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Noisy intermediate-scale quantum computers (NISQ) are computing hardware in their childhood, but they 

are showing high promise and growing quickly. They are based on so-called qubits, which are the quantum 

equivalents of bits. Any given qubit state results in a given probability of observing a value of zero or one 

in the readout process. One of the main concerns for NISQ machines is the inherent noisiness of qubits, i.e., 

the observable frequencies of zeros and ones do not correspond to the theoretically expected probability, as 

the qubit states are subject to random disturbances over time and with each additional algorithmic operation 

applied to them. Models to describe the influence of this noise exist. 

In this study, we conduct extensive experiments on quantum noise. Based on our data, we show that exist- 

ing noise models lack important aspects. Specifically, they fail to properly capture the aggregation of noise 

effects over time (or over an algorithm’s runtime), and they are underdispersed. With underdispersion, we 

refer to the fact that observable frequencies scatter much more between repeated experiments than what the 

standard assumptions of the binomial distribution would allow for. Based on these shortcomings, we develop 

an extended noise model for the probability distribution of observable frequencies as a function of the num- 

ber of gate operations. The model roots back to a known continuous random walk on the (Bloch) sphere, 

where the angular diffusion coefficient can be used to characterize the standard noisiness of gate operations. 

Here, we superimpose a second random walk at the scale of multiple readouts to account for overdispersion. 

Further, our model has known, explicit components for noise during state preparation and measurement. 
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The interaction of these two random walks predicts theoretical, runtime-dependent bounds for probabilities. 

Overall, it is a three-parameter distributional model that fits the data much better than the corresponding one- 

scale model (without overdispersion), and we demonstrate the better fit and the plausibility of the predicted 

bounds via Bayesian data-model analysis. 

CCS Concepts: • Hardware → Quantum error correction and fault tolerance; • Mathematics of com- 

puting → Markov processes; 
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 Introduction 

uantum computing is an emerging computing technology that has the potential to revolutionize
he way we solve computational problems in the future. The potential power of quantum com-
uting stems from the fact that information is stored in so-called quantum bits (qubits), which,
nlike their binary counterparts, can hold a superposition of the two orthonormal basis states |0 〉
nd |1 〉 . However, qubit states as such are not observable. Instead, when a qubit is measured, it
ollapses to either the zero or one state with a probability that relates to the superimposed state
see Section 2 ). 

The above-described concept generalizes to quantum registers. An n-qubit register can hold a
uperposition of all 2 n bitstrings | 00 . . . 00 〉 , | 00 . . . 01 〉 , . . . , | 11 . . . 11 〉 , which makes it possible
o perform operations on an exponential amount of input data simultaneously. Unlike classical
omputing, this quantum parallelism does neither require an exponential overhead in time nor the
eplication of hardware in space to enable parallel execution. It is a result of the qubits’ capability
o hold multiple states simultaneously. 

Quantum computing cannot surpass the no-free-lunch theorem, which manifests itself in the
etrieval of information from the output state. As states cannot be observed directly, quantum
lgorithms need to be executed multiple times to obtain an approximation of the probabilities
rom which the most probable ‘outcome(s)’ of the quantum algorithm can be deduced. 

Today’s noisy intermediate-scale quantum (NISQ) computers are not yet ready for solving
eaningful real-world problems due to the immaturity of the quantum hardware. State-of-the-art

uantum computers from IBM provide up to 433 qubits, which enables the superposition of 2.2e130
tates and should bring the solution of real-world problems into reach [ 12 ]. However, qubits are
ery susceptible to noise and feature extremely short decoherence times. This noise limits the
omplexity of quantum algorithms to perform a few basic single- and two-qubit operations (to be
xplained below) before the output state degenerates to meaningless noise. 

The noise that occurs in practical quantum computation is manifold and can be more or less
ronounced for different qubit technologies such as superconducting qubits, trapped ion qubits,
hotonic qubits, neutral-atom qubits, and semiconductor spin qubits [ 14 , 21 , 22 , 25 , 26 ]. Without
oing too much into the technical details one can differentiate at least between two types of errors: 

—systematic errors such as the mistuned microwave pulse leading to a systematic under-
rotation, over-rotation, or rotation around an imprecise axis 

—spurious cross-talk between neighboring qubits when applying an operation to one or more
of them or measuring one or more qubit 
CM Trans. Quantum Comput., Vol. 5, No. 4, Article 24. Publication date: October 2024. 
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However, the standard noise models implemented in today’s quantum computer simulators such
s depolarizing channel models [ 17 ] are typically very simplistic and not capable of modeling the
omplex noise behavior. 

Thus, useful methods for quantum characterization, verification, and validation are highly
elevant. 

A commonly used and scalable method to partially characterize the noise associated with quan-
um gates is randomized benchmarking (RB) [ 11 ]. RB was originally proposed in 2005 [ 8 ] with
ifferent versions and flavors coming out ever since [ 7 ]. In RB, the average gate fidelities of a given
ISQ machine (on average over many types and repetitions of gates) are found by performing a

andomized series of mutually canceling operations of varying lengths. Upon measurement, one
heoretically expects to always find the initial (zero) state but does not in practice. The exponential
ecay rate explaining these imperfect measurements is the core error metric. One known downside
f this technique is that it makes the assumption that noise is time independent [ 23 ]. 
Tomographic methods aim to characterize the quantum operations including noise in full de-

ail. While some of the methods focus on specific parts of the quantum computations (such as state
omography, process tomography, or measurement tomography), the widely used gate set tomog-
aphy aims to reconstruct the entire pipeline, including state preparation and measurement

