<]
TUDelft

Delft University of Technology

Identification of damage states of load-bearing rocks using infrared radiation monitoring
methods

Gao, Qianggiang; Ma, Ligiang; Liu, Wei; Wang, Hui; Ma, Qiang; Wang, Xiuzhe

DOI
10.1016/j.measurement.2024.115507

Publication date
2024

Document Version
Final published version

Published in
Measurement: Journal of the International Measurement Confederation

Citation (APA)

Gao, Q., Ma, L., Liu, W., Wang, H., Ma, Q., & Wang, X. (2024). Identification of damage states of load-
bearing rocks using infrared radiation monitoring methods. Measurement: Journal of the International
Measurement Confederation, 239, Article 115507. https://doi.org/10.1016/j.measurement.2024.115507

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1016/j.measurement.2024.115507
https://doi.org/10.1016/j.measurement.2024.115507

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.



Measurement 239 (2025) 115507

Contents lists available at ScienceDirect

| Measurement. |

Measurement

o %

ELSEVIER

journal homepage: www.elsevier.com/locate/measurement

Identification of damage states of load-bearing rocks using infrared
radiation monitoring methods

Qianggiang Gao ", Ligiang Ma ®">“%" Wei Liu®, Hui Wang®, Qiang Ma *, Xiuzhe Wang °

@ School of Mines, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

Y Key Laboratory of Xinjiang Coal Resources Green Mining (Xinjiang Institute of Engineering), Ministry of Education, Urumgi 830023, China
¢ Xinjiang Key Laboratory of Coal-bearing Resources Exploration and Exploitation, Xinjiang Institute of Engineering, Urumgqi 830023, China
4 Xinjiang Engineering Research Center of Green Intelligent Coal Mining, Xinjiang Institute of Engineering, Urumgqi 830023, China

€ Faculty of Civil Engineering and Geoscience, Delft University of Technology Stevinweg 1, Delft 2628CN, Netherlands

ARTICLE INFO ABSTRACT
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The online identification of rock damage states is crucial for safety monitoring in geotechnical and mining en-
gineering. By analyzing spatiotemporal evolution patterns of infrared radiation in various rock damage states, we
established the first infrared temperature field dataset for rock damage state identification. We then constructed
a deep convolutional neural network, RESD-CNN, and performed its training and optimization. Results showed
that infrared radiation patterns of different rock samples exhibit similarities. RESD-CNN achieved outstanding
performance in identifying rock damage states with metrics of ACC 99.04%, Precision 99.39%, Recall 99.52%,
and F1-score 99.46% on the validation set. Generalization tests on datasets of different rock types revealed that
RESD-CNN significantly outperformed traditional classification methods, demonstrating the feasibility of
infrared radiation technology for intelligent coal rock damage identification. This research provides a crucial
foundation for developing online identification and early warning systems for rock damage evolution in

engineering.

1. Introduction

Engineering safety is closely related to the safety of people’s lives and
properties. The destabilization damage of mining, caverns, tunnels,
bridges, and buildings is all caused by the evolution of internal damage
of geotechnical materials under stress [1-6]. Under stress, the rock
interior is accompanied by the closure, sprouting, expansion, and
reciprocal penetration of cracks. The mechanical properties of the rock
are closely related to the development of microcracks in its interior
[7-10]. The crack development process inside the rock can be divided
into stages and bounded by four strength characteristics, which are
compression density strength (o), crack initiation strength (o), dam-
age strength (c.4), and peak strength (of). Therefore, it is important to
study the process and mechanism of rock damage evolution, to judge the
state of damage evolution, to evaluate the degree of damage, and to
warn the damage destabilization for the prevention of rock engineering
disasters [11-18]. It can lay the foundation for the research and devel-
opment of real-time monitoring, identification, and early warning

systems of damage evolution state in actual rock engineering.

In recent decades, the determination methods of rock damage evo-
lution state mainly include stress-strain curve determination method,
volume strain method, crack volume strain method, acoustic emission
method, moving point regression method, etc., which can be further
summarized as strain method and acoustic emission method. Martin
et al. [19] proposed the use of crack volume strain versus axial strain to
find the crack initiation stress, which has the advantage of objectivity
and is now more mature. However, the difficulty of this method lies in
the determination of elastic parameters such as modulus of elasticity and
Poisson’s ratio, which are very sensitive to the results. Eberhardt et al.
[20] used the moving point regression technique in relation to the
average axial stiffness and axial stress to find the crack initiation stress,
which reduces the subjectivity, but still faces difficulties in judging the
estimated elastic parameters. Tang et al. [21] proposed the use of the
relationship between the lateral strain response direction, a more stable
lateral strain interval response method was proposed to determine the
crack initiation stress. In addition, the acoustic emission method is
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considered to be a practical method. Martin et al. [19] used the first and
second inflection points of the acoustic emission event rate cumulative
curves that deviate from the straight line as the identification criterion
for crack initiation strength and damage strength. Amann et al. [22] and
Eberbaradt et al. [20] found that only a small number of acoustic
emission events were generated before the cracking intensity point and
that the acoustic emission events increased significantly when loading
reached the cracking intensity. The first inflection point of the acoustic
emission event accumulation curve was then proposed as a basis for
determining the fracture initiation strength. Zhao et al. [23] selected the
starting point of the first deviation from the linear section of the acoustic
emission parameter curve as the crack initiation strength point. After
reaching the damage strength, the acoustic emission parameter curve
increased rapidly, and the intersection of the two linear extension lines
of the acoustic emission parameter accumulation curve was used as the
damage strength point.

The above research has made an active exploration of the determi-
nation of rock damage state through rock strain and acoustic emission
tests. However, due to the complexity of rock materials, the influence of
rock structure, composition and other factors, it is still difficult to
identify the rock damage state. In the field of rock mechanics, acoustic
emission [24,25], SEM [26], CT [27], resistivity[28], X-ray[29], ultra-
sonic [24,30,31], and so on are widely used in the study of rock damage
evolution characterization and evaluation. Compared with the above
methods, infrared radiation (IR) monitor technology has the advantages
of real-time, non-destructive, non-contact, low cost, simple operation,
and wide monitoring range. It is an ideal monitoring method for rock
damage evolution, and has great application potential in damage
detection and disaster prevention of rock materials [32-38]. Wu et al.
[39,40] analyzed the typical AIRT and infrared temperature matrix
evolution characteristics of rock samples under various loading condi-
tions, and discussed the generation mechanism of infrared radiation in
the process of rock damage and fracture. They pointed out that the
change of infrared radiation in the process of rock damage evolution is
mainly controlled by frictional thermal effect and thermoelastic effect.
Wang et al.[41] found the damage prediction point of limestone by the
infrared radiation temperature curve and the evolution of the infrared
temperature matrix. Through the acoustic-electric-thermal multi-
parameter experiment of coal rock, it is found that the infrared tem-
perature contour map at different time points can better reflect the
evolution process of the surface temperature field of the sample, and it is
considered that the failure of the sample originates from local failure. Li
et al. [42] found that the infrared radiation precursor characteristics.
They concluded that the infrared radiation temperature contour map
and IR image cloud map can reflect the occurrence, expansion, rupture
location, and evolution process of cracks in time and space, which can be
used to predict the deformation damage form and intensity of gas-
containing coal, and accurately locate the position of the coal-rock dy-
namics disaster. Huo et al. [43] and Lin et al. [44] investigated the
damage mechanism and temperature field evolution trend of rockbursts
under different stress gradient loading, and found the infrared radiation
precursor characteristics of rockbursts generated under different stress
gradients. Li et al. [42,45,46] concluded that infrared radiation tem-
perature contour maps and IR image cloud maps can reflect the occur-
rence, and expansion of cracks in time and space, Cao et al. [47] studied
the average infrared radiation temperature (AIRT) characteristics of the
rock shear expansion process. Liu et al. [48] found the infrared radiation
b-value with reference to the acoustic emission b-value for the first time,
and quantitatively analyzed the change characteristics of the infrared
radiation b-value in the process of rock rupture. Shen et al. [49] inves-
tigated the precursor points of coal-rock rupture based on the informa-
tion of infrared radiation by using the theory of critical slowing down.

