
A Contribution
to a CubeSat
ADCS Testbed
for Educational
Purposes
HELENA MOMOKO POWIS

A Contribution to a CubeSat ADCS
TestBed for Educational Purposes

by
Helena Momoko Powis

Master of Science Thesis

in partial fulfilment of the requirements for the degree of

Master in Science in Aerospace Engineering

Department of Space Engineering
Faculty of Aerospace Engineering Delft University of Technology

The Netherlands

Student number: 4534751
Supervisor: Dr.ir. Erwin Mooij

May 26, 2025

Preface
The completion of this thesis marks the end of a truly transformative nine-year journey at TU
Delft and the conclusion of my formal education. Though my path may have been longer than
most, I look back with immense pride and appreciation. Every twist and turn has helped shape
who I am today, and I wouldn’t change a thing. These years have been filled with growth,
discovery, and unforgettable moments, and I feel incredibly fortunate for the opportunities I’ve
experienced and the people I’ve met along the way. I’ve forged friendships that will last a
lifetime and carry a profound sense of gratitude for the support and kindness I’ve received
throughout this chapter of my life.

I would also like to thank Leon Bremer and Airbus for the hours of help with implementing
Eurosim and for the Eurosim License for this thesis.

First and foremost, I wish to express my heartfelt gratitude to Dr. Erwin Mooij for his
exceptional guidance as my supervisor for both my MSc and BSc theses. Your belief in my
capabilities revealed potential within me that I hadn’t fully recognised, potential that has
now led me to achievements I once considered beyond my reach, including my job at ESA!
Our Wednesday morning meetings transformed what could have been a daunting process into
an engaging and enlightening experience. Even during periods of uncertainty when solutions
seemed elusive, your direction kept me motivated and focused. Your patience and encourage-
ment exemplify not only your excellence as an educator but also your compassion as a mentor.
I’m delighted to have connected with another fellow cat enthusiast!

To my life partner, Tristan: your steadfast presence has been my foundation throughout this
endeavour. Thank you for providing not only practical support but also the emotional strength
that allowed me to persevere. Your unconditional love, endless patience, and unwavering belief
in my abilities have empowered me to overcome every challenge. I cherish our partnership and
look forward to supporting your dreams as you’ve supported mine. And to Spock, my beloved
cat, your quiet company brought me comfort and joy throughout this journey.

To my cherished friends, Kiva, Serena, Äıcha, Sara, Siya, Maxim, and Todor, thank you for
your unwavering support, encouragement, and the countless ways you each made this journey
brighter. I am endlessly grateful. I especially want to acknowledge Kiva and Serena, my dream
team. Serena, your consistent faith in my abilities has sustained me even when self-doubt crept
in. I’m privileged to call such a brilliant and inspiring woman my friend. Kiva, my dedicated
TA partner, thesis buddy and steadfast study companion, Thank you for always being my
supporter in this journey. Your exceptional work ethic and generosity of spirit are qualities I
deeply admire, and I aspire to reciprocate the support you’ve so freely given.

To my family: my father, my sister, and my stepmother, thank you for your loving support
throughout this journey. To my おばあちゃんとおじいちゃん, いつも応援してくれてあ
りがとう. Thank you all for believing in me. I hope I’ve made you proud and will continue to
do so in all my future endeavours. Finally, my mother, I hope I have made you proud.

This is dedicated to my dad and her.

iii

Abstract
Attitude Determination and Control Systems (ADCS) are a critical subsystem in CubeSat mis-
sions, responsible for controlling the orientation of the satellite in space. However, for student-
led and academic missions, the validation of ADCS algorithms often proves challenging due to
limited budgets, lack of access to flight hardware, and the absence of real-time testing facilities.

This thesis addresses the research question: To what extent can low-cost hardware and sim-
ulation tools support real-time testing of CubeSat ADCS algorithms in an educational context?

By combining MATLAB/Simulink models with the GRADS and GGNCSim libraries, along-
side the EuroSim real-time framework, a modular ADCS simulation and test environment was
developed for under €600 in hardware costs.

