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Abstract

Nineteen 2D nonlinear finite element analysis (NLFEA) solution strategies

were benchmarked against a wide variety of 101 experiments on reinforced

concrete beams failing in bending, flexural shear, or shear compression. The

relatively high number of solution strategies was motivated by the conviction

that choices for the constitutive models, the finite element kinematics and

equilibrium settings will interact, and must therefore be tested in conjunction.

Modeling uncertainty distribution parameters are presented for the 19 solution

strategies, using all beams, and using beams with and without stirrups sepa-

rately. The resulting statistics are discussed against the correctness of the simu-

lated failure modes and failure loads, revealing that rotating crack models

perform well for the relatively ductile failures in beams with stirrups, while

fixed crack models perform better for the more brittle failures in beams with-

out stirrups. The tailored solution strategies that predict failure modes cor-

rectly, imply a log-normal distribution of the modeling uncertainty with

relatively low coefficients of variation. The outlook is that these estimates of

the statistical properties of the modeling uncertainties could serve as a basis

within safety formats.
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1 | INTRODUCTION

Two decades ago, Frank Vecchio published a milestone
paper in this journal with the inspiring title “Nonlinear
finite element analysis of reinforced concrete: at the
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crossroads?”1: Applications of nonlinear finite element
analysis (NLFEA) should be done with a healthy degree
of caution and skepticism. Wherever possible, analysis
models should be validated or calibrated against bench-
mark tests involving specimens of similar construction
and loading details, dependent on mechanisms antici-
pated to be significant of the analysis problem at hand.
The paper further included criticism towards the research
community, and associated technical committees, that
may have failed the profession in some respects: many
working in the area have directed their efforts to develop-
ing sophisticated numerical models and methods of anal-
ysis, not directly suited to reinforced concrete.

We now observe a clear trend break. Standards organi-
zations have recognized the potentials of NLFEA—but are
alsowell aware that NLFEA ismuchmore difficult to codify
than resistance models based on lower levels of approxima-
tion.2 Being aware of these concerns, standards committees
involved in codifying NLFEA focus on performance-based
codes in which the accuracy of the NLFEAs for a specific
application field should be evaluated before being used for
structural design or assessment. This accuracy is typically
expressed by a modeling uncertainty, which acknowledges
that no model can be perfect. The modeling uncertainty
should be determined by systematically confronting a well-
defined NLFEA approach with a series of experimental
benchmark studies, all relevant for a well-defined specific
application field. The upcoming fib Model Code 20203 will
include a completely revised section on NLFEA which will
exactly follow this line of thought.

Schlune et al.4 reviewed round robin NLFEA model-
ing competitions, concerning structural elements which
failed in compression, in bending (with under- and over-
reinforced sections) or in shear. Typically, the results,
blindly predicted by the round robin participants, were
distributed around the response of the laboratory tests
with a coefficient of variation ranging from 5% (for duc-
tile flexural failure of under-reinforced cross-sections) to
a staggering 40% (for brittle shear failure, either in diago-
nal tension or shear compression). Engen et al.5 termed
this notion of modeling uncertainty as “between-model
uncertainty” as it provides a relevant measure of the
modeling uncertainty if an analyst would randomly pick
a reasonable NLFEA approach for the problem at hand,
without prior verification of this approach with similar
benchmarks. Results from renowned competitions have
been documented by Collins et al.,6 van Mier & Ulfkjœr,7

Jaeger & Marti,8 and Collins et al.9 and more recently by
Yang et al.10 Indeed, usually these round robin competi-
tions were based on challenging tests, for which little
comparable tests were available. Consequently, if a
design code would assume a default value for a modeling
uncertainty, thus assuming that no proper benchmarking

is available, applying the notion of “between-model
uncertainty” makes sense.

Other researchers followed the above line of thought in
which a well-defined NLFEA approach, often termed as a
“solution strategy”, is tested against series of experimental
benchmark studies, all within a certain application field.
Engen et al.5 termed this notion of modeling uncertainty as
“within-model uncertainty” and it is this notion that makes
sense to be used as a measure of the accuracy for well-
calibrated solution strategies. Allaix et al.,11 Engen et al.,12

and Cervenka et al.13 all tested specific solution strategies,
against, respectively, 14, 38, and 33 benchmarks, and thus
quantified the within-model uncertainties for the respective
NLFEA approaches. Belletti et al.,14,15 Castaldo et al.,16,17

and Gino et al.18 tested in their studies up to 18 approaches,
thus resulting in multiple within-model uncertainties per
study.

In this article, we follow this line rigorously by quantify-
ing the modeling uncertainty for 19 different solution strat-
egies against 101 experimental benchmarks, leading,
following a full factorial set-up, to 1919 nonlinear finite
element simulations. The set of benchmarks comprises
reinforced and prestressed beams, published in literature;
the focus is on the load resistance and on the failuremodes.

The set of solution strategies comprises only standard
approaches, popular in engineering practice, systemati-
cally categorized into constitutive models, kinematic for-
mulations and equilibrium settings. They are all based
on displacement-based, incremental-iterative nonlinear
finite element analyses. They all use a 2D plane stress
approach, adopt smeared cracking (and crushing) for the
concrete and either use embedded truss reinforcements
with perfect bond, or adopt separate truss or beams ele-
ments plus interface models to simulate bond-slip
between concrete and steel reinforcement. All of them
use arc-length control, with the purpose of avoiding dis-
placement control, which is seen as more stable but less
generally applicable in practice.