rrors (SPAM) [ 15 ]. While the comprehensiveness of this approach has its appeal, the level of
etail requires large, sometimes prohibitively large amounts of experimental data. 
Our proposed method, data (see Section 2.2 ), and model (see Section 2.4 ) are akin to RB in that

hey use lumped error characteristics, with the twist that these are happening at multiple levels. We
odel the qubits’ movement on the Bloch sphere with errors occurring on an individual as well as
 pool level while also considering finite sample effects. The two levels roughly represent random
rrors that affect individual qubits only and random effects, possibly caused by environmental
actors, affecting batches of qubits identically. This combination helps to explain overdispersion, an
ffect noticed in References [ 16 ] and [ 18 ], in an easily accessible manner while avoiding a generic
atch-all error. Further, the model could easily allow an extension to incorporate non-Markovian
rror types [ 2 ]. So far, we focus on the characterization of one particular basis gate, however, an
pplication to random gate sequences, as commonly used in RB [ 9 ], is possible. 

To explore our idea, we pose the following research questions: 

—Can the experimental data confirm that we need two levels? 
—Our hypothesized model will predict growth and then decay of overdispersion over algo-

rithm runtime, and even provides theoretical bounds for the overdispersion at any given
algorithm runtime. Can we observe evidence of this? 

 Methods 

.1 Bloch Sphere Representation for a Single Qubit 

 qubit is the quantum-computing version of a bit. Its state is generally denoted as | Ψ〉 , defined
y the following: 

| Ψ〉 = γ0 | 0 〉 + γ1 | 1 〉 , γ0 , γ1 ∈ C, | 0 〉 = 
[
1 
0 

]
, | 1 〉 = 

[
0 
1 

]
, (1)

here the complex numbers γ0 and γ1 are sometimes called probability amplitudes. Furthermore,
| 0 〉 and | 1 〉 are orthonormal basis states forming the computational basis. Equation ( 1 ) represents
 superposition of the two basis states. 
ACM Trans. Quantum Comput., Vol. 5, No. 4, Article 24. Publication date: October 2024. 
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Qubit states as such are not observable. When a qubit is measured, it collapses to either | 0 〉 or
 1 〉 (here simply called 0 or 1) with probabilities P given by 

P[0 ] = | γ0 | 2 , P[1 ] = | γ1 | 2 . (2)

As the events to measure 0 or 1 are mutually exclusive and collectively exhaustive, the corre-
ponding probabilities sum up to unity, 

| γ0 | 2 + | γ1 | 2 = P[0 ] + P[1 ] = 1 . (3)

From the total of four degrees of freedom contained in the two complex numbers γ0 and

1 , the constraint in Equation ( 3 ) removes one. Another degree of freedom has no physically
bservable consequences, and so a qubit has two relevant degrees of freedom [ 17 ]. Due to
quation ( 3 ), these form a unit sphere, called the Bloch sphere [ 17 ], which can be thought of as a
phere in R 

3 . 
The Bloch sphere is like a globe, where the north pole represents the zero-state | 0 〉 and the south

ole represents the one-state | 1 〉 . The so-called colatitude is given by the angle θ ∈ [0 , π ] with zero
t the north pole (in contrast to regular latitude). For θ = 0 at the north pole, a measurement returns
he zero-state with probability P[0 ] = 1 and similarly at the south pole with θ = π . The equator at
= π/2 corresponds to P [1 ] = P [0 ] = 1 /2 . The longitude is given by the angle φ ∈ [0 , 2 π ], which

oes not influence the probabilities at all, but is still relevant in quantum computing as it changes
he readout probabilities after appropriate rotations. 

Since the Bloch sphere is a powerful visualization and a good basis for constructing noise mod-
ls, it is worthwhile to note the transformations between the probability amplitudes γ0 and γ1 and
he angles θ and φ, 

γ0 = cos 

(
θ

2 

)
, γ1 = e 

iφ sin 

(
θ

2 

)
. (4)

As the longitude φ does not influence the probabilities P[0 ] and P[1 ], we look specifically at the
elation between θ and P = P[0 ], 

P = P[0 ] = | γ0 | 2 = cos 2 
(
θ

2 

)
= 

1 

2 
+

1 

2 
cos (θ )

⇒ θ = arccos (2 P − 1 ) . (5)

For transforming probability density functions between θ and P , the Jacobian of this relation
ill be useful, 

∂θ

∂P 
= − 1 

√ 

P − P 2 
. (6)

The relation is monotonic, which is an important prerequisite in transformations of random
ariables (e.g., Reference [ 4 ]). 

.2 Data 

2.2.1 Data Creation. To build and test our extended noise model, we first acquire the necessary
ata by running experiments on open-access quantum computers. The experiments are set up such
hat, in noise-free theory, we know we should always measure the zero-state with probability 1.
o obtain observed frequencies (as the probabilities cannot be directly observed), we repeat each
lgorithm 8,192 times, which is the upper limit on the freely available machine we use. We then
epeat this for multiple circuits with varying lengths (i.e., varying numbers of gate operations),
lways ensuring that the expected theoretical outcome remains the zero state. 
CM Trans. Quantum Comput., Vol. 5, No. 4, Article 24. Publication date: October 2024. 
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Fig. 1. Plots showing the different noise behaviors in three cases. The simulated device, the real machine 
with mixed wallclock times and the real machine with (multiple) single wallclock times. 
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We collect the resulting data and plot the observed frequency of measuring the zero-state as a
unction of the number of gates applied to the qubit. In this article, we consider each such gate ap-
lied as a timestep, therefore the axis representing the number of gates applied can be interpreted
s a time axis. 

