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Abstract

Introduction
In the Netherlands, approximately five thousand people are dependent on maintenance hemodialysis (HD) treatment. The
one-year mortality of this patient population in 2021 was as high as 18%. A significant contributor to this high mortality
and burden on HD patients is the high incidence of intradialytic hypotension (IDH), which can lead to hypoperfusion
of vital organs. Despite advances in fluid management, including technical innovations such as relative blood volume
(RBV) monitoring and bioimpedance measurements, the incidence of IDH remains unacceptably high. Therefore, the
primary goal of this master thesis is to assess the feasibility of machine learning-based real-time prediction of IDH using
patient data from HD sessions at the LUMC with the aim to enhance individualized fluid assessment. In this study, the
performance of a recurrent neural network, known for its ability to retain time-varying information, will be compared to
other machine learning models.

Methods
Patient demographics and intradialytic measurements, such as blood pressure and RBV measurements, were obtained
from all HD patients of the LUMC with an age ≥18 years. The two definitions of IDH that were assessed were defined as
IDH1, a drop of ≥20 mmHg compared to the pre-dialytic SBP and IDH2, is an absolute intradialytic SBP of ≤90 mmHg.
Performance of a logistic regression, random forest and extreme gradient boosting (XGBoost) model were assessed and
compared to that of a recurrent neural network (RNN). The models provided a prediction of IDH at every 30 minutes
during HD treatment. Feature importances were determined for the logistic regression, random forest and XGBoost and
two subanalyses were conducted to assess predictions made 60 minutes ahead instead of 30 minutes, and the effect of
removal of blood pressure measurements on the prediction.

Results
37,025 HD sessions of 436 patients were included in the analysis of IDH1 and 43,722 sessions of 441 patient in the
analysis of IDH2. The Area under the Curve (AUC) of the Receiver Operating Characteristics (ROC) curve for the
logistic regression, random forest, XGBoost and RNN were 0.80, 0.81, 0.81 and 0.87 respectively for the prediction of
IDH1 and 0.93, 0.84, 0.86 and 0.92 for IDH2. At the highest clinically acceptable false positive rate (FPR) of 0.1, the
RNN demonstrated a precision, recall, and specificity of 0.56, 0.59, and 0.90, respectively, for IDH1, and 0.10, 0.76, and
0.90 for IDH2, and the logistic regression 0.63, 0.50 and 0.90 for IDH1 and 0.14, 0.80 and 0.90 for IDH2.

Conclusion
The machine learning algorithms showed the ability to learn from HD data to make a prediction of IDH at different
intradialytic timepoints. However, the current models do not meet the criteria for clinical implementation due to their
limited performance metrics. Evaluation of the subanalyses revealed that the RNN had the ability to detect patterns that
did not only rely on the blood pressure. Therefore, the prospect of real-time predictions of IDH appears promising with
further refinement of the RNN and the expansion of the database by incorporating additional features and sessions.
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List of Abbreviations

AUC Area under the curve

BCM Body composition monitor

BIA Bioimpedance analysis

BMI Body mass index

CKD Chronic kidney disease

ECV Extracellular volume

EHR Electronic health record

ESKD End stage kidney disease

FPR False positive rate

GRU Gated recurrent unit

HD Hemodialysis

ICV Intracellular volume

IDH Intradialytic hypotension

RBV Relative blood volume

RNN Recurrent neural network

ROC Receiver operating characteristic

SBP Systolic blood pressure

SQL Structured query language

TPR True positive rate

UF Ultrafiltration

UFR Ultrafiltration rate

UFV Ultrafiltration volume

XGBoost Extreme gradient boosting

IDH1 Intradialytic hypotension defined as a drop of ≥ 20 mmHg compared to the pre-dialytic systolic
blood pressure

IDH2 Intradialytic hypotension defined as an absolute intradialytic systolic blood pressure
≤90 mmHg

iii



Contents

Preface and Acknowledgements i

Abstract ii

List of Abbreviations iii

1 Introduction 1
Hemodialysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Fluid assessment of hemodialysis patients in the LUMC . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Intradialytic hypotension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Machine learning for the prediction of intradialytic hypotension . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4
Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Decision tree classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Recurrent neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Methods 7
Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Model development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Results 11
Data collection and session characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Subanalyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Discussion 17

6 Future perspectives 21

A SQL Query example 27

B Castor database 28

C Features 30

D Recurrent neural network architecture 32

E Hyperparameter search 33

F Results subanalyses 37

iv



Introduction

Hemodialysis
In the Netherlands, approximately 18 thousand patients were receiving renal replacement therapy in the year 2021 [1].
Of these patients, five thousand were dependent on hemodialysis (HD), signifying that in this year, 299 out of 1 million
individuals from the Dutch population were on maintenance HD. The one-year mortality of this patient population was as
high as 18%, which is consistent with the European one-year mortality of HD patients that was reported to be 15.6% [1,
2]. Two major factors contributing to these high mortality rates arise from the challenges regarding fluid management of
patients on HD. The first factor is the high occurrence of cardiovascular disease, with presentations such as heart failure
and stroke due to atherosclerosis. This cardiovascular risk is elevated in end-stage kidney disease (ESKD) patients due
to excessive fluid accumulation and the associated hypertension [3]. The second factor related to the high mortality rate
and burden on HD patients is the high prevalence of dialysis-induced hypotension, which has a reported incidence of up
to 40% [4–8].

Addressing the complexities of fluid management in HD patients challenging. Water in the human body is distributed
over the intracelullar volume (ICV) and the extracellular volume (ECV), of which the latter consists of intravascular
plasma and interstitial fluid [9, 10]. As 90% of the body sodium appears in the ECV, this volume is greatly determined
by the total sodium content. In renal failure, sodium excretion is inadequate and the resulting increase in ECV leads to
hypertension and fluid overload. When maintained for a longer period of time, it is known to cause pulmonary congestion,
left ventricular hypertrophy and dilatation and is associated with a higher risk of mortality [11–14]. Consequently, in
addition to removal of toxins from the blood, one of the main goals of HD treatment is the removal of excess ECV in
order to achieve the adequate “dry-weight” of the patient. This process is known as ultrafiltration (UF) with dry weight
referring to the ideal post-dialytic weight [15].

Fluid assessment of dialysis patients in the LUMC
Achieving optimal fluid management requires a multiparametric approach. In current practice regarding fluid management
at the HD department in the LUMC, the estimation of dry weight and required ultrafiltration rates (UFRs) are based on
the interdialytic weight gain, clinical signs, pre- and intradialytic blood pressure measurements, continuous relative blood
volume (RBV) monitoring and measurements with the Body Composition Monitor (BCM) on indication (Figure 1).

The BCM provides a measure of the amount of overhydration as measured by bioimpedance. This monitor applies
bioimpedance analysis (BIA) by applying a small current through skin electrodes and measuring the total body impedance.
Impedance, being inversely related to body water volumes, serves as a metric for assessing both intracellular and
extracellular fluid. To perform these calculations, the BCM integrates mathematical modeling and specific equations
that consider variables such as body height [16]. BIA and has been proven to be very useful in following changes in ECV
over time, but is less reliable as an individual measurement of ECV as a consequence of the many factors of influence on
the measurements [17, 18].

Figure 1: Current clinical practice for dry weight estimation. Includes from left to right: interdialytic weight gain, blood pressure
measurements and clinical signs of edema, relative blood volume monitoring and bioimpedance analysis.

1



With RBV monitoring, the changes in blood volume are continuously measured during HD. Relative blood volume can
be measured by use of several blood components, such as hemoglobin, hematocrit or plasma proteins and is calculated
as a percentage by the following formula [19, 20]

RBV (%) = ((C0 − Ct) − 1) × 100
where C0 is the concentration of the blood compartment at the start of HD and Ct the concentration at any point during
HD. Taking hematocrit as example, the monitor measures the blood levels by absorption of near-infrared light at the
extracorporal circuit [21]. RBV monitoring is considered to be useful for determining safe margins for fluid removal and
avoid IDH [22]. However, studies on RBV guided UF and IDH occurrence remain controversial [19].

At every individual HD session, the manually set UFR determines the amount of ECV that is extracted from the
intravascular space. When water is removed from the intravascular space, the changes in hydrostatic and oncotic
pressure gradients cause a shift from interstitial fluid to the vascular space (see Figure 2b for a schematic overview).
Nevertheless, should the UFR exceed the vascular refilling rate, there will be a decline in cardiac output due to reduced
venous return [23]. Initially, the UF induced hypovolemia will activate compensatory mechanisms such as an increase in
the heart rate [24]. However, when these mechanisms prove insufficient, the blood pressure will drop and patients will
experience intradialytic hypotension (IDH) which can be accompanied by symptoms such as dizziness, syncope, muscle
cramps, nausea, chest pain, abdominal pain and a feeling of restlessness. [4, 25]. Despite the multiparametric approach
that incorporates different monitoring techniques, IDH is still encountered frequently at the dialysis department in the
LUMC.

(a) Hemodialysis and ultrafiltration. (b) Vascular refilling.

Figure 2: Schematic presentation of hemodialysis with ultrafiltration (a) and vascular refilling (b).

Intradialytic hypotension
The effects of IDH extent beyond the evident discomfort during HD sessions. IDH can lead to hypoperfusion of vital
organs, such as the heart, brain and kidney [9]. This can have many consequences, such as faster deterioration of
the residual kidney function, increased risk of myocardial stunning and cerebral ischemia [9, 26]. A recent study has
shown that ischemic brain injury, caused by reduced brain blood flow, can already occur within one single dialysis session
[27]. In patients with frequent occurrence of IDH, an association has been found with an increased 5 years risk of
new-onset dementia and on the long term, high occurrence of IDH is associated with increased risk of mortality [4, 28].
Identified factors that are of influence on the occurrence of IDH are presence of diabetes, certain medications, life style,
malignancies, presence of heart failure, autoimmune overactivity, hemoglobine levels, hypoalbumina, older age, female
sex lower body weight and longer dialysis vintage (time on dialysis) [24, 29–31]. The assessment and prevention of IDH
are complicated by the lack of consensus on a clear definition. Depending on the used definition, the prevalence of IDH
ranges from 5% to 40% [7].