The different solution strategies are selected such that
they address current dilemmas in engineering practice.
First, with respect to thematerial modeling, a main variable
is the use of a fixed crack or a rotating crack model for the
concrete. Fixed smeared crackmodels describe the constitu-
tive behavior along axes that are fixed upon crack or crush
initiation. Progressive hardening and softening are then for-
mulated in the direction perpendicular to the fixed crack or
crush plane, with a shear retention factor or function being
introduced to describe the reduced shear capacity of the
cracked material as compared to the uncracked elastic
material. Rotating smeared crack models describe the con-
stitutive behavior in the continuously rotating principal
stress–strain system. These models can be conceived to
include an implicit shear term that guarantees coaxiality
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between principal stress and strain. Guidance for selecting
these crack models is limited. Second, with respect to the
kinematics, the strategies are distinguished by using differ-
ent element sizes. A typical dilemma in engineering appli-
cations, which involves a trade-off between economy and
accuracy, is the size of the model and thus the feasibility of
the numerical model. Also, the presence of a bond-slip rela-
tionship and the inclusion of beam action in addition to the
truss action in the reinforcing bars is a common issue
because they are linked to the possibility for specific mecha-
nisms to arise, which could be critical for the target failure
mechanisms, but can also potentially complicate the ana-
lyses. By selecting bond-slip, it naturally follows that we
should also focus on selecting an adequate bond-slip mate-
rial model. Thirdly, with respect to equilibrium, it is noted
that the, sometimes, “subtle” aspect of obtaining “fully”
converged solutions is often overlooked by the users while
it may clearly influence the prediction results, and is for this
reason explicitly addressed in the selected strategies in this
study. The strategies are distinguished by using different
convergence norms and a different maximum number of
equilibrium iterations per load step. It is noted that the
paper is limited to 2D representations of constitutive and
kinematic behavior. 3D effects like confinement and
detailed localizations have not been explicitlymodeled.

The main objective is to provide estimates of the statisti-
cal properties of themodeling uncertainties for each model-
ing strategy, in view of the application fields of reinforced
and prestressed beams. First, we assess how well the simu-
lated failure modes correspond to the experimental coun-
terparts; next we quantify the accuracy of the simulated
load resistance. For the latter, the modeling uncertainty is
defined traditionally as the ratio of the experimentally
found load resistance and the numerically simulated resis-
tance.12 For a limited number of analyses, we present
detailed analysis results, which are envisioned to be a strict
requirement for any practical nonlinear finite element
application, in order to interpret the found statistical prop-
erties. The outlook is that these estimates of the statistical
properties of the modeling uncertainties could serve as a
basis within safety formats, based on either the partial
factors method, the global factor method or the simulation-
based method, adopting the terminally used in the upcom-
ing fibModel Code 2020.3

2 | SELECTION OF BENCHMARK
EXPERIMENTS ON REINFORCED
CONCRETE BEAMS

To provide objective and widely applicable results, a
diverse selection of reported experiments on reinforced
and prestressed beams was used to investigate the model

uncertainties and accuracy of failure mode modeling.
The diversity related to beam dimensions, materials and
the presence or nonpresence of stirrups, leading to a wide
range of failure modes varying from bending, to diagonal
tension and shear compression. Beams, that are often
used for benchmarking, have been included. Addition-
ally, beams from other research projects were added to
cover a wide application field, including beams that are
likely to occur in daily engineering practice of design and
assessment. The final set of benchmark beams is listed in
Table 1.

This amounted to 101 benchmark experiments, see de
Putter33 for details. Their reinforcement ratio varied from
0.35% to 5.31%, the shear span over depth ratio (a/d) var-
ied from 1.1 to 7.0. The total depth varied between
90 and 1600 mm and the concrete compressive strength
varied between 18 and 126 MPa. The latter is important
as all other concrete and bond-slip parameters were
derived from correlations to the reported compressive
strength. Mainly three-point and four-point loading was
used. The selected set of experiments included statically
indeterminate and cantilevered beams as well. The distri-
butions of the main quantities over the benchmarks are
depicted in Figures 1 and 2. It is noted that one beam
was left out of this plot due to its depth of 1712 mm. An
overview of the experimental failure modes and rein-
forcement configurations is presented in Table 2.

3 | NONLINEAR FINITE ELEMENT
APPROACHES FOR THE ANALYSIS
OF REINFORCED CONCRETE
BEAMS

A NLFEA solution strategy comprises all choices and
assumptions regarding constitutive relations, kinematic
compatibility, and equilibrium conditions.34 The selected
solution strategies for the present study are based on
guidelines issued by the Dutch Ministry of Infrastructure
and the Environment14,35 and include variations thereof,
resulting in 19 solution strategies. These guidelines are
software independent. It is noted though that in practice,
a particular strategy may not be transferred one-to-one
when switching to another software code: the specific
software implementations may contain small subtle, dif-
ferences. However, the emphasis in the current article is
on the great importance of end-user decisions when mak-
ing a model with a selected software; Diana was used for
all analyses. The correctness of the constitutive and FE
implementations for single-element and structural com-
ponent models is shown in a verification manual, which
partly reduces the implementation uncertainty.36 The rel-
atively high number of strategies were motivated by the
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conviction that selected choices from the constitutive,
kinematic and equilibrium classes will interact and must
therefore be tested in conjunction.

The common basis for the solution strategies is sum-
marized in Table 3. There are three important aspects
that are not mentioned in the table. First is how the

TABLE 1 Benchmark overview: Selection of 101 experimental results

Number of
beams References Beams Remarks

12 Bresler &
Scordelis19

A1, A2, A3, B1, B2, B3, C1, C2, C3, OA1, OA2,
OA3

The experiments performed by Bresler &
Scordelis have been often used as benchmark
because of the complex shear related failure
modes.

