terms of the unknown core W(k), the inner product
〈X ,W〉 is rewritten as vec(W (k))T x̂. The vector x̂ is obtained by summing over the
tensor network for 〈W,X 〉 depicted in Fig. 8.7 with the TT core W(k) removed and
vectorizing the resulting three-way tensor. These two computational steps to com-
pute x̂ are graphically depicted in Fig. 8.8. The STTM hyperplane function can then
be rewritten as vec(W (k))T x̂ + b, so that W(k) can be updated from the following
optimization problem:

min
W (k),b,ξ

1

2
||vec

(
W (k)

)||2F + C

M∑
i=1

ξi

subject to yi

(
vec

(
W (k)

)T
x̂i + b

) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . ,M, (8.46)

using any computational method for standard SVMs. Suppose now that the next TT
core to be updated is W(k+1). The new TT for W then needs to be put into site-(k +
1)-mixed-canonical form, which can be achieved by reshaping the new W (k) into an
RkIk × Rk+1 matrix W (k) and computing its thin QR decomposition

W (k) = QR,

where Q is an RkIk ×Rk+1 matrix with orthogonal columns and R is an Rk+1 ×Rk+1
upper triangular matrix. Updating the tensors W (k) and W (k+1) as

W (k) := reshape
(
Q, [Rk, Ik,Rk+1]

)
,

W (k+1) := W (k+1) ×1 R

results in a site-(k + 1)-mixed-canonical form for W . An optimization problem sim-
ilar to (8.46) can then be derived for W (k+1).

The training algorithm of the STTM is summarized as pseudo-codes in Algo-
rithm 4. The TT cores for the weight tensor W are initialized randomly. Bringing
this TT into site-1-mixed-canonical form can then be done by applying the QR de-
composition step starting from W (d) and proceeding towards W (2). The final R
factor is absorbed into W(1), which brings the TT into site-1-mixed-canonical form.
The termination criterion in line 4 can be a maximum number of loops and/or when
the training error falls below a prescribed threshold.

8.3 Tensorial extensions of support vector machine 271

Algorithm 4 STTM algorithm.

Input: TT ranks R2, . . . ,Rd of W (1),W (2), . . . ,W (d); Training dataset {X i ∈
R

I1×···×Id , yi ∈ {−1,1}}M
i=1; Relative error ε of TT approximation of X .

Output: The TT cores W (1),W(2), . . . ,W (d); The bias b.

1: Initialize W (k) ∈ R
Rk×Ik×Rk+1 as a random/prescribed three-way tensor for k =

1,2, . . . , d .
2: Compute the TT approximation of training samples {X i}Mi=1 with relative error

ε using TT-SVD.
3: Cast W into the site-1-mixed-canonical TT form.
4: while termination criterion not satisfied do
5: for k = 1, . . . , d − 1 do
6: W(k), b ← Solve optimization problem (8.46).
7: W (k) ← reshape(W (k), [RkIk,Rk+1]).
8: Compute thin QR decomposition W (k) = QR.
9: W(k) ← reshape(Q, [Rk, Ik,Rk+1]).

10: W(k+1) ← W (k+1) ×1 R.
11: end for
12: for k = d, . . . ,2 do
13: W(k), b ← Solve optimization problem (8.46).
14: W (k) ← reshape(W (k), [Rk, IkRk+1]).
15: Compute thin QR decomposition W (k)T = QR.
16: W(k) ← reshape(QT , [Rk, Ik,Rk+1]).
17: W(k−1) ← W (k−1) ×3 RT .
18: end for
19: end while

8.3.5.2 Complexity analysis
Assume that the tensorial training data D={X i yi}M

i=1 are given, where ten-
sors X i ∈ R

I1×I2×···×Id are in TT format and their ranks are R2, . . . ,Rd . With
I := max{I1, . . . , Id} and R := max{R2, . . . ,Rd}, the computation complexity of
forming the small-size SVM optimization problem (8.46) from the overall STTM
optimization problem is O(MdIR2). The complexity is linear to the tensorial data
order d due to the TT structure. Moreover, real-world tensorial data often exhibit the
low rank property, namely, R is often small, which indicates the overall complexity
is also low. For data storage, the traditional SVM calls for O(MId) space, while that
of the STTM is O(MIR2). This again shows a great reduction especially when the
data order d is large.

8.3.5.3 Effect of TT ranks on STTM classification
This section demonstrates the effect of TT ranks on tensor-based classification.
Specifically, the CIFAR-10 database [26] is employed to evaluate the influence. The
images of CIFAR-10 are of dimensions 32 × 32 × 3. The TT ranks of the weight TT

272 CHAPTER 8 Tensor network algorithms for image classification

FIGURE 8.9

Test accuracy of STTM on different TT ranks R2.

were fixed to R1 = R4 = 1, R3 = 3 and different experiment runs were performed
with R2 varied from 2 to 32. The detailed experiment setting can be found in [31].
Fig. 8.9 shows the STTM test accuracy for different TT ranks when the training sam-
ple number is equal to 2k, 3k, and 4k, respectively. The maximal test accuracy for
these three sizes is achieved when R2 is 4, 5, and 6, respectively. A downward trend
of all three curves can be observed for TT ranks larger than the optimal value, indi-
cating that higher TT ranks may lead to overfitting. On the other hand, decreasing the
TT rank from its optimal value also decreases the test accuracy down to the rank-1
STM case.

8.3.5.4 Updating in site-k-mixed-canonical form
The authors of [31] investigated the effect of keeping the TT of W in a site-k-mixed-
canonical form when updating W (k). According to the setting of [31], two image
classes of CIFAR-10 are chosen for this investigation, namely airplane and auto-
mobile. Three thousand samples of both classes were used for the STTM training.
Fig. 8.10 shows the training accuracy for each TT core update iteration in Algo-
rithm 4, with and without the site-k-mixed-canonical form. Updating without the
site-k-mixed-canonical form implies that lines 3, 8–10, and 15–17 of Algorithm 4
are not executed, which results in an oscillatory training accuracy ranging between
50% and 89% without any overall convergence. Updating the TT cores W(k) in a
site-k-mixed-canonical form, however, displays a very fast convergence of the train-
ing accuracy to around 92%.

8.3.5.5 Examples
The performance of STTM is checked on several image datasets in [31]. Here we
present the results on two of those datasets, namely MNIST [30] and ORL3.

MNIST has a training set of 60k samples and a test set of 10k samples. Each
sample is a 28 × 28 grayscale picture which is reshaped into a 7 × 4 × 7 × 4 tensor,
as this provides more flexibility to choose TT ranks when applying Algorithm 4. For

3 http://www.zjucadcg.cn/dengcai/Data/FaceData.html.

http://www.zjucadcg.cn/dengcai/Data/FaceData.html

8.3 Tensorial extensions of support vector machine 273

FIGURE 8.10

Comparison of training accuracy of STTMs trained with and without site-k-mixed-canonical
form.