Most of the above studies focus on the description of the changing
law of infrared radiation in the process of carrying coal rock damage and
rupture, which is a good discovery of the precursor points of infrared
radiation in coal rock rupture. However, in the actual engineering,

Measurement 239 (2025) 115507

people are more concerned about which damaged state the coal rock is
in. Therefore, combining the advantages of infrared radiation moni-
toring technology, it is necessary to research the identification and
evaluation of rock damage damage state.

Artificial intelligence methods are widely used in rock engineering
fields such as rock mass classification [50], coal-rock interface identi-
fication [51], rock strength estimation [52], landslide prediction [53],
etc. This is due to the approximation and fitting ability of artificial in-
telligence methods to complex nonlinear function relations. In this
paper, four kinds of rocks, yellow shale, limestone, yellow sandstone,
and coal, were subjected to uniaxial loading infrared radiation obser-
vation experiments. The basic mechanical characteristics of four kinds of
rocks and the temporal and spatial evolution of infrared radiation in
different damage states are studied. The infrared temperature matrix
data set of rock damage state recognition is established. The convolu-
tional neural network method is used to classify and predict the rock
damage state. The research content can lay a foundation for the real-
time monitoring, identification and early warning system of damage
evolution state in actual rock engineering.

2. Rock infrared thermographic data acquisition
2.1. Experimental design

2.1.1. Specimen preparation

In this paper, four specimens of yellow shale, limestone, yellow
sandstone, and coal were subjected to uniaxially loaded infrared radi-
ation monitoring experiments (Fig. 1). Each specimen was selected from
a whole block of rock (coal) with no obvious geological defects to
minimize the variation of physical properties in the specimens. The
specimens were processed in strict accordance with the requirements of
the International Society of Rock Mechanics. All specimens were
machined as rectangles of 50 mm x 50 mm x 100 mm. Among them, the
error of unevenness of two end faces is less than 0.05 mm, and the error
of unparallelism of each end face is less than 0.02 mm. Four pieces each
of yellow shale, limestone, yellow sandstone, and coal are labeled as A;,
B;, Cj, and D;, where i = 1,2,3,4. The basic physical and mechanical
parameters of each specimen are shown in Table 1. The average den-
sities of yellow shale, limestone, yellow sandstone, and coal are 2728.57
kg/m°, 2712.4 kg/m°, 246595 kg/m° and 1390.82 kg/m?
respectively.

2.1.2. Experimental system and experimental procedure

The experimental apparatus used is shown in Fig. 1. The loading
equipment is MTS C64.106 electro-hydraulic servo universal testing
machine, the maximum load is 1000kN; the measurement accuracy of
the testing machine is & 0.5 %; the deformation measurement accuracy
is = 0.5 %; the displacement measurement accuracy is + 0.5 %. The
displacement control loading method is adopted, the loading rate is 0.2
mm/min, and the acquisition frequency of the testing machine is 10
times/second. The infrared observation equipment is the model Vari-
0oCAM HD head 880 uncooled infrared camera produced by InfraTec,
Germany. The main parameters of the camera are as follows: the tem-
perature measurement range is —40°C-1200°C, the temperature sensi-
tivity is 0.02°C, the image resolution is 1240 x 768, the maximum image
acquisition frequency is 30fps, and the measurement band is 7.5-14 pm.
In this experiment, the acquisition frequency of the infrared camera is 10
fps, and the static resistance strain gauge model TS3890N is used, with a
resolution of + 1 pe; the accuracy is + 0.5 %, +3 pe; the measurement
range is 0~+20,000 pe; the sampling rate is 10 points/second.

Strain gauges were pasted on the surface of all specimens according
to the experimental specifications as shown in Fig. 1. Then all specimens
were placed in the laboratory 24 h in advance so that the temperature of
the specimens was the same as the temperature in the laboratory. Before
starting the experiment, a reference specimen was placed at a distance of
about 8 cm from the loaded specimen, so that the loading was at the
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Fig. 1. Equipment physical diagram, test schematic diagram, and test rock sample photos.

same height and flush with the reference specimen. To reduce end ef-
fects and heat transfer effects, an insulating sheet of plastic was placed
between the two ends of the specimen in contact with the press. The
specimen is left for 10 min and after the surface temperature of the
sample is uniform, the press is manually controlled and the loaded
specimen is preloaded with a force of 1 kN. After that, the press, the IR
imaging camera, and the strain monitor were started at the same time to
begin the experiment. During the whole experimental operation, the
experimental personnel wore adiabatic gloves, the laboratory was
closed, and no one was allowed to walk around the laboratory after all
the instruments started working.

2.2. IR image preprocessing

In the infrared radiation information acquisition process, it will be
accompanied by a lot of noise information, including background ther-
mal noise, temporal noise from non-uniformity correction of non-cooled
thermal imaging cameras [32], as well as ambient temperature heat
transfer, thermal radiation, thermal convection, and heat transfer be-
tween the contact surface of the specimen and the press [54,55]. In order
to perform noise correction of the thermal image, a reference specimen
is set up in this paper [32,56,57]. And the acquired thermal image data
are processed as follows.

a. Background thermal noise filtering was performed on the IR image
of the loaded specimen using the reference specimen IR image, i.e.

F(x,y)t :L(va/)t*R(x’}’): (@]

where L(x,y)t denotes the thermogram temperature matrix of the loaded
specimen at time t. R(x,y)t denotes the thermogram temperature matrix
of the reference specimen at time t. F(x,y)t denotes the temperature
matrix of the loaded specimen at time t after denoising. Where, (x,y)
denotes the position coordinates of the temperature matrix and t denotes
the moment. It is worth noting that x € [1,100],y € [1,200].

b. To reduce the effect of temporal noise on the thermogram
sequence, multi-frame cumulative averaging denoising was performed

for F(x,y): according to Liu et al [32]. The expression is

nm

> Fxy)n=1,2,, Pma/m] @

(n—1)m+1

1
G(xvy) = E

where G(x,y) denotes the matrix after multi-frame cumulative averaging
denoising, m is the number of frames per multi-frame cumulative
averaging denoising, and pmax is the maximum number of frames of F
(x,y). In this paper, for the convenience of analysis, m is set to 10, and
the thermal image sequence of loaded specimens for integer seconds is
obtained.