12 Vecchio &
Shim20

A1, A2, A3, B1, B2, B3, C1, C2, C3, OA1, OA2,
OA3

In 2004, Vecchio & Shim reported a repetition
of the experiments by Bresler & Scordelis with
slightly different results.

8 Choulli21 HAP1W, HAP2E, HAP2TE, HAP2TW,
HCP1TE, HCP1TW, HCP2TE, HCP2TW

These were all prestressed beams, some with
and some without shear reinforcement.

12 Ghannoum22 N90N, N90S, N155N, N155S, N220N, N220S,
N350N, N350S, N485N, N485S, N960N,
N960S

The experiments were related to an
investigation of size effects in reinforced
concrete.

9 Ashour23 H2, H3, H4, M2, M3, M4, N2, N3, N4 These experiments were performed to
investigate flexural behavior of high strength
concrete beams.

15 Rashid &
Mansur24

A111, A211, B211a, B311, B312, B313, B321,
B331, B411, C211, C311, C411,C511, D211,
E211

This study was similar to the study by Ashour,23

but with a more extreme variation in concrete
strength and reinforcement ratio, and a
different shear span over depth (a/d) ratio.

20 Yang &
Koekoek25

A121A1, A121A3, A122B1, A123B1, A901A1,
A901A3, A902A1, B501B1, B502A1, B701A1,
B701A2, B701A3, B701B1, B701B2, B702A1,
C451A2, C451B1, C751A1, C751B1, C901A3

A large set of experiments was done to
investigate the transition from flexural to
shear failure. Beams without stirrups were
loaded until either a shear failure occurred, or
the reinforcement started yielding.

4 Foster &
Gilbert26

B2.0-1, B2.0A-4, B3.0-1, B3.0A-4 These experiments comprised a series of pile-
cap like deep beams, with varying a/d ratios.
The benchmarks also included supports and
loading columns.

1 Collins &
Kuchma27

SE50A-45 This is a famous shear span which has been
often used for benchmarking

1 Podgorniak-
Stanik28

BM100 This beam was used in an investigation of the
relationship between longitudinal
reinforcement and shear capacity of beams.

2 Leonhardt &
Walther29

E3, E6 These experiments were related to shear
behavior in concrete beams. The two beams
that were taken from this study include one
with diagonal shear reinforcement and one
without shear reinforcement.

1 Sun & Kuchma30 PB2 Prestressed beam which was also used for
validating guidelines for NLFEA of Pre-
stressed beams (Hendriks & Roosen, Part B)35

2 Leonhardt
et al.31

PB1, PB3 Prestressed beam, also used in (Hendriks &
Roosen, Part B)35

2 Yang et al.10,32 H123, H352 Deep beams that were used in a prediction
contest in 2019 to predict the flexural shear
capacity of deep beams without stirrups.
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failure load is retrieved from the analyses. In many prac-
tical applications of NLFEA of concrete structures, non-
converged steps are unavoidable. Local effects and
successive cracking potentially introduce temporary con-
vergence issues—but should not be interpreted as failure.
To avoid biased interpretations of numerical results, a
secured interpretation was used in which the failure load
was defined as the highest retained load with at least one
of the convergence criteria satisfied. Second, in order to

interpret the simulated failure mode, the following
assumptions were made. A flexural failure displays either
yielding of the longitudinal reinforcement and crushing
of the compression zone or just excessive yielding of the
longitudinal reinforcement. Shear compression failure
was marked by crushing of the diagonal strut and flex-
ural shear was identified as failure due to opening of the
critical inclined crack without failure of the compression
zone. In some cases, excessive yielding of the stirrups
leading to divergence of the analysis was observed
numerically, termed “stirrup failure” in this article, in
which the stirrups cannot provide sufficient plastic defor-
mation till the crushing of the concrete. All material
parameters were derived from the reported compressive
strengths, following the formulas from the fib Model
Code 201044 and following Nakamura & Higai45 for the
relation between the compressive and tensile fracture
energy. Finally, all analyses were performed using the
DIANA finite element program, release 10.4.36

Table 4 provides an overview of the 19 solution strate-
gies. The 19 solution strategies differ from each other on
six aspects. Where all strategies used a total-strain based
smeared crack approach, which is rather popular among
practitioners, see Table 3, the first distinction between
the different strategies was the adopted concept for the
crack orientation within the constitutive model. Already
in the 80s, for instance in Rots & Blaauwendraad,46 there
were lively discussions on whether to use fixed or rotat-
ing crack modeling strategies for such models and to
which extend this depends on the application at hand; a
discussion that to date was never fully concluded. In this
study a damage-based shear retention model is used for
the fixed crack model, in which the shear modulus along
the cracked surface is reduced proportionally to the
reduction of the secant stiffness of the crack in opening
direction.47 Such reduction of the shear modulus with
increasing crack normal strain represents physical reality,
as tortuous cracks provide less shear stiffness once they
open up wider. The particular damage-based function
adopted has proven to serve well in a variety of RC cases,
whereas other shear retention models such as the
assumption of a constant shear retention factor may lead
to larger sensitivities. The element sizes depended on the
height h of the beams by using a fixed division of the
height. The reinforcements either only included axial
action, in embedded truss reinforcements and truss ele-
ments, or also included bending action, in reinforcement
beam elements. The bond between reinforcement steel
and concrete was either considered as fully bonded, or
followed shear stress—slip relations by Shima48 or the fib
Model Code 2010.44 The same bond models have been
used after prestressing of the strands. For the stirrups,
embedded truss reinforcements have always been used.

