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1 Introduction

In this paper, we present a numerical method to solve the time-harmonic wave equation in
2D heterogeneous media. The underlying equation governs wave propagations and scatter-
ing phenomena arising in acoustic and optical problems. In particular, we look for solutions
of the Helmholtz equation discretized by a finite difference method. Since the number of
gridpoints per wavelength should be sufficiently large to result in acceptable solutions, for
very high wavenumbers the discrete problem becomes extremely large, prohibiting the use
of direct methods. Krylov subspace methods are an interesting alternative. However, these
methods are not competitive without a good preconditioner. In this paper, we consider a
class of preconditioners to improve the convergence of the Krylov subspace methods.

Various authors contributed to the development of powerful preconditioners for Helmholtz
problems. The work in [1] can be considered as the start for the class of preconditioners
we are interested in. A generalization has been recently proposed in [7]. In [1, 7], the
preconditioners are constructed based on the Laplace operator. In [7], this operator is
perturbed by a real-valued linear term. This surprisingly straightforward idea leads to
very satisfactorily convergence. Furthermore, the preconditioning matrix allows the use of
SSOR, ILU, or multigrid to approximate the inversion within an iteration.

In this paper (see also [3]), we will generalize the approach in [1, 7] and give theoretical
and numerical evidence that introducing a complex perturbation to the Laplace operator
can result in a better preconditioner than using a real-valued perturbation. This class
of preconditioners is simple to construct and is easy to extend to inhomogeneous media.
Other preconditioners are proposed in [18, 4, 6, 8, 11].

This paper is organized as follows. In Section 2 we describe the mathematical model and
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the discretization used for solving wave propagation problems. Iterative methods used for
solving the resulting linear system and the preconditioner will be discussed in Section 3. In
Section 4, we present the some spectral properties of the Shifted Laplace preconditioners.
Numerical results are then presented in Section 5.

2 Mathematical model

In this paper, wave propagations are modelled in a two dimensional medium with inhomo-
geneous properties in a unit (scaled) domain governed by the Helmholtz equation

—A¢—k2(l’,y)¢:f, Q= [07 1]27 (1)

where A = 0%/0x? + 9%/0y? is the Laplace operator, and k(z,y) € R is the wavenumber,
which depends on the spatial position in the domain. We consider an open problem,
i.e., outgoing waves penetrate at least at one boundary without (spurious) reflections. To
satisfy this condition, a radiation-type condition is imposed. In this paper, the first order
Sommerfeld condition is chosen of the form

o6 .

— —ik¢ =0, on a part of I' = 09, (2)

on
with n an outward direction normal to the boundary. Eventhough (2) may not be suffi-
ciently accurate for inclined outgoing waves, it is state-of-the-art in industrial codes, easy
to implement, and requires only a few gridpoints. We anticipate for possible reflections
by considering a sufficiently large domain enabling any wave reflections to be immediately
damped out and therefore be localized in the neighborhood of the boundaries.

The equation is discretized using the second-order difference scheme, in z-direction:

Po 1 :

EICR (¢i—1 — 2¢i + ¢it1) + O(R7), (3)
and similar in y-direction. The first order derivative in (2) is discretized with the first order
scheme 96 )

o An (Piv1 — i) - (4)

Substituting (3) and (4) into (1) and (2), one obtains a linear system
Ap=1b, Aec CVN (5)

where A is a large, sparse symmetric matrix and N is the number of gridpoints. Matrix A
is complex-valued and indefinite for large values of k.



3 Preconditioned Krylov methods

3.1 Krylov subspace methods

For a large, sparse matrix, Krylov subspace methods are very popular. The methods are
developed based on a construction of iterants in the subspace

K7 (A, rg) = span{rg, Arg, A*rg,- -, A7 'rg}, (6)
where K7 (A, rg) is the j-th Krylov subspace associated with A and ry.

