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Towards a geographically even level of service in on-demand ridepooling

Pieter Schuller1, Andres Fielbaum1 and Javier Alonso-Mora1

Abstract— On-demand ridepooling systems usually need to
decide which requests to serve, when the number of vehicles
is not enough to transport them all with waiting times that
are acceptable by the users. When doing so, they tend to
provide uneven service rates, concentrating rejections in some
zones within the operation area. In this paper, we propose two
techniques that modify the objective function governing the
assignment of users to vehicles, to prioritize requests originated
at zones that present a relatively large rejection rate. The goal
is to diminish the Gini Index of the rejections’ rate, which is
a well established way to measure inequality in economics. We
test these techniques over an artificial small network and a
real-life case in Manhattan, and we show that they are able
to reduce the Gini Index of the rejection rates. Moreover, the
overall rejection rate can be simultaneously reduced, thanks to
utilizing the vehicles more efficiently.

I. INTRODUCTION

On-demand mobility systems are changing how people
transport worldwide. While expanding rapidly thanks to
several virtues offered to the users, recent studies have
shown that they are increasing congestion because users
are attracted mostly from public transport ([1]). To face
this problem, pooled mobility on-demand (PMoD) has been
suggested, where different passengers can use a vehicle si-
multaneously, thus reducing the number of required vehicles.

Several centrally-controlled methods have been proposed
to determine how to assign users to vehicles in PMoD
(such as [2], [3], [4], [5]). All of them aim at providing
efficient assignments, accounting for factors such as users’
total traveling times and/or vehicles-hour-traveled. However,
they do not consider equity aspects in their methods. This
is not a minor issue, as PMoD can naturally evolve towards
uneven situations: if the origins are concentrated in a certain
area (for instance, in the afternoon peak), and users are
then delivered somewhere else, trying to keep a somewhat
proportional rate of vehicles is a difficult task.

This situation is exemplified in Figure 1, where we exhibit
the percentage of requests that were rejected by the system,
due to insufficient available vehicles, at each corner in
Manhattan when simulating the operation of a PMoD system
using the assignment method by [2]. The highest rejection
rates occur at the center of the system, coinciding with
the high-demand zones, because too many vehicles are kept
serving in the peripheries.

In this paper, we propose techniques to modify assignment
methods in order to provide similar rejection rates every-

1Department of Cognitive Robotics, Delft University of Technol-
ogy, 2628 CD Delft, The Netherlands (e-mail: ptschuller@hotmail.com;
a.s.fielbaumschnitzler@tudelft.nl; j.alonsomora@tudelft.nl).

This research was partially funded by Didi Udian Technology (Shenzhen)
Co. Ltd.

Fig. 1: Bubble chart that shows the rejection rate per node
simulating a PMoD service in Manhattan. The size of each
bubble indicates the height of the rejection rate, and is given
a color based on its size to give a clearer image. The central
area that exhibits the largest rejection rates coincides with
the area where most requests are originated.

where, i.e., our purpose is to provide an equal level of service
from a geographical point of view.

Equity has been recognized as a relevant issue in trans-
portation systems in the last years. In the context of mobility
on demand, [6] proposes a deep-learning approach to operate
a system that considers its equity impacts, while [7] points
to similar profit for every driver and also similar rejection
rates at every zone (as we do), but using a method that
deals only with hundreds of users and tens of zones. Age-
related equity impacts of driverless vehicles are studied by
[8]. Public transport, transport infrastructure and road pricing
policies have also been analyzed from an equity perspective
([9], [10], [11]).