Table 8.7 Experiment settings for the four
methods.
Method Input structure Tensor ranks
SVM 784 × 1 vector NA

STM 28 × 28 matrix 1

STuM 7 × 4 × 7 × 4 tensor 4,4,4,4

STTM 7 × 4 × 7 × 4 tensor 1,5,5,4,1

the STM initialization, the SVM weight vector is reshaped into a 28×28 matrix from
which the best rank-1 approximation is used. For the STuM and STTM initialization,
the SVM weight vector is reshaped into a 7×4×7×4 tensor and then converted into
its Tucker and TT forms, respectively, with prescribed tensor ranks. Table 8.7 shows
the experiment setting for those four methods. All classifiers were trained for training
sample batch sizes of 10k, 20k, 30k, and 60k in four different experiments. The test
accuracy of the different methods for different batch sizes is listed in Table 8.8. STTM
achieves the best classification performance for all sizes. The STM performs worse
than the standard SVM due to the restrictive expressive power of the rank-1 weight
matrix. The test accuracies of STuM are not posted when the training sample sizes
are 30k and 60k since they cost much more time (more than 60 h) than the other
three methods. This observation indicates that an STuM may not work well when the
training sample size is large.

For the ORL database, it contains 400 grayscale face images, and the detailed
information about ORL datasets is listed in Table 8.9. The dataset is separated into
training and test sets. The detailed experiment settings and classification accuracies
(average value of five repeated tests) for ORL32x32 and ORL64x64 when employing
different methods are listed in Table 8.10 and Table 8.11. STTM achieves a similar
classification performance compared with that of SVM, and they both perform better
than STM and STuM.

274 CHAPTER 8 Tensor network algorithms for image classification

Table 8.8 Test accuracy (%) under dif-
ferent training sample sizes.

Method Training sample size
10k 20k 30k 60k

SVM 91.64 92.84 93.28 93.99

STM 88.36 89.96 89.82 90.54

STuM 90.45 92.28 – –

STTM 92.27 93.71 93.86 94.12

Table 8.9 Detailed information of experimental datasets.

Datasets Number of samples Number of classes Size
ORL 32x32 400 40 32x32

ORL 64x64 400 40 64x64

Table 8.10 Experimental settings and classification ac-
curacy (%) of four methods for ORL32x32.

Method Input structure Tensor ranks Test accuracy
SVM 1024x1 vector NA 96.25

STM 32x32 matrix 1 93.75

STuM 8x4x8x4 tensor 4,4,4,4 93.50

STTM 8x4x8x4 tensor 1,4,4,4,1 96.25

Table 8.11 Experimental settings and classification ac-
curacy (%) of four methods for ORL64x64.

Method Input structure Tensor ranks Test accuracy
SVM 4096x1 vector NA 96.25

STM 64x64 matrix 1 92.71

STuM 8x8x8x8 tensor 4,4,4,4 94.40

STTM 8x8x8x8 tensor 1,4,4,4,1 96.25

8.3.5.6 Conclusion
STTM employs a more general TT structure to largely escalate the model expres-
sive power, which leads to a better classification accuracy than STM. Moreover, the
tensor model in STTM is more scalable than that in STuM, which achieves faster
training when the training sample size is large. The necessity of keeping the weight
TT of STTM in a site-k-mixed-canonical form during model training is empirically
confirmed through experiments, in which the algorithm convergence speed can be
accelerated significantly.

8.3 Tensorial extensions of support vector machine 275

8.3.6 Kernelized support tensor train machines
The aforementioned works are all based on the assumption that the given tensorial
data are linearly separable. However, this is not the case in most real-world data.
In [37], the authors proposed a K-STTM to deal with nonlinear tensorial classification
problems. Firstly, the TT decomposition [33] is employed to decompose the given
tensor data so that a more compact and informative representation of it can be derived.
Secondly, the authors define a TT-based feature mapping strategy to derive a high-
dimensional TT in the feature space. This strategy enables one to apply different
feature mappings on different data modes, which naturally provides a way to leverage
the multimode nature of tensorial data. Thirdly, the authors propose two ways to build
the kernel matrix with the consideration of the consistency with the TT inner product
and preservation of information. The constructed kernel matrix is then used by kernel
machines to solve the image classification problems.

It is worth noting that though STTM sounds like the linear case of the proposed
K-STTM, they are totally different when the linear kernel is applied on K-STTM.
Specifically, K-STTM and STTM use two totally different schemes to train the corre-
sponding model. For K-STTM, it first constructs the kernel matrix with the proposed
TT-based kernel function, and then solves the standard SVM problem. However, in
STTM, it assumes the parameter in the classification hyperplane can be modeled as a
TT, and only updates one TT core at a time by reformulating the training data.

8.3.6.1 Methodology
Given M tensorial training data and their labels, i.e., dataset D = {X i , yi}Mi=1, where
X i ∈R

I1×I2×···×Id and yi ∈ {−1,1}, the hyperplane can be defined as

f (X) = 〈W,X 〉 + b (8.47)

that separates the tensorial data into two classes. Here, W is the hyperplane weight
tensor with the same dimensions as X i and b is the bias. Similar to the primal prob-
lem in SVM, the corresponding primal optimization problem for (8.47) is derived
as

min
W,b,ξ

1

2
||W ||2F + C

M∑
i=1

ξi

subject to yi

(〈W,X i〉 + b
) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . ,M. (8.48)

Following the scheme of the kernel trick for conventional SVMs, it is necessary to
define a nonlinear feature mapping function 	(·) for tensors. Specifically, given a
tensor X ∈R

I1×I2×···×Id , it is mapped into the Hilbert space H by

	(·) : RI1×I2×···×Id →R
H1×H2×···×Hd . (8.49)

The dimension of the projected tensor 	(X) can be infinite depending on the feature
mapping function 	(·). The resulting Hilbert space is then called the tensor feature

276 CHAPTER 8 Tensor network algorithms for image classification

space and the following model is further developed:

min
W,b,ξ

1

2
||W ||2F + C

M∑
i=1

ξi

subject to yi

(〈
W,	(X i)

〉 + b
) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . ,M, (8.50)

with parameter tensor W ∈ R
H1×H2×···×Hd . This model is naturally a linear clas-

sifier on the tensor feature space. However, when the classifier is mapped back to
the original data space, it is a nonlinear classifier. To obtain the tensor-based kernel
optimization model, the dual format of (8.50) is derived, namely

min
α1,α2,··· ,αM

M∑
i=1

αi−1

2

M∑
i,j=1

αiαjyiyj

〈
	(X i),	(X j)

〉
subject to

M∑
i=1

αiyi = 0,

0 ≤ αi ≤ C, i = 1, . . . ,M, (8.51)

where αi are the Lagrange multipliers. The key task is to define a tensorial kernel
function K(X i ,X j) that computes the inner product 〈	(X i),	(X j)〉 in the origi-
nal data space instead of the feature space.

