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A B S T R AC T

This thesis presents a new workflow for path finding through an octree
representation of an indoor point cloud. I applied the following steps: 1) the
point cloud is processed so it fits best in an octree; 2) during the octree
generation the interior empty nodes are identified and further processed; 3)
for each interior empty node the distance to the closest non empty node
directly under it is computed, this can be used as constraint in path finding;
4) a network graph is computed with the connectivity of all interior empty
nodes; 5) a collision avoidance system is pre-processed in two steps: firstly
the clearance of each empty node is computed, and secondly the maximal
crossing value between two empty neighbouring nodes is computed. 6) the
A* path finding algorithm is conducted. The A* uses the interior empty
nodes and the network graph to find a path.

Finally, benchmark test were conducted to identify the effect of octree
operators and A* operations on the path length and computation time. The
A* path finding computation time is positively effected by: firstly,
pre-processing a network graph, using a Manhattan distance and by
keeping the octree depth to a minimum. The path length is positively
influenced by: extending the path connectivity, by using an Euclidean
distance type and by increasing the octree depth. Although, the octree
depth depends on the minimal and maximal spatial resolution needed for
path finding. And this is dependant of the size and orientation of the point
cloud. By pre processing a point cloud the spatial resolution can be
increased.
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1
I N T R O D U C T I O N

Pathfinding is computing an optimal path between a start and a goal point.
One of the most important and challenging aspects is finding a collision free
path. Path finding is well established in 2D outdoor situation, think of software
behind car and phone navigation systems [Noto and Sato, 2000]. Recently
there is a growing demand for 3D indoor path finding applications [Isikdag
et al., 2013]. Although this has been researched in the field of robotics in the
80 and 90 these algorithms are mainly focussed on 2D navigation. Besides
the algorithms were developed for relatively slow robots. Nowadays we would
like to have the ability to help people find a path in buildings. Or compute a
path for a drone. What all these examples have in common is that an object
with a certain geometry needs to find an optimal collision free path between
a start and goal point.

To manage this we, at least, need to know the geometry of the object
and a model of the environment. One way of representing the latter one can
be with a point cloud. A point cloud is a large collection of points having at
least an X, Y and Z coordinate representing a boundary of space. Figure
1.1 shows a point cloud of the pub of the Faculty of Architecture and the
Built Environment at Delft University of Technology (DUT). New mobile laser
scanners make it possible to generate a point cloud in a fraction of the time
of traditional point cloud acquisition methods.

Figure 1.1: Point cloud of the Bouwpub.

The model of the environment alone does not give enough information
to find a route, for this the empty (pointless) space is needed. A common
method to structure and segment a point cloud is with the use of an octree
data structure. An octree consist of a cubical volume which is recursively
subdivided ‘into eight congruent disjoint cubes (called octants) until blocks of
a uniform colour are obtained, or a predetermined level of decomposition is
reached’ Samet [1988]. They are used for the partitioning of space and result
in a hierarchical tree structure. This make operations like neighbour finding

1



2 I N T R O D U C T I O N

and indexing efficient (Vörös, 2000). Figure 1.2 shows how the subdivision
an quadtree, the 2D counterpart of an octree.

Earlier research, like Wang and Tseng [2011] use the octree data
structure to segment point clouds. And in the research of Zhou et al. [2011]
an octree structure is used for surface reconstruction.
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Figure 1.2: an visualization of a quadtree

One of the advantages of an octree is efficient structuring of space, large
empty space can be represented by a large node high in the octree, as
shown in Figure 1.3 by a quadtree, the 2D counterpart of an octree. These
large empty nodes reduce the amount of nodes in the octree. This is an
advantageous property of an octree for path finding. The large nodes
reduces the amount of nodes and subsequently the possibilities to discover
in path finding.
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Figure 1.3: For visualization purposes a quadtree is used instead of an octree to
explain the concept. Large empty spaces can be represented by a node
which is high in the quadtree. The left image shows the a quadtree with
some non empty nodes and empty nodes. The right image shows the
location of these nodes in the octree. Notice that a large area in the left
image refers to a higher location in the octree.

In the final year of the master Geomatics I worked in a team on a project
about explorative point clouds. An explorative point cloud holds as
advantage no need for an intermediate geometric model [Verbree and
Van Oosterom, 2014]. During the project we created a work flow to identify



1.1 C O N T R I B U T I O N 3

the empty space inside a point cloud using an octree data structure
[Broersen et al., 2016]. And we developed a rudimentary A* path finding
algorithm using the empty nodes in the octree data structure. This thesis
continuous the work of Broersen et al. [2016]. Section 2.1 describes the
work in detail.

1.1 C O N T R I B U T I O N

The scientific and social contributions:

1.1.1 Scientific contribution

The scientific contribution of this research is twofold. Firstly an indoor path
finding application through the empty space of a point cloud is developed.
This application uses an octree data structure as a kind of catalyst for path
finding.

The method consist of the following components: a work flow to pre
process a point cloud for optimal classification into an octree structure. A
novel method to identify interior empty nodes and at the same time the
downward distance from each interior empty node to the closest non empty
node is computed. A new method for pre-processing a collision avoidance
system. A method to process a network graph during octree generation.
And finally a path finding application, which uses the network graph and
collision avoidance system.

Often assumptions are made in a design processes. For example,
having less nodes in an octree reduces the amount of computation in a path
finding application. However, the exact influence of an assumption is often
ignored and therefore not known. This is also the case in path finding
applications. Thus the second contribution aims to identify the effects of
octree operators and A* operations on A* path finding. It will research the
impact on the computation time and path length. To my best knowledge no
research has been conducted identifying the effects of these components in
A* path finding through an octree data representation of an indoor point
cloud.

1.1.2 Societal contribution

Recently there is a growing interest and demand of 3D indoor path finding
applications [Isikdag et al., 2013] [Liu and Zlatanova, 2011]. Examples of this
are:

When a fire fighter enters a building where sight is blocked by smoke, he
always walks along a wall. It could be useful for a fire fighter to know how to
navigate through a building by the use of a small screen in his/hers helmet.
For this, the path should be constraint to nodes with a certain distance to a
wall. Or in cases where it is to dangerous to send in a fire fighter a drone
could be used to asses the situation. For this a collision free path should be
computed. In this cases the building geometry should be available.

In emergency situation an indoor path finding method can be used to
direct persons to the closest emergency exit. In an hospital it can be used to
direct patients to the room of their doctors appointment. In big buildings like
airports or congress buildings indoor path finding can be used to navigate
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people to certain locations or compute a closest meeting point. Furthermore,
an indoor path finding application can be used for automatic monitoring of
building. A unmanned airborne vehicle can be used to inspect hard to reach
areas in an automated way, think of inspecting the condition of pipes on the
celling. Even in underwater situations it is very useful to have an path finding
method generating a collision free route [Guang-lei and He-Ming, 2012].

With an indoor path finding method outdoor and indoor navigation could
be seemingly merged into one system. Think of situations where someone
enters an unknown city via the train station and needs to go to a certain room
in a building. Nowadays the navigation stops at the door step of the building.
Especially in large buildings it might be useful to extend this navigation to the
room.

1.2 R E S E A R C H O B J E C T I V E S

The goal of this research is to identify the effects of geometrical point cloud
operations, octree operators and A* operations on A* path finding.
Therefore the following research question is formulated:

What is the effect of A* path finding characteristics on the path length
and performance in an octree representation of an indoor point cloud?

Where the A* path finding characteristics in an octree representation of a
point cloud are defined by: Distance type, connectivity, is a network graph
pre-processed and by the octree characteristics. Where the octree
characteristics are defined by the octree depth and the point cloud
characteristics. Which are defined by the direction, location and scale of the
point cloud.

To answer the research question the following three sub questions are
formulated:

1. What geometrical point cloud processing operations are important for
the generation of an octree and what is their effect?

2. What octree operators influence the performance and path length and
what is their effect?

3. What A* algorithm operations influence the performance and path
length and what is their effect?

1.3 R E S E A R C H S C O P E

The scope of this research focusses on path finding through the interior
empty space of an indoor point cloud. Although the world is not static, it
assumed that the models in this research are static. The research focusses
solely on A* path finding. An octree data structure will be used to classify
the point cloud and identify the interior space.
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1.4 OV E RV I E W O F T H E T H E S I S

The remainder of this thesis is structured as follows: Chapter 1 introduces
the subject and provides the research objectives. Chapter 2 provides the
background and related work to this research. Chapter 3 explains the
methodology used in this research. Chapter 4 provides the implementation
of the methodology. Chapter 5 presents the main results of the research.
And finally, Chapter 6 concludes the research by answering the research
questions and providing a future work section.
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2
T H E O R E T I C A L B AC K G R O U N D A N D
R E L AT E D W O R K

The related work in this research is fourfold: Section 2.1 provides a detailed
description about the method created during the synthesis project. Section
2.2 gives an overview of path finding method in quadtree and octree data
structures. Section 2.3 provides related work about neighbour finding in
quadtree and octree data structures. And finally, section 2.4 presents
collision avoidance methods in octree structures.

2.1 P R O J E C T P O I N T L E S S , O C T R E E

G E N E R AT I O N

The background of this research is the work of Broersen et al. [2016]. During
the project we created a work flow to segment a point cloud in an octree.
Besides we implemented a rudimentary path finding method. We created a
linear octree, which means the octree is stored in a linear array instead in
a tree. To refer to the nodes in the octree each node has a spatial location
code. The spatial location code describes both the location in the octree,
in the geometrical model and the size of the octant as a string of numbers
Van Oosterom and Vijlbrief [1996]. Although the method was created for
indoor point clouds it can be used for outdoor point clouds.

2.1.1 Octree generation

The octree generation method can roughly be divided into three steps. First
the point cloud is pre processed, secondly the non-empty (black) nodes are
computed. And finally the empty (white) nodes are derived from the non-
empty nodes.

The first step involves processing the point cloud. The point cloud is
translated so its origin has coordinate (0, 0, 0). Next, the point cloud is scaled,
so each node in the octree has a coordinates between integer 0 and integer
2n.

Secondly, the non-empty nodes are computed. The non-empty nodes
are generated by searching the location of each point in the octree. Because
all nodes in the octree have a coordinate between integer 0 and 2n each
point can be snapped to a node by removing the decimals of the x,y and z
coordinate. By removing the decimals of a point with coordinates (1, 1; 1, 3)
it can be snapped to a quadrant where the lower left coordinates are (1; 1),
see figure 2.1.

And finally the location code of each node needs to be computed. The
octree is generated by recursive subdivision of cubes into eight children
nodes. Therefore, each level in the three can be encoded with a single
number between 0 and 7 (see figure 2.2). For each level in the octree a

7
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(1,1;1,3)

(0;0) (0;1)

(1;1)(0;1)

Figure 2.1: A point can be snapped to a quadrant by removing the decimals

number is concatenated to the string of the node. The final string of
numbers is called the location code. The location code of a node indicates
the path through the octree to reach that node, figure 2.3 shows the process
of numbering nodes in an quadtree. To have the highest possible resolution
of the empty space, all points are forced to split until the maximum octree
depth. The location code is obtained by a technique called binary masking.
The goal of the technique is to acquire the location of a node in each octree
level. To do this a binary mask is used to check on which side of a split line
a node lays in a certain octree level. This is done in the X, Y and Z direction
(see figure 2.4). For example, a node lays: right or left of the split line (x
direction), above or below (z direction) and front or back (y direction). With
this information a number can be assigned to the location of the node. The
number of this octant is concatenated to the location code. This is repeated
until the maximum split level is reached. When computed, each point has a
spatial location code consisting of a string of numbers. All the location
codes of the non empty nodes are used to derive the spatial location codes
of the empty nodes.

Figure 2.2: Z numbering of the octants, source: [Broersen et al., 2016]
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Figure 2.3: Numbering of the non-empty nodes in a quadtree

2

0

3

1

Figure 2.4: (For visualization purposes a quadtree is used instead of an octree to
explain the concept.) The non-empty (black) node lays right of the green
split line and above of the red split line, thus is lays in quadrant 3.

The final step is to derive the empty nodes from the non-empty nodes.
This is done by taking the inverse of the non empty nodes. Important to note
is that this process is performed per octree level, starting with the highest
level where nodes are of maximum size. Figure 2.5 shows the process for a
quadtree for two levels. For the first level it is checked if there are any non
empty nodes intersecting with a mask with location code: 0, 1, 2 and/or 3. If
the mask does not intersect with any black nodes the node is empty. For the
next level the nodes which intersected in the previous step are split into four
new masks. And they are checked for intersections.
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Figure 2.5: Binary masking in a quadtree.

2.1.2 Database management system

Both the location codes of the non-empty and empty nodes are dd in a
database. Two tables in a single database were created, one for the non
empty nodes and one for the empty nodes. There was no single table for
the point cloud as the points were stored in the non empty nodes. Because
most non empty nodes consisted out of multiple points it is possible that
there are multiple rows with an identical spatial location code. In hindsight it
would make more sense to cluster the points in a single row.

One could suffice by storing only the location codes for each empty node,
ss the location and size of a node can be derived from this location code.
Since the octree would be used for other applications like path finding we
also stored the x, y and z coordinate and the leaf size of each node.

2.1.3 Path finding

The path finding method searched a shortest path based on an A* algorithm,
section 2.2 describes the A* algorithm in detail. The method was able to
move between nodes sharing a face, which were computed on the fly. The
method had no collision detection. Another problem of the method is that
there was no distinction between interior empty space and exterior empty
space. This is a problem because the exterior empty space has been created
during the octree generation without knowing if this really is empty space.

2.2 PAT H F I N D I N G A L G O R I T H M S I N

O C T R E E S A N D Q UA D T R E E S

This section describes the related work about path finding in octree and
quadtree structures.
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Path finding is computing an optimal path between a start and goal node.
An optimal path does not imply this should be the shortest. Many parameters
can define the term ’optimal’.

1. the Dijkstra algorithm

The Dijkstra algorithm computes an optimal path between a start and a
goal node by searching for the minimal travel cost. The algorithm starts
with a start node, of which the movement cost to all adjacent nodes are
calculated and are placed in an open list. The node with the lowest cost
is marked. The movement cost from the start node to the neighbours
of the marked node is calculated and are append to the open list, the
node in the open list with the lowest cost is marked. The last two steps
are repeated until the goal node is marked.

Because the algorithm expands the node with the lowest cost it will
expand concentric around the start node. Therefore, the speed of the
algorithm depends on the size of the network and the distance between
the start and goal node. This makes the Dijkstra algorithm unsuitable
for real-time applications [Noto and Sato, 2000].