II. METHODOLOGY

A. The Gini Index

Consider a PMoD system that needs to serve a large
number of requests, which are not known beforehand, so the
decisions regarding which requests to serve and with which
vehicles are taken as the requests appear. To measure how
uneven the service rate is within a certain area of operation,
we consider the set of possible requests’ origins N (that
might be represented as nodes, as sectors of an arc, as points
within a two-dimensional area, or any other option), and we

2021 IEEE Intelligent Transportation Systems Conference (ITSC)
Indianapolis, USA. September 19-21, 2021

978-1-7281-9142-3/21/$31.00 ©2021 IEEE 2429

20
21

 IE
EE

 In
te

rn
at

io
na

l I
nt

el
lig

en
t T

ra
ns

po
rt

at
io

n 
Sy

st
em

s C
on

fe
re

nc
e 

(IT
SC

) |
 9

78
-1

-7
28

1-
91

42
-3

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IT
SC

48
97

8.
20

21
.9

56
49

10



divide it into a finite number of disjoint zones z1, . . . , zk
such that N = ∪ki=1zi. Consider now the end of the period
of operation (e.g., a day). We denote by Ki the number of
requests that emerged from zone zi and by Fi the number
of those requests that were rejected. The rejection rate per
zone is defined as:

Ri =
Fi

Ki
(1)

A perfectly even system would yield R1 = . . . = Rk,
whereas an extremely uneven system would concentrate all
the rejections in a single zone. These characteristics are
captured by the well-known Gini Index GI , that has been
traditionally utilized to measure wealth inequality within a
country, but that has also been considered for transport anal-
ysis ([11], [12]). A detailed explanation of how to compute
GI , including its explicit mathematical expression, can be
found in [12]; for our purpose, it suffices to explain that
GI is a function that takes a vector of numbers a1, . . . , am,
returning GI(a1, . . . , am) ∈ [0, 1], such that the higher GI ,
the more unevenly distributed the vector.

There could be a trivial way to achieve GI = 0: consider
a large rejection rate ρ, such that it is easy for the system
to present Ri = ρ for every zone zi (in the worst case, one
could take ρ = 1, i.e., to serve nobody). Of course, this is
not a desirable solution. Therefore, we want our method to
decrease GI without increasing the overall rejection rate,
or ensuring that the rejection rate does not increase more than
some pre-defined percentage (such as 1% or 2%).

B. Methods that assign batches of users

The problem of how to assign groups of users to vehicles
is complex, as the possible ways to group the users can
be enormous, and two well-known NP-Hard problems are
involved: VRP and Dial-A-Ride. This complexity has led to
different approaches. Most of them can be categorized either
as:
• Event-based: Each time a new request emerges, it is

assigned to a vehicle or rejected.
• Batch-based: The method waits to accumulate some

requests, and assigns all of them together. When the
system waits for a fixed lapse of time, the approach
is denominated receding horizon, a quite common ap-
proach.

Each of these two alternatives needs to chain consecutive
solutions. That is to say, after deciding the assignment (for
the single or the batch of users), the vehicles are instructed
to follow some routes, and these instructions are updated
when a new assignment occurs. The aim of the methods
is that such partial assignments and vehicles’ instructions
yield good results at the end of the period of operation, i.e.,
that they are able to chain efficiently with the subsequent
assignments.

Given the existence of these different approaches, we
do not expect to propose techniques that can work with
any assignment methods. Nevertheless, the techniques we

propose are quite general. They can work with any batch-
based method, that assigns each batch of requests through
the following steps:

1) Determine which trips might be served by the PMoD
system. A trip is defined as a group of requests together
with a vehicle, so that serving such a trip means that
the vehicle’s route will be updated to transport the
mentioned requests.

2) For each trip, determine a cost.
3) Decide which trips to serve, through an objective

function that considers the cost of each served trip and
a penalty for each request that is rejected.

Note that such a procedure admits many different methods.
In the first step, we do not require anything specific regarding
how to define which are the feasible trips, i.e., our techniques
can work with exhaustive methods and also with heuristics;
certain specific rules (such as first-in-first-out, or limiting the
number of changes faced by a user) can also be included.
In the second step, the cost functions can also be general,
considering different combinations of users’ and operators’
costs. Moreover, if different users imply different fares and
the system is for-profit, this can also be included in these cost
functions or in the rejection penalties, which can be user-
dependant. The only true requirement is that the total costs
of the system can be expressed as a sum of the individual
cost of each served trip. Finally, our techniques can also be
applied when there is a hierarchical optimization, in which
the first objective is to serve as many requests as possible,
just by utilizing a very high rejection penalty. Below we
test our techniques modifying the method developed by [2].
Other methods that could make use of our techniques are the
ones by [4], [5] (that are based on [2]) and by [13], [14].