In the data for our model, we make use of the 
√ 

x -gate, one of IBM’s native gates. In each con-
idered circuit, the 

√ 

x -gate is applied a number of times that is a multiple of four, ensuring that
he total effect on the qubits should vanish. 1 The circuits are compiled using optimization level-0,
hich guarantees that the gates are actually performed on the physical qubit(s) (and not optimized

way as they cancel each other out). 
In Figure 1 (a), we plot the frequencies of measuring the correct (here: zero) state in the case that

he experiments for the different data points are run at different wallclock times. In Figure 1 (b),
e plot the frequencies of measuring the correct state in the case that the experiments for the
ifferent data points are run at the same wallclock time. Here, “different time” means through
ifferent jobs submitted to the system’s waiting queue that have been processed in intervals of,
n average, 7 minutes between the individual jobs; “same time” means submitted as a bulk job
ithout any waiting time in between. Regardless of this difference, one can see how the degree of
ispersion (i.e., the scatter of the lines around the hypothetical mean line) increases at first, until
omewhere before 500 gate operations in the specific case, and then decreases again. 

2.2.2 Data Availability. The full settings used for 1-qubit IBM Armonk machine [ 12 ] can be
ound in Appendix B . The data produced are available ( link to GitLab repository will be released

fter publication ) online . The data file contains the resulting frequency of measuring the zero-
tate, the amount of 

√ 

x -gates applied, and the timestamp of when the experiment was run on the
BM Armonk machine. 

.3 Relevant Levels of Randomness and Probability Distributions 

n the following derivations, four distinct levels of randomness will appear. To avoid confusion,
e declare them upfront: 

—Bernoulli level : Consider the state | Ψ〉 (here: specifically θ ) of a qubit to be fixed. For an
individual measurement (n = 1 ), we know the theoretical probability P[0 ] via Equation ( 5 ).
But when conducted we see either a zero or one, with no meaningful way to define a
(frequentist) probability in a single experiment due to n = 1 . 
 Note that 
√ 

x = 1 
2 

[1 + i i − 1 
1 − i 1 + i 

]
, therefore 

√ 

x 
√ 

x 
√ 

x 
√ 

x = I . 

ACM Trans. Quantum Comput., Vol. 5, No. 4, Article 24. Publication date: October 2024. 
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—Binomial level : Again consider a qubit in fixed state with theoretically known P . After
n > 1 repetitions, one can observe a meaningful frequency of the binary outcomes { 0 , 1 } .
For n → ∞ , the observed frequency converges to the Bernoulli-level probability. For dis-
tinguished notation, we use P̄ = P for probabilities at the binomial level and F̄ as observed
frequencies. The discrepancy between P̄ and F̄ is described by the well-known binomial
distribution [ 10 ]. 

—Pool level : Consider a total of m repetitions of the binomial level (with n repetitions each).
These m “outer” repetitions form a so-called pool of observed frequencies F̄ q ; q = 1 . . . m.
Each of the m repetitions can have a different qubit state with corresponding theoretical
(binomial-level) probability P̄ q , q = 1 . . . m. When analyzing the pooled data altogether, one

observes a pooled frequency F̌ , which converges for n, m → ∞ toward the theoretical mean
P̌ of the binomial-level probabilities P̄ q . However, the observed F̄ q will not only scatter

around P̌ due to the classical binomial law but also due to differences in the respective
values P̄ q and due to finite m; therefore, the binomial distribution does not apply to such
pooled data. 

—Parametric level : The levels so far are all classical frequentist uncertainties. Probabil-
ity distribution models fitted to the observed data are typically governed by parameters.
Parametric uncertainty refers to the fact that these distributional parameters can only be
inferred with finite precision at finite m, n. The corresponding parametric uncertainty is
often quantified via Bayesian inference [ 3 ]. 

Relevant, well-known probability distributions used or referred to in the upcoming derivations
re as follows: 

—The binomial distribution describes the observable frequency under n independent repeti-
tions of a binary-outcome (e.g., 0 , 1 ) random experiment with constant theoretical proba-
bility P : F̄ ∼ Bino (n, P), with parameters n, P . 

—The Uniform distribution X ∼ U(0 , 1 ) assigns identical probability density to all values of
a continuous random variable X in the interval [0 , 1 ] [ 10 ]. 

—Gilbert’s sine distribution X ∼ Sine() = sin (2 x) , ∀ x ∈ [0 , π/2 ] assigns a sinus-shaped
probability density [ 6 ]. It can be scaled to any interval [L, U ] with width W = U − L by
Sine(L, U ) = W /2 π · sin (2 π/W · 2 (x + L)). 

.4 Two-level Random Walk on the Bloch Sphere 

s a possible noise model, we see the noise of qubit states as a random walk on the Bloch sphere:
magine a qubit initialized at the north pole. At later times, the position on the sphere will not
ecessarily be identical to the starting position; instead, the position on the sphere is randomly
oving over time, e.g., due to noisy gate operations. 
The new model to account for overdispersion proposed here is a two-level random walk on the

loch sphere. The first level represents classical noise ideas as just described, while the second
evel, the pool level, is responsible for the overdispersion. Graphically, one can imagine the pool-
evel random walk as an additional, joint component in the random walks of many random walkers,
pecifically a joint motion of their center of mass on the surface of the sphere. 