FIGURE 1 Benchmark overview: Shear span versus depth of

the specimens. The beam from Sun & Kuchma30 was left out of the

figure due its relatively large effective depth (d = 1712 mm,

a = 7500 mm)

FIGURE 2 Benchmark overview: Distribution of concrete

strength and reinforcement ratio

TABLE 2 Benchmark overview: presence of shear

reinforcement and reported failure mode

Shear failure Bending failure Totals

Stirrups 27 30 57

No Stirrups 32 12 44

Totals 59 42 101

Note: “Shear failure” includes both compression shear and flexural shear

failure.
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For some strategies the maximum number of equilibrium
iterations per load step were increased. As temporary
nonconverged steps were accepted, the maximum num-
ber of iterations were expected to influence the results.
The convergence norms were based on energy (E) and on
the out-of-balance forces (F).36 The tolerances for the
energy and force norm ratios have been indicated in the
table. The logical OR indicates that convergence is
obtained if one of the two norms is reached, whereas
AND denotes that both norms should be satisfied before
convergence is obtained.

4 | QUANTIFICATION OF THE
ACCURACY OF PREDICTED
FAILURE MODES

As will be shown in Section 5, the concrete model selec-
tion has the most significant impact on the accuracy of
the load resistance prediction. Moreover, Section 5 will
reveal that the solution strategy F9 is one of the better
strategies, simulating the load resistance most accurately.
For this reason, before presenting these modeling uncer-
tainties for all strategies in Section 5, this section will first
show the accuracy of the simulated failures modes of
strategies F9 and R8. Note that the only difference
between these strategies is the crack model, which is
fixed versus rotating.

Table 5 compares the failure modes that were
observed in their respective experiments, to the failure
modes that were modeled in this study. The well-
predicted failure modes, along the diagonals for R8 and
F9, have been set in bold. For the rotating crack strategy
R8, 24 experimentally observed flexural failure modes
were simulated as compression shear failure. For the
fixed crack strategy, 13 experimentally observed bending
failure modes were simulated as stirrup failure. These
instances are underlined in the table and will be dis-
cussed in the remainder of this section.

First, the 24 wrongly predicted failure modes for the
rotating crack strategy can all be exemplified by the
predicted results of test B702A1 from Yang & Koekoek.25

Figures 3 to 6 show numerical results. The force-
displacement characteristic in Figure 3 shows the experi-
mental behavior as a solid line and the NLFEA
prediction, using strategy R8, with a dashed line. At a
load level close to the reported failure load, a drop in the
retained load (marked as “Critical event”) was observed
in the model.

Figure 4 mainly shows the crack normal strains, indi-
cating the local crack orientations per element. In order
to arrive at crack widths, these strains should be inte-
grated over the crack band width which is related to the

TABLE 3 Common basis of the solution strategies

Constitutive model for concrete

Crack/crush model Total-strain based smeared
cracking37

Tensile softening curve Hordijk38

Crack bandwidth
estimation

Govindjee Projection39

Compressive softening
curve

Parabolic40

Compressive strength
reduction

Model B41

Compressive confinement
effect

Hsieh-Ting-Chen42

Poisson's ratio reduction
after cracking

Damage based43

Constitutive model for reinforcement steel

Plasticity model Von Mises with linear
hardening

Ultimate strain 25‰

Kinematic assumptions

Element type 8-noded quadrilateral
plane stress element

Integration and
interpolation

3 � 3 Gaussian &
quadratic

Aspect ratio 1:1 where possible, within
a structured mesh

Kinematic and constitutive assumptions for support and
loading plate interface elements

Element type 6-noded quadratic line
interface element

Integration and
interpolation

4-point Newton-Cotes &
quadratic

Shear stiffness Low (1 N/mm3), linear

Normal stiffness Stiff in compression
(1000 N/mm3), no-
tension

Equilibrium control

Initial load step size Pexp/50

Load control Applied force

Arc-length control, indirect
displacement control

Controlling the node
which showed the
maximal displacement
in a linear static analysis

Iteration scheme Full Newton–Raphson
using the local secant
stiffness in case of
cracking; with line
search

Continuation Continuation in case of
nonconvergence unlike
divergence
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dimensions of the finite elements, or even of several ele-
ments in case the strains are not fully localized. However,
in this article, we do not focus on crack width predictions
and the plot of the crack strains is thought to be sufficient
to give an impression of the crack pattern. Before the
drop in the load bearing, the crack pattern as depicted in
Figure 4 on the left was simulated. Afterwards, at 210 kN
load level, the crack pattern on the right was observed. It
shows how the position of the critical shear crack chan-
ged from its original position, which crosses the

compressive strut, to its final position being under the
strut. The over-rotation of the crack pattern, on the right,
enables the possibility of having an alternative shear
force transfer mechanism through the compression strut,
thus, increases the load bearing capacity.

Figure 5 compares the predicted crack pattern at
174 kN from Figure 4 to the experimentally observed
crack pattern at failure.25 For completeness, the crack
pattern predicted with strategy F9 is also presented. It
shows that the initial prediction of the critical crack was

TABLE 4 19 solution strategies

Concrete
model

Kinematic Equilibrium conditions

Element
size

Reinforcement
model

Bond
Interface

Max.
it.

