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 A B S T R A C T

Meiotic metamaterials are intricately designed structures characterized by a positive Poisson’s ratio, surpassing 
the conventional limit of 0.5 observed in natural materials. This exceptional attribute allows them to contract 
or expand perpendicularly to the applied stretch or compression, respectively.

Structures featuring a high positive Poisson’s ratio exhibit a counter-intuitive negative compressibility 
behavior, holding significant promise for diverse applications spanning various domains.

Despite the potential of Poisson’s ratio metamaterials, including auxetic, anepirretic, and meiotic structures, 
their recent development has been hindered by the lack of efficient design methods. This paper aims to address 
this limitation, concentrating on the meiotic variant of a minimal 2D auxetic structure recently proposed. We 
employ a design method incorporating two topological transformations, not only enabling the creation of 
known meiotic structures but also facilitating the generation of new ones while understanding the impact of 
chirality. Additionally, the proposed method enables the categorization of these structures into three achiral 
families that present meiotic behavior and can exhibit negative linear compressibility and three chiral families 
that possess an auxetic behavior. Only the base chiral structure was found to exhibit a meiotic behavior while 
being chiral.

In an effort to enhance comprehension and standardization, we introduce a naming protocol and define the 
associated unit cell for these structures. We also delve into the potential of tessellations within this framework. 
Finally, our study examines meiotic structures from the perspective of surface strain, a more general metrics, 
linked to the compressibility, providing further insights into their unique mechanical properties.
1. Introduction

In recent decades, a novel category of material mechanisms has 
emerged, known as metamaterials or metastructures. Metamaterials 
are architecturally designed structures that showcase unique behaviors, 
possessing properties unattainable by natural materials. These struc-
tures are tessellated and consist of repeating unit cells that enclose 
an architectured mechanism. One specific type of metamaterial is the 
Poisson’s ratio metastructure, engineered to exhibit specific values 
and behavior of Poisson’s ratio. Typically, isotropic materials have a 
Poisson’s ratio within the range of −1 to 0.5, whereas metamaterials 
are usually designed to exhibit positive or negative values outside of 
this natural range. Based on this, three distinct groups can be identified. 
Firstly, auxetic structures (Kolken and Zadpoor, 2017; Li et al., 2019), 
are the most common. They possess a negative Poisson’s ratio, meaning 
they expand or compress in the direction opposite to the applied stretch 
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or compression, respectively. Some rare natural materials, such as 
certain tendons (Gatt et al., 2015b) and bones (Williams and Lewis, 
1982), exhibit auxetic behavior. While most auxetic structures have 
a Poisson’s ratio between −1 and 0, certain structures have been 
observed to surpass the isotropic lower limit of −1 (Dirrenberger et al., 
2011; Shaat and Wagih, 2020). The second group comprises anepirretic 
structures (Dagdelen et al., 2017; Hamzehei et al., 2022). These struc-
tures possess a zero Poisson’s ratio, maintaining their thickness when 
subjected to stretching or compression. Cork has been considered to 
exhibit an almost anepirretic behavior (Fortes and Teresa Nogueira, 
1989), with very low Poisson’s ratio values in the radial directions (𝜈 =
0.067). The third group is represented by meiotic structures (Dagdelen 
et al., 2017), characterized by a positive Poisson’s ratio. Most natu-
ral materials exhibit a positive Poisson’s ratio, such as rubber (𝜈 ≈
0.499), copper (𝜈 = 0.330), and steel (𝜈 = 0.285). Only rare natural
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Received 28 October 2024; Received in revised form 21 May 2025; Accepted 29 M
vailable online 23 June 2025 
020-7683/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access a
ay 2025

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/ijsolstr
https://www.elsevier.com/locate/ijsolstr
https://orcid.org/0000-0003-2202-6116
https://orcid.org/0000-0002-2770-0539
mailto:P.Roberjot@tudelft.nl
mailto:J.L.Herder@tudelft.nl
https://doi.org/10.1016/j.ijsolstr.2025.113494
https://doi.org/10.1016/j.ijsolstr.2025.113494
http://creativecommons.org/licenses/by/4.0/


P. Roberjot and J.L. Herder International Journal of Solids and Structures 320 (2025) 113494 
structures exhibit a Poisson’s ratio higher than 0.5, for instance the 
skin of certain aquatic salamanders which possess a Poisson’s ratio 
higher than 2.5 (Frolich et al., 1994). Values as high as 2 where found 
for symmetrical graphite fiber/epoxy angled ply composites (Chamis, 
1980). Meiotic metamaterials are less commonly developed compared 
to the auxetic, but certain proposals, like those based on the inversor 
linkage, aim to achieve a constant Poisson’s ratio of 1 (Broeren et al., 
2019). Notably, well-known pantograph structures also align with the 
meiotic definition (dell’Isola et al., 2015; Turco et al., 2016; Turco and 
Rizzi, 2016; dell’Isola et al., 2019).

In 1985, auxetic metamaterials were initially discovered in specific 
foams (Kolpakov, 1985; Lakes, 1987). Since then, these structures have 
undergone various modifications, leading to the identification of new 
auxetic forms. The growing interest in auxetic metamaterials stems 
from their diverse applications, yet their development has often relied 
on trial and error. While many structures have been created through 
this approach, there has been a shift towards more deliberate engineer-
ing methods. Some specific design approaches have been proposed to 
actively craft particular groups of auxetic structures (Grima et al., 2005; 
Broeren et al., 2019). Auxetic metamaterials can be broadly categorized 
based on chirality, including chiral (Zhang et al., 2022; Zhu et al., 
2022) and achiral (or non-chiral) (Grima et al., 2005; Papadopoulou 
et al., 2017) structures. Recently (Roberjot and Herder, 2024) proposed 
a Planar Poisson’s Ratio Design Method (PPRDM) based on a structural 
minimal auxetic unit, serving as a foundational element for planar 
auxetic metamaterials. The chiral three-beam structure, derived from 
this minimal unit, has demonstrated auxetic behavior up to a maximum 
strain. Interestingly, when this structure is extended further, its behav-
ior becomes meiotic. The PPRDM employed holds significant potential 
for shaping the emerging domain of planar meiotic metamaterials.

The isothermal volume compressibility 𝛽𝑉  and the bulk modulus 𝐾, 
its inverse, are two properties that describe how the volume changes 
in a material when submitted to hydrostatic pressure. Most materi-
als contract in all direction when submitted to hydrostatic pressure, 
however, constrained structures that express negative compressibility 
exist and were proven not to violate classical thermodynamics (Grima 
et al., 2008; Lakes and Wojciechowski, 2008). Negative linear com-
pressibility (NLC) defines the ability of a material or structure to 
expand in at least one direction when subjected to hydrostatic pres-
sure (Baughman et al., 1998). Such properties have been observed in 
borate crystal (Kang et al., 2015), zinc dicyanoaurate (Cairns et al., 
2013), sodium amidoborane (Magos-Palasyuk et al., 2016), and in 
some metal–organic framework materials (Wang et al., 2016) under 
increasing pressure. Materials with a Poisson’s ratio below 0.5 possess 
a positive compressibility whereas a zero compressibility is achieved 
through a Poisson’s ratio of 0.5. Following this idea, metamaterials with 
a Poisson’s ratio above 0.5 would possess a negative compressibility. 
Such developments have been proposed for planar metamaterials with 
single material (Baughman et al., 1998; Lakes and Wojciechowski, 
2008) and even with multi-material metamaterials (Grima et al., 2008; 
Gatt and Grima, 2008). Such structures are of interest for potential sen-
sors (Baughman et al., 1998), actuators, and force amplifiers (Nicolaou 
and Motter, 2012) applications.

Despite their promising potential, the lack of a complete and ef-
ficient design method for meiotic metamaterials has hindered their 
development and widespread applications. Currently, trial-and-error 
methods are often used to develop these metamaterials, resulting in 
time-consuming lasting development processes while preventing the 
creation of general organic classifications.

In this paper, we present an extension of the existing PPRDM to a 
structural and topological design method for both known and novel 2D 
meiotic metamaterials formed from a simple minimal meiotic structure. 
Our three-step design method uses two topological transformations 
and, creates three achiral and three chiral 2D meiotic families. We first 
define the topology and strain behavior of the proposed minimal chiral 
meiotic structure and demonstrate how to create base achiral meiotic 
2 
structures. Next, we use the design method to create the six meiotic 
groups, including higher order geometrical structures. We also propose 
a definition of the unit cells and their tessellations, along with a naming 
process that encodes the generation process and unit cell type. Then, 
we suggest characterizing the meiotic structures with surface strain, a 
more general metric that directly links to the compressibility and shows 
that negative linear compressibility can be obtain for certain designs.

2. Methods

In this section, we present a minimal chiral meiotic structure de-
rived from the auxetic base structure proposed in Roberjot and Herder 
(2024) along the auxetic PPRDM. Additionally, we propose three base 
achiral meiotic structures achieved through the achiralisation of the 
chiral base. Next, we put forward a unified equation for calculating 
the Poisson’s ratio, which is dependent on the angle of the structures. 
This equation establishes a link between the auxetic and meiotic base 
structures. Subsequently, we adapt the design protocol used for 2D 
auxetic metamaterials to the meiotic base structure. This adaptation 
allows us to create and categorize meiotic structures into six families, 
which can be either chiral or achiral. We use a similar naming protocol 
to encode the geometrical transformations applied to the base structure.

2.1. A minimal chiral meiotic structure emerging from the auxetic base 
structure

Previously, we proposed a minimal 2D auxetic structure shaped 
as a ‘‘𝑍’’ along with a design method that creates six families of 
planar auxetic metamaterials, a naming protocol and, a unit cell design 
protocol. The auxetic structure 𝑍𝐴 is a three-bar linkage possessing 
three rigid beams ([𝐴′𝐴] = 𝑎1, [𝐴𝐵] = 𝑎2 and [𝐵𝐵′] = 𝑎3) linked 
together with two revolute joints (at points 𝐴 and 𝐵), represented 
in Fig.  1.a. (for sake of simplicity the revolute joints and sliders are 
presented here in Fig.  1 and omitted in the rest of the development). It 
possesses two edges, the points 𝐴′ = 𝐸1 and 𝐵′ = 𝐸2, these points are 
connection points to tile adjacent 𝑍 structures in a line. The regular 
chiral auxetic Z (𝑍𝐴) possesses two acute angles (𝜃1 = 𝐴′𝐴𝐵 and 
𝜃2 = 𝐴𝐵𝐵′, which are equal when 𝑍𝐴 is regular) between 0◦ and a 
maximum angle 𝜃𝑚𝑎𝑥 which gives the maximum value of auxeticity, in 
other words the height of 𝑍 is maximum at the angle 𝜃𝑚𝑎𝑥, illustrated 
in Fig.  1.b.

The base structure 𝑍𝐴 can be stretched from an initial state where 
𝜃 ≤ 𝜃𝑚𝑎𝑥 to a final state where 𝜃 > 𝜃𝑚𝑎𝑥. In this configuration, 
any stretch applied to the Z structure will increase the overall length 
and reduce the height, and therefore, the Poisson’s ratio (𝜈) becomes 
positive. The configuration where 180◦ > 𝜃 > 𝜃𝑚𝑎𝑥 gives an overall 
meiotic behavior, the structure Z is denoted 𝑍𝑀 , and represented in 
Fig.  1.c.