The average position over many random positions of pure states on the Bloch sphere due to
he first level of the random walk actually lies within the sphere. That means it has a shortened
adius smaller than one. We will exploit this fact later to summarize the relevant statistics of the
rst random walk and combine it with the second random walk. 
CM Trans. Quantum Comput., Vol. 5, No. 4, Article 24. Publication date: October 2024. 
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2.4.1 Known Results for θ (t ) in Single-level Random Walks. In quantum computing, a probability
istribution over states is called a mixed or decoherent state, while a deterministic state according
o Equation ( 1 ) is called a coherent state [ 17 ]. At the binomial level (see Section 2.3 ), we define a
heoretical probability P̄ . This P̄ is the expected value of the noise-affected Bernoulli-level proba-
ilities P (see Section 2.3 ) over the probability distribution of qubit states p(θ , φ): P̄ = E θ,φ 

[| γ0 | 2 ].
uch a distribution on the sphere is in fact equivalent to a mixed state, and could as well be
epresented by a shortened Bloch vector, or by density matrices [ 17 ], i.e., as a decoherent state.
owever, as only θ is the probability-relevant angle, we can afford to simplify our derivations. 
As a starting point for our noise model, assume a random walk on the Bloch sphere, here written

s time-discrete, 

| Ψ〉 t+1 = | Ψ〉 t + Δ | Ψ〉 ,t . (7)

Further, assume that the increments Δ | Ψ〉 ,t are independent and identically distributed for any
iven time lag Δt = t i − t j . Due to the independence property, the random series | Ψ〉 t is a Markov
rocess (e.g., Reference [ 13 ]). If, additionally, we assume that these increments are Gaussian dis-
ributed with zero mean and fixed variance, and we define these increments as angular increments,
hen we arrive at Fickian diffusion on the Bloch sphere. Written in terms of angles θ , φ, it is gov-
rned by 

∂p(θ , φ; t)
∂t 

= D n ∇p(θ , φ; t), (8)

here p(θ , φ; t) is the joint probability density function (PDF) of θ and φ as a function of time
, D n is the rotational diffusion coefficient in rad 

2 /s . 
We restrict ourselves to initial conditions of θ = 0 . Also, as we do not consider systematic actions

n φ that would make φ relevant to probabilities P , we can afford to neglect φ as of now. A small
iscussion on the limitation due to this omission can be found in Section 4 . So let p(θ ; t ) be the PDF
or the colatitude θ as a function of time t . For the case of constant D n and the initial condition
(θ ; t = 0 ) = δ (θ ), expansion in spherical harmonics provides the following analytical solution, as
erived in Reference [ 20 ]: 

p(θ ; t ) = 
∞ ∑

k= 0 

2 k + 1 

2 
e −D n k (k +1 )t · L k (cos θ ) sin θ ∀ t > 0 , (9)

here L k is the Legendre polynomial of order k [ 1 ]. In practice, the infinite sum has to be truncated
nd is known to converge only slowly for small t . However, with fast and accurate algorithms for
valuating Legendre polynomials, truncation at K = 1000 or higher is unproblematic. 

2.4.2 Mapping onto P(t) (Bernoulli Level). While the above analytical solution is a known result,
e are interested in transforming it into the PDF for the Bernoulli-level measurement probability
 = P[0 ]. For clarity, we will now write p θ (θ ) and p P (P), where one must realize that p P (P) is
 probability density that describes what theoretical probabilities P one may encounter. Using
tandard rules for PDFs after change of variables [ 4 ], we have the following: 

p P (P ; t) = p θ (θ (P ); t) ·
				∂θ (P )∂P 

				 . (10)

Recalling the transformation in Equation ( 5 ) and its Jacobian in Equation ( 6 ), inserting into
quation ( 9 ) yields 

p P (P ; t) = 
∞ ∑

k= 0 

(2 k + 1 )e −D n k (k +1 )t L k (2 P − 1 ), (11)
ACM Trans. Quantum Comput., Vol. 5, No. 4, Article 24. Publication date: October 2024. 
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ince 

cos θ = 2 P − 1 , sin θ = 2 
√ 

P − P 2 . (12)

2.4.3 Limit Cases and Information Entropy. For a better understanding, it is worthwhile to look
t certain limit cases of Equation ( 11 ): 

lim 

t→∞ 

p P (P ; t) = L 0 (2 P − 1 ) = 1 , ∀ P ∈ [0 , 1 ], (13)

p P (P = 0; t) = 
∞ ∑

k= 0 

(−1 )k (2 k + 1 )e −D n k (k +1 )t , (14)

p P (P = 1; t) = 
∞ ∑

k= 0 

(2 k + 1 )e −D n k (k +1 )t , (15)

hich is due to L k (−1 ) = (−1 )k and L k (1 ) = 1 , respectively. Looking at the first limit, we see that
ubit states approach a uniform distribution over their measurement probabilities at late times, the
istribution with maximal information entropy, i.e., the least informative one. At the same time,
quation ( 14 ) approaches its t → ∞ limit of 1 strictly from above, and Equation ( 15 ) approaches
he same t → ∞ limit but strictly from below and starting from zero. 