2.3. Statistics of rock characteristic strength

Deformation damage of rocks is a gradual process, involving the
closure, sprouting, expansion, and aggregation of cracks into nuclei. The
rock loading process goes through several stages: the initial compaction
stage, the elastic deformation stage, the stable development of cracks,
the unstable development of cracks, and the post-peak damage stage
(Fig. 4). The development and evolution patterns of cracks in each stage
differ, resulting in varying stress-strain curves. Four stress thresholds
are commonly used to classify the different damage stages: compaction
strength, crack initiation strength, damage strength, and peak strength
(Fig. 4). Scholars have conducted numerous studies on methods for
determining these stress thresholds, mainly the strain method and the
acoustic emission method. Among these, the crack volume strain
method proposed by Martin et al. [19] is widely used due to its relatively
clear physical meaning. The crack volume strain method divides the
volumetric strain of the rock into elastic volumetric strain and crack
volumetric strain. In uniaxial compression, the total volumetric strain of
the specimen is defined as:

& = €1+ 2¢; (6)
where ¢, denotes the total volume strain, £; denotes the axial strain, and

&o denotes the transverse strain. The elastic volumetric strain is defined
as:
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Table 1

Basic physical and mechanical parameters of the specimen.

A, As As B B, Bs By C Cy C3 Cq Dy D, Ds D4

Ay

Specimen No.

1.51
0.28

1303.09

1.54
0.24

1342.36

2.15
0.24

1445.34

2.80
0.26

8.
1472.46

10.36
0.19

2488.70

7.32
0.21

2475.51

9.29
0.23

2394.32

7.91
0.24

2740.18

10.56
0.23

11.99
2675.54

9.36
0.17
2694.62

10.10
0.17

11.51 12.55
2695.44

12.10
0.24

2733.29

E (GPa)
N

0.20
2505.30

0.28
2739.27

0.23
2743.74

0.28
2741.79

Density(kg/: m3)
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1—-2u
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where ¢ denotes the elastic volume strain, ¢ denotes the stress, and p
and E denote poisson’s ratio and elastic modulus, respectively. The crack
volume strain is defined as the difference between the total volume
strain and the elastic volume strain. That is.

& =6 —¢ (8

where, ¢ denotes the crack volume strain.

The characteristic strength, volume strain, and crack volume strain
curves in the full uniaxial compression curve of specimen B2 are shown
in Fig. 2. Biniawski et al. [58,59] divided the rock loading stages into
initial compaction stage (I), elastic deformation stage (II), crack stable
development stage (III), unstable crack development stage (IV), and
post-peak damage stage (V) according to the characteristic strength.
Within stage I, the rock primary joints, cracks, and fissures are com-
pacted under the action of external forces. In stage II, the rock is
deformed elastically under the action of external forces, no new cracks
are generated internally, and the slope of the stress—strain curve does not
change. In stage III, new microcracks begin to develop inside the rock
under the action of external forces. In stage IV, a large number of
microcracks develop and expand inside the rock, and crack penetration
occurs locally until the peak stress is reached. Entering stage V, the stress
gradually decreases, through cracks appear on the rock surface, and rock
damage occurs. In the elastic loading stage, the crack volume strain
curve exhibits a horizontal line segment. This horizontal segment occurs
because, during this phase, the deformation of the rock is primarily
elastic. Therefore, the volume strain due to crack expansion is minimal
and does not significantly contribute to changes in crack volume strain.
Essentially, the crack volume strain remains stable, which is reflected in
the horizontal nature of the curve. The start of this segment represents
the compression density strength, while the end denotes the crack
initiation strength, marking the transition to the stage where significant
crack expansion begins. Cai et al. [60] proposed that the damage
strength can be determined by the peak inflection point of the volu-
metric strain, at which the rock begins to expand. As shown in Table 1,
the characteristic strength points of each specimen in this study were
determined using the crack volume strain model method. According to
the experimental results, the range of 6../cf for all specimens is 20.25
%-35.53 %, 6.i/0¢ is 41.97 %-69.47 %, and 6.4/0¢ is 78.84 %-94.84 %.

3. Results and analysis
3.1. Spatial variation characteristics of IR of rock damage evolution

In this paper, four different rock samples were subjected to uniaxial
loading infrared radiation observation experiments, and the infrared
radiation characteristics of different rock samples were similar. It should
be noted that the IR imager detects the radiation intensity of the rock
surface and converts it into a temperature field according to the Boltz-
mann equation. Therefore, the emissivity of the rock surface is more
sensitive to the experimental results. Due to the small area of the sample,
the emissivity of all rock samples is the same, which is reasonable for the
qualitative analysis of the temperature field.

The IR image can visually display the spatial distribution of the
surface temperature field of the sample. Due to the limitation of space,
this paper draws the thermal images of A;, Ba. C3. D4 samples at the
characteristic intensity points, and analyzes the spatial distribution of
radiation temperature.

The infrared thermograms corresponding to the four specimens A;,
B,, C3, and Dy at the characteristic intensity values are shown in Fig. 3.
At the beginning of the experiment for 1 s, the infrared radiation tem-
perature distribution on the rock surface was relatively uniform, and all
of them were in the low temperature range. As the loading proceeds, the
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Fig. 2. Plots of characteristic strength, volume strain and crack volume strain curves of B, specimen during the whole process of uniaxial compression.

stress reaches the compaction strength, at which time, the thermal
image shows that the infrared radiation temperature diverges, and the
high-temperature point gradually increases, but the range is small.
When the stress reaches the crack initiation strength, the high-
temperature points on the surface of the rock sample increase. It is
worth noting that the radiation temperature of the whole rock surface is
relatively increased. When the stress reaches the damage strength, the
temperature on the surface of the rock sample further increases, and a
high-temperature concentration area appears (the yellow and red parts
in Fig. 3). When the stress reaches the peak strength, the low tempera-
ture zone is less and less, and the high-temperature concentration zone is
more obvious (Aj, By, C3 in Fig. 3). For D4, when the stress reaches the
peak strength, the high-temperature region decreases, and a relatively
low-temperature band is generated. This is because at the peak strength,
macroscopic penetrating cracks are generated on the surface of the coal
sample, and a large number of low-temperature backgrounds appear in
the region (red oval in Dy).

It can be seen that during the loading process of the rock sample, the
surface radiation temperature shows a trend of decreasing low-
temperature points and increasing high-temperature points, and is
accompanied by the appearance of high-temperature concentration
areas. The high-temperature concentration area is mainly distributed in
the central region of the rock sample surface, mainly because this region
is the main area of crack development. This is the same as the conclusion

obtained from the literature [41].