A functional ADCS simulator was implemented in MATLAB, incorporating environmental
models (e.g., gravity, atmospheric drag, magnetic field), sensor models (magnetometer and
sun sensors), actuator models (magnetorquers), and both B-dot and proportional-derivative
(PD) control algorithms. Extended Kalman Filter (EKF) was developed to estimate satellite
attitude, with the dual-sensor fusion case achieving the lowest quaternion error and numerical
stability over 1,000 seconds of simulation. Real-time code generation and deployment were
performed using Simulink Coder and Embedded Coder, targeting Raspberry Pi 5 and Orange
Pi 5 Plus platforms. Despite EuroSim limitations, such as manual model integration, function
duplication, and MUX/bus conflicts, a structured twelve-step workflow was developed to en-
sure consistent and repeatable builds.

Software-in-the-loop (SIL) testing validated the control logic and demonstrated that the
test bench could operate at 100 Hz without deadline overruns. Closed-loop detumbling us-
ing B-dot control reduced angular velocity effectively, while PD control achieved sun-pointing
within 50 seconds and maintained a steady-state error below 0.5◦, well within the requirements
for CubeSat mission SA01. Although full hardware-in-the-loop (HIL) integration was not re-
alised within the scope of this thesis, stimulus-response tests suggest the platform is ready for
the addition of physical sensors and actuators.

The primary limitations of the system are the complexity of integrating large models into
EuroSim and the manual effort required to split and configure models for real-time deploy-
ment. These limitations inform several key recommendations, including automating the model
export process, evaluating alternative real-time frameworks, and implementing low-risk HIL
configurations as a next step. Nonetheless, the developed platform successfully demonstrates
a low-cost, educationally accessible ADCS test bench that supports real-time experimentation.
This contributes a practical and scalable approach for academic institutions aiming to enhance
hands-on training in space systems engineering and reduce mission risk through improved
pre-flight validation.

v

Contents

List of Symbols x

List of Abbreviations xi

1 Introduction 1

2 Mission Heritage 5
2.1 Large-Scale Satellite Missions . 5

2.1.1 Gaia . 5
2.1.2 Stackable Platform Structure (SPS) -2 6
2.1.3 Herschel-Planck . 7
2.1.4 Discussion of Large Scale Missions . 8

2.2 Cubesat specific missions . 9
2.2.1 MOVE-II (Munich Orbital Verification Experiment II) 9
2.2.2 ITU-PSAT II (Istanbul Technical University PicoSatellite II) 10
2.2.3 1 Kenyan University Nano-Satellite Precursor Flight (1KUNS-PF) . . . 12
2.2.4 Taifa-1 . 13
2.2.5 Discussion of CubeSat Missions . 14

2.3 Validation Approaches . 15
2.3.1 CubeSat Trends and Reference Configuration 15
2.3.2 Non Real-Time Simulation . 15
2.3.3 Real-Time Execution . 16
2.3.4 Software-in-the-Loop (SIL) . 16
2.3.5 Hardware-in-the-Loop (HIL) . 16

2.4 Chapter Summary and Transition . 17

3 Design context and Methodology 19
3.1 Reference Mission . 19
3.2 Test Bed Configuration . 23
3.3 Research Questions . 23
3.4 Thesis Roadmap . 25

4 Flight Dynamics 27
4.1 State variables . 27

4.1.1 Cartesian Coordinates . 27
4.1.2 Orbital elements . 27
4.1.3 Euler Angles . 28
4.1.4 Quaternions . 28
4.1.5 Angular Velocity . 29

4.2 Reference frames . 29
4.2.1 Earth-Centred Inertial Frame (ECI)

(
FI

)
. 29

4.2.2 Hardware Frame (FH) . 29
4.2.3 Body fixed (FB) . 30
4.2.4 Vertical Frame (FV) . 30

4.3 Reference Frame Transformations . 30
4.4 Equations of Motion . 31

vii

CONTENTS viii

4.4.1 Rotational Dynamics . 31
4.4.2 Attitude Kinematics . 31

5 Space Environment 33
5.1 Gravitational Field . 33
5.2 Magnetic Field . 34
5.3 Aerodynamics Drag . 36
5.4 Solar Radiation Pressure (SRP) . 37
5.5 Acceptance tests . 40

6 Navigation 43
6.1 Sensors . 43

6.1.1 Sun sensor . 43
6.1.2 Magnetometer . 47
6.1.3 Inertial Measurement Unit (IMU) . 49
6.1.4 Gyroscope . 50
6.1.5 Reference mission . 50