Upon reflection, Equation ( 13 ) is intuitive. Due to symmetry, the theoretical average of the uni-
orm distribution is 0.5. Therefore, the observable frequencies over many measurements (each one
ith a different, random probability from the uniform distribution) converge to the intuitive un-

nformative 50:50 coin toss between | 0 〉 and | 1 〉 . Such types of averages over 11 will be treated
n more detail in the upcoming section. But, as a noteworthy fact, the random walk on the Bloch
phere installs the maximum-entropy property (here: uniform distribution) in terms of measurable
robabilities, and not in terms of θ , 

lim 

t→∞ 

p θ (θ ; t ) = 1 

2 
sin (θ ) , (16)

hich ends up as the Sine() distribution on the [0 , π/2 ] interval. A uniform distribution on the
urface of the Bloch sphere is not the same as a uniform distribution on the angles . 

2.4.4 Transfer to Theoretical Probabilities P̄(t) (Binomial Level). Equation ( 11 ) is a distribution
ver the individual probabilities of single ( n = 1 ) measurements at the Bernoulli level. Accord-
ngly, each individual measurement will result in an observed zero-state or one-state with indi-
idual random probability P and 1 − P , respectively. Therefore, the probability distribution as in
quation ( 11 ) will never be observable. Instead, when repeating the measurement process n times,
ith n → ∞ , one will empirically observe a probability P̄(t) = E[P(t)] at the binomial level. The

act that the empirically visible probability is the expected value E[P(t)] follows from the properties
f the Poisson-binomial distribution [ 24 ]. 
Hence, we are now interested in the expected value μP = E[P(t)] and the general �th moments

P, � (t) = E[P � (t)] of Equation ( 11 ), 

μP, � (t) = E[P � (t)] = 
∫ 1 

0 
p P (P ; t)P � d P 

= 

∫ 1 

0 

∞ ∑
k= 0 

(2 k + 1 )e −D n k (k +1 )t P � L k (2 P − 1 ) d P 

= 

∞ ∑
k= 0 

(2 k + 1 )e −D n k (k +1 )t 
∫ 1 

0 
P � L k (P ) d P , (17)
CM Trans. Quantum Comput., Vol. 5, No. 4, Article 24. Publication date: October 2024. 
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ith the shifted Legendre polynomials L k = L k (2 x − 1 ), whose orthogonality property
1 

0 
L � (x )L k (x ) d x = (2 k + 1 )−1 δ�k [ 1 ] we exploit in the following. Specifically for � = 0 we have

 

0 = L 0 (P), and hence 

μP,0 (t) = 
∞ ∑

k= 0 

(2 k + 1 )e −D n k (k +1 )t ·
∫ 1 

0 
L 0 (P )L k (P ) d P 

︸� � � � � � � � � � � � � � � � � � � � ︷︷� � � � � � � � � � � � � � � � � � � � ︸ 

(2 k+1 )−1 δk0 

= 1 ∀ t , (18)

hich is a requirement for valid PDFs. 
The first interesting case is for � = 1 , giving the probability P̄(t). Here, we use P 1 = 1 

2 L 0 (P) +
1 
2 L 1 (P), 

P̄(t) = μP,1 (t) = 
∞ ∑

k= 0 

(2 k + 1 )e −D n k (k +1 )t ·
∫ 1 

0 

(
1 

2 
L 0 (P) +

1 

2 
L 1 (P)

)
L k (P) d P 

︸� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ︷︷� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ︸ 

1 
2 (2 k +1 )−1 δk0 +

1 
2 (2 k +1 )−1 δk1 

= 
1 

2 ︸︷︷︸ 

k= 0 

+
1 

2 
e −2 D n t 

︸� � � ︷︷� � � ︸ 

k= 1 

. (19)

This is a beautiful result; for qubit states subject to a random walk on the Bloch sphere with
sotropic, constant angular diffusion coefficient D n after initialization to the north pole, the mea-
urements asymptotically approach the indifferent 50:50 probability with the first-order rate 2 D n ,
llowing to describe the development by 

∂ ̄P(t)
∂t 
= −2 D n 

(
P̄ − 1 

2 

)
. (20)

One should remain clear that this does not imply that qubit states as such tend to the equator.
nstead, the ensemble average over all possible noise-affected states tends toward the uninforma-
ive 50:50 probability, when the qubit states are uniformly distributed over the Bloch surface, i.e.,
n entirely decoherent state. 

The second moment will play a role in overdispersed data at the pool level. Hence, we set � = 2 ,
se P 2 = 1 

3 L 0 (P) + 1 
2 L 1 (P) + 1 

6 L 2 (P) and repeat the procedure: 

μP,2 (t) = 
∞ ∑

k= 0 

(2 k + 1 )e −D n k (k +1 )t ·
∫ 1 

0 

(
1 

3 
L 0 +

1 

2 
L 1 +

1 

6 
L 2 

)
L k d P 

= 
1 

3 ︸︷︷︸ 

k= 0 

+
1 

2 
e −2 D n t 

︸� � � ︷︷� � � ︸ 

k= 1 

+
1 

6 
e −6 D n t 

︸� � � ︷︷� � � ︸ 

k= 2 

. (21)

By transformation from raw moments μ� to central moments μ�c (e.g., Reference [ 19 ]), we obtain
he variance σ 2 

P (t) for the Bernoulli-type probabilities P : 

σ 2 
P = μP,2 c = μP,2 − μ2 

P,1 = 
1 

3 
+

1 

2 
e −2 D n t +

1 

6 
e −6 D n t −

(
1 

2 
+

1 

2 
e −2 D n t 

)2 

= 
1 

12 
− 1 

4 
e −4 D n t +

1 

6 
e −6 D n t . (22)
ACM Trans. Quantum Comput., Vol. 5, No. 4, Article 24. Publication date: October 2024. 
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Special cases are as follows: 

σ 2 
P (t = 0 ) = 0 , (23)

lim 

t→∞ 

σ 2 
P (t) = 

1 

12 
, (24)

here the former is due to the deterministic initial condition, and the latter is known to be the
ariance of the uniform distribution [ 10 ], the limit distribution as discussed in Section 2.4.3 . 

