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Abstract—Multiparty private set intersection enables multiple
parties to determine the intersection of their private sets without
disclosing the actual content. It is pivotal for collaboration in
cyber threat intelligence as it allows organizations to share
compromising or sensitive data in a privacy-preserving manner.
This data includes infected IP addresses, malware hashes and
other indicators of compromise. Then, the organizations identify
elements that overlap across all datasets and take action to
mitigate the threat with the broadest impact. Although, in
many cases, the condition that an element be present in all
sets is too stringent. Therefore, in this work, we focus on
threshold multiparty private set intersection (T-MPSI), a protocol
that identifies elements present in a subgroup of the total sets
instead of in all sets. We highlight the differences between three
different perspectives when computing the threshold intersection:
individual—only the party leader learns the elements from their
set that meet the threshold, all—all parties learn the elements
from their set that meet the threshold, and collective—all parties
jointly learn all elements that are present in the threshold,
regardless of whether they possess those elements themselves.

While many implementations for T-MPSIindividual and T-MPSIall
have been proposed, to the best of our knowledge, no implemen-
tation for T-MPSIcollective exists. Therefore, we present a generic
composition that extends any T-MPSIindividual protocol into a T-
MPSIcollective protocol. Our extension employs a multiparty private
set union to aggregate outputs efficiently. We then provide a
comprehensive analysis and runtime evaluation, demonstrating
the feasibility of the extension.

I. INTRODUCTION

Multiparty private set intersection (MPSI) protocols allow
multiple parties to determine the intersection of their private
sets without disclosing the sets themselves, ensuring that each
party’s data remains confidential throughout the process [1].
These protocols have a wide range of potential practical
applications [2], [3], [4]. For instance, they are utilized in
targeted advertising to match customer preferences without
revealing personal data. In social and messaging platforms,
these protocols help identify mutual contacts in a secure
manner. MPSI is also used to coordinate available times across
private calendars to facilitate scheduling meetings.

In cyber security, MPSI protocols are essential for sharing
incident information related to cyber threat intelligence (CTI).
It plays a crucial role in keeping up with evolving cyber
threats, including ransomware attacks [5] and phishing cam-
paigns [6]. CTI involves the collection, analysis, and dissem-
ination of information about potential or current cyber threats

and vulnerabilities. It provides experts with the necessary
insights to enhance situational awareness for proactive defence
and swift incident response [7]. It categorizes threat data
into three main types: tactical, operational and strategic [8].
Tactical intelligence deals with indicators of compromise such
as infected IP addresses, malware hashes and email headers
indicative of phishing scams. Operational intelligence focuses
on the tactics, techniques, and procedures (TTPs) of cyber
criminals, i.e., the exploit paths employed. Strategic intelli-
gence provides a high-level overview of cyber threat trends
and motives.

Since threat actors often employ similar attack techniques at
different sites, it is useful for entities to share CTI information.
MPSI can be employed in CTI sharing in the following
example. Organizations maintain lists of suspected malicious
IP addresses. By pooling and comparing these suspicious
IPs, they can more effectively pinpoint the shared threat.
Once identified, these organizations collaboratively block the
malicious IP, strengthening their defences against the related
malware. Another example is when various organizations
decide to exchange TTPs and find a common vulnerability
within their software. From this insight, they can prioritize
fixing this vulnerability to protect against attacks that exploit
this particular weakness.

However, the requirement that an element be present in all
parties’ datasets in order to be outputted in the intersection can
be overly restrictive for many practical applications, including
CTI sharing. Consider the scenario where five organizations
exchange CTI to identify which suspected IP addresses are
most likely malicious. If the same IP address is consistently
found across all their datasets, it strongly indicates a potential
threat. Moreover, even if an IP does not appear in all datasets
but is present in most, say in four out of five, it merits further
investigation. In such cases, the parties would benefit from
computing the intersections of subgroups of four sets instead
of the absolute intersection. This variant of MPSI that outputs
the elements which appear in at least a threshold number
of datasets T is known as threshold multiparty private set
intersection (T-MPSI). In some papers, it is referred to as
over-threshold MPSI [9], d-and-over MPSI [10] or quorum
PSI [11].

