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Hysteresis is a ubiquitous phenomenon in magnetic materials; its modeling and identification are crucial for 
understanding and optimizing the behavior of electrical machines. Such machines often operate under uncertain 
conditions, necessitating modeling methods that can generalize across unobserved scenarios. Traditional 
recurrent neural architectures struggle to generalize hysteresis patterns beyond their training domains. This 
paper mitigates the generalization challenge by introducing a physics-aware recurrent neural network approach 
to model and generalize the hysteresis manifesting in sequentiality and history-dependence. The proposed 
method leverages ordinary differential equations (ODEs) governing the phenomenological hysteresis models to 
update hidden recurrent states. The effectiveness of the proposed method is evaluated by predicting generalized 
scenarios, including first-order reversal curves and minor loops. The results demonstrate robust generalization to 
previously untrained regions, even with noisy data, an essential feature that hysteresis models must have. The 
results highlight the advantages of integrating physics-based ODEs into recurrent architectures, including superior 
performance over traditional methods in capturing the complex, nonlinear hysteresis behaviors in magnetic 
materials. The codes and data related to the paper are at github.com/chandratue/HystRNN.

1. Introduction

Magnetic hysteresis is a widely observed phenomenon in ferromag-
netic and ferrimagnetic materials, where the change in magnetization 
response lags behind variations in the applied magnetic field. Specifi-
cally, hysteresis is characterized by a delay in the magnetic flux density 
(B) to changes in the applied magnetic field strength (H), exhibiting his-
tory dependence and nonlinearity [1,2]. The relationship between B and 
H fields is represented by a hysteresis curve , also known as the B-H 
curve (Fig. 1), which assists in quantifying hysteresis and the govern-
ing magnetization process during alterations in H. The hysteresis curve, 
when closed, forms a loop known as the hysteresis loop, which offers 
several insights into material behavior [3]; for instance, the area of the 
hysteresis loop signifies the energy dissipated [4] as heat during each 
cycle of magnetization and demagnetization [5].
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Accurate hysteresis modeling is pivotal in understanding and esti-
mating the operational efficiency of magnetic material-based devices. 
For instance, the efficiency of electrical machines is intrinsically linked 
to the precise modeling of the hysteresis characteristics exhibited by 
the material employed [6,7]. A robust hysteresis model would avoid 
the costly manufacturing of multiple prototypes. Mathematically, the 
primary objective of hysteresis modeling is to predict the sequence of B 
values corresponding to a given sequence of H values. However, the B-H 
relationship defies the mathematical definition of a single-valued func-
tion. Consequently, conventional function approximation techniques are 
unsuitable for modeling hysteresis as a function with domain H and 
codomain B [8].

Traditionally, phenomenological models are employed for magnetic 
hysteresis modeling to establish relations between the H and B fields 
[9]. Notable phenomenological models include the Preisach [10], Jiles–
Atherton [11], and Bouc–Wen model [12,13]. However, generalizing 

https://doi.org/10.1016/j.cpc.2025.109650
Received 7 June 2024; Received in revised form 25 February 2025; Accepted 25 April 2025 

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://orcid.org/0000-0003-2319-6221
http://orcid.org/0000-0002-6361-446X
http://orcid.org/0000-0002-0037-9327
http://orcid.org/0000-0002-0084-4372
http://orcid.org/0000-0001-9279-110X
http://orcid.org/0000-0001-9019-8935
http://orcid.org/0000-0002-2515-1441
https://github.com/chandratue/HystRNN
mailto:a.chandra@tue.nl
https://doi.org/10.1016/j.cpc.2025.109650
https://doi.org/10.1016/j.cpc.2025.109650
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2025.109650&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computer Physics Communications 314 (2025) 109650

2

A. Chandra, T. Kapoor, B. Daniels et al. 

Fig. 1. B-H magnetic hysteresis curves: (a) Major loop (b) First-order reversal curve (Red) (c) Minor loop (Red). The Blue and Red curves represent the data on which 
the recurrent neural models are trained and tested respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

these models across disciplines, fitting them to experimental data, and 
integrating them into other mathematical models pose challenges [14], 
such as sophisticated optimization techniques and increased computa-
tional burden [15].

To mitigate the limitations of phenomenological models, feed-
forward neural networks (FFNNs) have been employed for modeling 
magnetic hysteresis [16,17,5,18]. However, owing to the absence of a 
functional relationship between B and H fields, the traditional FFNN ap-
proach with input H and output B is inadequate. Instead, studies [17,5] 
propose using several magnetization states as inputs to the FFNN to train 
it. However, this approach is suboptimal due to two notable limitations. 
First, it lacks the sequential information and fails to capture interdepen-
dencies among output values, agnostic to the underlying physics of the 
problem. Second, this strategy exhibits limitations in generalizing be-
yond training data [19], hindering their broader applicability in tasks 
that demand reliable performance in unseen scenarios.

Recurrent neural network (RNN) and its advanced variants pose 
a natural framework for modeling the sequential hysteretic nature. 
Consequently, several studies have utilized its sequential character-
istics for magnetic hysteresis modeling, including but not limited to 
[8,20,21]. Still, the models employing traditional RNNs, gated recur-
rent unit (GRU) [22], and long-short-term memory (LSTM) [23] exhibit 
limitations in generalizing effectively to unseen H variations [24]. Even 
though these recurrent networks model the underlying relationship and 
predict hysteresis loops accurately in an interpolation task, achieving ro-
bust generalization remains an open problem [25]. This work posits that 
an optimal neural hysteresis model must demonstrate reasonable accu-
racy in generalization, effectively predicting B sequences for unseen H 
sequences.

A possible approach to achieve generalization is to enforce the recur-
rent architecture to incorporate the underlying dynamics. An efficient 
way to represent sequential dynamics involves representation through 
ordinary differential equations (ODEs) or dynamical systems, excelling 
in modeling diverse, intricate and nonlinear phenomena [26,27]. This 
work aims to employ a system of ODEs to update the hidden states of the 
recurrent architecture to encapsulate physical attributes of the under-
lying magnetic material. Recently, ODE based recurrent architectures 
have shown significant success in machine learning and artificial in-
telligence by handling the exploding and vanishing gradient problem 
effectively with high expressivity [28–30].

This work proposes a physics-aware recurrent neural network, hys-
teresis recurrent neural network (HystRNN). The proposed network 
embeds the hysteretic nature within the ODE formulation by leverag-
ing phenomenological differential hysteresis models. Phenomenological 
models like Bouc–Wen [31] and Duhem [32] utilize the absolute value 
function to represent the underlying dynamics. By incorporating the ab-
solute value function, the proposed method aims to effectively capture 
the shape of the hysteresis loop, and facilitate robust generalization, 
preserving symmetry and structure [33]. The main contributions of this 
paper are summarized as follows,

• To the best of the authors’ knowledge, this is the first work to ad-
vocate neural differential equations for modeling and generalizing 
magnetic hysteresis.

• This work proposes a physics-aware recurrent neural network, 
HystRNN, merging the potentials of recurrent neural architectures 
with traditional differential hysteresis models.

• HystRNN outperforms the recurrent and gated neural architectures 
in generalizing the hysteresis model to unseen magnetic field vari-
ations.

• The proposed method is empirically shown to model hysteresis and 
generalize to unseen tasks while handling noise showcasing robust-
ness.

The rest of the paper is structured as follows. Section 2 discusses 
related works to this paper in the literature. Section 3 presents the 
challenge mitigated in this paper and discusses generalization in the con-
text of magnetic hysteresis modeling. Section 4 presents the proposed 
method and the corresponding ODEs. Section 5 validates the proposed 
method through a series of numerical experiments. Finally, Section 6
collates this study’s key findings and implications.

2. Related works

This section outlines the relevant studies concerning recurrent neu-
ral architectures for modeling magnetic hysteresis, ODE-based recurrent 
architectures, and generalization studies within neural differential equa-
tions.