2.4.5 Pool-level Randomness. For extending the above results to overdispersed data, we now
nvoke the pool level with m repetitions of a binomial-level experiment. Each binomial-level
xperiment with n measurements at a given time t has a different binomial-level probability
 ̄q (t), q = 1 . . . m. We now assume that the random walk on the Bloch sphere has two compo-
ents: (1) an i.i.d. noise component as discussed above, which works individually on all Bernoulli
rials, and (2) a common binomial-level component for all n random walkers of a size- n binomial
xperiment that introduces randomness into a size- m pool of binomial experiments, causing the
robabilities P̄ q (t) within the pool to vary. 
For all linear relations y = f (x), the simplification E [y] = f (E [x]) can be used. We can use this

implification due to the linear character of qubit gates that represent rotations (and hence random
oves) on the Bloch sphere. Hence, we can directly work with the expected position from the

inomial-level random walk on the Bloch sphere to construct our pool-level random walk. The
xpected position, due to symmetry, stays constant θ (t ) = 0 at the north pole for all times but
imply has a reduced length R of the Bloch vector given by 

R(t) = 1 − 2 ̄P(t) = e −2 D n t , (25)

hich follows from Equation ( 19 ). We use this reduced length to represent the statistics of the
rst level of random walk at the binomial level. Then, we use Equation ( 11 ) anew for representing
he second level, just working on the reduced-length vector. Thus, we construct the overdispersed
robability distribution of P̄ q (t) by using Equation ( 9 ) together with the reduced length from
quation ( 25 ): 

P̄ q (θq ; t ) = 
1 

2 
+ R(t ) · 1 

2 
cos (θq ) , (26)

here θq is the random position of the joint center of mass of all n random walkers in the size- n
inomial experiment number q. While θq played no role before and always stayed at the north
ole, as of now, it is subject to its own random walk that also follows Equation ( 7 ). 
Next, we follow all derivation steps from Equations ( 5 ) and ( 6 ) to Equation ( 11 ), but with

quation ( 26 ) as the starting point to obtain 

p P̄ q (P̄ q ; t) = p θq 
(θq ; t)

				 ∂θq 

∂ ̄P q 

				 = 1 

R(t)

∞ ∑
k= 0 

(2 k + 1 )e −D q k (k +1 )t L k 

(
1 

R(t) (2 ̄P q − 1 )
)
, 

here D q is the pool-level angular diffusion coefficient (subscript q signifying the pool level), and
he previous noise-related diffusion coefficient D n is contained in R(t) (see Equation ( 25 )). 

Although the combined distribution from Equation ( 27 ) cannot be simplified analytically, we
now several properties. To visualize them, Figure 2 shows how the distribution of empirical fre-
uencies F̄ changes over “time,” i.e., over the number of applied gates, from 10 0 to 2 × 10 4 on a
ogarithmic scale. The top plot shows a case of our model with dominant noise ( D n 
 D q ); the cen-
er plot shows the same for D n ≈ D q , and the bottom plot shows the case of dominant pool-level
rrors ( D q 
 D n ). The relevant properties are as follows: 
CM Trans. Quantum Comput., Vol. 5, No. 4, Article 24. Publication date: October 2024. 
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Fig. 2. Simulated distribution of empirical frequencies over the number of applied gates for different relations 
between D n and D q . 
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—Upper bound: At any given time t , the maximal attainable binomial probability P̄ occurs
when θq = 0 , and the corresponding probability P̄ q, max (t) is given by Equation ( 11 ), and
hence converges to 0.5 with exponential rate of D n , see upper magenta line in the centre
plot. 

—Lower bound: At any given time t , the minimal attainable probability P̄ occurs at θq = π ,

and the corresponding probability is P̄ q, min (t) = 1 − P̄ q, max (t), see lower magenta line in the
centre plot. 

—Total expectation: The increments of the two random walks in angular coordinates are
simply additive. Thus, the overall statistical expectation (i.e., the across-pool mean P̌ ) ex-
periences a combined random walk with D tot = D n + D q . Therefore, the across-pool mean

P̌ has to evolve according to Equation ( 11 ), with D tot substituted for D n , see black line in all
three plots. The black line always stays between (but not in the middle) of the two bounds.
As we chose D q + D n = const . the black line is always the same. 

—Overdispersion: The overdispersion of binomial-level probabilities P̄ q against the across-

pool mean P̌ expressed as variance is given by Equation ( 22 ) with diffusion coefficient
D q . The corresponding overdispersion is indicated in the plots via red-shaded percentile
intervals. The corresponding overdispersion is hardly visible in the top plot, well visible in
the center, and dominant in the bottom plot. 

This means, we know time-dependent bounds for P̄ q (t), and we know its theoretical mean P̌(t)
nd its theoretical variance as a function of t . We also know that the upper and lower bounds both
onverge to the same limit, 

lim 

t→∞ 

P̄ q, max (t) = lim 

t→∞ 

P̄ q, min (t) = 
1 

2 
, (27)

nd that the limit distribution within these bounds for t → ∞ is the Sine() distribution. While
he large-time limit ( Sine()) distribution is apparently symmetric, the early-time distributions are
oncentrated at the upper bound. Accordingly, in the center plot, we can see how overdispersion
nitially does not fill the possible range between the limits, then opens up, and is finally suppressed
ACM Trans. Quantum Comput., Vol. 5, No. 4, Article 24. Publication date: October 2024. 
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y actual noise. In the bottom plot, we can see how the distribution of overdispersion asymptot-
cally becomes symmetric, following a Sine() distribution, before it would become suppressed by
ctual noise at timescales beyond the plotted range. 