Convergence norms and
tolerances

F1 Fixed h/20 Embedded truss Fully bonded 40 E: 10�4 OR F: 10�2

F2 Fixed h/20 Beam element Shima 40 E: 10�4 OR F: 10�2

F3 Fixed h/20 Beam element Shima 40 E: 10�3 OR F: 10�2

F4 Fixed h/20 Beam element fib MC2010 40 E: 10�4 OR F: 10�2

F5 Fixed h/30 Beam element Shima 40 E: 10�4 OR F: 10�2

F6 Fixed h/20 Beam element Shima 40 E: 10�2 OR F: 0.1

F7 Fixed h/40 Beam element Shima 40 E: 10�4 OR F: 10�2

F8 Fixed h/20 Beam element Shima 100 E: 10�4 AND F: 10�2

F9 Fixed h/20 Beam element fib MC2010 100 E: 10�4 OR F: 10�2

F10 Fixed h/20 Truss element fib MC2010 100 E: 10�4 OR F: 10�2

R1 Rotating h/20 Embedded truss Fully bonded 40 E: 10�4 OR F: 10�2

R2 Rotating h/20 Beam element Shima 40 E: 10�4 OR F: 10�2

R3 Rotating h/20 Beam element Shima 40 E: 10�3 OR F: 10�2

R4 Rotating h/20 Beam element fib MC2010 40 E: 10�4 OR F: 10�2

R5 Rotating h/10 Beam element Shima 40 E: 10�4 OR F: 10�2

R6 Rotating h/30 Beam element Shima 40 E: 10�4 OR F: 10�2

R7 Rotating h/20 Beam element Shima 100 E: 10�4 AND F: 10�2

R8 Rotating h/20 Beam element fib MC2010 100 E: 10�4 OR F: 10�2

R9 Rotating h/20 Truss element fib MC2010 100 E: 10�4 OR F: 10�2

TABLE 5 Experimental and NLFEA failure modes for rotating crack strategy R8 and fixed crack strategy F9. The well-predicted failure

modes have been set in bold

Solution
strategy

Experimentally observed
failure mode

NLFEA failure mode

Correct
(%)

Shear
compression

Flexural
shear Bending

Stirrup
failure

R8 Compression shear 27 0 0 0 100

Flexural shear 24 8 0 0 25

Bending 8 0 32 2 76

F9 Compression shear 19 0 0 8 70

Flexural shear 0 32 0 0 100

Bending 4 11 14 13 33

Note: “Stirrup failure” is not a category in experimentally observed failure modes.
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correct in both strategies. Figure 6 monitors the simu-
lated crack opening in the element marked in Figure 4.
After an instantaneous increase of the crack opening at
174 kN, the sustained load decreased after which the
crack closed, and load increased again.

In the case of the rotating crack strategy R8, this type
of behavior was observed in most models of beams with-
out shear reinforcement. After opening of the flexural
shear crack, rotation of the cracks accommodated an
alternative equilibrium state leading to a shear compres-
sion failure at a substantially higher load level. For 24 of
the 32 cases, Table 5, the models all developed a flexural
shear crack, after which the formation of a strut was
observed until a compression shear failure was found.
Convergence behavior indicated problems around the
steps where the equilibrium state changed, after which
the steps converged as before. In the other eight cases,
the opening of the critical crack led to numerical diver-
gence and forced the analysis to terminate.

Second, the 13 wrongly predicted failure modes for
the fixed crack strategy F9, Table 4, can all be exemplified
by the predicted results of test B321 from Rashid &
Mansur.24 The fixed crack models of beams with stirrups
all showed premature stirrup- or shear failure. As soon as
diagonal cracks were formed, fixed in direction and
quickly losing capacity due to the conservative shear
retention model, the stirrups could not be utilized fully,
resulting in a stirrup failure before the full shear or flex-
ural failure could be reached. This is illustrated in Fig-
ures 7 and 8. Figure 8 shows that the load resistance is
substantially under-predicted by the fixed crack solution
strategy F9. Figure 7 illustrates the premature stirrup fail-
ure, which is exemplary for all investigated fixed crack
solution strategies, indicating that beams with stirrups
could better be modeled with rotating crack models. In
Table 5, this behavior has been classified as “stirrup fail-
ure”, because the main cause of the observed failure was
just that. This specific failure mode was not reported by
the experiments as it is a spurious numerical behavior. It
is noted that better results for the beams with stirrups
could also have been obtained by applying a less conser-
vative shear retention model to the constitutive model for
beams with shear reinforcement, thus increasing the
shear capacity of the cracked concrete and preventing the
premature failure modes from occurring. This was not in
the scope of the present study.

5 | QUANTIFICATION OF MODEL
UNCERTAINTIES FOR THE LOAD
RESISTANCE

This study set out to provide estimates of the statistical
properties of the modeling uncertainties and identify the
uncertainty for different solution strategies. To that
extend a total of 1919 instances of the modeling uncer-
tainty were recorded, 101 for each of the 19 different
solution strategies. The distribution parameters of the

FIGURE 3 Force displacement behavior of test B702A1,

without stirrups, for rotating crack solution strategy R8, solid line

and the fixed crack solution strategy F9, dashed line. The

experimental behavior from Yang & Koekoek25 is shown as a thick

solid line

FIGURE 4 Predicted crack pattern for B702A1, without stirrups, with rotating crack solution strategy R8 at 174 kN (at “failure”, left)
and at 210 kN (false and “over-rotated”, right). A single crack orientation is shown per finite element
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within-model uncertainty for each solution strategy were
determined, as in Engen et al.12 In addition, as the previ-
ous section revealed issues with predicting the right fail-
ure modes for beams with shear reinforcements for
rotating crack approaches and for beams without shear
reinforcement for fixed crack approaches, a division was
made in the population of benchmarks, also considering
beams with and without shear reinforcement separately.