Several studies have utilized the sequential characteristics of recur-
rent neural architectures for modeling magnetic hysteresis. In particular, 
[34–36], among others, used recurrent neural networks to model the 
nonlinearity. Additionally, works have employed advanced gated vari-
ants of RNNs to model the nonlinearity, such as LSTM-based networks 
[37–39] and GRU-based networks [40–42]. This work also employs a 
recurrent-based architecture to model magnetic hysteresis. However, 
the aforementioned studies are confined to prediction in the training 
domain, whereas this work focuses on generalization by predicting in 
out-of-domain scenarios.

RNN architectures incorporating ODEs and dynamical systems for 
hidden state updates have been utilized for diverse engineering applica-
tions [43–45]. These physics-aware networks have further been proved 
to mitigate the exploding and vanishing gradient problem [29] and be 
universal function approximators [46].

ODE-based recurrent networks have exhibited the potential to gen-
eralize the learned model to out-of-distribution prediction scenarios. 
[47,48] employed a second-order ODE-based recurrent network to ex-
tend the applicability of physics-informed machine learning by extrapo-
lating the solutions of partial differential equations. However, this work 
aims to predict trajectories of the hysteresis dynamics without relying 
on retraining or transfer learning methodologies [49,50] to predict the 
quantity of interest in a generalized domain.
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Fig. 2. Sequence of magnetization and demagnetization for a magnetic material: (a) H sequence (b) B sequence. The Blue and Red curves represent the data on which 
the recurrent methods are trained and tested respectively. The Black curve behind the shaded region represents the dynamics unseen to the recurrent methods.

The next section presents the notion of generalization in modeling 
magnetic hysteresis, introducing major, minor and first-order reversal 
curves.

3. Generalization of hysteresis models

Traditional supervised machine learning methodologies employed to 
model magnetic hysteresis train the model for input-output data pairs 
(H𝑖, B𝑖) ∈ 1, where 1 ≤ 𝑖 ≤ N, 𝑖 ∈ ℤ and N is the number of training 
samples. The trained model is then tested on (H𝑘 , B𝑘) ∈ 2, where 1 ≤
𝑘 ≤M, 𝑘 ∈ℤ and M is the number of testing samples. Traditionally, 2 ⊂1, with H𝑖 ≠ H𝑘. However, this prediction reduces to an interpolation 
task [41]. In contrast, this work focuses on training the model for (H𝑖, 
B𝑖) ∈ 1 and predicting a hysteresis trajectory for (H𝑘, B𝑘) ∈ 2, where 
2 ⊈ 1, and 2 ∩ 1 = 𝜙. Here, 𝜙 denotes the null set. Precisely, the 
models are trained on the major loop (major ) as shown in Fig. 1a. Then, 
the trained model is tested for two different scenarios. First the FORCs 
(FORC) shown by the Red curve in Fig. 1b and second the minor loop 
(minor ) presented by the Red curve in Fig. 1c.

Modeling FORCs and minor hysteresis loops play a significant role in 
analyzing magnetic materials. FORC modeling reveals intricate interac-
tions, enabling the differentiation between magnetization components 
that can be reversed and those that cannot. This knowledge is pivotal 
in optimizing magnetic devices like memory and sensor technologies 
[51–54]. Minor hysteresis loop modeling complements this by provid-
ing insights into localized variations in magnetic behavior.

The notion that simulating FORC and minor entails to a generaliza-
tion task is further described using Fig. 2. In Fig. 2a and 2b, the sequence 
of H and B fields are shown, respectively. The Blue curve represents the 
training data (H vs B is major ), and the Red curve represents the region 
in which the prediction is sought (minor in this case). The Black curve 
behind the shaded region signifies the history that the material has gone 
through, which is the series of magnetization and demagnetization that 
is unknown while testing. Hence, this task amounts to extrapolation or 
predicting in a generalized scenario.

The next section presents the proposed method and the ODEs em-
ployed to predict the generalized scenario.

4. Method

The proposed method, HystRNN, utilizes a recurrent structure akin 
to RNNs, with the difference being in the hidden state update. Hys-
tRNN draws similarities to deep learning architectures that employ the 
concept of neural differential equations [26] to model the dynamics of 
hidden states. Neural differential equations, by definition, model the 
evolution of the hidden states through differential equations. Contrary 
to traditional deep learning architectures that model the hidden state 
update discretely, neural differential equations employ a differential 
equation-based strategy to evolve the hidden states continuously, pre-
serving long-term dependencies and effectively mitigating the vanishing 
and exploding gradient problem typical with recurrent neural network-
based methods [28]. The computed hidden states enhance the training 

stability by remaining within bounds and maintaining a robust repre-
sentation of sequential data.

In HystRNN, the characteristics of neural differential equations are 
incorporated through motivations from the differential models of hys-
teresis. Examples of such phenomenological models include but are not 
limited to the Bouc–Wen [12,13] and Duhem models [32]. Instead of 
using recurrent and gated neural architectures to model hysteresis, Hys-
tRNN employs neural differential equations to update the hidden states. 
In particular, an important characteristic of these models is the incor-
poration of an absolute value function in the hidden state update to 
model the hysteresis nonlinearity. These absolute valued components 
play a crucial role in capturing hysteretic characteristics by allowing 
the model to account for different responses during magnetization and 
demagnetization and accounting for the effects of history on the sys-
tem’s behavior. Including the phenomenological model-inspired ODE 
containing the absolute valued terms enhances the ability of the model 
to capture the intricate dynamics of hysteresis and provides a more re-
alistic representation of the observed phenomena.

The method is graphically illustrated in Fig. 3. The approach involves 
two inputs, H and B−1, mapped to B, where B−1 denotes the previous 
B state. The modeling process begins by collecting Ne number of mea-
sured data points for the sequence (H𝑖, B𝑖) ∈ major in the data space, 
where 1 ≤ 𝑖 ≤Ne, and 𝑖 ∈ℤ. These data are collected by first uniformly 
sampling the desired H field, which assists in obtaining the information 
between H−1 and H. The uniformly sampled H field is applied to the ma-
terial (or its physical model) to generate the B field. In this paper, the 
B field does not follow uniform stepping owing to the nonlinear hys-
teretic property of magnetic materials. Subsequently, 𝐮 ∶= (H𝑗 , B𝑘) and 
B𝑗 are taken as the input and output of HystRNN, respectively, where 
2 ≤ 𝑗 ≤Ne, 1 ≤ 𝑘 ≤Ne − 1, 𝑘 = 𝑗 − 1, and 𝑗, 𝑘 ∈ℤ. The number of train-
ing points is denoted by N = Ne − 1. While sharing certain similarities 
with some FFNN architectures employed for modeling hysteresis, this 
training approach diverges by incorporating a recurrent relationship 
that captures longer-time dynamics and output dependencies, which are 
absent in FFNNs. Next, the hidden states of HystRNN are updated in the 
latent space through the following second-order ODE, 

𝐲′′ = 𝜎1
(
𝐖1𝐲 +𝟏𝐲′ +𝐕1 ◦ 𝐮+ 𝐛1

)
+ 𝜎2

(
𝐖2|𝐲|2 +𝟐|𝐲′|2

+𝐕2 ◦ |𝐮|2 + 𝐛2
)
.

(1)

Here, the hidden state of the HystRNN is denoted by 𝐲 = 𝐲(𝑡) ∈ℝ𝑚. 
𝐲′ indicates a derivative of 𝐲 with respect to 𝑡, while 𝐲′′ indicates a 
second-order derivative of 𝐲 with respect to 𝑡. 𝐖1,𝐖2,𝟏,𝟐 ∈ℝ𝑚×𝑚, 
and 𝐕1,𝐕2 ∈ ℝ𝑚×𝑁 are the weight matrices, and 𝑡 corresponds to the 
sequence index at which the training data has been collected. 𝐮 = 𝐮(𝑡) ∈
ℝ𝑁×2 is the input to HystRNN. The dimension of 𝐮 is N × 2, with N 
rows and 2 columns. The N rows represent the number of data sam-
ples, and 2 columns consist of H𝑗 data in the first column and B𝑘 data 
in the second column. The notation ◦ denotes that the product of the 
corresponding weight matrix and 𝐮 is performed column-wise, and the 
columns of the resulting matrices are summed to obtain the product. 
The bias vectors are denoted by 𝐛1,𝐛2 ∈ ℝ𝑚. The activation functions 
𝜎1 ∶ ℝ ↦ ℝ and 𝜎2 ∶ ℝ ↦ ℝ are taken to be 𝜎1(𝑢) = 𝜎2(𝑢) = tanh(𝑢). 
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Fig. 3. Proposed recurrent neural network, HystRNN, for modeling magnetic hysteresis. 