.5 Bayesian Inference of Parameters in the Probabilistic Noise Model 

aving stochastically modeled the uncertainties at the Bernoulli, binomial, and pool levels, we set
ut to fit the model to our experimental data. We lump the diffusion coefficients on the different
evels D n , D q plus an initial D ini representing the SPAM noise into a model parameter vector M .

lso, we arrange our experimental frequencies F̄ after different lengths of quantum algorithms
see Section 2.2 ) into a data vector y. 

We interpret one read-out frequency, i.e., a batch of 8,192 algorithm executions with a certain
umber of gates, as a binomial collection that undergoes a joint second-level random walk, mean-

ng we look at all of the data in the same way as it is also presented in Figure 1 (a). We interpret
very individual gate operation as a timestep in both levels of the random walk and additionally let
he binomial-level random walk have a virtual zeroth timestep with D ini as its diffusion coefficient.

As we are also interested in statements on significance and confidence about our model and its
arameters M , we apply Bayesian parameter inference [ 3 ]. That means, we seek the distribution
 (M |y ) of model parameters M conditional on data y: 

p (M |y ) ∝ 

∫
p (y |M )p (M ) d θq . (28)

Here p(M) is a prior PDF over the model parameters, set to be improper flat over the positive
eal numbers; p (y |M ) serves as the so-called likelihood function, expressing for any values in M
he model’s quality of fit to the data y. In our case, it is given by the binomial distribution, but only
f we knew the values of θq within each binomial ( n = 8192 ) trial, i.e., per observed frequency F̄ .
herefore, we treat the collection of θq , one per binomial-level trial, as hidden variables also to be

nferred by the data, and use Equation ( 9 ) as its PDF for any given value of D q substituted for D n .
Technically, we use a Metropolis–Hastings algorithm [ 5 ] to solve Equation ( 28 ), equipped with a

o-called Gibbs split, where the proposals for the hidden variables θq and the primary parameters
are done separately, and mutual independence among the entries of θq can be exploited. We

enerate 10 6 parameter samples after burn-in from Equation ( 28 ) with our MCMC, out of which
e store every 20th, and so obtain 50.000 approximately independent samples of M to work with.

 Results and Discussion 

e apply our two-level model from Section 2.4 to the data from Section 2.2 via Bayesian inference
s described in Section 2.5 . As mean conditional parameter values, we obtain D̄ ini = 0 . 0218 , D̄ n =

 . 9764 × 10 −4 , D̄ q = 3 . 2418 × 10 −4 , i.e., D n and D q are on a similar magnitude like in the center
lot of Figure 2 , and D ini for state preparation and measurement is about 50 times larger, i.e., it is
omparable to about 50 initial 

√ 

x gate operations. 
Figure 3 shows the conditional distributions of D n and D q together with their joint distribution.

ooking at the small scatter of inferred values relative to the inferred mean values, it becomes clear
hat both diffusion coefficients, including the one on the pool level, are distinctly different from
ero to achieve a good model fit. In 10 6 evaluated equiprobable cases, not a single realization shows
 q anywhere below 2 × 10 −4 . This shows a substantial difference from zero for the pool-level D q 

ith extreme confidence. Also, looking at the joint distribution, one cannot see any correlation
etween D n and D q , i.e., more noise via larger D n could not compensate to replace D q . The claim
hat the pool level does indeed improve the model is strengthened further by comparing the max-
mal found log-likelihood values to the single-level model (obtained by simply forcing D q = 0 ).
CM Trans. Quantum Comput., Vol. 5, No. 4, Article 24. Publication date: October 2024. 
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Fig. 3. The (joint) distributions of D n and D q . 

Fig. 4. How well the empirical frequencies are matched. 
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ere, we have values of L(M 1 ) = −8974 and L(M 2 ) = −1186 , a log-ratio of about 7000 in favor of
ur two-level model. 
Figure 4 shows the resulting fit of the model to the data. Specifically, the inferred probabilities

 ̄q at the binomial level, based on the hidden variables θq (black dots), nicely match the observed

requencies F̄ q (blue circles). Also, the data neatly fall in between the two theoretical bounds pre-
icted by our model and populates especially the space close to the upper bound. Therefore, D n 

the noise-related diffusion coefficient that dictates the upper bound) could almost be found di-
ectly by graphical analysis. As additional visual evidence in favor of our two-level model, one can
ee that trying to fit the data from Figure 4 into the upper plot of Figure 2 is quickly rejected, i.e.,
he pool-level random walk with its resulting explanation for overdispersion is indeed required. 

There remains a noticeable discrepancy between the data and the model in the late stages.
owever, this long-time behavior is not of interest when it comes to characterizing the error for
ACM Trans. Quantum Comput., Vol. 5, No. 4, Article 24. Publication date: October 2024. 
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Fig. 5. Forward runs simulated with the MAP estimates. The green curves have an added common deter- 
ministic error per run, resulting in oscillations comparable to Figure 1 (b). 
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uantum algorithms, as the distribution is almost completely uninformative by then anyway. In
d hoc modeling variants not shown here, we improved this aspect by introducing a different
symptote, with another parameter to be tuned, into the model, giving even better visual fit and
ikelihood values. 