3.2. Infrared radiation time variation characteristics of rock damage
evolution

The infrared thermal image captures the spatial distribution of sur-
face temperature, making it challenging to discern the temporal varia-
tion characteristics of infrared radiation temperature. The average
infrared radiation temperature (AIRT) of the rock surface represents the
mean value of the temperature matrix from the infrared thermal image.
This is a widely used quantitative index for infrared radiation informa-
tion. As shown in Fig. 4, the stress and AIRT curves for the four samples
(A1, By, C3, and Dy) over time are depicted. It can be observed that AIRT
exhibits a clear periodic variation trend.

In the initial compaction stage (I), the stress level is low, the primary
pores and micro-cracks of the sample are gradually closed, and AIRT
does not show a clear change trend. After the initial AIRT of A; and C3
samples floated up and down for a period of time, there was a significant
decrease. The AIRT of the B, sample fluctuates slightly, and the AIRT of
the D4 sample rises after a period of time.

In the elastic deformation stage (II), the sample undergoes linear
elastic deformation, and AIRT increases with the increase of stress. In
this stage, the development of new cracks is less, and the rock mainly
undergoes elastic deformation. The change of AIRT is mainly related to
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Fig. 3. Infrared thermogram corresponding to the characteristic stress value.

the thermoelastic effect.

In the stage of stable crack development (III), the stress reaches the
crack initiation strength, and the internal microcracks begin to germi-
nate. Friction occurs between rock particles, new cracks and micro-
cracks, and AIRT rises rapidly in this stage.

In the unstable development stage of crack (IV), under the action of
stress, the internal cracks and microcracks of rock expand, penetrate and
nucleate, and some structures are unstable and destroyed. AIRT has two
cases in this stage. One is that the internal structure is unstable, which
leads to the initial decrease of stress. At this time, AIRT is also greatly
reduced accordingly, such as A; and D4. Among them, D4 phenomenon is
more obvious, and AIRT decreases linearly. In the second case, the in-
ternal bearing capacity of the sample is strong, and there is no stress
drop. As shown in Fig. B2 and C3, AIRT has no obvious sudden drop, and
AIRT continues to increase with the development of internal micro-
cracks. After that, the rock enters the post-peak failure stage. Due to the
strong brittleness of the sample, the post-peak failure stage lasts for a
short time. With the failure of the rock sample, AIRT is greatly reduced.

The infrared thermograms of different rocks in different stages of
damage evolution have similar characteristics, i.e., the stage evolution
of the infrared radiometric sequence of rocks. However, it is difficult for
the human eye to make an objective and correct judgment of the rock
damage evolution status based on the changing characteristics of the
infrared thermogram during the rock damage evolution. Convolutional
neural network (CNN) has powerful fitting and approximation ability for
complex nonlinear functional relations, so it can be used to determine
the damage evolution state of rocks.

3.3. Infrared radiation identification of rock damage evolution state

3.3.1. Establishment of IR image data set

Through the crack strain model method (Section 2.3), different
damage evolution stages of different rocks can be identified, namely,
initial compaction stage, elastic deformation stage, crack stable devel-
opment stage and crack unstable development stage. Each stage is
divided according to the time nodes corresponding to the three char-
acteristic strengths (6cc, Gci, Ocd)- As shown in Fig. 4, the time periods
corresponding to the four stages are: 0-T1, T1-T2, T2-T3, T3-T4. T1,
T2, T3, and T4 are the time corresponding to Gcc, Oci, Ocd and oy,

respectively. The time of all samples is shown in Table 2. According to
the time node, the IR image in (0, T1 ] is divided into the initial
compaction stage thermal image, similar to the thermal image in (T1, T2
1, (T2, T3 1, (T3, T4 1, which are the thermal image of elastic defor-
mation stage, the thermal image of crack stable development stage and
the thermal image of crack unstable development stage. The number of
thermal images of all samples at each stage is shown in Table 3.

Through Table 3, it is found that the number of thermal images of all
samples is 10,322, and the total number of thermal image data sets of
stage I, stage II, stage III and stage IV is 5940, 1865, 1445, and 1072
respectively. Because the number of thermal images of stage I is too
large (about 57.55 % of the total number), the data set is extremely
unbalanced, so the thermal images of stage I of each sample are sampled
at intervals. The method is as follows: According to the time series
sequence of IR images, the thermal images of even seconds in the (0, T1]
time period are removed in turn, and the thermal images of odd seconds
are retained. The total number of rock IR images after sampling is 7357,
of which the number of stage I, stage II, stage III, and stage IV accounts
for 40.44 %, 25.35 %, 19.64 %, and 14.57 % respectively. It is worth
noting that the size of all images is 200*100.

3.3.2. RDES-CNN architecture

CNN is mainly composed of the input layer, hidden layer, and output
layer, the hidden layer contains multiple convolutional layers, a pooling
layer, and a fully connected layer and activation function. Among them,
CNN is characterized by parameter sharing, compared with traditional
neural networks, CNN has the advantage of fewer parameters and con-
nections and proposes the idea concept of local receptive field, which
has a greater advantage for image feature extraction. In CNN, the
convolution layer performs convolution operation on the input rock
infrared temperature matrix through a series of fixed-size convolution
kernels to extract the features of the image. The pooling layer performs
feature aggregation on the feature maps output from the convolutional
layer, which reduces the dimensionality of the feature maps, reduces the
number of parameters of the network, and shortens the training time of
the model. The fully connected layer then converts the feature maps
obtained after multiple convolution and pooling operations into one-
dimensional vectors, and generates probability distributions through
the Softmax activation function to finally determine the classification of
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Fig. 4. Plot of stress, AIRT vs. time for the specimen.
Table 2

Characteristic strength values of each specimen.

Specimen No. Gcc (MPa) 6. (MPa) Gcq (MPa) of (MPa) Geo/Of Cci/Of Ccd/Of Time points corresponding to feature strength (s)
T, To T3 Ty