𝑍𝐴 and 𝑍𝑀  are topologically equivalent and are considered regular 
when the length 𝑎1 and 𝑎3 are equals as for the angles 𝜃1 and 𝜃2. The 
unit cell of 𝑍 (equivalent for 𝑍𝐴 and 𝑍𝑀 ), depicted in Fig.  1.a, b, c, is 
a rectangular unit cell, the points 𝐸1 = 𝐴′ and 𝐸2 = 𝐵′ are the center 
of two sides of the UC, these sides are normal to the line (𝐸1𝑂) (or 
(𝐸2𝑂)). the two other sides are normal to the two first sides and are 
passing respectively by the point A and B.

We propose to determine the behavior of the Poisson’s ratio 𝜈 of 
the 𝑍 structures as a function of the angle 𝜃, for 𝜃 ∈ [0◦, 180◦]. We 
assume here a regular 𝑍 structure, it possesses a point of symmetry 𝑂, 
and therefore the analysis can be simplified and performed on half of 
the structures only, as shown and parameterized in Fig.  1.c. The half 
structures are, for any value of 𝜃, random triangles, thus the Al-Kashi 
formula can be used to calculate the half-length 𝐿2 = [𝐸1𝑂] as 

𝐿2 = 𝑎2 +
(𝑎2 )2

− 2𝑎
𝑎2 𝑐𝑜𝑠(𝜃) (1)
2 1 2 1 2
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Fig. 1. Representation of the unit cell of (a) 𝑍𝑀 and (b) 𝑍𝐴 with their characteristic points, (c) the parameters of 𝑍, being meiotic, auxetic and at the maximum height, to 
calculate the half-length 𝐿2 and half-height 𝐻2. Representation of the evolution of the (d) longitudinal 𝜀𝐿 and transverse 𝜀𝐻 strain, and (e) the evolution of the Poisson’s ratio 𝜈, 
with an initial angle 𝜃𝐼 = 60◦ for three couples [𝑎1 , 𝑎2]. The two horizontal dashed lines represent the isotropic limit of the Poisson’s ratio, i.e. ] − 1, 0.5[.
with 𝑎1 the length of the segment [𝐸1𝐴], 𝑎22  the length of the segment 
[𝐴𝑂]. The length 𝐿(𝜃) can be written, as a function of the angle 𝜃, for 
a couple [𝑎1, 𝑎2] as, 

𝐿(𝜃) = 2𝐿2 = 2

√

𝑎21 +
(𝑎2
2

)2
− 2𝑎1

𝑎2
2
𝑐𝑜𝑠(𝜃) (2)

The length being known at any angle, the strains 𝜀𝐿(𝜃) can be calculated 
as a function of the angle, 

𝜀𝐿(𝜃) =
𝐿(𝜃)
𝐿(𝜃𝐼 )

− 1 (3)

with 𝜃𝐼  the initial and 𝜃 a final angles which give the initial and final 
length. The strain 𝜀𝐿(𝜃) is plotted in Fig.  1.d with an arbitrary initial 
angle 𝜃𝐼 = 60◦ for three sets of values of [𝑎1, 𝑎2]. One may notice that 
the curve 𝜀𝐿(𝜃) is always growing in the range [0◦, 180◦] and going from 
negative values before 𝜃𝐼  to positive values after 𝜃𝐼 .

The height of the UC can be derived similarly, calculating the half-
height 𝐻2, which correspond to the projection of the length [𝐴𝑂] on 
the 𝑦 axis. The values 𝑎1, 𝑎22  and 𝐿2 = 𝐿

2  are known for every 𝜃, thus 
the law of sines can be applied in the random triangle 𝐸1𝐴𝑂 as 
𝐿∕2
𝑠𝑖𝑛(𝜃)

=
𝑎2∕2
𝑠𝑖𝑛(𝛼)

(4)

with 𝛼 the angle 𝐴𝐸1𝑂. The value of 𝑠𝑖𝑛(𝛼) is thus 
𝑠𝑖𝑛(𝛼) =

(𝑎2
𝐿

)

𝑠𝑖𝑛(𝜃) (5)

One can form the right triangle 𝐸1𝐴𝑅 with 𝑅 the projection of the point 
𝐴 on the segment [𝐸1𝑂], where the length of [𝐴𝑅] is the half-height 𝐻2, 
calculated with the trigonometry as 
𝐻2 = 𝑎1𝑠𝑖𝑛(𝛼) (6)

or, as a function of 𝜃 if Eq.  (5) is injected in Eq.  (6), as, 
𝐻(𝜃) = 2

𝑎1𝑎2 𝑠𝑖𝑛(𝜃) (7)

𝐿(𝜃)

3 
The strain 𝜀𝐻 (𝜃) is given as 

𝜀𝐻 (𝜃) =
𝐻(𝜃)
𝐻(𝜃𝐼 )

− 1 (8)

The evolution of 𝜀𝐻 (𝜃) is plotted in Fig.  1.d. One may notice that 
the curve 𝜀𝐻 (𝜃) is reaching a growing up to a maximum and then 
decreasing. Because of the presence of this maximum and the change 
of sign of 𝜀𝐻 (𝜃) the Poisson’s ratio can be either negative or positive.

The Poisson’s ratio 𝜈(𝜃) is calculated, as a function of 𝜃 from the two 
strains calculated above, 

𝜈(𝜃) = −
𝜀𝐻 (𝜃)
𝜀𝐿(𝜃)

(9)

and plotted in Fig.  1.e with an arbitrary initial angle 𝜃𝐼 = 60◦ for three 
sets of values of [𝑎1, 𝑎2]. One can observe that, with these chosen sets 
[𝑎1, 𝑎2] the Poisson’s ratio can go down to −6 and up to 2, choosing the 
dimension of the 𝑍 structure directly links to tuning the obtainable 
strains and PR. In Appendix  A we are showing that 𝜈 can possess 
high negative and positive values (𝜈 ∈ [−400, 100]) depending on the 
dimension of the beams and the value of the angle, here with 𝑎1 = 10
and 𝑎2 = 0.1 (arbitrary units). Certain sensing or actuation technologies 
could benefit from such uncommon values of the Poisson’s ratio.

We have shown that, the Poisson’s ratio is defined for a given 
geometry by the angle 𝜃, and since the 𝑍 can be auxetic or meiotic, 
one can define the transition angle 𝜃𝑇  as the angle that separates the 
auxetic and meiotic topologies. 𝜃 = 𝜃𝑇  when the triangle 𝐸1𝐴𝑂 is a 
right triangle in O, meaning that 𝐸1𝑂𝐴 = 90◦, therefore, the cosine of 
𝜃𝑇 = 𝐸1𝐴𝑂 is calculated as the usual cosine for right triangles 

𝑐𝑜𝑠(𝜃𝑇 ) =
𝐴𝑂
𝐴𝐸1

=
𝑎2
2𝑎1

(10)

This angle corresponds to the maximum value of the height 𝐻(𝜃). The 
equations derived above hold true for all couples [𝑎 , 𝑎 ] ∈ (ℜ∗)2, 
1 2
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Fig. 2. Representation of (a) the design method applied to the planar auxetic and meiotic metamaterials, with (b) an illustration of the achiralisation process applied to 𝑍𝑀 and, 
(c) an illustration of the copy rotation of the ‘‘Lucky bone’’ reciprocal design, copy-rotated four times.
however, with the condition that 𝑎1 ≥ 𝑎2∕2. Indeed, if 𝑎1 > 𝑎2∕2 then 
the 𝑐𝑜𝑠(𝜃𝑇 ) exists and the Z can be either auxetic or meiotic. In the case 
that 𝑎1 = 𝑎2∕2, the 𝑐𝑜𝑠(𝜃𝑇 ) = 1, thus the transition angle 𝜃𝑇 = 0. In this 
scenario, the structure can only be meiotic.

In the case where 𝑎1 < 𝑎2∕2, 𝜃𝑇  is not defined, the structure must 
then be only meiotic. However, if such a structure ([𝑎1, 𝑎2]) is connected 
to a next one then one can notice that the structure is equivalent to 
a new 𝑍 topology ([𝑎′1, 𝑎′2]) with 𝑎′1 = 𝑎2∕2 and 𝑎′2 = 2𝑎1. In other 
words, having a 𝑍 structure with 𝑎1 < 𝑎2∕2 is topologically equivalent 
to having a structure 𝑍′ with 𝑎1 > 𝑎2∕2.

2.2. Design method, classification, naming and tessellation of 𝑍𝑀 -based 
planar metamaterials

We have been showing that the auxetic structure 𝑍𝐴 can be mod-
ified in 𝑍𝑀  to present a meiotic behavior. We are proposing the 
application of the PPRDM method to the meiotic base structure 𝑍𝑀 . 
The PPRDM (Fig.  2.a) is a three step method that was presented 
in Roberjot and Herder (2024), and uses two topological transforma-
tions namely ‘‘achiralisation’’ (Fig.  2.b) and ‘‘copy-rotation’’ (Fig.  2.c), 
the first enables to transform a chiral object in an achiral object using 
a mirror symmetry, the second displays 𝑁 copies of an object around 
a center of rotation 𝑂𝑅.

One rule of transformation is added here to enable the generation 
of novel designs and variations, When the achiralisation axis is normal 
to the beam, the edges 𝐴′ and 𝐵′ are joined rigidly, however if the axis 
is of achiralisation is not normal to the beams then the points 𝐴′ and 
𝐵′ are linked by a revolute joint.

The design method enables to classify the structures in two cat-
egories, achiral and chiral structures and six main families. Achiral 
4 
structures are presented in Section 3.1, three families exist can present 
a meiotic or anepirretic behavior. Chiral structures originated from 𝑍𝑀
present only an auxetic behavior because they have the same topology 
of their auxetic counterparts, presented in Section 3.2. When achi-
ralised under certain condition, they may present a meiotic behavior 
this phenomenon is presented in Section 3.4.2.

The PPRDM could produce an infinite number of structures, there-
fore a naming protocol is used to encode the topology, chirality, 
transformations applied to the base structure 𝑍𝑀  and location of the 
axis of achiralisation and center of rotations (Fig.  3). The naming 
convention is similar to the auxetic PPRDM coding, and where the base 
is coded 𝑍𝑀 , the six main families are named and coded similarly. The 
achiral families are the Lucky bone (𝐿𝑏) (Cf. Section 3.1.2), the Rose 
(𝑅𝑜) (Cf. Section 3.1.3), and the Wine rack (𝑊 𝑟) (Cf. Section 3.1.4). The 
chiral families are the Missing rib meiotic (𝑀𝑟𝑚) (Cf. Section 3.2.1), the 
Closed geometry meiotic (𝐶𝑔𝑚) (Cf. Section 3.2.2), and the Honeycomb 
meiotic (𝐻𝑐𝑚) (Cf. Section 3.2.3). As the chiral families possess the 
same topology whether built from 𝑍𝐴 or 𝑍𝑀  they have the same base 
name and added a ‘𝑚’ when designed with 𝑍𝑀 .

The naming rules are the same as for the auxetic PPRDM, the chiral 
copy-rotations are written on the right side of the chiral name and 
separated by a dot ‘‘.’’ for higher-order copy-rotations. The achiral 
transformations are written on the left side with an ‘‘𝐴’’ for the achiral-
isation, and the type of transformation reciprocal ‘‘𝑅’’ or classical ‘‘𝐶 ’’, 
and the number of copy-rotation are written on the left and separated 
by a dot ‘‘.’’.