Note that T-MPSI protocols are defined variably across
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studies, adding complexity to the field. Some definitions of
the threshold involve the minimal cardinality of the intersec-
tion [12], [13] or the maximal difference between private set
sizes [14].

Within our focused definition of T-MPSI, where the thresh-
old refers to the number of sets containing the item, we
encounter several operational perspectives.

• T-MPSIindividual: The party leader learns which of their
own elements meet the threshold.

• T-MPSIall: All parties learn which of their own elements
meet the threshold.

• T-MPSIcollective: Every parties learns which elements
meet the threshold across all sets, not necessarily just
their own.

T-MPSIindividual or T-MPSIall is useful in situations where
organizations do not need to learn about any element that is not
part of their set, e.g., to identify a common software vulnera-
bility for patching. In this case, each party is only concerned
with identifying which of their own software’s vulnerabilities
are common to the other sets. They would not benefit from
learning the T-MPSIcollective intersection since it can include
vulnerabilities that do not affect their systems. Another reason
T-MPSIcollective is not suitable for this scenario is that an
organization may not want their vulnerabilities revealed to
others, unless they also share that vulnerability, since it could
compromise their security posture. T-MPSIcollective is better
suited for preventive measures in CTI. If the sets are defined
to contain well-defined hashes or identifiers of CTI data, a
participant would want to employ a T-MPSIcollective protocol
over a T-MPSIall protocol to verify the presence of new
threats within the collective set intersection. Furthermore, by
analyzing shared elements across various security logs, threats
that impact multiple organizations—and therefore represent a
higher risk—can be identified to uncover common patterns
of attacks. Even though an element may not appear in an
organization’s dataset, they can still choose to take action
against it preemptively.

Despite the theoretical advancements within the T-MPSI do-
main, there seems to be a notable gap in practical implementa-
tions, especially for the T-MPSIcollective perspective. Therefore,
we show a generic composition that can be applied to any
T-MPSIindividual type protocol to turn it into a T-MPSIcollective
type protocol by applying a union operation. As of now, T-
MPSIindividual and T-MPSIcollective protocols are not directly
comparable in terms of computational and communication
complexities. Unifying both variants of T-MPSI would address
the issue with the lack of T-MPSIcollective protocols since it can
broaden the operational scope of any and all T-MPSIindividual
protocols.

II. PRELIMINARIES

We introduce the necessary background and definitions to
understand the perspectives of T-MPSI and the extension.

A. T-MPSI Perspectives

In current literature, no consensus exists on the exact
meaning of T-MPSI. For this work, we use the following
definition: T-MPSI is an MPSI protocol which returns items
present in a minimum number of the total m sets as specified
by the threshold, T [3], [9], [15]. Furthermore, we formally
define the different perspectives of T-MPSI as follows.

• T-MPSIindividual: A party leader j wishes to obtain the
elements of their private set i that are also present in at
least a threshold T−1 of the other m−1 parties’ sets [3],
[10], [11], [15].

• T-MPSIall: All parties obtain the elements that are in their
private set and at least T−1 other sets [9]. It is equivalent
to computing the T-MPSIindividual for every party i.

• T-MPSIcollective: Every party learns which elements ap-
pear at least a threshold number of times T in the
combined private input of the parties [15].

We will illustrate the nuances between these perspectives
with an example. Figure 1 represents three intersecting sets
S1, S2 and S3. An absolute intersection in standard set theory
would be depicted by the orange section in the centre of the
image. However, a threshold intersection differs by including
elements that are common to a subgroup of the sets based on
a specified threshold. Figure 2 illustrates the various threshold
intersections based on the different perspectives. Figure 2 reads
as ”at the end of a protocol (columns), each party i (rows)
learns .” After running the T-MPSIindividual protocol with
party 1 playing the role of the leader, party 1 learns all the
elements in their set that are also present in at least T−1 of the
other sets. Parties 2 and 3 do not learn anything. After running
the T-MPSIall protocol, all parties have taken turns being the
leader. Therefore, all parties learn which of the elements in
their set are also present in at least T − 1 of the other sets.
After running the T-MPSIcollective protocol, all parties find out
which elements—not only the ones in their set—are present
in at least T of the sets.