The basic algorithm within this class is the Conjugate Gradient method (CG) which has
the nice properties that it uses only three vectors in memory and minimizes the error in
the A-norm. However, the algorithm can only be used if the matrix A is symmetric and
positive definite. In cases where one of these two properties is violated, CG may break
down. For indefinite linear systems, CG can be applied to the normal equations since the
resulting linear system becomes (positive) definite. Upon application of CG to the normal
equations, CGNR results. Using CGNR, the iterations are guaranteed to converge. The
drawback is that the condition number of the normal equations equals the square of the
condition number of A, slowing down the convergence drastically.

Some algorithms with short recurrences but without the minimizing property are con-
structed based on the bi-Lanczos algorithm. Within this class, BiCG exists and its modi-
fications: CGS [14] and Bi-CGSTAB [15]. In many cases, Bi-CGSTAB exhibits a smooth
convergence behavior and often converges faster than BiCG and CGS. Also within this
class are QMR [5] and COCG [16].

MINRES [10] can also be used to solve indefinite symmetric linear systems, as well as its
generalization to the nonsymmetric case, GMRES [13]. Both algorithms have the mini-
mization property but GMRES uses long reccurences so the amount of storage increases
as the iteration number increases. A way to remedy the storage problem in GMRES is
by including a so-called inner iteration as in GMRESR [17] and FGMRES [12]. For a
comparison of these methods applied to Helmholtz problems, we refer to [2].

3.2 Preconditioners

To improve the convergence of iterative methods, a preconditioner M should be incorpo-
rated. By left preconditioning one solves the linear system

M~ Ap = M. (7)

The best choice for M~! is the inverse of A, which is impractical. If A is SPD, one can
approximate A~ by one iteration of SSOR or multigrid. However, most practical wave



problems result in an indefinite linear system, for which SSOR, or multigrid are not guar-
anteed to converge.

In general, one can distinguish two approaches for constructing preconditioners: matrix-
based and operator-based. Within the first class lie, e.g., incomplete LU (ILU) factoriza-
tions. Examples of operator-based preconditioners are: separation of variables [11] and
analytic ILU (AILU) [6].

An ILU preconditioner can be constructed by performing Gauss elimination and dropping
elements which are smaller than a specified value, giving ILU(tol). Preconditioners from
this class are not effective for general indefinite problems. Reference [6] shows some results
in which ILU-type preconditioners are used to solve the Helmholtz equation using QMR.
For high wavenumbers k, ILU(0) converges slowly, while ILU(?0l) encounters storage prob-
lems and also slow convergence. For sufficiently high wavenumbers k, the cost to construct
the ILU(tol) factors may become very high. Recently some shifted ILU preconditioners
have been investigated [8].

The separation of variables preconditioner [11] is constructed by approximating k by a sum
of two terms, one depending on x, and the other depending on the remaining coordinates.
For smooth models and low frequencies the convergence rate is satisfactory, but it deteri-
orates when the roughness of the model or the frequency increases.

Instead of constructing the ILU factors from A, the Helmholtz operator £, = —A — k?
can be used to set up ILU-like factors in so-called analytic ILU (AILU) [6]. Starting with
the Fourier transform of the analytic operator in one direction, one constructs parabolic
factors of the Helmholtz operator consisting of a first order derivative in one direction
and a non-local operator. To remove the non-local operator, a localized approximation is
proposed, involving optimization parameters. Finding a good approximation for inhomo-
geneous problems is the major difficulty in this type of preconditioner. This is because the
method is sensitive with respect to small changes in these parameters. The optimization
parameters depend on k(z,y).

3.3 Shifted Laplace preconditioner

Another approach is found in not looking for an approximate inverse of the discrete in-
definite operator A, but merely looking for a form of M, for which M~ A has satisfactory
properties for Krylov subspace acceleration. A first effort to construct a preconditioner in
such a way is in [1]. An easy-to-construct M = —A,, preconditioner is incorporated for
CGNR. One SSOR iteration is used whenever operations involving M ~! are required.