The design method produces structures that can be tessellated in 
the plane (Kolken and Zadpoor, 2017; Czajkowski et al., 2022) to form 
metastructures. The metastructures are defined with the internal mech-
anism, the structure, and the contour of the element, the unit cell (UC). 
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Fig. 3. Details and signification of the naming code with the example of (a) a chiral 
base structure 3𝑅𝐴𝐶𝑔𝑚3.3, and (b) an achiral base structure 4.4𝐶𝐿𝑏.

The shape of the unit cell is linked to the number of copy-rotations 
applied to the base structure and follows the Voronoi decomposition, 
which creates primitive cells. A structure created after 𝑁 copy-rotations 
will possess a UC in the shape of a 𝑁-order polygon, as illustrated in 
Fig.  4. The design process, presented with the auxetic PPRDM, links the 
edges 𝐸𝑁  of the structure to the middle of the 𝑁 faces 𝐹𝑁  of the UC 
and where the center 𝑂𝑅 is the vertex of the cell.

The planar tessellation of the unit cells are following the
Archimedean tiling definitions, presented in Appendix  B.

3. Results - Application of the design method

In this section we propose to illustrate how the design method can 
be applied to 𝑍𝑀  to, firstly, design the three achiral base metamaterials 
following the first step of the design method (Section 3.1.1). Second, 
we illustrated the second step of the design method, presenting three 
achiral (Section 3.1) and three chiral (Section 3.2) planar meiotic 
families, showing the construction of the center of rotation 𝑂𝑅 and the 
edges 𝐸𝑁 . Third, we show how higher order (Section 3.3) structures 
can be generated. We explain that 𝑍𝑀  is a chiral structure that possess 
a positive Poisson’s ratio, however, if used to create chiral structures 
based on the design method, does generate structures that possess a 
negative Poisson’s ratio, unless the created structures are achiralised 
in the higher-order. Then, we calculate the Poisson’s ratio of some 
structures to identify ranges of values (Section 3.4).

3.1. Building achiral structures

Here we present three families of achiral meiotic structures orig-
inating from 𝑍𝑀 , we illustrate how to create the axis of symmetry 
for the achiralisation process and the position of the center of rotation 
𝑂𝑅. In addition, we detail certain irregular cases that are presented in 
appendices.

3.1.1. Construction of the achiral meiotic bases
𝑍𝑀  is, as 𝑍𝐴 is a chiral structure, therefore possesses two enan-

tiomorphs that are the mirror images of each other (Fig.  5.a). The two 
enantiomorphs can be joined together to form an achiral structure. 
Joining the enantiomorphs corresponds with placing an axis of sym-
metry in a particular location and using the axis as a mirror to 𝑍𝑀 , we 
present here three remarkable axes of achiralisation that allow to built 
the achiral bases. These three axes are remarkable because they are 
enable creating known structures, and are following natural symmetries 
(for instance an 𝑥 or 𝑦 axis symmetry).

The first achiralisation, designed as ‘‘Lucky bone’’ (Fig.  5.b), is 
mirroring 𝑍 from the line (𝐴′𝐴) or (𝐵′𝐵). It generates one half of 
the hexagonal honeycomb structure (Grima et al., 2011). The structure 
is fully deployed when the angles 𝜃 are minimum 𝜃𝑚𝑎𝑥 = 0◦ and 
undeployed when 𝜃 = 90◦ (in the meiotic regime). The family of the 
Lb structure is presented in Section 3.1.2.
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The second, designed as ‘‘Rose’’ design (Fig.  5.c), is mirroring 𝑍𝑀
from a line normal to (𝐴′𝐴) passing by the point 𝐴′ (or normal to 
(𝐵′𝐵) and passing by 𝐵′). It generates also one half of the hexagonal 
honeycomb structure. The structure is fully deployed when the angles 
𝜃 are minimum 𝜃𝑚𝑎𝑥 = 0◦ and undeployed when 𝜃 = 90◦. The family of 
the 𝑅𝑜 structure is presented in Section 3.1.3.

The third achiralisation, called ‘‘Wine racks’’ (Grima et al., 2008), is 
mirroring 𝑍𝑀  from the line (𝐴′𝐵′), this results in creating a structure 
that in composed of two lozenges possessing revolute joints at the 
points O, 𝐴1, 𝐴2, 𝐴′, 𝐵1, 𝐵2, and 𝐵′, making a slight exception to the 
second rule (Section 2.2). The topology and kinematics are represented 
in Fig.  5.d, the family of 𝑊 𝑟 is presented in Section 3.1.4.

3.1.2. Achiral ‘‘lucky bone’’ (𝐿𝑏) design
Here we show how to use the copy-rotation on the three achiral base 

structures and how to define the center of rotation 𝑂𝑅 and the edges 
𝐸 to design the achiral classical and reciprocal structures, illustrated 
for 𝑁 = 2, 3 and 4. We show how the most common achiral meiotic 
structures are designed and how an anepirretic structure is created.

Meiotic achiral ‘‘Lucky bone’’ structures, coded 𝐿𝑏, originates from 
𝑍𝑀  achiralised as shown in Fig.  5.d. The Fig.  6.a shows the points of 
interest and the creation of the center of rotation 𝑂𝑅 for the classical 
structures 𝐶𝐿𝑏. The point 𝑂𝑅 is created from the isosceles triangle 
𝐴1𝑂𝑅𝐴2, with 𝜑𝑁  the angle ̂𝐴1𝑂𝑅𝐴2, the edge E of a sector is located at 
the point 𝐵′. The beams 𝐴1𝐴′

1 and 𝐴2𝐴′
2 need to be removed (or have 

a length of 0) for the creation of 𝐶𝐿𝑏, this choice is made considering 
their auxetic counterpart, if the beams are present in the structures, 
it increases the number of moving beams (increasing the number of 
degrees of freedom) and increasing the number of internal degree of 
freedom and, thus it is more difficult to control their behavior.

The 𝑁 copy-rotated structures are linked around 𝑂𝑅 connecting the 
points 𝐴1𝑛 to the points 𝐴2(𝑛+1). The classical case 2𝐶𝐿𝑏, depicted in 
Fig.  6.c, has been proposed and named hexagonal honeycomb (Grima 
et al., 2011) as a variation of the auxetic bow tie structure (Kolken 
and Zadpoor, 2017). Whereas for the auxetic design, all of the copy-
rotated sectors were behaving in the same way, the deformation of 
meiotic structures is symmetric regarding the axis of stretch, the joint 
beams between two copy-rotated structures are conserving the same 
angle and the sectors are getting thinner if on the stretch line or 
wider if not. The design 4𝐶𝐿𝑏 is topologically close to one of the 
proposed topologically optimized Missing-rib structure (Clausen et al., 
2015) exhibiting a Poisson’s ratio of 0.8. The design method is giving 
a topological explanation of the high positive Poisson’s ratio.

Reciprocal designs of the achiral lucky bone (𝑅𝐿𝑏) are created from 
the triangle 𝐴1𝐵′𝐴2 (Fig.  6.f), the center of rotation 𝑂𝑅 becomes the 
point 𝐵′. The beams 𝐴1𝐴′

1 and 𝐴2𝐴′
2 are no longer sacrificial beams 

for these structures. The two edges of the structure are thus the points 
𝐸1 = 𝐴′

1 and 𝐸2 = 𝐴′
2. The copy-rotation angle 𝜑𝑁  is created between 

consecutive repetitions of the element, meaning 𝜑𝑁 = ̂𝐵𝑛𝐵′𝐵𝑛+1, with 
𝐵𝑛 and 𝐵𝑛+1 the points 𝐵 in the consecutive copy-rotated structures. 
The reciprocal designs, starting from 𝑁 = 3, possess a decoupling cross-
like rigid body at the center of the structure (Fig.  6.h.i), therefore, if 
a reciprocal structure is stretched in one direction, only the sectors 
in the line of stretch are subject to deformation. This behavior gives 
to reciprocal lucky bone structures an anepirretic, or zero Poisson’s 
ratio property (Dagdelen et al., 2017), as would its auxetic counterpart 
do (Roberjot and Herder, 2024). Anepirretic structures can be built 
from structures possessing a decoupling link, that links an even number 
of copy-rotated structures.

3.1.3. Achiral ‘‘Rose’’ (𝑅𝑜) design
Meiotic ‘‘Rose’’ structures, coded 𝑅𝑜, are built from 𝑍𝑀  achiralised 

as shown in Fig.  5.e. The center of rotation for the classical Rose design 
is created from the isosceles triangle 𝐴1𝑂𝑅𝐴2, 𝜑𝑁  is the angle ̂𝐴1𝑂𝑅𝐴2, 
and the edge point 𝐸 is located at the point 𝐵′

1 = 𝐵′
2 (Fig.  7.a). The 

𝑁 copy-rotated structures are linked around 𝑂  connecting the points 
𝑅



P. Roberjot and J.L. Herder International Journal of Solids and Structures 320 (2025) 113494 
Fig. 4. Representation of the unit cell with the construction lines and center of rotation 𝑂𝑅 of (a) 2𝐶𝐿𝑏 with the four edge points 𝐸1 − 𝐸4, (b) 4𝐶𝐿𝑏 with the four faces 𝐹 , the 
four edge points, and the angle 𝜑3 = 90◦, (c) the triangular UC of 𝑀𝑟𝑚3 with the angle 𝜑3 = 60◦, (d) the example of 2𝐶𝐴𝐶𝑔𝑚4 an higher order structure, and (e) the hexagonal 
UC of 6𝐶𝑅𝑜 with the six edges 𝐸1 − 𝐸6 and the angle 𝜑6 = 120◦.
Fig. 5. Representation of (a) the two enantiomorphs, and the achiral meiotic bases (b) Lucky bone (𝐿𝑏), (c) Rose (𝑅𝑜), and (d) The Wine rack (𝑊 𝑟).
𝐴1𝑛 to the points 𝐴2(𝑛+1). The case 2𝐶𝑅𝑜, where the classical 𝑅𝑜 base 
structure is copy-rotated two times is represented in Fig.  7.c and is 
similar to 2𝐶𝐿𝑏 Fig.  6.c, however, 3𝐶𝑅𝑜 Fig.  7.d and 4𝐶𝑅𝑜 Fig.  7.e, etc. 
are different form the lucky bone designs, as are their tiling. For reasons 
similar to the Lb designs, the beams 𝐴1𝐴′

1 and 𝐴2𝐴′
2 are removed.

The 𝑅𝑜 and 𝐿𝑏 structures are equivalent, and if tessellated, one can 
find that the two designs are complementary to the other. However, 
in the higher order they can generate different types of structure. The 
edges are also different in the two structures, the 𝐿𝑏 has edges as points 
whereas the 𝑅𝑜 structures possesses planes. The differences in contact 
topology can help connections to other structures and enable the design 
of complex and user defined metamaterials. Moreover, the reciprocal 
Rose structures, with 𝑁 ≥ 3 possess, as the 𝑅𝐿𝑏, an anepirretic prop-
erty, when tessellated, 4𝑅𝑅𝑜 correspond to 4𝑅𝐿𝑏 and, 3𝑅𝑅𝑜 correspond 
to 6𝑅𝐿𝑏.