Other activation functions constraining the output to specific ranges as 
the tanh activation function can also be considered [55]. Furthermore, 
the absolute value function is mathematically defined as

|𝑢| ={
𝑢 if 𝑢 ≥ 0,
−𝑢 if 𝑢 < 0.

The definition of the absolute value function remains consistent 
throughout the paper.

The proposed hidden state update (1) leverages a differential model. 
One of the phenomenological differential models characterizing hystere-
sis is the Duhem model [32]. The Duhem model is used to describe 
hysteresis by establishing a rate-dependent differential relationship be-
tween input (H) and output (B) as follows,

B′ = 𝛼|H′|H− 𝛽|H′|B+ 𝛾H′, (2)

where 𝛼, 𝛽, and 𝛾 represent parameters of the model. The model cap-
tures hysteresis characteristics, such as memory effects and nonlinearity 
making it a foundational model in various physical systems. Inspired 
by this, the proposed formulation (1) extends the Duhem model by in-
troducing a second-order differential equation incorporating linear and 
nonlinear terms. Specifically, it includes weighted contributions of the 
state 𝐲, its derivative 𝐲′, and the input 𝐮, along with nonlinear terms 
(|𝐲|2, |𝐲′|2, |𝐮|2) to capture complex hysteretic behaviors. This formula-
tion aims to enhance the model’s ability to generalize hysteresis pat-
terns, making it suitable for diverse applications in engineering and 
physics.

To solve the second order ODE (1), the substitution 𝐳 = 𝐲′(𝑡) ∈ℝ𝑚 is 
performed, reducing (1) to a system of first-order ODEs

𝐲′ = 𝐳,

𝐳′ = 𝜎1
(
𝐖1𝐲 +𝟏𝐳 +𝐕1 ◦ 𝐮+ 𝐛1

)
+ 𝜎2

(
𝐖2|𝐲|2 +𝟐|𝐳|2

+𝐕2 ◦ |𝐮|2 + 𝐛2
)
.

(3)

Discretizing the system of ODEs (3) using an explicit scheme for 0 <
Δ𝑡 < 1 leads to

𝐲𝑛 = 𝐲𝑛−1 + Δ𝑡𝐳𝑛,

𝐳𝑛 = 𝐳𝑛−1 +Δ𝑡𝜎1
(
𝐖1𝐲𝑛−1 +𝟏𝐳𝑛−1 +𝐕1 ◦ 𝐮𝑛 + 𝐛1

)
+Δ𝑡𝜎2

(
𝐖2|𝐲𝑛−1|2 +𝟐|𝐳𝑛−1|2 +𝐕2 ◦ |𝐮𝑛|2 + 𝐛2

)
.

(4)

Finally, to compute the output prediction B̂ ∈ℝ𝑛, a linear transfor-
mation B̂ = 𝐲𝑛 and  ∈ ℝ𝑛×𝑚 is carried out following the solution of 
the system of two equations in (4). Once HystRNN is trained, it can 
be used to make predictions for unseen H sequences while testing the 
model, for instance, the sequence {HN+1,…, HM}, as shown in Fig. 3.

The next section presents the numerical experiments to validate the 
proposed method.

5. Numerical experiments

A series of numerical experiments are presented, encompassing dif-
ferent generalization scenarios. The magnetic material, nonoriented 
electrical steel (NO27) is modeled for each experiment. The data for the 
modeled hysteresis loops are acquired using the Preisach model for an 
Epstein frame [56,57]. The Preisach model is adjusted to adhere to the 
IEC standard [58], and the core is assembled using 16 strips of NO27-
1450H material. Further details about the Preisach model are provided 
in Appendix A. Additionally, it is imperative to normalize the data be-
fore feeding it into the deep learning models [59]. Measured data are 
normalized using the min-max scaling technique, as elucidated in Ap-
pendix B.

HystRNN is compared with traditional recurrent networks, RNN, 
LSTM, and GRU for generalization experiments owing to their intrinsic 
sequentiality and memory dependence characteristics. The methods are 
compared using four metrics. The first is the L2-norm, measuring the Eu-
clidean distance between predicted and actual values. The second metric 
is the explained variance score, which indicates prediction accuracy, 
capturing variance proportion. The third metric is the maximum error, 
which detects significant prediction discrepancies as potential outliers. 
Finally, mean absolute error is chosen as the fourth metric assessing the 
average differences between predictions and actual values for overall 
precision. A lower L2-norm, maximum error, and mean absolute error 
coupled with higher explained variance signify a better performance. 
Metric expressions are detailed in Appendix C.

The common hyperparameters for all the experiments consist of an 
input size of 2, a single hidden layer with a dimension of 32, and an 
output size of 1. The optimization process involves the utilization of the 
Adam optimizer, with a learning rate of 0.01. Training is conducted for 
10000 epochs, with a batch size of 1. The hyperparameter Δ𝑡 is chosen 
to be 0.05. The hyperparameter Δ𝑡 used in HystRNN refers specifically 
to the time-stepping in the numerical solution of the ODE and does not 
correspond to any physical time scale in the problem, as magnetic hys-
teresis is inherently a function of the input excitation history rather than 
explicit time evolution. Uniformity in hyperparameter settings is main-
tained across all experiments. Furthermore, the hyperparameters are the 
same for RNN, LSTM, and GRU to ensure fair comparisons.

For all the numerical experiments, the software and hardware envi-
ronments used for performing the experiments are as follows: Ubuntu 
20.04.6 LTS, Python 3.9.7, Numpy 1.20.3, Scipy 1.7.1, Matplotlib 
3.4.3, PyTorch 1.12.1, CUDA 11.7, and NVIDIA Driver 515.105.01, i7 
CPU, and NVIDIA GeForce RTX 3080. The codes and data related to 
the paper are at github.com/chandratue/HystRNN.

https://github.com/chandratue/HystRNN
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Table 1
The generalization performance assessed using the metrics: L2-norm relative error, explained variance error, maximum error, and mean absolute error for experiment 
1, where Bmax = 1.7 T. For these metrics, higher (respectively, lower) values are favored for (↑) (respectively, (↓)). The implication of arrows remains consistent for 
all the following Tables.

Test case L2-norm (↓) Explained variance score (↑) Max error (↓) Mean absolute error (↓)
RNN LSTM GRU HystRNN RNN LSTM GRU HystRNN RNN LSTM GRU HystRNN RNN LSTM GRU HystRNN 

FORC1
5.0204 0.8525 0.7764 0.2198 -0.0721 0.1081 0.2007 0.8252 5.3597 2.4089 2.0075 1.2030 2.9888 1.1967 1.5550 0.6149 

FORC2
6.4877 0.5255 0.4701 0.3085 -0.2545 0.1875 0.2395 0.8844 5.3484 1.8428 1.8177 1.2371 3.6038 0.9327 0.8723 0.7613 

minor1 5.3506 1.4382 1.8028 0.0438 -0.1013 0.0298 0.0776 0.9839 2.7641 1.7098 1.8925 0.3108 1.4877 0.7142 0.7797 0.1258 
minor2 12.3671 1.5785 2.0563 0.0786 -2.7046 0.0248 0.0673 0.9661 3.7491 1.5726 1.7486 0.3630 1.9703 0.6544 0.7341 0.1450 

5.1. Train and test criteria

The models are trained only for the data on the major loop (rep-
resented by a Blue loop in Fig. 1a). They are tested for two different 
generalization tasks: predicting first-order reversal curves (FORCs, rep-
resented by the Red curve in Fig. 1b) and minor loops (represented by 
a Red loop in Fig. 1c). The trained models are tested in two distinct sce-
narios involving the prediction of two FORCs and two minor loops. A 
sequence length of 595 is chosen to train major . For FORC prediction, 
testing sequence of length 199 is utilized. The prediction of minor loops 
involves a testing sequence with a length of 399 each. The choice of se-
quence lengths depends on the data generated from the Preisach model.