Although tensor is a natural structure for representing real-world data, there is no
guarantee that such a representation works well for kernel learning. Instead of the full
tensor, K-STTM employs a TT for data representation due to the following reasons:

1. Real-life data often contain redundant information, which is not useful for ker-
nel learning. The TT decomposition has proved to be efficient for removing the
redundant information in the original data and provides a more compact data rep-
resentation.

2. Compared to the Tucker decomposition whose storage scales exponentially with
the core tensor, a TT is more scalable (parameter number grows linearly with the
tensor order d), which reduces the computation during kernel learning.

3. Unlike the CP decomposition, determining the TT rank is easily achieved through
a series of singular value decompositions (TT-SVD [33]). Moreover, instead of
decomposing many tensorial data sample by sample, it is possible to stack them
together and decompose the stacked tensor with TT-SVD in one shot. This natu-
rally leads to a faster data transformation to the TT format.

4. It is convenient to implement different operations on different tensor modes when
data are in the TT format. Since a TT decomposition decomposes the original data
into many TT cores, it is possible to apply different kernel functions on different
TT cores for better classification performance. Furthermore, it is possible to em-
phasize the importance of different tensor modes by putting different weights on

8.3 Tensorial extensions of support vector machine 277

those TT cores during the kernel mapping. For example, a color image is a three-
way (pixel–pixel–color) tensor. The color mode can be treated differently from
the two pixel modes since they contain different kinds of information, as will be
exemplified later.

To this end, a TT-based feature mapping approach is proposed in K-STTM.
Specifically, all fibers in each TT core are mapped to the feature space through

φi(·) : RIi →R
Hi , i = 1, . . . , d,

such that

φi

(
X (i)(ri , :, ri+1)

) ∈ R
Hi

1 ≤ ri ≤ Ri, 1 ≤ri+1 ≤ Ri+1, i = 1, . . . , d, (8.52)

where X (i) and Ri are the i-th TT core and TT rank of T T (X), respectively. The
fibers of each TT core are vectors as the rank indices (ri , ri+1) are fixed to specific
values, and hence the feature mapping works in the same way as for the conventional
SVM. The resulting high-dimensional TT, which is in the tensor feature space, is
then represented as 	(T T (X)) ∈ R

H1×H2×···×Hd . Note that 	(T T (X)) is still in
a TT format with the same TT ranks as T T (X). In this sense, the TT format data
structure is preserved after the feature mapping.

After mapping the TT format data into the TT-based high-dimensional feature
space, [37] proposes two approaches for computing the inner product between two
mapped TT format data using kernel functions. The first method is called K-STTM-
Prod since consecutive multiplication operations are implemented on d fiber inner
products, which is consistent with the result of an inner product between two TTs.
Assuming 	(T T (X)) and 	(T T (Y)) ∈ R

H1×H2×···×Hd with TT ranks Ri and R̂i ,
i = 1,2, . . . , d + 1, respectively, their inner product can be computed from

〈
	

(
T T (X)

)
,	

(
T T (Y)

)〉 = R1∑
r1=1

· · ·
Rd+1∑

rd+1=1

R̂1∑
r̂1=1

· · ·
R̂d+1∑

r̂d+1=1(
d∏

i=1

〈
φi

(
X (i)(ri , :, ri+1)

)
, φi

(
Y (i)(r̂i , :, r̂i+1)

)〉)
. (8.53)

Note that (8.53) derives the exact same result as Fig. 8.5 (assuming X = A and
Y = B) when an identity feature mapping function 	(·) is used, namely 	(T T (X))
= T T (X). Moreover, since each fiber of a mapped TT core is naturally a vector, the
following equation is derived:〈

φi

(
X (i)(ri , :, ri+1)

)
, φi

(
Y (i)(r̂i , :, r̂i+1)

)〉 = ki

(
X (i)(ri , :, ri+1),Y (i)(r̂i , :, r̂i+1)

)
,

(8.54)

278 CHAPTER 8 Tensor network algorithms for image classification

where ki(·) can be any kernel function used for a standard SVM, such as a Gaussian
RBF kernel, polynomial kernel, linear kernel, etc. Combining (8.53) and (8.54), the
corresponding TT-based kernel function is obtained:

K
(
T T (X), T T (Y)

) =
R1∑

r1=1

· · ·
Rd+1∑

rd+1=1

R̂1∑
r̂1=1

· · ·
R̂d+1∑

r̂d+1=1(
d∏

i=1

ki

(
X (i)(ri , :, ri+1),Y (i)(r̂i , :, r̂i+1)

))
. (8.55)

As mentioned before, in the K-STTM setting, different kernel functions ki can be
applied on different tensor modes i. One possible application is in color image clas-
sification, where one could apply Gaussian RBF kernels k1 and k2 on its two spatial
modes, while choosing a linear or polynomial kernel k3 for the color mode.

The second method proposed in [37] for constructing a TT kernel function is
called the K-STTM-Sum. Instead of implementing continuous multiplication op-
erations on d fiber inner products like in K-STTM-Prod, K-STTM-Sum performs
consecutive addition operations on them. The authors mentioned that this idea is
inspired by [32], which argues that the product of inner products can lead to the
loss/misinterpretation of information. Take the linear kernel as an example. The in-
ner product between two fibers of the same mode could be negative, which indicates
a low similarity between those two fibers. However, by implementing consecutive
multiplications of d fiber inner products, highly negative values could result in a
large positive value. In that case, the overall similarity is high, which is clearly un-
wanted. This situation also appears when employing Gaussian RBF kernels. A nearly
zero value would be assigned to two nonsimilar fibers, which could influence the final
result significantly. To this end, the K-STTM-Sum is proposed. Similar to K-STTM-
Prod, the corresponding kernel function is obtained as

K
(
T T (X), T T (Y)

) =
R1∑

r1=1

· · ·
Rd+1∑

rd+1=1

R̂1∑
r̂1=1

· · ·
R̂d+1∑

r̂d+1=1(
d∑

i=1

ki

(
X (i)(ri , :, ri+1),Y (i)(r̂i , :, r̂i+1)

))
. (8.56)

After defining the TT-based kernel function, the term 〈	(X i),	(X j)〉 in (8.51)
can be replaced with (8.55) or (8.56), and the final kernel optimization problem based
on the TT structure can be derived as

min
α1,α2,··· ,αM

M∑
i=1

αi−1

2

M∑
i,j=1

αiαjyiyjK
(
T T (X i), T T (X j)

)

8.3 Tensorial extensions of support vector machine 279

subject to
M∑
i=1

αiyi = 0,

0 ≤ αi ≤ C, i = 1, . . . ,M. (8.57)

After solving (8.57), the unknown model parameters α1, α2, . . . , αM can be obtained
and the resulting decision function is then represented as

f (X) = sign

(
M∑
i=1

αiyiK
(
T T (X i), T T (X)

) + b

)
. (8.58)

The training algorithm of the K-STTM-Prod/Sum is described by pseudo-codes in
Algorithm 5 using a Gaussian RBF kernel as an example. Hyperparameters can be
tuned through a grid search or through cross-validation.