Al 12.66 42.40 49.80 61.31 20.65 % 69.16 % 81.23 % 424.2 582.5 614.2 669.0
Ay 20.46 33.69 63.05 71.71 28.53 % 46.98 % 87.92 % 388.2 457.0 581.9 625.6
As 22.00 46.06 57.64 73.11 30.09 % 63.00 % 78.84 % 497.1 612.6 662.4 737.9
Ay 12.89 26.48 45.04 54.79 23.53 % 48.33 % 82.20 % 296.7 377.8 465.2 514.3
B, 19.96 38.73 66.15 77.48 25.76 % 49.99 % 85.38 % 233.3 296.1 367.4 401.0
By 27.61 55.86 79.81 99.06 27.87 % 56.39 % 80.57 % 240.4 309.5 365.3 411.0
Bs 21.00 43.53 84.59 103.71 20.25 % 41.97 % 81.56 % 319.8 389.3 499.6 551.2
B4 19.30 40.04 66.45 82.23 23.47 % 48.69 % 80.81 % 267.9 342.4 417.4 462.9
C; 21.73 48.99 62.60 72.42 30.01 % 67.65 % 86.44 % 424.3 587.3 660.5 730
Cy 24.99 37.76 65.96 78.41 31.87 % 48.16 % 84.12 % 410.0 486.7 635.9 721.1
Cs 20.58 59.29 85.92 95.33 21.58 % 62.19 % 90.13 % 503.9 731.5 871.0 927.0
Cy 33.18 52.60 75.51 93.38 35.53 % 56.33 % 80.86 % 358.0 423.3 492.4 560.1
D; 8.08 15.20 21.62 25.34 31.89 % 59.98 % 85.32 % 505.0 658.3 794.0 894.8
D, 4.52 10.42 14.23 15.00 30.13 % 69.47 % 94.87 % 368.4 565.9 692.0 726.7
D3 5.24 10.52 13.94 16.24 32.27 % 64.78 % 85.84 % 399.3 554.7 650.8 798.1
Dy 2.71 5.92 7.57 9.00 30.11 % 65.78 % 84.11 % 307.4 435.3 484.6 594.6
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Table 3
Infrared thermograms of each specimen at each stage.
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Specimen No. stage I stage IT stage III stage IV Before sampling After sampling
Number After interval sampling Number Number Number Total Ratio Total Ratio
Ay 425 213 158 32 55 670 6.49 % 458 6.23 %
Ay 388 194 69 124 44 625 6.06 % 431 5.86 %
As 497 250 115 50 75 737 7.14 % 490 6.66 %
Ay 296 148 81 88 49 514 4.98 % 366 4.97 %
By 233 117 63 71 34 401 3.88 % 285 3.87 %
B; 240 120 69 56 46 411 3.98 % 291 3.96 %
B3 319 160 70 110 52 551 5.34 % 392 5.33 %
By 267 134 75 75 45 462 4.48 % 329 4.47 %
Cy 424 212 163 73 70 730 7.07 % 518 7.04 %
Cy 410 205 76 149 86 721 6.99 % 516 7.01 %
Cs 504 252 228 140 56 928 8.99 % 676 9.19 %
Cy 358 179 65 69 68 560 5.43 % 381 5.18 %
D; 505 253 153 136 100 894 8.66 % 642 8.73 %
Dy 368 184 197 127 34 726 7.03 % 542 7.37 %
D3 399 200 155 96 148 798 7.73 % 599 8.14 %
Dy 307 154 128 49 110 594 5.75 % 441 5.99 %
Total 5940 2975 1865 1445 1072 10,322 \ 7357 \
Ratio 57.55 % \ 18.07 % 14.00 % 10.39 % \ \ \
(Before sampling)
Ratio 40.44 % 25.35 % 19.64 % 14.57 % \ \ \
(After sampling)
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Fig. 5. Schematic diagram of CNN model for rock damage state identification.

the image.

In this study, we design an innovative CNN model called RDES-CNN
(Fig. 5) specifically for identifying and analyzing rock damage evolution
states. The model adopts a multi-layered structural design, including
multiple Convolutional layers (Conv), multiple Maximum Pooling layers
(Pool), and multiple Fully connected layers (FC layer). The character-
istics of this model are as follows:

Specialized Handling of Temperature Matrix Data: Traditional
deep learning models are usually designed to handle data types such as
images, text, or audio. However, temperature matrix data has a unique
two-dimensional structure that does not conform to the input format
expected by traditional models. Therefore, we designed the RDES-CNN
model specifically to handle temperature matrix data. RDES-CNN is
optimized for the structural characteristics of temperature matrix data,
enabling it to fully utilize the feature information and thereby enhance
the performance of multi-classification tasks.

Multi-layer Feature Extraction Structure: The RDES-CNN model
adopts a multi-layer structural design, including multiple convolutional
layers, pooling layers, and fully connected layers. This structural
arrangement allows the model to effectively process the complex
infrared temperature matrix of rock, extracting key features layer by
layer, and ultimately achieving accurate classification and identification
of damage states.

Introduction of ReLU Activation Function: To enhance the
model’s ability to express nonlinear features, we introduced the ReLU
activation function after each convolution operation and between the
fully connected layers. According to the research of Krizhevsky et al.
[61], the ReLU function can not only alleviate the problem of gradient
disappearance but also accelerate the convergence speed of the network,
thereby improving the training efficiency of the model.

Application of Average Pooling Layer: In the RDES-CNN model,
we chose the average pooling layer. The reason for this choice lies in the
unique advantages of the average pooling layer in handling noise.
Average pooling effectively smooths the feature maps by calculating the
average value of all values in the local region, reducing the interference
of noise in feature extraction. This is crucial for accurately identifying
the infrared radiation temperature damage areas of the rock, as changes
in the damage state may manifest as slight variations in the overall
temperature rather than just local prominent features.

Ingenious Addition of Dropout Layers: To further improve the
model’s generalization ability and avoid overfitting, we ingeniously
added Dropout layers between the fully connected layers. During
training, Dropout technology forces the network to learn more robust
feature representations by randomly “dropping” the activation values of
some neurons, thereby maintaining good recognition performance on
unseen data.
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Through these innovative features, the RDES-CNN model demon-
strates significant advancements and unique advantages in handling
temperature matrix data, effectively performing multi-classification
tasks for rock damage evolution states.

3.3.3. Hyperparameter selection and optimization

To improve the performance of RDES-CNN in the classification task
of rock damage state recognition, we use the grid search algorithm to
optimize the hyperparameters to maximize the classification accuracy of
the model. Fig. 6 is the pseudo-code of grid search. When implementing
a grid search, it is first necessary to define a parameter space H, i.e., the
set of all parameters of interest and their possible values. The algorithm
then traverses this parameter space for every possible combination of
parameters. For each set of parameters H, the algorithm uses a cross-
validation approach to evaluate the model performance. Cross-
validation is a statistical method for assessing the generalization abil-
ity of a machine learning model by partitioning a dataset to reduce bias
in the assessment of the model’s performance on an independent
dataset.

In this paper, we use five-fold cross-validation, i.e., the dataset is
divided into five equal-sized subsets, and each time, one of the subsets is
used as the test set and the remaining four are used as the training set,
and this process is repeated five times, and each time, a different subset
is selected as the test set, so as to obtain the five model performance
evaluation results, and finally, the average of the results of these five
evaluations is taken as the performance metrics of the current parameter
combination.

Several key hyperparameters are considered in the search process,
including the number of convolutional kernels, the number of con-
volutional layers, the number of hidden layers, the Dropout rate, the
learning rate, and the momentum of stochastic gradient descent (SGD).
Specifically, the candidate values for the number of convolutional ker-
nels are 8, 16, and 32, the candidate values for the number of con-
volutional layers are from 2 to 6, the candidate values for the number of
hidden layers range from 32 to 1024, the candidate values for the
Dropout rate are 0.3, 0.5, and 0.7, the candidate values for the Learning
rate are 0.0001, 0.001, and 0.003, and the candidate values for the
Momentum of SGD are 0.9, 0.95, and 0.99. In order to ensure that the
optimal parameter combinations found are statistically stable and reli-
able, a 5-fold cross-validation method was used to evaluate each
parameter combination. This means that each parameter combination is
used to train the model 5 times, each time using a different division of
the training and validation sets, thus reducing the chance of the results.