Instead of the Laplace operator as the preconditioner, [7] investigates possible improve-
ments if an extra term k? is added to the Laplace operator —A,. So, the Helmholtz



equation with reversed sign is proposed as the preconditioner M. This preconditioner is
then used in CGNR. One multigrid iteration is employed whenever M ~! must be com-
puted. Instead of the normal equations, our findings suggest that GMRES or Bi-CGSTAB
can solve the preconditioned linear system efficiently in less arithmetic operations. We
propose a generalization of this preconditioner. In this preconditioner a term (o + £i)k? is
added to the Laplace operator —Ay, with «, 5 € R and o > 0.

In the next section, we concentrate on this type of preconditioners.

4 Spectral properties of the preconditioned matrix

In this section we investigate the spectral properties of the preconditioned matrices for the
class of shifted Laplace preconditioners. In Section 4.1 we compare various choices of the
shift parameter, whereas the dependence on the gridsize is investigated in Section 4.2.

4.1 A comparison of the eigenvalues

We analyze the spectral properties of the discrete formulation of (1). Suppose that the
Helmholtz equation is discretized, we arrive at the linear system Ap = b. Matrix A can be
splitted into two parts: the Laplace component B and the additional diagonal term k21 so
that A = B — k2 and therefore

(B—l{;zl)p:b. (8)

In this analysis, we use only Dirichlet or Neumann conditions at the boundaries in order to
keep the matrix A real-valued. We precondition (8) using M = B+ (a+i3)k?1, constructed
with the same boundary conditions as for A. This gives

1

(B+ (a+iB)k*1) " (B = k1) p= (B + (a +iB)k*1) " b. 9)
The generalized eigenvalue problem of (9) is accordingly
(B—K*I) py = X (B+ (a +iB)KI) p. (10)

Both systems (9) and (10) are indefinite if k2 is larger than the smallest eigenvalue of B.
In such a case, the convergence is difficult to estimate. Therefore, the subsequent analysis
will be based on the normal equations formulation of the preconditioned matrix system (as

in [7)).

Denote the eigenvalues of B as 0 < p; < g < -+ < puy and Quyp = (M1TA)" (M~LA),
where M = B+ (a+31)k?I. We find for the eigenvalues of the preconditioners the following
expressions:
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We consider two cases: k% < pup and p; < k? < uy.

Comparison for k? < y;.
In this case matrix A is positive definite. After some analysis, the following inequalities
are derived:

Amin(QO) > Amin(Ql)y and Amin(QO) > Amin(Qi»
Furthermore the following limits can be obtained:

Im Apax(Qo) = Im Apax(@Q1) = Hm A\pax(Q;) = 1.
fiN —00 [N —00

UN—00

The convergence of CGNR is well described by the condition number of @: (Q) = ’/\\‘;—“r’l‘

Using the relations given above we conclude that the Bayliss and Turkel preconditioner
converges faster than the other choices.

Comparison for u; < k? < uy.
In this case matrix A is indefinite. We first consider the Bayliss and Turkel preconditioner.
Using the expression for the eigenvalues it appears that

E2\?
i @) = i (1 5) <o
Therefore A\yax(Qo) can become very large, which makes this preconditioner less favorable
in this situation. With respect to the other preconditioners we note that the largest
eigenvalues remain bounded by 1. In order to compare these preconditioners we have to
consider the smallest eigenvalue in more detail. Assuming that A;, ~ 0 implies that there
is an m such that p,, = k* + ¢, and |¢| < k?. After substituting this relation into the
expressions of the smallest eigenvalues and neglecting higher order terms one obtains:

€2 €2

Amin(Q1) = T4 S o T Amin(Q:)-

This implies that x(Q;) < k(Q1), so we expect that M; is the best preconditioner.

