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This paper discusses Verification and Validation for CFD applications. It emphasizes the differ-
ences between the mathematical problem of “solving the equations right” (Verification) and the sci-
ence/engineering activity of “solving the right equations” (Validation). A clear distinction is made between
Code Verification (error evaluation) and Solution Verification (error estimation) and procedures based on
grid refinement studies are presented and discussed for both activities. The paper presents examples of
Code Verification for Reynolds-Averaged Navier–Stokes solvers using the Method of the Manufactured
Solutions; Solution Verification exercises including the KVLCC2 tanker at model and full scale Reynolds
number and two examples of the application of the ASME V&V 20 Validation procedure. This paper is
written to stimulate a conscientious approach to CFD in marine applications.
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1. Introduction

Since the 1960s the role of Computational Fluid Dynamics (CFD) in marine hy-
drodynamics has been gaining importance continuously. Starting with inviscid flow
models, we have passed from solving boundary-layer equations to RANS equations
and in these days recourse is sometimes taken to Detached Eddy Simulation (DES)
or Large Eddy Simulation (LES). This is reflected in the papers submitted to this se-
ries of conferences, confirming that CFD has undeniably conquered a solid position,
next to experimental work.

Since none of the mathematical models mentioned lend themselves to analytical
solution, numerical techniques are needed. Algorithms of various kind have been
developed and improved significantly in the course of time. Important here is to rec-
ognize that in CFD there is next to a mathematical model (equations plus boundary
conditions) always a numerical method to solve the model.

The attentive reader may see a parallel with experimental fluid dynamics (EFD).
There the test facility and the (usually scaled) test object form the physical model,
while instrumentation and test procedures are needed for data acquisition.
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In EFD, uncertainty quantification became a mandatory issue [17] with procedures
acknowledging the distinction between the measuring instruments and the physical
modelling [20]. But if an experimentalist is supposed to be concerned with the accu-
racy of his measurements, can a CFD practitioner stay behind and produce numbers
without caring about quality and uncertainties?

The problems to be handled by CFD have a huge variety and cover a wide range
of complexity. With the growing capabilities of hardware and numerical techniques
the manageable complexity increases. Problems which were out of reach a couple
of years ago can now be taken up. But, as observed by Roache [34], the trend is
still that CFD practitioners (particularly in the academic world) focus on qualitative
simulation of the next more difficult problem, more than aiming for quantitative ac-
curacy of the previous, somewhat simpler problem. This paper is written to stimulate
a conscientious approach.

There are good reasons to take quality of numerical simulations seriously. Some
scientific journals have a publication policy saying that papers are accepted only
if due consideration is given to numerical (or experimental) uncertainty [18,19].
Moreover, in commercial CFD applications some kind of quality assessment may
be demanded. Additional arguments to pursue quality assessment come from the en-
gineering world. After all, if decisions in design optimisation are partly or solely(!)
based on CFD, one must have an idea of the uncertainty of the results in order not to
run the risk of being misled.

The question is now: how can quality assessment for CFD be accomplished? The
answer to this question can only be provided through “Verification and Validation”,
i.e. making a clear distinction between the deficiencies of the mathematical model
(Validation) and the numerical errors of the techniques used to solve the selected
model (Verification) (N.B. although the words verification and validation are prac-
tically synonyms, in the present context they are by agreement distinct technical
concepts; in an attempt to avoid misunderstanding we indicate that these technical
concepts are meant rather than the general “dictionary meaning” of the words by
writing them with capitals, following Roache [34,36]). As elegantly described by
Boehm [3] and Blottner [2], Verification checks if we are “solving the equations
right”, whereas Validation deals with “solving the right equations”.

Verification is a purely mathematical/numerical exercise that aims at quantifying
the numerical error/uncertainty (the distinction between both will be given below).
Therefore, it does not require the knowledge of any experimental data, but it may
require exact solutions of the selected mathematical model. On the other hand, Val-
idation intends to determine how well the mathematical model represents the phys-
ical world; it requires measures of the physical world (experimental data) and of
the mathematical model (CFD simulation) that naturally should correspond to the
same set-up. Since both these quantities are not exact, a proper Validation exercise
requires the knowledge of the experimental and numerical uncertainties. Therefore,
Verification must precede Validation.
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A CFD code (or any code that performs numerical flow simulation) contains a
discretised version of a set of continuum partial differential equations which can be
solved in a selected domain with suitable boundary conditions. With regard to Ver-
ification there are two different problems that must be addressed: the correctness of
the implementation of the model in the code (no bugs); the acceptability of the esti-
mated error/uncertainty of a given application. Verification consists therefore of two
separate actions: Code Verification and Solution Verification. The first one requires
error evaluation and so the exact solution must be known, whereas the latter aims
at estimating the error/uncertainty of a numerical solution for which the exact solu-
tion is usually unknown. It is also important to point out that Code Verification is
done once and it does not need to be repeated if the code remains unchanged. On
the other hand, Solution Verification is an ongoing activity that should preferably be
performed for every application of the code.

In order to illustrate the significant differences between Verification and Validation
and the meaning of “validated”, we present two examples:

(1) Suppose we try to compute the wake field in the propeller plane of a single-
screw ship with a potential-flow code, i.e. the Laplace equation for a velocity
potential is our mathematical model. The Verification process could then be
completed with success by showing that the results converge with the correct
order (usually second order) upon grid refinement and the uncertainty of the
fine grid solution is marginal. The Validation exercise would show however that
the potential-flow model is inadequate for the wake prediction. In short: very
accurate results (correct numerical solution), but with serious modelling errors
(wrong mathematical model). (This example can also serve as an illustration of
the distinction between accuracy and reliability.)

(2) By coincidence (error cancelling) one might have a numerical solution with
perfect agreement in a specific aspect of an experimental result, possibly ob-
tained by calibration of one or more free parameters in the mathematical model
(turbulence model, boundary condition, fluid properties, . . . ) or in the numer-
ical solution (grid density, discretisation coefficients, . . . ). The proud conclu-
sion could be that the results are validated. True as that conclusion may be,
“validated” means here nothing else than that the exercise did not produce any
evidence that the computational model used is unsuitable for the present flow
problem. But it says nothing about the quality of the numerical result until in
addition the uncertainty bands of both experiment and simulation have been
found to be sufficiently small.

In the remaining sections of this paper, we present an overview of our experience
in Code and Solution Verification from the last 13 years, which is primarily (but not
exclusively) related with the Reynolds-averaged Navier–Stokes (RANS) equations
as a mathematical flow model. Validation is also addressed, but in that case we will
only discuss the procedure proposed in the ASME V&V20 report [1], which is not
the only available in the open literature (see for example [37,38]).
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2. Error classification

2.1. Error versus uncertainty

In the distinction between errors and uncertainties, we follow the classification
given by Roache in [34]: an error is defined as the difference between a given solution
and its “true/exact” value. It has a sign and it requires the knowledge of the “truth”.
As we will discuss below, the “truth” depends on which type of error we want to
evaluate. An uncertainty defines an interval that should contain the “true/exact” value
with a certain degree of confidence. It is defined with a ± sign, i.e. it signifies an error
band for the numerical result so that the true solution can be expected to be within
that error band (usually with 95% confidence). In the present paper we will estimate
uncertainties as the error estimator multiplied by a factor of safety [34].