6.2 Modelling errors . 51
6.3 Navigation Filters . 52

6.3.1 Filter Selection . 53
6.3.2 Extended Kalman Filter (EKF) . 54

6.4 EKF Implementation . 54
6.4.1 Propogation . 55
6.4.2 EKF Structure . 58
6.4.3 EKF with One magnetometer . 60
6.4.4 EKF with One Sun Sensor . 60
6.4.5 EKF with Magnetometer and Sun sensor 62

7 Control 65
7.1 Control modes . 65

7.1.1 Detumbling Mode . 65
7.1.2 B-dot Algorithm Implementation . 66
7.1.3 Sun Acquisition Mode . 66
7.1.4 PD Controller Implemetation . 68

7.2 Actuators . 70
7.2.1 Magnetorquers . 70
7.2.2 Reaction Wheels . 71

8 Functional Simulator 73
8.1 Simulator Overview and Architecture . 73
8.2 Generic Rendezvous And Docking Simulator (GRADS) 74
8.3 Solver Choice and Analysis . 74

8.3.1 Environment Models . 75
8.3.2 Acceptance testing for GRADS components 77
8.3.3 Propagators and Utilities . 77

8.4 Requirements . 78

CONTENTS ix

9 Real Time Simulation 81
9.1 Software . 81

9.1.1 MATLAB . 81
9.1.2 Eurosim . 82
9.1.3 GGNCSim/GRADS . 83

9.2 Hardware . 83
9.3 MATLAB Code Generation . 87

9.3.1 Code Configuration . 87
9.3.2 MATLAB Limitations . 91

9.4 Eurosim implementation, How to, dos and donts 92
9.4.1 ModelEditor . 92
9.4.2 ScheduleEditor . 96
9.4.3 SimulationCtrl . 97

9.5 Acceptance and Implementation Testing of Simulink Models onto Eurosim . . . 99
9.6 Final Model Implementation . 100

9.6.1 Environment . 102
9.6.2 Sensor Addition . 102
9.6.3 EKF in Eurosim . 103
9.6.4 PD in Eurosim . 104

9.7 Requirements . 105

10 Conclusion and Recommendations 107
10.1 Recommendations . 108

A Appendix A 110
A.1 Simplified Fine Sun Sensor Model (MATLAB) 110
A.2 Initialise Model Script (MATLAB) . 111
A.3 Extended Kalman Filter . 114
A.4 rtwbuild Script (MATLAB) . 118
A.5 Example of .c files after simulink2c applied . 120

List of Symbols

Latin

Symbol Description Units
A Exposed surface area of satellite m2

a Semi-major axis of the orbit m
B Earth magnetic-field vector T
CD Aerodynamic drag coefficient –
Cr Solar-radiation reflection coefficient –
c Speed of light ms−1

e Eccentricity –
e Euler rotation axis –
F Force N
g Standard gravitational acceleration ms−2

h Altitude m
H0 Scale height (atmospheric model) m
I Inertia tensor (body-fixed) kgm2

i Inclination angle rad
m Magnetic dipole moment Am2

M Mean anomaly rad
m Satellite mass kg
q Attitude quaternion –
r Position vector (inertial frame) m
Tc Command torque Nm
Td Disturbance torque Nm
∆t Time increment s
u Control input vector –
V Voltage V
x State vector –

Greek

Symbol Description Units
α(t) Scaling factor (sensor model) –
β Bias term –
ϵ Surface emissivity / reflectivity –

µmag Magnetic permeability of free space Hm−1

Ω Right ascension of the ascending node rad
ω Angular rate rads−1

ω Argument of perigee (orbital) rad
ϕ Solar flux Wm−2

ρ Atmospheric Density kgm−3

θ Pitch angle rad

x

List of Abbreviations

Abbreviation Description

3DOF Three Degrees of Freedom
ACMS Attitude Control and Measuring System
ADCS Attitude Determination and Control System
AGI Ansys Government Initiatives
AIT Assembly, Integration and Testing
AMR Anisotropic Magneto-Resistive (sensor)
AOCS Attitude and Orbit Control System
B-dot Magnetic-rate Detumbling Algorithm (controller)
CDH Command and Data Handling
CDMU Command and Data Management Unit
COTS Commercial Off-The-Shelf
DCM Direction Cosine Matrix
ECSS European Cooperation for Space Standardisation
EKF Extended Kalman Filter
EPS Electrical Power System
ERC32 Embedded Real-Time Computer 32-bit
ESA European Space Agency
FOV Field of View
FSS Fine Sun Sensor
GDOP Geometric Dilution of Precision
GGNCSim Generic Guidance, Navigation and Control Simu-