3.1.4. Achiral ‘‘wine rack’’ (𝑊 𝑟) design
The meiotic ‘‘Wine rack’’ structures (Grima et al., 2008, 2011; 

Fortes et al., 2011; Lim, 2020), coded 𝑊 𝑟, are built from the third 
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achiralisation of 𝑍𝑀  (Fig.  5.a). The center of rotation 𝑂𝑅 is located at 
the point 𝐴′ or 𝐵′ (Fig.  8.a), and the angle 𝜑 is the angle 𝐴1𝐴′𝐴2, and 
𝐵1𝐵′𝐵2 for regular structures, the two angles can be different to create 
irregular 𝑊 𝑟 structures. The 𝑊 𝑟 structure is centrosymmetric at the 
point 𝑂, therefore the classical and reciprocal designs are identical for 
regular structures. Therefore, a convention can be taken, the classical 
structure as the center of rotation 𝑂𝑅 = 𝐴′ and the edge point 𝐸 = 𝐵′, 
whereas the reciprocal design has the center of rotation 𝑂𝑅 = 𝐵′ and 
the edge point 𝐸 = 𝐴′. For the regular designs, the names 𝐶𝑊 𝑟 and 
𝑅𝑊 𝑟 can be simplified as 𝑊 𝑟 only. The case 2𝑊 𝑟 (Fig.  8.a, b) was 
the one named wine rack design initially and corresponds to a scissors 
mechanism or pantograph structure (dell’Isola et al., 2015; Turco et al., 
2016; Turco and Rizzi, 2016; dell’Isola et al., 2019). The representation 
of the topology of 3𝑊 𝑟 is represented in Fig.  8.c and 4𝑊 𝑟 in Fig.  8.d. 
The unit cell of 2𝑊 𝑟 (Fig.  8.b) is constructed with the lines passing by 
𝐸1 = 𝐵′ and 𝐸2 = 𝐴′ and the lines passing by (𝐴1𝐴2) and (𝐵1𝐵2), the 
unit cell design are constructed as detailed in Section 2  and illustrated 
for 4𝑊 𝑟 in Fig.  8.d. An irregular variation of the wine rack structure 
was proposed (Dudek et al., 2016) with a 𝑍  possessing two different 
𝐴
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Fig. 6. Topological design of the regular achiral ‘‘Lucky bone’’ meiotic metamaterial, with (a) the creation of the center of rotation 𝑂𝑅 with the points of interest. The representation 
of the copy-rotated structures for (b) 2𝐶𝐿𝑏, (c) 3𝐶𝐿𝑏 and, (d) 4𝐶𝐿𝑏 with the representation of the sacrificial beams. The construction of the reciprocal Lucky bones with (e) the 
position of the center of rotation 𝑂𝑅 and the points of interest. The representation of the copy-rotated structures for the meiotic structure (f) 2𝑅𝐿𝑏, and the anepirretic structures 
(g) 3𝑅𝐿𝑏 and, (h) 4𝑅𝐿𝑏.

Fig. 7. Topological design of the regular achiral ‘‘Rose’’ meiotic metamaterial, with (a) the construction of the center of rotation 𝑂𝑅 of the classical Rose (𝐶𝑅𝑜) design and the 
points of interests. The representation the copy-rotated structures (b) 2𝐶𝑅𝑜, (c) 3𝐶𝑅𝑜, and (d) 4𝐶𝑅𝑜. The topological design of the reciprocal Rose (𝑅𝑅𝑜) design with (e) the 
construction of the point of rotation, with the points of interests. The representation of copy-rotated structures (f) 2𝑅𝑅𝑜, (g) 3𝑅𝑅𝑜, and (e) 4𝑅𝑅𝑜.
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Fig. 8. Topological design of the regular achiral ‘‘Wine rack’’ meiotic metamaterial, with (a) the construction of the center of rotation 𝑂𝑅 and the points of interests, and (b) the 
representation of 𝑊 𝑟 (equivalent to 2𝑊 𝑟) at different deformation states with the unit cell structure. The representation of the copy rotated structures, in the undeformed state 
(top) and deformed state (bottom) of (c) 3𝑊 𝑟, and (d) 4𝑊 𝑟 with the design of the unit cell.
angles 𝜃1 ≠ 𝜃2. The structure exhibits a high positive Poisson’s ratio and 
a negative linear compressibility.

The 𝑊 𝑟 structure is composed of two rhombi, a variation could be 
to have only one rhombus which can be created from having 𝑍𝑀  with 
𝑎1 = 0 and [𝑂𝐵1] = 𝑎2. This irregular 𝑊 𝑟 structure could be called 
Snowflake (𝑆𝑓 ), could be described as only one rhombus of the Wine 
rack design. 𝑆𝑓 can be copy-rotated as an achiral structure four times 
to give the structure 4𝐶𝑆𝑓 which possesses an anepirretic behavior 
similarly to 4𝑅𝐶𝑠, because of the decoupling point at the center of the 
structure. 4𝐶𝑆𝑓 can be copy-rotated to the higher-order, for instance, 
into 4.4𝐶𝑆𝑓 (Giraud et al., 2022) which exhibit this time a meiotic 
behavior. The anepirretic or meiotic behavior is mainly dependent 
on the direction of the compression or stretch on the unit cell. The 
structure Sf is presented in Appendix  C.

An other irregular structure can be designed from a variation of the 
position of the axis of symmetry while having the length 𝑎3 (or 𝑎1) set 
to zero. The initial axis is passing through the points 𝐴′ and 𝐵′, we 
propose to shift the position of the axis up or down and parallel, but 
not necessarily, to the initial one. Following the transformations one 
obtains the well known Scissor mechanisms, coded ‘‘𝑆𝑚’’. We detail 
the position of the axis of symmetry and the topology in Appendix  D.

3.2. Building chiral structures

Here, we present three main chiral families of design that originate 
from the chiral base 𝑍𝑀 , we illustrate how to create the center of 
rotations 𝑂𝑅 and how to apply the copy-rotation protocol. The auxetic 
PPRDM produced three regular chiral auxetic structures the Missing-rib 
(𝑀𝑟), the Closed-geometry (𝐶𝑔), and the Honeycomb (𝐻𝑐) (Roberjot 
and Herder, 2024). To be consistent with the auxetic PPRDM, we 
propose to follow the modifications applied to 𝑍𝐴 for its chiral transfor-
mation. We show that, even though these chiral structures are created 
from the meiotic base, they do not display a meiotic behavior but are 
auxetic.

3.2.1. Chiral ‘‘Missing-rib meiotic’’ (𝑀𝑟𝑚) design
The first chiral design uses the point 𝐴′ (or𝐵′) as its center of 

rotation 𝑂 , depending if the designer wishes to obtain a chiral or 
𝑅
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anti-chiral structure. The length 𝑎3 of the beam 𝐵𝐵′ is set to zero to 
comply with the design method remove additional internal degrees 
of freedom. The angle 𝜑𝑁  is the angle of copy-rotation between two 
copy-rotated 𝑍𝑀  structures, i.e. 𝜑𝑁 = ̂𝐴𝑛𝑂𝑅𝐴𝑛+1, with 𝐴𝑛 and 𝐴𝑛+1
the point A of two adjacent copy-rotated 𝑍𝑀  structures, and 𝑛 ∈
[1, 𝑁] (Fig.  9.a). However, when copy-rotated following this scenario, 
the structures created have the similar topology as the Missing-rib 
(𝑀𝑟) auxetic structures (Zhu et al., 2022; Wang et al., 2022), and 
possess, thus, an auxetic behavior. When it comes to naming this 
family, which is auxetic in the lower-order copy-rotation, one could use 
the 𝑀𝑟 naming convention. However, we show that the higher-order 
achiralisation (Section 3.3.2) of these structures when 𝑍𝑀  has its angle 
180 > 𝜃 > 𝜃𝑚𝑎𝑥, the copy-rotated structures possess a meiotic behavior. 
Therefore one could name the structures built with 𝑍𝑀  with an angle 
180 > 𝜃 > 𝜃𝑚𝑎𝑥 as ‘‘Missing-rib meiotic’’ structures, coded ‘‘𝑀𝑟𝑚’’. The 
copy-rotation process is illustrated for 𝑀𝑟𝑚3 in Fig.  9.b, and 𝑀𝑟𝑚4 in 
Fig.  9.c.

The base structures 𝑍𝐴 and 𝑍𝑀  can be also copy-rotated with their 
one edge 𝐴′ (or𝐵′), in that case without putting the length of the op-
posite beam to zero, can be named for instance for four copy-rotations 
𝑍𝐴4 or for six copy-rotations 𝑍𝑀6.

3.2.2. Chiral ‘‘Closed-geometry meiotic’’ (𝐶𝑔𝑚) design
The second chiral design uses the center of rotation 𝑂𝑅 at the 

tip of the isosceles triangle 𝐴′𝑂𝑅𝐵′ with the angle 𝜑𝑁 = 𝐴′𝑂𝑅𝐵′, 
illustrated in Fig.  10.a. The beams 𝐵𝑛𝐵′

𝑛 are rigidly connected to the 
beams 𝐴𝑛+1𝐴′

𝑛+1. Similarly to the 𝑀𝑟𝑚 family, when 𝑍𝑀  is copy-
rotated following this process, the structures that are created possess 
the same topology as the auxetic Closed-geometry (𝐶𝑔) family. The 
higher-order achiralisation (Section 3.3.2) of these structures also leads 
to a meiotic behavior, and therefore, the structures could be named, 
for structures created with 𝑍𝑀  with their angle 180 > 𝜃 > 𝜃𝑚𝑎𝑥, as 
‘‘Closed-geometry meiotic’’ coded ‘‘𝐶𝑔𝑚’’. The copy-rotation process is 
illustrated for 𝐶𝑔𝑚3 in Fig.  10.b, and for 𝐶𝑔𝑚3 in Fig.  10.c.

The regular unit cells of the 𝐶𝑔𝑚 and 𝐶𝑔 families are defined as 
passing by the edge points 𝐸𝑁  and being colinear to the beam where 
𝐸𝑁  is on. However, using such a regular unit cell for the tessellation 
is limiting the range of dimensions of 𝑎 , 𝑎  and 𝑎 , indeed, for certain 
1 2 3
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Fig. 9. Topological design of the regular chiral ‘‘Missing-rib meiotic’’ metamaterial, with (a) the construction of the center of rotation 𝑂𝑅 and the copy-rotation of the cases (b) 
𝑀𝑟𝑚3 where 𝑁 = 3 and, (c) 𝑀𝑟𝑚4 where 𝑁 = 4.
Fig. 10. Topological design of the regular chiral ‘‘Closed-geometry meiotic’’ metamaterial, with (a) the construction of the center of rotation 𝑂𝑅 and the copy-rotation of the cases 
(b) 𝐶𝑔𝑚3 where 𝑁 = 3 and, (c) 𝐶𝑔𝑚4 where 𝑁 = 4.
cases the structures can be non connecting because of internal connec-
tions. Irregularities can be brought to the tessellations that brings a 
more natural tiling scheme. The edges 𝐸𝑁  are located at the middle 
of the beams 𝐵𝐵′, the irregular tessellation connects the points 𝐸𝑁
rigidly and the beams become colinear and rigidly linked. The regular 
and irregular tessellations are presented in Appendix  E.