2.2. Modelling errors

Physical modelling errors are a consequence of the representation of the physical
world by a mathematical model. Their detection and quantification is the goal of
Validation.

Physical modelling errors are not only related to the set of equations chosen but
also to the selected domain and to the boundary conditions. Calculations are carried
out in a domain of finite size and exact boundary conditions are not always available.
For instance, if “far-field” boundary conditions are applied while the computation
domain is so small that at the borders the “far-field” has not been reached a modelling
error in the boundary conditions appears.

2.3. Programming errors

The discretisation of the selected set of partial differential equations and the pro-
cedure to solve the resulting equations numerically is incorporated into a computer
code. Programming errors (bugs), often simple typos in the code, are likely to appear.
Code Verification aims at detecting and removing such type of errors.

2.4. Numerical errors

It is commonly accepted (see for example [34] or [32]) that there are three different
contributions to the numerical error:

• Round-off errors as a consequence of the finite precision of the computers.
• Iterative errors that stem from the non-linearity of the mathematical equations

solved by CFD.
• Discretisation errors which are a consequence of the approximations made

(finite-differences, finite-volume, finite-elements, . . . ) to transform the partial
differential equations of the continuum formulation into a system of algebraic
equations.
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2.4.1. Round-off errors
The reduction of the round-off error is related to the number of digits available and

to the numerical procedure applied to obtain the solution. For smooth solutions, the
use of double-precision is usually sufficient to obtain a negligible contribution of the
round-off error to the numerical error. However, there are ill-conditioned problems
where the round-off error may be the leading contribution to the numerical error.
A simple and relevant example for CFD is high-order three-dimensional polynomial
interpolation in grids with high aspect ratio cells, typical of viscous flow solutions.
The determination of the coefficients of a polynomial of order n leads to a matrix
with diagonal coefficients ranging from 1 to (Δx)n × (Δy)n × (Δz)n. High aspect-
ratio cells combined with large values of n lead to severe round-off error problems.

It is interesting to observe that the “truth” for the determination of the round-off
error is never available because it would require a machine with infinite precision.
However, a simple comparison between solutions obtained with different precision
(simple and double or double and quadruple) is usually sufficient to assess the influ-
ence of the round-off error.

Obviously, even in smooth solutions, there is a limit to the amount of grid refine-
ment imposed by the round-off error.

2.4.2. Iterative errors
The iterative error is related to the non-linearity of the system of partial differential

equations solved in CFD. However, in a CFD code for the solution of the RANS
equations there are several sources of non-linearity:

• The convective terms. The usual linearisation procedures are Picard or Newton
methods, see for example [21], which imply an iterative solution.

• Deferred corrections in the discretisation schemes of the continuity and mo-
mentum equations. The velocity derivatives of the convective terms are often
discretised with high-order schemes, but with implicit first-order approxima-
tions and explicit higher order contributions.

• The turbulence closure. For example, one and two-equation eddy-viscosity
models have non-linear convective terms and non-linear production and dissi-
pation terms. Also, the turbulence model equations are often solved segregated
from the continuity and momentum equations.

Furthermore, the linear system of algebraic equations obtained from the discreti-
sation of the linearised partial differential equations is rarely solved with a direct
method. Therefore, the solution process includes an extra iterative cycle originating
from the way in which the linear systems of equations is solved. In most flow solvers,
no clear distinction is made between the various iterative cycles.

In principle, the iterative error may be decreased as far as the machine accuracy
(round-off error) permits. However, in complex turbulent flows it is not guaranteed
that one achieves that level of convergence. Furthermore, the c.p.u. time required to
attain such level of iterative error may be significantly higher than that required for
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achieving an “acceptable” level of the iterative error. For this reason it is unusual in
industrial applications of CFD to converge to machine accuracy, which brings up the
need to develop reliable techniques for estimating the iterative error.

In [6,9], we have shown that the iterative error is usually much larger than any
norm of the normalised residuals or changes in the last iteration performed. Further-
more, the iterative error should be two to three orders of magnitude smaller than the
discretisation error to have a negligible influence on the estimation of the numerical
error. This means that the contribution of the iterative error to the numerical error is
often incorrectly ignored or underestimated.

It is also important to point out that the determination of the iterative error of a
given numerical solution does not require the knowledge of the exact solution. The
“truth” for this type of numerical error can be approximately determined (to the level
of the round-off error) by converging the numerical solution to machine accuracy.

2.4.3. Discretisation errors
The discretisation error is usually the main contributor to the numerical error of a

CFD solution. Its determination requires the knowledge of the exact solution and so
in many practical applications we can only estimate it.

Although several techniques have been proposed in the open literature (see for
example [34]) to make such estimate, we shall here focus on what is currently the
most general and reliable technique: the use of systematically refined grids.

Unlike the other two sources of numerical error, the relative importance of the
discretisation error decreases with the grid refinement.

3. Discretisation error representation by power series expansions

One the most common approaches to describe the behaviour of the discretisation
error with grid refinement studies is the use of power series expansions [34]. The
basic equation to estimate the discretisation error εφ of a variable φ is:

εφ � δRE = φi − φo = αhpi , (1)

φi stands for any integral or other functional of a local flow quantity, φo is the esti-
mate of the exact solution, α is a constant to be determined, hi is the typical cell size
of grid i and p is the observed order of accuracy.

Equation (1) can actually be used for the description of the error of any flow quan-
tity, e(φ) = φ−φexact, as a function of the typical cell size. In that case, e(φo) should
be equal to zero and the observed order of accuracy should match the theoretical
order of the discretisation. Furthermore, if the error for cell size zero is negligible,
the variation of the discretisation error with the typical cell size in logarithmic scales
is a straight line.

log
(
e(φ)

)
� p log(hi) + log(α). (2)



L. Eça and M. Hoekstra / Verification and validation for marine applications of CFD 113

Therefore, Eq. (1) can actually be used for Code Verification (error evaluation)
and Solution Verification (error estimation). However, the goals of the two exercises
are different: showing that e(φo) � 0 (i.e. of the order of the round-off error) and (if
possible) that p is equal to the theoretical order of the method for Code Verification
and obtaining δRE for Solution Verification.

The use of power series expansions to estimate discretisation errors relies on two
simple requirements: the data are obtained in sufficiently refined grids to guarantee
that the first term of the power series expansion is dominant, i.e. the data are in the
“asymptotic range”; the grid refinement ratio is constant for the complete computa-
tional domain, in order to allow a single parameter (the typical cell size) to be defined
to characterize the level of grid refinement.

We address the latter requirement next and will come back to the first one in prac-
tical examples of Solution Verification.

3.1. Definition of the typical cell size

The typical cell size hi is a length measure, say the edge length of a representative
grid cell. In a set of geometrically similar grids the ratio of the typical cell sizes
of two grids of the set, hi/hj , is then uniform over the complete computational
domain [39].

In order to clarify this concept, we consider a simple one-dimensional example
where the “cell size” is just the distance between grids nodes. A geometrically similar
grid set is obtained when the non-dimensional distance between grid nodes

s =
x− xmin

xmax − xmin

is uniquely defined as a function of a parametric coordinate defined by

ξ =
i− 1
Nx − 1

, (3)

where i is the node counter and Nx is the number of grid nodes. This means that all
grids of a given set must respect the same function s = f (ξ). As discussed in [39],
this definition of geometrically similar grids can be easily extended to two and three
dimensions by generalizing the one to one invertible mapping between the physical
domain (x) and the parametric space (ξ) to two and three dimensions.