2. the A* algorithm

The A* algorithm is an extension of the Dijkstra algorithm. The A*
algorithm introduces a heuristic cost, which is an approximation of the
cost from the marked node to the goal node Hart et al. [1968]. The
total cost ( f (c)) for node (c) is now:

f (c) = g(c) + h(c) (2.1)

Where g(c) is the cost from the start node to node c. And h(c) is the
heuristic cost from node c to the goal node [Nosrati et al., 2012]
[Kambhampati and Davis, 1985].

Due to the heuristic cost all nodes which are not between the start node
and the goal node have a higher heuristic cost compared to the nodes
which are not. Therefore, the speed of the algorithm is not related to
the network size, but only to the length of the route. Figure 2.6 shows
the difference between the algorithm of Dijkstra and A*.

Herman [1986] presents a combination of two path finding methods in an
octree representation. It combines a hill climbing method in combination with
an A* algorithm. Hill climbing is able to quickly compute a path because it
only uses the distances to adjacent nodes to decide the next node. However,
this method has a tendency to get stuck in ‘U’ shaped obstacles. When this
happens an A* algorithm is used until the obstacle is avoided. This method
is fast, although it trends to move away from the shortest path.

Vörös [2001] uses a hill climbing method in combination with a distance
map to compute a path in a quadtree and octree representation. By using
an octree representation instead of a voxel approach the memory demand
and path finding time is reduced. The disadvantage of a distance map is the
need for a specific distance map for each distinct goal node.

Xu et al. [2015] describes an A* path finding method in an octree
representation. Neighbours of a current node are found by checking what
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Figure 2.6: The left image shows a a route computed between the start(green node)
and a goal (red node) using the Dijkstra algorithm. Al blue nodes have
been marked as lowest in the open list. The right image shows a route
compute by the A* algorithm. Due to the Heuristic cost in the A* algorithm
the amount of nodes processed is much smaller compared to the Dijkstra
algorithm. source: Xu [2012]

nodes have a distance not exceeding half the length of the sum of the
lengths of the two octants. This is a computational expensive operation. The
research did not include a method to avoid collisions in the algorithm.

Hwang and Ahuja [1992] use a potential field to navigate in an octree.
The potential field indicates a heuristic potential of each node, in such a field
there are local minima (nodes with a low potential). First a graph is computed
between these local minima. A global planner searches a path in the graph.
Subsequently, a local planner checks if the path is collision free. One of the
advantages of an octree is efficient structuring of space, large empty space
can be represented by a large node high in the octree, as shown in Figure 1
by a quadtree, the 2D counterpart of an octree.

Besides identifying the empty space Broersen et al. [2016] created a
simple path finding algorithm based on an A* algorithm. The route was
computed through the empty space in the octree. The path finding method
considered two nodes as neighbours if they share a common face.
Neighbours could be smaller, larger and of equal size. The neighbours are
computed on the fly. Object avoidance was not implemented and no
distinction between interior and exterior empty nodes was make.

Kambhampati and Davis [1985] propose a multi resolution path finding
method in a quadtree. To reduce the amount of leaf nodes a pruned quadtree
is created. In a pruned quadtree grey nodes containing empty (white) and
non-empty (black) are possible neighbours.

2.3 N E I G H B O U R F I N D I N G A N D

C O N N E C T I V I T Y G E N E R AT I O N

All path finding algorithms rely on the exploration of adjacent nodes. In an
octree structure, two nodes can be each others neighbour if they share a
common: face, edge or vertex. Figure 2.7 illustrates the types of
connectivities. In total there are 26 possible neighbours for each node. This
section describes the related work of neighbour finding.
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Current node Face Edge Vertex

Figure 2.7: From left to right; neighbours sharing a common: face (6), edge (12),
vertex (8)

In the neighbour finding method of Gargantini [1982] motion is possible
in the face direction. Each octant has a unique location code. This location
code describes the location of a node inside the octree. A distinction is
made between nodes sharing a common parent and nodes having a
different parent node. Adjacent nodes are computed using a separate
function for each direction. The main drawback of this method is that the
algorithm does not know if a neighbours is part of the octree.

Samet [1989] proposes a method to compute neighbours the direction of
a face, edge and vertex of all possible sizes (smaller, equal, larger).
Neighbours are found by ascending the octree in search of a common
ancestor. The neighbouring node is found by descending the tree with
mirrored moves. The common ancestor of a node is different for each
direction. The method does not know if a neighbour is part of the octree
(when the current node lays on the boundary of the octree) [Vörös, 1997].
Besides the method does not identify the octants with a hierarchy location
codes. As instead it enumerates the octants.

The method of Samet [1982b] was later improved by Vörös [2000] on
three areas. He used the work of Gargantini [1982] to implement the
difference between inner (having the same parent node) and outer (having a
different parent node) neighbours. Using location codes the octree could be
stored as linear area instead of a tree structure. The inner neighbour is
found by changing the directional relevant bit of the most right digit of the
location code. This is done with an exclusive or exclusive OR (XOR)
operation on the appropriate number of the location code and a bit mask. A
bit mask is used to access the (directional) relevant bits of the location
codes. Figure 2.9 illustrates the bit masks for the X,Y and Z direction. For
example, the location code of the neighbour of node 000(numeric =0) in
direction Dx, having the bit mask 001, is computed with the following XOR

operation: 000 or 001 = 001.

The computation of an outer neighbour in direction Dx is more complex.
To know how many digits of the location code need to change, the closest
common ancestor of the node needs to be computed in direction Dx. The
steps to the closest common ancestor are the amount of digits which need to
be changed in the location code. The method of changing these digits is the
same as the inner neighbour. If the steps to the closest common ancestor
exceed the steps to the root node, the outer neighbour in that direction does
not exist [Vörös, 2000].

The closest common ancestor of node c is the parent node of the first
ancestor node of node c which is located on the opposite side on axis
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compared to the location of node c related to their individual parent nodes,
see figure 2.8.

The closest common ancestor is found by testing the directional relevant
bits of the appropriate number in the location code. Figure 2.9 illustrates the
relevant bits for the X, Y and Z direction. Staring at the most right number in
the location code, the numeric number is converted to an bit number. Next,
the directional relevant bits of the next left numbers is checked with the most
right number until the first complement bit is found.

The number of steps to ascend to the common ancestor refers to the
amount of digits in the location code which need to be changed. Besides,
this number is used to make sure a common ancestor is not higher than the
root node. Thus, neighbours are not found when they are situated outside
the boundary of the octree.
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Figure 2.8: Node 121 is situated right (on the x axis) in its parent node. The closest
common ancestor is node with location code 1 (red) because the blue
node with location code 12 is located on the opposite side related to
node 121;

X bitmask = [001]Y bitmask = [010]

Z bitmask = [100]

Figure 2.9: Bitmask for the X Y and Z direction.

Xu et al. [2015] checks for face neighbours based on their geometrical
location. Two nodes are neighbours if their centre points have a distance half
the length of the sum of the octant sizes.

The method of Kim and Lee [2009] uses a lookup table to find face
neighbours in a direction. The table is used to change the location code of
the current node to compute the neighbour in a certain direction with simple
arithmetic operations. Further, the paper describes a method to find
neighbours within a radius r. This is done with the geometrical operation
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within. This is an expansive computation as they do not make a selection
using the octree structure.

Payeur [2006] provides a method to search neighbours in the face, edge
and vertex directions and for all possible sizes. A lookup table is used to
compute neighbours. Each type of neighbour has its own lookup table. The
octants in the octree have a location code similar to that of Major et al. [1989]
and Vörös [2000]. If the neighbour of a node in direction Dd share the parent
node, only the last digit of the node needs to be changed. If not, the lookup
table defines per digit what its transformation is and when the last digit is
changed using simple arithmetic operations. Neighbours of node x which are
larger are found by deleting the last digit in the neighbours of node x of equal
size. Neighbours smaller than node x are found by recursively concatenating
digits to the location code to equal sized neighbours of the current node x
until the maximum octree level is reached. The method does not explicitly
provide a method to exclude neighbours which are outside the boundary of
the octree. Is does give two options which could be researched.

In the method used in this thesis this is not a major problem. This is
because the found neighbours are compared to the white nodes. So
neighbours which do not exist would be invalid and not used in path finding.

Namdari et al. [2015] describes a method neighbour finding during the
octree construction. The method is used to find all 26 neighbours in all sizes.
The method is based on a bread-first search octree generation. Meaning:
the nodes of the octree are created in a top down approach, so from the
root node to the leaf nodes. The computational effort is minimized by
searching equal and larger neighbours. To make sure also smaller
neighbours are stored, a neighbouring connection is stored in both
directions. If node X has a neighbour node Y, this neighbour information
should be stored in both node X and Y. This last method ensures that the
smaller neighbours of a node are found and stored in a later stage of the
octree construction. The actual approach in which neighbours are found is
quite basic and does not take advantage of the locational codes. It basically
checks if two nodes share x, y and/or z coordinates.

2.4 O B J E C T AVO I DA N C E

Collision avoidance can be pre processed or done during path finding. This
related work in this section is limited to the pre-processed methods.

Jung and Gupta [1996] uses a distance map for collision detection. For
each node the distance to the closest object is calculated. In the method,
motion is not limited between centre points of nodes, as instead motion is
possible from any point in the octree. For this reason one value indicating
the minimal distance to an object is not sufficient. Therefore, for each node
there are two values stored, a minimal value and a maximal value to the
closest object. In search for the closest node the algorithm searches
outward from the node for obstacle nodes. If one is found, the Euclidean
distance is calculated. The actual collision detection occurs during path
planning, for each target node it is computed if it is collision free considering
the two distance values.

Samet [1982a] describes an efficient method, which can be used, to
compute the closest boundary with a black node for each white node in a
quadtree. The method is based on the theorem: not all equal sized
neighbouring nodes of a white node can be white. Since merging between
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the nodes will take place and the white node would not exist, see figure 2.10.
If the closest boundary is computed with a chessboard distance the
boundary must be, or a descendant of, one of the eight equal neighbours,
see figure 2.11. The amount of neighbours increase if an Euclidean or
Manhattan distance is used, see figure 2.12.

P

Figure 2.10: Not all neighbours of node p can be white otherwise merging will take
place

Figure 2.11: The closest border with a black node and the dark blue node must lie in
the light blue area
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Figure 2.12: The coloured circles indicate in which area the closest non empty node
can be
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In a potential field approach an artificial field is generated in which both
the target node and all obstacles direct a force on each white node in a field.
The target node has an attractive force and the obstacles have a repulsive
force. These forces are strong at the source and gradually decrease as the
distance to the source increase, see figure 2.13. The sum of these forces
are the potential value of a node. Together all nodes create a potential field.
The maximal potential field is in the obstacles, a low potential field is thus
favourable in a path finding applicationsHou and Zheng [1994] Hwang and
Ahuja [1992].

Target Target

Figure 2.13: Black nodes have a repulsive force and the target node(blue) has a
attractive force on the white nodes

Wu and Hori [2006] uses a potential field to avoid obstacles. Obstacles
have a repelling force and the target an attracting force. A path is computed
in the potential field. The potential in each node is calculated. A high value
indicates objects to be close. This method is developed for robot arms. The
potential field needs to be computed for each octree level. The disadvantage
of the method is the need for a specific potential field for each distinct goal
node.

Hamada and Hori [1996] combines a global path planner with a local
path planner. Collision detection is performed in the local path planner.
They basically check if the nodes of an object intersects with the nodes of
an obstacle. The process starts at the highest level and checks if it
intersects with a empty node (no collision) of with a non empty node
(collision). This process continuous by ascending the tree until it reaches a
empty node or a non empty node. The main drawback of this method is the
high computational effort.

Kambhampati and Davis [1985] creates a buffer around object to prevent
collisions. This buffer must have a minimal distance of half the object size,
see figure 2.14. The drawback of this method is that the buffer works only for
objects of the same size. Otherwise an other buffer needs to be computed.
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Figure 2.14: A buffer is created around each black node ensuring no collisions are
possible
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M E T H O D O L O G Y

The goal of this research is to identify the effects of geometrical point cloud
operation, octree operators and the A* operations on A* path finding. For this,
an octree needs to be constructed from a point cloud which can be used as
a kind of catalyst for indoor path finding. An overview of the methodology is
illustrated in Figure 3.1.

4.1
DBMS

____________________
1.	 Metadata
2.	 Point cloud
3.	 Non empty nodes
4.	 Empty nodes
5.	 Benchmark results

2
Octree generation

___________________________
1.	 Non empty nodes
2.	 Empty nodes

2.1.	Select interior empty nodes
2.2.	Compute distance to floor
2.3.	Connectivity generation

2.3.1.	 Compute cost
2.4.	Collision avoidance

1.1
Geometrical pre processing

3
Neighbour finding

_________________
1.	 Face
2.	 Edge
3.	 Vertex

4.2
Neighbours 
dictionary
[.txt file]

_________________
-- neighbours
-- distance

5
A* path finding

1
Point cloud

Figure 3.1: Overview of the method, boxes with double lines are scripts, boxes with
dotted lines are data files
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The basic idea of the method is to use an octree to classify a point cloud.
The octree is used as a kind of catalyst for A* path finding. During the octree
generation the non empty and empty nodes are generated as described in
section 2.1. However, the empty nodes processing method is extended with
a number of components. Firstly, interior empty nodes are identified. Only
for the interior empty nodes a connectivity is generated. For the generation
of the connectivity all possible neighbours are computed. Using the possible
neighbours, a pre-processed collision avoidance system is computed.

The output of the octree generation script is: the connectivity of each
node, a table of non empty nodes, a table of empty nodes and metadata. All
but the connectivities are stored in a postgreSQL database. The connectivity
or network graph is stored as a .json file.

The A* path finding algorithm takes as input the connectivities and the
empty nodes. All results of A* path finding are stored in the same
postgreSQL database.

The remainder of this chapter is structured as follows: Section 3.1.1
describes the point clouds used in this research and geometrical point cloud
operation. Section 3.2 describes how to identify interior empty nodes.
Section 3.3 describes how to construct an interior node connectivity.
Section 3.4 presents the method to pre process a collision avoidance
system. Section 3.5 provides a description of the different distance types
used in this research. And finally, Section 3.6 explains how the effect of
octree operators and A* operation on A* path finding is researched.

3.1 P O I N T C L O U D

This section describes the point cloud datasets used in this research. The
next subsection describes a work flow to geometrical pre process a point
cloud for optimal classification.

3.1.1 Point cloud datasets

In this research three point cloud datasets are used. Two datasets of existing
buildings and one dataset created from a selection of random points.

point cloud points bounding box[m]
Test point cloud 3000 64*64*64
Bouwpub 2.196.903 15,94*9,20*6,18
Fire department 2.266.067 10,74*13,87*12,71

Table 3.1: Metadata about the point cloud datasets

The first point cloud is of the pub of the Faculty of Architecture and the
Built Environment at DUT. This dataset will be called ’Bouwpub’ in this
research. Table 3.1 describes the metadata of the point cloud and Figure
3.2 presents the point cloud of the Bouwpub.
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Figure 3.2: Point cloud of the Bouwpub.