lator
GNC Guidance, Navigation and Control
GPS Global Positioning System
HIL Hardware-In-The-Loop
IMU Inertial Measurement Unit
LVLH Local Vertical Local Horizontal
NED North East Down
OBC On-Board Computer
PD Proportional-Derivative (controller)
PID Proportional-Integral-Derivative (controller)
RF Reference Frame
RMS Root-Mean-Square
RTS Real-Time Simulator
SCOE Software Checkout Equipment
SIL Software-In-The-Loop
SSO Sun-Synchronous Orbit
SPS Stackable Platform Structure
STK Systems Tool Kit (AGI software)

xi

CHAPTER 1

Introduction
CubeSats first appeared in 1999 (Puig-Suari et al., 2001) as a cheaper and faster alternative
for educational and research purposes. Figure 1.1 shows a continuous and exponential increase
in the number of CubeSats, alongside a steadily growing percentage of satellites created by
educational institutions1. Although the methods of production and manufacturing are signif-
icantly cheaper than those of large-scale satellites, testing for small-scale platforms such as
CubeSats remains inconvenient and expensive for education-based missions, often leading to
avoidable failures.

Nanosatellite launches by organisations

2
11

2 7 4

22
9 10 14 19

12
25

88

142
129

86

297

244

188

162

329 334

390

280

nanosats.eu2024/12/31

1998
2000

2002
2003

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

2017
2018

2019
2020

2021
2022

2023
2024

0

50

100

150

200

250

300

350

400

N
a
n
o
s
a
te

lli
te

s

Space agency

Company

Individual

Institute

Military

Non-profit

School

University

Figure 1.1: CubeSat launches per year separated by organisation 1

In a study by Guon et al. (2014), which analysed 222 small satellite failures between 1990
and 2010, it was found that early-stage deployment failures were significantly higher for small
satellites compared to larger ones. This trend can be attributed to different design philosophies,
shorter testing periods, and the use of lower-cost components. Additionally, university-built
satellites were found to be less reliable than those developed by companies or agencies. Another
study examining 156 small satellites (Tafazoli, 2009) reported that 32% of in-orbit failures were
due to issues within the Attitude and Orbit Control System (AOCS), particularly related to
control processors and components. This represented the largest single failure category, fol-
lowed by power distribution (27%) and computer data handling (15%).

Popular testing methods for satellites include Software-in-the-Loop (SIL) and Hardware-
in-the-Loop (HIL) testing. SIL utilises software tools to simulate system inputs and outputs,
replicating space environment perturbations such as magnetic fields, solar radiation, and at-
mospheric drag, along with control-induced movements. HIL testing extends this by replacing
some simulated components with real hardware, for instance using actual sensors or actuators
interfaced with a simulated environment. While major space agencies and private companies

1https://www.nanosats.eu/figures, last accessed 11/11/23

1

https://www.nanosats.eu/figures

CHAPTER 1. INTRODUCTION 2

typically build dedicated in-house test facilities, educational institutes often lack the necessary
resources, resulting in minimal or insufficient testing.

Real-time simulators are increasingly employed in satellite development to test subsystems
under conditions that closely mimic actual operational timings. Unlike traditional offline simu-
lations, real-time environments require the system to process inputs and outputs within strict
time constraints, enabling more realistic integration and HIL testing. Examples of their use
include communication simulations with the Real-Time Satellite Network Emulator at ESOC
(European Space Agency, 2022), and ADCS testing for coordinated manoeuvres such as those
required in satellite constellations (Kassem and Sastry, 2024). Although implementing real-
time simulation is typically more expensive both computationally and economically, it offers
substantial advantages by improving testing fidelity, revealing timing-related faults earlier in
development, and supporting more robust system validation.