In geometrically similar grids, the grid refinement ratio (hi/h1) can be easily de-
fined by

hi
h1

=

(
(Ncells)1

(Ncells)i

)1/n

=

(
(Λ1)i
(Λ1)1

)1/n

=

(
(Λ2)i
(Λ2)1

)1/n

, (4)



114 L. Eça and M. Hoekstra / Verification and validation for marine applications of CFD

where n is the space dimension (1, 2 or 3) and Λ1 and Λ2 are the average and root
mean square of the cell size Λ (length, area or volume)

Λ1 =

∑Ncells
i=1 Λi

Ncells
and Λ2 =

√∑Ncells
i=1 Λ2

i

Ncells
.

3.2. A simple 1D example

Geometrical similarity is achievable in structured grids, but seems hard to recon-
cile with the concept of unstructured grids. Therefore, it is important to know what
are the consequences of using any of the definitions presented above in a grid set that
does not respect geometrical similarity. To this end, we present the solution of the
simple differential equation

d2φ

dx2 = aφ for 0 < x < 1 (5)

with the boundary conditions

φ(0) = 1,
(6)

φ(1) = 0.

The exact solution of the problem is given by

φexact = C1e−
√
ax + C2e

√
ax, (7)

where

C1 = − e
√
a

e−
√
a − e

√
a

,

(8)

C2 =
e−

√
a

e−
√
a − e

√
a
.

In this example we will use a = 5.
Equation (5) is discretised with second-order central-difference approximations

and the resulting linear system of equations is solved in double-precision with a
direct method. Therefore, this simple example has no iterative errors and the round-
off error is more than six orders of magnitude below the discretisation error.

Figure 1 presents the four stretching functions tested: equally-spaced (Equal), co-
sine distribution (Cos), two-sided stretching function proposed in [43] (Stret) and
distribution based on a geometrical progression for a fixed number of grid nodes
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Fig. 1. Stretching functions of grid sets for one-dimensional example. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/ISP-130083.)

(Gpf). For each distribution, we have generated a set of geometrically similar grids
(left plot) and a set of unsimilar grids (right plot) by disturbing the function s(ξ). All
sets have a coarsest grid of 5 elements and a finest grid of 320 elements.

The convergence of the L∞, L1 and L2 norms of the discretisation error are plot-
ted in Fig. 2 as a function of the grid refinement ratio hi/h1 (defined from Λ2). The
lines plotted in Fig. 2 were obtained with least squares fits to the data of the six finest
grids [4], which in this simple example are clearly in the “asymptotic range”. The re-
sults show that geometrically similar grids are required to obtain the correct order of
accuracy. However, all grids sets make a correct estimation of the error (the plots of
figure contain only straight lines). Therefore, strict geometrical similarity is essential
for obtaining the correct order of accuracy (second goal of Code Verification), but
not for estimating the error (goal of Solution Verification).

4. Code verification

Code Verification is a fundamental step in the development of any CFD code. Its
goal is to ensure that a given flow solver is correctly coded (no bugs). A typical
way to demonstrate code correctness is by showing that in a series of systematically
refined grids the discretisation error goes to zero. Furthermore, if the “asymptotic”
order of accuracy can be correctly assessed, it should match the theoretical order of
the method. This requires analytical solutions to allow the direct evaluation of the
discretisation error.

There are no analytical, realistic-flow solutions available for the RANS equa-
tions. Fortunately, this does not prohibit Code Verification of RANS solvers. The
Method of Manufactured Solutions (MMS) [24,33] provides an excellent framework
for Code Verification of any numerical method. In the MMS, a continuum solution is
first constructed, i.e. one specifies all unknowns (including any turbulence quantity
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Fig. 2. Norms of the discretisation error as a function of the grid refinement ratio for one-dimensional
example. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/ISP-130083.)

present in the turbulence model) by mathematical functions. In general, this con-
structed solution will not satisfy the governing equations (continuity, momentum
and transport equations for turbulence quantities) because of the arbitrary nature of
the choice. But by adding an appropriate source term, which removes any imbalance
caused by the choice of the continuum solution, the governing equations are forced
to become a model for the constructed solution.

In the MMS, the constructed solution need not have a physical meaning, since
Code Verification is a purely mathematical exercise. Essential is that all terms in the
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equations are activated (which in the end may require more than one MS). But we
have found that it is very hard to do Code Verification for a RANS method with the
turbulence model included in the trial if the MS has no resemblance with a near-wall
flow at all [13,14]. A turbulence model with all its embedded empiricism may react
in an awkward manner, so as to produce negative values for supposedly positive-
definite turbulence quantities (like the turbulence kinetic energy), to give activation
of limiters or damping functions where it is not desired, etc. All with catastrophic
effects on the Verification exercise.

Recently, we have developed a new set of MS’s for RANS solvers based on
eddy-viscosity models that mimics the near-wall behaviour of the turbulence quan-
tities [16]. The two main features of these MS’s is the “skin friction” coefficient at
the “wall” that follows a simple empirical formula for a flat plate turbulent boundary-
layer and the use of expressions available from “automatic wall functions” [31] com-
bined with an exponential decay in the outer region of the flow to determine the tur-
bulence quantities. The proposed MS’s have two and three-dimensional versions for
incompressible, statistically steady flows that combine a smooth “boundary-layer”
type flow with a perturbation flow that does not affect the shear-stress at the wall for
a Reynolds number Rn that can range from 107 to 109.

Figure 3 presents three two-dimensional examples of the MS’s proposed in [16],
where MS1 corresponds to the “boundary-layer” type flow. Although the horizontal
mean velocity profiles due not follow strictly the expected behaviour for a turbulence
flow, as illustrated in Fig. 4, there is a viscous sub-layer and there is some resem-
blance with the log-law. Figure 5 presents the typical turbulence kinetic energy k,
turbulence frequency ω and eddy-viscosity νt manufactured profiles for MS1. An al-
ternative MS (MS1A) based on the approach followed in [13] is also plotted in Fig. 5.
Although both MS’s exhibit ω tending to infinity at the bottom (as in a real turbulent
flow), in the “near-wall” region νt is much smaller in MS1A than in MS1. The pro-
files depicted in figures 4 and 5 use wall coordinates, i.e. u+ = ux/uτ , ν+t = νt/ν,
k+ = k/u2

τ and ω+ = ων/u2
τ as a function of y+ = uτy/ν, where y is the distance

to the wall, ν is the kinematic viscosity of the fluid and uτ is the friction velocity.
Figure 6 illustrates a typical Code Verification result obtained with two completely

different codes: PARNASSOS [22,41] and ReFRESCO [42]. PARNASSOS uses a
finite-difference discretisation of the RANS and continuity equations written in Con-
travariant form and a coupled solution procedure, i.e. continuity (in its original form)
and momentum equations are solved simultaneously. ReFRESCO uses a face-based
finite volume discretisation of the RANS equations (volumes of arbitrary shape) writ-
ten in strong conservation (divergence) form. The solution procedure is segregated
and the continuity is enforced indirectly with a SIMPLE based pressure-correction
method.