B. Multiparty Private Set Union

In multiparty private set union (MPSU), each party holds
a private set. The objective is to find the union of these sets
without revealing any additional information about the individ-
ual sets beyond what can be inferred from the final result, i.e.,

Fig. 1. Three sets S1, S2 and S3 in a T-MPSI protocol.
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Fig. 2. Perspectives of T-MPSI with number of parties m = 3 and intersection
threshold T = 2.

the union [16]. An MPSU protocol begins with each party
encrypting their respective sets and exchanging them over
secure channels. The sets are securely combined using privacy-
preserving techniques, and finally, the aggregated encrypted
union is decrypted to reveal the union of all individual sets.

C. Cryptographic Tools

The executions of MPSI and MPSU typically rely on en-
cryption schemes and other cryptographic techniques detailed
as follows [3], [11], [15], [17], [18].

Homomorphic encryption enables computations to be car-
ried out on ciphertexts, yielding encrypted results that, when
decrypted, correspond to the output of operations performed
on the plaintexts. This characteristic ensures the processing of
confidential information without giving access to the underly-
ing data. More specifically, partially homomorphic encryption
allows unlimited operations, but only of a single kind. For in-
stance, additive homomorphic encryption supports the addition
operation on ciphertexts. The Paillier cryptosystem is a type
of public key encryption known for its additive homomorphic
properties [19].

Secret sharing is a method for distributing a secret across
multiple parties. The original secret can be reconstructed only
when a sufficient threshold number of shares are combined.
Below this threshold, no information about the secret can
be learned. In particular, Shamir’s secret sharing [20] is a
commonly used secret sharing scheme based on the mathemat-
ical concept of polynomial interpolation, specifically Lagrange
interpolation.

Oblivious transfer is a cryptographic protocol that enables
a sender to transmit one of potentially many pieces of infor-
mation to a receiver, without knowing which specific piece
the receiver obtained [21]. The most common form, 1-out-of-
2 oblivious transfer, involves the sender having two messages
and the receiver wishing to learn one of them. The sender
remains oblivious to which message the receiver chooses while
ensuring that the receiver can only learn one of the messages.

III. RELATED WORK

We now discuss relevant T-MPSI proposals, focusing on
those that operate under the semi-honest security model. The
semi-honest security model is also referred to as ”honest-but-
curious” or ”passive” security. In this security model, adver-
saries might collude to attempt to learn as much information
as they can, i.e., curious, but they do so while following the
protocol faithfully, i.e., honest [22], [23].

Kissner and Song [15] were the first to propose a T-
MPSI protocol, offering both T-MPSIall and T-MPSIcollective
variations, denoted as ”threshold contribution” and ”perfect
threshold” respectively in their work. Their schemes em-
ploy polynomials and additively homomorphic encryption to
securely compute the intersection, ensuring security against
semi-honest adversaries. Designed for a fully connected net-
work, this protocol exhibits a communication complexity that
is cubic in the number of parties m. They do not provide an
implementation for their T-MPSI schemes.

Mahdavi et al. [9] develop a T-MPSIall construction, fo-
cusing on enhancing security and efficiency through the use
of oblivious pseudorandom functions, hashing, and additively
homomorphic encryption. Assuming semi-honest behaviour
among parties, the protocol can handle collusion of up to m−1
corrupt parties, where m is the number of parties in total.
The authors claim that their protocol is able to handle large
datasets, with communication complexity primarily dependent
on the number of parties, the number of elements per set and
the intersection threshold. The implementation of their T-MPSI
protocol is available on GitHub1.

Chandran et al. [11] introduce a T-MPSIindividual scheme
based on cuckoo hashing and secret sharing. It is designed
to be secure under the semi-honest model with an honest
majority, i.e.,

⌊
m−1
2

⌋
. It operates efficiently under a star net-

work topology, balancing security and computational demands
across a server-centric system. Their current implementation2

is broken. There are open issues regarding adding subdirec-
tories and linking libraries. Therefore, we also exclude them
from further analysis.