Interventions that are frequently applied when patients are experiencing hypotension, are positioning of the patient in
Trendelenburg, administration of a bolus of saline, reduction of the UFR or termination of UF or dialysis treatment [25].
However, frequent early termination of dialysis treatment will result in the patient receiving an inadequate dialysis dose
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and untreated fluid accumulation. This indicates the complexity of managing the fluid balance in HD patients. On the
one hand, high UFRs are required to prevent cardiovascular disease by removal of all excess ECV within the treatment
duration, but on the other hand, high UFRs can lead to IDH, which can result in direct negative health consequences
and premature termination of HD treatment.

The amount of factors associated with IDH and the many monitoring techniques that are applied for prevention
emphasize the complexity of assessing individualized risks. When determining the target UF volume (UFV) and UFR,
clinicians can not take all these factors in consideration. Therefore, a possible explanation for the high occurrence of IDH
is the large amount of parameters that are of influence in this process and the many hidden interconnections between
these parameters. Consequently, assessment of the risk of IDH is too complex. An individualized fluid assessment that
is able to incorporate a large amount of patient variables would therefore be of great added value in assessing a patients
risk of IDH. This might be achieved by application of machine learning based prediction models.

Machine learning for the prediction of intradialytic hypotension
Machine learning is a branch of artificial intelligence that can be applied to discover complex patterns within large
quantities of data [32]. Machine learning algorithms can generate predictions by learning from data and refining various
models through optimization techniques. Applications of machine learning in nephrology have shown to be successful
in predicting acute kidney injury and kidney disease progression rates [33, 34]. While application of machine learning in
the prediction of IDH is a relatively new field of research, an advantage of HD treatment is that large quantities of data
are available as result of the high treatment frequency per patient and the fact that data is automatically measured and
stored. This large amount of data lends itself well to the development of machine learning algorithms.

While many papers applying machine learning methods for diagnosis and prediction of chronic kidney disease (CKD)
progression have been published over the last 20 years, prediction of IDH with machine learning has mostly appeared in
literature in the last five years. In one of the first publications on the prediction of IDH, linear regression was applied on
279 dialysis sessions to analyze the interaction between variables and IDH and a deep neural network was developed in
order to find the variables of influence in the occurrence of IDH [35]. The specific outcome of this model was occurrence
of rapid IDH, defined as IDH occurring within the first 120 after HD initiation. The most successful model was a 4-factor
interaction model with UFV, UFR, UF coefficient and hypertension comorbidity. However, according to the authors, the
accuracy of the deep neural network was not sufficient (accuracy 94.97%, true positive rate (TPR) 87.97% and positive
predictive value 66.74%).

More accurate results were obtained by the development of a deep learning algorithm based on 261.647 HD records
from 9292 patients, all accompanied by blood test results. [36]. The goal of this model was to predict the risk of
IDH within one hour at any timepoint during HD. The used features included demographics, vital signs, comorbidities,
medications, and blood test results. The authors developed a recurrent neural network (RNN) model with the gated
recurrent unit (GRU) in order to process both current and previous datapoints. This model was compared to a multilayer
perceptron, light gradient boosting machine, and logistic regression model. These models did not use all the previous
data within the current session, but only the current and former time point (mostly 1 hour). The RNN showed sufficient
and slightly better performance than the other models with an Area Under Curve (AUC) of the Receiver Operating
Characteristic (ROC) curve of 0.94, 0.87 and 0.79, for three different definitions of IDH.

One of the most recent studies aimed to develop a model based on data only from the dialysis machine, without
demographic data, in order to assess the application of a completely anonymized database that could be more easily
implemented in dialysis machines [37]. The time-varying datapoints were saved every minute and combined with several
time-invariant variables such as dialysate temperature and pre-dialysis systolic blood pressure (SBP) in a convolutional
neural network. Again, the deep learning model showed a better performance than other machine learning models.

These studies demonstrate the potential of machine learning models, particularly neural networks, for real-time prediction
of IDH. Recurrent neural networks are a type of neural networks that are specifically valuable for time series data.
Although promising results with a RNN were obtained by Lee et al., the authors stated that the applicability to other
patient datasets might be limited due to differences in patient characteristics and parameter acquisition methods [36].
At the HD department in the LUMC, many different parameters, such as the blood pressure, pulse, blood flow rate, and
RBV, are automatically stored by the dialysis machines every 30 minutes. The extensive available amount of data in the
LUMC provides the opportunity for development of similar machine learning models.

Therefore, the goal of this master thesis is to assess the feasibility of machine learning-based real-time prediction of
IDH by use of data from HD sessions from in LUMC and compare the performance of a recurrent neural network with
other models.
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Background

Logistic regression
Logistic regression is a widely applied statistical machine learning algorithm employed for classification tasks [38]. Unlike
linear regression, which predicts continuous numeric values, logistic regression applies a sigmoid function to transform
linear combination of input features into a probability between 0 and 1. This value represents the probability of belonging
to a certain class. The final prediction is dependent on the threshold set for classification. The classifier will predict a 1
for probabilities above this threshold and 0 for probabilities below this threshold.

Logistic regression is a relatively simple and interpretable method as it assigns coefficients to each feature, signifying
their respective contribution to the prediction. However, it assumes a linear relationship between features and the log-
odds of the target labels. Consequently, its applicability is somewhat restricted when dealing with complex datasets as
complex patterns can not be captured.

Decision tree classifiers
Decision tree classifiers are supervised machine learning algorithms that build trees from combinations of features in order
to make a classification [39]. Every node in a tree represents a feature that is used to split the dataset, based on a certain
value of this feature. By adding features to a tree, different branches can be created. The last nodes of the tree, after
which no more splits occur, are called leaf nodes. A visual representation of a simple decision tree is provided in Figure 3.

Figure 3: Example of a simple decision tree.
Abbreviations: BMI, body mass index; IDH, intradialytic

hypotension.

A single leaf node will provide a probability for all the classes in the
dataset, based on the final distribution of training samples that
were used to build the tree. Consequently, when a new sample
is run through the tree and ends in a certain leaf node, the class
with the highest probability in that node will be assigned to the
sample.

The feature and threshold to use at each node are se-
lected by calculating a measure of impurity or information
gain. This is mostly achieved by either the Gini impu-
rity or entropy. The feature that results in the great-
est reduction in impurity or error, and thus better clas-
sification at each node, is chosen. In the training pro-
cess, it is important to set certain parameters in order
to prevent the trees from growing indefinitely and pre-
vent overfitting. This can be established by tuning hy-
perparameters such as the maximal tree depth and mini-
mal number of samples at a leaf node. Another gen-
eralization technique is bootstrapping, where different sub-
sets of training data are selected when building the trees.
This randomness contributes to improved generalization perfor-
mance.

The two types of decision tree-based classifiers that are applied in
the current project are a random forest and an extreme gradient

boosting (XGBoost) classifier [40–42]. These classifiers build of a collection of multiple trees, called a forest, that all
provide a vote for a class. The final classification of a datapoint is all those votes combined, weighted by the probability
estimates. A random forest consists of trees that are all built individually, but a XGBoost classifier builds its forest of
trees sequentially, where each new tree is improved based on the errors of the previous trees. Some hyperparameters that
should be tuned for an optimal learning process of an XGBoost are the learning rate, the step size by which the trees
are adjusted based on the previous errors, the ratio of the training samples to use per boosting iteration and the ratio of
features to use for creating the trees.
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Random forest classifiers are known for their robustness, are less prone to overfitting than other classifiers due to the
ensembling of several trees, can handle missing data and can provide feature importances. However, when applied on
complex datasets, they can be computationally expensive and their interpretability is compromised as the prediction is a
combination of many different trees.

XGBoost classifiers share some of the advantages of the random forest, such as the ability to handle missing data, but
are generally considered to be more efficient and have high predictive accuracy in many classification tasks. Additionally,
XGBoost algorithms apply regularization techniques to prevent overfitting. When training an XGBoost classifier, it is
important to consider that they are computationally complex and have a wide range of hyperparameters that require
tuning.

Recurrent Neural Network

A RNN is a type of deep learning models specifically designed to learn from sequential or time-varying data [43, 44].
These algorithms are capable of retaining memory of previous timepoints and have been applied in a wide range of
applications, such as in textual and financial predictions. Generally, deep networks contain neurons that compute

y = f(w1 · x1 + w2 · x2 + b)

with x1 and x2 representing numerical inputs, w1 and w2 weights associated with these inputs and b the bias, a constant
added to the sum of the weights. For obtaining output y, the weighted sum of the inputs is transformed by an activation
function f in order to introduce non-linearity in the model, thus allowing the neuron to learn complex relationships. A
visual representation of a single neuron is provided in Figure 4.

Figure 4: A single neuron where x1 and x2 are inputs,
w1 and w2 the weights applied to the inputs, b the bias,

f the activation function and y the output.

RNNs work with hidden states that save information from the
previous timesteps and apply these as input in the new prediction,
as is visualized in Figure 5a. The hidden state is updated for every
timestep, thus for each element in the sequence, and is calculated
as

ht = tanh(xt · WT
ih + bih + ht−1 · WT

hh + bhh)

with ht and xt the hidden state and input at timestep t, Wih and
bih the weight matrix and bias that are applied to the input data
at each time step to compute the hidden state, ht−1 the hidden
state of the previous layer at time t − 1 and Whh and bhh the
weights and bias applied to the previous hidden state to compute
the current hidden state. The output Lt is then calculated as

Lt = Why · ht

with Why the weight vector at the output layer. The simplified
theory behind a RNN is visualized in Figure 5a. Figure 5b
illustrates application of a RNN to data of one dialysis session.

When a model is developed and trained, the model’s output is compared to the true labels, and the loss is calculated.
The loss indicates how “wrong” the predictions are and is used to update the weights through backpropagation. During
the training process, the weights and biases will be updated to minimize the difference between the output and the true
labels. To accomplish this, a loss function and optimizer are required. The optimizer updates the model parameters
sequentially over each hidden state for every timestep.
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(a) Principle idea of recurrent neural network. (b) Visualization of predictions with an RNN on dialysis data.