The calculations were performed in sets of 21 geometrically similar Cartesian
grids with one-sided stretching functions [43] applied in the vertical direction to
cluster grid nodes close to the bottom (the values of y+ at the first grid node away
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Fig. 3. Examples of two-dimensional manufactured solutions for incompressible flows. Rn = 107. (Colors
are visible in the online version of the article; http://dx.doi.org/10.3233/ISP-130083.)

Fig. 4. Horizontal mean velocity profiles in wall coordinates for MS1 at three different locations.
Rn = 107. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/ISP-130083.)

from the wall y+2 are given in Fig. 7, set A). The coarsest grid has 50 × 50 cells and
the finest 800 × 800 cells, covering a grid refinement ratio of 16.

The data plotted in Fig. 6 were obtained with negligible round-off and iterative
errors (at least four orders of magnitude below the discretisation error) and with the
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Fig. 5. Typical eddy-viscosity νt, turbulence kinetic energy k and turbulence frequency ω profiles in
wall coordinates for MS1 and MS1A. Rn = 107. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/ISP-130083.)

manufactured eddy-viscosity field acting as the turbulence model. The L∞ and L2
error norms of the horizontal velocity component ux show the expected behaviour
with a negligible extrapolated error to cell size zero (straight lines in the plots) and
an observed order of accuracy determined from the data obtained in the six finest
grids matching the theoretical order of the two codes.

The MMS framework also allows several important exercises to assess the con-
vergence properties of RANS solvers. As an example, Fig. 7 presents the stretching
functions applied to the vertical grid lines of six different grid sets that contain ex-
actly the same number of grid nodes. The maximum and minimum values of y+2 are
also plotted in Fig. 7. Sets B and C have larger values of y+2 than the other four sets
that exhibit y+2 < 1 for all grids with hi/h1 < 5.

The L∞ and L2 error norms of the horizontal velocity component ux obtained
in these six grid sets are plotted in Fig. 8 as a function of the grid refinement ratio.
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Fig. 6. L∞ and L2 norms of the error of the horizontal velocity component ux calculated with
PARNASSOS and ReFRESCO. Rn = 107. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/ISP-130083.)

Fig. 7. Stretching functions and y+2 for six different grid sets. MS1 with Rn = 107. (Colors are visible in
the online version of the article; http://dx.doi.org/10.3233/ISP-130083.)

The figure also contains the convergence of the friction resistance coefficient CF
of the bottom “wall” as a function of the grid refinement ratio. As for the previous
results, the eddy-viscosity is determined from the manufactured solution and so there
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Fig. 8. L∞ and L2 norms of the error of the horizontal velocity component ux and friction resistance
coefficient of the bottom wall calculated with PARNASSOS (empty symbols and solid lines) and Re-
FRESCO (filled symbols and dashed lines). MS1 with Rn = 107. (Colors are visible in the online version
of the article; http://dx.doi.org/10.3233/ISP-130083.)

is no influence of any turbulence quantities transport equations in the convergence
properties of the mean flow quantities. Nevertheless, there are several interesting
features in the data.
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As expected, the increase of y+2 (sets B and C) causes a deterioration of the con-
vergence properties of the two codes, but interestingly the results of PARNASSOS
increase to the correct value with the grid refinement whereas the data obtained
with ReFRESCO show the opposite trend. Therefore, a comparison between the
two codes for hi/h1 = 4 (a 200 × 200 cells grid) of sets B and C would suggest
a misleading difference between the two codes that vanishes with grid refinement.
The influence of y+2 is also visible in the convergence properties of the horizontal
velocity component ux. In particular, it is clear that for the L∞ norm of the error of
ux most of the data of set C is outside the “asymptotic range” for both codes.

Although the data obtained for sets A, D, E and F (similar y+2 ) exhibit much less
differences than those observed for sets B and C (largest y+2 ), it is clear that the
selected stretching function influences the error level of CF and ux (constant α in
Eq. (1)). In particular, set F leads to the largest grid dependency in CF of these four
sets for PARNASSOS and to the smallest with ReFRESCO, where the convergence
is not monotonic (CF increases for hi/h1 > 3.33 and it decreases for the finest
grids), but the changes in CF for the last six finest grids are smaller than 2 × 10−8.
Therefore, in this case, the observed order of accuracy of p = 1 is meaningless.

The next example is related to the one-equation model of Spalart & Allmaras [40],
for which we have a manufactured undamped eddy-viscosity ν̃ field [16] and the
forcing source term in the ν̃ transport equation. Figure 9 presents the convergence of
the horizontal velocity component ux and eddy-viscosity νt (which is similar to the
undamped eddy-viscosity ν̃) with the grid refinement. Results were obtained with
PARNASSOS and ReFRESCO in grid set A with three different options in the dis-
cretisation of the convective terms of the ν̃ transport equation: first-order upwind
(TM1) and the third-order quick scheme [29] with (TML) and without (TM3) lim-
iters.

The expected second-order convergence is observed for all TM3 solutions. In the
MS2, the use of first-order upwind in the convective terms of the ν̃ transport equa-
tions leads to first-order convergence for ux in both codes. On the other hand, for
the MS1 the effect in ux is smaller than in the MS2 with the order of ux dropping
to values close to 1.5. This is not a surprising result, because MS1 has the largest
gradients in the “near-wall” region which is essentially dominated by diffusion. On
the other hand, the effect of the use of limiters (TML) is significantly different in the
two codes: the results of ReFRESCO show an almost negligible effect of the limiters,
whereas the data obtained with PARNASSOS are shifting from the TM3 to the TM1
solution with grid refinement.

The last example to illustrate the potential of Code Verification is the calculation
of MS1 and MS1A with the turbulent/non-turbulent (TNT) version of the k–ω two-
equation model [25]. Figure 10 presents the L2 norm of the error of ux, νt, k and ωy2

as a function of the grid refinement. The figure contains a third plot that corresponds
to calculations of MS1 with a fixed eddy-viscosity (νt taken from the MS). As men-
tioned above ω tends to infinity at the “wall” (ω is specified at the first node/cell
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Fig. 9. L2 norms of the error of the horizontal velocity component ux and eddy-viscosity νt calculated
with PARNASSOS (empty symbols and solid lines) and ReFRESCO (filled symbols and dashed lines).
MS1 and MS2 with the Spalart & Allmaras model and Rn = 107. (Colors are visible in the online version
of the article; http://dx.doi.org/10.3233/ISP-130083.)

centre away from the “wall”) in both solutions and Fig. 10 contains therefore the
error of ωy2 that remains finite at the “wall”. All the results plotted in Fig. 10 were
obtained with TM3.

The results obtained with the two codes are very similar. The observed order of
accuracy of mean and turbulence flow quantities depends on the selected MS. All
flow quantities depicted in Fig. 10 exhibit p close to 1 for MS1, whereas p close to 2
is obtained for MS1A. The results obtained with fixed νt in MS1 show that k remains
with p close to 1, whereas the other two variables show p = 2. However, it is likely
that this result is a consequence of the singular behaviour of ω at the “wall”.