During training both the data for H𝑗 and B𝑗 are available at sequence 
step 𝑗 and are utilized to train the networks. Specifically, the network 
must map the data for H𝑗 and B𝑗−1 to B𝑗 in a supervised manner. How-
ever, while testing, the objective is to infer the material’s response, and 
hence, no prior knowledge of B𝑗 is available for a given H𝑗 . Hence, 
while testing, the learned representation is utilized to map H𝑗 and B𝑗−1
to B𝑗 . This B𝑗 is then used with H𝑗+1 (which is available being the input 
field) to predict B𝑗+1. This process is repeated auto-regressively to pre-
dict the minor loops and FORCs. Concretely, the HystRNN model trained 
on major is evaluated on FORC and minor . This testing sequence is ini-
tiated with an input (H𝑗 , B𝑗 ) ∈ FORC∕minor , where both H𝑗 , and B𝑗 are 
provided and B𝑗+1 is predicted. The output generated from this step, 
B𝑗+1, becomes the subsequent input along with H𝑗+1, the known mag-
netization for the following sequence. Such testing strategy is essential 
as practical scenarios lack prior knowledge about the B values on FORC
or minor . Thus, the sole available information for generalization stems 
from the predicted solution in FORC or minor . All reported results are 
obtained for randomly selected excitation signals from the shaded region 
of Fig. 2, demonstrating the model’s effectiveness in predicting 𝐶minor

and 𝐶FORC over random input fields.

5.2. Generalization

Four numerical experiments, differing by the maximum permitted 
magnetic flux density of the electrical machine (Bmax), are presented 
in this section to evaluate the generalization potential of HystRNN. 
The selection of different Bmax values correspond to the material’s spe-
cific usage context, demonstrating the proposed methodology’s viability 
across a spectrum of electrical machines. Precisely, Bmax values of 1.7 T, 
1.5 T, 1.3 T, and 1.25 T are chosen.

Performing experiments and exploring the generalization capabili-
ties of the model for varying Bmax values is crucial for understanding and 
optimizing the performance and efficiency of different and diverse ma-
chines. For instance, machines requiring lower magnetic flux densities of 
Bmax = 1.25 T are typically used as high-efficiency induction motors [60] 
in industrial settings for tasks like driving conveyor belts, pumps, and 
compressors. Meanwhile, high-performance applications, for instance, 
particle accelerators [61] and nuclear magnetic resonance [62], demand 
higher magnetic flux densities with Bmax = 1.7 T for their operation. The 
experiments are presented for Bmax in this spectrum, and the correspond-
ing performance for generalized scenarios is examined. Furthermore, as 

Bmax increases, the slope of the hysteresis curve becomes more steep, 
which increases the complexity for deep learning models [63,64].

For each of these experiments, a total of four cases are executed. 
The first and second test cases correspond to estimating FORC, denoted 
by FORC1

and FORC2
respectively. Two distinct FORCs are chosen to 

study the effect of the distance between the origin of the FORC and 
Bmax. The third and fourth test cases are performed for predicting minor 
loops, denoted by minor1 and minor2 respectively. For testing the trained 
model on a random excitation corresponding to FORC or a minor loop, 
the excitation is re-applied to trace the major loop until the maximum 
B value from which the FORC or minor loop is to be predicted. The re-
tracing of the major loop need not be trained or tested as the model used 
that data to train the model earlier, and the predictions for B fields are 
already available for the major loop.

Detailed performance metrics for HystRNN are outlined in Tables 1, 
2, D.1, and D.2 corresponding to experiments 1, 2, 3, and 4, respec-
tively. The tables also facilitate a comprehensive comparative analysis 
of RNN, LSTM, and GRU. The metrics notably emphasize the superior 
performance of HystRNN across all numerical experimentation scenar-
ios.

5.3. Experiment 1

For the first experiment, Bmax = 1.7 T. The origin of FORC1,2
is taken 

to be 1.25 T and 0.5 T respectively. The chosen maximum B value of 
minor1,2 is 1.25 T and 1.1 T. The predictions for the model, the ground 
truth, and the training data are presented in Fig. 4.

In Fig. 4, the top two rows display the predictions of FORC1,2
respec-

tively, wherein training exclusively occurs on major , indicated by the 
Blue color. Predictions are represented by the Black color, and ground 
truth is represented by the Red color. The colors are kept consistent for 
all the following experiments. The top two rows show that RNN (Fig. 4a, 
4e), LSTM (Fig. 4b, 4f), and GRU (Fig. 4c, 4g) fail drastically to capture 
the shape of the FORC accurately. In contrast, HystRNN effectively cap-
tures the structure and symmetry of reversal curves as shown in Fig. 4d 
and 4h.

The last two rows show the prediction for minor loop minor1,2 . For 
this case also predictions from RNN (Fig. 4i, 4m), LSTM (Fig. 4j, 4n) 
and GRU (Fig. 4k, 4o) are inaccurate. Neither LSTM nor GRU could 
form a closed loop for the predicted trajectory, posing a major chal-
lenge to compute the energy loss without a closed region, as energy 
loss depends on the surface area of the hysteresis loop. In contrast, the 
proposed method HystRNN predicts the structure of the loop and effi-
ciently models the minor loop (Fig. 4l, 4p). The accuracy of predicting 
𝐶minor is influenced by its similarity to the major loop. While model 
performance naturally decreases for more distinct patterns, HystRNN 
outperforms standard recurrent architectures in generalizing hysteresis 
behavior, even in low-data regimes.

5.4. Experiment 2

For the second experiment, Bmax = 1.25 T. The origin of FORC1,2
is 

taken to be 1.2 T and 1.0 T respectively. The chosen maximum B value 
of minor1,2 is 1.0 T and 0.8 T. The predictions for the model, the ground 
truth, and the training data are presented in Fig. 5.
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Fig. 4. Experimental vs predicted hysteresis trajectories for experiment 1, where Bmax = 1.7 T. Columns represent solutions for different methods, RNN(4a, 4e, 4i, 4m), 
LSTM (4b, 4f, 4j, 4n), GRU (4c, 4g, 4k, 4o), HystRNN (4d, 4h, 4l, 4p). The Blue curve represents the training loop major . The Red curve represents the ground truth 
for FORC∕minor , and the Black curve represents the model’s prediction. Top two rows: predictions for FORC1

and FORC2
respectively. Bottom two rows: predictions 

for minor1 and minor2 respectively. The colors are used consistently for the following figures.

The top two rows of Fig. 5 present that RNN (Fig. 5a, 5e), LSTM 
(Fig. 5b, 5f) and GRU (Fig. 5c, 5g) fail to predict the trajectory of FORC 
by a huge margin. On the other hand, HysRNN shows close agreement 
with the ground truth for predicting FORC1,2

(Fig. 5d, 5h). Also, the 
prediction of HystRNN for FORC1

is slightly better than for FORC2
, ex-

emplifies that the model performs better when the origin of FORC is 
closer to Bmax. A possible reason for this behavior could be the resem-
blance in the trajectories of major and a FORC from a higher origin 
value.

The last two rows of Fig. 5 present the predictions of minor1,2 re-
spectively. For this case, RNN (Fig. 5i, 5m), LSTM (Fig. 5j, 5n) and GRU 
(Fig. 5k, 5o) almost form a loop-like shape; however, they are very off 

from compared to the ground truth. HystRNN, on the other hand, cap-
tures the loop shape efficiently, as presented in Fig. 5l and 5p.