The second point cloud is a section of the fire department in Berkel en
Rodenrijs. This dataset will be called ’fire department’ in this thesis. Table
3.1 describes the metadata of the point cloud and Figure 3.3 illustrates the
point cloud.

Figure 3.3: A section of the point cloud of the fire department.

The last point cloud is a selection of random points, which was created
with a simple python script. After a few tests with a different amount of
points, a point cloud consisting of 3000 point proved suitable for this
research. The points were generated in a grid of 64 ∗ 64 ∗ 64. Table 3.1
describes the metadata of the point cloud and Figure 3.4 illustrates the point
cloud.
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Figure 3.4: Test point cloud with 3000 random points in a grid of 64 ∗ 64 ∗ 64

3.1.2 Geometrical point cloud processing

As the octree depth increases, it gets progressively more demanding to
generate the octree. For (indoor) path finding the smallest octants should
represent a minimal size in a point cloud. The length which is represented in
an octree by the smallest octants of an octree is called the spatial resolution
Lemmens [2015]. With a high spatial resolution small objects can be
detected and thus is beneficial for path finding. Maximizing the spatial
resolution by geometrical processing, a point cloud can be used to minimize
the necessary octree depth. In turn reducing the octree generation time,
storage space, amount of empty nodes and connectivity of the interior
empty nodes.

The goal is to create a work flow to geometrical pre-process a point
cloud so the empty space can be classified most efficiently in an octree.
This means that the point cloud is processed in a way that generates the
highest possible spatial resolution of the smallest octants for an octree with
an arbitrary depth.

There are three geometrical operations which make sense on an point
cloud: 1) rotation; 2) translation; 3) scaling. where scaling is the only
operation which can influence the spatial resolution of an octree. There are
two types of scaling: positive and negative. In negative scaling a point cloud
is to big too fit in the octree space of an arbitrary depth. So unless the point
cloud is negatively scaled a part of the octree will miss in the octree. In
positive scaling a point cloud is smaller than the octree space. By positively
scaling the point cloud would fit better in an octree with an arbitrary depth.
The best spatial resolution is achieved when a point cloud is scaled so it
axis-aligned bounding box fits in an octree grid of 2n ∗ 2n ∗ 2n, where n refers
to the octree depth.

Both rotation and translation can effect the maximal possible scale of a
point cloud. By rotating a point cloud so its minimum bounding box is
aligned with the octree axis, a point cloud covers the smallest volume in an
octree. This means a point cloud can have a larger scale to fit best in the
octree space. Although, for visualization purposes it is recommended to
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keep the floor surface horizontal. In that case, a building with a footprint of
100 ∗ 100 m has maximal diagonal distance of

√
1002 + 1002 = 141. If the

minimum bounding box of the building has a 45 degrees angle with the
octree grid the axis-aligned bounding box of the point cloud will have a
footprint of 141 ∗ 141. Whereas the minimum bounding box has a footprint of
only 100 ∗ 100. Therefore, the scale of the point cloud can be increased with
a factor of

√
2 by aligned the minimum bounding box to the octree axis.

Subsequently, the spatial resolution of the smallest octants will be a factor√
2 higher. Finally, the point cloud should be translated so the origin of the

bounding box is located in coordinates (0, 0, 0), as this is the origin point for
the scaling operation. In short, both rotation and translation prepare the
point cloud so it can be scaled to its full potential.
The work flow of pre-processing a point cloud for optimal classification
consist of three steps: 1) align the minimum bounding box to the octree axis;
2) translate the point cloud so the origin is in coordinates (0, 0, 0) and finally
3) scale the point cloud so it fits in a grid of 2n ∗ 2n ∗ 2n. These steps are
visualized in Figure 3.6.

n
2

n
2

n
2

n
2

Figure 3.5: By aligning the minimum bounding box (red) of a point cloud with the axis
minimum bounding box becomes the axis-aligned bounding box (blue)
and is scaled more efficiently.
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Figure 3.6: Work flow to geometrical pre-process a point cloud for maximal octree
resolution

3.2 I N T E R I O R E M P T Y N O D E S

In this research only interior point clouds are used. These point clouds are
scanned from the inside of a building, therefore only the space between a
point and the location of the scanner can be classified with certainty as empty.
Therefore it is key to identify the interior empty space for cases like path
finding and volume calculations.

The goal of identifying interior empty nodes is twofold. Firstly, by
identifying the interior empty nodes the exterior empty nodes do not have to
be further processed and stored. This reduces the amount of computations
and storage. Secondly, only the interior empty nodes are used in path
finding. This excludes the path to exit the interior space via glass or other
open areas.

An empty nodes are only interior if it has both a non empty node straight
above an beneath it. Figure 3.7 illustrates a section of a building
represented by a quadtree, all nodes which do not have a non empty node
above and under it, are exterior empty nodes. To identify interior empty
nodes neighbours on the z direction are recursively computed outward. This
is first done for the node above a current empty node and next for the node
under the current node. The neighbours are computed until a non empty
node is reached or until the border of the octree is reached (the node is
exterior). An empty node is only further processed if it has both a non empty
node above and beneath it. This method works fine for rooms with closed
roofs but will generate errors for any glass or open roofs/ floors.

This method can also be used to compute the minimal downward
distance to a border with a non empty node. In the process of checking if an
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empty node is interior, the closest downward non empty nodes is computed.
The downward distance is the delta z between the border of the non empty
node and the centre point of the empty node. If we have the downward
distance to the closest non empty node, this distance can be used as
constraint in A* path finding. For example, a maximum distance of 1 meter
roughly represent the volume in which a person can reach the closest non
empty node underneath him/her. By selecting a start and goal node
maximal 1 meter above a non empty node, the path will likely be bound to
the floor. Note that this method is very basic and there is no proof that it will
work in all circumstances.

Figure 3.7: Section of a building represented by an octree: blue is interior and red
exterior.

3.3 N E I G H B O U R F I N D I N G A N D

C O N N E C T I V I T Y G E N E R AT I O N

For path finding in an octree, the connectivity between the nodes must be
known. This thesis proposes to pre-process the connectivity of each node
and store this in a network graph. For this, two steps need to be performed:
neighbour finding and connectivity generation. Neighbour finding focusses
on computing all possible neighbours for an interior empty node given a
certain connectivity. Connectivity generation aims on selecting neighbours
which are interior empty nodes. The work flow of this is presented in Figure
3.8.
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Figure 3.8: Work flow of connectivity generation

3.3.1 Neighbour finding

This subsection describes how all possible neighbours are computed. The
method is based on the work of Vörös [2000]. He proposes to find
neighbours based on their common ancestor. A distinction is made between
inner neighbour (having the same parent) and outer neighbours (having a
different parent node).

The method of Vörös [2000] differs on two front from this research. In
this research only equal and larger neighbours are needed whereas Vörös
computes smaller, equal and larger neighbours. Secondly, in this research
two nodes can be neighbours if they share a common face, edge and vertex.
The method of Vörös is restricted to face neighbours. Therefore the method
of Vörös is extended to compute edge and vertex neighbours. The next two
subsections describe the method for finding equal edge and vertex
neighbours. Finally is describes how to compute larger neighbours.

Equal Edge Neighbours

The method of Vörös [2000] does not include edge neighbours. The binary
operations used to find equal face neighbours, do not work for equal edge
neighbours when multiple digits of the location code need to be changed. To
solve this, I developed a method to find edge neighbours. The remainder of
this subsection will describe the method.

The basic idea of the method is: the edge neighbours of node c have a
face connection with a face neighbours of node c. Therefore the face
neighbours of the face neighbours of node c have to be computed to get the
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edge neighbours. The method is better explained with the use of Figure 3.9.
The method is divided into four steps. In the first step the face neighbours of
node c are computed. In the second step the face neighbour which are
computed in the directions Dx and Dy are selected. In the third step the
neighbours in Dz and Dx are computed of the face neighbours in direction
Dx. In the final step the neighbours in Dz of the face neighbours in direction
Dy are computed. The computed neighbours of the face neighbours form
the complete set of equal edge neighbours.

1. 2. 3. 4. 

Figure 3.9: 1. face neighbours, 2. selected face neighbours, 3. compute face
neighbours of face neighbours, 4. edge neighbours

Equal Vertex Neighbours

The method for computing equal vertex neighbours is similar to that of edge
neighbours. The idea is: vertex neighbours of node c have a face
connection with a edge neighbour of node c. So the face neighbours of the
edge neighbours of node c have to be computed to get the edge neighbours.
The method is better explained with the use of Figure 3.10. The method is
divided into four steps. In the first step the edge neighbours are computed.
Next the edge neighbours which were computed in direction Dx are
selected. Of the selected nodes, the face neighbours in the direction Dz are
computed. These nodes are the vertex neighbours.

1. 2. 3. 4. 

Figure 3.10: 1. edge neighbours, 2. selected edge neighbours, 3. compute face
neighbours of edge neighbours, 4. vertex neighbours

Larger Neighbours

The method to compute larger neighbours is based on that of Vörös [2000]
and is the same for each kind of neighbour (face, edge and vertex). The
idea is that the ancestor nodes of a equal neighbour of node c are also
neighbours of node c. Thus, the larger sized neighbours are computed by
recursively deleting the most right digit from the location codes of the equal
sized neighbours.
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3.3.2 Connectivity generation

The previous section presented the method to compute equal and larger face,
edge and veretx neighbours. Neighbours can be computed on the fly in A*
path finding or they can be pre-processed. For both situations a suitable
solution is developed. Both methods compute the neighbour the same way.
This section will present a method to pre-process the node connectivities.

The method of Namdari et al. [2015] is used to compute neighbours
during bread-first search octree generation. Only equal and larger
neighbours are computed during the octree generation. By storing the
connection of a larger neighbour in both connected nodes, also smaller
neighbours are found in a later stage of the octree generation.

Like the method of Namdari et al. [2015] the octree used in this research
is computed in a top down approach. For each interior empty node the
equal and larger neighbours are computed based on the method described
in section 3.3.1. Next it is checked if the neighbours are interior empty
nodes. If so, the distance between the centre points of the intersecting
interior nodes is computed. The connection of larger interior neighbours is
stored in both the connected nodes. For example, if node x has a larger
neighbour y the connection in node x and node y is stored. This step
ensures that for the larger node y the smaller neighbours are stored. If all
interior empty nodes are computed, a network graph is stored which can be
used for indoor path finding.

3.4 C O L L I S I O N AVO I DA N C E

The goal is to compute a collision free path for an object with an arbitrary size.
A path is collision free if the object does not intersect with any non interior
empty node along the path. For this, two things need to be known: can the
object fit in a node, and can this object move between two nodes. Therefore
this section consist of two parts: subsection 3.4.1 explains how to compute
the distance from the centre of an empty node to the closest border with a
non empty node. Subsection 3.4.2 explains how to compute the distance
between a crossing point of two interior empt nodes and the closest non
empty node.

3.4.1 Clearance map

The goal of the step is to compute for each interior empty node the minimal
distance to a border with a non empty node. Together, these distances form
a clearance map. On its own this clearance map can be used for object
fitting. And it can be used for collision avoidance for path finding with a face
connectivity. But this method will not suffice for an extended connectivity.
The work flow to compute the clearance is presented in Figure 3.11.

The method of Samet [1982a] is used to compute the clearance for each
empty node. The closest boundary with a non empty node is computed with
a chessboard distance. Thus the closest non empty node must be, or a
descendant of, one of the equal neighbours (see Figure 2.11). Since non
empty nodes are always stored in the lowest level, a non empty node can
never be a larger neighbour. So the 26 equal neighbours are needed to find
the closest boundary with a non empty node. Since these neighbours were
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Figure 3.11: Work flow of Clearance map

computed and stored during the connectivity generation these are already
available. To acquire the closest boundary, the closest non empty nodes
has to be computed first. This is done by recursively subdividing the equal
neighbours until the lowest octree level and storing it in a set.This is the
level of the non empty nodes. This set can be compared with the set of non
empty nodes. For each intersecting non empty node the distance between
the border of the non-empty node and the centre point of the empty node is
computed. As it is possible for multiple non empty nodes to intersect, it is
the smallest distance that defines the clearance. This clearance is stored as
attribute of the current interior empt node.

3.4.2 Maximal crossing value

Figure 3.12 shows two diagrams, in the left an object (blue circle) is in the
centre of an empty node where the clearance is sufficient. Although the
clearance is sufficient in the centre point of a node, the object collides with
a non-empty node (red) when moving between two empty nodes. For this
reason it is key to check the maximal crossing value for each connection
between two interior empty nodes. This crossing value can never be bigger
than the minimal clearance of the two connection empty nodes. Otherwise
an object would be able to enter a node with a clearance smaller than the
object size and a collision would occur.
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Clearance

Figure 3.12: The clearance in the centre point is collision free, however point of
movement collides with a non empty node

There are three types of connections between two empty nodes: face,
edge and vertex.

In the case of an equal face connection the minimal clearance is equal to
the maximal crossing value. Figure 3.13 shows two equal face neighbours.
The image also shows the minimal chessboard distance (clearance) from
point c1 and c2. The distance to the intersection point i1 cannot be smaller
than one of the clearances. Thus the maximal crossing value is equal to the
minimal clearance of node c1 and c2. In the case of a connection between
node of arbitrary sizes the movement must go through the centre point of the
smallest intersecting face.

11 1 1

11 1

1 1

1 1 1

1 c1 c2i1 1

Figure 3.13: Only the common (purple) neighbouring nodes of the blue and red node
can be closest to the intersection point

As mentioned: the maximal crossing value can never be larger than the
minimal clearance of the two connected empty nodes. Therefore only
common neighbours of two connected empty nodes can have a smaller
distance to the crossing point than the minimal clearance. Figure 3.14
shows a vertex connection between a blue and red node in a quadtree. The
area which defines the clearance for each node is coloured in a lighter tone
of the node colour. The non empty nodes in those areas define the
clearance of each node. So for a crossing value to be smaller than the
minimal clearance, there must be a node in the common neighbours of the
blue and red nodes. This means that only non empty nodes in the common
neighbours of two adjacent empty node can create a smaller distance to the
intersection point than the minimal clearance.
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Figure 3.14: Only the common (purple) neighbouring nodes of the blue and red node
can be closest to the intersection point

For an edge connection this means only two common face neighbours
have to be explored. Figure 3.15 shows the common neighbours (blue)
between two nodes (red and white) in an edge connection. The common
neighbours can be found by doing an AND operation on the set of face
neighbours of the two connected empty nodes. Next it is checked if the
common neighbours are (ancestors of) a non empty node. If there are
intersecting nodes, the distance between the intersection line and the
closest point on the boundary of the non empty node is calculated. The
maximal crossing value is now defined by the lowest value of the distances
or the clearance of the connected empty nodes.