Code Verification is in essence a one-time exercise. It is to be reiterated only if
the code is modified. The MMS is a highly effective tool in Code Verification. It
can detect even small errors, which can go unobserved for a long time in normal
practice. With the examples given above we hope to have shown its power, but many
more examples could be given. Try it!
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Fig. 10. L2 norms of the error of the horizontal velocity component ux, eddy-viscosity νt, turbulence
kinetic energy k and turbulence frequency multiplied by distance to the “wall” squared ωy2 calculated
with PARNASSOS (empty symbols and solid lines) and ReFRESCO (filled symbols and dashed lines).
MS1 (with and without fixed νt) and MS1A with the TNT k–ω model and Rn = 107. (Colors are visible
in the online version of the article; http://dx.doi.org/10.3233/ISP-130083.)
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5. Solution verification

The goal of Solution Verification is to estimate the uncertainty of a given numer-
ical prediction Uφ (for which the exact solution is usually unknown), i.e. an interval
that contains the exact solution with 95% confidence,

φi − Uφ � φexact � φi + Uφ. (9)

Therefore, unlike Code Verification, it is supposed to be done for all (if possible)
numerical calculations.

As we mentioned above, the uncertainty is obtained from an error estimate times
a safety factor. During the last 12 years we have developed and tested a procedure
based on power series expansions and grid refinement studies to make reliable es-
timates of Uφ. A detailed description of the method is given in [11]. Here, we will
only highlight its main options.

Equation (1) is the basic equation to obtain the error estimate (δRE). However,
the calculation of δRE relies on the existence of a single parameter to characterize
the grid density (the typical cell size) and (monotonically convergent) data in the
“asymptotic range”, which are assumptions really hard (if not impossible) to comply
with in complex flows (turbulent flow) and complex geometries. The consequence
is that scatter appears in the data [4]. A main contributor to noisy data is the lack
of geometrical similarity of the grids [12]. While structured grids essentially allow
geometrical similarity to be obtained, this is hardly true for unstructured grids. Other
sources of scatter in the data are flux limiters, commonly used in the discretisation
of convective terms, as well as damping functions and switches being part of many
present-day turbulence models. Therefore, in complex flows it is an exception rather
than a rule that the conditions required for the reliable use of Eq. (1) are met.

In order to be able to deal with the shortcomings of “practical calculations”, we
have added three other error estimators (assuming that the CFD code is theoretically
second-order accurate):

εφ � δ1 = φi − φo = αhi, (10)

εφ � δ2 = φi − φo = αh2
i (11)

and

εφ � δ12 = φi − φo = α1hi + α2h
2
i . (12)

These three alternatives are only used if the estimation with Eq. (1) is impossible
or not reliable, i.e. the observed order of accuracy is either too small or too large
(p < 0.5∧p > 2). The first two options ((10) and (11)) are suitable for monotonically
converging solutions only whereas the latter can be used as well with non-monotonic
convergence.



126 L. Eça and M. Hoekstra / Verification and validation for marine applications of CFD

The error estimators presented above require three grids (using Eqs (1) and (12))
or two grids (using (10) and (11)) to estimate an error. But error estimation based on
three (or two) grids is not reliable for noisy data due to the extreme sensitivity of the
determination of p to small perturbations in the data [4] (the use of the alternative
error estimators depends on the estimated p). Therefore, it is virtually impossible
to decide whether or not a given set of data (with the minimum number of grids
required) is in the “asymptotic range” (in the presence of scatter, an observed order
of accuracy equal to the formal order of accuracy may be fortuitously obtained and is
not sufficient to label the data set as being in the “asymptotic range”). Furthermore,
a single grid triplet gives only one instance of p, because Eq. (1) has three unknowns.
Redundancy, and therefore the possibility of a quality check on the value of p, only
occurs when the fourth grid is added! Therefore it is highly recommendable to use at
least four grids when some scatter in the data is expected, i.e. for most engineering
flow problems.

When more than three grids are available, the error estimators defined by Eqs (1),
(10)–(12) may be solved in the least squares sense [11] to obtain an error estimation
and an observed order of accuracy in the case of Eq. (1). Furthermore, the least
squares approach also produces a measure of the quality of the error estimation: the
standard deviation of the fit, σ.

In many “practical applications” it is hard to avoid the use of grids that are coarser
than desirable. Therefore, we also perform weighted least squares fits to the error
estimators [11] being the selected option (weighted or non weighted) decided by σ.
Finally, to complete the “tools” required for the estimation of the uncertainty of a
flow quantity U (φ) we define a data range parameter as

Δφ =
(φi)max − (φi)min

ng − 1
, (13)

where ng stands for the number of grids available.
The proposed procedure starts by estimating the error from the four alternatives

available. The error estimation is considered reliable if the solution is monotonically
convergent with 0.5 < p < 2.11 and if σ < Δφ. Following the Grid Convergence
Index (GCI) procedure [34,36], the safety factor is chosen as Fs = 1.25 if the error
estimate is deemed reliable, else Fs = 3.

The determination of Uφ, usually for the finest grid (best) solution, but essen-
tially for any φi of a data set, is not only dependent on Fs. Different expressions are
adopted for “good” and “bad” error estimations, i.e. for σ � Δφ or σ > Δφ.

• For σ � Δφ:

Uφ(φi) = Fsεφ(φi) + σ + |φi − φfit|. (14)

1Although the error estimation does not allow p > 2, it is reasonable to assume a tolerance for the
change in the safety factor.
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• For σ > Δφ:

Uφ(φi) = 3
σ

Δφ

(
εφ(φi) + σ + |φi − φfit|

)
. (15)

The estimated uncertainty has therefore three components: the absolute value of
the estimated discretisation error times a safety factor; the standard deviation of the
fit; the difference between the real data point and the value obtained from the fit for
the same grid density. Obviously, the latter two quantities are just a consequence of
noise in the data. Consequently, for a grid refinement study with data without noise
the method reduces to the well-known GCI [34,36].

It could be argued that in the cases with σ > Δφ it is not allowed to base an uncer-
tainty estimation on the present error estimators. However, the estimated uncertainty
with Eq. (15) will then be high, indicating clearly that the data quality is bad (due to
e.g. grids without similarity, incomplete iterative convergence, bugs in the code . . . ),
thus still conveying a useful message.

5.1. Flat plate flow

The first example of a Solution Verification exercise is the simple (but highly in-
structive) flow over a flat plate at a Reynolds number based on the undisturbed veloc-
ity U∞ and plate length L of 107. In this case, all calculations have been performed
with PARNASSOS using the shear-stress transport (SST) version of the two-equation
k–ω model [30]. Calculations were made with double-precision (15 digits) and the
iterative error has been reduced to machine accuracy. Therefore, the numerical un-
certainty is mainly due to the discretisation error.