In Fig. 5l and 5p, for the testing of minor loops, the excitation 
signals initiate from the lower left and increase toward the upper 
right. Once the upper right is reached, the excitation is applied con-
tinuously in the negative direction, decreasing back to the lower left. 
Due to the inherent approximation in the model and the challenges 
of generalization, slight discrepancies arise in the predicted trajecto-
ries, particularly in the lower left region, resulting in the observed 
cross-curve effect. This phenomenon results from minor deviations in 
the learned hysteresis behavior when extrapolating beyond the training 
domain.
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Fig. 5. Experimental vs predicted hysteresis trajectories for experiment 2, where Bmax = 1.25 T. Columns represent solutions for different methods, RNN (5a, 5e, 
5i, 5m), LSTM (5b, 5f, 5j, 5n), GRU (5c, 5g, 5k, 5o), HystRNN (5d, 5h, 5l, 5p). Top two rows: predictions for FORC1

and FORC2
respectively. Bottom two rows: 

predictions for minor1 and minor2 respectively.

Table 2
The generalization performance assessed using the metrics: L2-norm relative error, explained variance error, maximum error, and mean absolute error for experiment 
2, where Bmax = 1.25 T.

Test case L2-norm (↓) Explained variance score (↑) Max error (↓) Mean absolute error (↓)
RNN LSTM GRU HystRNN RNN LSTM GRU HystRNN RNN LSTM GRU HystRNN RNN LSTM GRU HystRNN 

FORC1
5.3234 1.2308 0.6863 0.0109 0.1625 0.3566 0.4230 0.9891 2.6134 1.4922 1.0994 0.2370 1.6253 0.6871 0.5433 0.0563 

FORC2
6.4035 0.9569 0.5098 0.0115 0.1576 0.3834 0.4693 0.9924 2.6084 1.2985 0.9055 0.2520 1.7484 0.5796 0.4587 0.0583 

minor1 7.5971 1.6295 0.8069 0.0320 0.1497 0.2977 0.3268 0.9844 2.3788 1.3344 0.9456 0.1882 1.4996 0.5974 0.4396 0.0916 
minor2 11.8293 2.1787 0.8859 0.1283 0.0616 0.2769 0.3091 0.9267 2.2669 1.1784 0.7925 0.2923 1.5243 0.5639 0.3653 0.1443 

5.4.1. Ablation on train-test size

This section presents an ablation study for HystRNN varying the train 
and test size for the experiment Bmax = 1.25 T. The experiment evalu-
ates the accuracy of HystRNN as a function of N and M (the number of 
training and testing data points, respectively). Specifically, the hyper-

parameters N and M are varied systematically, and the corresponding 
errors are observed. The training data size is varied discretely across 
{300,600,900,1200}, while the testing data size for FORCs is varied 
across {100,200,300,400}, resulting in a total of 16 combinations. The 
testing data size of minor loops is taken twice as the FORC in each of the 
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Table 3
The generalization performance for Bmax = 1.25 T on training data size (N) of 300 and varying testing data size (M) of FORC in the range 100, 200, 300, and 400. 
The testing data size of minor loops is twice as FORC test size.

Test case L2-norm (↓) Explained variance score (↑) Max error (↓) Mean absolute error (↓)
100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400 

FORC1
0.0105 0.0154 0.0216 0.0258 0.9895 0.9879 0.9861 0.9849 0.2386 0.2378 0.2396 0.2398 0.0504 0.0752 0.0940 0.1042 

FORC2
0.0628 0.0179 0.0378 0.0455 0.9479 0.9932 0.9915 0.9906 0.3222 0.2537 0.2537 0.2551 0.1515 0.0869 0.1343 0.1480 

minor1 0.0498 0.0191 0.0120 0.0113 0.9679 0.9863 0.9887 0.9888 0.2938 0.1373 0.1143 0.1189 0.1036 0.0696 0.0550 0.0532 
minor2 0.3646 0.0997 0.0647 0.0636 0.8253 0.9267 0.9366 0.9364 0.5738 0.2513 0.1939 0.2034 0.2296 0.1278 0.1044 0.1035 

Table 4
The generalization performance for Bmax = 1.25 T on training data size (N) of 600 and varying testing data size (M) of FORC in the range 100, 200, 300, and 400. 
The testing data size of minor loops is twice as FORC test size.

Test case L2-norm (↓) Explained variance score (↑) Max error (↓) Mean absolute error (↓)
100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400 

FORC1
0.0168 0.0210 0.0211 0.0275 0.9876 0.9862 0.9861 0.9846 0.2387 0.2399 0.2392 0.2402 0.0795 0.0920 0.0923 0.1075 

FORC2
0.0218 0.0320 0.0322 0.0392 0.9926 0.9922 0.9921 0.9908 0.2543 0.2540 0.2539 0.2550 0.0978 0.1229 0.1229 0.1359 

minor1 0.0163 0.0128 0.0126 0.0114 0.9875 0.9883 0.9885 0.9886 0.1173 0.1147 0.1109 0.1255 0.0644 0.0569 0.0567 0.0535 
minor2 0.0838 0.0707 0.0698 0.0671 0.9332 0.9344 0.9344 0.9338 0.2174 0.1905 0.1948 0.2054 0.1175 0.1090 0.1082 0.1062 

Table 5
The generalization performance for Bmax = 1.25 T on training data size (N) of 900 and varying testing data size (M) of FORC in the range 100, 200, 300, and 400. 
The testing data size of minor loops is twice as FORC test size.

Test case L2-norm (↓) Explained variance score (↑) Max error (↓) Mean absolute error (↓)
100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400 

FORC1
0.0515 0.0186 0.0149 0.0160 0.9752 0.9869 0.9882 0.9882 0.2838 0.2394 0.2387 0.2389 0.1459 0.0848 0.0721 0.0758 

FORC2
0.0173 0.0178 0.0111 0.0128 0.9914 0.9928 0.9898 0.9908 0.2563 0.2544 0.2547 0.2546 0.0793 0.0856 0.0526 0.0578 

minor1 0.0125 0.0165 0.0232 0.0211 0.9879 0.9866 0.9834 0.9839 0.1342 0.1263 0.1676 0.1578 0.0545 0.0642 0.0759 0.0727 
minor2 0.1122 0.1005 0.1571 0.1386 0.9143 0.9253 0.9049 0.9084 0.2766 0.2585 0.3434 0.3201 0.1352 0.1272 0.1582 0.1499 

Table 6
The generalization performance for Bmax = 1.25 T on training data size (N) of 1200 and varying testing data size (M) of FORC in the range 100, 200, 300, and 400. 
The testing data size of minor loops is twice as FORC test size.

Test case L2-norm (↓) Explained variance score (↑) Max error (↓) Mean absolute error (↓)
100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400 

FORC1
0.0213 0.0198 0.0116 0.0207 0.9861 0.9865 0.9890 0.9866 0.2403 0.2391 0.2398 0.2394 0.0932 0.0887 0.0599 0.0902 

FORC2
0.0362 0.0255 0.0161 0.0136 0.9916 0.9929 0.9933 0.9916 0.2547 0.2541 0.2553 0.2540 0.1311 0.1084 0.0811 0.0644 

minor1 0.0122 0.0143 0.0274 0.0168 0.9886 0.9877 0.9863 0.9856 0.1137 0.1106 0.1622 0.1266 0.0555 0.0605 0.0859 0.0655 
minor2 0.0656 0.0812 0.0983 0.1256 0.9363 0.9309 0.9351 0.9124 0.1921 0.2092 0.2450 0.2975 0.1051 0.1166 0.1266 0.1430 

16 cases. The results for these cases are presented in Tables 3 – 6. The 
results indicate that the performance of HystRNN remains consistent 
across different data configurations, with only minor deviations. The 
model successfully generalizes the magnetic hysteresis pattern across 
all tested scenarios.

5.4.2. Comparison with Duhem model of hysteresis

This section compares the performance of HystRNN with the Duhem 
model. Specifically, the Duhem model (2) is employed to model the ma-
jor loop, and the learned model is subsequently used to predict FORCs 
and minor loops—analogous to the approach used for HystRNN.