Figure 3.15: Only the common (purple) neighbouring nodes of the blue and red node
can be closest to the intersection point

A vertex connection between two empty nodes has six common
neighbours. Figure 3.16 illustrates a vertex connection between a red and
white node. The six blue nodes are common neighbours of the red and
white node. Instead of only face neighbours, also edge neighbours have to
be explored to find the common neighbours. The method of finding the
maximal crossing value works the same as the method described for the
edge neighbours.

The cross value is computed during the construction of interior empty
nodes. As an empty node is constructed, all the possible neighbours are
found. The maximal crossing value is only computed for interior empty
neighbouring nodes. This prevents computing the maximal crossing value
for connections to non empty nodes or exterior empty nodes.
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Figure 3.16: Only the common (purple) neighbouring nodes of the blue and red node
can be closest to the intersection point in a quadtree

3.5 T Y P E S O F D I S TA N C E

A distance between two points can be calculated in different ways. In this
research the effect on the computation time and path length of the following
distances is tested:

1. Euclidean
The Euclidean distance is the true distance between two points. It is
calculated using theorem of Pythagoras (a2 + b2 = c2).

2. Manhattan
In a Manhattan distance only orthogonal motion is possible. The
distance is the sum of all orthogonal components.

3. Chessboard
Chessboard distance is the amount of steps needed for a king to move
on a chessboard to the next node.

For each distance type a function is created, this functions are used to
compute the distance between two adjacent nodes. Figure 2.12 illustrates
the distance types in more detail.

3.6 B E N C H M A R K T E S T S

The final goal of this research is to identify the effect of geometrical point
cloud operations, octree operators and A* operations on A* path finding. To
find these effects benchmark tests were conducted. The benchmark tests
are divided into two stages: 1) The effects of octree operators on path length
and computation time; 2) The effects of A* operations on path length and
computation time.

3.6.1 Test system

All benchmark tests are calculated on a computer with the following
specifications:

• Processor Intel(R) Core(TM) i5-4590 CPU @3.30GHz

• Installed memory (RAM) 8.00 GB

• System Type 64-bit Operation System, x64-based processor,
Windows 10 Pro
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3.6.2 Storage

The results of the benchmark test will be stored in a PostgreSQL database.
There are two types of benchmark tests: 1) octree generation, 2) path
finding. For each type of test a database table is used to store the results
and metadata.

The table to store the octree generation results contains the following:
(ocree name, scale, rotation, translation, distance type, connectivity,

bounding box of point cloud, minimal leaf node size)
And the metadata of the octree generation contains:
(number of points, number of non empty nodes, time to compute non

empty nodes, number of interior empty nodes, time to compute empty
nodes, total computation time)

The table to store the path finding results contains the following:
(path length, computation time, iterations, the path route)
And the metadata of the path finding contains:
(octree name, star node, goal node, clearance, distance to floor,

connectivity, distance type)

3.6.3 Quality

To assure that time measurement is not influenced by outliers, all time
measurements are conducted five times. Of these measurements, the
median value is computed and used as result.

3.6.4 Benchmark test set up

As mentioned, the benchmark test consists of two parts. In all path finding
tests the point cloud is aligned to the octree axis, translated and scaled. The
octree operator and A* operations which are tested are: octree depth, path
connectivity, pre-processing connectivity and distance type. Table 3.2
provides the test setting of the benchmark tests.

Parameters octree
depth

Pre-processed
connectivity

Connectivity Distance type

Octree depth 6-8 6 6 6
Pre-processed
connectivity

True True, False True True

Connectivity 6 6 6, 18, 26 6

Distance type Euclidean Euclidean Euclidean
Euclidean
chessboard,
Manhattan

Table 3.2: Test settings for A* path finding benchmark tests

Octree Depth

The octree depth defines the spatial resolution of an octree. For path finding a
minimal resolution is necessary to pass through all rooms. Therefore this test
aims to identify the effect of different octree depths, or spatial resolutions, on
the path length and computation time. Because the depth is closely related
to the spatial resolution it does not make sense to perform the test on the test
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point cloud, as it does not represent a ’real’ building and cannot give a usable
leaf size spatial resolution of the smallest octants in an octree. The octrees
used in the test are generated with a minimal clearance and crossing value
of 0, 17. Further, empty nodes can be maximal 1, 25 m above a border with
the closest non empty node.

Pre-processing connectivity

During path finding, the connectivity of a neighbour can be derived from a
network graph or computed on the fly. Pre-processing neighbours obviously
makes the octree generation computational more demanding. However, a
network graph eliminates a number of operations during path finding: 1)
neighbour finding; 2) connectivity generation; 3) distance to neighbouring
node. So instead of computing the latter, these are known, which saves time
in path finding. Therefore, this benchmark test aims to identify the effect of
pre-processing node connectivities on computation time. As the path finding
algorithm is identical, there will be no difference in path length and is thus
not tested.

All point clouds will be used for this benchmark test. All routes in the
Bouwpub and Fire department are computed with a minimal clearance of
0, 17 and a maximal downward distance of 1, 25 m to the border of the closest
non empty node. For the test point cloud the minimal clearance and distance
to a non empty node is set to 0. For each dataset two octrees with 7 levels
are computed: one with pre-processed face neighbours and one without a
connectivity computed.

Path connectivity

Increasing the path connectivity extend the amount of possible directions in
which movement is possible. This makes it possible to find a shorter an
smoother path. Although due to the extended connectivity there are more
possible nodes to discover. This benchmark test aims to identify the
difference of a face (6); face and edge (18) or face, edge and vertex (26)
connectivity on the path length and computation time. A face connectivity is
pre-processed for these benchmark tests. The test will be performed on all
point clouds. All octrees have a depth of 7 levels. All routes in the Bouwpub
and Fire department are computed with a minimal clearance of 0, 17 and a
maximal downward distance of 1, 25 m to the border of the closest non
empty node. For the test point cloud the minimal clearance and distance to
a non empty node is set to 0.

Path distance type

Three types of distance types were tested: Euclidean, Manhattan and
chessboard. This test aims at identifying the effect of different distance
types used in A* path finding on path length and computation time.

The test will be performed on all point clouds. All octrees have a depth of
7 levels. All octrees have a tree depth of 7 and a face neighbours is
computed on the fly. All routes in the octree of the Bouwpub and fire
department are computed with a minimal clearance of 0, 17 and empty
nodes can be maximal 1, 25 m above a border with the closest non empty
node. For the test point cloud the minimal clearance and downward
distance to a non empty node is set to 0.
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I M P L E M E N TAT I O N

This chapter presents the implementation of the methods. The methods are
implemented in a software package containing three scripts: 1) octree
generation; 2) neighbour finding and 3) A* path finding. The latter will be
explained in sections 4.1 and 4.2. Section 4.3 explains the implementation
of the point clouds. Section 4.4 presents the implementation of the
benchmark test. And finally, section 4.5 presents the software and tools
used in the implementation.

4.1 E M P T Y N O D E G E N E R AT I O N

The main contribution to the octree generation process is the way empty
nodes are processed. Each empty node follows a number of decision steps.
These steps are designed to process only what is necessary. To explain
these steps I will refer to lines in a python code. Most of the lines in the code
are accompanied with a small descriptive text (in red). The script for the
generation of empty nodes is provided below.

1. For each empty node in the octree, the following steps are taken:

1.1. Interior empty nodes are identified (lines 9 - 13), this process is
explained in section 4.1.1. Only interior empty nodes are further
processed, the exterior empty nodes are filtered out and will not
be stored in the database of network graph. Each interior empty
node returns the closest non empty node directly beneath it.

1.2. Compute the distance to the closest non empty node under each
interior empty node. (lines 16 - 31).

1.3. All possible neighbours of the interior empty node are computed
with the neighbour finding scripts (lines 36 - 37). This script is
explained in section 4.1.2.

1.4. The clearance of the interior empty node is computed (lines 44 -
48). This process is explained in section 4.1.3.

1.5. Create connectivity and maximal crossing value of the interior
empty node (lines 50 - 94). This process is explained in detail in
section 4.1.3.

1.5.1. Check for each neighbour if it is a processed interior empty
node (line 53). This is done by checking if the location code
exists in the set of interior empty nodes. Only the interior
empty neighbours are further processed.

1.5.2. Compute the crossing value. For this the interior empty
neighbours are used to compute the crossing value (lines 57
& 58). This process is explained in section 4.1.3.

35
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1.5.3. Create the connectivity in a temporary dictionary with location
code as key and the distance and maximal crossing value as
values (line 60).

1.5.4. Store the connection of larger neighbours in both directions
(lines 66 - 76).

2. If all neighbours are computed, the temporary neighbour dictionary is
stored in a connectivity dictionary (line 79).

3. Clean the neighbours dictionary of all neighbours which are not interior
empty nodes (line 81 - 87).

4. Store the neighbours dictionary as .json file and return the clearance
dictionary (line 89 - 84)

1 generation of interior empty nodes"""

2 for emptyNode in tree:

3 currentNode = emptyNode + number

4 """check if node is not an non empty node"""

5 if currentNode not in nonempty[level+1]:

6

7 """Compute the coords of the current coord"""

8 currentNodeCoord = getCoord(depth, currentNode).split(’ ’)

9

10 """Check if a emptyNode is interior or exterior"""

11 if int(currentNode[-1])<3:

12 closestNode = interiorEmptyNodes.inner(currentNode, nonempty[level+1], NonEmptyTable)

13 else:

14 closestNode = interiorEmptyNodes.outer(currentNode, nonempty[level+1], NonEmptyTable)

15

16 """Select only the interior empty nodes"""

17 if closestNode:

18 """Check distance to nodes under empty node"""

19 """In here the function ’interiorEmpty’ nodes is called"""

20 if int(currentNode[-1])>3:

21 closestNode = interiorEmptyNodes.inner(currentNode, nonempty[level+1], NonEmptyTable)

22 else:

23 closestNode = interiorEmptyNodes.outer(currentNode, nonempty[level+1], NonEmptyTable)

24

25 """check if there is a non empty node under the interior empty node comp distance"""

26 if closestNode:

27 """Only compute the coords of the node if there is a non empty node under it"""

28 closestNode = getCoord(depth, closestNode).split(’ ’)

29 """distance to floor is delta z"""

30 distanceToFloor = (int(currentNodeCoord[3])+halfLeafSize)-(int(closestNode[3])+1)

31 distanceToFloorDict[currentNode] = round((distanceToFloor/scale),2)

32

33

34 """Compute all possible neighbours for each interior empty node"""

35 """This calls the neighbour finding script"""

36 equalFaceNeighbours, largerFaceNeighbours,\

37 equalEdgeNeighbours, largerEdgeNeighbours,\

38 equalVertexNeighbours, largerVertexNeighbours = \

39 neighbourFinding.giveMeUpToEqualSizedNeighbours(currentNode, depth)

40

41 """Compute the clearance for each node"""

42 allEqual = equalFaceNeighbours.copy()

43 allEqual.update(equalEdgeNeighbours)

44 allEqual.update(equalVertexNeighbours)

45

46 """In here the function ’clearance’ is called"""

47 clearanceDict[currentNode] = round((clearance(NonEmptyTable,\

48 currentNodeCoord, maximumLevels, allEqual, (1,2,3))/scale),2)

49

50 """Store the clearance in a dictionary"""

51 clearanceCurrent = clearanceDict[currentNode]

52

53 """The connectivity and collision avoidance is generated"""

54 if connectivity == ’face’ or connectivity == ’faceEdge’ or connectivity == ’faceEdgeVertex’:

55 """Cross value for equal face neighbours"""

56 for neighbour in equalFaceNeighbours:

57 """only compute the maximal crossing value if the neighbours is an interior empty node"""

58 if neighbour in emptyFaceNeighbourDict:
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59 """"The maximal crossing value can never be larger then the minimal clearance"""

60 maxCrossValue = min(clearanceCurrent,

61 emptyFaceNeighbourDict[neighbour][currentNode][1])

62 """Store the connectivity and the maximal crossing"""

63 equalFaceNeighbours[neighbour] = (equalFaceNeighbours[neighbour], maxCrossValue)

64

65 else:

66 equalFaceNeighbours[neighbour] = (equalFaceNeighbours[neighbour], clearanceCurrent)

67

68 """Compute the larger face neighbours"""

69 for largerNeighbour in largerFaceNeighbours:

70 """compute only larger neighbours which are interior empty nodes"""

71 if largerNeighbour in emptyFaceNeighbourDict:

72 """Compute Euclidean distance between centre points of two neighbouring nodes"""

73 euclideanDistance = euclidean(currentNodeCoord, largerNeighbour)

74

75 """Store the connection in the neighbour dictionary of the current node"""

76 equalFaceNeighbours[largerNeighbour] = (euclideanDistance, clearanceCurrent)

77

78 """All larger nodes are stored in both directions, this

79 way the smaller neighbours get stored for each node"""

80 emptyFaceNeighbourDict[largerNeighbour].update({currentNode:equalFaceNeighbours[largerNeighbour]})

81

82 """Store the neighbours in the master dictionaries"""

83 emptyFaceNeighbourDict[currentNode] = equalFaceNeighbours

84

85 if connectivity == ’face’ or connectivity == ’faceEdge’ or connectivity == ’faceEdgeVertex’:

86 """Delete all non empty neighbour nodes"""

87 emptyfaceNeighbourDict = dict()

88

89 for emptyNode in emptyFaceNeighbourDict:

90 """"Filter out all non empty neighbours using a dictionary comprehension"""

91 emptyfaceNeighbourDict[emptyNode] = {k: v for k, v in \

92 emptyFaceNeighbourDict[emptyNode].iteritems() if k in emptyFaceNeighbourDict}

93

94 """Store the neighbours dictionary in a .json file"""

95 json.dump(neighboursDict, open("neighourDicts/"+name+"_neighboursDict1.txt",’w’))

96

97 return clearanceDict, distanceToFloorDict

4.1.1 Interior empty nodes

This section explains the implementation of computing interior empty nodes.
In the following example it is checked if a node has a non empty node above it.
This is done by recursively computing a neighbours upward until a non empty
node is reached or until there are no more upward neighbours (the node is
exterior). The following enumeration describes the script. The python code
is provided below.

1. Check if the interior empty node is located in the top or bottom in its
parent node. If it is located in the top there is no inner neighbour above
the empty node. This means the neighbour above the empty node is
an outer neighbour (lines 3-8).

2. The inner or outer neighbour is computed (lines 11, 19).

3. It is checked if the neighbours is, a parent node of, a non empty node
(lines 12, 20). The neighbour is compared with a set of nodes which
would have been non empty at the depth of the current interior empty
node.