The calculation domain is a rectangle with the inlet at x = −0.25L, the outlet at
x = 1.25L and the top boundary at y = 0.25L. It has been checked in [7,8] that with
these options the results are not affected by the limited domain size. The following
boundary conditions have been applied: at the inlet boundary, the velocity is set
equal to undisturbed flow conditions (ux = U∞ and uy = 0), k and ω are specified
to guarantee (νt)inlet = 0.01ν and the pressure is extrapolated from the interior of the
domain; at the outlet boundary, the derivatives with respect to x of all flow quantities
are assumed to be zero; at the top boundary, the horizontal velocity component is set
equal to the undisturbed flow velocity, U∞, zero normal derivatives are assumed for
k and ω and the pressure coefficient is set equal to zero; on the two segments of the
bottom boundary coinciding with the symmetry line, upstream of the plate and in the
wake, we impose uy = 0 and zero normal derivatives for k and ω, whereas ux and
Cp are computed from the momentum equations in the x and y directions, imposing
the symmetry conditions at virtual grid nodes; at the plate surface, ux, uy and k are
set equal to zero, ω is specified at first grid node away from the wall [5] and zero
normal derivative is assumed for the pressure.

In this example, we consider three sets of nine geometrically similar Cartesian
grids. All grids have the same type of grid node distribution in the longitudinal (x)
direction (see [10] for a detailed description) and one-sided stretching functions [43]
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Fig. 11. Maximum and minimum y+2 for the three grid sets used in the calculation of the flow over a

flat plate at Rn = 107. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/
ISP-130083.)

are applied in the vertical direction to cluster grid nodes close to the wall. The three
sets differ only in the selected stretching parameter with the smallest near-wall spac-
ing for set A and the largest for set C. The minimum and maximum y+2 values are
depicted in Fig. 11. It must be mentioned that the average value of y+2 is below 1 for
all grids of the three sets.

We have performed calculations using the so-called “blended scheme” in the dis-
cretisation of the convective terms of the momentum equations. β = 0 stands for
first-order upwind, whereas β = 1 corresponds to third-order upwind. In order to il-
lustrate the convergence properties as a function of hi/h1 and β we have selected the
friction resistance coefficient CF and the displacement thickness δ∗/L at x = 0.5L.

The results obtained for CF are presented in Fig. 12. As expected, all grid sets and
β values show similar extrapolated values to cell size zero (hi/h1 = 0). Thus, all es-
timated uncertainties overlap. However, the estimated uncertainties and the observed
order of accuracy are both dependent on the grid line spacing and β. Plausibly, CF
decreases with the reduction of β, but the effect of the near-wall grid spacing on the
convergence properties of CF is stronger than the effect of β. It is also clear that the
data obtained on the coarsest grids are not in the “asymptotic range”, but due to the
simplicity of the computational domain, there is no scatter in the data.

The trends observed in δ∗/L at x = 0.5L are significantly different from those
obtained for CF . The data plotted in Fig. 13 show again a significant influence of
the grid line distribution and β on the convergence properties of δ∗/L. However, in
this case β has a much stronger effect than the grid line spacing distribution. This
can be explained by the fact that δ∗ is more dependent on convection than CF . It is
also important to remark that many of the error estimates performed for the data of
Fig. 13 can not use Eq. (1) because the convergence is not monotonic. Nevertheless,
consistent error estimates are obtained using the alternative power series expansions
and in particular Eq. (12).

5.2. Flow around the KVLCC2 tanker

The second example of a Solution Verification exercise is the calculation of the
flow around the KVLCC2 tanker at model (4.6 × 106) and full (2.03 × 109) scale
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Fig. 12. Friction resistance coefficient CF as a function of the grid refinement ratio for the flow over a
flat plate at Rn = 107. SST k–ω turbulence model and convective terms of the momentum equations
approximated with a blend of first-order (β = 0) and third-order (β = 1) upwind. (Colors are visible in
the online version of the article; http://dx.doi.org/10.3233/ISP-130083.)

Reynolds number (based on the undisturbed flow velocity, U∞, and length between
perpendiculars, LPP). The results were obtained with PARNASSOS using the SST
k–ω model [30] with double-precision and a tolerance for the iterative convergence
that guarantees a negligible influence of the iterative error.

The computational domain has a cylindrical shape. The boundaries of the domain
are two x = constant planes as the inlet and outlet, the planes y = 0 (symmetry
plane of the ship) and z = 0 (still water plane, no gravity waves were included), the
surface of the ship and a cylindrical surface (external boundary) with the axis along
the x direction at the intersection of the symmetry plane of the ship and the still water
plane. The distance from inlet to the forward perpendicular, from aft perpendicular
to outlet and from x-axis to external boundary is equal to LPP.

At the inlet plane, the velocity components are specified from a potential flow
solution and the pressure is extrapolated from the interior of the domain. The tur-



130 L. Eça and M. Hoekstra / Verification and validation for marine applications of CFD

Fig. 13. Displacement thickness δ∗/L at x = 0.5L as a function of the grid refinement ratio for the
flow over a flat plate at Rn = 107. SST k–ω turbulence model and convective terms of the momentum
equations approximated with a blend of first-order (β = 0) and third-order (β = 1) upwind. (Colors are
visible in the online version of the article; http://dx.doi.org/10.3233/ISP-130083.)

bulence quantities are specified to obtain νt = 0.01ν and ω = 10U∞
LPP

. Zero stream-
wise derivatives are assumed for all flow variables at the outlet plane. The symmetry
plane of the ship coincides with two boundaries of the computational space ((i, j, k)
or (ξ, η, ζ)): j = 1, η = 0 and k = 1, ζ = 0. In the former case, the normal ve-
locity, V (2), is set equal to zero and the tangential velocity components (V (1) and
V (3)) and pressure are obtained from the solution of the momentum equations with
the symmetry conditions applied by referring to virtual nodes. Normal derivatives
of all turbulence quantities are set equal to zero. For the other boundary, the girth-
wise velocity, V (3), is set equal to zero and the girthwise derivative (ζ) is set equal to
zero for the tangential velocity components (V (1) and V (2)), pressure and turbulence
quantities.

For the still water plane, V (3) is set to equal to zero and the tangential velocity
components (V (1) and V (2)) and pressure are obtained from the solution of the
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continuity and ξ and η momentum equations with the symmetry conditions applied
at virtual nodes. For the turbulence quantities, the girthwise derivatives are set equal
to zero.

At the external boundary, tangential velocity components and pressure are im-
posed, as derived from a potential flow calculation; whereas zero normal derivatives
are assumed for all turbulence quantities.

At the ship surface, the no-slip condition is applied directly at the wall, i.e. ve-
locity components set equal to zero and wall shear-stress computed from the normal
velocity derivative at the ship surface. The normal pressure derivative is assumed
to be equal to zero. The turbulence kinetic energy k is set equal to zero and ω is
specified at the first grid node away from the wall [5] using the near-wall analytical
solution for smooth surfaces.

A set of six nearly geometrically similar single-block H-O grids was gener-
ated for each Reynolds number. The two sets have identical number of nodes in
the streamwise (Nξ) and girthwise (Nζ ) directions. In the normal (Nη) direction
the grids for the full scale calculations have more grid nodes than those used for
model scale. The coarsest grids include 280 × 80 × 30 cells for Rn = 4.6 × 106

and 280 × 100 × 30 cells for Rn = 2.03 × 109, whereas the finest grids include
560× 160× 60 and 560× 200× 60 cells, respectively. Both sets cover a grid refine-
ment ratio of 2 and the near-wall distances were tuned to obtain the maximum y+

of the first grid node away from the wall below 0.6. Figure 14 illustrates the coarsest
grids in the bow and stern regions. Downstream of the stern, the grids have a singular
line along the wake extending from the keel of the ship, whereas upstream of the bow
the singular line is located slightly above the keel line.