Algorithm 5 K-STTM-Prod/Sum algorithm.

Input: Training dataset {X i ∈ R
I1×···×Id , yi ∈ {−1,1}}M

i=1; Validation dataset
{X j ∈R

I1×···×Id , yj ∈ {−1,1}}N
j=1; The preset TT ranks R1,R2, . . . ,Rd+1; The

range of the performance trade-off parameter C and kernel width parameter σ ,
namely [Cmin,Cmax], and [σmin, σmax].

Output: The Lagrange multipliers α1, α2, . . . , αM ; The bias b.

1: Stack the tensors in training dataset together as X trainStack; stack the tensors in
validation dataset together as X validStack.

2: Compute the TT approximation T T (X trainStack) and T T (X validStack) with the
given TT ranks using TT-SVD.

3: for C from Cmin to Cmax do
4: for σ from σmin to σmax do
5: Construct the K-STTM-Prod kernel matrix (8.55) or the K-STTM-Sum ker-

nel matrix (8.56).
6: Solve (8.57) using the resulting kernel matrix.
7: Compute the classification accuracy on the validation set.
8: end for
9: end for

10: Find the best C and σ according to the classification accuracy on the validation
set.

11: Train the K-STTM with the best C and σ by implementing steps 6 and 7. Thus
the Lagrange multipliers α1, α2, . . . , αM and the bias b are obtained.

We note that the key task for kernelized tensor learning is to define a suitable
tensor mapping scheme for the corresponding tensor decomposition. Apart from the
demonstrated K-STTM, Ref. [35] proposed a customized kernel mapping scheme for
CP decomposition, named DuSK. We therefore introduce it for comparison.

280 CHAPTER 8 Tensor network algorithms for image classification

Let the CP decomposition of two tensorial samples X , Y ∈ R
I1×I2×···×Id be

X = ∑R
r=1

∏d
i=1 ◦x

(i)
r and Y = ∑R

r=1
∏d

i=1 ◦y
(i)
r , respectively. Ref. [35] defines

a kernel mapping scheme 	̂(·) for CP format tensors, such that 	̂(CP (X)) ∈
R

H1×H2×···×Hd . Specifically, this is achieved by mapping all vectors x
(i)
r ∈ R

Ii into a
high-dimensional feature space φ(x

(i)
r) ∈ R

Hi ; therefore,

	̂ :
R∑

r=1

d∏
i=1

◦x(i)
r →

R∑
r=1

d∏
i=1

◦φ
(
x(i)

r

)
. (8.59)

After mapping the CP factorization of the tensorial sample into the high-dimensional
tensorial feature space, the kernel function is simply the standard inner product of
tensors in that feature space, and it can be written as

K̂
(
CP(X),CP (Y)

) =K̂
(

R∑
r=1

d∏
i=1

◦x(i)
r ,

R∑
r=1

d∏
i=1

◦y(i)
r

)

=
R∑
r1

R∑
r2

d∏
i=1

k
(
x(i)

r1
,y(i)

r2

)
, (8.60)

where k(·) can be any vector-based kernel function. With (8.60), we can derive the
kernel optimization problem based on CP decomposition as follows:

min
α1,α2,··· ,αM

M∑
i=1

αi−1

2

M∑
i,j=1

αiαjyiyj K̂
(
CP(X i),CP (X j)

)
subject to

M∑
i=1

αiyi = 0,

0 ≤ αi ≤ C, i = 1, . . . ,M. (8.61)

The comparison between DuSK and K-STTM is implemented in the K-STTM pa-
per [37], and we also showcase the results in the example part of this section.

8.3.6.2 Kernel validity of K-STTM
According to Mercer’s condition, a kernel function is valid when the constructed
kernel matrix is symmetric and positive-semi-definite on the given training data.
This guarantees that the mapped high-dimensional feature space is truly an inner
product space. Therefore, it is necessary to show the validity of K-STTM-Prod and
K-STTM-Sum. In this section, we provide Theorem 8.1 for this purpose. In the ac-
tual implementation of K-STTM-Prod and K-STTM-Sum, it is extremely inefficient
to use TT decomposition to decompose each tensorial sample one by one. The way
K-STTM does it is by first stacking all the d-way samples and then computing a
TT decomposition on the resulting (d + 1)-way tensor directly. By doing so, all

8.3 Tensorial extensions of support vector machine 281

TT-based training samples have the same TT ranks. That means Ri is equal to R̂i ,
i = 1, . . . , d + 1, for all the TT-based training samples, which is also assumed in
Theorem 8.1 and its proof.

Before proving Theorem 8.1, we first give the necessary lemma below.

Lemma 8.1. The summation and Hadamard product between two symmetric and
positive-semi-definite matrices A and B ∈ R

n×n still result in a symmetric and
positive-semi-definite matrix.

Proof. According to the definition of symmetric and positive-semi-definite matrix,
we have {

A = AT , uT Au ≥ 0,

B = BT , uT Bu ≥ 0,

for every nonzero column vector u ∈ R
n. For the summation case, obviously we can

conclude that

(A + B)T = A + B, uT (A + B)u ≥ 0,

namely A + B is still symmetric and positive-semi-definite. For the Hadamard prod-
uct case, we refer to the Schur product theorem [28] and we can easily obtain

uT (A 	 B)u ≥ 0,

for every nonzero column vector u ∈ R
n, where 	 is the Hadamard product. It is

obvious that (A	B)T = (A	B). Thus A	B is still symmetric and positive-semi-
definite.

We then depict Theorem 8.1 and its proof here.

Theorem 8.1. Given a tensorial training dataset {X i}Mi=1, where X i ∈ R
I1×I2×···×Id ,

and assumed TT ranks R1, . . . ,Rd+1, the proposed kernel functions K-STTM-Prod
and K-STTM-Sum are valid kernel functions, and they produce symmetric and
positive-semi-definite kernel matrices.

Proof. We first show the kernel function validity of K-STTM-Prod. For any tensor
X , Y ∈ {X 1,X 2, . . . ,XM}, they are first decomposed into their TT formats, namely
T T (X) and T T (Y), after which Eq. (8.55) is applied. Assuming all the indices over∑

and
∏

, namely r1, . . . , rd+1, r̂1, . . . , r̂d+1 and i, are fixed, (8.55) can be written as

K
(
T T (X), T T (Y)

) = ki

(
X (i)(ri , :, ri+1),Y (i)(r̂i , :, r̂i+1)

)
. (8.62)

As mentioned before, ki(·, ·) can be any valid kernel function used for a standard
SVM. Therefore, the kernel matrix constructed by (8.62) is symmetric and positive-
semi-definite. When only the indices over

∑
, namely r1, . . . , rd+1, r̂1, . . . , r̂d+1, are

fixed, (8.55) can be written as the following product kernel:

K
(
T T (X), T T (Y)

) =
(

d∏
i=1

ki

(
X (i)(ri , :, ri+1),Y (i)(r̂i , :, r̂i+1)

))
. (8.63)

282 CHAPTER 8 Tensor network algorithms for image classification

The kernel matrix constructed by (8.63) can be regarded as Hadamard products
of the d valid kernel matrices constructed by (8.62) when i = 1, . . . , d . Since the
matrix constructed by (8.62) is symmetric and positive-semi-definite, according to
Lemma 8.1, the matrix constructed by (8.63) is also symmetric and positive-semi-
definite.