Commercial real-time test systems cost tens of thousands of euros and require specialist
support. Until recently this put HIL-grade validation out of reach for most universities. The
rapid advance of low-cost, single-board computers changes that picture. A Raspberry Pi 5,
priced below €100, delivers a 2.4 GHz quad-core CPU and hardware floating-point unit, which
is enough to run a 6-DOF (Degree Of Freedom) satellite model and closed-loop controller at
100 Hz in real time. When combined with free or academic-licence software such as MATLAB
or Simulink and the EuroSim kernel, these boards provide a credible alternative to a set-up at a
fraction of the cost and complexity. Harnessing such hardware for ADCS development therefore
promises two linked benefits: it lowers financial barriers for student teams and shortens the
design–test cycle by bringing laboratory-grade HIL capability onto the desktop.

To help reduce failure rates for educational CubeSats, this thesis focuses on developing
a cost-effective, rapid testbed for Attitude Determination and Control Systems (ADCS), em-
ploying Software-in-the-Loop methods with the capability for Hardware-in-the-Loop extensions.
This leads to the following central research question:

Main Research Question

To what extent can low-cost hardware and simulation tools support real-time testing of
CubeSat ADCS algorithms in an educational context?

The remainder of this thesis is structured as follows. It begins with a discussion of mission
heritage in Chapter 2, reviewing relevant past, present, and future satellite missions, along
with descriptions of their ADCS systems and associated testing methods. The chapter con-
cludes with a description of the reference mission, its requirements, and an analysis of the
main research question and sub-questions.

Next, Chapter 4 provides an overview of the relevant flight dynamics and mechanics used
to analyse satellite motion. Chapter 5 examines the environmental disturbances encountered
by satellites and their mathematical representations. Chapter 6 discusses navigation aspects,
focusing on how satellite sensors perceive the environment and how this information is pro-
cessed through navigation filters.

Chapter 7 covers the control modes for the reference mission, the actuators involved, and
their mathematical modelling. This is followed by Chapter 8 on functional simulation, which
examines the non-real-time simulation environment, the simulator’s construction, and the im-

CHAPTER 1. INTRODUCTION 3

plementation of verification and validation (V&V) procedures in MATLAB.

Chapter 9 presents the implementation of the real-time simulator using EuroSim, including
model development and its associated verification and validation processes. Finally, the thesis
conclusions and recommendations are discussed in Chapter 10.

CHAPTER 2

Mission Heritage
Advances in miniaturisation, space-qualified electronics and real time simulation have greatly
expanded capabilities of small satellites. Yet many university and school based CubeSat projects
continue to experience high failure rates, frequently attributed to faults in the Attitude Deter-
mination and Control System; the lack of access to representative test facilities remains a key
factor.

This chapter presents a survey of historical and contemporary ADCS development and val-
idation practices. Section 2.1 examines agency scale missions, detailing control architectures,
hardware selections and multi stage verification workflows. Section 2.2 addresses CubeSat
programmes, identifying prevailing control modes, sensor and actuator suites and the software
in the loop and hardware in the loop methods adopted. Section 2.3 distils these findings into
two principal test approaches, software in the loop and hardware in the loop, which underpin
the low cost ADCS test bench described in later chapters.

2.1 Large-Scale Satellite Missions

This section looks at past, present, and future missions for large-scale satellites. The objective
is to analyse trends in ADCS building and testing to determine the limitations and benefits
of real-time testing and their application on low-cost equipment. First, the mission objectives
are given. The ADCS is described, including chosen control algorithms and hardware. This is
followed by a description of CubeSat-specific missions, and then the reference mission design
is provided. This will help determine the reference mission designed in this thesis, as well as
the testing method.

2.1.1 Gaia

Gaia, a 2,029 kg spacecraft launched on December 19, 2013, was designed to reach the Sun-
Earth L2 Lagrange Point. Led by ESA and developed by Astrium SAS (prime), with Astrium
Ltd handling the electrical service module and ADCS, the mission aimed to map the Milky Way
by measuring stellar positions and velocities. Its payload included an Astrometric Instrument
(ASTRO), a Photometric Instrument, and a Radial Velocity Spectrometer (RVS).1 Figure 2.1
shows the ADCS mode flow: from standby to Sun acquisition, inertial guidance, orbit control,
and finally normal operation. The mission cost 740 M€,2, indicating that budget and resources
were not major constraints for this ESA-led project.