Implementing the Duhem model involves preparing the required fea-
ture terms and enabling the estimation of the model coefficients through 
regression techniques. Concretely, the objective is to determine the co-
efficients 𝛼, 𝛽, and 𝛾 in (2) given the feature set |H′|H, |H′|B, and H′, 
with the target label B′ . These coefficients are estimated using standard 
least-squares regression and Lasso regression [65], implemented via the 
scikit-learn library [66]. The intercept term is excluded from train-
ing to maintain consistency with the form of the Duhem model, which 
does not include a constant coefficient. The learned coefficients for least-
squares regression are 𝛼 = 0.402, 𝛽 = 0.087, and 𝛾 = 0.325, while for 
Lasso regression, they are 𝛼 = 0.379, 𝛽 = 0.069, and 𝛾 = 0.326.

Once obtained in this explicit form, the Duhem model is used to 
predict B fields in the generalization task by numerically solving the 
resulting implicit ODE using Euler’s method. The results of this exper-
iment, presented in Table 7, demonstrate the Duhem model’s inability 
to generalize to novel excitation patterns, particularly FORCs and minor 
loops when trained on a single major loop. Specifically for both the re-
gression methods, Table 7 presents the poor generalization performance 
across different test cases (up to two orders of inferior performance than 
HystRNN in L2-norm, as presented in Table 2). The results show that 
least-square and Lasso regression exhibit inferior accuracy compared to 
HystRNN, with least-square regression achieving slightly lower L2-norm 
and MAE than Lasso. This highlights the generalization capability of the 
proposed HystRNN model compared to regression methods applied to 
the Duhem model.

5.4.3. Comparison with vanilla ODE model

This section compares HystRNN to its ODE formulation to assess 
whether generalization to minor loops and FORCs can be achieved solely 
by fitting the vanilla version of the proposed ODE model. Specifically, 
the vanilla linear second-order ODE formulation corresponding to (1)
could be written as,
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Table 7
The generalization performance for Bmax = 1.25 T using least-square regression and Lasso regression for the Duhem 
model. EVS and MAE refer to explained variance score and mean absolute error, respectively.

Test case Least-square regression Lasso regression 
L2-norm (↓) EVS (↑) Max error (↓) MAE (↓) L2-norm (↓) EVS (↑) Max error (↓) MAE (↓)

FORC1
2.2478 0.2945 1.5241 0.7967 2.2794 0.2875 1.5363 0.8029 

FORC2
2.1048 0.3302 1.3804 0.7529 2.1298 0.3235 1.3900 0.7576 

minor1 2.3261 0.2003 1.5187 0.7234 2.3857 0.2003 1.5300 0.7344 
minor2 2.6041 0.1834 1.2902 0.6202 2.6518 0.1825 1.2962 0.6274 

Fig. 6. Experimental vs predicted hysteresis trajectories in case of noisy training data for HystRNN, where Bmax = 1.25 T. Rows represent solutions for different noise 
levels, 0.5% Gaussian noise (6a, 6b, 6c, 6d), 1% Gaussian noise (6e, 6f, 6g, 6h), 1.5% Gaussian noise (6i, 6j, 6k, 6l), 2% Gaussian noise (6m, 6n, 6o, 6p). Columns 
represent predictions for FORC1

, FORC2
, minor1 , and minor2 from left to right.

B′′ = 𝛼1B + 𝛼2B
′ + 𝛼3H+ 𝛼4|B|2 + 𝛼5|B′|2 + 𝛼6|H|2 + 𝛼7, (5)

where 𝛼1, …, 𝛼7 are learnable parameters. As in the previous section, 
these parameters are estimated through the least-squares and Lasso re-
gression by fitting the ODE model for major loop data. The trained model 
is then evaluated on FORCs and minor loops to assess its generalization 

capability. The results, presented in Table 8, demonstrate that this ap-

proach fails to generalize effectively, performing even worse than the 
Duhem model fitted via regression and exhibiting higher errors and sig-

nificantly negative explained variance scores, indicating poor dataset 
generalization.
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Table 8
The generalization performance for Bmax = 1.25 T using least-square regression and lasso regression for the vanilla ODE. 
EVS and MAE refer to explained variance score and mean absolute error, respectively.

Test case Least-square regression Lasso regression 
L2-norm (↓) EVS (↑) Max error (↓) MAE (↓) L2-norm (↓) EVS (↑) Max error (↓) MAE (↓)

FORC1
8557.0675 -8654.4295 119.9668 33.9983 9064.8328 -9196.6606 119.9668 35.4125 

FORC2
7.6944 -7.6641 21.9505 0.7179 10.2647 -10.5528 25.6381 0.7504 

minor1 207.5543 -93.3281 15.3325 6.1792 206.8274 -90.5530 18.5410 6.2922 
minor2 317.3377 -147.3552 15.1147 6.0583 286.9747 -136.9473 13.9428 5.7018 

Table 9
The generalization performance for Bmax = 1.25 T on varying ODE step sizes of 0.005, 0.01, 0.02, and 0.1.

Test case L2-norm (↓) Explained variance score (↑) Max error (↓) Mean absolute error (↓)
0.005 0.01 0.02 0.1 0.005 0.01 0.02 0.1 0.005 0.01 0.02 0.1 0.005 0.01 0.02 0.1 

FORC1
1.0096 0.0109 0.0276 0.0201 -0.0272 0.9891 0.9745 0.9865 1.3509 0.2370 0.4207 0.2386 0.6672 0.0563 0.0903 0.0890 

FORC2
0.9949 0.0115 0.0457 0.0219 -0.0611 0.9924 0.9828 0.9915 1.3774 0.2520 0.4336 0.2587 0.6316 0.0583 0.0936 0.0962 

minor1 0.8637 0.0320 0.0187 0.0159 0.1388 0.9844 0.9900 0.9876 1.0587 0.1882 0.1456 0.1506 0.4543 0.0916 0.0672 0.1062 
minor2 0.8597 0.1283 0.0691 0.0944 0.1514 0.9267 0.9340 0.9290 0.9018 0.2923 0.2091 0.2729 0.3601 0.1443 0.1067 0.1195 

Table 10

The generalization performance for Bmax = 1.25 T on DC-bias data.

Test case L2-norm (↓) Explained variance score (↑) Max error (↓) Mean absolute error (↓)
RNN LSTM GRU HystRNN RNN LSTM GRU HystRNN RNN LSTM GRU HystRNN RNN LSTM GRU HystRNN 

FORC1
4.9107 1.2323 0.6664 0.0207 0.9815 0.9182 0.9097 0.9863 2.5139 1.4930 1.0782 0.2394 1.5539 0.6875 0.5377 0.0910 

FORC2
5.9152 0.9582 0.4960 0.0261 0.9700 0.9180 0.8895 0.9928 2.5086 1.2993 0.8844 0.2540 1.6755 0.5801 0.4546 0.1095 

minor1 6.9548 1.6321 0.7814 0.0136 0.3135 0.8914 0.8662 0.9879 2.2892 1.3353 0.9247 0.1128 1.4292 0.5980 0.4347 0.0590 
minor2 10.8439 2.1834 0.8483 0.0803 0.2135 0.8873 0.8606 0.9302 2.1878 1.1794 0.7717 0.2040 1.4551 0.5647 0.3596 0.1160 

The results suggest that the ability to generalize hysteresis is not 
solely attributed to the ODE formulation but rather to the interplay 
between the recurrent architecture and the hidden state updates in 
HystRNN. The recurrent structure allows the model to learn complex 
hysteresis patterns dynamically, enabling robust generalization to pre-
viously unseen FORCs and minor loops. In contrast, even when opti-
mized using regression, the ODE-based approach lacks the adaptability 
required for such generalization.

5.4.4. Ablation on the ODE step size

This Section discusses the impact of ODE step size and the compu-
tational cost of HystRNN. An experiment is performed by varying Δ𝑡
across the values {0.005,0.01,0.02,0.1} to evaluate the impact of Δ𝑡
on HystRNN’s performance. The results in Table 9 demonstrate that 
the method remains robust across different step sizes, achieving a close 
approximation in generalization tasks and consistently outperforming 
RNN, LSTM, and GRU. These results indicate that the choice of Δ𝑡 does 
not significantly impact the smoothness of the solution. However, there 
is no universal trend for selecting Δ𝑡, as the optimal value depends on 
the specific problem and the prediction target—whether FORCs or mi-
nor loops.