Table 6 shows the resulting distribution parameters
for all the 101 beams as a single data set as well as the
results for the 57 benchmarks with and 44 without shear
reinforcement as separate data sets. As discussed in the
previous section, rotating crack models could predict an
alternative equilibrium state, resulting in wrongly
predicted failure modes. For this reason, solution strategy
R8* was added, which uses the NLFEA results of strategy
R8, but for benchmarks expected to experience a flexural
shear failure, the failure load was no longer taken to be
the maximal sustained load, but the load at moment
where the flexural shear crack opened as identified in
Figure 3. This makes strategy R8* as the only solution
strategy which includes an explicit manual interpretation
of results.

The mean values, μθ, indicate that all solution strate-
gies are to some extend biased, ranging from the non-
conservative value 0.893 when rotating crack solution
strategy R6 is used for beams without stirrups to the con-
servative value 1.322 when fixed crack solution strategy
F1 is used for beams with stirrups. The reason for the
conservative results of fixed crack models was already
discussed in the previous section. In all cases, the mean
values are considered as acceptable, especially since they
are accompanied with explanations based on the
predicted failure modes. Since a known bias can be easily
accommodated in any safety format, the focus of our dis-
cussion on the results in Table 6 is now moved to the
coefficients of variation, Vθ.

If a single solution strategy for both beams with and
without stirrups has to be recommended, the added solu-
tion strategy R8* clearly outperforms all other solution
strategies with a coefficient of variation as low as 0.118
for the total data set. If a solution strategy for beams with
stirrups is sought, notably all the rotating crack strategies
perform better than the fixed crack strategies. And
finally, if a solution strategy for beams without stirrups is
sought, the fixed crack models in general perform better
than the rotating models. For this division of beams with-
out stirrups, the relevance of carefully interpreting the
failure mode, when using rotating crack models, is
clearly demonstrated from the result of strategy R8*.
Only in case of strategy R8* the coefficient of variation
reaches the relatively low value of 0.141.

Upon closer inspection of Table 6, the influence of
finer meshes and tighter convergence criteria can be ana-
lyzed. Comparing strategies F2, F5, and F7, with, respec-
tively, 20, 30, and 40 elements over the height, shows
that the fixed crack model was somewhat mesh-sensitive,
where a finer mesh resulted in higher resistance predic-
tions, especially for deep beams. Comparing strategies F3
and F6 shows the relevance of the convergence criterion.
The price of using a loose convergence criterion, as in
strategy F6, is a relatively high coefficient of variation
of 0.235.

FIGURE 6 Crack opening (and closure) in the element

marked in Figure 4 for rotating crack strategy R8. The force on the

y-axis is the load on the beam, used to indicate the progression of

the analysis

FIGURE 5 Experimental result B702A1, without stirrups,25 with the simulated crack pattern (overlay) for rotating cracks strategy R8

(left) at 174 kN and fixed crack strategy F9 (right) at 171 kN
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The bond slip models influenced the results in the fol-
lowing manner. For the beams without stirrups, the best
results were found for solution strategy F9, using the fib
MC2010 bond slip model. For solution strategy F8, in
which using the Shima bond slip model is the only differ-
ence, both the bias and the coefficient of variation were
found to be larger. With 40 iterations per step, solution
strategies F1 (fully bonded), F2 (Shima bond slip model),
and F4 (fib MC2010 bond slip model), the difference
between the Shima model and fully bonded was less pro-
nounced and the fib MC2010 bond slip model resulted in
substantially better results for beams without shear rein-
forcements. The Vθ of 1.40 for strategy F1 is however the
highest coefficient of variation found within the family of
fixed F-strategies for beams without shear reinforcement.
For the rotating R-strategies for beams with shear rein-
forcement, the variation of the bond slip model did not
result in remarkable differences in the coefficients of var-
iation. It can be concluded that the modeled failure
mechanisms in beams without shear reinforcement are
sensitive to the bond slip model, while those of beams
containing stirrups are not. This can be attributed to the
different physical mechanisms observed in beams with

and without stirrups. Bond slip modeling improves the
crack pattern, crack spacing and the predicted crack
openings. The flexural shear mechanism in beams with-
out stirrups heavily depends on the opening and location
of the critical crack, and thus modeling of bond-slip pays
off. In beams with stirrups the ultimate limit state is
governed by crushing of the compression struts and yield-
ing of the stirrups rather than cracking. Consequently, a
detailed prediction of crack locations using bond-slip
models is less relevant for beams with stirrups.