Testing

Dutch Space BV developed a real-time simulator (RTS)3 and avionics Software CheckOut
Equipment (SCOE) to test Gaia’s systems, including the CDMU and the ERC32-based emula-
tor, SIMERC32. Testing followed a three-step software verification: SIMERC32 emulates the

1https://science.nasa.gov/mission/gaia/ accessed on 11/01/24
2https://www.esa.int/Science_Exploration/Space_Science/Gaia/Frequently_Asked_Questions_

about_Gaia accessed on 11/01/24
3chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://indico.esa.int/event/108/

contributions/135/attachments/222/255/02_01_Beerthuizen_presentation.pdf accessed 15/12/23

5

https://science.nasa.gov/mission/gaia/
https://www.esa.int/Science_Exploration/Space_Science/Gaia/Frequently_Asked_Questions_about_Gaia
https://www.esa.int/Science_Exploration/Space_Science/Gaia/Frequently_Asked_Questions_about_Gaia
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://indico.esa.int/event/108/contributions/135/attachments/222/255/02_01_Beerthuizen_presentation.pdf
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://indico.esa.int/event/108/contributions/135/attachments/222/255/02_01_Beerthuizen_presentation.pdf

CHAPTER 2. MISSION HERITAGE 6

Figure 2.1: Gaia - ADCS mode flow diagram (Chapman et al., 2008)

ERC32 processor; SIMAIT adds sensor and actuator models for closed-loop simulation; and
EuroSim performs real-time testing, enabling hardware-in-the-loop without recompilation.45

The ADCS was tested entirely in software, simulating control algorithms and data handling.
Figure 2.2 shows the ADCS simulation setup, which considered five perturbations: external
(solar radiation, micrometeoroids, thermal infrared emissions) and internal (thruster noise,
thermal “clanks”). Radio emissions from the antenna were also included.

Figure 2.2: Gaia - ADCS simulation flow diagram (Risquez et al., 2012)

2.1.2 Stackable Platform Structure (SPS) -2

The stackable platform structure 2 (SPS-2) is a proposed CubeSat and small satellite deploy-
ment module. SPS-1 served as a technology demonstrator, however, SPS-2 now has a service
module to allow for in-orbit demonstrations of new technologies. It will be in an elliptical orbit
of 350x850 km with an inclination between 94-99 degrees.

4https://indico.esa.int/event/108/contributions/153/attachments/182/214/10_02_Cazenave_

presentation.pdf, accessed 02 Jan 2023
5https://www.eurosim.nl/applications/gaia-rts.shtml, accessed 10 Jan 2024

https://indico.esa.int/event/108/contributions/153/attachments/182/214/10_02_Cazenave_presentation.pdf
https://indico.esa.int/event/108/contributions/153/attachments/182/214/10_02_Cazenave_presentation.pdf
https://www.eurosim.nl/applications/gaia-rts.shtml

CHAPTER 2. MISSION HERITAGE 7

Testing

The ADCS software was developed and tested using ADCS Design software and the Generic
Guidance, Navigation and Control Simulator (GGNCSim), which is a product add-on of Eu-
rosim. This can be used in MATLAB/Simulink. Oomen (2020) performed a trade-off for
simulators. One module considered was ADS (AOCS Design Software), which is a commer-
cially available software package created in 1998, also used by Airbus for other projects. The
next was GGNCSim on Eurosim, which contains a selection of models of sensors, actuators and
environment models used for simulating and modelling the satellite ADCS system. It was found
that GGNCSim was the better component, as there were many limitations to ADS, including
linearisation in equations and complicated user interfaces. The simulation flow diagram can
be found Figure 2.3. The system was run at a frequency of 1 Hz.