Figure 5: Visualization of theory and application of a RNN in the prediction of outputs Lt, with inputs Xt and hidden state ht at time t. V,
U and W are parameters of the network that are the same for each timestep. Abbreviations: DBP, diastolic blood pressure; SBP, systolic

blood pressure; RNN, recurrent neural network.
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Methods

Data collection
Data was obtained from all HD patients of the LUMC with an age of ≥ 18 years. The protocol (ProjectID 132628,
acronym “Intradialytische Hypotensie”) for data collection and analysis was approved by the Institutional Review Board of
Internal Medicine of the LUMC. Demographics and dialysis data were collected from Hix, the standard electronic health
record (EHR) in the LUMC, and Diamant, the dialysis-specific electronic record. In Diamant, all data as recorded by the
dialysis machines as well as nursing interventions and notes are stored. The raw data was collected from the data platform
of the LUMC, which could be accessed using Structured Query Language (SQL) Management Studio. Several queries
were written in SQL, a language for retrieving data from this type of data platforms, to extract the desired variables [45].
An example of a query to obtain dialysis summary data is provided in Appendix A. Simultaneously, a formal database
was designed in the data management platform Castor to meet the requirements for retrospective data analysis protocols
of the LUMC [46].

The demographics collected from HiX were gender, birthyear, length, all diagnoses and medication. From Diamant,
the following dialysis summary data was obtained: pre-dialytic weight, blood pressure and pulse, the target weight and the
date of the treatment. The intradialytic machine-stored data included: blood pressure, arterial pressure, venous pressure,
bicarbonate conductivity, blood volume change, blood flow rate, conductivity, dialysate flow rate, ionic mass balance,
Kt/V, pulse, temperature, ultrafiltration rate and ultrafiltration volume. Kt/V is a measure of dialysis adequacy, and in
this case, it was directly measured by the dialysis machine using sodium concentration as a surrogate for urea, unlike the
usual calculation from blood urea concentration. While potentially clinically relevant, BCM measurements could not be
directly extracted from the data platform and were consequently excluded from the analysis.

From the obtained lists of medication, patients with diabetes were identified by the prescription of metformines,
insulin, sulfonylurea derivatives or dipeptidyl peptidase-4 inhibitors. Additionally, it was derived whether patients used
antihypertensive medication or had a cardiovascular history, identified from prescribed anticoagulants. The medication
for this selection is specified in Appendix C. Lastly, patients with an autoimmune disease were identified based on the
registered diagnoses and three additional features were calculated from the obtained baseline features:

• age at the dialysis treatment
• body mass index (BMI) at the dialysis treatment
• the amount of overhydration in liters at the start of dialysis, defined as

overhydration = pre-dialytic weight - target weight

It is expected that the pre-dialytic SBP will have a great contribution to the prediction of IDH, as this feature is used
in clinical practice is used to determine the ultrafiltration volume. However, as we are mostly interested if the machine
learning models are able to make a proper prediction in addition to the a priori expectation at the start of dialysis, the
pre-dialytic SBP was removed as a feature in the analysis.

Labels
Complicating the assessment and prevention of IDH is the lack of consensus on a clear definition. Consequently, in
research regarding this topic, multiple definitions are applied and compared. The most commonly used definitions are
provided in Table 1. For the current project, two different definitions for IDH are assessed. The first definition, defined
as IDH1, is a drop of ≥ 20 mmHg compared to the pre-dialytic SBP. The second definition, IDH2, is an absolute
intradialytic SBP of ≤ 90 mmHg.

The main analysis of the current project concerned predictions of these definitions for IDH 30 minutes ahead by application
of a logistic regression, random forest, XGBoost and RNN. Additionally, two subanalyses are performed. The first is the
prediction of both definitions, but 60 minutes ahead. The second is analysis of prediction 30 minutes ahead, but with
blood pressure measurements excluded from the analysis to illustrate the impact of removing these parameters.
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Table 1: Different definitions of intradialytic hypotension.

National Kidney Foundation Kidney Dis-
ease Outcomes Quality Initiative Guide-
lines 2005 [47]

Decrease in SBP ≥20 mmHg or MAP ≥10
mmHg

European Best Practice
Guidelines 2007 [48]

Decrease in SBP ≥20 mmHg in combination
with associated clinical and nursing interven-
tions

UK Renal Association
Guidelines 2009 [49]

An acute symptomatic fall in blood pressure
during dialysis requiring immediate interven-
tion to prevent syncope

Absolute nadir SBP [25] ≤90 mmHg
Abbreviations: MAP, mean arterial pressure; SBP, systolic blood pressure.

Data preprocessing
All data preprocessing steps, as well as training the machine learning algorithms, were performed Spyder, an interative
Python environment [50].

Baseline variables
After all data was collected, feature distributions of all baseline variables (the pre-dialytic variables) were plotted in order
to detect outliers. After visual inspection of these distributions, values outside a manually set range or more than 5 times
the standard deviation from the mean were removed from the data to exclude non physiological data. These settings are
provided in Appendix C.

The data contained many missing target weight values due to administrative reasons. As not all machine learning
models can handle missing data, these were filled by two different methods. Patients receiving HD without ultrafiltration
were identified as having a total UF below 1L. For these patients, the target weight was set as the weight before dialysis,
because these patients are generally considered not to be overhydrated due to preserved diuresis. For calculation of the
remaining missing target weight values, the total UF of the treatment was subtracted from the weight before dialysis.
Remaining missing values of pre-dialytic blood pressure, weight and target weight were interpolated by the previous and
consecutive dialysis session of that same patient.

For both definitions of IDH, sessions in which IDH already occurred at the first measurement were excluded from the
analysis. This scenario was considered to complicate the predictions later in the session.

Time-varying features
Sessions with a shorter duration than two hours or with less than five blood pressure measurements were removed from
the data. Even though the intradialytic data was stored automatically, some outliers were present. Therefore, they were
removed by application of the same method as described for the baseline variables. Deleted values were interpolated by
linear interpolation of the previous and consecutive measurement within the same session. When analyzing the data, it
appeared that the intradialytic machine measurements were stored with differences in resolution. To illustrate; one dialysis
session of four hours could contain eight datapoints for blood pressure and 12 for arterial pressure. For generating input
for the machine learning models, all datapoints were required to have the same timestamps. Therefore, the timepoints
of the blood pressure measurements were selected for all features. These measurements were always conducted intervals
of 30 minutes, with possibly some additional measurements on indication. If a feature had no measurement at exactly
that time, the nearest datapoint was selected. Additional measurements were removed from the data. Consequently, one
measurement per 30 minutes was selected to obtain the same resolution for every session. An example of selection of
datapoints of blood volume measurements is visualized in Figure 6.

Training a logistic regression, random forest and XGBoost classifier requires an input of shape (nsamples, nfeatures).
As the dataset consisted of n sessions, with n timepoints of n features, reconstruction was required. Therefore, one sample
was set as one timepoint in a dialysis session. A session of four hours will therefore result in 8 samples. The features for
a single sample include the baseline variables of that session and the dialysis measurements at that timepoint. However,
the change in parameters over time contains highly relevant information. Therefore, new features that summarize the
behaviour of the time dependent features up until the specific timepoint of the current sample were created. For every
30 minutes from the start of HD, indicated with index i for every timepoint, the value of the feature at the current
timepoint Xti

minus the previous value Xti−1 , the slope of the change in the feature from the start of the session t0
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(a) Original BV measurements and timepoints
of SBP measurements.

(b) Selected BV measurements based on SBP
timepoints.

(c) Resampled BV measurements.

Figure 6: Methods for selecting datapoints in a dialysis session. Abbreviations: BV, blood volume; SBP, systolic blood pressure.

to t, and the standard deviation of all measurements between the start of the session t0 and t were calculated by the
following formulas

Xti
− Xti−1 Xdti

= Xti
−Xt0

ti−t0
σ =

√∑
(Xti

−X)2

n with X̄ = ∑n
i=1 Xti

with Xdti
the slope of the feature values from t0 to ti, Xt0 the value of the parameter at t0, σ the standard deviation,

X̄ the mean of the measurements and n the number of measurements from t0 to ti. To ensure there are no unexpected
relations between the features, a feature correlation plot was created and visually inspected.

Data preparation for the RNN was slightly different than for the other models, as a RNN layer expects an input of shape
(N, L, Hin), where N is the batch size, L the sequence length and Hin the number of features. The labels that are
used for evaluation of the predictions have shape (N, L, 1), containing either a 0 or 1 for each element in the sequence.
This allows the RNN to go over the whole sequence and make a new prediction for all consecutive timesteps. As a
RNN expects sequences of the same length, the maximal time of the sequences is set to four hours (L = 8) and shorter
sequences are extended with zeros.

The baseline variables were transformed to constant vectors and concatenated with the time-varying features. The
final feature set for the RNN was smaller than for the other models, because the feature calculations that were conducted
for the other models were not used as input since it was expected that the RNN has the ability to learn this by itself.

Model development
The Scikit-Learn library was used for development of a logistic regression, random forest and XGBoost classifier [51]. For
training and evaluation of the models, 5-fold cross-validation was applied, in which the final database was split in a train
and test set, with all sessions of the same patient in either the train or test set. The data was then scaled by a standard
scalar and a randomized search was performed to find the optimal hyperparameters for each model. In a randomized
search, several different combinations of hyperparameters are assessed and the combination with the best performance
is returned. The search was conducted over a manually set range of the following hyperparameters

• logistic regression: regularization parameter
• random forest: number of trees, criterion, perform bootstrapping, maximal tree depth, minimal samples per leaf
• XGBoost: maximal tree depth, learning rate, minimal loss reduction, subsampling ratio of samples, subsampling

ratio of columns, l2 regularization term
The final hyperparameters were chosen based on the results of the randomized search, while considering prevention of
overfitting and computational duration. As the current dataset is inbalanced for both IDH1 and IDH2, a sample weight
was provided when fitting the models on the training data. This weight was determined by the ratio of the number of
negative labels over the positive labels. In the current dataset, this ratio was 5 for IDH1 and 50 for IDH2. Subsequently,
the model with optimal hyperparameter settings was fit on the train data and used for prediction of IDH on the test data.

Development of the RNN was performed with use of the PyTorch library, which is specifically designed for deep learning
applications [52]. A RNN requires the following parameters
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• input size: the number of features
• hidden size: the number of neurons
• the number of recurrent layers

The current model consisted of one recurrent layer with 50 neurons. In order to obtain the desired output dimension,
which is 1 for binary classification, a linear transformation was applied after the recurrent layer. The initial hidden state
contained zeros. During model training, the parameters are adjusted by assessing the input data in batches. In the
current training loop, the batch size was set to 300 for IDH1 and 500 for IDH2. The latter is relatively high, but was
required due to the low incidence of the labels. Lastly, the learning rate was set to 1e − 4 for IDH1 and 1e − 5 for IDH2
and the model was trained for 300 epochs.The Python code containing the model architecture is provided in Appendix
D.