Additionally, HystRNN requires 8.86 ± 0.22 seconds on average to 
train, whereas GRU takes 640.82 ± 11.15 seconds for the same number 
of epochs. The observed run time demonstrates that HystRNN in addi-
tion of being accurate is also more computationally efficient than GRU. 
The computational time is averaged over five runs, with the training 
time recorded in each run. The reported mean and standard deviation 
further validate the efficiency of HystRNN.

5.4.5. Noisy data

This section presents numerical experiments evaluating the robust-
ness of the proposed method in the presence of noisy training data. 
Noisy or corrupted magnetic measurement data may present a chal-
lenge in modeling magnetic materials. In practice, noise can arise from 
diverse sources, such as uncontrolled experimental conditions, inherent 

Fig. 7. L2-norm varying with Gaussian noise: HystRNN for the second experi-
ment.

limitations of measurement devices, and external interferences. A mod-
eling approach invariant to a certain amount of noise is more suited 
to capture real-world scenarios, enhancing the applicability of the de-
veloped model. By subjecting HystRNN to rigorous noise assessment, 
the experiments present its capacity to maintain accuracy amidst noisy 
data collection scenarios, enhancing its reliability and applicability in 
the characterization of magnetic materials under realistic conditions.

In particular, the training data for experiment 2, which is for Bmax =
1.25 T, is subjected to noise before training HystRNN. Experiments for 
other recurrent models are not performed for noisy training data as they 
could not be generalized even for noise-free data. For HystRNN, the data 
measured for the major loop is corrupted with four distinct noise levels. 
Specifically, Gaussian noise with 0.5, 1, 1.5 and 2 percent is applied. 
Subsequently, FORCs and minor loops are tested similarly to those in 
the previous experiments. The origin of FORC1,2

is kept same as in ex-
periment 2, to be 1.2 T and 1.0 T respectively. The chosen maximum B 
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Fig. 8. Experimental vs predicted hysteresis trajectories for DC-bias experiment, where Bmax = 1.25 T. Columns represent solutions for different methods, RNN(8a, 
8e, 8i, 8m), LSTM(8b, 8f, 8j, 8n), GRU(8c, 8g, 8k, 8o), HystRNN(8d, 8h, 8l, 8p). Top two rows: predictions for FORC1

and FORC2
respectively. Bottom two rows: 

predictions for minor1 and minor2 respectively.

value of minor1,2 is 1.0 T and 0.8 T. The experiment results are presented 
in Fig. 6 and 7.

Fig. 6 presents the performance of HystRNN in case of noisy train-
ing data. Specifically, the first two columns portray the prediction for 
the first-order reversal curves, while the latter two depict minor loop 
predictions. The top two rows of Fig. 6 exhibit noise levels of 0.5 and 
1 percent, while the bottom two rows show 1.5 and 2 percent noise 
levels, respectively. Despite increasing the noise levels in the training 
data, a slight discrepancy is observed in prediction accuracy compared 
to the noise-free conditions outlined in Table 2. Notably, the accuracy 
remains consistent under an order of magnitude change. Additionally, 
no post-processing or smoothing procedure has been applied to the pre-
dicted curve. The predictions presented in Fig. 6 are directly obtained 
from the proposed approach, HystRNN, without any additional modifi-
cations. The smooth appearance of the predicted curve is an inherent 
result of the model’s ability to accurately capture the underlying hys-
teresis dynamics while regularizing high-frequency noise in the data.

Fig. 7 illustrates the L2-norm for all four predictions for first-
order reversal curves and minor loops across different noise levels 
(0.5%,1%,1.5%,2%) for HystRNN. There is a consistent trend of increas-
ing error at the highest noise level in all cases. Notably, the errors for 
the first-order reversal curves do not spike significantly with increased 
noise, highlighting the method’s robustness.

5.4.6. Performance on DC-bias

In real-world scenarios, excitation signals often contain DC-bias, 
making it essential to assess whether the proposed HystRNN model can 
generalize effectively under such conditions. This section presents an 
additional experiment to evaluate the robustness of HystRNN against 
these perturbations.

To introduce DC-bias into the testing data, a bias function is added 
to the excitation signal given by 0.1 sin(2𝜋𝑡) + 0.001 ⋅  (0,1), where 
 (0,1) represents Gaussian noise with zero mean and unit variance 
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and 𝑡 represents the data sequence step. The modified excitation is then 
used to test the predictive performance of all trained models.

The results, summarized in Fig. 8 and Table 10, indicate that Hys-
tRNN maintains high predictive accuracy despite the introduction of 
DC-bias. The table compares the generalization performance of differ-
ent machine learning models (RNN, LSTM, GRU, and HystRNN) on 
DC-bias data with max(B) = 1.25 T using four metrics. HystRNN con-
sistently outperforms other models, achieving the lowest L2-norm, max, 
and mean absolute error while maintaining the highest explained vari-
ance score. The reported errors remain nearly unchanged, demonstrat-
ing the robustness of the model. In contrast, conventional recurrent 
architectures—RNN, LSTM, and GRU—suffer from a similar low ac-
curacy, reinforcing previous findings that these methods struggle with 
generalization when trained on limited data.

Overall, these experiments highlight that HystRNN remains resilient 
in the presence of DC-bias and retains its capability to generalize com-
plex hysteresis patterns that inherently include high-order harmonics. 
These findings further emphasize the superiority of HystRNN over con-
ventional recurrent architectures in modeling and predicting hysteresis 
behavior under realistic conditions.

5.5. Experiment 3

For the third experiment, Bmax = 1.3 T. The origin of FORC1,2
is taken 

to be 1.0 T and 0.75 T respectively. The chosen maximum B value of 
minor1,2 is 1.0 T and 0.75 T. The results (Fig. D.1) and numerical com-
parisons in tabular form (Table D.1) are presented in Appendix D and 
validate the superiority of the proposed method compared to the tradi-
tional recurrent networks.

5.6. Experiment 4

For the fourth experiment, Bmax = 1.5 T. The origin of FORC1,2
is 

taken to be 1.25 T and 0.75 T respectively. The chosen maximum B value 
of minor1,2 is 0.9 T and 0.7 T. The results (Fig. D.2) and numerical com-
parisons in tabular form (Table D.2) are supplement in Appendix D for 
conciseness.

6. Conclusions

This paper introduced a physics-aware recurrent neural network, 
HystRNN, aimed to advance magnetic hysteresis modeling within ex-
trapolated regions. The proposed method is inspired from phenomeno-
logical hysteresis models for hidden state update of recurrent neural net-
works. HystRNN was validated by predicting first-order reversal curves 
and minor loops after training the model solely with major loop data. 
The outcomes underscore the superiority of HystRNN in adeptly captur-
ing intricate nonlinear dynamics, outperforming conventional recurrent 
neural architectures such as RNN, LSTM, and GRU on various metrics. 
The performance of HystRNN is further validated by its performance on 
noisy training data, showcasing robustness for upto 2% Gaussian noise. 
This performance is attributed to its capacity to assimilate sequential 
information, history dependencies, and hysteretic features, ultimately 
achieving generalization capabilities.
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Appendix A. Data generation through Preisach model of 
hysteresis

Preisach model of hysteresis is used to generate the data used for this 
work. It is a phenomenological model that describes the hysteresis effect 
by a set of hysteresis operators, scattered on a triangular domain called 
the Preisach plane, which are scaled by a weight function, following

𝑓 (𝑡) =∬
𝛼≥𝛽 

𝑃 (𝛼, 𝛽)�̂�𝛼,𝛽𝑤(𝑡)𝑑𝛼𝑑𝛽 (6)

where 𝑤 is the input and 𝑓 is the output. The moment of time is rep-
resented by 𝑡 and 𝛼& 𝛽 are two switching variables. 𝑃 is the Preisach 
weight function, and �̂� represents the hysteresis operators.