Similarly, we note that the kernel matrix constructed by (8.55) can be regarded as
the summation of R1 × . . . × Rd+1 × R̂1 × . . . × R̂d+1 kernel matrices constructed
by (8.63) when r1, . . . , rd+1, r̂1, . . . , r̂d+1 are varied from 1 to their corresponding
maximum values. According to Lemma 8.1, we conclude that the kernel matrix con-
structed by (8.55) is symmetric and positive-semi-definite, namely K-STTM-Prod is
a valid kernel function.

The validity proof for K-STTM-Sum is similar to the proof for K-STTM-Prod.
The kernel matrix constructed by (8.56) can be regarded as the summation of
R1 × . . . × Rd+1 × R̂1 × . . . × R̂d+1 × d kernel matrices constructed by (8.62) when
r1, . . . , rd+1, r̂1, . . . , r̂d+1 and i are varied from 1 to their corresponding maximum
values. According to Lemma 8.1, the kernel matrix constructed by (8.56) is sym-
metric and positive-semi-definite. Therefore, K-STTM-Sum is a valid kernel func-
tion.

8.3.6.3 Complexity analysis
The original tensorial sample storage is O(MId), where I is the maximum value
of Ii, i = 1,2, . . . , d . After representing the original tensorial data as TTs, the data
storage becomes O(dIR2 + MIdRd), where R is the maximum TT rank of Ri, i =
1, . . . , d − 1. This shows a great reduction especially when the data order d is large.

The computational complexity of constructing the kernel matrix in standard SVM
is O(M2I d), where n is the maximum dimension of Ii, i = 1,2, ...d . As for the
computational complexity of K-STTM-Prod and K-STTM-Sum, the overall results
of them are similar if neglecting low-order terms. And their kernel matrix computa-
tion complexities are O(dIR4 +M2IdR2

d) if we employ the accelerated computation
approach as proposed in [37], where I and R are the maximum values of Ii and Ri ,
i = 1,2, . . . , d − 1, respectively. Therefore, the K-STTM algorithm is more efficient
than its vector counterpart as the computation complexity is reduced from exponen-
tial to polynomial.

8.3.6.4 Examples
Ref. [37] considers three high-dimensional fMRI datasets, namely, the StarPlus fMRI
dataset4, the CMU Science 2008 fMRI dataset (CMU2008) [34], and the ADNI fMRI
dataset5, to evaluate the classification performance of K-STTM. An fMRI image is
essentially a three-way tensor. For the compared methods, apart from SVM, STM,
STuM, and STTM, another kernelized STM method called DuSK [35] is further in-

4 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/.
5 http://adni.loni.usc.edu/.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/
http://adni.loni.usc.edu/

8.3 Tensorial extensions of support vector machine 283

Table 8.12 Classification accuracies (%) of different methods for different sub-
jects in StarPlus fMRI datasets.

Subject SVM STM STuM STTM DuSK K-STTM-Prod K-STTM-Sum
04799 50.00 36.67 35.83 39.61 47.50 68.33 66.67

04820 50.00 43.33 35.00 45.83 46.67 70.00 62.50

04847 50.00 38.33 17.50 47.50 53.33 65.00 65.00

05675 50.00 37.50 30.83 35.00 55.00 60.00 60.00

05680 50.00 38.33 39.17 40.00 64.17 73.33 75.00

05710 50.00 40.00 30.00 43.33 54.16 59.17 58.33

cluded. DuSK is a kernelized STM using the CP decomposition. Through introducing
the kernel trick, it can deal with nonlinear classification tasks.

For the StarPlus dataset, each fMRI image is of dimensions 64 × 64 × 8. The
whole dataset contains the brain images of six human subjects, and each subject has
320 fMRI images: one half of them were collected when the subject was shown a
picture, the other half were collected when the subject was shown a sentence. These
fMRI images are randomly separated into training, validation, and test sets. The clas-
sification results are listed in Table 8.12. Due to the very high-dimensional and sparse
data, SVM fails to find a good hyperparameter setting and classifies all test samples
wrongly into one class. Since fMRI data are very complicated, those linear classi-
fiers, namely STM, STuM, and STTM, cannot achieve acceptable performance, and
the classification accuracies of them are all lower than 50%. The two K-STTM meth-
ods still achieve the highest classification accuracy on all human subjects.

The CMU2008 dataset shows the brain activities associated with the meanings of
nouns. During the data collection period, the subjects were asked to view 60 different
word-pictures from 12 semantic categories. There are five pictures in each category
and each image is shown to the subject six times. Therefore, 30 fMRI images are
collected for each semantic category, and each fMRI image is of dimensions 51 ×
61 × 23. Considering the extremely small number of samples in each category, [37]
used the experimental settings in [36] which combine two similar categories into an
integrated class. Specifically, [37] combines categories animal and insect as class
Animals and categories tool and furniture as class Tools. By doing so, there are 60
samples in both Animals and Tools classes. Table 8.13 shows the binary classification
results of different models. We note that the classification accuracies of SVM on four
subjects are lower than 50%. The linear models, namely STM, STuM, STTM, and
TT classifier, can only achieve acceptable performance on a few subjects. Because
the dimensions of the data are very high, DuSK fails to find a good CP rank in an
acceptable time and cannot achieve a good classification accuracy. The two K-STTM
methods still achieve the best classification results in all subjects.

The ANDI fMRI dataset is collected from the Alzheimer’s Disease Neuroimaging
Initiative. It contains the resting-state fMRI images of 33 subjects. The subjects in-
clude patients (with mild cognitive impairment [MCI] or Alzheimer’s disease [AD])

284 CHAPTER 8 Tensor network algorithms for image classification

Table 8.13 Classification accuracies (%) of different methods for different sub-
jects in CMU2008 fMRI datasets.

Subject SVM STM STuM STTM DuSK K-STTM-Prod K-STTM-Sum
#1 68.00 66.00 68.00 66.00 48.00 70.00 70.00

#2 52.00 50.00 58.00 68.00 54.00 74.00 84.00

#3 50.00 60.00 58.00 64.00 58.00 66.00 70.00

#4 50.00 60.00 58.00 56.00 52.00 76.00 72.00

#5 56.00 58.00 64.00 66.00 44.00 72.00 72.00

#6 44.00 60.00 46.00 46.00 54.00 70.00 70.00

#7 50.00 52.00 48.00 52.00 52.00 68.00 72.00

Table 8.14 Classification accuracies (%) of different methods in the ADNI fMRI
dataset.