After the model was defined, it was trained for a certain number of epochs. Every epoch, the complete train dataset
is assessed in batches. A padding function was applied over the selected batch to ensure all sequences within that batch
were of the same length. Padding batches is computationally more efficient than padding the entire dataset from which
batches are selected. Additionally, it influences the imbalance between the labels to a lesser extent. The model generates
an output for every timestep in each sequence. At the start of the training, these output labels will mostly be “guessed”
and will deviate from the true labels. For the current model, this deviation, the loss, was calculated as the binary cross
entropy. Within the loss function, the same weights as for the other models were provided for the positive labels. The
model was optimized with a stochastic gradient descent algorithm. Additionally, a linear scheduler was applied to the
optimizer, in order to decrease the learning rate over a manually set amount of epochs. This allows faster convergence
at the start of the training, and more specific convergence to the optimum later on.

Performance evaluation
For evaluation of the models, the ROC curves and corresponding AUCs were plotted and calculated. Additionally, the
feature importance scores were obtained for the logistic regression, random forest and XGBoost and the 20 features
with highest absolute scores were provided. To assess whether the RNN model was effectively learning from the data
while overfitting was being prevented, the learning curve for the train and test data was plotted. This plot provides
the change in loss across the training epochs. A proper learning curve should stabilize towards the end of the training
process, indicating the loss is no longer significantly decreasing as it learns from the data, with a minimal gap between
the training and test curves.

The precision, recall and specificity at the optimal probability threshold are calculated for for the final RNN and the
model with the highest AUC. Precision is the ratio of correctly classified positive labels over all labels that are classified
as positive. Recall is the ratio of correctly classified positive labels over the true number of positive labels and specificity
the ratio of correctly classified negative labels over the true number of negative labels. These metrics are calculated as

precision = T P
T P +F P

recall = T P
T P +F N

specificity = T N
T N+F P

with TP the number of true positives, FP the false positives, FN the false negatives and TN the true negatives.

The choice of the prediction threshold for calculation of these metrics should be based on the clinical context. In the
case of a low true positive rate in real-time intradialytic IDH predictions, IDH incidence would remain high due to belated
intervention. For a high false positive rate (FPR), the ultrafiltration rate would unjustly be turned down, resulting in
insufficient ultrafiltration. As it is undesirable that the feature predictions would lead to more patients not reaching their
target weight, the FPR should be limited. In the paper of Zhang et al., which had similar objectives, interviews with
nephrologists and dialysis staff led to the consensus that a FPR of 0.1 while maintaining a recall above 65% would be
acceptable [53]. Such a threshold would limit the false alarm rates. To visualize the trade-off between these outcome,
the precision, recall and specificity of the RNN were calculated for multiple prediction thresholds.

Lastly, several sessions were selected randomly in order to provide their predicted probabilities and corresponding labels
based on the optimal threshold as described above. The data from these sessions was visually inspected to obtain insight
in common mistakes made by the classifiers. This analysis was conducted from predictions made by the RNN and the
classifier with the highest AUC. In addition to the predictions, the SBP, diastolic blood pressure (DBP), pulse and change
in blood volume were plotted. These are the some of the most important parameters that are currently used for UF
guidance in clinical practice. Additionally, the ultrafiltration rate over the complete session was provided. Analyzing these
results and parameters may offer valuable insights in variations in predictions among the classifiers and the prevalent
errors that arise. For illustrative purposes, these plots were provided for two sessions of each definition.
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Results

Data collection and session characteristics

A total number of 457 patients with dialysis data from 2010 to June 2023 was identified. This comprised 64,437 dialysis
sessions. After exclusion of patients with missing baseline variables, sessions with less than five intradialytic blood
pressure measurements, sessions with longer duration than five hours and sessions with IDH at the first measurement,
the remaining numbers of patients and sessions were

• IDH1: 436 patients and 37,025 sessions
• IDH2: 441 patients and 43,722 sessions

Table 2: List of features.

Baseline variables Machine data
Obtained
Gender Blood pressure
Length Pulse
Pre-dialysis weight Change in blood volume
Diabetes Arterial pressure
Auto-immune disease Venous pressure
Use of antihypertensives Conductivity

Ultrafiltration volume
Ultrafiltration rate
Kt/V
Blood flow rate
Dialysate temperature
Dialysate flow rate
Transmembrane pressure
Bicarbonate conductivity

Derived
Age at time of treatment Difference with previous
BMI Slope
Cardiovascular history Standard deviation
Overhydration

Kt/V is a measure of the dialysis adequacy.
Abbreviations: BMI, body mass index.

The discrepancy in these numbers was due to a higher number of
sessions with IDH1 than IDH2 at the first measurement. In 24%
of total sessions, a pre-dialytic pulse measurement was missing.
Therefore, this baseline feature was excluded from the data. An
overview of the final features is provided in Table 2.

6838 sessions without ultrafiltration were identified. For
these sessions, the target weight was set as the weight before
dialysis. Of the remaining 2677 missing target weight values,
1669 could be set by subtracting the the total ultrafiltration
volume from the weight before treatment. The remaining
missing target weight values, as well as the pre-dialysis weight
and blood pressure were interpolated. The database that was
used as input for prediction with the RNN contained a total of
27 features, to which 47 newly calculated features were added
for the logistic regression, random forest and XGBoost models.

Due to data upload restrictions regarding the Castor
database, not all available dialysis data could be entered in
this database. Therefore, the data was obtained from the data
platform directly. In the future, the Castor database could be
completed and extended with additional parameters such as
blood test results. An overview of the architecture of the Castor
database is to be found in Appendix B.

The baseline characteristics, calculated over the total num-
ber of sessions included per analysis, are provided in Table
3. Categorical variables are presented as the number and
percentage of sessions and continuous variable as the mean and
standard deviation. No unexpected feature correlations appeared in the feature correlation plot, which is provided in
Appendix C. In the final databases used for analysis, 359 patients (82%) experienced one or more episodes of IDH1 and
172 patients (39%) of IDH2. IDH1 occurred in 57% and IDH2 in 10% of the sessions. This incidence was calculated
before removal of sessions with IDH at the first measurement.
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Table 3: Baseline characteristics.

IDH1 (n=37025) IDH2 (n=43722)
Characteristics Mean ± SD Mean ± SD
Age [years] 67.3 14.4 67.8 14.3
Length [cm] 171.2 10.2 171.1 9.9
BMI [kg/m2] 26.0 5.2 26.0 5.1
Pre-dialytic SBP [mmHg] 136.8 24.6 141.9 24.1
Pre-dialytic DBP [mmHg] 74.2 14.5 75.4 14.3
Overhydration [liters] +1.3 1.2 +1.3 1.2

N % N %
Male 23678 64.0 27624 63.2
Medical history

Diabetes 7597 20.5 9023 20.6
Auto-immune disease 859 2.3 1076 2.5
Cardiovascular history 13110 35.4 16001 36.6
Antihypertensive medication 20065 54.2 24577 56.2

Calculated over the number of sessions per definition.
Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; SBP,
systolic blood pressure; SD, standard deviation.
IDH1 is intradialytic hypotension defined as a drop in systolic blood pressure of
≥20 mmHg compared to baseline, and IDH2 a absolute systolic blood pressure
≤90 mmHg.

Figure 7: Loss curve of the recurrent neural
network for prediction of IDH2.

Performance evaluation
An example of the train and test distribution in the different folds is provided in Appendix E to validate that a one
patient can only occur in the train or test split within one fold. The hyperparameter options, results of the randomized
search, and choice for the final settings are also provided in Appendix E. For the different definitions of IDH, different
hyperparameter settings were applied in the final analysis. Since the outcome of the hyperparameter search was fairly
consistent for the subanalyses, the same settings were used as for the main analysis. For illustrative purposes, the loss
curve of training the RNN for the prediction of IDH2 is provided in 7.

The ROC curves of all models are provided in Figure 8. The AUCs for the logistic regression, random forest, XGBoost
and RNN were 0.80, 0.81, 0.81 and 0.87 respectively for the prediction of IDH1 and 0.93, 0.84, 0.86 and 0.92 for
IDH2. The precision, recall and specificity for predictions with the RNN at different thresholds are provided in Table 4.
The performance metrics of the RNN were compared to those of the logistic regression. This classifier was chosen for
comparison, because it outperformed all other models in the prediction of IDH2. The threshold for classification with the
RNN at a maximal FPR of 0.1 was 0.69 for IDH1 and 0.55 for IDH2. For the logistic regression this was 0.60 for IDH1
and 0.66 for IDH2. The precision, recall and specificity for the RNN with application of this threshold were 0.56, 0.59
and 0.90 for IDH1 respectively, and 0.10, 0.76 and 0.90 for IDH2. The precision, recall and specificity for the logistic
regression were 0.63, 0.50 and 0.90 for IDH1 and 0.14, 0.80 and 0.90 for IDH2.

The logistic regression, random forest and XGBoost rendered fairly similar feature importance rankings. In all three
models, the SBP slope over time was the feature with the greatest importance score in IDH1 and the SBP measurement
at the timepoint of prediction was the highest form IDH2. The 20 most important features for classification are provided
in Figure 9 and 10.

Subanalyses
Subanalysis of 60 minutes ahead instead of 30 minutes resulted in AUC values of 0.77, 0.78, 0.78, 0.86 for the logistic
regression, random forest, XGBoost and RNN respectively for IDH1 and 0.89, 0.77, 0.79 and 0.91 for IDH2. When blood
pressure measurements were excluded from the analysis, the AUCs dropped to 0.62, 0.62, 0.60 and 0.79 for IDH1 and
0.71, 0.57, 0.59 and 0.79 for IDH2. These ROC curves are provided in Appendix F.

Results of predictions on individual sessions were visually inspected for the RNN and logistic regression. Despite the fact
that the logistic regression did not outperform the random forest and XGBoost for IDH1, this was still the classifier of
choice for this analysis due to its high AUC. At this inspection, it appeared that for the logistic regression the predicted
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(a) IDH1 (b) IDH2

Figure 8: ROC curves of the logistic regressoin (LR), random forest (RF), XGBoost (XGB) and recurrent neural network (RNN) for
prediction of IDH 30 minutes ahead. IDH1 is intradialytic hypotension defined as a drop in systolic blood pressure of ≥20 mmHg compared

to baseline, and IDH2 a absolute systolic blood pressure ≤90 mmHg.

probability was highly associated with the SBP measurements. While this visual association was also apparent for the
RNN, it was of a lesser extent. Other findings were that in many sessions, the RNN gave a relatively high number of
false positives for IDH2 and that a positive prediction often occurred one timestep too late, regardless of the definition
or classifier. Figure 11 shows the predictions of both classifiers, measurements of the intradialytic blood pressure, pulse,
blood volume change and ultrafiltration rate for a session with IDH1 in which the RNN outperforms the logistic regression.
Figure 12 shows an example of a session where both classifier are one timestep too late in their positive prediction of
IDH1. Figure 13 shows a session where the logistic regression outperforms the RNN in the prediction of IDH2 and Figure
14 a session where the RNN provides false positive predictions based on the SBP. It is important to emphasize that this
analysis was conducted randomly and that the representativeness of the findings could not be confirmed.