4.2 Eigenvalue dependence on the grid size

From the previous section it appears that the difference in convergence behavior for the
shifted Laplace preconditioners is mainly determined by the value of the smallest eigen-
value. In order to analyze the dependence of the smallest eigenvalue on the stepsize h we
consider the following simple Helmholtz problem:
d*¢ 9
—@—k¢20,0<x<1, »(0) =1 and ¢(1) = 0. (11)



The eigenvalues p§ of problem (11) with k = 0 are well known: p§ = (jm)?, with j = 1,2, ...
Using the standard central difference method for the Laplace operator, with N + 1 grid
points and h = %, it appears that the eigenvalues of the matrix B are given by

4

Iy
iy = 73 (sin 092 with j=1,..., N.

2

If 7 is such that ”Tf” < 1 it follows that |p; — p§| = O(h?) for j < 7. So, the smallest
eigenvalues of the matrix B are good approximations of the eigenvalues of the continuous
problem. Suppose that k? # s for all j. Then we have that

lim min |p1; — k2| = |pg, — K| # 0,
h—0 j
where |uS, —k?| = min; | ,u?—k:2|. Combining this limit with the analysis given in Section 4.1

shows that
i i (@1) = P2~ i i Agn(@y) = W
h11>1(1) min 1) — 4]{34 an hEI(l) min i) — 2]{:4 .

Since the maximal eigenvalues of ()1 and (); are bounded by 1, we conclude that the con-
vergence behavior of both preconditioners is independent of h (see also [9]). Only initially
there can be some dependence of the smallest eigenvalue on h.

o |us, — KPP

In order to illustrate this we show the smallest eigenvalue of ) for £k = 6.5 and k£ = 8
in Figure 1 and 2 respectively as a function of the number of grid points. Note that for
k = 6.5 the smallest eigenvalue decreases somewhat, and for £ = 8 the smallest eigenvalue
increases.

If k2 = p we have a resonance. In such a case the solver should be adapted because
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Figure 1: The smallest eigenvalue of ) Figure 2: The smallest eigenvalue of )
for k=6.5 for k =8

the original matrix A is singular. The observations and analysis given above also holds for
more general problems and discretizations.



Table 1: Number of GMRES iterations

M,y M, M;
h! h! h!
k50 100 150 50 100 150 50 100 150

10 13 14 14 17 17 17 15 15 16
20 26 26 28 29 30 32 25 26 26
30 52 57 57 54 59 60 44 47 49
40 99 96 98 96 96 99 79 T8 80

5 Numerical results

Closed-off problem
We consider a problem in a rectangular homogeneous medium governed by

— (A+k?) ¢ = —(K* — 5r*) sin(wz) sin(27y), « = [0,1],y = [0, 1],

i (12)
¢ =0, at the boundaries.

In Table 1, the numerical performance is shown for the preconditioners for different grid
resolutions. If h is small enough (depending on k) the convergence does not depend on the
grid size. For most cases, M, outperforms the other preconditioners.

2-D open inhomogeneous problem

The second problem represents an open problem allowing waves to penetrate the bound-
aries. We consider an inhomogeneous medium: the wavenumber varies inside the domain

kref 0 S Yy S 1/37
k=< 15k 1/3<y<2/3, (13)
2.0k 2/3 <y <1.0.
The number of gridpoints used is 5 X k.r. Numerical results are presented in Table 2. In
this harder problem, M; again outperforms M, and M; indicated by the smaller number of
iterations required to reach convergence. From Table 2, we also see that the preconditioned

Bi-CGSTAB does not perform well for My and M;, as already indicated in [7]. However,
the convergence with M; as the preconditioner is still satisfactory.

6 Conclusions

In this paper, a class of preconditioners based on the Shifted Laplace operator for the
Helmholtz equation has been presented and analyzed. We find that the complex Shifted-

8



Table 2: Number of iterations for GMRES, CGNR, and Bi-CGSTAB

GMRES CGNR Bi-CGSTAB
kreg Mo My M, My My M, Mo M, M,

10 39 47 31 189 88 66 150 56 22
15 73 85 54 647 175 126 685 113 40
20 120 >150 82 >1000 268 194 >1000 177 60
30 >150 >150 141 >1000 502 361 >1000 344 105

Laplace operator leads to the most effective preconditioning matrix within this class of
preconditioners.
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