It is implicit in the description above that our techniques
pursuing more equity shall affect the system at each assign-
ment of a batch. Again, the expectation is that applying these
techniques consecutively throughout the period of operation
will yield more even results at the end.

We now introduce the respective notation. Recall that a
trip t is formed by a set of requests, that we denote req(t),
and a vehicle denoted veh(t). The set of trips is denoted1

T . The cost of each trip t ∈ T is denoted c(t). The rejection
penalty of a request r is denoted pQ(r). Costs and the penalty
are assumed to be monetized in the same currency. The set
of requests is Q and the set of vehicles is V . The problem
can be stated as an integer-programming problem:

min
x,y∈{0,1}

∑
t∈T

xtc(t) +
∑
r∈R

yrpQ(r) (2)

s.t. yr +
∑

t:r∈req(t)

xt = 1 ∀r ∈ Q (3)

∑
t:v=veh(t)

xt ≤ 1 ∀v ∈ V (4)

1Computing the set of trips can be algorithmically heavy, but current
assigning techniques are able to handle it.
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Binary variables xt are equal to 1 if and only if the trip
t is served, while yr = 1 if and only if the request r
is rejected. Eq. 2 represents the objective function. Eq. 3
ensures that each request belongs exactly to one served trip
or is rejected, while Eq. 4 ensures that no vehicle can be
assigned to more than one trip. Note that this is just a formal
way to describe the problem, but we do not require that the
problem is actually solved through the ILP, i.e., we admit
other combinatorial optimization techniques.

C. Altering the objective function

Consider an assignment decision that is taking place at
time τ . We shall modify the objective function displayed
in Eq. 2 in order to make the assignment method point to
an even distribution of the rejection rate. The idea we want
to incorporate is that the system is less willing to reject
a request originating from a zone with an already above-
average rejection rate. For this, we denote by Ri the rejection
rate in zone zi up to time τ , and by

∆Ri(τ) = Ri(τ)−R(τ) (5)

That is, the difference between Ri(τ) and the overall
rejection rate of the system at the same time. With this
notation, we might modify any of the two terms in Eq. 2,
i.e. the cost of the groups that are going to be executed, or
the rejection penalties for those requests that are not going
to be served. As these changes do not depend directly on the
requests, but on which zones they are originated, we will use
i(r) to say that request r is departing from the zone zi(r).

We define the Technique R as the one that modifies the
rejection penalty, taking as its objective function:∑

t∈T
xtc(t) +

∑
r∈R

yrpQ(r,∆Ri(r)(τ)) (6)

I.e., the rejection penalty now also depends on ∆Ri(r)(τ).
We want to define pQ(r,∆Ri(r)(τ)) in such a way that it
increases with ∆Ri(r)(τ), but also ensuring that the rejection
penalty is always larger than the most expensive trip (oth-
erwise, the system might artificially increase the overall re-
jection rate). With this in mind, we define pQ(r,∆Ri(r)(τ))
as

pQ(r,∆Ri(r)(τ)) = max{pQ(r) + δ∆Ri(r)(τ),max
t∈T

c(t)}
(7)

Where δ is a parameter to be tuned2. Similarly, the
Technique T modifies the costs of trips t, depending on
∆Rt(τ), which is defined as Eq. 5 but replacing Ri(τ) by
the average among the rejection rates of the zones where the
requests in t are located, as shown in Eq. 8:

∆Rt(τ) =
∑

r∈req(t)

Ri(r)

|req(t)|
−R(τ) (8)

2Other functional forms could also be used. Our numerical simulations
suggest that this is the most effective one.