As for the flat plate flow, we have performed calculations with β ranging from
zero (first-order) to one (third-order) in the upwind scheme applied to the convective
terms of the momentum equations. We have selected three significant flow quantities
of the calculation of viscous flows around ships to illustrate the results of the Solution
Verification exercise: the friction resistance coefficient CF , the pressure resistance
coefficient CP and the wake fraction coefficient Wf calculated at the propeller plane
(x = 0.9825LPP) according to the instructions of the 2010 Workshop [26].

The results obtained at model scale Reynolds number (Rn = 4.6 × 106) are pre-
sented in Fig. 15. The convergence properties obtained for CF are similar to those
observed in the flat plate flow. However, for this flow p � 1 for β � 0.4. Although

Fig. 14. Illustration of the grid at the bow and stern regions of the KVLCC2 tanker. (Colors are visible in
the online version of the article; http://dx.doi.org/10.3233/ISP-130083.)
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Fig. 15. Friction CF and pressure CP resistance coefficients and wake fraction at the propeller plane
(x = 0.9825LPP) as a function of the grid refinement ratio. KVLCC2 tanker at model scale Reynolds
number, Rn = 4.6 × 106. SST k–ω turbulence model and convective terms of the momentum equations
approximated with a blend of first-order (β = 0) and third-order (β = 1) upwind. (Colors are visible in
the online version of the article; http://dx.doi.org/10.3233/ISP-130083.)

qualitatively the CP results are similar to those obtained for CF , the impact of β
and of the grid refinement ratio on the value of CP is clearly stronger than on CF .
Just by changing β in the finest grid we obtain a change of more than 70% and if we
include hi/h1 all the numerically computed values2 of CP range from 0.7 × 10−3

to 1.71 × 10−3! However, all grid refinement studies are naturally converging to the
same solution. In the plot of Wf versus hi/h1 we have deliberately plotted only the
lines that have p � 1. The purpose is to illustrate the existence of scatter in the data
that would not be evident with a scale that fits the solutions obtained for all the values

2The “careless” CFD practitioner aiming for a match between his calculation and an experiment must
be very unlucky to miss his target . . . .
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Fig. 16. Friction CF and pressure CP resistance coefficients and wake fraction at the propeller plane
(x = 0.9825LPP) as a function of the grid refinement ratio. KVLCC2 tanker at full scale Reynolds
number, Rn = 2.03 × 106. SST k–ω turbulence model and convective terms of the momentum equations
approximated with a blend of first-order (β = 0) and third-order (β = 1) upwind. (Colors are visible in
the online version of the article; http://dx.doi.org/10.3233/ISP-130083.)

of β and hi/h1 tested. In such conditions, the least squares approximation is crucial
to obtain a reliable error/uncertainty estimation.

Figure 16 presents the results obtained at full scale Reynolds number. The trends
are similar to those obtained at model scale Reynolds number. Nevertheless, the ef-
fect of β on CF is stronger than in the model scale data. Interestingly, there is less
scatter in the wake fraction data at full scale than at model scale.

The importance of Solution Verification is clearly demonstrated in Fig. 17, pre-
senting the ratio between the viscous resistance coefficient CV = CF + CP of the
KVLCC2 tanker at full and model scale Reynolds number as a function of the grid
refinement ratio hi/h1 and of the blending parameter β of the approximation of the
convective terms of the momentum equations. The values of the viscous resistance
ratio obtained in the six different grids with β ranging from 0 to 1 exhibit changes
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Fig. 17. Ratio of the viscous resistance coefficient CV = CF + CP of the KVLCC2 tanker at full and
model scale as a function of the grid refinement ratio hi/h1 and blending parameter β of the convective
terms of the momentum equations. SST k–ω turbulence model. (Colors are visible in the online version
of the article; http://dx.doi.org/10.3233/ISP-130083.)

that reach 33%. Furthermore, if one decides to make a single grid calculation for
hi/h1 � 1.43 (roughly 2 × 106 cells) with β = 0.5 the difference to the most
accurate solution plotted in Fig. 17 (hi/h1 = 1 and β = 1) is 14%.

It may be argued that Solution Verification involves “too much work”. It is indis-
putable that it requires more work than obtaining a single-grid solution. But the extra
effort will pay off handsomely by giving you a hold on the reliability of your results.
Besides, scientifically the amount of work to be done is never a good argument to
refrain from a job.

It must be clear that the agreement between simulation and experiment is not
enough justification for the quality of a solution. The examples above show clearly
that the range of values that can be obtained by “playing” with numerical settings
is so large that in many cases it is not hard to find the grid refinement level (hi/h1)
and/or discretisation scheme (β) that produces a match between simulation and ex-
periment.

6. Validation

The goal of Validation is to quantify the modelling uncertainty, i.e. to quantify
how well the mathematical models represent the physical world. Therefore, the first
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task in Validation is to define what are the quantities of interest. A given model may
be adequate in determining some flow quantities, but fall short to simulate others.
Once such decision has been made, a second challenge appears: what is the most
appropriate Validation metric? The answer to this question is still a research topic
and there are several proposals available in the open literature [1,37,38].

In this paper, we will only illustrate the ASME V&V 20 standard [1], which has
been applied in a simplified form in the third Lisbon Workshop [15]. The goal of the
procedure is to estimate the interval that contains the modelling error, δmodel, with
95% confidence: [E−Uval,E+Uval]. E is the validation comparison error E defined
as the difference between the simulation value (S) and the experimental data value
(D): E = S−D. The validation uncertainty Uval is composed of three contributions:
the estimated numerical uncertainty Unum, the estimated experimental uncertainty
UD and a so-called “parameter uncertainty”, Uinput. Although the combination of
these contributions is still being discussed [35], the proposal of [1] is

Uval =
√

U2
num + U2

input + U2
D. (16)

It should be mentioned that Uinput is supposed to include all uncertainty contribu-
tions due to lack of knowledge in the flow conditions, for example Reynolds num-
ber, inlet conditions or domain geometry. The determination of Uinput may be ex-
tremely time consuming (typical problems of uncertainty quantification UQ based
on Monte Carlo methods) and the simplified version tested in Lisbon [15] just as-
sumed Uinput = 0.

The outcome of the procedure is the following:

(a) If |E| � Uval the modelling error δmodel is likely to be comparable in magni-
tude with |E|, i.e. δmodel � |E|. If δmodel exceeds an acceptably low level, the
model must be considered as not good enough to represent the flow physics
and the exercise suggests that the model must be improved (e.g. LES instead
of RANS, or a Reynolds-stress model instead of a one-equation turbulence
model). On the other hand, if the estimated δmodel is sufficiently small one
may still be justified to accept the model as good enough for practical pur-
poses.

(b) If |E| � Uval the validation exercise indicates that the modelling error is
smaller than the level of Uval, but it is not necessarily a quality assignment.
If Uval is large, attempts should be made to make it smaller, either by better
numerical simulations or more accurate experiments, or both. If on the other
hand the validation uncertainty is small we have a strong corroboration of the
model.