In this way, a total of 10,125 calculations were performed, as there
were 2025 (i.e., 5 number of convolutional kernels x 5 number of
convolutional layers x 5 number of hidden layers x 3 Dropout rate x 3
learning rate x 3 momentum) possible parameter combinations. After
this exhaustive series of searches and validations, Table 4 demonstrates
the best hyperparameter combination found by the lattice search algo-
rithm, which results in a model accuracy of 0.997.

Algorithm 1 Grid Search with 5-Fold Cross-Validation

Initialize hyperparameter space H
Initialize best_params, best_score
for each set of hyperparameters h in H do
Split training data into 5 folds
for each fold do
Train model with hyperparameters h on 4 folds
Validate model on the remaining fold
Calculate validation score
end for
Calculate average validation score over 5 folds
if average score > best_score then
Update best_score, best_params
end if
end for

Fig. 6. Pseudo-code of grid search algorithm.
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Table 4
RDES-CNN hyperparameter optimization results.
Hyper Parameter Possible values Best Train ACC
value time
No. of Convolution & [2,3,4,5,6] 2 17.53 s 0.997

pool layers

No. of filters [8,16,32] 8

FC layer Output [64,128,256,512,1024] 128
dimension

Dropout rate [0.3,0.5,0.7] 0.3

Learning rate [0.0001,0.001,0.003] 0.003

Moment of SGD [0.9,0.95,0.99] 0.99

3.3.4. Model parameters after RDES-CNN hyperparameter optimization

Fig. 5 shows the architecture of the model after parameter optimi-
zation, which first consists of convolutional layer 1 (Conv 1), which is
responsible for receiving a single channel rock IR temperature matrix of
dimension 200x100x1 as input data. At this stage, the model performs
local feature extraction by applying eight 3x3 convolutional kernels,
while a zero-padding technique is used to keep the spatial dimension of
the output constant, i.e., 200x100x64, which helps to retain more
feature information.

Subsequently, the model proceeds to the Pooling Layer 1 (Pool 1),
where the feature map undergoes spatial downsampling through the
application of Average Pooling. This method reduces the size of the
feature map by half, resulting in a new dimension of 50x25x8. This step
is intended to reduce the computational burden on the subsequent
layers, and to extract higher-level abstract features by reducing the
spatial resolution of the feature map.

Immediately after that, Convolutional Layer 2 (Conv 2) continues to
process the feature maps obtained in the previous step. This layer also
employs a 3x3 convolution kernel and keeps the number of output
channels as 8, while maintaining the feature map size constant, i.e.,
50x25x8, through a zero-padding strategy. Doing so further enriches the
representation of the features and enhances the model’s understanding
of the rock IR temperature matrix data.

Through Pooling Layer 2 (Pool 2), the model further downsamples
the feature map and compresses it to 25x12x8. This step helps in further
extracting and compressing the key feature information while reducing
the data dimensions.

Subsequently, the feature map undergoes a spreading operation to
convert the multidimensional feature map into a one-dimensional vec-
tor, ready for the input of the fully connected (FC) layer. The fully
connected layer consists of three parts: the FC1 layer maps the high-
dimensional feature vectors to a new 128-dimensional feature space,
the FC2 layer continues the dimensionality reduction process of the
features to 128 dimensions, and the final FC3 layer maps the feature
vectors to the final 4-dimensional outputs representing the different
classes.

In order to improve the generalization ability of the model and
prevent overfitting, a Dropout layer is added between the fully con-
nected layers, and the Dropout rate is all set to 0.3. This strategy forces
the network to learn a more robust representation of the features by
randomly discarding a portion of the neurons’ activation values during
the training process. The design of the model fully considers the char-
acteristics of the rock infrared temperature matrix data, and through the
effective combination of convolutional and pooling layers, it realizes the
efficient extraction and expression of the feature information in the
temperature matrix.

3.3.5. Methodology and metrics

The schematic diagram of the framework developed in this research
is shown in Fig. 7. First, noise removal is performed on the experimen-
tally obtained infrared temperature data to extract the effective infrared
radiation information during the coal rock loading process. Then, the
experimental data are divided into training, validation, and testing
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Fig.7. Proposed methodological framework.

datasets, and data normalization is executed before training starts.
During training, feature extraction is performed on the training dataset,
and the extracted features are used to classify and recognize the damage
state of the coal rock.

In order to comprehensively evaluate the performance of the model,
the model was evaluated using methods such as accuracy (ACC), pre-
cision, recall, F1-score, and confusion matrix. The calculation formulas
are as follows:

Acc = % )
Precision = % 10$)
Recall = %\I an
F1 — score — 2*Precision*Recall 12)

Precision + Recall

Among them, ACC represents the proportion of correct predictions
out of all samples. Precision represents the probability that a predicted
category is correctly identified among all predicted results. Recall rep-
resents the probability that a category is correctly predicted among all
true values. Fl-score represents the harmonic mean of Precision and
Recall. TP indicates that the prediction is positive and the actual is
positive. FP indicates that the prediction is positive and the actual is
negative. FN indicates that the prediction is a counterexample and the
actual is a positive example, and TN indicates that the prediction is a
counterexample and the actual is a counterexample. The confusion
matrix is a visual matrix of statistical model classification performance,
which shows TP, FP, FN, and TN of model classification.

4. Classification and identification of rock damage evolution
states

4.1. Experimental setup

On the Ubuntu Serve20.04 operating system, the pytorch deep
learning framework (version 1.13.1) is used to train on the graphics card
model Tesla T4. The mini-batch size is set to 64. Using the stochastic
gradient descent optimization algorithm, the momentum is 0.99, the
initial learning rate is 0.003, and the loss function is the cross entropy
loss function.

In the data preprocessing stage, through random sampling of the
rock infrared temperature matrix data, we obtained the statistical pa-
rameters required for data normalization: the mean value is 0.05, and
the variance is 0.24. Before inputting the data into the model, we

10
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standardize it so that the mean of each feature is 0 and the variance is 1.
This preprocessing method helps to improve the training efficiency of
the model and ensures that the model can converge to the optimal so-
lution faster.

To improve the generalization ability of the model and prevent
overfitting, we introduce an early stopping strategy during the training
process. This strategy is implemented by monitoring the model’s loss on
the validation set, evaluating the model performance at the end of each
epoch, and stopping the training if the performance does not show sig-
nificant improvement. We set the training to be terminated if the
model’s performance on the validation set does not improve signifi-
cantly within 10 consecutive epochs. This strategy helps us save
computational resources and ensures that the final model has good
generalization performance on new data.