FIGURE 8 Force-displacement characteristic of beam B321

from Rashid & Mansur,24 experimental results (solid line) and

NLFEA results of the rotating (R8) and fixed (F9) crack solution

strategies

TABLE 6 Modeling uncertainty distribution parameters, mean

(μθ) and coefficient of variation for (Vθ) for 19 + 1 solution

strategies, considering all beams, beams with stirrups, and beams

without stirrups

All beams (101) Stirrups (57) No stirrups (44)

μθ Vθ μθ Vθ μθ Vθ

F1 1.196 0.198 1.322 0.170 1.034 0.140

F2 1.155 0.170 1.268 0.176 1.011 0.137

F3 1.136 0.140 1.265 0.177 0.969 0.130

F4 1.170 0.186 1.277 0.177 1.031 0.124

F5 1.112 0.202 1.245 0.163 0.94 0.123

F6 1.118 0.235 1.269 0.198 0.923 0.141

F7 1.096 0.218 1.239 0.173 0.911 0.131

F8 1.197 0.184 1.290 0.185 1.078 0.132

F9 1.177 0.173 1.268 0.177 1.061 0.110

F10 1.195 0.174 1.281 0.169 1.084 0.137

R1 1.105 0.215 1.078 0.091 1.143 0.319

R2 1.014 0.175 1.076 0.090 0.932 0.216

R3 0.998 0.174 1.070 0.109 0.903 0.192

R4 1.031 0.184 1.085 0.104 0.961 0.234

R5 1.025 0.182 1.083 0.092 0.949 0.233

R6 0.997 0.184 1.077 0.096 0.893 0.208

R7 1.023 0.184 1.082 0.109 0.946 0.227

R8 1.023 0.181 1.082 0.097 0.945 0.228

R9 1.052 0.152 1.096 0.105 0.996 0.185

R8* 1.075 0.118 1.082 0.097 1.071 0.141

FIGURE 7 Simulated crack patterns at failure for beam B321, with stirrups, from Rashid & Mansur,24 for fixed crack solution strategy

F9 (left) and rotating crack solution strategy R8 (right). The values and colors indicate crack strains perpendicular to the crack orientations.

These are averaged strain values per finite element
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Families of solution strategies can be distinguished
based on their most important features; the choice of the
crack model is a clear example of this. Solution strategies

may be termed robust in case the results are only slightly
sensitive to variations of parameters that are secondary in
the solution strategy. In this study we consider the kine-
matic and equilibrium settings as secondary parameters.
Table 6 shows that the family of fixed crack strategies for
beams without stirrups is robust, with little variation of
the obtained coefficients of variation. The same holds
true for the family of rotating crack strategies for beams
with stirrups. Figure 9 presents this graphically via
boxplots. The boxplot “All data” is generated as follows.
For each beam the 19 solution strategies lead to 19 model-
ing uncertainties θ, of which the standard deviation of
ln(θ) is calculated. The boxplot shows the distribution of
these standard deviations considering all beams. The
other boxplots are generated in a similar way, consider-
ing only fixed or rotating crack models, combined with
considering only beams without or with stirrups. Figure 9
underlines the robustness of rotating crack models for
beams with stirrups and shows that selecting solutions
strategies for beams without stirrups should be done
with care.

To study the statistical distribution of the modeling
uncertainty, Figure 10 shows the frequency distribution
of all 1919 analyses with its log-normal fit. Most safety
formats make use of the assumption that the modeling
uncertainty follows a log-normal distribution. Because of
the lack of large sample sizes, this assumption has never
been thoroughly checked. In this study, because of the
large amount of samples, we may verify the assumption
making use of the Shapiro–Wilkes test. On these 1919
values of ln(θi) the Shapiro–Wilkes test rejected the H0

hypothesis of a log-normal distribution, using a p value
<0.05, see Table 7. Also, when using the results of solu-
tions strategies R8 and F9 separately, the Shapiro–Wilkes
test on these subsets rejected the hypothesis. However,
the hypothesis of a log-normal distribution could not be
rejected in case of solution strategy R8* for all beams, or
when using strategy F9 solely for the beams without stir-
rups, or when using strategy R8 solely for the beams with
stirrups. This supports the findings on correctly modeling
the failure modes for these solutions strategies, see
Section 4.

FIGURE 9 Boxplots showing the distribution of standard

deviations “s” of the obtained model uncertainties obtained with

19 different solution strategies for each of the 101 benchmarks (top

row) or considering only the solution strategies with fixed (F) and

rotating crack (R) models for the benchmarks without and with

stirrups (rows 2–5). The circle marks in the plots denote statistical

outliers

FIGURE 10 Normalized frequency distribution of recorded

modeling uncertainty with log-normal fit using the total data set of

1919 analyses

TABLE 7 Shapiro–Wilk tests on

log-normality of the obtained model

uncertainties, for all beams versus all

solutions strategies (top row),

considering specific solution strategies

(rows 3–5) and in addition

distinguishing between beams with and

without stirrups (rows 6 and 7)

Subset Results Test statistic p value H0

All beams—all strategies 1919 W(1918) = 0.993 0.000 Rejected

All beams—F9 101 W(100) = 0.952 0.0013 Rejected

All beams—R8 101 W(100) = 0.953 0.0098 Rejected

All beams—R8* 101 W(100) = 0.990 0.66 Not rejected

No stirrups—F9 44 W(43) = 0.984 0.82 Not rejected

Stirrups—R8 57 W(56) = 0.985 0.71 Not rejected

Note: The number in parenthesis after the test statistic W denotes the sample size.
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Finally, Figure 11 relates the found instances of the
ductility index and modeling uncertainty for the two
strategies F9 and R8*. This ductility index was proposed
by Engen et al.12 and is computed as a by-product of
every NLFEA. Defined as the ratio of the plastic dissipa-
tion of the reinforcement to the plastic dissipation of the
system, at failure, the ductility index, takes values
between 0 and 1, and indicates to which degree the fail-
ure mode is governed by the ductile reinforcements. The
figure shows a higher uncertainty for a ductility index,
Xductility, lower than 0.6. This supports the observation
made in Engen et al.12 For practical NLFEAs, where the
identification of the failure modes can be more difficult,
the output of the ductility index can thus be helpful when
interpreting the results.