In this work the static scalar Preisach model is used with a weight 
function fitted on a set of measurement data. The data are measured 
by a Brockhaus MPG 200 soft-magnetic material tester, using an Ep-
stein frame calibrated to correspond with the IEC standard as shown in 
Fig. A.1. A set of concentric hysteresis loops up to a maximum of 1.7 T is 
measured for NO27-1450H, obtained under quasi-DC excitation. Here, 
quasi-DC indicates that the rate of change of the magnetic flux density 
is controlled such that any eddy current fields are negligible, and the 
static hysteresis behavior is obtained. The Epstein sample strips used 
are obtained using spark eroding and cut in the rolling direction.

Fig. A.1. The MPG 200 desk by Brockhaus, with Epstein frame and sample strips 
shown on the right.

Appendix B. Data normalization

This work utilized min-max scaling to transform measured data to 
fall within a specific range, between -1 and 1. The purpose of this nor-
malization is to bring all the features to a similar scale, important for 
recurrent architectures, as their training is sensitive to the scale of input 
data. The min-max scaling is defined as,

𝐮scaled =
𝐮− 𝐮min

𝐮max − 𝐮min
⋅ 2 − 1



Computer Physics Communications 314 (2025) 109650

13

A. Chandra, T. Kapoor, B. Daniels et al. 

where 𝐮min and 𝐮max represent the minimum and maximum value in 
the original dataset 𝐮, respectively. Dividing by (𝐮max − 𝐮min) scales the 
data to the range [0,1], and multiplying by 2 and subtracting 1 scales 
the data to the range [−1,1]. The following expression is used to revert 
the scaled data back to its original values

𝐮original =
𝐮scaled + 1

2 
⋅ (𝐮max − 𝐮min) + 𝐮min

Appendix C. Error metrics

The error metrics used in this study are described as follows,
𝐿2-norm: The relative 𝐿2-norm of B̂ with respect to ground truth B

is ‖B̂−B‖2‖B‖2 . Here, ‖B̂ − B‖2 is the Euclidean distance between B̂ and B, 
and ‖B‖2 is the Euclidean norm of B.

Explained variance score: The second metric, explained variance 
score is given by

1 −
∑𝑛

𝑖=1(B𝑖 − B̂𝑖)2∑𝑛
𝑖=1(B𝑖 − B̄)2

where 𝑛 is the number of data points, B𝑖 represents the ground truth at 
the 𝑖th data point, B̂𝑖 represents the predicted value at the 𝑖th data point, 
and B̄ represents the mean of the ground truth.

Max error: The third metric is the maximum absolute error computed 
by, max𝑛

𝑖=1 |B𝑖 − B̂𝑖|. Here, |.| represents the absolute value function.
Mean absolute error: The fourth metric, mean absolute error is given 

by, 1
𝑛 
∑𝑛

𝑖=1 |B𝑖 − B̂𝑖|, where the symbols have their usual meaning.

Appendix D. Results for experiment 3 and 4

For experiment 3, the predictions for the model, the ground truth, 
and the training data are presented in Fig. D.1. As presented in the first 
two rows by Fig. D.1a, D.1e, D.1b, D.1f, D.1c, and D.1g predictions by 
RNN, LSTM and GRU models exhibit a lack of accuracy. In contrast, 

Fig. D.1. Experimental vs predicted hysteresis trajectories for experiment 3, where Bmax = 1.3 T. Columns represent solutions for different methods, RNN(D.1a, 
D.1e, D.1i, D.1m), LSTM (D.1b, D.1f, D.1j, D.1n), GRU(D.1c, D.1g, D.1k, D.1o), HystRNN(D.1d, D.1h, D.1l, D.1p). Top two rows: predictions for FORC1

and FORC2
respectively. Bottom two rows: predictions for minor1 and minor2 respectively.
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Table D.1

The generalization performance assessed using the metrics: L2-norm relative error, explained variance error, maximum error, and mean absolute error for experiment 
3, where Bmax = 1.3 T.

Test case L2-norm (↓) Explained variance score (↑) Max error (↓) Mean absolute error (↓)
RNN LSTM GRU HystRNN RNN LSTM GRU HystRNN RNN LSTM GRU HystRNN RNN LSTM GRU HystRNN 

FORC1
6.0907 0.9692 0.6625 0.0342 0.0534 0.3290 0.3649 0.9705 3.2184 1.5661 1.2194 0.3878 1.9992 0.7105 0.6247 0.1296 

FORC2
7.2661 0.6720 0.4775 0.0377 0.0295 0.3691 0.4183 0.9785 3.2126 1.2972 0.9456 0.4055 2.1660 0.5806 0.5249 0.1371 

minor1 10.2305 1.6042 0.9009 0.0301 -0.0216 0.2699 0.2909 0.9774 2.7703 1.3222 0.9947 0.1857 1.7520 0.5923 0.4619 0.0855 
minor2 18.2528 2.3069 1.0498 0.1580 -0.1629 0.2528 0.2785 0.8780 2.5696 1.1249 0.8045 0.3066 1.7901 0.5446 0.3673 0.1491 

Fig. D.2. Experimental vs predicted hysteresis trajectories for experiment 4, where Bmax = 1.5 T. Columns represent solutions for different methods, RNN (D.2a, 
D.2e, D.2i, D.2m), LSTM (D.2b, D.2f, D.2j, D.2n), GRU (D.2c, D.2g, D.2k, D.2o), HystRNN (D.2d, D.2h, D.2l, D.2p). Top two rows: predictions for FORpredictedC1

and 
FORC2

respectively. Bottom two rows: predictions for minor1 and minor2 respectively.

predictions of HystRNN for the reversal curve are notably precise, as evi-
denced in Fig. D.1d and D.1h. The final two rows within Fig. D.1 present 
that HystRNN accurately captured the characteristics of the minor loop, 
as showcased in Fig. D.1l and D.1p. Prediction by GRU manages to cap-
ture a resemblance of the loop, although not entirely, as revealed in 
Fig. D.1k and D.1o. On the other hand, LSTM and RNN perform poorly, 

failing to capture the intricate structure of the minor loop, as depicted 
in Fig. D.1j, D.1n, D.1i, and D.1m respectively.

For experiment 4, the predictions for the model, the ground truth, 
and the training data are presented in Fig. D.2. Predictions of the re-
versal curve show agreement with the nature observed in previous 
experiments. In this case, max(𝐵), origin of FORC2

, and maximum B 
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Table D.2

The generalization performance assessed using the metrics: L2-norm relative error, explained variance error, maximum error, and mean absolute error for experiment 
4, where Bmax = 1.5 T.

Test case L2-norm (↓) Explained variance score (↑) Max error (↓) Mean absolute error (↓)
RNN LSTM GRU HystRNN RNN LSTM GRU HystRNN RNN LSTM GRU HystRNN RNN LSTM GRU HystRNN 

FORC1
0.7673 0.8556 0.9330 0.1007 0.2957 0.1675 0.3407 0.9017 1.7979 1.9572 1.8971 0.7491 0.9147 0.9642 0.9957 0.3258 

FORC2
0.4968 0.5942 0.5268 0.1164 0.3331 0.2209 0.3718 0.9330 1.2239 1.3492 1.3040 0.7725 0.7094 0.7686 0.7253 0.3304 

minor1 1.3719 1.3723 4.0550 0.0784 0.2318 0.0903 0.0640 0.9224 1.1112 1.1767 1.7688 0.2394 0.4981 0.5022 0.9177 0.1306 
minor2 1.7923 1.6721 6.0749 0.2257 0.2291 0.0907 0.0157 0.7743 0.9550 0.9988 1.5820 0.2991 0.4396 0.4261 0.911 0.1717 

value of minor2 vary significantly, posing a challenge for both LSTM 
and GRU. However, HystRNN outperforms them for each case, as shown 
in Fig. D.2. The results underscore the performance of HystRNN as, for 
neither of the cases, the accuracy of LSTM or GRU is comparable to the 
proposed method.

Data availability

I have shared the link to data and code in the revised manuscript
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