Figure 2.3: SPS-2 - ADCS simulation flow diagram (Oomen, 2020)

The sensor and actuator models from GGNCSim include biases, nonlinearity, scale factor er-
rors, noise, misalignment errors, saturation and quantisation. Within the Eurosim package, the
following models were used. The gravitational model used was env-gravity-grim5c1-sfun.
The magnetic field model used was env-magnetic-igrf-epoch-1995-sfun. The solar ra-
diation model used was env-pressure-sun-radiation-sfun and the atmospheric density
model used was env-atmosphere-msis86-min-sfun, env-atmosphere-msis86-nom-sfun
and env-atmosphere-msis86-max-sfun. The sun sensor was based on the Fine sun sensor
model without the Earth’s albedo error. The reaction wheel model, gyroscope, magnetorquer
and magnetometer were developed in-house, and the control models used included a Bdot
controller and a linear pi controller.

2.1.3 Herschel-Planck

The Herschel Space Observatory was an ESA-built space observatory operational between 2009
to 2013. It carried a 3.5 m mirror, which was the largest infrared telescope launched at the time
6 Planck was also a space observatory aimed to map the anisotropies of the cosmic microwave
background. The Planck satellite rotated one revolution per minute.

Testing

Airbus Defence and Space B/V developed the Herschel-Planck Attitude Control and Measuring
System (ACMS) Special Checkout Equipment (SCOE). It was developed in MATLAB and
tested with the onboard software. The simulator was built using EuroSim and the control

6https://www.esa.int/Enabling_Support/Operations/Herschel accessed on 11/01/24

https://www.esa.int/Enabling_Support/Operations/Herschel

CHAPTER 2. MISSION HERITAGE 8

Figure 2.4: Herschel - ADCS simulation flow diagram (Sanchez-Portal et al., 2014)

algorithms were created with the help of GGNCSim. This setup included a variety of input-
output (IO) interfaces to allow for analogue and digital interfaces.7 This meant the simulation
set up was HILT capable, and different pieces of hardware could be added and tested in
software.

2.1.4 Discussion of Large Scale Missions

Large-scale programmes span LEO service satellites through to deep-space explorers. They
pursue broad objectives planetary science, Earth system monitoring or interplanetary operations
and thus employ large platforms, advanced subsystems, substantial budgets and multi-phase
test campaigns. Their control architectures feature specialised modes for each mission phase,
validated via multi-stage SIL and HIL and supported by extensive ground test facilities, yielding
high confidence in mission success.

Key practices transferable to education-based CubeSat ADCS testing include:

• Employing EuroSim for high-fidelity, fixed-rate real-time runs under an educational li-
cence.

• Using flat-sat layouts (external electrical harnesses) to verify hardware early in develop-
ment.

• Adopting a unified SIL to HIL workflow to migrate smoothly from pure software tests to
integrated hardware loops.

• Leveraging modular Simulink toolboxes (e.g.GGNCSim) for pre-validated sensor, actuator
and environment models under academic licences.

These elements form a practical foundation for a low-cost, resource-aware ADCS test bench.

7https://www.eurosim.nl/applications/hpscoe.shtml accessed 10/01/24

https://www.eurosim.nl/applications/hpscoe.shtml

CHAPTER 2. MISSION HERITAGE 9

2.2 Cubesat specific missions

This section focuses on CubeSat-specific missions following the same format as the previous
section. First, the mission objectives are given. The ADCS is described, including software
tools and hardware components, followed by the testing methods.

2.2.1 MOVE-II (Munich Orbital Verification Experiment II)

MOVE-II (Munich Orbital Verification Experiment II) is a 1U CubeSat launched in December
2018 by students and staff of the Technical University of Munich. An image of the MOVE-II
CubeSat can be found in Figure 2.5. The purpose of the mission was educational and to
test and verify the payload implementation. This payload included communication systems,
onboard data handling processes, attitude control, and power and thermal control systems.

Figure 2.5: Image of MOVE-II7

Testing

The ADCS, as well as electrical power systems (EPS) were tested with HIL and SIL testing
methods (Kiesbye et al., 2019). The main focus was to verify the software implementation and
controllers in an integrated configuration. This was implemented using MATLAB/Simulink,
and the block diagram can be seen in Figure 2.6

The testing environment was created using real and simulated hardware. This meant
mimicking signals and simulating actuator commands from the response of the processing
hardware. The HIL environment, therefore, contained the space environment, the physics
models, the interface model with the ADCS, EPS and temperature sensors of the command &
data handling (CDH) subsystem. It also computed the distance and orientation to the ground
station. The CubeSat was suspended from a string inside of a Helmholtz cage, which simulated
a magnetic field.