In this case, the costs should decrease with ∆Rt(τ), so
that trips that come from high-rejection areas are more likely
to be served. The modified objective function now is:

∑
t∈T

xtc(t,∆Rt(τ)) +
∑
r∈R

yrpR(r) (9)

To obtain a function that decreases with ∆Rt(τ) and that
is also tuneable, we use

c(t,∆Rt(τ)) = max{c(t)− λ∆Rt(τ),
c(t)

P
} (10)

Where P and λ are tuning parameters. We will use P = 2, 4,
and refer to the technique as T2 and T4, respectively.

III. NUMERICAL EXPERIMENTS

We now test the techniques R,T2 and T4, applied upon the
method in [2], simulating the operation of PMoD systems in
a small artificial example and in a real-life case in Manhattan.
Before doing so, we explain which is the correct benchmark
of the Gini Index to compare with, and we provide a brief
description of the base method from [2].

A. Posterior Gini Index

We first explain how to evaluate the results of our tech-
niques, and in particular how to compute a proper bench-
mark. At the end of the period of operation we obtain the
resulting overall rejection rate and Gini Index. When we run
the simulations using the basic method (without using the
techniques proposed here, or equivalently, taking λ or δ = 0),
we denote these results by Rend and GIend, respectively.
When the method is run using our techniques, we denote
the modified results by R′end and GI ′end.

If R′end ≤ Rend and GI ′end ≤ GIend, our techniques
are improving both objectives (equity and serving as many
requests as possible) and therefore the obtained solution is
better than the original one.

However, if R′end = Rend + ε% for a certain threshold
ε, there is a trade-off. Moreover, in such a case having
GI ′end ≤ GIend might not be good enough, as there is a
trivial way to modify a posteriori the results of the original
method, reducing GIend while keeping Rend ≤ R′end: taking
the results from the original method, and including some
artificial rejections in the zones with the lowest rejection
rates, until reaching R′end = Rend + ε%; a technical detail is
that some zones might have few total requests, so even one
extra rejection can be too significant, so we have to avoid
them. Such an idea is detailed in Algorithm 1, where X
denotes the absolute number of requests that can be added
(i.e., the difference between the total rejections with and
without using our techniques), and that outputs the posterior
Gini Index when increasing the rejection rates in ε%.
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Algorithm 1 Computing the Posterior Gini Index.

1: Input: Fi,end,Ki,end for every zone zi, and the number
of rejections to be added X .

2: for ` = 1 : X do
3: Define ϕ = {i :

Fi,end+1
Ki,end

≤ 1
k

∑k
j=1

Fj,end

Kj,end
}; % We

can only include artificial rejections in zones where we would not
exceed the average rejection rate.

4: i∗ = argmini∈ϕ{
Fi,end

Ki,end
};

5: Fi∗,end ← Fi∗,end + 1; % We add one artificial rejection to
the zone in ϕ that presents the lowest rejection rate.

6: end for
7: Output: RP

i,end =
Fi,end

Ki,end
for every zone zi.

B. Brief description of the assignment method

Our techniques modify the assignment method developed
by [2]. Such a method performs an exhaustive search of
the feasible trips, considers only users’ costs, and imposes
the same penalty (prior to applying our techniques) to every
rejected request. Let us explain the method in some detail:

• A trip t is feasible if all the requests in req(t) can be
served without violating some predefined upper bounds
on the waiting times and total delays. These constraints
also apply to the requests that were previously being
served by veh(t) (whose traveling times might increase
when the vehicle’s route is updated).

• The cost of a trip c(t) depends only on the total delay
that would be faced by all users in req(t), and the extra
delay that would be imposed to the users that were being
served by veh(t).

• To execute an exhaustive search of the feasible trips,
the method takes advantage of the fact that for t to be
feasible, any subtrip formed by veh(t) and a subset of
req(t) must be feasible as well.

• The assignment is decided by the ILP defined by Eqs.
2-4, where pQ(r) is a constant function. Once a request
is rejected, it is erased from the system.

• After deciding the assignment, a rebalancing step is
performed: idle vehicles (i.e., that had no passengers
before the assignment and received none) are sent to-
wards the origins of the rejected requests. This step does
not interact with our techniques and remains exactly the
same.