3.1. If this is true, the script returns the non empty node closest to the
empty node in question (lines 12, 24).

3.2. If this is not true, the next neighbour is computed and step 3 is
repeated (lines 15-16, 27-28).
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3.3. If there are no more neighbours (this happens when the border of
the octree is reached) the node is exterior (lines 24-26).

1 for empty node in octree:

2 """Check if a node is interior or exterior"

3 """ check if the last digit of the location code is smaller or large than 3.""""

4 """" This decides if the first neighbours must be inner or outer"""

5 if int(currentNode[-1])<3:

6 closestNode = innerNeighbour(currentNode, nonempty[level+1], NonEmptyTable)

7 else:

8 closestNode = outerNeighbour(currentNode, nonempty[level+1], NonEmptyTable)

9

10 def innerZNeighbour(spatialCode, nonEmptyNodesCut, nonemptyNodes):

11 zNeighbour = getEqualInnerNeighbours(spatialCode)

12 if zNeighbour in nonEmptyNodesCut:

13 """"The node is interior"""

14 return max([x for x in nonemptyNodes if x[0:len(spatialCode)] == zNeighbour])

15 else:

16 return outerNeighbour(zNeighbour, nonEmptyNodesCut, nonemptyNodes)

17

18 def outerZNeighbour(spatialCode, nonEmptyNodesCut, nonemptyNodes):

19 zNeighbour = getEqualOuterNeighbours(spatialCode)

20 if zNeighbour in nonEmptyNodesCut:

21 # print max([x for x in nonemptyNodes if x[0:len(node)] == zNeighbour])

22 """"The node is interior"""

23 return max([x for x in nonemptyNodes if x[0:len(spatialCode)] == zNeighbour])

24 elif len(zNeighbour) == 0:

25 """"The node is exterior"""

26 return None

27 else:

28 return inner(zNeighbour, nonEmptyNodesCut, nonemptyNodes)

4.1.2 Neighbour finding and connectivity generation

The goal of this step is to compute the connectivity for each interior empty
node. First, all possible neighbours are computed. For each neighbour the
Euclidean distance is computed between the centre points of the interior
empty neighbours (line 20). Besides, for each connection to an interior
empty neighbours, the maximal cross value is computed. Note that the
maximal crossing value is only computed if a neighbour is an interior empty
node, see line 18. In the case of face neighbours the maximal crossing
value is the minimal clearance of the two connected empty nodes. When all
interior empty nodes are computed, all non interior empty neighbours are
filtered out for each interior empty node.

The python script below shows the implementation for face neighbours.
The implementation works similar for edge and vertex neighbours.

1 for interiorEmptyNode in octree:

2 """Compute all possible neighbours for each interior empty node"""

3 equalFaceNeighbours, largerFaceNeighbours = \

4 neighbourFinding.giveMeUpToEqualNeighbours(currentNode, maximumLevels)

5

6 if connectivity == ’face’:

7 """Cross value for equal face neighbours"""

8 for neighbour in equalFaceNeighbours:

9 if neighbour in emptyFaceNeighbourDict:

10 maxCrossValue = min(clearanceCurrent, emptyFaceNeighbourDict[neighbour][currentNode][1])

11 equalFaceNeighbours[neighbour] = (equalFaceNeighbours[neighbour], maxCrossValue)

12 emptyFaceNeighbourDict[neighbour][currentNode] = \

13 (emptyFaceNeighbourDict[neighbour][currentNode][0],maxCrossValue)

14

15 else:

16 equalFaceNeighbours[neighbour] = (equalFaceNeighbours[neighbour], clearanceCurrent)

17

18 """Compute the larger face neighbours"""

19 for largerNeighbour in largerFaceNeighbours:

20 if largerNeighbour in emptyFaceNeighbourDict:

21 """Compute Euclidean distance between centre points of two neighbouring nodes"""
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22 euclideanDistance = euclidean(currentNodeCoord, largerNeighbour)

23

24 """Store the connection in the neighbour dictionary of the current node"""

25 equalFaceNeighbours[largerNeighbour] = (euclideanDistance, clearanceCurrent)

26

27 """All larger nodes are stored in both directions, this\

28 way the smaller neighbours get stored for each node"""

29 emptyFaceNeighbourDict[largerNeighbour].update({currentNode:equalFaceNeighbours[largerNeighbour]})

30

31 """Store the neighbours in the master dictionaries"""

32 emptyFaceNeighbourDict[currentNode] = equalFaceNeighbours

33

34 """Delete all non interior empty nodes from the neighbours dictionary"""

35 emptyfaceNeighbourDict[node] = {k: v for k, v in emptyFaceNeighbourDict[node].iteritems() if k in emptyFaceNeighbourDict}

4.1.3 Collision avoidance

The goal is to compute a collision free path for an object with an arbitrary size.
A path is collision free if the object does not intersect with any non interior
empty node along the path. For this, two things need to be known: can the
object fit in a node, and can this object move between two nodes.

Clearance map

The goal of this step is to create a clearance (minimal distance to a
boundary with a non empty node) for an interior empty node. For each
current interior empty node the face, edge and vertex neighbours are
computed. Of each neighbour all possible children nodes at the lowest
octree level are computed, see line 18 to 29. These nodes are compared to
the non empty nodes with a binary AND operation. All non empty
neighbours are stored in a list. For each of these non empty neighbours, the
chessboard distance between the centre of the current interior empty node
and the closest point on the boundary of the non empty neighbour is
calculated. The smallest distance is the clearance of the current interior
empty node. The relevant python code for the clearance is presented below.

1 def clearance(nonEmptyNodes, currentNode, depth, neighbourSet, numbers):

2 ""Compute the clearance of a interior empty node"""

3 level = depth - len(currentNode[0])

4 leafSize_currentNode = (2 ** level)

5

6 """Compute all possible leafnodes"""

7 possibleLeafNodes = findChildrenNeighbours(set(neighbourSet), level)

8

9 """Compute the non empty leaf nodes which descend from the non empty neighbours"""

10 nonEmptyLeafNode = possibleLeafNodes & nonEmptyNodes

11

12 BorderDistanceList = []

13 for node in nonEmptyLeafNode:

14 """Compute the distance with distance function"""

15 BorderDistanceList.append(chessboardDistance(currentNode, node, depth, numbers))

16 """Return the clearance"""

17 return min(BorderDistanceList)

18

19 def findChildrenNeighbours(nodeSet, depth):

20 """Recursively subdivede not until finest resolution is reached"""

21 newNodeSet = set()

22 if depth ==0:

23 return nodeSet

24

25 elif depth>0:

26 for node in nodeSet:

27 for number in range(0,8):

28 newNodeSet.add(node + str(number))

29 depth -=1

30 """return all possible leaf nodes"""

31 return findChildrenNeighbours(newNodeSet, depth)
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32

33 def chessboardDistance(current, neighbour, depth, directions):

34 """"Compute the chessboard distance"""

35 neighbour = getCoord(depth, neighbour).split(’ ’)

36 halfLeafSize = 0.5*int(current[4])

37

38 lengthList = []

39 for direction in directions:

40 """check if the node is legft or right of the current interior empty node"""

41 if int(current[direction])<int(neighbour[direction]):

42 lengthList.append(abs((int(current[direction])+halfLeafSize)-int(neighbour[direction])))

43 else:

44 lengthList.append(abs((int(current[direction])+halfLeafSize)-(int(neighbour[direction])+1)))

45 """Return the minimal distance"""

46 return max(lengthList)

Maximal crossing value

The python code below computes the maximal crossing value for equal edge
and vertex neighbours. First, it is checked if the neighbour is an interior empty
node. Only the interior empty neighbours are further processed. Next the
intersecting line of point between the current interior and the interior empty
neighbour node is computed. This is used to compute the distance to a
non empty node. Next, the common neighbours of the interior current and
neighbour node are computed. All possible descendants of the common
neighbours are computed. If a descendant is a non empty node the distance
to the intersection line/ point is computed. The smallest distance defines
the maximal crossing value. The maximal crossing value is stored in both
directions. The relevant python code is provided below.

1 def crossValue(equalNeighbours):

2 """Check if the neighbour exist in the dictionary"""

3 for neighbour in equalNeighbours:

4 if neighbour in checkEmptyNeighbourDict[0]:

5

6 """Compute the intersection line/point between the current interior

7 empty node and empty interior neighbour node"""

8 neighbourCoord = getCoord(depth, neighbour).split(’ ’)

9 intersectLineCoords = [0]

10 numbers = []

11 for number in (1,2,3):

12 if int(neighbourCoord[number]) == int(currentNodeCoord[number]):

13 intersectLineCoords.append(999)

14 else:

15 intersectLineCoords.append((int(neighbourCoord[number])+int(currentNodeCoord[number]))/2)

16 numbers.append(number)

17 intersectLineCoords.append(0)

18

19 """compute the common neighbours"""

20 testset = set()

21 for dictionary in checkEmptyNeighbourDict:

22 testset = testset | set(dictionary[neighbour])

23

24 commonNeighbours = set(equalCheckNeighbours) & testset

25

26 """Compute all non empty nodes in the intersecting neighbours"""

27 """Select all non empty nodes starting with the possible neighbours"""

28 nonEmptyLeafNode = [x for x in NonEmptyTable if x[0:len(currentNode)] in commonNeighbours]

29

30 """Compute the distance between the intersection

31 line and the closest boundary on the black node"""

32 edgeDistance = []

33

34 if nonEmptyLeafNode:

35 """Ïf there are any non empty nodes that intersect"""

36 for nonEmpty in nonEmptyLeafNode:

37 edgeDistance.append(distanceType(intersectLineCoords, nonEmpty, depth, numbers))

38

39 """The maximal cross value is the minimal distance of the clearance

40 of the current and neighbour node or minimal cross value"""

41 maxCrossValue =round(min(((edgeDistance)/scale), clearanceDict[currentNode], clearanceDict[neighbour]),2)
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42 equalNeighbours[neighbour] = (equalNeighbours[neighbour], maxCrossValue)

43 """Store the maximal cross value in both directions"""

44 emptyNeighbourDict[neighbour][currentNode] = (emptyNeighbourDict[neighbour][currentNode],maxCrossValue)

45 else:

46 """If there are no non empty nodes in the common neighbours"""

47 """The maximal crossing value is the minimal clearance """

48 maxCrossValue =min(clearanceDict[currentNode], clearanceDict[neighbour])

49 equalNeighbours[neighbour] = (equalNeighbours[neighbour], maxCrossValue)

50 """Store the maximal cross value in both directions"""

51 emptyNeighbourDict[neighbour][currentNode] = (emptyNeighbourDict[neighbour][currentNode],maxCrossValue)

52

53 return equalNeighbours

4.2 A * PAT H F I N D I N G

The first step in path finding is loading and constructing a network graph and
loading empty nodes from the database.

1 def get_nodesDict():

2 """In this function we extract the non empty nodes from the database"""

3 conn = psycopg2.connect("host=’localhost’ dbname=’"+dbms_name+"’ user=’"+ user+ "’")

4 cur = conn.cursor()

5 cur.execute("select * from "+name+"_emptySpace where clearance >=" +str(clearance) +" \

6 and distancetofloor < " +str(distancetofloor) +";")

7 nodes = cur.fetchall()

8 nodesDict = dict()

9

10 for node in nodes:

11 nodesDict[node[0]] = (node[1], node[2], node[3], .5* node[4])

12

13 """Create neighboursDict"""

14 neighboursDict= json.load(open(name+’_neighboursDict.txt’, ’r’))

15

16 """filter out all interior empty nodes where the clearance and/ or

17 distance to floor is not sufficient"""

18 neighboursDict = {k: v for k, v in neighboursDict.iteritems() if k in nodesDict}

19

20 """Filter out all connections where the clearance and distance to floor is to little"""

21 for node in neighboursDict:

22 neighboursDict[node] = {k: v for k, v in neighboursDict[node].iteritems() \

23 if v[1] > clearance and k in nodesDict}

24 """Filter out all interior empty nodes having no connections"""

25 neighboursDict = {k: v for k, v in neighboursDict.iteritems() if v}

26

27 return neighboursDict, nodesDict

The next step is the actual A* path finding. If no path can be found, an
error message returns ’no path found’.

1 def a_star_search(start, goal):

2 "In this function we run the A* algorithm"""

3 en_list = Priority()

4 en_list.put(start, 0)

5 me_from = {}

6 st_so_far = {}

7 st_so_far[start] = 0

8 " while the empty_list is not empty """

9 ile not open_list.empty():

10 ""With this line we get the smallest total cost,

11 otal cost is the cost_so_far + cost to neighbour """

12 urrent = open_list.get()

13 ""If the current is the goal than the path is found

14 nd return the came_from dict and the cost_so_far """

15 f current == goal:

16 """The path is found"""

17 return came_from, cost_so_far

18 "" Check for all neighbors in current """

19 or neighbour in neighboursDict[current]:

20
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21 """Check if the cross value is higher than the minimal clearance"""

22 """ Calculate the cost to get to a neighbor from the star """

23 new_cost = cost_so_far[current] + neighboursDict[current][neighbour][0]

24 """If neighbor cost_so_far or new_cost to get to the neighbor

25 is smaller than getting their via a different path """

26 if neighbour not in cost_so_far or new_cost < cost_so_far[neighbour]:

27 """ Update or create new cost to get to neighbor """

28 cost_so_far[neighbour] = new_cost

29 """ Sum the cost to get to cost(start, neighbor) + cost(neighbor, goal) = total_cost"""

30 total_cost = new_cost + euclideon_dist(nodesDict[goal], nodesDict[neighbour])

31 """ Put neighbor in open_list with the total cost """

32 open_list.put(neighbour, total_cost)

33 """ add current and neighbor to cam_from dict """

34 came_from[neighbour] = current

35 ise ValueError(’No Path Found’)

4.3 P O I N T C L O U D DATA S E T S

The point clouds of the Bouwpub and the fire department are both existing
datasets. But the datasets still needed to be cleaned. The outliers were
removed using CloudCompare. Further, a section was cut out of the fire
department dataset to be used in the benchmark tests.

The test point cloud was created using a simple python script. The basic
idea of the algorithm is to create a point cloud with a set of x points having a
random x, y and z values within a square bounding box with dimensions of 0
to 2n, where n refers to the octree depth. The range of 0 to 2n is chosen so
the point cloud fits in a 2n ∗ 2n ∗ 2n grid having a scale of an integer number.