3.2.3. Chiral ‘‘Honeycomb meiotic’’ (𝐻𝑐𝑚) design
The third chiral design uses the center of rotation 𝑂𝑅 at the tip of 

the isosceles triangle 𝐴𝑂𝑅𝐵 with the angle 𝜑𝑁 = 𝐴𝑂𝑅𝐵, illustrated in 
Fig.  11.a. The length 𝑎3 of the beam 𝐵𝐵′ is set to zero to comply with 
the design method and prevent adding additional internal degrees of 
freedom. To create anti-chiral structures, the length 𝑎1 is set to zero, 
instead of 𝑎3. However, when copy-rotated following these rules, the 
structures created has a similar topology of the auxetic Honeycomb 
(𝐻𝑐) structures (Roberjot and Herder, 2024). And, as for the 𝑀𝑟𝑚 and 
𝐶𝑔𝑚 family, the higher-order achiralisation process enables the meiotic 
behavior to happen. Therefore, we adapted, here too, the naming 
convention. The structures created with 𝑍𝑀  with an angle 180 > 𝜃 >
𝜃𝑚𝑎𝑥, could be named ‘‘Honeycomb meiotic’’ coded ‘‘𝐻𝑐𝑚’’. The copy-
rotation process is illustrated for 𝐻𝑐𝑚3 in Fig.  11.b, and 𝐻𝑐𝑚4 in Fig. 
11.b. The center body is considered as one single rigid body as for the 
𝐻𝑐 design, however, it could be set a flexible body which could possibly 
lead to reducing the auxetic behavior and even to express meioticity.

An irregular structure (𝐻𝑐𝑚𝐼 ) can be formed here if the beam 𝐵𝐵′

(or𝐴𝐴′) is kept to a non null length. The difference between the 𝐻𝑐
auxetic family is that the beam which is set to zero length is not 
inside the center rigid body and therefore could be used to form more 
complex structures. The irregular 𝐻𝑐𝑚𝐼  design is detailed in Appendix 
F. 𝐻𝑐𝑚𝐼𝑁 possesses two ‘‘legs’’ per sector and the shape of its unit 
cell has the same topology as the ‘‘Closed geometry’’ chiral auxetic 
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structure 𝐶𝑔𝑁 . 𝐻𝑐𝑚𝐼  is used in the design of origami structures, indeed 
it represents the crease line pattern of some rotating origami (Silverberg 
et al., 2015; Zhang et al., 2020). In the case of a non-rigid internal 
body, the metamaterials correspond to the 2D projection of the base 
structures used for reconfigurable prismatic metamaterials (Overvelde 
et al., 2016, 2017; Zhu et al., 2019).

In addition, the achiralisation of these irregular 𝐻𝑐𝑚𝐼  structure can 
lead to the design of a novel achiral meiotic structure, which resembles 
to Butterfly wings. The Butterfly design (𝐵𝑡) is depicted in the Appendix 
G.

3.3. Higher-order Poisson’s ratio metamaterials

Higher-order Poisson’s ratio metamaterials can be designed fol-
lowing the third step of the design method, detailed in Section 2.2, 
using the copy-rotation and achiralisation geometrical transformations. 
We present, first, the higher-order copy-rotation process with some 
examples or achiral and chiral structures, second, the achiralisation 
process for some structures and discuss about their Poisson’s ratio 
behavior, and finally, we discuss the design of hierarchical and fractal 
metamaterials.

3.3.1. Higher-order copy-rotation
The higher-order copy-rotation can be applied to the chiral and 

achiral structures to create specific metamaterials. The point of rotation 
𝑂𝑅 is defined in a similar manner as for the low-order Poisson’s 
ratio structures. For achiral metamaterials, and if the base structure is 
follows a classical design, with one edge 𝐸 per face of the unit cell, 
𝑂𝑅 is located at the edge point 𝐸. In the case of a reciprocal base 
design, the center of rotation is chosen as a classical 𝑂𝑅, meaning that 
𝑂  is built from two edges forming an angle 𝜑 = ̂𝐸 𝑂 𝐸 . In the 
𝑅 𝑁 1 𝑅 2



P. Roberjot and J.L. Herder International Journal of Solids and Structures 320 (2025) 113494 
Fig. 11. Topological design of the regular chiral ‘‘Honeycomb meiotic’’ metamaterial, with (a) the construction of the center of rotation 𝑂𝑅 and the copy-rotation of the cases (b) 
𝐻𝑐𝑚3 where 𝑁 = 3 and, (c) 𝐻𝑐𝑚4 where 𝑁 = 4.
Fig. 12. Representation of the topology of the regular achiral higher-order (a) 4.4𝑅𝐿𝑏, (b) 6.3𝑅𝐿𝑏, (c) 4.4𝐶𝐿𝑏, (d) 6.3𝐶𝐿𝑏, (e) 4.4𝑊 𝑟, and (f) 6.3𝑊 𝑟. Representation of the regular 
chiral higher-order (g) 𝑀𝑟𝑚4.4, (h) 𝑀𝑟𝑚3.6, (i) 𝐻𝑐𝑚4.4, and (j) 𝐻𝑐𝑚3.6. The example of two irregular topologies (k) 3.4𝐶𝐿𝑏, and (l) 𝑀𝑟𝑚3.4.
two cases the position of 𝑂𝑅 follows the rules of the metastructure’s 
family. The number of higher-order copy-rotation is dependent on the 
order of the base structure, an 𝑁 order regular structure possess a 𝑁
order regular unit cell which defines the angle 𝜑𝑁  between two faces 
of the UC. That angle is conserved in the higher-order copy-rotation, 
therefore, the copy-rotation is limited to a maximum of M repetitions 
of 𝜑𝑁 , with 𝑀𝜑𝑁 ≤ 360◦ (See Section 2.2). Because of that condition 
the structure 6.3𝐶𝐿𝑏 exists, the angle 𝜑3 of 3𝐶𝐿𝑏 is 60◦, the higher-
order copy-rotation exists for 𝑀 ∈ [6, 2[, the cases 𝑀 = 2 correspond 
to a tessellation of the structure, and the case 𝑀 = 1 is not affecting 
the structure. Examples of some higher-order copy-rotation of classical 
and reciprocal structures are illustrated, for 4.4𝑅𝐿𝑏, 6.3𝐶𝐿𝑏 and the 
irregular 3.4𝐶𝐿𝑏 and 5.3𝑅𝐿𝑏, in Fig.  12.a–f.

For the chiral structures, the principle is the same, the point 𝑂𝑅
is located at the edge point 𝐸. The higher-order copy-rotated chiral 
structures are also presenting an auxetic behavior, as the structures 
possess the same chirality and, the higher-order copy-rotation enables 
a variation of the tessellation compared to the tessellation of the ‘‘low’’ 
order structures. For instance, the case 𝐶𝑔𝑚4.4 has the same tessellation 
as 𝐶𝑔𝑚4, only the thickness of the beams is theoretically changing 
because of the process. Examples of higher-order chiral structures are 
illustrated, for 𝑀𝑟𝑚 and 𝐻𝑐𝑚 in Fig.  12.g–j.

Irregular higher-order structures can be designed using a mismatch 
between the copy-rotation, for example the Fig.  12.k shows the struc-
ture 3.4𝐶𝐿𝑏, creating a triangular unit cell from a square base, adap-
tations needs to be done to tessellate the structure or to connect it to 
another type of structure to act as a joint, the Fig.  12.l shows a chiral 
irregular higher-order structure 𝑀𝑟𝑚3.4.
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3.3.2. Higher-order achiralisation
In addition to the higher-order copy-rotation, the chiral structures 

(Section 3.2) can be achiralised to form a higher-order achiral base, 
which can then be copy-rotated. The process of achiralisation is similar 
to the one used for the creation of the achiral bases (Section 3.1.1), 
it requires the creation of a line passing through at least one point 
of the chiral structure, to mirror the structure, thus combining the 
two enantiomorphs This process was explored for auxetic structures 
(Broeren et al., 2020). The achiralisation process can be applied to 
the three chiral families 𝐶𝑔𝑚, 𝐻𝑐𝑚 and, 𝑀𝑟𝑚 and their higher-order 
copy-rotated transformations.

The chiral 𝐶𝑔𝑚 structures can be achiralised following the same 
process as for the auxetic Cg family, the mirror line is passing through 
the points 𝐵𝑛 and 𝐵′

𝑛 (or 𝐴𝑛 and 𝐴′
𝑛 for anti-chiral structures) (Sec-

tion 3.2.2). The achiralisation process applied to the 𝐶𝑔𝑚 family gives 
the structures presented in Fig.  13.a.b detailing the position of the 
points 𝑂𝑅𝐶 and 𝑂𝑅𝑅 with the topology of some copy-rotated structures 
Fig.  13.c–f. The meiotic behavior of the structure 2𝐶𝐴𝐶𝑔𝑚4 (Fig. 
13.e) is presented in Fig.  15 and detailed in Appendix  H. The meiotic 
behavior is found in these structures because of the presence of the 
2𝐶𝐿𝑏 structure created by the achiralisation.

However, we have shown that the chiral structures created with 
our design method from the structure 𝑍𝑀  possess an auxetic behavior 
(Section 3.2), and the risk would be that achiralising these auxetic 
chiral structures leads to structures that are also auxetic, limiting thus 
the possibility for designing meiotic structures.

The chiral auxetic structures that were achiralised share two design 
aspects, first the angle between the mirror line and one of the leg 
is of 90◦; second, the joined beams are rigidly linked during the 
achiralisation process. Following these rules leads to have one rigid 
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Fig. 13. Representation of the achiralisation process of the 𝐶𝑔𝑚 family with the representation of the points 𝑂𝑅𝐶 and 𝑂𝑅𝑅 for the structures (a) 𝐴𝐶𝑔𝑚3, and (b) 𝐴𝐶𝑔𝑚4, and 
the representation of the higher-order copy-rotated structures (c) 2𝐶𝐴𝐶𝑔𝑚3, (d)3𝑅𝐴𝐶𝑔𝑚3 (which is equivalent to 3𝐶𝐴𝐶𝑔𝑚3), (e) 2𝐶𝐴𝐶𝑔𝑚4, and (f) 3𝑅𝐴𝐶𝑔𝑚4. Representation of 
the achiralisation process, with the axis of achiralisation non normal with the beam of the 𝑀𝑟𝑚 family with the representation of the points 𝑂𝑅𝐶 and 𝑂𝑅𝑅 for the structures (g) 
𝐴𝑀𝑟𝑚3, and (h) 𝐴𝑀𝑟𝑚4, and the representation of the higher-order copy-rotated structures (i) 2𝑅𝐴𝑀𝑟𝑚3, (j) 3𝑅𝐴𝑀𝑟𝑚3, (k) 2𝐶𝐴𝑀𝑟𝑚4, and (l) 3𝐶𝐴𝑀𝑟𝑚4. Representation of the 
achiralisation process of the 𝐻𝑐𝑚 family, with the axis of achiralisation non normal with the beam, with the representation of the points 𝑂𝑅𝐶 and 𝑂𝑅𝑅 for the structures (m) 
𝐴𝐻𝑐𝑚3, and (n) 𝐴𝐻𝑐𝑚4, and the representation of the higher-order copy-rotated structures (o) 2𝐶𝐴𝐻𝑐𝑚3, (p) 3𝐶𝐴𝐻𝑐𝑚3, (q) 2𝐶𝐴𝐻𝑐𝑚4, and (r) 3𝑅𝐴𝐻𝑐𝑚4.
beam that usually does not deform when compressed or stretched and 
confers the achiralised structures with an auxetic behavior.