Bay et al. [3] propose a T-MPSIindividual protocol leveraging
Bloom filters and threshold homomorphic encryption. Their
approach is tailored for scenarios involving a large number of
participants with relatively smaller set sizes. Similarly to the
scheme by presented by Chandran et al. [11], this protocol also
operates under a star topology. It is secure in the semi-honest
model for up to m−1 colluding parties. Their implementation
is also available on GitHub3.

IV. COLLECTIVE T-MPSI

We now present our extension to transform any T-
MPSIindividual scheme [3], [11] into a T-MPSIcollective
scheme [15]. We consider only the semi-honest security model
in our work. Although this model provides a weaker security

1https://github.com/cryspuwaterloo/OT-MP-PSI
2https://github.com/shahakash28/PQC-mPSI
3https://github.com/jellevos/threshold-multiparty-psi
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guarantee than the malicious model, it still ensures no leakage
of sensitive information, which aligns with our requirements.
Furthermore, in collaborative environments like CTI sharing,
the incentives for malicious behaviour are lower, making
the semi-honest model more practical. Future work could
extend the protocol to the malicious model using commitment
schemes and zero-knowledge proofs.

A. Protocol Description

In a T-MPSIindividual type construction, one party receives
the intersection of their set with a threshold number T − 1
of the other m− 1 sets. In MPSIcollective, every party receives
the threshold intersection of everyone’s sets, i.e., all elements
which appear in at least T of the m sets are outputted to all
parties even if they do not possess the element.

We see that to convert T-MPSIindividual into T-MPSIcollective,
we first execute the T-MPSIindividual protocol m times so that
every party i has a turn to be the leader to obtain their
T-MPSIindividual result. This corresponds to T-MPSIall. Then,
we combine these m T-MPSIindividual outputs in a privacy-
preserving manner. For that, we use MPSU. An MPSU scheme
is designed to ensure that no additional information beyond
the union of the sets is leaked. This means parties do not
learn whether a specific element from their set is included
in someone else’s set unless it is part of the union, thus
maintaining the privacy of set contents. The final result is
equivalent to the T-MPSIcollective outcome (see Figure 3).

Fig. 3. Pipeline to transform a T-MPSIindividual protocol into a T-MPSIcollective
protocol. In this example, there are three parties and sets involved.

Note that since we are pipelining two protocols together,
the intermediate results of T-MPSIindividual protocols, Ri, reveal
the output of the T-MPSIindividual in plaintext to each party i.
However, this leakage does not compromise the privacy of the
overall protocol since, given the end result R and the party’s
own private set Si, Ri can be derived anyway (see the proof
in Appendix A). The leakage is restricted to each individual
party only, so each party i only sees the results relevant to
their own data inputs. This means there is no additional risk
of one party learning confidential details about another party’s
private set beyond what is jointly agreed to be shared.

B. Security Against Collusion

Depending on the values of the number of parties m, the
intersection threshold T and the collusion threshold c, there

could be information leakage. Consider the following scenario
with m = 7, T = 4 and c = 3. This means that all elements
present in at least four of the seven sets will be part of
the intersection. There are seven parties participating in the
protocol, three of which may collude. The three colluding
parties share their private inputs with one another to deter-
mine what elements the four possess. If neither of the three
colluding parties possesses element e1, but the intersection
output contains e1, then they conclude that the four non-
colluding members must possess it. Therefore, we require that
when using the T-MPSIcollective protocol in practice, the user
set T > c and m > T + c.

V. IMPLEMENTATION

To the best of our knowledge, no implementation exists
to convert between types of T-MPSI protocols. We present
a generalized extension which can be applied to any T-
MPSIindividual scheme to transform it into a T-MPSIcollective
scheme.