SVM STM STuM STTM DuSK K-STTM-Prod K-STTM-Sum
ADNI fMRI 49.33 50.00 38.00 53.67 54.94 64.00 62.33

and normal controls. Overall there are 33 fMRI images and each image has dimen-
sions 61 × 73 × 61. These fMRI images are separated into two classes. The positive
class includes normal controls, while the negative class includes patients with MCI
or AD. Table 8.14 lists the classification results of different methods. We can observe
that the performance of SVM, STM, and STuM is still not good. STTM and DuSK
achieve a slightly better performance than random classification. The two K-STTM
methods achieve the best accuracy of all compared methods.

8.3.6.5 Conclusion
Ref. [37] has proposed a TT-based kernel trick for the first time and devised a K-
STTM. Assuming a low-rank TT as the prior structure of multidimensional data,
the authors first define a corresponding feature mapping scheme that keeps the TT
structure in the feature space. Furthermore, two kernel function construction schemes
are proposed with consideration of consistency with the TT inner product and the
preservation of information, respectively. Moreover, it is possible to apply different
kernel mappings on the tensor modes with different characteristics.

8.4 Tensorial extension of logistic regression
The idea for extending vector-based LR is similar to the case in SVM. In this section,
we briefly introduce two tensorial extensions of LR, namely rank-1 LR [38] and
logistic tensor regression [39]. Specifically, rank-1 LR replaces the weight vector in
LR with a rank-1 tensor, while logistic tensor regression assumes a general CP format
weight tensor.

8.4 Tensorial extension of logistic regression 285

Algorithm 6 Rank-1 LR algorithm.

Input: Training dataset {X i ∈ R
I1×···×Id , yi ∈ {−1,1}}M

i=1.
Output: LR model parameters w(j)|dl=1 and bias b.

1: Initialize w|dl=1 randomly.
2: Repeat steps 3–5 iteratively until convergence.
3: for j = 1, . . . , d do
4: Derive w(j) by optimizing (8.67).
5: end for

8.4.1 Rank-1 logistic regression
Consider a training dataset D={X i , yi}M

i=1, where tensors X i ∈ R
I1×I2×···×Id and

yi ∈ {−1,+1}. The general tensorized LR model is based on the following expression
for the conditional probabilities:

p(yi = +1|W, b,X i) = 1

1 + exp(−〈W,X i〉 − b)
, (8.64)

where W ∈ R
I1×I2×···×Id and b ∈ R are the parameter tensor and the bias of the re-

gression model. The corresponding maximum log-likelihood problem can be written
as

min
W,b

M∑
i=1

log
(
1 + exp

(−yi

(〈W,X i〉 + b
)))

. (8.65)

In rank-1 LR models, the parameter tensor weight W is assumed to be a rank-1
tensor, namely, (8.65) can be rewritten as

min
w(l)|dl=1,b

M∑
i=1

log

(
1 + exp

(
−yi

(
X i

∏
1≤l≤d

×l w(l) + b

)))
, (8.66)

where W = w(1) ◦ w(2) ◦ · · · ◦ w(d). The optimization scheme is still an alternating
optimization procedure. In particular, we solve for w(j) at each iteration while keep-
ing the parameters w(k)|dk=1,k �=j fixed. Therefore, each suboptimization problem is
written as

min
w(j),b

M∑
i=1

log
(
1 + exp

(−yi

((
w(j)

)T
x̂ + b

)))
, (8.67)

where x̂ = X i

∏l �=j

1≤l≤d ×l w(l). We note that (8.67) has the same optimization format
as traditional vector-based LR. The overall optimization procedure is summarized in
Algorithm 6.

286 CHAPTER 8 Tensor network algorithms for image classification

Table 8.15 Test accuracy (%) under
different training sample sizes of the In-
dian Pines dataset.
Method Training sample size

50 100 150 200
Linear SVM 68.25 75.39 80.36 79.84

LR 63.44 67.64 72.64 73.52

Rank-1 LR 75.22 80.41 82.65 83.76

Table 8.16 Test accuracy (%) under
different training sample sizes of the
Pavia University dataset.

Method Training sample size
50 100 150 200

Linear SVM 79.62 83.90 87.00 87.04

LR 71.82 77.89 82.19 82.27

Rank-1 LR 84.16 86.69 88.04 88.76

8.4.1.1 Examples
Ref. [38] employs rank-1 LR to classify hyperspectral data. A hyperspectral image is
represented as a 3D tensor of dimensions p1 ×p1 ×p3, where p1 and p2 correspond
to the height and width of the image and p3 to the spectral bands. Specifically, the
North-western Indiana and Pavia University datasets are used [38]. To evaluate the
performance of rank-1 LR under different number of training samples, 50, 100, 150,
and 200 samples are randomly selected from each class, respectively, to train the
model and the remaining data are used to test the performance. The rank-1 LR is
compared with traditional vector-based LR and linear SVM.

Tables 8.15 and 8.16 list the classification accuracies on the two datasets. In
both datasets and in all cases, the tensor-based model outperforms linear SVMs and
vector-based LR, despite the fact that it employs the smallest number of parameters.

8.4.2 Logistic tensor regression
The issue in rank-1 LR is similar to the case in STM, namely the setting of rank-1
tensor weight is oversimplified such that the trained model is not powerful enough
to classify some complicated data. Therefore, assuming a general tensor format for
weight parameter is a better choice. Here we demonstrate logistic tensor regression
(LTR) [39], which employs the CP tensor format to replace the rank-1 weight tensor
setting in rank-1 LR.

Assume the weight tensor W can be represented as a CP tensor format, namely
we have (8.2). Based on (8.65), we obtain the following equations according to the

8.4 Tensorial extension of logistic regression 287

Algorithm 7 LTR algorithm.

Input: Training dataset {X i ∈ R
I1×···×Id , yi ∈ {−1,1}}M

i=1, CP rank for weight ten-
sor.

Output: LTR model parameters U (j)|dl=1 and bias b.

1: Initialize U (j)|dl=1 randomly.
2: Repeat steps 3–5 iteratively until convergence.
3: for j = 1, . . . , d do
4: derive U (j) by optimizing (8.70)
5: end for

derivation from (8.34) to (8.36):

〈W,X i〉 = T r
[
W (j)X

T
(j)i

] = T r
[
U (j)

(
U (−j)

)T
XT

(j)i

]
. (8.68)

Therefore, (8.65) can be rewritten as

min
U (j),b

M∑
i=1

log
(
1 + exp

(−yi

(
T r

[
U (j)

(
U (−j)

)T
XT

(j)i

] + b
)))

. (8.69)

Let X̃(j)i = X(j)iU
(−j). Since T r[U (j)X̃

T
(j)i] = (vec(U (j)))T vec(X̃(j)i), we can

rewrite (8.69) into its vector format as follows:

min
U (j),b

M∑
i=1

log
(
1 + exp

(−yi

((
vec

(
U (j)

))T
vec(X̃(j)i) + b

)))
. (8.70)

By doing so, any optimization method applied to traditional LR can also be employed
to train an LTR. The overall training scheme is still an alternating optimization pro-
cedure, as depicted in Algorithm 7. In each iteration, we solve for U (j) while keeping
all other U (j)|dk=1,k �=j fixed.