Therefore, we introduced some irregularities while using the achi-
ralisation process, detailed in Section 2.2. If the achiralisation axis is 
normal to the beam where the edge point is, the achiralised structures 
are connected rigidly. However, if the axis of achiralisation is not 
normal to the beam, then the achiralised structures are linked with a 
revolute joint.

The chiral structure are mirrored with an axis passing through the 
edge of one leg of the 𝑀𝑟𝑚 or 𝐻𝑐𝑚 structures and be normal to the line 
𝑂𝑅𝐴 (Fig.  13.g.h.m.n), creating an angle 𝛼 ≠ 90◦ between the mirror 
line and the leg.

The achiralised structures that are created following a non normal 
achiralisation have their beams 𝑂𝑅𝐴 colinear, and when stretched or 
compressed along that line, theoretically, does not have internal rota-
tion. Preventing the internal twist leads to having only the deformation 
coming from the offset of the angle 𝛼 = 𝐴1𝐴′𝐴2 between the two legs, 
with 𝐴′  and 𝐴′  belonging to the two enantiomorphs.
1 2
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Illustrations of the copy-rotations of some achiralised structures are 
presented in Fig.  13.i–l for the 𝑀𝑟𝑚 family, and in Fig.  13.o–r for the 
𝐻𝑐𝑚 family.

The position of the mirror line enables to gain meioticity from 
the chiral auxetic structures, however, for square structures an other 
behavior is gained, they present an anisotropic Poisson’s ratio behavior 
where the value of PR is positive in one direction and negative in the 
other. This effect is detailed in Section 3.4.2. The meiotic behavior of 
the structure 2𝐶𝐴𝑀𝑟𝑚4 (Section 3.3.2.k) is presented in Fig.  15 and 
detailed in Appendix  H.

3.3.3. Hierarchical and fractal meiotic metamaterial structures
Hierarchical structures are formed by assembling structural ele-

ments, which themselves possess a nested structure (Gatt et al., 2015a; 
Li et al., 2021). Hierarchical meiotic structures, akin to hierarchical 
auxetic structures (Hamzehei et al., 2018), are obtained from chiral 
structures through a series of transformations. These transformations 
include a minimum of two levels of copy-rotation, followed by an 
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Fig. 14. Geometrical representation of the hierarchical structures, with their unit cells, (a) 2𝐶𝐴𝐶𝑔𝑚4, (b) 2𝐶𝐴𝐶𝑔𝑚4.4 (c) 2𝐶𝐴𝐶𝑔𝑚4.4.4, and (d) an example of the representation 
of the two levels fractal structure of 2𝐶𝐿𝑏.
achiralisation process, and concluding with an additional copy-rotation 
step.

For instance, 𝐶𝑔𝑚4 can form hierarchical structures, 𝐶𝑔𝑚4 can first 
be achiralised and copy-rotated two times to form 2𝐶𝐴𝐶𝑔𝑚4 (Fig. 
14.b), but 𝐶𝑔𝑚4 can be copy-rotated four times in its chiral topology to 
form 𝐶𝑔𝑚4.4, to be achiralised and copy-rotated two times again (Fig. 
14.b). The process can be applied further, one may copy-rotate 𝐶𝑔𝑚4.4
four times to create 𝐶𝑔𝑚4.4.4 then achiralising it, and copy-rotating 
the structure two times to design 2𝐶𝐴𝐶𝑔𝑚4.4.4 (Fig.  14.c) Contrary 
to auxetic structures, which structures can be chiral or achiral, the 
planar meiotic metamaterials are limited in, except for 𝑍𝑀 , achiral 
structures. The hierarchical structures proposed here, have a meiotic 
design, however, they possess chiral, thus auxetic, sub-components. 
The design of such mixed structures can be interesting to first control 
the Poisson’s ratio behavior, and also, the deformation and overall 
mechanical behavior of the metamaterial. In Appendix  I another type of 
hierarchical metamaterial is presented form the structure 4.4.2𝐶𝐴𝐶𝑔𝑚4
with particular hinge points (Jalali et al., 2022), the structure possess 
an overall auxetic mechanism with internal achiral meiotic structures.

Fractal structures are self-replicating patterns found at all scales, 
and are abundant in both natural and engineering contexts (Mandel-
brot, 1983; Wang et al., 2022). These proposed meiotic designs can 
serve as fundamental building blocks for creating larger-scale structures 
with the same design. The Fig.  14.c represents a two layers fractal 
structure of 2𝐶𝐿𝑏, meaning that if a zoom image of 2𝐶𝐿𝑏 is taken, 
the structure 2𝐶𝐿𝑏 will be found at a smaller scale. Fractal metama-
terials allows the combination of motion over a deformation, which 
could be perceived as a product of motion, whereas the hierarchical 
structures employ a summation of motion. Both hierarchical and fractal 
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auxetic metamaterials offer intriguing possibilities for controlling and 
programming the deformation behavior of PR metamaterial structures.

3.4. Poisson’s ratio, surface strain and negative compressibility

In this section, we explore first, through five examples of meiotic 
structures (𝑍2, 2𝐶𝐿𝑏, 4𝐶𝐿𝑏, 4𝑅𝐿𝑏, 4𝐶𝐴𝐶𝑔𝑚4 and 4𝐶𝐴𝑀𝑟𝑚4), the 
calculation of the Poisson’s ratio 𝜈, surface strain 𝜀𝑆 , and finally discuss 
the sign of their compressibility. Second, we detail and discuss the 
anisotropic Poisson’s ratio behavior that the chiral meiotic structures 
gain through the process of achiralisation.

3.4.1. Calculation of Poisson’s ratio, surface strain and compressibility
We are calculating here the Poisson’s ratio 𝜈 and surface strain 𝜀𝑆

for seven structures. The structures possess an initial angle 𝜃𝐼 = 90◦ and 
length 𝑎1 = 𝑎2 = 𝑎3 = 1. The initial angle is selected at 90◦ therefore 
the value 𝜀𝜃 defined as 

𝜀𝜃 =
𝜃 − 𝜃𝐼
𝜃𝐼

(11)

is negative ([−1,0]) for the auxetic region and positive ([0,1]) for 
the meiotic region. We propose to give the derivation for Poisson’s 
ratio and surface strain for a few structures. First, the derivation for 
the base structure 𝑍2 was given in Section 2.1. The example of the 
derivation is given here for the structure 2𝐶𝐿𝑏, the derivations for the 
other structures are detailed in Appendix  H. The structure exists in the 
auxetic region as 2𝐶𝐶𝑠. The length and height of the structure 2𝐶𝐿𝑏
(Fig.  15.a.b.c) can be written as a function of the angle 𝜃 as 
𝐿(𝜃) = 2

(

𝑎 + 𝑎 − 𝑎 cos(𝜃)
)

(12)
1 3 2
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Fig. 15. Kinematic representation of the structure 2𝐶𝐿𝑏, with its parameters, (a) undeformed, and (b) deformed. Evolution of (c) the Poisson’s ratio (𝜈) and (d) the surface strain 
(𝜀𝑆 ) of the meiotic structures 𝑍2, 2𝐶𝐿𝑏, 4𝐶𝐿𝑏, the auxetic structure 𝑀𝑟4, the anepirretic structure 4𝑅𝐿𝑏, and the anisotropic structures 2𝐶𝐴𝐶𝑔𝑚4, 2𝐶𝐴𝑀𝑟𝑚4(𝑀) and 2𝐶𝐴𝑀𝑟𝑚4(𝐴).
𝐻(𝜃) = 2𝑎2 sin(𝜃) (13)

The value of the strains are 

𝜀𝐿(𝜃) =
𝐿(𝜃)
𝐿(𝜃𝐼 )

− 1 (14)

and 

𝜀𝐻 (𝜃) =
𝐻(𝜃)
𝐻(𝜃𝐼 )

− 1 (15)

The Poisson’s ratio 𝜈(𝜃) can thus be written as 

𝜈(𝜃) = −
𝜀𝐻 (𝜃)
𝜀𝐿(𝜃)

(16)

The equations of length and height enable to calculate the surface strain 
𝜀𝑆 (𝜃) of the rectangular unit cells of 2𝐶𝐿𝑏 and 2𝐶𝐶𝑆 as 

𝜀𝑆 (𝜃) =
𝐿(𝜃)𝐻(𝜃)
𝐿(𝜃𝐼 )𝐻(𝜃𝐼 )

− 1 (17)

The value of the Poisson’s ratio for different values of 𝜃 are pre-
sented in Fig.  15.c and the evolution of the surface strain in Fig.  15.d 
for the seven structures.

The surface strain gives information that link to the surface com-
pressibility of the metamaterial. The isothermal surface compressibility 
𝛽𝑆 is defined as 

𝛽𝑆 = − 1
𝑆

( 𝜕𝑆
𝜕𝑃

)

𝑇
(18)

assuming the temperature constant, it can be written as 

𝛽𝑆 = −
𝜀𝑆
𝜎𝑆

(19)

with 𝜀𝑆 the surface strain and 𝜎𝑆 the stress or load applied to the 
structure. The surface bulk modulus 𝐾  is defined as the inverse of the 
𝑆
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surface compressibility 

𝛽𝑆 = 1
𝐾𝑆

(20)

When the structure is stretched, the stress applied is negative, therefore, 
if the surface strain is negative too, the compressibility becomes neg-
ative (oppositely for a compression). The metamaterials exhibit in this 
case a negative linear compressibility (NLC) (Baughman et al., 1998; 
Lakes and Wojciechowski, 2008).

First, we note that the base structure 𝑍2 is indeed auxetic when 
𝜃𝑇 < 90◦ (corresponding to the transition angle for 𝑎1 = 𝑎2 = 𝑎3), and 
is meiotic when 𝜃𝑇 > 90◦, and possess a Poisson’s ratio greater than 
the other structures studied here. The base chiral structures possess 
a positive compressibility in the auxetic region and showcase a NLC 
behavior when meiotic. In addition we observe that the Poisson’s ratio 
of 2𝐶𝐶𝑠∕2𝐶𝐿𝑏 is negative for 𝜀𝜃 < 0 and positive for 𝜀𝜃 > 0. In addition, 
the surface strain is negative for 𝜀𝜃 < 0 indeed the structure 2𝐶𝐶𝑠
shrinks in all directions when hydrostatically compressed, however, 
when 𝜀𝜃 > 0, 2𝐶𝐿𝑏 possess initially a positive surface strain (positive 
compressibility) and around 𝜀𝜃 = 0.5 becomes negative, this is when the 
structure obtain negative linear compressibility. the values of the initial 
angle and length of the beams could be adapted to design structures 
that are engaged in the NLC region earlier or later. In addition, the 
region where 𝜀𝜃 < 0 and 𝜀𝑆 > 0 is not reachable with mono-material 
structures, this would lead to a negative compressibility when auxetic, 
leading to a negative Young’s modulus. However, it has been shown 
that a bi-material structure could reach this region (Gatt and Grima, 
2008).