Table 4: Performance evaluation results of the RNN for different probability thresholds.

IDH1 IDH2
Threshold Precision Recall Specificity Precision Recall Specificity
0.0 0.18 1.0 0.0 0.02 1.0 0.0
0.1 0.24 1.0 0.31 0.02 0.99 0.38
0.2 0.27 0.98 0.31 0.03 0.87 0.54
0.3 0.30 0.95 0.51 0.04 0.94 0.66
0.4 0.35 0.90 0.62 0.06 0.90 0.77
0.5 0.41 0.82 0.73 0.09 0.80 0.87
0.6 0.48 0.70 0.83 0.13 0.69 0.92
0.7 0.57 0.58 0.90 0.17 0.58 0.95
0.8 0.67 0.43 0.95 0.24 0.46 0.98
0.9 0.79 0.24 0.99 0.39 0.28 0.99

IDH1 is intradialytic hypotension defined as a drop in systolic blood pressure of ≥20 mmHg compared
to baseline, and IDH2 a absolute systolic blood pressure ≤90 mmHg.
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(a) Logistic regression

(b) Random forest

(c) XGBoost

Figure 9: Mean feature importance scores of 5 fold
cross-validation of logistic regression, random forest and XGBoost

for prediction of IDH1 30 minutes ahead. The feature
abbreviations are: BIC, bicarbonate conductivity; BFR, blood flow
rate; BMI, body mass index; DBP, diastolic blood pressure; IMB,
ionic mass balance; KTV, is a surrogate of Kt/V (a measure of

the dialysis adequacy); SBP, systolic blood pressure; UFV,
ultrafiltration volume. Diff indicates the difference of the feature
value with the previous measurement, sd and slope the calculated

standard deviation and slope of the feature over the sequence.

(a) Logistic regression

(b) Random forest

(c) XGBoost

Figure 10: Mean feature importance scores of 5 fold
cross-validation of logistic regression, random forest and XGBoost

for prediction of IDH2 30 minutes ahead. The feature
abbreviations are: AP, arterial pressure; BIC, bicarbonate

conductivity; BFR, blood flow rate; BMI, body mass index; C,
dialysate conductivity; DBP, diastolic blood pressure; IMB, ionic
mass balance; KTV, is a surrogate of Kt/V (a measure of the

dialysis adequacy); SBP, systolic blood pressure; UFR,
ultrafiltration rate; UFV, ultrafiltration volume; VP, venous

pressure. Diff indicates the difference of the feature value with
the previous measurement, sd and slope the calculated standard

deviation and slope of the feature over the sequence.
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(a) Recurrent neural network. (b) Logistic regression.

(c) Blood pressure and pulse. (d) Change in blood volume. (e) Ultrafiltration rate.

Figure 11: Predictions and dialysis data of IDH1 in example session 1.
The figures provide the probabilities, predicted labels and true labels of the RNN (a) and logistic regression (b), the blood pressure and pulse

measurements (c), blood volume sensoring data (d) and ultrafiltration rate (e) over the dialysis session. IDH1 is intradialytic hypotension
defined as a drop in systolic blood pressure of ≥20 mmHg compared to baseline. Abbreviations: BVS, blood volume sensoring; DBP,

diastolic blood pressure; SBP, systolic blood pressure; UFR, ultrafiltration rate.

(a) Recurrent neural network. (b) Logistic regression.

(c) Blood pressure and pulse. (d) Change in blood volume. (e) Ultrafiltration rate.

Figure 12: Predictions and dialysis data of IDH1 example session 2.
The figures provide the probabilities, predicted labels and true labels of the RNN (a) and logistic regression (b), the blood pressure and pulse

measurements (c), blood volume sensoring data (d) and ultrafiltration rate (e) over the dialysis session. IDH1 is intradialytic hypotension
defined as a drop in systolic blood pressure of ≥20 mmHg compared to baseline. Abbreviations: BVS, blood volume sensoring; DBP,

diastolic blood pressure; SBP, systolic blood pressure; UFR, ultrafiltration rate.
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(a) Recurrent neural network (b) Logistic regression.

(c) Blood pressure and pulse. (d) Change in blood volume. (e) Ultrafiltration rate.

Figure 13: Predictions and dialysis data of IDH2 example session 3.
The figures provide the probabilities, predicted labels and true labels of the RNN (a) and logistic regression (b), the blood pressure and pulse

measurements (c), blood volume sensoring data (d) and ultrafiltration rate (e) over the dialysis session. IDH2 is defined as a absolute
systolic blood pressure ≤90 mmHg. Abbreviations: BVS, blood volume sensoring; DBP, diastolic blood pressure; SBP, systolic blood

pressure; UFR, ultrafiltration rate.

(a) Recurrent neural network. (b) Logistic regression.

(c) Blood pressure and pulse. (d) Change in blood volume. (e) Ultrafiltration rate.

Figure 14: Predictions and dialysis data of IDH2 example session 4.
The figures provide the probabilities, predicted labels and true labels of the RNN (a) and logistic regression (b), the blood pressure and pulse

measurements (c), blood volume sensoring data (d) and ultrafiltration rate (e) over the dialysis session. IDH2 is defined as a absolute
systolic blood pressure ≤90 mmHg. Abbreviations: BVS, blood volume sensoring; DBP, diastolic blood pressure; SBP, systolic blood

pressure; UFR, ultrafiltration rate.
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Discussion

In this project, both intradialytic hemodialysis measurements and baseline variables were used for development of machine
learning algorithms that were capable of making predictions of IDH at 30 minute intervals. This study aimed to assess
the potential of providing real-time warnings that would enable timely intervention and prevention of IDH. The results
show that the predictions made by the current models are greatly based on the intradialytic SBP measurements and that
only the RNN was capable of learning from other variables. However, evaluation of the model performances revealed
that the predictions based on the the current database are not sufficient for clinical implementation.

Most of the findings of this thesis are in accordance with results from previous studies. Two recent studies showed that
neural networks outperformed other machine learning models in the prediction of various definitions of IDH [36, 37].
Similar as in the current results, the AUCs of deep neural networks were higher for the prediction of IDH as an absolute
value of ≤90 mmHg (0.94 and 0.91) than for a drop of ≥20 mmHg (0.87 and 0.87) in SBP. However, the Area Under
the Precision-Recall Curves (AUPRC) in these studies differed for the definitions with AUPRCs of 0.62 and 0.29 for ≤90
mmHg and 0.78 and 0.80 for ≥20 mmHg. The study from the authors Lee et al., with the higher AUPCR for ≤90
mmHg, had availability over an extensive database of 261.647 HD sessions and many features [36]. Their feature ranking
outcomes showed that in addition to SBP measurements and time to start of dialysis, body temperature and blood test
results had high contribution to the predictions. It might therefore be feasible that additional features and sessions result
in improved model performance. Similar to the current result, there was a higher trade-off between precision and recall
for IDH as an absolute value ≤ 90 mmHg. The authors contributed these results to the low incidence of this definition
in their data. In regard to the comparison of the performance between the models, the RNN of Lee et al. slightly
outperformed the other models both for IDH as an absolute value ≤ 90 mmHg, but not for the other definitions that
were applied. The study from Kim et al. showed similar results. The logistic regression and RNN had equal performance
when evaluated internally. However, external validation provided superior performance of the RNN over the logistic
regression. Additionally, for all definitions of IDH, the random forest and XGBoost had lower AUCs than the logistic
regression and deep neural network.

The current study showed similar results when compared to the two studies described above, despite the fact that a
smaller database with a limited number of features is applied. This suggests that the models have demonstrated strong
performance on the present database and that there is potential for achieving even better results by data expansion
involving additional sessions and features.

Despite the promising results, some limitations regarding the current methodology need to be considered. While most
of the included features are stored by the dialysis machine automatically, some of the variables are filled in manually by
dialysis staff. Consequently, there is a relatively high amount of missing data. While some variables could be excluded
from the data without major consequences, others were considered to be of high clinical relevance and were preserved.
One of these variables was the target weight, which is used for calculation of the estimated amount of overhydration
at the start of dialysis. Several approaches have been applied to reduce the number of missing values and preserve this
feature in the analysis. One of the methods was interpolation of these missing values by the previous and consecutive
session. Although the period between these session mostly comprised only one to three days, the duration of these periods
was not taken into account in the current methodology. Another method included subtraction of the total UFV from the
pre-dialytic weight. However, when a patient is considered to be excessively overhydrated, the target weight is deliberately
dropped and the target of the treatment is based on maximal volume extraction rather than on the weight. Therefore, in
some cases this method might result in underestimated overhydration values. Additionally, not all baseline features could
be collected directly, but required derivation from other data, such as the registered diagnoses and prescribed medication.
The validity could therefore not be confirmed.

Another limitation in regard to the features, is that the spatial resolution of some intradialytic measured features,
such as the change in blood volume, was reduced. Some features are initially measured and stored at a higher frequency
or at different timepoints than the blood pressure data. Selecting the value at the timepoint closest to that of the blood
pressure might have resulted in a shift in the data. In future research, this shift could be resolved by applying interpolation
techniques. A disadvantage of this approach is that it is computationally expensive and therefore time consuming, while
the shift is considered to be minimal.

The hyperparameter settings for the logistic regression, random forest and XGBoost were determined by assessment of
results from a randomized search over a pre-determined range of settings, since this is computationally less expensive than
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a grid search. Consequently, only a limited number of combinations is evaluated. To confirm the optimal hyperparameter
settings, a grid search should be performed to evaluate all parameter settings.