6 | CONCLUSIONS

Nineteen NLFEA solution strategies were benchmarked
against a wide variety of 101 experiments on reinforced
and prestressed concrete beams, with and without stir-
rups, failing in bending, flexural shear, or shear compres-
sion. The 1919 results were then used to investigate the
accuracy of the modeled failure behavior and the resis-
tance modeling uncertainty. The former was judged upon
in a qualitative sense, discussing type and brittleness or
ductility of the failure modes, while the latter was treated
quantitatively, with means and coefficients of variations
for ultimate loads computed.

The 19 solution strategies differ on three aspects, clas-
sified according to concrete constitutive modeling

choices, kinematic modeling choices and equilibrium
modeling choices. It was noted that although the solu-
tions strategies were presented as software independent,
a particular strategy may not be transferred one-to-one
when switching to another software code; this was not
further investigated and Diana36 was used for all ana-
lyses. The emphasis in the current article was on the
great importance of end-user decisions when making a
model with a selected software.

The constitutive modeling choices for the concrete
appeared as major, in particular the choice for a fixed or
a rotating smeared crack/crush model, both being popu-
lar models among RC practitioners. One may argue that
the fixed crack model is in general a superior solution
strategy for both types of beams, with and without shear
reinforcement, since the rotating crack model does not
consider additional action, such as an explicit shear resis-
tance of cracked concrete. On the other hand, it can be
argued that the performance of a fixed crack model will
depend heavily on the specific shear retention model
adopted and the associated risk of over-estimating the
load capacity. Selecting a suitable shear retention model
was not part of this study. The results shown in this arti-
cle reveal that for the benchmarks with shear reinforce-
ment the rotating crack models were found to be
superior, while fixed crack models performed better for
the benchmarks without shear reinforcement. For beams
with shear reinforcement, rotating crack models properly
accommodate the rotation of compression struts and sub-
sequent redistribution and reserve, while fixed crack
models do not accommodate that and may lead to prema-
ture failure of stirrups. For beams without shear rein-
forcement it is the other way around; here, the failure is
governed by a sudden brittle crack, properly captured by
fixed crack models, while rotating crack models then
falsely allow for over-rotation of cracks and struts, build-
ing up too much capacity and overestimating the failure
load. This calls for modeling choices that are tailored to
certain structural types, in this case structures with and
without stirrups. These aspects were demonstrated to be
in line with the quantitative uncertainty statistics, reveal-
ing means much closer to the experimental values and
variations much smaller once tailoring was adopted as
compared to the entire pool of solution strategies. It was
furthermore demonstrated that the unwanted effect of
the rotating crack model for beams without stirrups
could be mitigated by carefully postprocessing the results
in terms of manually identifying a “critical event” associ-
ated with brittle failure.

The kinematic and equilibrium modeling choices
appeared to be secondary for the benchmarks considered.
Kinematic assumptions like the inclusion of bond-slip

FIGURE 11 Modeling uncertainty versus ductility index for

fixed crack solution strategy F9 (in blue) and rotating crack

solution strategy R8* (in black). A square denotes that a brittle

behavior was observed by interpreting the NLFEA results; a

triangle denotes that a ductile behavior was simulated
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with the fib MC2010 bond slip model did improve espe-
cially the fixed crack model predictions for beams with-
out stirrups, because of more accurate representation of
the crack pattern. Mesh fineness did not have a major
effect, probably because the softening curves for tension
and compression were regularized against the element
dimensions. Equilibrium assumptions like the choice of
convergence norms and maximum number of iterations
per load step appeared to affect the results, but again not
to a similar extent as the rotating/fixed constitutive
assumptions. In general, stricter norms and a larger num-
ber of maximum equilibrium iterations help to identify
the proper failure modes and loads, as demonstrated by
the summary table of uncertainty statistics (Table 6).
However, the use of small steps and an arc-length proce-
dure for tracing postpeak load paths, as adopted in all
solution strategies herein, is of equal importance.

It was shown that specifically for the optimal rotating
crack solution strategy (R8) for the subset of beams with
stirrups, and for the optimal fixed crack solution strategy
(F9) for the subset of beams without stirrups a Shapiro–
Wilkes test did not reject the hypothesis that modeling
uncertainty is a log-normally distributed random vari-
able. The same held for the adjusted solution strategy of
rotating cracks with manual identification of critical fail-
ure (R8*) for all beams. In other cases, this hypothesis
was rejected.

It was confirmed that there is a relevant link between
the model-uncertainty and the ductility index. This fol-
lows from the general observation that quasi-brittle shear
behavior, especially for beams without stirrups, is more
complex and therefore more sensitive to subtle choices in
the solution strategy.

All conclusions point to the same direction. Beams
with stirrups are well modeled with rotating crack
models. These models are robust in the sense that the
results are hardly influenced by changes that are second-
ary in the solution strategy, like the bond-slip model, the
equilibrium conditions and the mesh size. Beams without
stirrups are well modeled with fixed crack models, but
require more attention.

The outlook is that the estimates of the statistical
properties of the modeling uncertainties could serve as a
basis within safety formats. Often, multiple modeling
approaches are compared on a single benchmark
(in Round-Robin tests), or a single modeling approach is
compared for multiple benchmarks, but the systematic
study of multiple modeling approaches (in this case 19)
on multiple benchmarks (in this case 101) is thought to
help further improve the reliability of NLFEA, optionally
with tailored subfamilies of approaches for specific struc-
tural classes, covering both between-model and within-
model uncertainties.
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