We present the evolution of Poisson’s ratio and surface strain for 
the structures 4𝐶𝐿𝑏, 4𝑅𝐿𝑏, 2𝐶𝐴𝐶𝑔𝑚4 (presented in Appendix  H), 𝑀𝑟4
which is a chiral structure and always auxetic and the anisotropic 
structures 2𝐶𝐴𝑀𝑟𝑚4 presented in Section 3.4.2.
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Surface strain provides additional insights into the behavior of meta-
materials. The Poisson’s ratio offers geometric information regarding 
deformation and, structures may present a similar Poisson’s ratio be-
havior, such as 4𝐶𝐿𝑏 and 2𝐶𝐴𝐶𝑔𝑚4. However, their surface strain be-
haviors differ. A comprehensive understanding of surface strain opens 
up the opportunity to tailor the design of metamaterials, especially for 
large tessellations of small unit cells.

3.4.2. Anisotropic Poisson’s ratio metamaterials (ani-PRM)
We have been showing in Section 3.2 that the chiral structures 

originating from 𝑍𝑀  become auxetic instead of being meiotic. This 
aspect of chiral metamaterials leads to the hypothesis that, except 
for 𝑍𝑀 , the meiotic structures cannot be chiral. The achiralisation of 
the chiral structures 𝐶𝑔𝑚, 𝐻𝑐𝑚 and 𝑀𝑟𝑚 following the rules given 
in Section 3.3.2 is leading to a meiotic behavior and a noteworthy 
anisotropic Poisson’s ratio behavior for 𝐻𝑐𝑚 and 𝑀𝑟𝑚. The structures 
2𝐶𝐴𝑀𝑟𝑚4 and 2𝐶𝐴𝐻𝑐𝑚4 (as probably some more structures of these 
family) are presenting an anisotropic Poisson’s ratio behavior. The 
structure 2𝐶𝐴𝐶𝑔𝑚4 does not seem to exhibit this behavior because of 
the absence of edge points located on free legs Appendix  H.

The Poisson’s ratio of such metamaterials could be described in 
two ways. The first, where the two Poisson’s ratio 𝜈𝐴 (for auxetic) 
and 𝜈𝑀  (for meiotic) are linearly related as 𝜈𝑥𝑦 ≈ −𝑎𝜈𝜈𝑦𝑥, where the 
Poisson’s ratio have an opposite sign and 𝑎𝜈 the anisotropy coefficient. 
Second, where the two Poisson’s ratio are not linked by a coefficient but 
are two different Poisson’s functions. These metamaterials can be sub-
categorized as anisotropic Poisson’s ratio metamaterials (ani-PRM), and 
defined as metamaterials with a direction dependent Poisson’s ratio.

These structures possess a square unit cell and present in two 
opposite faces (𝐹1 and 𝐹3) edge points that are closer than the edge 
points on the two other opposite faces (𝐹2 and 𝐹4). The edge points that 
are closer are located on the faces named 𝐹𝑀  (for meiotic), oppositely, 
the edge points that are further away are located on the faces 𝐹𝐴 (for 
auxetic).

The structure 2𝐶𝐴𝑀𝑟𝑚4 is detailed here, however the similar prin-
ciples apply to the structures 2𝐶𝐴𝐻𝑐𝑚4 and the structure 2𝐶𝐴𝐶𝑔𝑚4
(Appendix  H) for its meiotic behavior. The structure 2𝐶𝐴𝑀𝑟𝑚4
(Fig.  16.b) possesses eight edges, 𝐸1 − 𝐸4 are located on the two faces 
𝐹𝑀 , and 𝐸5−𝐸8 are located on the two faces 𝐹𝐴. The achiralisation and 
copy-rotation of the 𝑀𝑟𝑚4 structures creates four internal triangular 
shapes (forming the angle 𝛼𝑀  and 𝛼𝐴), that are pointing towards the 
center if located in the sector of a face 𝐹𝑀  and are pointing towards 
the face of the unit cell if located in the sector of a face 𝐹𝐴. The angle 
𝛼 = 0◦ when 𝜃 = 90◦.

When stretched (or compressed) in the direction normal to the faces 
𝐹𝑀  the structures (Fig.  16.a) 2𝐶𝐴𝑀𝑟𝑚4 deploys (or contracts) and the 
internal structure tends to align on the line (𝐸1𝐸3) and (𝐸2𝐸4), while 
keeping the same distance between these two lines. The initial length 
and height are equal because of the symmetry (for regular structures) 

𝐿(𝜃𝐼 ) = 𝐻(𝜃𝐼 ) = 4
(

𝑎3 + 𝑎2 cos(𝜃𝐼 )
)

(21)

Upon stretching (or compressing) the angles 𝛼𝑀  are closing (or 
opening), while the angles 𝛼𝐴 are opening (or closing). The opposite 
behavior of 𝛼𝑀  and 𝛼𝐴 is leading to elongating (narrowing) the struc-
ture in the direction of the stretch (or compression) and narrowing (or 
expanding) the transverse direction. The final length becomes then 

𝐿(𝜃) = 4
(

𝑎3 + 𝑎2 cos (𝜃)
)

(22)

and the height 

𝐻(𝜃) = 4
(

𝑎3 − 𝑎2 cos (𝜃)
)

(23)

The strain 𝜀𝐿 can be written as 

𝜀𝐿(𝜃) =
𝐿(𝜃)

− 1 =
𝑎3 − 𝑎2 cos (𝜃) − 1 (24)
𝐿(𝜃) 𝑎3 − 𝑎2 cos (𝜃)
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and the strain 𝜀𝐻  as 

𝜀𝐻 (𝜃) =
𝐻(𝜃)
𝐻(𝜃)

− 1 =
𝑎3 − 𝑎2 cos (𝜃)
𝑎3 − 𝑎2 cos (𝜃)

− 1 (25)

Thus the meiotic Poisson’s ratio 𝜈𝑀  is 

𝜈𝑀 = −
cos (𝜃) − cos

(

𝜃𝐼
)

cos (𝜃) − cos
(

𝜃𝐼
) (26)

𝜈𝑀  is positive and depends on the value 𝜃, the behavior of 2𝐶𝐴𝑀𝑟𝑚4
is then meiotic when the deformation is activated on the faces 𝐹𝑀 .

However, when these achiralised structures are stretched (or com-
pressed) along the faces 𝐹𝐴 (Fig.  16.c), meaning stretching (or com-
pressing) the structures on the lines (𝐸5𝐸7) and (𝐸6𝐸8) while keeping 
the same distance between these lines. With the initial length and 
height 
𝐿(𝜃) = 𝐻(𝜃) = 4

(

𝑎3 − 𝑎2 cos (𝜃)
)

(27)

The angles 𝛼𝐴 and 𝛼𝑀  are all opening (or closing), thus the angles 𝜃
are opening to 𝜃 + 𝛿. These similar behavior of the internal structure 
is leading to an auxetic behavior where the final length and height are 
theoretically equals and written as 
𝐿(𝜃, 𝛿) = 𝐻(𝜃, 𝛿) = 4

(

𝑎3 − 𝑎2 cos (𝜃)
)

(28)

In that case, the structure 2𝐶𝐴𝑀𝑟𝑚4 exhibits an auxetic behavior.
The Poisson’s ratio and surface strain of these two cases

2𝐶𝐴𝑀𝑟𝑚4(𝐴), and 2𝐶𝐴𝑀𝑟𝑚4(𝑀) are plotted in Fig.  15.c.d, the Pois-
son’s ratio of this structure in the auxetic mode is theoretically constant 
to the value of 𝜈𝐴 = −1, however the meiotic mode is close to 1 and 
decreases with 𝛿.

4. Discussion

The proposed three-step design protocol is centered around two 
key topological transformations: achiralisation and copy-rotation. This 
approach opens up endless possibilities for creating meiotic planar 
metamaterials. However, many of these structures, particularly those 
with higher geometrical orders, cannot be tessellated with regular 
tiling. Meiotic structures with a high geometrical order possess a large 
number of internal degrees of freedom, this effect may lead to com-
plex deformation schemes and may be more difficult to control or 
actuate. Nevertheless, we believe that these complex structures hold 
potential for specific applications, owing to their designed Poisson’s 
ratio, deformation scheme, or compressibility.

Although our focus has primarily been on regular topological de-
signs, the introduction of irregularities can lead to even more unique 
and specialized meiotic structures. These irregularities can be intro-
duced geometrically by slightly modifying the axis of symmetry, or 
incorporating mismatches in lengths and angles, or through modifi-
cations to the copy-rotation protocol where each of the 𝑁 repeated 
entities behaves uniquely in each of the 𝑁 directions. Additionally, the 
higher order copy-rotation protocol with 𝑁.𝑀 copy-rotations (when 
𝑁 ≠ 𝑀) can also introduce irregularities, although it may necessitate 
adjustments to the structure to form a tessellable unit cell.

Naming conventions for irregular structures may require adaptation 
to reflect classes of irregularities. For example, the addition of a sub-
script 𝐼 or including a specific detail in the name to identify a design 
variation.

We presented a design method for the unit cells of the planar 
Poisson’s ratio metamaterials, along with the archimedean tiling, which 
enables regular and non-regular tiling in the plane of one or many 
different types of PRM. To connect different families of PRM structures 
together, the designs need to be adapted to have functional interfaces 
that connects to the adjacent unit cells. The possibilities for the design 
of planar PRM seem endless regarding, first, the possibilities offered 
by our design method and, second, by the possibilities of tiling these 
designs.
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Fig. 16. Kinematic representation of the anisotropic Poisson’s ratio metamaterial 2𝐶𝐴𝑀𝑟𝑚4 in (a) the meiotic deformation, (b) undeformed, and (c) in the auxetic deformation.
We have shown that, except for 𝑍𝑀 , the chiral planar structures 
produced by the design method do not possess a meiotic behavior, but 
are auxetic. The achiralisation process applied to the chiral families 
modifies the complexity of their unit cell and the resulting metamate-
rials gains an exceptional anisotropic Poisson’s ratio behavior, which 
enables a change of sign of the Poisson’s ratio depending on the 
direction of the stretch or compression.

Some structures, for instance, 4𝑅𝐿𝑏 (Section 3.1.2) and 4𝐶𝑆𝑓 (Ap-
pendix  C) present an exceptional anepirretic behavior, these structures 
exhibit a Poisson’s ratio of constant value of zero. The creation of such 
structures was enabled by the exploration of the possibilities offered 
by the PPRDM. We discussed this noteworthy behavior at the level of 
the structure itself, and shaping a unit cell. However, such a behavior 
needs to be investigated in a tessellation to understand how and where 
such a behavior can be used.

The meiotic structures we introduced present a Poisson’s ratio 
higher than 0.5, a negative surface strain and therefore a negative 
compressibility behavior. Following perfectly the design method leads 
to creating regular and symmetric structures, however, some irregu-
larities can be introduced to control the direction of the deformation 
and therefore the direction of elongation in negative compressibility 
applications. We have been showing that negative compressibility 
could happen when the structure present meioticity, when 𝜀𝜃 > 0
and 𝜀𝑆 < 0, however the region where 𝜀𝜃 < 0 and 𝜀𝑆 > 0 is not 
attainable, and would results in metamaterials possessing a negative 
Young’s modulus. A metastructures exhibiting such property have been 
introduced (Gatt and Grima, 2008) with the use of multi-material 
metamaterial, a meta-composite.