A. Setup

In this work, we provide an example of such a pipeline us-
ing [3]’s implementation as the initial T-MPSIindividual scheme.
The first step is to convert it into a T-MPSIall scheme since
the original code is designed so that only one party—the
leader—learns which elements in their set do they share
with the other parties. We do so by running the protocol
concurrently, allowing every party to play the role of leader
once to compute their T-MPSIindividual. If we were starting
with a T-MPSIall protocol instead of T-MPSIindividual, we would
not need to add this parallelization step since the T-MPSIall
scheme already guarantees that every party obtains their T-
MPSIindividual set. The outputs from this first step are the T-
MPSIindividual intersection sets for each party. We store these
intermediate intersections in JSON files, one file per party
and one shared element per line. Then, we apply the MPSU
protocol by Vos et al. [18] on these individual intersections.
The resulting union represents the T-MPSIcollective set. Vos et
al.’s implementation provides users with the option to switch
to MPSU large by specifying the divisions argument to
2. The MPSU large version of their protocol caters to when
the universe size is much larger than the set sizes by reducing
the number of required operations through strategic partition-
ing and selective processing. The MPSU protocol requires
knowing the universe size prior to computing the private set
union. In our experiments, we assume that the universe is
all IPv4 addresses, therefore, the universal set size |U| =
232 IPv4 addresses − 588, 514, 304 reserved addresses =
3, 706, 452, 992 addresses.

We execute our runtime experiments on a laptop configured
with a 64-bit Ubuntu 22.04.4 LTS operating system. The
hardware includes an AMD Ryzen 9 6900HS processor with
eight cores operating at a maximum frequency of 4.935 GHz
as well as 24GB of RAM.
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B. Parameters

We define the following parameters for our experiments.
• Number of parties: m = 5, 7, 9
• Number of elements per set: n = 128, 256, 512, 1024
• Intersection threshold: T =

⌊
m+1
2

⌋
• Key length: κ = 1024
• Homomorphic PKE scheme threshold (for T-

MSPIindividual): ℓ =
⌊
m
2

⌋
• Universe size (for MPSU): |U| =

3, 706, 452, 992 available IP addresses
The parameters were chosen to represent realistic values

for CTI. The choices of m, T and κ are within the range
commonly used in previous papers [11], [3]. The values of
n used in this study are relatively low for a realistic scenario
due to the limitations of the T-MPSI protocol and our hardware
configuration. Larger n values would render the experiments
impractically time-consuming on our laptop with limited RAM
and CPU.

We set T to ⌊(m+1)/2⌋ for two reasons: to prioritize threats
targeting at least half of the parties, which pose the greatest
risk, and to ensure that attack details are shared only when a
majority of group members are affected, preventing exposure
of a minority within the group.

C. Runtime Performance

TABLE I
T-MPSICOLLECTIVE WITH THRESHOLD T =

⌊
m+1

2

⌋
- RUNTIME IN

SECONDS. THE VALUE BEFORE THE ‘+‘ REPRESENTS THE TIME FOR THE
FIRST STEP OF COMPUTING THE T-MPSIALL AND THE VALUE AFTER
REPRESENTS THE TIME FOR THE SECOND STEP OF COMPUTING THE

MPSU.

Max elements
per set n

Number of parties m

5 7 9

128 159 + 4.63 366 + 5.58 669 + 5.89
256 314 + 4.67 709 + 5.82 1352 + 6.20
512 642 + 5.14 1424 + 6.26 2615 + 7.49
1024 1324 + 5.32 2973 + 6.81 5495 + 7.60

As demonstrated by Table I, for all tested values of m and
n, the majority of the execution time occurs during the first
step, i.e., calculating the T-MPSIall. This involves running a T-
MPSIindividual protocol for all parties in parallel. In contrast, the
time required for the second step to transition from T-MPSIall
to T-MPSIcollective by calculating the MPSU on the intermediate
T-MPSIall results is minor.

This is because the runtime complexity of the T-MPSI
and MPSU algorithms employed scale with the size of the
party’s sets [3], [18]. In the first step, transitioning from T-
MPSIindividual to T-MPSIall, the input sets are large, up to
n = 1024. However, the intersection sets outputted from
the first step to be used as inputs for the second step are
comparatively much smaller, with approximately 10 elements
per set. Therefore, the MPSU protocol from the second step
is applied on smaller set sizes.