4.4 B E N C H M A R K T E S T S

The benchmark test are separated in two steps: the octree generation and
path finding. Both steps start by filling in the input and finish with storing all
results in a database. All time sensitive processes are computed multiple
times to avoid outliers in the results.
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Figure 4.1: Work flow for the octree and path finding benchmark tests

4.5 S O F T WA R E / TO O L S

All scripts are written in the programming language ’python’. For the
database management postgreSQL was used. To connect Python to
postgreSQL, the package psycopg2 is used. The package LibLas is used to
work with .las files (point clouds) in python.

For visualizations, the open source software Paraview is used. This
software is used to visualize the data. The program supports Python to
program source files and filters. Besides, with python it is possible to load
data from a postgreSQL database using the psycopg2 package.

The last tool used is CloudCompare, this is mainly used to clean and
rotate point clouds.
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5
R E S U LT S A N D A N A LY S I S

This chapter presents the results of this research. This chapter is structured
as follows: section 5.1 describes the results of geometrical point cloud
processing. Section 5.2 presents the results of components needed for the
generation of the empty nodes and network graph. Section 5.3 shows some
example routes in the datasets. And finally, section 5.4 presents the results
of the benchmark tests.

5.1 G E O M E T R I C A L P O I N T C L O U D

P R O C E S S I N G

This section describes the results of geometrical point cloud processing.
Section 3.1.2 describes how to geometrical process a point cloud so the
empty space can be classified most efficiently in an octree.

The effect of geometrical point cloud processing was tested by comparing
the difference between a point cloud which is aligned to the axis and that is
not. This was done with the Bouwpub and Fire department point cloud. The
results are presented in Table 5.1. The size of the bounding box decreased
with a factor of 0, 91 for the Bouwpub and 0, 81 for the Fire Department. This
increased the spatial resolution of the smallest octant with 0, 03 meters. Keep
in mind that the minimum bounding box of the Bouwpub is only 15, 94 meters.
Doing this for much larger building can lead to much larger reductions of the
spatial resolution.

point cloud
octree
depth

aligned
to axis

bounding
box [m]

scale
spatial resolution
of smallest
octant [m]

Bouwpub 7 yes 15,94 8,03 0,12
Bouwpub 7 no 17,59 7,27 0,14

Fire department 7 yes 13,86 9,24 0,11
Fire department 7 no 17,02 7,52 0,13

Table 5.1

5.2 E M P T Y N O D E G E N E R AT I O N

This section provides the results of the creating of empty nodes and a
network graph. The goal of the octree generation is to identify the interior
empty space, and create a network graph of this interior empty space. At
the same time a collision avoidance system is computed. Figure 5.1 shows
the process in which the interior empty space is derived from a point cloud.

45
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Point cloud Non empty space Interior empty space

Figure 5.1: Steps in octree generation

5.2.1 Interior empty nodes

During octree construction interior empty nodes are selected and further
processed. All exterior empty nodes are filtered out and excluded from
further processing and storage. Figure 5.2 shows the exterior (magenta)
and interior (blue) empty space of the Bouwpub dataset. Only nodes which
have both a non empty node above and beneath them are interior. In this
example 5699 exterior empty space nodes are filtered out on 11348 interior
empty nodes for an octree with 6 levels. This means about one third of the
empty nodes are not processed. In the octree of the Fire department there
were 7399 exterior empty nodes filtered out of in total 44506 empty nodes.

Interior empty spaceEmpty space

Figure 5.2: Interior and exterior empty nodes.

This method was also used to compute the downward distance between
an interior empty node and the closest non empty node. Figure 5.3 shows
the interior empty space of the Bouwpub in which the colour represents the
downward distance to a non empty node. Figure 5.4 illustrates the effect on
path finding if the downward distance to the closest non empty nodes is used
in path finding. The line in magenta is computed with a maximal downward
distance of 1.2 and the purple line is not constraint. The path of the magenta
line remains bound to the ground, even when it has to ascent a stair (where
the purple path goes straight to the target).
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Figure 5.3: Interior empty nodes. The colour of each interior empty node indicates
the downward distance to a non empty node.

Top view 3D view

Side view

Figure 5.4: Effect of path finding constraint by the downward distance to a non empty
node. The magenta path has to stay maximal 1.2 m above a non empty
node. The purple line is free, which means it has no maximal downward
distance to a non empty node.

5.2.2 Neighbour finding and connectivity generation

Two steps are required to create a connectivity for each interior empty node.
Firstly, all possible neighbours are computed. And finally, only the interior
empty neighbours are stored.

Neighbour finding

Neighbour finding is done via a python script. During the octree generation all
equal and larger neighbours are computed. Figure 5.5 visualizes all possible
neighbours of a node with location code ’1072’ in an octree with six levels.
The results are computed in the neighbour finding script and visualized in
Paraview.
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Current node All possible neighbours

Figure 5.5: All possible equal and larger neighbours of interior empty node ’1072’ in
an octree with six levels of the Bouwpub dataset.

Connectivity generation

During the octree construction, all possible neighbours are computed. If a
larger neighbour is an interior empty node, the connectivity is stored in both
neighbouring nodes. The complete set of possible equal neighbours is stored
in a network graph during the octree construction. When all interior empty
nodes are computed, all non interior empty nodes need to be filtered from
the network graph. This is done by comparing the possible neighbours with
the set of interior empty nodes. Figure 5.6 shows on the left all possible
neighbours of node ’1072’. On the right of the connectivity of the node, only
the interior empty neighbours remain.

All interior empty neighboursAll possible neighbours

Figure 5.6: The connectivity of interior empty node ’1072’ in an octree with six levels
of the Bouwpub dataset.

5.2.3 Collision avoidance

Collision avoidance is managed by a clearance of each empty node and a
maximal crossing value for each connection. The clearance of an empty
node expresses the minimal distance between the centre point and the
closest border with an non empty node. The maximal crossing value is the
minimal distance between an intersection point of a connection and the
closest boundary with a non empty node. The following subsections provide
the results of the clearance and maximal crossing value.
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Clearance map

The clearance of each interior empty node is computed during the octree
generation. Figure 5.7 illustrates a clearance map of the interior empty space
of the Bouwpub. A horizontal section is created of the non empty nodes
opening the roof. Three horizontal sections are made of the interior empty
space to give an overview of the clearance throughout the building. A colour
scale indicates the clearance of each empty node. Along surface there is
little clearance and in open space there is a large clearance.

Top layer of interior empty space

Middle layer of interior empty space

Figure 5.7: Three layers of empty nodes are visualized in a horizontal section of the
non empty nodes. The colour of each node indicates the clearance.

Maximal crossing value

The maximal crossing value of each connection is stored in a network graph.
For path finding in an octree of the Bouwpub with six levels and a minimal
crossing value of 0.17, the average amount of connections of each interior
empty node are reduced from 11, 15 to 10, 85.

Figure 5.8 illustrates the working of the collision avoidance system. The
purple path is computed with a clearance of 0, 17 and the magenta path has
a clearance of 0, 4. The figures show that the paths with a clearance of 0, 4
avoid smaller passages. Moreover, the blue path can move much closer to a
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a surface compared to the magenta path. The clearance and crossing value
can thus be used to compute a path for objects of different sizes.

Top viewTop view

Figure 5.8: The effect of a larger minimal clearance and crossing value.

5.3 A * PAT H F I N D I N G R O U T E S

Figure 5.9 shows two example paths through the Fire department. These are
some of the routes which are used in the benchmark tests.

3D view

Figure 5.9: The two paths through the point cloud of the Fire department.
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5.4 B E N C H M A R K T E S T S

This section describes the benchmark results.

point cloud depth connectivity scale
bounding
box

spatial
resolution

Test 7 non 2 64 0,5
Test 7 Face 2 64 0,5
Test 7 Face,edge 2 64 0,5
Test 7 Face,edge,vertex 2 64 0,5

Fire department 6 Face 4,62 13,86 0,22
Fire department 7 None 9,24 13,86 0,11
Fire department 7 Face 9,24 13,86 0,11
Fire department 7 Face,edge 9,24 13,86 0,11
Fire department 7 Face,edge,vertex 9,24 13,86 0,11
Fire department 8 Face 18,48 13,86 0,05

Bouwpub 6 Face 4,02 15,94 0,25
Bouwpub 7 None 8,03 15,94 0,12
Bouwpub 7 Face 8,03 15,94 0,12
Bouwpub 7 Face,edge 8,03 15,94 0,12
Bouwpub 7 Face,edge,vertex 8,03 15,94 0,12
Bouwpub 8 Face 16,06 15,94 0,06

Table 5.2: Metadata regarding the octrees used for the benchmark tests

5.4.1 Octree depth

All octrees in this test have a pre-processed face connectivity. All routes in
the octree of the Bouwpub are computed with a minimal clearance of 0, 17
and empty nodes can be maximal 1, 25 m above a border with the closest
non empty node.

Figure 5.10 shows the effect of octree depth on the path. As the octree
depth increases the path goes through smaller octants. This makes is
possible to get closer to obstacles. Moreover, the path appears more fluent
as smaller neighbours are incorporated in the path.

Initially the effect on path finding would be tested on a range octree
depths from 5 to 8. However, for both the point cloud of the Bouwpub and
the fire department, the smallest leaf nodes would have a size of about 0, 5
m. The Dutch building regulations 2012 state that a door should have
minimal width of 0, 85 meters. Therefore, for indoor path finding, the minimal
size an octant represents, should be smaller than 0, 85/2 = 0, 425. This
ensures that openings in a point cloud are also open space in an octree
representation.

Figure 5.11 illustrates the effect on path length. Generally the path
length decreases with every increasing octree depth. But this decrease
stagnates with an octree of eight levels. The smallest octants in an octree
with eight levels represents a size of 0, 12 and 0, 11 for the Bouwpub and the
Fire department. So if the smallest octant represents an area smaller than
0, 12 m, the effect on the path length is minimal.
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Top view

Side view

Figure 5.10: Effect of octree depth on the path in the Bouwpub. The colours of the
line represent the following octree depths: blue = 6, magenta = 7 and
green = 8
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Figure 5.11: Effect of octree depth on path length

The computation time of path finding can be separated into two
components: 1) loading and processing of a network graph (when the
connectivity is pre-processed); 2) the time to compute path using A*
algorithm. Figure 5.12 illustrates the effect on these components. The
majority of the computation time is due to loading and processing the
network graph into a python dictionary. Also, the increase in computation
time can be explained by this, as the octree depth increases the .json file
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increases in disk size, thus the loading time increases. The effect on the A*
path finding time is minimal. In fact all A* computation times are between
0, 206 and 0, 219 seconds. Although there is a slight increase in computation
time.
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Figure 5.12: Effect of octree depth on computation time. The data labels present the
total computation time.

Table 5.3 illustrates the effect on the octree generation time. As the
octree depth increases, it gets progressively more demanding to compute
an octree. This is partly due to the increasing amount of interior empty
nodes and because this extends the connections of smaller interior nodes.

point cloud octree
depth

non
empty
nodes

interior
empty
nodes

computation
time [s]

stdev [%]

Bouwpub 6 18756 11627 0:02:38 4,3
Bouwpub 7 74080 63899 0:29:56 1,1
Bouwpub 8 169332 191679 3:47:46 5,0

Fire department 6 27848 28606 0:05:46 3,2
Fire department 7 92960 121489 1:05:38 0,8
Fire department 8 186186 309716 6:39:58 0,9

Table 5.3: The effect of depth on octree generation. In all octrees a face connectivity
is pre-processed.

5.4.2 Pre-processing connectivity

Like mentioned in section ??, pre-processing connectivity does not
influence the path length as the path finding algorithm is similar. The
computation time of path finding can be separated into two components: 1)
computation of possible empty nodes (when neighbours are computed on
the fly) or loading and processing a network graph (when the connectivity is
pre-processed); 2) the time to compute path using A* algorithm. These
results are separately presented in Figures 5.13 and 5.14. All octrees have
a tree depth of 7 and the connectivity is pre-processed. All routes in the
octree of the Bouwpub are computed with a minimal clearance of 0, 17 and
empty nodes can be maximal 1, 25 m above a border with the closest non
empty node. For the test point cloud, the minimal clearance and distance to
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a non empty node is set to 0.

Figure 5.13 shows that loading and processing a network graph takes
much more time than loading interior empty nodes from a database. This
makes sense as for constructing a network graph, first all interior nodes need
to be loaded from the database. Next, the network graph is loaded from a
.json file and finally, all non accessible interior nodes are filtered out.
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Figure 5.13: Effect of pre-processing neighbours on the path computation time. The
results are computed with an octree with 7 levels.

Pre-processing the network graph shows a massive improvement in A*
path finding computation time. The paths in the different datasets are on
average computed in about 0, 2 second. The reason is that all the steps are
pre-processed and do not have to be computed during path finding. Also,
Figure 5.12 shows that there is little effect on the computation time due to an
increasing octree depth.
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Figure 5.14: Effect of pre-processing neighbours on the path computation time. The
results are computed with an octree with 7 levels.

Summing the two time components gives the total path finding
computation time. Pre-processing a network graph is in all datasets faster
than processing neighbours on the fly. But the bottle neck in all datasets is
the speed of processing the network graph.

Table 5.4 shows the octree computation time for the Bouwpub and Fire
department and test point cloud. Pre-processing a face connectivity has a
negative effect on the computation time, however this effect is minimal. The
only difference between pre-processing a face connection and no
connectivity is the creation and storing of a network graph. In both octrees,
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all neighbours are computed as they are needed to compute the clearance
of each interior empty node.

point cloud
octree
depth

pre-processed
computation
time [s]

stdev [%]

Test 7 yes 0:04:58,067 0,55
Test 7 no 0:04:56,199 0,53

Fire department 7 yes 1:05:38,803 0,79
Fire department 7 no 1:05:17,381 0,61

Bouwpub 7 yes 0:29:56,306 1,08
Bouwpub 7 no 0:29:41,680 0,95

Table 5.4: The effect of pre processing a face connectivity on octree generation time.

5.4.3 Type of path connectivity

Three types of path connectivities were tested: 6 connectivity (face), 18
connectivity (face and edge) and 26 connectivity (face, edge and vertex). All
octrees have a tree depth of 7 and the connectivity is pre-processed. All
routes in the octree of the Bouwpub and the Fire department have a minimal
clearance of 0, 17 and empty nodes can have a maximal downward distance
to the closest border with a non empty node of 1, 25 m. For the test point
cloud, the minimal clearance and downward distance to a non empty node
is set to 0.