4.2. Dataset settings

All the temperature matrices of Aj, Bo, C3, and D4 groups of samples
are used as pre-test data sets for the generalization test after model
training. For the remaining samples, 80 % of the temperature matrix of
each damage state is used as the training set, and the other 20 % is used
as the verification set for model training. The training model obtained at
the end of the training will identify the damage state of the four groups
of samples Aj, By, C3, and Dy.

4.3. Baseline methodology

In this paper, we compare RDES-CNN with traditional machine
learning algorithms, including support vector machines (SVM), K-
nearest neighbors (KNN), random forests (RF), logistic regression (LR),
and gradient boosting trees (GBT). First, we loaded and preprocessed the
rock infrared temperature matrix dataset to convert the temperature
matrix data into a feature representation that can be used by traditional
machine learning algorithms. Specifically, each temperature matrix was
spread into a one-dimensional feature vector, and these feature vectors
were normalized, i.e., the processed features had a mean of 0 and a
variance of 1. Normalization helps to ensure that the weights between
different features are not dominated by differences in the scale of the
data, thus improving the training stability and performance of the
models. We then trained and evaluated each classification algorithm
separately, and used the grid search algorithm as well as fivefold cross-
validation to find the optimization of the hyperparameter combination
for each classification model, and the value ranges of each parameter are
shown in Table 5.

As can be seen in Table 5, the SVM, KNN, and LR models show
excellent classification performance with an accuracy close to 0.984 on
the validation dataset during the optimization process. The RF and GBT
models, although slightly lower in performance, still provide acceptable
accuracy. The KNN model takes only 1.89 s to train, showing great ef-
ficiency. In contrast, the SVM, RF, and LR models all took between 20
and 430 s to train, while the GBT model took the longest time at
15451.49 s. In comparison with the RDES-CNN model in Table 4,
although the training time of the RDES-CNN is at a medium level, its
recognition result on the validation set is the best, reaching 0.997. This
is unmatched by other baseline models.

After obtaining the optimal parametric model, the model is trained
on the full training dataset and the validation dataset. And compared
with the RDES-CNN model, see subsection 4.5.

4.4. RDES-CNN calculation results

During the model training process, we recorded the loss values for
each training and validation session and calculated the overall accuracy,
F1-score, and confusion matrix for the validation sessions. As shown in
Fig. 8(a), the Loss curve represents the entire training and validation
process of the RDES-CNN. Fig. 8 (b) depicts the accuracy and F1-score



Q. Gao et al. Measurement 239 (2025) 115507
Table 5 (Fig. 8 (b)). During the model training process, we employed an early
Hyperparameter optimization results of other models. stopping strategy. Throughout the 500 training sessions, the model’s
Method  Parameters of Possible Best Train ACC loss stabilized at the 45th epoch, achieving an accuracy of 0.9891 and an
the classification ~ values value time F1-score of 0.9893. As shown in Fig. 8 (c), the RDES-CNN performed
method excellently in recognizing the four damage states. Therefore, the model
SVM C: [0.1, 1, 10] 0.1 425.64 s 0.9836 corresponding to the 45th epoch is used as the model for identifying the
Regularization damage evolution states of coal rock in this study.
parameter
Kernel [1,0.1, \
parameter of the  0.01] 4.5. Comparison results of RDES-CNN with other models
RBF kernel
function ) In this study, we comparatively analyze the performance of RDES-
Kernel type [’rbf’, ’linear’ . . .
“linear'] CNN and baseline methods on the validation set. Table 6 demonstrates
RF Number of trees  [10, 50, 100 29.37 s 0.9687 the performance of RDES-CNN with other baseline methods on the
100] dataset. The RDES-CNN model exhibits excellent performance in key
The maximum [None, 10, 20 performance metrics such as Accuracy (ACC), Precision, Recall, and F1
SZE:S}:O‘::?; 201 score. Specifically, the accuracy of RDES-CNN reaches 99.04 %, while
Minimum [2,5,10] 9 the Precision, Recall, and F1 scores are all close to or above 99 %, which
number of to a certain extent reflects the model’s efficiency and reliability in the
samples required classification task.
to Cslpl‘t internal In contrast, other models such as SVM and LR also performed well in
nodes . . . 0, . .
i [1.2.4] 1 terms of accuracy, with both achieving 99.39 % accuracy, which is
number of comparable to RDES-CNN. However, RDES-CNN shows a more balanced
samples required and consistent performance in terms of precision, recall, and F1-score,
on leaf nodes ostensibly providing more stable and accurate results when dealing
GBT ::t?:[]::tro‘:sf g%(()),]loo, 200 :5451'49 0.9859 with more rocky damage state classification recognition problems. In
learning rate [0.01, 0.1, 05 addition, RF, GBT, and KNN models, although they also perform well in
0.5] some indicators, do not reach the level of RDES-CNN in terms of overall
maximum depth  [3,5,7] 3 performance. Therefore, we can assume that RDES-CNN has a more
N ofa ;mglef tree (3.5.10] 5 Lgo 0,985 outstanding performance on the validation set, especially in terms of
Ezgh;:s ™ ©7s ’ precision rate, recall rate, and F1 score. This indicates that RDES-CNN
neighbor weight  [uniform’, *uniform’ has stronger classification ability and higher prediction accuracy.
calculation *distance’]
method . N
nearest neighbor  [‘auto’, “ball_tree’ 4.6. Model generalizability test
search algorithm  ’ball_tree’,
*kd_tree’, The comparative results of the RDES-CNN model as well as the
‘brute’] baseline model for damage evolution state identification on the four sets
LR regularization [11,°121] ’12' 20.63 s 0.9836
term
reciprocal of [0.1, 1, 10] 10 Table 6
regularization Performance of RDES-CNN and other models on the validation set.
trength
Strens Model Performance of the model on the verification set
ACC 1t Precisiont Recallt Fl-scoret
curves 'of the R]?ES-CNN on the validation set, 'whge Fig. 8 (c) shows the RDES.CNN 0.9904 0.9939 0.9952 0.9946
confusion matrix of the RDES-CNN on the validation set. SVM 0.9939 0.9939 0.9944 0.9942
From Fig. 8 (a), it is evident that the model converged rapidly from RF 0.9555 0.9609 0.9519 0.9559
the beginning, and after approximately 20 epochs, both the validation GBT 0.9747 0.9745 0.9737 0.9740
and training losses stabilized around their respective minimum values. KNN 0.9915 0.9910 0.9918 0.9913
. LR 0.9939 0.9939 0.9944 0.9939
Simultaneously, the accuracy and Fl-score also reached stable values
1.0 =
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Fig. 8. Results of model calculation in training set and validation set: (a) Plots of Loss curves, (b) Accuracy curves and F1-score curves for training and validation set,

(c¢) Model confusion matrix in validation set.
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of rock sample datasets that were not involved in training are presented
in Table 7. Throughout the experiments, RDES-CNN shows relatively
high performance in terms of accuracy and Fl-score, especially on
specimen A; and specimen C3. Compared with other models, RDES-CNN
achieves better recognition results in most cases. For example, on
specimen Aj, the accuracy of RDES-CNN is 0.6168, while that of the
other models is 0.4147 (SVM), 0.2680 (RF), 0.4611 (GBT), 0.2530
(KNN), and 0.3802 (LR), respectively. This demonstrates the superiority
and generalization ability of RDES-CNN in dealing with the task of
identifying the evolutionary state of damage in rock samples. Although
other models also show some performance in some cases, overall, RDES-
CNN is a relatively better choice for this task, indicating that the RDES-
CNN model has strong generalization performance.