Furthermore, from our experiments, we observe that the
second step scales better than the first, staying below 10

seconds for all test cases, whereas the runtime for computing
T-MPSIall grows rapidly as the number of parties is increased.

Overall, the first step of executing the T-MPSIall is still not
efficient enough for practical use considering the scalability
and performance requirements of the CTI sharing. CTI datasets
often contain millions of entries, which translates to millions
of elements per set, yet we observe slow runtimes starting at
thousands of elements. Unless all participating organizations
are equipped with powerful computers, it would be difficult to
deploy the overall TMPSIcollective implementation in a large-
scale setting. Therefore, improvements in our extension rely
on improvements in T-MPSI.

Even with these limitations, our results are promising since
they indicate that our main idea of applying an MPSU protocol
on the output of an T-MPSIall protocol to extend it to a
T-MPSIcollective protocol can be done efficiently. We believe
the current selection of parameters aptly demonstrates the
pipelines potential with realistic CTI sharing setups.

VI. CONCLUSION

In conclusion, our study highlights the challenges in re-
searching and implementing T-MPSI protocols due to the
conflation of various T-MPSI schemes. To provide more clar-
ity, we defined three perspectives within T-MPSI: individual,
all and collective. Although many implementations for T-
MPSIindividual and T-MPSIall exist, there is a lack of solutions
that extend to T-MPSIcollective.

Our work addresses this gap by proposing a generic com-
position to convert any T-MPSIindividual protocol into a T-
MPSIcollective protocol using MPSU, which aggregates the in-
termediate outputs from the T-MPSIall protocol. While our run-
time experiments indicate that the extension holds potential,
the scalability and performance of the initial T-MPSIindividual
step still fall short of the practical demands for CTI sharing.

Consequently, further improvement in the efficiency of T-
MPSI is essential for developing robust and scalable solutions
for secure data sharing.
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APPENDIX A
PROOF THAT INTERMEDIATE RESULTS CAN BE LEAKED

We prove that for all intersection threshold T and number
of parties m that Si ∩ R = Ri. In other words, since the
individual party can calculate the intermediate result from their
own data and the collective output, the leakage does not expose
any information that is not already accessible to them. Let R
represent the union of intersections of all combinations of T
sets out of the total m sets:

R =
⋃

J⊆{1,...,m}
|J|=T

⋂
j∈J

Sj . (1)

Let Ri, for a specific party i, be defined as

Ri = Si ∩
⋃

J⊆{1,...,m}\{i}
|J|=T−1

⋂
j∈J

Sj . (2)

We want to prove that we can obtain Ri from the intersection
of Si and R. We begin by expanding R into

Si ∩R = Si ∩

 ⋃
J⊆{1,...,m}

|J|=T

⋂
j∈J

Sj

 . (3)

Using the distributive property of intersection over union, this
becomes

Si ∩R =
⋃

J⊆{1,...,m}
|J|=T

(Si ∩
⋂
j∈J

Sj). (4)

If we focus on subsets J such that i ∈ J , this reduces to
considering intersections of T − 1 other sets with Si because
the presence of Si in the intersections is guaranteed:

Si ∩R =
⋃

J⊆{1,...,m}\{i}
|J|=T−1

(Si ∩
⋂

j∈J∪{i}

Sj). (5)

Since i is added back to J to form T elements, and J initially
contains T − 1 elements not including i, the equation reduces
to

Si ∩R =
⋃

J⊆{1,...,m}\{i}
|J|=T−1

(Si ∩
⋂
j∈J

Sj). (6)

By the distributive property of sets, we can extract the inter-
section of Si out of the union, resulting in

Si ∩R = Si ∩
⋃

J⊆{1,...,m}\{i}
|J|=T−1

⋂
j∈J

Sj . (7)

This is exactly the definition of Ri as given by equation 2, so
we conclude that

Si ∩R = Ri. (8)
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