In the current structure of the applied RNN, all features are concatenated and fed into the recurrent layer. Conse-
quently, time-invariant features, such as the weight at the dialysis session, were transformed into vectors with a constant
value for every timestep. However, as recurrent layers are specifically designed for time-varying data, this approach does
not align with their intended usage and may lead to higher losses during model training. Therefore, the architecture
of the model could be improved by feeding only the time-varying features to the recurrent layer and the time-invariant
features to a feed forward layer and then combine those in a new layer.

In addition the the methodological limitations, there are some matters regarding interpretability of the current result that
require consideration. Firstly, an explanation for the high AUCs obtained in this project, is the absence of an external
validation database. Possibly, the models are overfitting on the current database, which consists of data from one single
center. Both dialysis practices and average patient characteristics might differ for other centers. When the performance of
the current models would be evaluated on a database containing patients from other hospitals, the AUCs could be lower.
Nonetheless, external validation is essential to validate the models’ generalizability. Secondly, no feature importance
is currently provided for the predictions made by the RNN. Gaining insight in features with high contribution to the
predictions by application of readily available tools such as SHapley Additive exPlanation (SHAP) tools, could elucidate
differences between the RNN and the other models and contribute in comparison of the models [54]. A SHAP value
represents the difference between the prediction with the feature included in the model and the prediction with the feature
set to a certain baseline value, such as the mean of the feature. Another approach for obtaining a explainable neural
network that reveals which features are used for the predictions, is application of Gradient-weighted Class Activation
Mapping (grad-CAM) [55, 56]. GradCAM calculates the gradient of an output with respect to the input to derive the
contribution of the features for all timesteps. It generally provides heatmaps where colors indicate the contribution of a
feature to the activation of the output.

Another matter of consideration is that a limited amount of features was applied in the current analysis. It is possible
that parameters with a predictive value are now missed. There are many other factors that could lead to fluctuations in
intradialytic blood pressure. Factors that have shown to be of influence on the blood pressure measured during HD are
eating during the treatment, as more blood is directed towards the intestinal tract, and intradialytic exercise, which is
also offered at the dialysis department in the LUMC [24, 57]. These aspects are not considered in the current analysis.

Lastly, a factor that is possibly of influence on the current predictions, is that some of the features contain information
of an intervention on IDH, rather than the occurrence of IDH. A decrease in the UFR for example, is usually an intervention
to a rapid decrease in intradialytic blood pressure or patient symptoms such as muscle cramps. Additionally, the dialysate
temperature is mostly set lower for patients that are prone to developing IDH. In some of the models, these features
are ranked highly and do have a significant contribution to the predictions. On the one hand, this is undesirable as it
would be more relevant to assess the risk of IDH, regardless of these interventions, but on the other hand, for the risk
assessment and prevention of IDH, there is always an interaction between objective measurements and their subjective
interpretation. As subjective risk assessment will always be part of clinical care, incorporation of these interventions in
the prediction matches the clinical context. In this respect, the true value of the prediction models, is in providing a
correct positive predictions before it is noticed by and intervened on by dialysis staff. Consequently, a limitation of this
project is that the distinction between predictions before and after a decrease in UFR has not been assessed.

One of the greatest drawbacks of machine learning in general is the lack of interpretability of the algorithms on which
the predictions are based. Especially deep learning networks, such as the RNN, are considered to be a “black box” in which
the input variables disappear. In some cases, this complicates direct clinical translation and interpretability. However, this
could be compensated by a gain in prediction performance when compared to traditional statistical prediction models.
Furthermore, although establishing a causal relationship is not possible, tools like grad-CAM do facilitate the identification
of features that significantly contribute to predictions.

Given the outcomes of the current project, several steps could be considered for future development of the models. In
the current analysis, only a subset of parameters that is available from maintenance HD patients has been included.
There is a high additional available amount of data that could be added to the current models. In current clinical HD
care, routine blood tests are performed monthly, containing results for sodium, potassium, hemoglobin and many others.
While the individual measurements might not be of major influence, calculations on the change of these parameters over
time could enhance performance of the models in the prediction of IDH. These blood test result are readily available in
the data platform of the LUMC and should therefore be included in future analysis. Other possibly relevant parameters,
such as the dialyzer type, dialysate prescription and type of vascular access could not be retrieved from the data platform.
Since this information should be stored in the EHR Diamant, future attempts could be made to collect this data and add
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it to the list of time-invariant features. The same applies for BCM measurements that are performed regularly for most
patients. The results of the measurements are not stored systematically, but are reported textually in the dialysis record.
Additional features that could be derived directly from the current database are the occurrence of IDH in previous sessions
of the same patient and the dialysis vintage. For example, a new feature could be generated that indicates the occurrence
of IDH in the previous 10 dialysis sessions. From a clinical perspective this is a feature with potential predictive value,
which is confirmed in literature on similar machine learning models [53]. Additionally, some relevant parameters in the
assessment of fluid status that could be considered for implementation in future analysis are the patients nutritional status
and cardiovascular parameters. These variables have influence on the refilling capacity and thus the vascular response to
hypotension.

Furthermore, in the current project, only two definitions of IDH were assessed. There are, however, many other
definitions of clinical relevance. Instead of defining IDH as a drop of ≥ 20 mmHg compared to the pre-dialytic SBP, a
drop of ≥20 mmHg within a certain amount of time, e.g. 15 minutes, could be clinically more relevant. For excessively
overhydrated patients, an asymptomatic drop of ≥20 mmHg compared to baseline may be a desirable outcome. This
would explain the high incidence of this definition in the current database. Alternatively, a percentual drop in SBP or
inclusion of hypotensive symptoms or the MAP should be considered as alternatives for definition of IDH.

An approach that could be assessed for obtaining accurate predictions for IDH as ≤90 mmHg while averting a label
inbalance, would be to redefine the target population. By only including HD sessions of patients with a high risk for
development of IDH, for example by inclusion of sessions with below a certain threshold for the pre-dialytic blood pressure,
the performance on this specific population could be evaluated.

Prior to the initiation of implementation of machine learning based prediction models, it should be ensured that the
methods meet the requirements as defined in the Prediction model Risk Of Bias ASsessment Tool (PROBAST) [58].
This tool was developed for evaluation of prediction model studies, but could also serve as guideline for validation of
all methodological steps in the model development. Currently, a PROBAST specifically designed for machine learning
prediction studies is in development [59]. When published, this could serve as a valuable tool for validation of the
methodology.

At interpretation of the data, it appeared that the features with the highest importance scores, and thus a great
contribution to the prediction, were in line with expectations. For IDH1, the change in blood pressure during dialysis
mostly contributed to the predictions, while change in UFV and the time since start of dialysis were also ranked highly.
Unsurprisingly, the last SBP measurement had the highest importance score for the prediction of IDH2. The results
indicate that the predictions are greatly based on the intradialytic blood pressure measurements. In current clinical
practice, these measurements also guide the nursing staff in fluid management. Despite the fact that no feature
importance scores were calculated for the RNN, the AUCs showed a smaller decline in value after removal of the
blood pressure measurements compared to the other models. Furthermore, the performance of the models only slightly
decreased when the prediction was done 60 minutes ahead, instead of 30, but witch a larger drop in AUC for the logistic
regression, random forest and XGBoost than for the RNN. These results might suggest that the RNN has to ability to
make a prediction based on other features than the blood pressure. It would therefore be interesting to assess which
features contribute the predictions.

A possible explanation for the better performance of the logistic regression compared to the random forest and
XGBoost could be found in the characteristics of the classifiers. The logistic regression might be less prone to overfitting
due to its robustness compared to more complex ensemble methods like random forests and XGBoost, which require
more data to generalize well.

Even though the AUCs are relatively high for prediction models in clinical context, inspection of predictions on some
individual sessions revealed relevant shortcomings. In many of the sessions, the prediction of both definitions appeared to
be one timestep too late. While the subsequent predictions might be correct and the performance results therefore high,
this is clinically not acceptable. As one timestep is equivalent to 30 minutes, nursing staff would not have a sufficient time
for interventions to prevent IDH. Even though the ROC outcomes for both definitions are high, it does not necessarily
imply that the models could be readily applied in clinical setting. Evaluation of the performance metrics is complicated
by the label distribution in the datasets, especially for IDH2. While the AUC of the RNN for IDH2 is extremely high, the
precision at the threshold that is set to limit the FPR, is low. The cause for this counter-intuitive difference, is the high
number of true negative values resulting from the inbalance in the labels in the dataset. This definition might therefore
not be suitable for the development of machine learning models. Although the model performances for IDH1 are not yet
sufficient, further improvements on data collection, data preprocessing and model development could potentially lead to
their clinical applicability in the future. However, it is crucial to address the timing issue in predictions to ensure that
interventions for preventing IDH are timely and effective.

19



In conclusion, the key findings of the current project can be summarized as follows. The machine learning algorithms
have shown their ability to learn from both baseline variables and intradialytic measurements to make a prediction of
IDH at different intradialytic timepoints. The current predictions are greatly based on the intradialytic blood pressure
measurements. However, it is important to note that for IDH defined as a drop of ≥20 mmHg compared to baseline, the
current models do not meet the necessary criteria for clinical implementation due to their limited performance metrics. In
contrast, when IDH is defined as an absolute SBP ≤90 mmHg, these performance metrics were in a clinically acceptable
range. Nonetheless, a significant challenge arises from the high label imbalance, resulting in very low precision outcomes.
Consequently, the feasibility of achieving machine learning based real-time predictions for this definition remains uncertain.
On the other hand, analysis of prediction 60 minutes ahead and after exclusion of blood pressure measurements, showed
superior performance of the RNN over the other models. This suggest that the RNN has the ability to detect patterns
that do not rely on the blood pressure. Therefore, further improvement of the RNN and expansion of the database by
additional features and sessions holds significant promise for future research aimed at providing real-time predictions of
IDH.
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Future perspectives

Figure 15: Cooperation future development from
Fostering Innovation in Fluid Management [60].

Recently, a report named “Fostering Innovation in Fluid Man-
agement” was published by a working group from the Kidney
Health Initiative [60]. This group, consisting of patients, clin-
icians, researchers and technology developers, aimed to provide
an outline of the patient priorities on outcome improvement
and new technological developments. Examples of such patient
priorities were “reduced intradialytic and interdialytic symptoms”
and “hemodynamic stabilization to avoid large variability in blood
pressure and improve cardiovascular health”. This working group
specifically proposed technological requirements for development
of technical solutions for improved of fluid management by
intradialytic approaches. Their suggestions regarding intradialytic
monitoring included: integration of treatment data (blood pres-
sure, UFR, etc) (1), provision of recommendations to optimize
amount and rate of volume removed during dialysis (2) and
accommodate clinicians with information needed to recommend
modifications to the dialysis regimen if volume is under or over
the target based on input (3). The vision of the current project
is considered to align well with the priorities stated in this report
as it strives to combine both baseline variables and intradialytic
measurements in order to provide clinicians information on the safe
margins for fluid removal. This emphasizes the need for further

development of machine learning models for the prediction and prevention of IDH to contribute to the current patient
priorities.