As a last check, we perform Monte Carlo simulations of the random walk to see how closely we
ould match the optics of a figure like Figure 1 (b). Results are shown in Figure 5 . Many of the runs
n Figure 1 (b) display oscillations, with systematic errors as the most likely explanation. These
scillations occur at some times of the day, and not at others, so some curves show this behavior,
hile others do not. Our model reproduces the time-sliced data in the distributional sense. The blue

urves in Figure 5 represent repeated gate applications simulated with the parameters obtained
rom the distributional, time-sliced viewpoint. To emulate the behavior of the oscillatory runs, a
hared systematic over-rotation was added to a constant fraction of the qubits producing the green
urves in Figure 5 . The specific quantities stem from manual ad hoc tuning, but it is possible to also
nclude such parameters in the Bayesian inference if one has enough data to use full runs as data
oints. As we set out to characterize random (diffusive) rather than coherent errors as a function
f algorithmic lengths, we omit this aspect in our current analysis. 
Nevertheless, a possible extension of our model would be to add to the current pool-level ran-

om walk a coherent component, which has increments that are constant or autocorrelated over
allclock time. In the diffusion literature, such non-Markovian behavior is well known. Then, the
iffusion coefficient, constant in our model, is defined as half the rate of growth of the variance, 

D x (t) = 
1 

2 

∂σ 2 
x 

∂t 
. 

Thus, we could modify our above results by re-scaling the time coordinate with an exponent
 ≤ κ ≤ 2 to obtain 

P̄(t) = 1 

2 
+

1 

2 
exp 

(
−2 D r Δt 

( t 

Δt 

)1 +κ
)
. 
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This could be done separately at the pool level and the binomial levels, introducing two new
arameters into our model to alleviate the assumption of Markovianity behind Equation ( 7 ). 

 Conclusion and Outlook 

n this study, we investigated the issue of overdispersion in noise that appears on NISQ machines.
e proposed a two-level random walk model on the Bloch sphere and tested it against experi-
ental data obtained from the IBM Armonk NISQ machine. Our model assumes that the effect

f classical noise can be represented as individual random walkers on the Bloch sphere, while
verdispersion is a pool-level random walk that jointly affects the theoretical center of mass of
ll algorithmic repetitions that are used in quantum computing to obtain observable read-out fre-
uencies. For given parameters (diffusion coefficients for noise, for overdispersion, and for state
reparation and measurement), it predicts the probability distribution of observable, noisy fre-
uencies as a function of number of quantum gates applied. It also predicts theoretical bounds for
he observable frequencies. 

Our model fits very well with the experimental data. We employed Bayesian calibration to high-
ight the necessity of the newly introduced pool level. It is substantial in strength and statistically
ignificant in its effect, with a log-likelihood ratio of more than 7,000 in favor of our new model,
ompared to a conventional single-level random walk model. In practice, computationally cheaper
ptimization algorithms can be used for calibrating the model, e.g., by maximizing Equation ( 28 )
ith respect to the noise-model parameters, if the parametric uncertainty is not of interest. 
Several limitations and aspects for future investigation became apparent: 

—The late-time limit for long algorithms in our experimental data is clearly offset against
the theoretical 50:50 probabilities. It would be interesting to apply models about the equi-
librium (energy-optimal) distribution of qubit states to replace the 50:50 asymptote in our
model with an offset asymptote. 

—Parts of the experimental data show oscillatory behavior along data acquisition, pointing
at coherent error types. Our model could be extended to relax its underlying Markovian
assumption in its random walks to account for coherent errors. 

—The omission of the non probability relevant angle φ enables the semi-analytic description
of the error model presented. While diffusive errors in this angle can be incorporated by
the parameters of the model, an explicit modelling of this additional angle would enable
representations of many more relevant effects due to systematic errors. 

—Our study’s scope was focused on data from a single machine (IBM Armonk), which is a
single-qubit architecture. This is a limited study based on specific empirical observations.
It would definitely be interesting to test the two-level approach on other hardware types.
Even though highly speculative, we would anticipate some generalization properties. The
two-level structure is partially motivated by two apparent error pathways, inherent per
qubit randomness and shared randomness due to environmental effects. This initial moti-
vation still holds for other hardware types. 

ppendices 

 Shifted Legendre Polynomials 

or completeness, we provide here the first three shifted Legendre polynomials, 

L 0 (X ) = 1 , (29)

L 1 (X ) = 2 x − 1 , (30)

L 2 (X ) = 6 x 2 − 6 x + 1 . (31)
ACM Trans. Quantum Comput., Vol. 5, No. 4, Article 24. Publication date: October 2024. 



24:16 W. Nowak et al. 

B

W  

w
“  

p  

f  

c

R

 

 

 

 

 

 

 

[  

[  

[

[

[  

 

[  

[  

 

[  

[  

 

[  

[  

[  

[  

 

 

A

 Qiskit Specifications 

e run our experiments on the open-access one-qubit IBM Armonk machine [ 12 ]. The circuits
ere created and run using the following versions the qiskit packages “qiskit-terra”: “0.19.2,”

qiskit-aer”: “0.10.3,” “qiskit-ignis”: “0.7.0,” “qiskit-ibmq-provider”: “0.18.3.” These packages are all
art of the qiskit framework and provide the user with the needed functionality to write and per-
orm quantum circuits on the IBM hardware or simulators. The exact explanation of the functions
ontained in each package and version can be found on the IBM quantum website [ 12 ]. 
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