Fig. 9 presents the confusion matrices for the RDES-CNN and SVM
models on the four test samples (A1, By, Cg, D4). In these matrices, 0, 1, 2,
and 3 represent stage I, stage II, stage III, and stage IV respectively. It is
evident from the figure that RDES-CNN consistently outperforms SVM in
terms of recognition accuracy for all test samples.

Further analysis shows that RDES-CNN has a stronger recognition
capability for stage I damage across all test samples compared to other
stages. This indicates that the model is particularly effective in
extracting features from the infrared temperature matrix of stage I
damage. However, the performance for stage II and stage III suggests
that the model requires further optimization. The results indicate that
RDES-CNN has learned many overlapping features between these two
stages, making it difficult for the model to distinguish between them. To
address this issue, it is necessary to increase the dataset size for stages II,
111, and IV and implement measures in feature enhancement and model
fine-tuning to improve the model’s learning and differentiation
capabilities.

In conclusion, while the RDES-CNN model demonstrates superior
overall performance compared to the SVM model, a detailed analysis of
the confusion matrices reveals specific areas for improvement to
enhance its generalization ability and recognition accuracy across all
damage stages. This will be further discussed in Section 5.2.

5. Discussion

5.1. Advantages of infrared radiation identification of rock damage
evolution state

When the rock is subjected to loading, the internal primary cracks,
micro-pores, and regenerated cracks and pores will gradually develop.
This process has gone through four stages of development: initial
compaction stage, elastic deformation stage, plastic deformation stage
and post-peak failure stage. Different damage states lead to different
degrees of the spatial and temporal evolution of internal micropores and
fissures so the infrared radiation information of rock surface shows
differences at different damage stages, which can be observed intuitively
from Fig. 3 and Fig. 4.

Through infrared radiation monitoring technology, we can capture
the infrared radiation information released by the rock during the
damage process. By using convolutional neural networks to extract
features from this information, we can effectively recognize the
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damaged state of rocks. In this paper, this intelligent identification
method is validated on a small-scale dataset, which provides a feasible
idea for future applications in online real-time identification of rock
damage states.

The intelligent recognition method using deep learning and infrared
radiation monitoring technology avoids the tedious calculation steps
and the judgment error of human subjective factors in traditional
methods (such as the strain method). At the same time, compared with
the limitations of traditional methods that cannot achieve real-time
determination, this method can achieve real-time damage state deter-
mination in the actual engineering site and has great advantages.
Therefore, this paper provides an intelligent method based on infrared
radiation technology, which provides an effective way for the moni-
toring and identification of rock damage state and has important aca-
demic and practical significance for engineering practice.

5.2. Research gaps and prospects

As far as is known, the dataset for recognizing the state of rock
damage evolution based on infrared radiation technology has not been
reported. This may be because scientists in rock mechanics are more
interested in the mechanical properties of rock materials, and the study
of rock damage evolution based on infrared radiation technology has
received little attention. On the other hand, artificial intelligence sci-
entists typically pay little attention to rock infrared radiation images.
Therefore, based on the uniaxial monitoring experiment of rock infrared
radiation, it is necessary to establish a dataset for the identification of
rock damage evolution states. The database established in this paper
contains four kinds of rocks: yellow shale, limestone, yellow sandstone,
and coal, which is of reference significance for the laboratory study of
general coal-bearing rocks. In future research, the database can be
expanded and improved in the following four aspects: @ Expansion of
rock types. @ Increase in the number of samples for each type of rock. ®
Improvement in the quality of IR images, specifically the denoising of
rock IR images. @ Enhancement of the classification method for rock
damage evolution stages.

In this study, infrared radiation monitoring technology and deep
convolutional neural network methods are used to classify and predict
the damage state of four different rocks, yielding good recognition re-
sults. The main contribution of this paper is the application of infrared
radiation technology and deep learning methods to identify and assess
the evolution of rock damage states. This approach applies to infrared
radiation monitoring and early warning in indoor experiments, and it
holds reference significance for practical field applications. During the
process of rock loading failure, the surface thermal radiation is directly
related to the stress state. Since stress is a time-dependent variable,
changes in infrared radiation on the rock surface are related to the
duration of loading time [41,49,62]. As shown in Figs. 3 and 4, the
surface infrared radiation of the four rocks has changed significantly in
both the time and space dimensions. However, the RDES-CNN used in
this paper can only extract features from rock IR images in the spatial
dimension. Therefore, the model does not consider time variation
characteristics. In future research, both the time and space variation
characteristics can be taken into account to identify the rock damage

Table 7

Performance of the model on the test dataset.
Model Ay B, Cs Dy

ACCT Fl-scoret ACC?T Fl-scoret ACCT Fl-scoret ACCT Fl-scoret

RDES-CNN 0.6168 0.6551 0.5780 0.5329 0.6490 0.6335 0.5034 0.4544
SVM 0.4147 0.4642 0.3366 0.3830 0.4471 0.4772 0.2054 0.2266
RF 0.2680 0.3324 0.3220 0.3599 0.3639 0.4062 0.2559 0.2998
GBT 0.4611 0.5347 0.4439 0.5019 0.4698 0.4870 0.4024 0.4286
KNN 0.2530 0.2797 0.2756 0.2733 0.1641 0.1675 0.2155 0.2543
LR 0.3802 0.4271 0.2098 0.2693 0.3769 0.4108 0.1145 0.1188
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Fig. 9. Identification results of RDES-CNN and SVM in test samples.

state. For example, recurrent neural networks (RNN) and long short-
term memory networks (LSTM) can be used for recognition. This
approach can further improve the deep learning model for rock damage
evolution state recognition.

6. Conclusion

This study successfully identified the damage evolution states in
various rocks using infrared radiation monitoring technology and deep
learning methods. The main conclusions are as follows:

(1) The changes in infrared radiation information at various stages of
damage evolution in different rocks exhibit similarities.

(2) A dataset method for identifying coal rock damage states using
infrared radiation information was proposed, and the dataset
imbalance was addressed through downsampling.

(3) The intelligent damage state identification model, RDES-CNN,
demonstrates excellent performance, with both accuracy and
F1-scores exceeding 90 %. This shows its general applicability for
damage identification across various samples.

(4) The proposed method of using infrared radiation technology for
the intelligent identification of bearing coal rock damage states is
feasible. This method holds significant importance for safety
monitoring in geotechnical and mining engineering.
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