In future development of the machine learning models, the first recommended step would be to determine the most
important features on which the RNN based its predictions. This would render relevant information in regard to the
additional value of development of this type of machine learning to a computationally less expensive logistic regression.
In the case that the RNN appears to learn from other features in addition to the blood pressure measurements, it would
be valuable to assess if the model performance could be further improved by extending the database with sessions from
other institutions and additional features.

When comparing the RNN to other models, another statistical model which could be added in the analysis is a linear
mixed model (LMM). A LMM can be used for data with repeated measures, e.g. the intradialytic measurements. This
model can maintain information and variability in time-varying data and combine it with fixed measures, e.g. baseline
variables, which account for individual differences at baseline level [61]. In future research, it should be determined
whether such a model, requiring less computational power than an RNN could provide similar results as the current
models.

A machine learning-based warning system to improve fluid management could contribute to enhancement of dialysis
care and a reduction of adverse events related to fluid imbalance. When the current models would be trained on higher
quantities of data to ensure a high variety of patients and practices is included, they could serve as a real-time warning
system that is integrated in the dialysis machine. This would require well-developed software that incorporates the
machine learning measurements and other patient specific information. Development of such software could be establish
by cooperation with companies that provide dialysis equipment, such as Fresenius Medical Care, who have been known
to collaborate with researchers for similar purposes [62].

While the current project has focused on the binary prediction of the event of IDH, an alternative approach for
implementation could involve assessment of the shift in the predicted probability of the event rather than a yes/no
prediction. Evaluation of the trend of predicted probability might provide dialysis staff an indication of the safe margins
for fluid removal during dialysis. Issuing a warning when the probability of IDH exceeds a specific threshold could afford
the medical staff valuable time to take measures, such as adjusting the patient’s position to Trendelenburg or reducing
the UFR. Such a tool would provide medical staff with more information for decision-making regarding fluid management,
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which could consequently improve patient outcomes.
To enhance the integration of machine learning algorithms into clinical practice, one potential improvement is

to increase the frequency of intradialytic measurements. Since blood pressure can show fast fluctuations over time,
measurements at an interval of 30 minutes might leave relevant changes unnoticed. However, current blood pressure
measurements are uncomfortable for the patient and increasing its frequency would therefore be undesirable. However, a
future study on implementation of a multi-parametric wearable sensor will be conducted at the hemodialysis department
in the LUMC. This sensor has the ability to measure bioimpedance, electrocardiography (ECG), relative blood pressure
and pulse oximetry simultaneously every 5 minutes. This would render high-frequency data that provide more realistic
parameter trends that could serve as input for future prediction models and improve their performance.

Figure 16: Example of warning system
incorporated in a dialysis machine.

To provide a definitive answer to the question whether machine learning
models would contribute to improved patient monitoring and prevention
of IDH, a randomized multi-center clinical intervention trial should be
conducted to compare fluid management guided by this warning system
to conventional fluid management. In such a trial, patients should be
randomly assigned to either the intervention or control group, where
the interventions are based on either the warning system or clinical
signs and symptoms. The primary outcome of this trial would be
the incidence of IDH, and secondary outcomes that could be assessed
are cardiovascular events, cerebral ischemia, changes in residual kidney
function and mortality. Enrolling the study across multiple institu-
tions would enhance warning system’s applicability to a broad popula-
tion.

Given the conclusion that blood pressure measurements play a crucial role
in the machine learning-based prediction of IDH, the question rises whether
machine learning has relevant added value over the current clinical practice.
However, even though current fluid management is guided by many parameters
such as the blood pressure and change in blood volume, the incidence of IDH
remains high. It is therefore relevant to further investigate whether these
models can effectively reduce the incidence rate of IDH by providing more
accurate predictions, defining safe margins for fluid removal and enabling
timely intervention.
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SQL Query example

Example query for retrieving dialysis summary data
This Appendix contains an example of Structured Query Language (SQL) code that was developed to extract dialysis
data. This specific query was used to extract dialysis summary data, including measured weight and blood pressure before
and after the treatment.

1 /*
2 DIALYSIS BEFORE AFTER VALUES
3 Contains: RR before/after, weight before/after, total UF, target weight, fluid administration,

pulse before/after, dialysis start and end time↪→

4 */
5

6 SELECT
7 monitor.patientID AS PatientID
8 ,monitor.hdTreatment AS session_treatment
9 ,cast(monitor.rangeStart as date) AS date_treatment --Select the date

10 ,cast(monitor.rangeStart as time) AS start_time_treatment --Select the time
11 ,cast(monitor.rangeStop as time) AS end_time_treatment --Select the time
12 ,treatment.weightBefore AS weight_before_treatment
13 ,treatment.weightAfter AS weight_after_treatment
14 ,treatment.totalBloodVolume AS total_bv_treatment
15 ,treatment.totalUF as total_uf_treatment
16 ,treatment.nettoUF AS netto_uf_treatment
17 ,treatment.rrBeforesystolic AS sys_before_treatment
18 ,treatment.rrBeforediastolic AS dia_before_treatment
19 ,treatment.rrAftersystolic AS sys_after_treatment
20 ,treatment.rrAfterdiastolic AS dia_after_treatment
21 ,treatment.targetWeight AS target_weight_treatment
22 ,treatment.cachedFluidAdmin AS fluid_admin_treatment
23 ,treatment.pulseBefore AS pulse_before_treatment
24 ,treatment.pulseAfter AS pulse_after_treatment
25

26 FROM DIAMANT.dbo.HDTreatment treatment
27 left outer JOIN Diamant.dbo.HDMonitorSession monitor ON monitor.hdTreatment = treatment.id
28 WHERE monitor.patientID IS NOT NULL
29 AND DATEDIFF(hour, monitor.rangeStart, monitor.rangeStop) > 1 --Only obtain session

with duration above one hour.↪→

30 ORDER BY monitor.patientID, treatment.rangeStart
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Castor database

The figures below are screenshots of the Castor database that was developed for data storage, with Figure 17 the patient
characteristics, Figure 18 the dialysis data and Figure 19 BCM measurements and blood test results.

Figure 17: Patient characteristics

Figure 18: Dialysis data
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Figure 19: Measurements
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Features

Derived features
The medication lists of all included patients were collected to derive whether the patients had diabetes, a cardiovascular
history or used antihypertensives

• Diabetes
• Metformin
• Insulin
• Sulfonylurea derivatives: gliclazide, tolbutamine
• Dipeptidyl peptidase-4 inhibitors: sitagliptine, linagliptine

• Cardiovascular history
• Anticoagulants: carbasalaatcalcium, acetylsalicylzuur, ascal, clopidogrel, cangrelor, prasugrel, ticagrelor, dipyri-

damol.
• Antihypertensives

• Calcium channel blockers: diltiazem, verapamil, isoptin, amlodipine, barnidipine, clevidipine, felodipine,
lacidipine, lercanidipine, nicardipine, nifedipine, nimodipine

• Beta-blockers: acebutolol, atenolol, bisoprolol, carvedilol, celiprolol, esmolol, labetalol, landiolol, metoprolol,
nebivolol, propanolol, sotalol.

• Antihypertensives: clonidine, guanfacine, methyldopa, moxinidine.

Three additional features were calculated form the collected data
Age at dialysis = birthyear - date of dialysis
BMI = weight / length2

Overhydration = weight before dialysis - target weight

Outliers
Prior to using the features as input of the machine learning models, outliers outside the limits that are provided in Table
5 were removed.

Table 5: Limits for deleting outliers per feature.

Feature Lower limit Upper limit
Weight 10 200
Systolic blood pressure 40 300
Diastolic blood pressure 30 150
Overhydration -20 20
Arterial pressure -500 0
Venous pressure 0 600
Bicarbonate 0 5
Blood volume change -20 20
Blood flow rate 100 700
Conductivity 5 20
Dialysate flow rate 200 800
Ionic mass balance -800 800
Kt/V 0 3
Pulse 30 200
Temperature 35 38
Transmembrane pressure 0 50
Ultrafiltration rate 0 2000
Ultrafiltration volume 0 6000

Kt/V is a measure of the dialysis adequacy.
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Feature correlation heatmap
Figure 20 shows a correlation heatmap of all features that were included in the analysis. Red colors indicate high
correlations.

Figure 20: Correlation heatmap of features
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Recurrent neural network architecture

1 """
2 Architecture and training of recurrent neural network
3 """
4

5 input_size = 27 # Number of features
6 hidden_size = 50 # Number of neurons
7 num_layers = 1 # Number of hidden layers
8

9 output_dim = 1 # 1 for binary classification
10

11 batch_size = 300
12 learning_rate = 0.00001
13 pos_weight = 5 # 5 for IDH1 and 50 for IDH2
14 num_epochs = 300
15

16 # Architecture
17 class RNNmodel (nn. Module ):
18 def __init__ (self , input_size , hidden_size , num_layers ):
19 super (RNNmodel , self). __init__ ()
20 self. hidden_size = hidden_size
21 self. num_layers = num_layers
22 self.rnn = nn.RNN( input_size , hidden_size , num_layers , batch_first =True)
23 self.fc = nn. Linear ( hidden_size , output_dim )
24

25 def forward (self , x):
26 h0 = torch . zeros (self. num_layers , x.size (0) , self. hidden_size )
27 out , h = self.rnn(x, h0)
28 out = self.fc(out)
29

30 return out , h
31

32

33 # Model training
34 def train_rnn ( train_dataloader ) :
35 rnn = RNNmodel ( input_size , hidden_size , num_layers )
36

37 criterion = nn. BCEWithLogitsLoss ( pos_weight = torch . tensor ( pos_weight ))
38 optimizer = torch . optim .Adam(rnn. parameters () , lr= learning_rate , weight_decay =0.000001)
39 scheduler = torch . optim . lr_scheduler . LinearLR (optimizer , start_factor =1, end_factor =0.5 ,

total_iters =200 , verbose =True)
40

41 for epoch in range ( num_epochs ):
42 rnn. train ()
43 for i, (inputs , labels ) in enumerate ( train_dataloader ):
44 # Clear the existing gradients , else gradients will accumulate to existing gradients .
45 optimizer . zero_grad ()
46 outputs , h = rnn( inputs . float ())
47 loss = criterion (outputs , labels )
48 loss. backward ()
49 # Initiate gradient descent .
50 optimizer .step ()
51

52 # Obtain the predicted labels
53 train_proba = torch . sigmoid ( outputs )
54 train_pred = torch . where ( train_proba > threshold , torch . tensor (1) , torch . tensor (0))
55

56 scheduler .step ()
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Hyperparameter search

Visualization of cross validation

Figure 21, visualizing the train and test distributions over the different folds of the 5-fold cross-validation, was used to
validate that sessions of the same patient did not occur in both the train and test set within one fold.