8.4.2.1 Examples
In [39], the performance of an LTR is evaluated through two public datasets, namely
the FG-NET facial images dataset [40] and the Carnegie Mellon University’s Graph-
ics Lab human motion capture database [41]. Two metrics are employed to evaluate
the LTR classification performance. The first one is the area under the ROC curve
(AUC) [42]. More specifically, the MacroAUC (average on AUC of all the classes)
and the MicroAUC (the global calculation of AUC regardless of classes) are used.
The second one is the harmonic mean of precision and recall, called F1 score [42].
The Macro F1 (average on F1 scores of all the classes) and the Micro F1 (the global
calculation of F1 regardless of classes) are presented.

The rank of the weight tensor is determined by grid search. Tables 8.17 and 8.18
show the classification performance of LTR and other methods. It is observed that

288 CHAPTER 8 Tensor network algorithms for image classification

Table 8.17 Comparison on facial images.

Method MacroAUC MicroAUC Macro F1 Micro F1

LTR 0.7482 0.8692 0.5697 0.5717

SVR [45] 0.4956 0.6731 0.4073 0.3631

BLR [44] 0.5702 0.7984 0.4417 0.5231

hrTRR [43] 0.6153 0.8152 0.4568 0.4321

hrSTR [43] 0.6916 0.8250 0.5213 0.5037

orTRR [43] 0.5780 0.7756 0.3513 0.3231

orSTR [43] 0.5184 0.7555 0.3913 0.3114

Table 8.18 Comparison on motion data.

Method MacroAUC MicroAUC Macro F1 Micro F1

LTR 0.6976 0.9080 0.5218 0.5031

SVR [45] 0.5413 0.7231 0.4006 0.4268

BLR [44] 0.5609 0.7527 0.4332 0.4367

hrTRR [43] 0.6708 0.8344 0.4359 0.4135

hrSTR [43] 0.6684 0.8686 0.4965 0.4631

orTRR [43] 0.6594 0.8894 0.5063 0.4792

orSTR [43] 0.5517 0.7932 0.3993 0.4010

all of the tensorial approaches outperform their vector-based counterparts in terms
of the two kinds of evaluation metrics. Moreover, LTR outperforms the linear tensor
regression methods in the task of classification.

8.5 Conclusion
Many real-world data appear in a matrix or tensor format. In such circumstances,
extending the vector-based machine learning algorithms to their tensorial format has
recently attracted significant interest in the machine learning and data mining com-
munities since tensor algorithms can naturally utilize the multiway structure of the
original tensor data, which is believed to be useful in many machine learning applica-
tions. In this chapter, we have reviewed some tensorial extensions of two traditional
classifiers, namely SVM and LR. The classification performance enhancement is ob-
served in various tensorial data classification tasks. These advantages would be more
obvious in dealing with small-sample high-dimensional tensor classification prob-
lems due to the fact that collecting labeled data can be extremely expensive and time
consuming in many practical scenarios.

References 289

There are still some open problems in this area. First, for the determination of
tensor ranks, grid search is still the mainstream scheme for finding suitable ten-
sor ranks, which is computationally demanding and does not guarantee optimality.
Some works [46] have tried to explore the possibility of employing a probabilistic
model to determine the tensor ranks automatically. Second, the training algorithms
for tensor-based classifiers are mostly based on the alternating optimization proce-
dure. Although the algorithmic convergence is guaranteed, it is still time consuming.
A more efficient training scheme is still highly desired.

References
[1] Vladimir Vapnik, The Nature of Statistical Learning Theory, Springer Science & Busi-

ness Media, 2013.
[2] Raymond E. Wright, Logistic regression, 1995.
[3] Johan Håstad, Tensor rank is NP-complete, in: International Colloquium on Automata,

Languages, and Programming, Springer, Berlin, Heidelberg, 1989.
[4] Dacheng Tao, et al., Supervised tensor learning, in: Fifth IEEE International Conference

on Data Mining (ICDM’05), IEEE, 2005.
[5] Shuicheng Yan, et al., Multilinear discriminant analysis for face recognition, IEEE Trans-

actions on Image Processing 16 (1) (2006) 212–220.
[6] Dacheng Tao, et al., Asymmetric bagging and random subspace for support vector

machines-based relevance feedback in image retrieval, IEEE Transactions on Pattern
Analysis and Machine Intelligence 28 (7) (2006) 1088–1099.

[7] Jing Li, et al., Multitraining support vector machine for image retrieval, IEEE Transac-
tions on Image Processing 15 (11) (2006) 3597–3601.

[8] Lior Wolf, Hueihan Jhuang, Tamir Hazan, Modeling appearances with low-rank SVM,
in: 2007 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007.

[9] Deng Cai, et al., Support tensor machines for text categorization, 2006.
[10] A. Kale, A. Sundaresan, A.N. Rajagopalan, N.P. Cuntoor, A.K. Roy-Chowdhury, V.

Kruger, R. Chellappa, Identification of humans using gait, IEEE Transactions on Image
Processing 13 (9) (2004) 1163–1173.

[11] Jinguang Han, Bir Bhanu, Individual recognition using gait energy image, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 28 (2) (2005) 316–322.

[12] Vin De Silva, Lek-Heng Lim, Tensor rank and the ill-posedness of the best low-rank ap-
proximation problem, SIAM Journal on Matrix Analysis and Applications 30 (3) (2008)
1084–1127.

[13] Carla D. Martin, The rank of a 2×2×2 tensor, Linear and Multilinear Algebra 59 (8)
(2011) 943–950.

[14] Zhifeng Hao, et al., A linear support higher-order tensor machine for classification, IEEE
Transactions on Image Processing 22 (7) (2013) 2911–2920.

[15] Irene Kotsia, Weiwei Guo, Ioannis Patras, Higher rank support tensor machines for visual
recognition, Pattern Recognition 45 (12) (2012) 4192–4203.

[16] Tae-Kyun Kim, Roberto Cipolla, Canonical correlation analysis of video volume ten-
sors for action categorization and detection, IEEE Transactions on Pattern Analysis and
Machine Intelligence 31 (8) (2008) 1415–1428.

290 CHAPTER 8 Tensor network algorithms for image classification

[17] Saad Ali, Mubarak Shah, Human action recognition in videos using kinematic features
and multiple instance learning, IEEE Transactions on Pattern Analysis and Machine In-
telligence 32 (2) (2008) 288–303.