Figure 5.15 shows an example route with the three types of connectivities.
Due to the edge and vertex connection, the 18 and 26 connectivity are able
to connect to nodes which are not accessible for a 6 connectivity. This is
way the 28 and 26 connectivity are able to find a path over a bar (L shaped
object). The path of a 6 connectivity is more effected by obstacles due to the
limited connections and therefore has a route with more detours. Finally, in
the figure it is clearly visible that the 6 connectivity move orthogonal where
the extended connectivities are able to move diagonal.
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Top view

Side view

Figure 5.15: A path is computed between a start and goal node for each type
of connectivity(face (magenta); face and edge(blue); face, edge and
vertex(green))

Figure 5.16 presents the effects on the path length. In all test datasets,
the path length decreases as the connectivity extends. Between 6 and 18
connectivity the path length decreases on average with 10%. Between a 6
and 26 connectivity the path decreases with 12%. The reduction in path
length can be explained by the difference in directions in which movement is
possible between the different connectivities. Between a 6 and 18
connectivity there are three times as much directions in which movement is
possible for each node. This makes it more likely to find a path which moves
straight to the target.
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Figure 5.16: Effect of octree depth on octree generation on the path length

Figure 5.17 presents the path finding computation times. The
computation time increases as the connectivity is extended. The
computation time is mainly due to loading and processing a .json file into a
python dictionary. Also, processing the .json file is the prime reason for the
increase in computation time due to the extended connectivity. The reason
for this is an increasing larger .json file size for the 18 and 26 connectivity.

The A* computation time is between 0, 211 and 0, 232 for the different
datasets. There is no clear proof that an extended connectivity improves the
A* computation time. The computation time is mainly related to the A*
iterations, which are illustrated in Figure 5.22. The amount of A* iterations is
effected by two things: 1) the amount of empty nodes which are explored; 2)
the amount of possible neighbours for each empty node. A path with an
extended connectivity is likely to have a more direct line toward the goal
node and therefore visits less empty nodes. Accordingly it is expected to
have less A* iterations. Although, due to an extended connectivity the
amount of possible neighbours increase for each empty node. The average
amount of connections for each interior empty node was measured at 10 for
a 6 connectivity, 15 for an 18 connectivity and 19 for a 26 connectivity. All
these neighbours are processed and measured as an A* iteration. Thus,
due to an extended connectivity, there can be more A* iterations.
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Figure 5.17: Effect of octree depth on octree generation on the path length
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Figure 5.18: Effect of octree depth on octree generation on the path length

Table 5.5 shows the effect of an extended path connectivity on the octree
generation time. The computation time increases on average with a factor
of 2, 2 between a 6 (face) and 18 (face, edge) connectivity and on average
with a factor of 1, 2 between an 18 (face, edge) and 26 (face, edge, vertex)
connectivity. The amount of interior empty nodes remains the same for each
octree, as only the connectivity is extended. This means the increase in
computation time is due to processing of interior empty neighbours.

point cloud
octree
depth

connectivity
computation
time [s]

stdev [%]

Bouwpub 7 face 0:29:56,306 1,06
Bouwpub 7 face, edge 1:06:17,476 2,74
Bouwpub 7 face, edge, vertex 1:18:22,991 1,47

Fire department 7 face 1:05:38,803 0,79
Fire department 7 face, edge 2:19:32,189 1,29
Fire department 7 face, edge, vertex 2:52:27,485 0,80

Test 7 face 0:04:58,067 0,55
Test 7 face, edge 0:10:58,690 0,30
Test 7 face, edge, vertex 0:11:46,376 0,36

Table 5.5: Effect of path connectivity on octree generation time

5.4.4 Distance type between nodes

Three types of distance types were tested: Euclidean, Manhattan and
chessboard. All octrees have a tree depth of 7 and face neighbours are
computed on the fly. All routes in the octree of the Bouwpub and fire
department are computed with a minimal clearance of 0, 17 and empty
nodes can be maximal 1, 25 m above a border with the closest non empty
node. For the test point cloud the minimal clearance and downward
distance to a non empty node is set to 0.

Figure 5.19 shows a path computed between a start and goal node for
the Manhattan and Euclidean distance. The chessboard distance was not
visualized as it had almost the same path as the Euclidean distance. Note
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that the Manhattan distance has a tendency to follow an orthogonal path.
The Euclidean distance is able to move more freely.

3D view Top view

Side view

Figure 5.19: A path is computed between a start and goal node for the Manhattan
(blue) and Euclidean (magenta) distance

Figure 5.20 shows the results of the path finding benchmark tests on path
length. In all datasets, the Euclidean distance finds the shortest path and the
Manhattan distance the longest path. Especially in the octree of the test
point cloud there is a significant difference (54, 42− 46, 86 = 7, 56 m). The
difference in the octree of the Bouwpub and fire department is less significant
(0, 65 m and 0, 66 m). In the Manhattan distance it is expensive to move
diagonal as the distance is the sum of orthogonal components. It therefore
prefers to move in straight lines, by doing so it drifts from the optimal path,
whereas the Euclidean distance always follows the optimal path by computing
the distance using the theorem of Pythagoras.
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Figure 5.20: Effect of octree depth on octree generation on the path length

Figure 5.21 and 5.22 present the A* computation time and iterations. In
contrast to the path length the Manhattan distance is most efficient in terms of
computation time. Especially in the test and the fire department point cloud,
there is significant improvement compared to the other distance types. The
differences in computation time can be explained by the A* iterations. In all
datasets, the Manhattan distance has the smallest amount of A* iterations.
Meaning, less nodes need to be inspected in A* path finding.
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Figure 5.21: Effect of octree depth on octree generation on the path length
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Figure 5.22: Effect of octree depth on octree generation on the path length
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C O N C L U S I O N A N D D I S C U S S I O N

This chapter will conclude this research with the following sections: 1)
summary of the results; 2) answering of the research questions; 3) explain
my own contribution; 4) a discussion about the research and finally 5) a
future work section.

6.1 R E S U LT S

This section summarises the main results of this research. The research
was constructed in two parts: the first covered the octree generation. The
main contribution to the octree construction is the way empty nodes are
processed. During the construction of these empty nodes, interior empty
nodes are identified, a network graph is constructed and collision avoidance
system is implemented. The second part of the research consist of
benchmark test. These tests identified the effect of A* characteristics on
path length and computation time.

6.1.1 Octree generation

The octree generation method used in this research is based on the design
of Broersen et al. [2016]. It consist of three steps: 1) pre processing a point
cloud; 2) identifying the non empty space from the point cloud; 3) deriving the
empty space from the non empty space. I used this method to create a data
structure for path finding in an indoor point cloud, in which the octree acts like
a catalyst. The following list summarizes the results of all the components
which are needed to construct this data structure.

1. Point cloud datasets
Three point cloud datasets were used in this research. A point cloud
of the pub of the Faculty of Architecture and the Built Environment at
DUT called the ’Bouwpub’. A second point cloud of a Fire department
in Berkel en Rodenrijs called the ’fire department’. And finally a point
cloud created from 3000 random points called ’Test point cloud’.

2. Geometrical point cloud processing
To segment a point cloud to its full potential it should be geometrical
processed. The work flow contains three steps: 1) align the minimum
bounding box of a point cloud to the axis of the octree grid, keeping the
floor surface horizontal; 2) translate the point cloud so the origin has
coordinate (0, 0, 0); and 3) scale the point cloud so it fits perfectly in a
grid of 2n ∗ 2n ∗ 2n, where n represents the octree depth.

This work flow scales the point cloud to its full potential, and in turn
minimizing the spatial resolution of the octants. A large spatial
resolution is beneficial for the octree depth needed for (indoor) path

61
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finding, as a minimal spatial resolution is needed to keep all open
spaces connected.

The scale of a point cloud can increase up to a factor
√

2 by aligning it
to the octree grid and keeping the floor horizontal. This means that the
spatial resolution of the smallest octant decrease with a factor

√
2. In

a building with a footprint of 100 ∗ 100 this means a maximal reduction
of the spatial resolution of 0, 41 meter. This way a point cloud can be
segmented in an octree with a smaller depth while keeping the minimal
octant size needed for indoor path finding.

3. Interior empty nodes
Identifying the interior empty nodes works well for the datasets used in
this research. Filtering the exterior empty nodes reduces the amount of
computations and memory needed for the octree construction. Besides
there are major benefits for indoor path finding. By filtering all exterior
empty nodes path finding is solely possible through the interior empty
space. It is no longer possible to exit a building via windows or doors.
This method works only for closed roofs and floors.

By computing the downward distance to the closest non empty node a
first step is taken towards indoor path finding over the floor. However
there are still two problems: firstly, the downward distance to the
closest non empty node does not mean it is the distance to a floor. It
can be the distance to any horizontal surface, like furniture or even
lights. Secondly, for collision free path finding over the floor the
distance to the floor might conflict with the clearance of a node. As the
clearance is dependant on the closest non empty node. This method
was successfully used in path finding.

4. Connectivity generation
Computing the connectivity of an interior empty node consist of two
steps: first all possible equal and larger neighbours are computed. IF
a larger neighbours is an interior empty node the connection is stored
in both directions to connect larger nodes to smaller neighbours.
Between all connecting nodes the distance between the centre points
is computed and stored. And second, all non interior empty
neighbours are filtered out. Finally, the connectivity of all interior empty
nodes is stored in a dictionary which can be used as network graph for
path finding.

5. Collision avoidance
Collision avoidance is managed with a clearance of each interior
empty node and a maximal crossing value for each connection. The
clearance indicates the distance to a border with a non empty node
from the centre point of the interior empty node. The clearance can be
used for object fitting, but not for moving between neighbouring interior
empty nodes. For this, the distance from the crossing point to the
closest border with non empty node is needed. Both the clearance
and maximal crossing value are used to filter the network graph of all
inaccessible interior empty nodes and connections. By increasing the
minimal clearance and crossing value, the method can be used for
path finding for different objects.

6. A* path finding
A script was created for A* path finding through the interior empty
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space of a point cloud. The script could be used in two ways: 1) with a
network graph; 2) computing neighbours on the fly. In the first method,
a network graph is loaded and filtered and used in A* path finding. In
the second method the neighbours are computed and filtered on the
fly during path finding.

6.1.2 Benchmark tests

1. The effect of Octree depth

For path finding in an indoor point cloud the smallest octant in an octree
should represent a space smaller than 0, 425* m 0, 425 m ∗0, 425. This
ensures that all open volumes in an octree are connected. The formula
to compute the minimal octree depth is provided in equation 6.2.

The spatial resolution of a point cloud can be calculated with the
formula:

bbox/2n = resolution (6.1)

Where n is the octree depth, bbox is the size of teh axis-aligned
bounding box and resolution refers to the spatial resolution.

The equation to compute the minimal octree depth for indoor path
finding:

n = log(bbox/resolution)/ log(2) (6.2)

The benchmark test showed that there is little improvement in path
length with octants representing a size smaller than 0, 15 m. Non
empty nodes are always split until the lowest octree level. By
increasing the octree depth all non empty and interior empty nodes in
the lowest octree level are created by splitting their non empty
ancestor node. This means that an interior empty nodes in the lowest
level must be connected to a non empty node. If an octree has a
spatial resolution lower than 0, 15 the interior empty nodes in the
lowest level can never be used in a path if the minimal clearance is
larger than 0, 15/2 = 0, 08 m. This means it makes sense that splitting
the octree any more than a spatial resolution of 0, 15 does not improve
the path length.

Therefore, for indoor path finding the depth an octree should be defined
by the size which is represented by the smallest octants.

The path finding computation time has two components: 1) loading
and processing a network graph; 2) the time to compute a path using
the A* algorithm. The majority of the total computation time is due to
loading and processing the network graph. For each increasing octree
depth the network graph grows in size. This results in more time to
load and process the network graph. Still, the loading and processing
time for an octree with seven levels measured at 0, 7 and 1, 9 seconds
for the Bouwpub and Fire department point cloud. The A* path finding
computation time remains constant around 0, 2 seconds for all octree
depths. Loading and processing of the network graph is the bottleneck
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in the method. But even for an octree with eight levels the maximum
computation time is about 4 seconds.

A solution where the network graph is not loaded in the
Random-access memory (RAM) but stored and accessed from the
main computer memory, could be beneficial for path finding. This way
the network graph can be accessed without loading it in the local
memory. Now this would not make up most of the total path finding
time. With a A* path finding time remaining constant, this could be a
solution for path finding in large buildings where a bigger octree depth
is necessary.

Extending the octree depth progressively increases the octree
computation time. This is due to the increasing amount of interior
empty nodes, and because this can extend the amount of connections
of interior nodes. The benchmark test showed computation times well
over 6 hours for eight octree levels. The computation time could be
problematic for octrees with more than eight levels. More research
should be conducted to identify the use of the method for large
buildings.

2. The effect of pre-processing node connectivity

Pre processing neighbours has no effect on the path length as there is
no difference in the path finding algorithm. However the computation
time is effected. Loading and processing a network graph takes more
time than loading interior empty nodes from a database.

This makes sense as for constructing a network graph first all interior
nodes need to be loaded from the database. Next the network graph is
loaded from a .json file and all non accessible interior empty nodes are
filtered out. The time to load and process the network graph is mainly
dependant on the disk size of the network graph.

Path finding with pre-processed connectivities proves to be beneficial
for the computation time. All paths were computed in around 0, 2
seconds in all datasets. A* path finding without a network graph took
between 2 to 30 seconds. Using a network graph eliminates a number
of operations during path finding: 1) neighbour finding; 2) connectivity
generation; 3) computing the distance to neighbouring node.

Loading and processing a network graph is the bottle neck in this
implementation. Loading the entire network graph in the temporary
memory takes up almost all of the total computation time.

Pre-processing a face connectivity has a minimal effect on the octree
computation time. The only difference between pre-processing a face
connection and no connectivity is the creation and storing of a network
graph. In both octrees all neighbours are computed as they are needed
to compute the clearance of each interior empty node.

3. The effect of path connectivity
In all test datasets the path length decreases as the connectivity
extends. Between a 6 and 18 connectivity the path length decreases
with an average of 10%. And between a 6 and 26 connectivity the path
decreases with 12%. The reduction in path length can be explained by
the increase in directions in which movement is possible between two
connected interior empty nodes.
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The computation time increases as the connectivity is extended. The
computation time is mainly due to loading and processing a .json file
into a python dictionary. Also, processing the .json file is the prime
reason for the increase in computation time due to the extended
connectivity. The reason is an increasing larger .json file size for the
18 and 26 connectivity.

The octree computation time increases on average with a factor of 2, 2
between a 6 (face) and 18 (face, edge) connectivity. And with on
average with a factor of 1, 2 between an 18 (face, edge) and 26 (face,
edge, vertex) connectivity. The amount of interior empty nodes remain
the same for each octree as only the connectivity is extended. This
means, that the increase in computation time is due to processing of
interior empty neighbours.

4. The effect of path distance types
A path computed with a Manhattan distance tends to follow an
orthogonal path. A path computed with a chessboard distance is more
likely to follow a diagonal path.