C. Results in an artificial small graph

We first test the techniques R,T2 and T4 over a small
20× 20 grid, in which all arcs are bidirectional. Origins and
destinations are placed on the nodes of the network, which
is served by 65 vehicles and 5 requests emerge per minute,
that follow: i) A fully random pattern (RAND), ii) 10% of
the requests go from left to right (10L2R) while the rest are
random, and iii) 20% of the requests go from the center to
the surroundings (20C2S) while the rest are random. In this
graph, each node is considered as a different zone, therefore
there are 400 zones.

Fig. 2: Resulting Gini Indices and overall rejection rates
when the techniques T2, T4 and R are applied with different
tuning parameters. The results without any technique are
marked with a horizontal black line.

Results are displayed in Figure 2, where we show the
resulting overall rejection rates and Gini Indices for the
different techniques and varying the tuning parameters. Some
conclusions follow:
• All the techniques effectively achieve a more even

distribution of the rejection rates. The more aggressive
the method (i.e., the higher δ or λ), the larger the impact.

• There are cases in which the overall rejection rate also
diminishes, meaning that the techniques might be able
to induce a more efficient positioning of the vehicles.
This is probably related with the consecutive chains
between the different assignments throughout the period
of operation: in order to achieve a lower Gini Index,
some vehicles are pushed towards the high-rejection
areas, which makes them available for some other trips
that will emerge nearby in the near future3.

• When the overall rejection rate increases, it does in mild
numbers.

• Results depend heavily on the tuning parameter, and
which parameter to choose depends as well on the
scenario.

The comparison against the posterior Gini Index is shown
in Figure 3. Each column represents the lowest Gini Index
achieved by the respective technique from Figure 2, but
excluding the cases in which the increase in the rejection
rate exceeds the ε% threshold of the respective row.

Thus, the first row shows the cases in which using the
technique actually reduces the rejection rate. No technique
is able to achieve such a result in every scenario, but if the
correct method is chosen, it is always possible to reduce
both the Gini Index and the number of rejections. When
some increase in the rejection rate is allowed, the Gini Index
is almost always lower than the posterior one (obtained with
algorithm 1), and the difference can be quite significant in

3In a similar note, some previous studies use predictive techniques in
order to reduce the number of rejections in the system ([15], [16]).
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some cases. It is worth remarking that the benchmark we are
comparing with (red lines in Figure 3) is calculated after the
full period of operation, whereas our techniques run online,
and yet they are able to select assignments that are more
even than the benchmark. Figure 3 also suggests that T2 is
the best technique, as it yields the lowest Gini Indices in
most cases. All the techniques work worse in the scenario
10L2R, which might be caused by a lower flexibility of the
system to decide how to assign.

Fig. 3: Comparison of the best Gini Indices achieved by each
method (columns) when a certain increase in the rejection
rate is accepted (rows). The black lines represent the Gini
Index without applying our techniques, and the red lines
represent the posterior Gini Index. Missing columns mean
that the respective technique is not able to find a solution
within the accepted rejection threshold.

Figure 4 shows sensitivity analyses, in which only the
“0% increase” row is displayed. Figure 4 left shows that the
results of our techniques are better when the system is less
demanded. For instance, our techniques achieve a lower Gini
index 7/9 times if three requests per minute are generated,
whereas this is only achieved 3/9 times in the scenario with
six requests per minute. On the other hand, such results do
not change significantly with the scale of the problem (Figure
4 right, where the number of requests and vehicles change
in the same proportion).

D. Results in Manhattan

We now test our techniques in a real-life case. As done by
[2], [5], we simulate the operation of the PMoD system over
Manhattan, using the publicly available dataset of taxi rides
(the precise data we use is from 07/03/2014). To this end,
we utilize a graph representing the respective road network,
and we cluster the nodes using the method described in [15],
that selects “centers” such that each node in the graph is no
further than a certain threshold ε from its closest center. We
use ε = 2.5[min], which divides Manhattan in 146 zones,
which will be taken as the basis for the computation of the
Gini Indices.