[18] Andrzej Cichocki, et al., Low-rank tensor networks for dimensionality reduction and
large-scale optimization problems: perspectives and challenges part 1, arXiv preprint,
arXiv:1609.00893, 2016.

[19] Yiming Yang, Xin Liu, A re-examination of text categorization methods, in: Proceedings
of the 22nd Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, 1999.

[20] Ulrich Schollwöck, The density-matrix renormalization group in the age of matrix prod-
uct states, Annals of Physics 326 (1) (2011) 96–192.

[21] Konstantinos Rapantzikos, Yannis Avrithis, Stefanos Kollias, Dense saliency-based spa-
tiotemporal feature points for action recognition, in: 2009 IEEE Conference on Computer
Vision and Pattern Recognition, IEEE, 2009.

[22] Alireza Fathi, Greg Mori, Action Recognition by Learning Mid-Level Motion Features,
2008 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2008.

[23] Haiping Lu, Konstantinos N. Plataniotis, Anastasios N. Venetsanopoulos, MPCA: Mul-
tilinear principal component analysis of tensor objects, IEEE Transactions on Neural
Networks 19 (1) (2008) 18–39.

[24] Sudeep Sarkar, et al., The humanID gait challenge problem: data sets, performance, and
analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (2) (2005)
162–177.

[25] Nikolaos V. Boulgouris, Konstantinos N. Plataniotis, Dimitrios Hatzinakos, Gait recog-
nition using linear time normalization, Pattern Recognition 39 (5) (2006) 969–979.

[26] Alex Krizhevsky, Geoffrey Hinton, Learning multiple layers of features from tiny images,
2009, p. 7.

[27] Christian Schuldt, Ivan Laptev, Barbara Caputo, Recognizing human actions: a local
SVM approach, in: Proceedings of the 17th International Conference on Pattern Recog-
nition, vol. 3, IEEE, 2004.

[28] Jssai Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich
vielen Veränderlichen, Journal für die reine und angewandte Mathematik (Crelles Jour-
nal) 1911 (140) (1911) 1–28.

[29] Irene Kotsia, Ioannis Patras, Support Tucker machines, in: CVPR 2011, IEEE, 2011.
[30] Yann LeCun, et al., Gradient-based learning applied to document recognition, Proceed-

ings of the IEEE 86 (11) (1998) 2278–2324.
[31] Cong Chen, et al., A support tensor train machine, in: 2019 International Joint Conference

on Neural Networks (IJCNN), IEEE, 2019.
[32] Lynn Houthuys, Johan AK Suykens, Tensor learning in multi-view kernel PCA, in: In-

ternational Conference on Artificial Neural Networks, Springer, Cham, 2018.
[33] Ivan V. Oseledets , SIAM Journal on Scientific Computing 33 (5) (2011) 2295–2317.
[34] Tom M. Mitchell, et al., Predicting human brain activity associated with the meanings of

nouns, Science 320 (5880) (2008) 1191–1195.
[35] Lifang He, et al., Dusk: a dual structure-preserving kernel for supervised tensor learn-

ing with applications to neuroimages, in: Proceedings of the 2014 SIAM International
Conference on Data Mining, Society for Industrial and Applied Mathematics, 2014.

[36] Kittipat Kampa, et al., Sparse optimization in feature selection: application in neuroimag-
ing, Journal of Global Optimization 59.2–3 (2014) 439–457.

[37] Cong Chen, et al., Kernelized support tensor train machines, arXiv preprint, arXiv:2001.
00360, 2020.

References 291

[38] Konstantinos Makantasis, et al., Tensor-based classification models for hyperspectral
data analysis, IEEE Transactions on Geoscience and Remote Sensing 56 (12) (2018)
6884–6898.

[39] Tan Xu, et al., Logistic tensor regression for classification, in: International Conference
on Intelligent Science and Intelligent Data Engineering, Springer, Berlin, Heidelberg,
2012.

[40] A. Agarwal, B. Triggs, I. Rhone-Alpes, F. Montbonnot, The FG-NET aging database,
http://www.fgnet.rsunit.com, 2010.

[41] Tommaso Piazza, et al., Predicting missing markers in real-time optical motion capture,
in: 3D Physiological Human Workshop, Springer, Berlin, Heidelberg, 2009.

[42] Tom Fawcett, An introduction to ROC analysis, Pattern Recognition Letters 27 (8) (2006)
861–874.

[43] Weiwei Guo, Irene Kotsia, Ioannis Patras, Tensor learning for regression, IEEE Transac-
tions on Image Processing 21 (2) (2011) 816–827.

[44] Sean M. O’brien, David B. Dunson, Bayesian multivariate logistic regression, Biometrics
60 (3) (2004) 739–746.

[45] Alex J. Smola, Bernhard Schölkopf, A tutorial on support vector regression, Statistics
and Computing 14 (3) (2004) 199–222.

[46] Le Xu, et al., Learning tensor train representation with automatic rank determination
from incomplete noisy data, arXiv preprint, arXiv:2010.06564, 2020.

http://www.fgnet.rsunit.com

	8 Tensor network algorithms for image classification
	8.1 Introduction
	8.2 Background
	8.2.1 Tensor basics
	8.2.2 Tensor decompositions
	8.2.2.1 Rank-1 tensor decomposition
	8.2.2.2 Canonical polyadic decomposition
	8.2.2.3 Tucker decomposition
	8.2.2.4 Tensor train decomposition

	8.2.3 Support vector machines
	8.2.4 Logistic regression

	8.3 Tensorial extensions of support vector machine
	8.3.1 Supervised tensor learning
	8.3.2 Support tensor machines
	8.3.2.1 Methodology
	8.3.2.2 Examples
	8.3.2.3 Conclusion

	8.3.3 Higher-rank support tensor machines
	8.3.3.1 Methodology
	8.3.3.2 Complexity analysis
	8.3.3.3 Examples
	8.3.3.4 Conclusion

	8.3.4 Support Tucker machines
	8.3.4.1 Methodology
	8.3.4.2 Examples

	8.3.5 Support tensor train machines
	8.3.5.1 Methodology
	8.3.5.2 Complexity analysis
	8.3.5.3 Effect of TT ranks on STTM classification
	8.3.5.4 Updating in site-k-mixed-canonical form
	8.3.5.5 Examples
	8.3.5.6 Conclusion

	8.3.6 Kernelized support tensor train machines
	8.3.6.1 Methodology
	8.3.6.2 Kernel validity of K-STTM
	8.3.6.3 Complexity analysis
	8.3.6.4 Examples
	8.3.6.5 Conclusion

	8.4 Tensorial extension of logistic regression
	8.4.1 Rank-1 logistic regression
	8.4.1.1 Examples

	8.4.2 Logistic tensor regression
	8.4.2.1 Examples

	8.5 Conclusion
	 References