2D structures with a constant or specific evolution of Poisson’s ratio 
of could possibly be engineered using the design scheme proposed 
here. Controlling the deformation of odd 𝑁 copy-rotation and large 𝑁
meiotic structures will need to be addressed to gain understanding to 
use these structures in specific applications.

We considered the PPRDM for the creation of planar auxetic, anepir-
retic, and meiotic metamaterials based on a planar chiral structure. It 
would be interesting to consider an extension of the design method 
to 3D Poisson’s ratio metamaterials. It is likely that a similar ap-
proach could be developed, to design, classify, name and tessellate such 
structures in 3D.

5. Conclusion

In summary, we present a systematic framework for the design and 
classification of meiotic structures, bridging their geometric properties 
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with auxetic metamaterials. Through the use of a minimal chiral struc-
ture (𝑍𝑀 ) and a design method (PPRDM) based on two topological 
transformations, we generate a rich library of meiotic, anepirretic, and 
auxetic architectures.

Our approach enables not only the reconstruction of known meiotic 
forms but also the design of previously unexplored configurations, 
accommodating minor structural irregularities. We classify these struc-
tures according to chirality, showing that chiral configurations exhibit 
auxetic behavior, with the base structure uniquely combining chirality 
and meioticity. Achiral structures, in contrast, can display meiotic and 
anepirretic behavior.

To aid in systematic identification, we introduce a naming con-
vention that encodes the structure’s type, chirality, and topological 
complexity. Furthermore, we detail a construction protocol for unit 
cells and planar tessellations of 2D meiotic structures. Importantly, we 
propose the surface strain of the unit cell as a unifying metric for planar 
Poisson’s ratio metamaterials, directly linked to the metamaterial’s 
bulk modulus and compressibility. We propose the calculation of the 
Poisson’s ratio and surface strain for a group of structures and show 
that some structures could exhibit indeed negative compressibility.

Together, these results establish a foundational design framework 
for planar meiotic metamaterials, opening new avenues for materi-
als with programmable behavior, negative compressibility and other 
unconventional mechanical responses.
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Fig. A.17. Evolution of the Poisson’s ratio (𝜈) of 𝑍 with 𝑎1 = 10 and 𝑎2 = 0.1 (with arbitrary units) from and initial angle 𝜃𝐼 = 60◦.
Fig. B.18. Archimedean tiling of the unit cells and Laves tiling with the construction of the planigons (Golomb et al., 1988).
Appendix A. Extreme Poisson’s ratio values for 𝒁

See Fig.  A.17. 

Appendix B. Tessellation of unit cells

The unit cells are usually tessellated in the plane as the repetition of 
a single type of structure following the Wigner–Seitz tessellation. This 
tessellation allows the repetition, in the plane, of the unit cells shaped 
as regular lozenges (𝑁 = 2, 4) (squares and rectangles) and regular 
hexagons (𝑁 = 6), following a translation 𝑇
𝑇 = 𝑢1𝑎1 + 𝑢2𝑎2 (B.1)

with two unit vectors 𝑎1 and 𝑎2, and two integers 𝑢1 and 𝑢2. Identical tri-
angular unit cells (𝑁 = 3) are to be joined, by one face, to a second tri-
angular cell to form a lozenge to be a tessellable WS cell. The Wigner–
Seitz tessellation is limited to regular identical shapes, a more complete 
tessellation of the plane is defined by the Archimedean tessellation, 
16 
where the Wigner–Seitz is a particular regular case. The archimedean 
tiling or plane-vertex tiling (also called semiregular tiling) uses regular 
convex polygons that can form 21 plane-vertex tilings (Golomb et al., 
1988; Yang and Ma, 2018). The 21 plane-vertex tilings or planigons are 
classified in four families,

1. 3 regular planigons are the equilateral triangles, squares, and 
regular hexagons;

2. 8 semiregular planigons such as triangles, quadrilaterals, and 
pentagons;

3. 4 ‘‘demiregular’’ planigons, they can only fill the plane combin-
ing other planigons;

4. 6 irregular planigons that can fill the plane only by combining 
with irregular polygons.

Planigons are tiled edge-to-edge as the angles are divisors of 360◦ and 
connect the vertexes together. The tessellation possibilities offered by 
the Archimedean plane vertex tiling or Laves tiling are detailed in Fig. 
B.18.
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Fig. C.19. Representation of (a) the 𝑆𝑓 base structures which is half of the 𝑊 𝑟 base structure where 𝑎1 = 0 and 𝑎2 = 𝑎3 (or 𝑎3 = 0 and 𝑎2 = 𝑎1), (b) the copy-rotated structure 4𝐶𝑆𝑓
(similar to 4𝑅𝑆𝑓 ) which presents an anepirretic behavior because of the center point which decouples the different axis of the structure, and (c) the higher order copy-rotated 
structure 4.4𝐶𝑆𝑓 (similar to 4.4𝑅𝑆𝑓 ) which should present a meiotic behavior when stretched in the direction normal to the unit cell, and an anepirretic behavior, as 4𝐶𝑆𝑓 , if 
stretched in the direction of the rhombi.
Fig. D.20. Representation of (a) the 𝑊 𝑟 base structures with its regular axis of symmetry passing through the points 𝐴′ and 𝐵′, (b) represents one irregular axis to form the Sm 
structures, where the axis is parallel to (𝐴′𝐵′) and 𝑎1 = 𝑎2 and 𝑎3 = 0 (or 𝑎2 = 𝑎3 and 𝑎1 = 0), (c) represents the Scissors mechanism (𝑆𝑚) with its center of rotation 𝑂𝑅 and the 
angle 𝜑𝑁 , (d) illustrates the case 3𝐶𝑆𝑚 (which is similar to 3𝑅𝑆𝑚), and (e) the illustration of the case 4𝐶𝑆𝑚 (also similar to 4𝑅𝑆𝑚).
Appendix C. Snowflake (Sf) design

See Fig.  C.19.

Appendix D. Scissors mechanism (Sm) design

See Fig.  D.20.

Appendix E. Tessellation of 𝑪𝒈 and 𝑪𝒈𝒎 structures

See Fig.  E.21.
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Appendix F. Irregular 𝑯𝒄𝒎𝑰  design

See Fig.  F.22.

Appendix G. Butterfly (Bt) achiral meiotic design

See Fig.  G.23.

Appendix H. Calculation of Poisson’s ratio and surface strain
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Fig. E.21. Representation of (a) the 𝐻𝑐𝑚 irregular (𝐻𝑐𝑚𝐼 ) structure with the length 𝑎3 = 𝑎1 ≠ 0, the representation of the copy-rotated structures (top) and the unit cell (bottom) 
of (b) 𝐻𝑐𝑚𝐼3, and (c) 𝐻𝑐𝑚𝐼4. (d) Representation of the auxetic structure 𝐻𝑐𝑚𝐼4.4 based on eight rotating squares, in gray, and (e) the representation of the meiotic achiralised 
structure 2𝑅𝐴𝐻𝑐𝑚𝐼4, based on the ‘‘Butterfly’’ (𝐵𝑡) design, in gray (Appendix  G).
The details of the calculation of the length and height of 2𝐶𝑙𝑏
(Fig.  H.24.a) were presented in Section 3.4. Here we present the 
calculation of three other meiotic structures, 4𝐶𝐿𝑏, 4𝑅𝐿𝑏, 2𝐶𝐴𝐶𝑔𝑚4
and 2𝐶𝐴𝑀𝑟𝑚4, represented in Fig.  H.24. The length and height of the 
structures can be written as a function of the angle 𝛼 and the length 
parameters 𝑎1, 𝑎2 and 𝑎3.

The initial dimensions of 4𝐶𝐿𝑏 (Fig.  H.24.a) are dependent on the 
angle 𝜃𝐼 , if 𝜃𝐼 < 90◦ the structure behaves as an auxetic structure and 
all sectors are behaving similarly with the length 

𝐿(𝜃) = 2
(

𝑎1 − 𝑎2 cos(𝜃) + 𝑎2 sin(𝜃)
)

(H.1)

and height 

𝐻(𝜃) = 2
(

𝑎1 + 𝑎2 cos(𝜃) − 𝑎2 sin(𝜃)
)

(H.2)

In the case of 𝜃𝐼 > 90◦ the structure becomes meiotic and here we 
assume that the initial angle normal to the tension or compression is not 
deformed, otherwise the rate of deformation depends on the stiffness of 
the revolute joints in the structure. The length becomes 

𝐿(𝜃) = 2
(

𝑎1 − 𝑎2 cos(𝜃) + 𝑎2 sin(𝜃𝐼 )
)

(H.3)

and height 

𝐻(𝜃) = 2
(

𝑎1 + 𝑎2 cos(𝜃) − 𝑎2 sin(𝜃𝐼 )
)

(H.4)
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The structure 4𝑅𝐿𝑏 (Fig.  H.24.b) possesses similar initial dimen-
sions 
𝐿(𝜃𝐼 ) = 𝐻(𝜃𝐼 ) = 2

(

2𝑎1 + 𝑎2 cos
(

𝜃𝐼
))

(H.5)

When stretched, the cross-like rigid body decouples the 𝑥 and 𝑦 direc-
tions. The length becomes 
𝐿(𝜃) = 2

(

2𝑎1 + 𝑎2 cos (𝜃)
)

(H.6)

and the height remains unchanged. As the Poisson’s ratio is below 0.5 
the surface strain is positive.

The structure 2𝐶𝐴𝐶𝑔𝑚4 (Fig.  H.24.c) is, oppositely to 2𝐶𝐴𝑀𝑟𝑚4
and 2𝐶𝐴𝐻𝑐𝑚4 non an anisotropic PRM (ani-PRM), unless the axis of 
achiralisation is tilted. The structure is symmetric and therefore the 
length and height are similar 
𝐿(𝜃) = 𝐻(𝜃) = 2

(

𝑎3 + 𝑎1 − 𝑎2 cos (𝜃) + 𝑎2 sin (𝜃)
)

(H.7)

The structure is meiotic but does not exhibit negative compressibility.

Appendix I. Hierarchical auxetic-meiotic

See Fig.  I.25.

Data availability

No data was used for the research described in the article.
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Fig. F.22. Representation of (a) the structure and unit cell of 𝐶𝑔𝑚4, and (b) the structure and unit cell of 𝐶𝑔𝑚3 with their regular tessellation, connecting (c) the square unit 
cells and, (d) triangular unit cell respectively, however the regular unit cells are not connecting (the internal surface of the structures are colored in gray for visual clarity). The 
structures can be connected with their edge points 𝐸𝑁 and connecting rigidly the edges and the beams, for (e) 𝐶𝑔𝑚4 and, (f) for 𝐶𝑔𝑚3.

Fig. G.23. Representation of the butterfly 𝐵𝑡 (a) base, and the structures (b) 2𝐶𝐵𝑡, (c) 3𝐶𝐵𝑡, and (d) 4𝐶𝐵𝑡.

International Journal of Solids and Structures 320 (2025) 113494 
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Fig. H.24. Representation of the hierarchical 4.4.2𝐶𝐴𝐶𝑔𝑚4 structure (a) undeployed and (b) partially deployed, with the red dots the selected hinges allowing a larger range of 
motion (Jalali et al., 2022).

Fig. I.25. Representation of the topology, in their unit cells, of (a) 4𝐶𝐿𝑏, (b) 4𝑅𝐿𝑏, (c) 2𝐶𝐴𝐶𝑔𝑚4.
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