(a) Complete patient set. (b) Zoomed in.

Figure 21: Visualization of train test split during cross validation. The lower bar shows the number shows the all
samples of one patient in the same color. The upper bars show the train (blue) and test (pink) distributions.

Hyperparameters

The options that were assessed in the hyperparameter search are provided in Table 6. The hyperparameter search was
performed for both definitions of IDH 30 minutes ahead, 60 minutes ahead and without blood pressure measurements.
The results of this search over different folds of the cross-validation are provided in Table 7, 8 and 9 for the logistic
regression, random forest and XGBoost respectively.

Table 6: Options for the hyperparameter search.

Classifier Hyperparameter Options
Logistic regression C 0.001, 0.1, 1, 10, 100, 1000

Random forest

Number of trees 1 - 300
Criterion Gini, Entropy
Bootstrap True, False
Max depth 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, None
Min samples leaf 1, 2, 3, 4, 5

XGBoost

Max depth 2, 3, 4, 5, 6, 7, 8
Learning rate 0.1, 0.01, 0.05, 0.1, 0.15
Gamma 0, 0.1, 0.25, 0.5, 1
Reg lambda 0, 0.5, 1, 10
Subsample 0.6, 0.7, 0.8
Colsample bytree 0.5, 0.6, 0.7, 0.8

C is the inverse regularization strength of the logistic regression classifier.
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Table 7: Results of the hyperparameter search with the logistric
regression.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

IDH1

30 min C 0.001 10 1000 0.1 1
AUC 0.80 0.76 0.81 0.79 0.82

60 min C 1000 1 1000 100 100
AUC 0.75 0.76 0.78 0.78 0.78

30 min no BP C 0.001 1000 100 0.001 100
AUC 0.64 0.62 0.66 0.56 0.64

IDH2

30 min C 1000 1000 100 100 100
AUC 0.93 0.93 0.94 0.91 0.94

60 min C 1000 100 10 1000 1000
AUC 0.91 0.91 0.90 0.88 0.88

30 min no BP C 1000 0.1 1 0.1 0.1
AUC 0.81 0.70 0.57 0.67 0.81

Abbreviations: AUC, Area Under the Curve; BP, blood pressure.
IDH1 is intradialytic hypotension defined as a drop in systolic blood pressure of ≥20
mmHg compared to baseline, and IDH2, defined as a absolute systolic blood pressure
≤90 mmHg. C is the inverse regularization strength of the logistic regression classifier.

Table 8: Results of the hyperparameter search with the random forest.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

IDH1

30 min

Number of trees 198 284 25 148 110
Criterion gini entropy entropy entropy gini
Bootstrap False False True True False
Max depth 20 None None None None
Min samples leaf 2 3 3 1 3
AUC 0.80 0.78 0.81 0.83 0.83

60 min

Number of trees 81 237 137 172 235
Criterion gini gini gini gini gini
Bootstrap True True True True True
Max depth None None 20 None None
Min samples leaf 4 2 2 1 1
AUC 0.77 0.75 0.77 0.80 0.78

30 min no BP

Number of trees 292 101 154 88 290
Criterion gini gini entropy entropy gini
Bootstrap False False True True True
Max depth None 30 None None None
Min samples leaf 1 3 1 1 1
AUC 0.64 0.56 0.65 0.62 0.61

IDH2

30 min

Number of trees 68 90 54 266 83
Criterion entropy entropy gini gini gini
Bootstrap False False False True True
Max depth None 30 None 30 None
Min samples leaf 3 3 2 3 1
AUC 0.88 0.86 0.82 0.85 0.87

60 min

Number of trees 189 120 52 235 176
Criterion entropy entropy gini entropy entropy
Bootstrap False True True True True
Max depth 20 None 30 30 None
Min samples leaf 4 2 3 2 1
AUC 0.80 0.86 0.80 0.80 0.83

30 min no BP

Number of trees 218 123 272 51 252
Criterion gini entropy entropy entropy gini
Bootstrap True True True False False
Max depth None None None 9 None
Min samples leaf 3 4 1 1 5
AUC 0.64 0.58 0.55 0.58 0.75

Abbreviations: AUC, Area Under the Curve; BP, blood pressure.
IDH1 is intradialytic hypotension defined as a drop in systolic blood pressure of ≥20 mmHg compared
to baseline, and IDH2, defined as a absolute systolic blood pressure ≤90 mmHg.
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Table 9: Resultsof the hyperparameter search with the XGBoost.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

IDH1

30 min

Max depth 8 8 8 8 8
Learning rate 0.15 0.15 0.15 0.15 0.15
Gamma 0 0 1 0.1 0
Reg lambda 0 0 0 1 0.5
Subsample 0.8 0.6 0.6 0.8 0.8
Colsample bytree 0.6 0.8 0.6 0.5 0.6
AUC 0.81 0.76 0.81 0.82 0.83

60 min

Max depth 8 8 8 8 8
Learning rate 0.15 0.15 0.15 0.15 0.15
Gamma 0.5 1 0 0 0.1
Reg lambda 0 1 1 1 1
Subsample 0.8 0.8 0.6 0.8 0.8
Colsample bytree 0.8 0.6 0.6 0.8 0.7
AUC 0.76 0.75 0.79 0.81 0.78

30 min no BP

Max depth 8 8 8 8 8
Learning rate 0.15 0.15 0.15 0.15 0.15
Gamma 1 0.5 0 0.1 0.5
Reg lambda 1 10 0 0 1
Subsample 0.8 0.6 0.7 0.6 0.7
Colsample bytree 0.5 0.6 0.8 0.8 0.5
AUC 0.64 0.58 0.65 0.56 0.57

IDH2

30 min

Max depth 8 8 8 8 8
Learning rate 0.15 0.15 0.15 0.15 0.15
Gamma 0.5 1 1 0.25 0.5
Reg lambda 1 0 0 0 1
Subsample 0.7 0.8 0.8 0.8 0.7
Colsample bytree 0.5 0.5 0.5 0.5 0.5
AUC 0.87 0.79 0.86 0.81 0.89

60 min

Max depth 8 8 8 8 8
Learning rate 0.15 0.15 0.15 0.15 0.15
Gamma 0.1 1 0 0.25 1
Reg lambda 0 0 0.5 0.5 1
Subsample 0.6 0.8 0.8 0.8 0.8
Colsample bytree 0.7 0.5 0.8 0.7 0.7
AUC 0.74 0.76 0.80 0.76 0.84

30 min no BP

Max depth 8 8 8 8 8
Learning rate 0.15 0.15 0.15 0.15 0.15
Gamma 0 0.1 0.1 0.5 0
Reg lambda 1 0 0.5 10 10
Subsample 0.8 0.8 0.6 0.7 0.7
Colsample bytree 0.6 0.8 0.6 0.8 0.7
AUC 0.57 0.44 0.54 0.59 0.69

Abbreviations: AUC, Area Under the Curve; BP, blood pressure.
IDH1 is intradialytic hypotension defined as a drop in systolic blood pressure of ≥20 mmHg
compared to baseline, and IDH2, defined as a absolute systolic blood pressure ≤90 mmHg.
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Final hyperparameter settings
IDH1
Logistic Regression

• regularization parameter = 10
Random Forest

• number of trees = 150
• criterion = entropy
• bootstrap = True
• maximal tree depth = 10
• minimal samples per leaf = 3

XGBoost
• maximal tree depth = 8
• learning rate = 0.15
• minimal loss reduction = 0.1
• l2 regularization term = 0
• subsampling ratio of samples = 0.8
• subsampling ratio of columns = 0.6

Recurrent Neural Network
• input size = 27
• hidden size = 50
• number of layers = 1
• batch size = 300
• weight of positive samples = 5
• learning rate = 1∗10−4

• weight decay = 1∗10−6

• learning rate scheduler = linear
• number of epochs = 300

IDH2
Logistic Regression

• regularization parameter = 100
Random Forest

• number of trees = 100
• criterion = gini
• bootstrap = True
• maximal tree depth = 10
• minimal samples per leaf = 3

XGBoost
• maximal tree depth = 8
• learning rate = 0.15
• minimal loss reduction = 0.25
• l2 regularization term = 0
• subsampling ratio of samples = 0.8
• subsampling ratio of columns = 0.5

Recurrent Neural Network
• input size = 27
• hidden size = 50
• number of layers = 1
• batch size = 500
• weight of positive samples = 50
• learning rate = 1∗10−5

• weight decay = 1∗10−6

• learning rate scheduler = linear
• number of epochs = 300
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Results subanalyses

The figures below show the ROC curves of the subanalyses that were performed. Figure 22 provides the results of
prediction of IDH 60 minutes ahead, instead of 30 minutes and Figure 23 the results after exclusion of all blood pressure
measurements.

(a) IDH1 (b) IDH2

Figure 22: ROC curves of the logistic regressoin (LR), random forest (RF), XGBoost (XGB) and recurrent neural network (RNN) for
prediction of IDH 60 minutes ahead. IDH1 is intradialytic hypotension defined as a drop in systolic blood pressure of ≥20 mmHg compared

to baseline, and IDH2 a absolute systolic blood pressure ≤90 mmHg.

(a) IDH1 (b) IDH2

Figure 23: ROC curves of the logistic regressoin (LR), random forest (RF), XGBoost (XGB) and recurrent neural network (RNN) for
prediction of IDH 30 minutes ahead, but without blood pressure measurements. IDH1 is intradialytic hypotension defined as a drop in

systolic blood pressure of ≥20 mmHg compared to baseline, and IDH2 a absolute systolic blood pressure ≤90 mmHg.
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