Utilizing the same assignment method as in the previous
subsection, and varying again the values of the tuning
parameters, we can assess if the techniques T2 and R are
able to improve the spatial equity of the system. As previous
section suggested that T2 outperforms T4, and due to the
large computational times required for these simulations, we
are not testing T4 in this scenario.

The overall results are depicted in Figure 5, where we ran-
domly select different-sized subsets of the requests, scaling
the fleet accordingly. The most relevant conclusions are:
• The Gini Index is indeed reduced in every column in the

bottom row, i.e., regardless of the scenario, technique
and value of λ or δ.

• In every scenario, at least one technique is able
to reduce both the Gini Index and the number of
rejections, if using the correct value for the parameter.
However, the best technique and parameter to use are
scenario-dependant.

• It is no longer true that the larger the parameters, the
larger the impact. This suggests that a more intricate
demand pattern relates to these techniques in complex
ways that are hard to control, meaning that finding the
correct value for the parameter is far from being simple.

IV. CONCLUSIONS

In this paper, we have proposed two techniques to modify
batch-based assignment methods for on-demand ridepooling,
so that the probability of being served by the system is simi-
lar for every request regardless of its origin. Both techniques
are based on changing the objective function when deciding
the assignments, either increasing the rejection penalty for
requests that come from zones that already accumulate a
high number of rejections, or reducing the cost of accepting
requests from the same regions.

To test our ideas, we have run simulations in an artificial
small network and using real-life data from Manhattan.
In both cases, our techniques have been able not only to
diminish the Gini Index, as expected, but also to increase the
number of served requests if the correct tuning parameters
are chosen, due to the more efficient use of the vehicles
that they induce. Therefore, our results show that there is
room for a synergy between the two objectives discussed
here (equity and the total number of served users). Moreover,
if a small increase in the rejection rate is accepted, the Gini
Index can be decreased even more.

Which technique to use, and which is the optimal value
for the parameters λ and δ, depend on the scenario where the
PMoD system operates. This is troublesome, as the operator
cannot always know the scenario in advance. This might
be solved by combining both techniques, and defining the
values for δ and λ online. In other words, such parameters
can evolve with the system depending on the changing
conditions (number and location of the requests), which
could be done using learning techniques or simulating a large
number of scenarios to select the most robust values for the
parameters. These are the most relevant questions posed as
future research by this paper.
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Fig. 4: Sensitivity analyses over a small artificial network. In the left, we vary the number of requests emerging per minute,
while in the right we also adjust the number of vehicles to keep the same proportion. The rows corresponding to the original
experiment are marked with a grey background. Missing columns mean that the respective technique is not able to find a
solution within the accepted rejection threshold.

Fig. 5: Overall rejection rates and Gini Indices achieved by
the R and T2 techniques, with different tuning parameters
when simulating the operation of a PMoD system in Man-
hattan with real requests. The results without any technique
are marked with a horizontal black line.
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[12] D. Hörcher and D. J. Graham, “The Gini index of demand
imbalances in public transport,” Transportation, 2020. [Online].
Available: doi.org/10.1007/s11116-020-10138-4

[13] S. Lotfi, K. Abdelghany, and H. Hashemi, “Modeling framework
and decomposition scheme for on-demand mobility services with
ridesharing and transfer,” Computer-Aided Civil and Infrastructure
Engineering, vol. 34, no. 1, pp. 21–37, Jan. 2019.

[14] C. Riley, A. Legrain, and P. Van Hentenryck, “Column generation
for real-time ride-sharing operations,” in International Conference on
Integration of Constraint Programming, Artificial Intelligence, and
Operations Research. Springer, Jun. 2019, pp. 472–487.

[15] A. Wallar, M. Van Der Zee, J. Alonso-Mora, and D. Rus, “Vehicle
rebalancing for mobility-on-demand systems with ride-sharing,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, Oct. 2018, pp. 4539–4546.

[16] A. Fielbaum, M. Kronmuller, and J. Alonso-Mora, “Anticipatory
routing methods for an on-demand ridepooling mobility system,” arXiv
preprint arXiv:2106.14685, 2021.

2434


		2021-10-18T10:40:38-0400
	Certified PDF 2 Signature