Notice that both cases require the definition of an acceptable threshold, which
will always depend on the analyst. Furthermore, this evaluation is done per problem
and per selected quantity of interest. Consequently, we cannot speak of a “validated
code”.
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Table 1

Predicted (S) and experimental (D) re-attachment point with the validation comparison error (|E|) and
the validation uncertainty (Uval)

Code TM S D |E| Uval

FLUENT SA 5.77 6.26 0.49 0.19

ISIS SA 6.02 6.26 0.24 0.10

OpenFoam SA 5.94 6.26 0.32 0.10

CFL3D SA 6.01 6.26 0.25 0.10

FUN3D SA 6.06 6.26 0.20 0.11

PARNASSOS SA 6.08 6.26 0.18 0.12

FLUENT SKE 5.55 6.26 0.71 1.36

CADYF SKE 5.47 6.26 0.79 0.10

CHAPMAN BSL 5.52 6.26 0.74 0.60

PARNASSOS BSL 5.44 6.26 0.82 0.63

PARNASSOS SST 6.21 6.26 0.05 0.61

Note: Flow over a backward facing step.

6.1. Example from the Lisbon Workshop

In order to give an example of the ASME V&V 20 validation procedure, we
present in Table 1 the results submitted to the third Lisbon Workshop [15] for the
flow over a backward facing step with regard to the position of the re-attachment
point (divided by the step height). In this table, TM stands for turbulence model: SA
for the Spalart & Allmaras model [40], SKE for the standard k − ε model [27], BSL
for the baseline version of the k–ω model [30] and SST for the shear-stress transport
version of the k–ω model [30].

As mentioned above Uval is obtained from Unum and UD only so that the different
levels obtained by the participants are a consequence of the numerical uncertainty
Unum only. All submissions with the SA model exhibit E > Uval and in several cases
Uval is of the order of 1.5%, which indicates that the Spalart & Allmaras model is not
able to predict the re-attachment point within such level of validation uncertainty.

There are only two results that satisfy E < Uval: the single submission with
the SST model and one of the submissions with the SKE model. However, Uval is
roughly 10% for the SST model and 22% for the FLUENT SKE solution. On the
other hand, the other SKE solution exhibits E � Uval because Unum of the CADYF
solution is significantly smaller than Unum in the FLUENT solution. Again a warn-
ing that the statement “solution validated” does not necessarily imply a high-quality
solution.

6.2. Example from the Gothenburg Workshop

The second example of the use of the ASME V&V 20 validation procedure is
the flow around the KVLCC2 tanker for double-body conditions and model scale
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Reynolds number, Rn = 4.6 × 106, which was part of the 2010 Workshop on Nu-
merical Ship Hydrodynamics [26]. Experimental data are available from wind tunnel
(double-body) [28] and towing tank measurements [23]. Wind tunnel experiments
included the measurement of mean and turbulence quantities at several cross-stream
planes, but no forces were measured. On the other hand, towing tank tests include the
total resistance and mean velocity fields at several cross-stream planes for a Froude
number of Fr = 0.142.

As stated in [28], wind tunnel measurements have no velocity correction for block-
age effect and the reported uncertainties of the mean velocity components are 0.5%
for the axial component ux, 0.7% for the horizontal component uy and 1.0% for
the vertical component uz . For the turbulence kinetic energy k, the reported uncer-
tainty is 12.8%. Although the paper [23] includes a section called “Measurement
and uncertainty analysis”, there are no uncertainties reported. Therefore, none of the
available experimental data sets conforms to the conditions set for the calculations of
the flow around the KVLCC2 (double-body) at model scale Reynolds number. The
tests reported in [28] have identical geometry, but include an unaccounted blockage
effect of the tunnel walls. Even if the Froude number used in [23] is rather small
(Fr = 0.142), towing tank tests include gravity waves and experimental uncertain-
ties are not reported. Nevertheless, the results presented below illustrate the use of
the ASME V&V Validation procedure and indicate that it goes beyond the typical
graphical comparison of isolines as made at the CFD Workshops [26] (Fig. 18).

The total resistance coefficient reported in [23] is CT = 4.11 × 10−3, whereas
the calculated value (for the finest grid with β = 1) is CT = 4.025 × 10−3 ±
0.034 × 10−3. The application of the ASME V&V 20 validation procedure is trou-
blesome: the only contribution to Uval available is the numerical uncertainty and the

Fig. 18. Velocity field at the propeller plane (x = 0.9825LPP). Comparison of experimental results
[28] and calculations performed with the SST k–ω turbulence model. KVLCC2 tanker at model scale
Reynolds number, Rn = 4.6 × 106. (Colors are visible in the online version of the article; http://dx.doi.
org/10.3233/ISP-130083.)
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experiment contains a wave resistance contribution that is not accounted for in the
calculations. Nevertheless, an experimental uncertainty (plus parameter uncertainty)
of 1.9% would make |E| = Uval. As already pointed out for the previous example,
it is not difficult to produce results with |E| < Uval. If we consider the solution
obtained with first-order upwind (β = 0, equivalent to using bad instruments in an
experiment) we have CT = 4.416×10−3±0.574×10−3. Thus |E| = 0.306×10−3

and Uval (only with Unum) is 0.574 × 10−3!
Figure 19 presents the comparison error |E| and the validation uncertainty Uval

of the axial mean velocity component ux and of the turbulence kinetic energy k
for an horizontal cut at the propeller plane (x = 0.9825LPP, z = −0.0435LPP). The
figure also contains a plot with the direct comparison of experiments and simulations

Fig. 19. Comparison error |E| and validation uncertainty Uval for the axial mean velocity component
ux and turbulence kinetic energy k along an horizontal cut at the propeller plane (x = 0.9825LPP,
z = −0.0435LPP). KVLCC2 tanker at model scale Reynolds number, Rn = 4.6 × 106. SST k–ω turbu-
lence model. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/ISP-130083.)
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including the respective uncertainties. The results obtained for ux show that Uval is
always below 5% of U∞ and that |E| is mostly above Uval, especially close to the
symmetry plane of the ship. However, it is likely that the comparison in the outer
region of the flow is affected by the blockage effect of the wind tunnel. On the other
hand, the values of Uval for k are larger (in percentage) than those obtained for ux
and so we have |E| below or similar to Uval for most of the cut.

7. Closure

An experimentalist will develop an appeal for the limitations of his experimental
facility and the shortcomings of his measuring devices by redundancy experiments,
by confrontation of results from different devices to measure the same quantity, by
changing the sensitivity range of his gauges, etc. Similarly, a CFD-practitioner will
learn by making once in a while a careful Verification and Validation exercise. It will
make him aware of the variability of his results dependent on the numerical settings.

That a thorough grid convergence study requires a big effort and is therefore time-
consuming and costly is readily acknowledged. That in many cases an engineering
application will continue to be carried out on a single grid without Solution Veri-
fication is also to be expected. But one should be realistic then and not come with
unfounded reliability claims, even if the results look like the outcome of a corre-
sponding experiment. After all such good agreement may turn out to be coincidental.
Only if experience is built up with uncertainty estimation one will be able to appre-
ciate the complexity of a numerical simulation and see the influence of options like
grid density, grid lay-out, size of computation domain, solution convergence level,
etc. It leads in the end to confidence in the use of numerical tools. And that con-
fidence is needed, particularly in the circumstance that corresponding experimental
data are not available and the CFD-results have to stand on their own.
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