Tests showed that the Euclidean distance finds the shortest path and
the Manhattan distance the longest path. In the Manhattan distance it
is expensive to move diagonal as the distance is the sum of orthogonal
components. It therefore prefers to move in straight lines, by doing so
it drifts from the optimal path, whereas the Euclidean distance always
follows the optimal path by computing the distance using the theorem
of Pythagoras.

In contrast to the path length, the Manhattan distance is most efficient
in terms of computation time. The differences in computation time can
be explained by the A* iterations. The Manhattan distance has the least
amount of A* iterations. Meaning, less nodes need to be inspected in A*
path finding. This also means that it is not the speed of the calculation
that makes the difference. But the amount of nodes which need to be
explored to find a goal.

6.2 R E S E A R C H Q U E S T I O N S

This section answers the research questions. It begins with answering the
research sub questions and end with an answer of the main research
question.

1) What geometrical point cloud processing operations are important for
the generation of an octree and what is their effect?

As the octree depth increases it gets progressively more demanding to
generate the octree. For (indoor) path finding the smallest octants should
have a minimal spatial resolution. Maximizing the spatial resolution by
geometrically processing a point cloud can be used to minimize the
necessary octree depth, in turn reducing the octree generation time, storage
space, amount of empty nodes and connectivity of the interior empty nodes.

There are three geometrical operations which should be performed on a
point cloud: 1) rotation; 2) translation; 3) scaling. Of which scaling is the only
operation which can influence the spatial resolution of an octree.
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To get the best octree resolution, a point cloud should be scaled so the
axis-aligned bounding box fits in an octree grid of 2n ∗ 2n ∗ 2n, where n refers
to the octree depth.

Both rotation and translation can effect the efficiency of scaling by
changing the size and location of the axis-aligned bounding box.

By aligning the minimum bounding box to the octree axis, the point cloud
covers the smallest volume in an octree space. This means a point cloud can
have a larger scale to best fit in the octree space. Although, for visualization
purposes it is recommended to keep the floor plane horizontal. The scale
and spatial resolution of the point cloud can be increased with a factor of

√
2

by aligning the minimum bounding box to the octree axis.
Finally, the point cloud should be translated so the origin of the bounding

box is located in coordinates (0, 0, 0). As this is the origin point for the scaling
operation. Both rotation and translation prepare the point cloud so it can be
scaled to the full potential.

2) What octree operators influence the computational effort and path
length and what is their effect?

1. Octree depth
There is no universal octree depth that is best suited for (indoor) path
finding. The octree depth depends on the minimal and maximal spatial
resolution needed for path finding, which in turn depends on the
building size.

For path finding in an indoor point cloud the minimal spatial resolution
of an octree should be 0, 425 meter. This ensures that all open volumes
in an octree are connected.

Benchmark tests show that there is little improvement in path length in
an octree with a spatial resolution larger than 0, 15 m. The smallest
interior empty nodes in this resolution are always connected to a non
empty node. Therefore they have little clearance and are filtered out if
the clearance is not sufficient. The maximal resolution should be
defined by the expected largest objects which have to find a path.

The path finding computation time has two components: 1) loading and
processing a network graph; 2) the time to compute a path using the A*
algorithm. The majority of the total computation time is due to loading
and processing the network graph. For each increasing octree depth
the network graph grows in size. This results in more time to load and
process the network graph.

Extending the octree depth progressively increases the octree
computation time. This is due to the increasing amount of interior
empty nodes, and because this can extend the amount of connections
of interior nodes. The benchmark test showed computation times well
over 6 hours for eight octree levels. The computation time could be
problematic for octree with more than eight levels.

2. Pre processing connectivity

Pre-processing neighbours has no effect on the path length as there is
no difference in the path finding algorithm. Path finding with
pre-processed connectivities proves beneficial for the total A*
computation time. In all tests the path finding time with a
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pre-processed network graph was significantly faster than its
equivalent of computing a node connectivity on the fly. The majority of
path finding time was due to loading and processing the network
graph. An interesting direction for future work is therefore researching
other ways of storing and accessing a network graph.

Pre-processing a face connectivity has a minimal effect on the octree
computation time. The only difference between pre-processing a face
connection and no connectivity is the creation and storing of a network
graph. In both octrees all neighbours are computed as they are needed
to compute the clearance of each interior empty node. Although the
pre-processing time will increase with extended path connectivities.

3) What A* algorithm operations influence the computational effort and
path length and what is their effect?

1. Path connectivity
The path length decreases as the connectivity extends. Between a 6
and 18 connectivity the path length decreases on average with 10%.
Between a 6 and 26 connectivity the path decreases with 12%. The
reduction in path length can be explained by the increase directions in
which movement is possible.

The computation time increases as the connectivity is extended. The
computation time is mainly due to loading and processing a network
graph. Also, processing the network graph is the prime reason for the
increase in computation time due to the extended connectivity. The
reason is an increasingly larger file size for the 18 and 26 connectivity.

The octree computation time increases on average with a factor of 2, 2
between a 6 (face) and 18 (face, edge) connectivity. And with on
average with a factor of 1, 2 between an 18 (face, edge) and 26 (face,
edge, vertex) connectivity. The increase in computation time is due to
processing of interior empty neighbours.

2. Distance type between nodes
Tests showed that the Euclidean distance finds the shortest path and
the Manhattan distance the longest path. In the Manhattan distance it
is expensive to move diagonal as the distance is the sum of orthogonal
components. It therefore prefers to move in straight lines, by doing so
it drifts from the optimal path, whereas the Euclidean distance always
follows the optimal path by computing the distance using the theorem
of Pythagoras.

IThe Manhattan distance is most efficient in terms of computation time.
The differences in computation time can be explained by the A*
iterations. The Manhattan distance has the least amount of A*
iterations. Thus needs to explore less node to find a goal node.

With the answers of the sub questions the main research question can
be answered:

What is the effect of A* path finding characteristics on the path length
and performance in an octree representation of an indoor point cloud?

The A* path finding computation time is positively effected by: firstly,
pre-processing a network graph, because most information needed for path
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finding is pre-processed. Secondly, using a Manhattan distance in A* path
finding proved beneficial for the computation time, as it needs to explore
less nodes to reach a goal node. And finally, keeping the octree depth to a
minimal proved beneficial, as there are less interior empty nodes and path
connections. Test results showed that loading and processing the network
graph takes up most of the path finding computation time. An efficient
storage and accessing method could make the method scalable, as the
actual A* path finding time remained constant for all path finding tests.

From the answers of the research sub questions, it can be concluded
that the path length is positively influenced by: firstly, extending the path
connectivity, due to the extended connectivity each empty node has more
directions in which movement is possible. Secondly, by using a Euclidean
distance type the path is less likely to drift from the shortest path. And finally,
by increasing the octree depth, this allows a path to select smaller empty
nodes closer to obstacle, making it possible to find a path which is less
influenced by obstacles. Of the methods, increasing the path connectivity
reduces the path length the most. Even more than increasing the octree
depth. And compared to extending the octree depth, an extended path
connectivity has less effect on the octree computation time.

There is no universal optimal octree depth for indoor path finding. The
octree depth depends on the minimal and maximal spatial resolution needed
for path finding, which in turn depends on the minimum bounding box of the
point cloud. By improving the spatial resolution, the octree depth can be
minimized. The spatial resolution can be maximized by pre-processing the
point cloud. This thesis proposes the following three step for a optimal spatial
resolution:

1. The minimum bounding box should be aligned to the octree axis.

2. The origin of the aligned minimum bounding box should be translated
to coordinate (0, 0, 0).

3. The point cloud should be scaled to fit in a grid of 2n ∗ 2n ∗ 2n, where n
refers to the octree depth.

6.3 OW N C O N T R I B U T I O N

Beside answering the research questions, this thesis aimed to provide a
method for path finding through the interior empty space of a point cloud.
The following list summarizes my contributions to this research.

1. This research presents a new workflow for path finding through an
octree representation of an indoor point cloud.

2. I created a new method to identify the interior empty nodes.

3. This method can also be used, little more computations, to compute
the downward distance to a non empty border.

4. I implemented a new method for collision avoidance in the-pre
processing stage. This method consist of two components: 1) a
clearance of the centre of each interior empty node; 2) a maximal
crossing value for each intersection between connected interior empty
neighbours.
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5. I implemented an efficient method to pre processing node connectivity.

6. I extended the neighbour finding method of Vörös [2000] by computing
equal and larger edge and vertex neighbours.

7. I identified geometrical point cloud processing operations important for
octree generation. And proposed a work flow for optimal point cloud
classification.

8. I identified the effects of octree operators and A* operations on the
computation time and path length of A* path finding.

6.4 D I S C U S S I O N

This section discusses the methods and results in this research.

The method implemted in this research is not completely autocatic,
aligning the minimum bounding box to the axis is done manual. Automatic
alignment of the minimum bounding box could be an interesting direction for
future work.

Currently, loading and processing the network graph for A* path finding
is the bottle neck in the path finding implementation. A solution could be
storing and accessing this in the computer memory. This eliminates the step
of loading and processing the network graph.

A side product of identifying the interior empty space is the downward
distance to non empty node for each interior empty node. This distance can
be used to compute a path suited for walking. There are some problems,
firstly the downward distance can conflict with the clearance. This is
because the clearance is computed with all equal face, edge and vertex
neighbours. This includes nodes directly under the node. Therefore the
clearance of nodes directly above a non empty node is the same distance
as the downward distance. To make the method suitable for a walk able
path the clearance should be computed only with neighbours in the x and y
direction. And finally, the downward distance in not per definition the
distance to the floor level. as it should be possible to find a path over
furniture or other obstacles.

In this method path finding is always through the centre points of interior
empty nodes. In the case of a door opening where the open space is
represented by two interior empty nodes side by side. Together these nodes
can have a clearance large enough for movement but individually nodes
have a clearance which is not sufficient. This can block certain paths which
are actually passable. This could be solved by allowing movement between
the borders of interior empty nodes.

The main criticism about the total implementation is that it does not yet
work to the full potential, because the implementation is constructed of
several scripts some processes are computed double. The total
implementation could work more efficiently when more processes are
merged.

The main criticisms regarding to the benchmark tests are twofold. Firstly,
to get a more reliable test result, more datasets should be tested. Secondly,
the datasets used were of relatively small buildings. It could be interesting
how the method works with large building, e.g congress halls or the Faculty
of Architecture and the Built Environment at DUT.
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6.5 F U T U R E W O R K

In section I present a list of interesting ideas I had, but was not able to
implement and possible future work.

1. Improve the method to a web service
The next step of this research is to build a web service for processing a
point cloud for path finding. The idea would be to load a point cloud in
the web service. This point cloud would be geometrical pre processed
and the interior empty space would be identified. Once this is done the
point cloud with the interior empty space should be loaded to a screen
and the user should be able to pick a start and goal node for indoor path
finding. Subsequently, the web service should compute and visualize
the path.

2. Automatic alignment of minimum bounding box to octree axis
The method in this research is, besides the alignment of the minimum
bounding box completely automatic. Therefore, a good future work
subject could be automatic alignment of the minimum bounding box.
This could possible be done using RANSAC plane fitting algorithm.

3. Storing and accessing of a network graph from the computer
memory
The bottleneck in the path finding algorithm was the loading and
processing of the network graph. One way to avoid this could by
storing and accessing the network graph from the computer memory
instead of the Random Access Memory (RAM). This way the path
finding time would only be defined by A* path finding. Tests in the
research showed the A* path finding time to be relatively constant for
different octree depths, making it useful for larger building where a
higher octree depth is needed.

4. Integrating indoor and outdoor path finding
Indoor and outdoor path finding are seen as two separate things. But it
can be very useful to have a seaming less connection between the
two. For this the interior and exterior environment should be
connected somehow. This could either be done by placing them in the
same spatial reference system, or by semantically labelled interior
nodes in exits and using these semantically enriched nodes to enter
and exit a building.

5. Use Dijkstra path finding to find closest emergency exit
If the Dijkstra algorithm would be used in path finding it is possible to
find all possible destinations from an interior node. This property could
be used to find the closest emergency exit to a certain node (location).
Also for this the interior empty nodes in or near doors should be
semantically labelled.

6. Path finding constraint to vertical and/or horizontal surface
Indoor path finding can be useful for multiple modalities, including a
walk able path. This means that the path should be constraint to the
floor non empty nodes.

When a fire fighter enters a building where sight is blocked by smoke
he always walks along a wall. It could be useful for a fire fighter to know
how to navigate through a building while waling along a path. For this
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a path should be constraint to nodes over the floor and with a certain
distance to a wall.

7. Movement through borders and centres of interior empty nodes.
A path where movement is possible through centre points and
boundaries of interior empty nodes, expands the possible path in a
building.

8. Implement the method on really big buildings
For now the method is only tested on small buildings. But how does the
method react to really big buildings? It could be interesting to research
how the method works with large building, e.g congress halls or the
Faculty of Architecture and the Built Environment at DUT. For this both
the datasets should be available and the possibility of implementing the
method should be researched.

9. Update goal nodes
The method in this research assumed the start and goal node are
fixed. But with moving targets the location of the goal node should be
updated.
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This presents a method for collision free indoor 3D path finding in an octree.
Benchmark tests were performed to identify the effect of several component
on the path length and computational time. The results show that by
computation the time and path length can be reduced by pre processing
neighbours, using a different distance type and path connectivity.

This research intersect with most of the core courses of the masters
Geometics program. Especially knowledge learned in courses such as
Python programming, Geo-dbms and sensing technologies is applied.

The scientific contribution of this research is twofold. Firstly an indoor path
finding application through the empty space of a point cloud is developed.
This application uses an octree data structure as a kind of catalyst for path
finding.

The method consist of the following components: a work flow to pre
process a point cloud for optimal classification into an octree structure. A
novel method to identify interior empty nodes and at the same time the
downward distance from each interior empty node to the closest non empty
node is computed. A new method for pre-processing a collision avoidance
system. A method to process a network graph during octree generation.
And finally a path finding application, which uses the network graph and
collision avoidance system.

The second contribution aims to identify the effects of octree operators
and A* operations on A* path finding. It will research the impact on the
computation time and path length. To my best knowledge no research has
been conducted identifying the effects of these components in A* path
finding through an octree data representation of an indoor point cloud.

Recently there is a growing interest and demand of 3D indoor path finding
applications. Examples of this are:

In emergency situation an indoor path finding method can be used to
direct persons to the closest emergency exit. In an hospital it can be used to
direct patients to the room of their doctors appointment. In big buildings like
airports or congress buildings indoor path finding can be used to navigate
people to certain locations or compute a closest meeting point.

With an indoor path finding method outdoor and indoor navigation could
be seemingly merged into one system. Think of situations where someone
enters an unknown city via the train station and needs to go to a certain room
in a building. Nowadays the navigation stops at the door step of the building.
Especially in large buildings it might be useful to extend this navigation to the
room.
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