For testing, the reference Sun-synchronous circular orbit was 575 km (LEO) with an orbital
period of 5770 seconds. The Helmholtz cage tests were successful in testing the detumbling
controller mode, but were considered limited, as there were not three rotational degrees of
freedom. Therefore, the long-term stability was not confirmed. It was assumed the maximum

7https://www.asg.ed.tum.de/en/lrt/research-at-the-chair-of-astronautics/satellite-

technology/cubesats/move-ii accessed 21/12/23

https://www.asg.ed.tum.de/en/lrt/research-at-the-chair-of-astronautics/satellite-technology/cubesats/move-ii
https://www.asg.ed.tum.de/en/lrt/research-at-the-chair-of-astronautics/satellite-technology/cubesats/move-ii

CHAPTER 2. MISSION HERITAGE 10

Figure 2.6: Simulink block model of MOVE-II (Kiesbye et al., 2019)

separation velocity from the chosen launcher (ISIS Quadpack Deployer) was around 10◦ s−1.
The system would consider the detumbling procedure successful when the angular velocity
of 7.5◦ s−1 was reached. The ideal case of 10◦ s−1 to 7.5◦ s−1 was complete in 12 minutes.
The maximum tests up to an initial angular velocity of 50◦ s−1 were also performed and were
successful in detumbling down to 1◦ s−1in 162 minutes.

When an angular velocity of 7.5◦ s−1 was reached, the Sun pointing control mode was
activated. Over many orbits, the CubeSat controller exhibited unstable behaviour, where it
would align with the axis of the desired torque with the direction of the magnetic field. It was
mentioned that an air-bearing table would have made this sort of behaviour hard to detect.
This was overcome by adding a counter torque around the z-axis. A mean pointing error of
20.6◦ and a standard deviation of 7.7◦ was found. A Monte Carlo simulation was used to
provide a random initial attitude and velocity vector to the controller. An Extended Kalman
filter (EKF) was used to estimate the satellite’s attitude as well as the gyroscope bias. Overall,
the real simulation, the SIL and the hardware in the loop were considered powerful tools to
test the attitude determination algorithms.

The electrical power system was also simulated and integrated into the simulations. This
caused latency of up to 100ms, therefore, the author recommends using universal interface
nodes which collect the information packets from the simulation for each sensor and group
them as one packet into the control system. Google Protobuf is an open-source, cross-platform
data format that was used to serialise the sensor data, so a fixed packet format did not have
to be defined.

2.2.2 ITU-PSAT II (Istanbul Technical University PicoSatellite II)

ITU-PSAT II (Istanbul Technical University PicoSatellite II) (Kemal Ure et al., 2011) is the
second generation student-built 3U (10x10x30 cm) satellite, weighing 4 kg of ITU Controls
and Avionics Laboratory and was launched in September 2009. The purpose of the satellite

CHAPTER 2. MISSION HERITAGE 11

Figure 2.7: Block model of ITU-PSAT II ADC system (Kemal Ure et al., 2011)

was to demonstrate on-orbit ADCS advancements for nanosatellites. This CubeSat operated
in a Sun-synchronous orbit (SSO) of 640-840 km.

Testing

The controller has two modes. Detumbling for initial separation from the launcher and high
precision attitude control for image capturing. The spacecraft dynamics were parameterised
with quaternions and rigid-body dynamics was assumed. Disturbances were modelled as Gaus-
sian white noise. The detumbling mode uses a Bdot controller and the high-precision attitude
control mode is done using a linear quadratic performance controller. A Bdot controller uses
magnetic field measurements from a magnetometer and a magnetorquer to reduce the change
in magnetic field measurements to reduce the angular velocity of the satellite. The control
system can also detect sensor and actuator failures.

CHAPTER 2. MISSION HERITAGE 12

Figure 2.8: block model of ITU-PSAT II ADC system

The SIL simulation makes use of the simulation tool kit (STK) inside MATLAB. The HIL
and SIL testing was done using a 3D air-bearing table and a Helmholtz Coil frame.

2.2.3 1 Kenyan University Nano-Satellite Precursor Flight (1KUNS-PF)

1KUNS (Mwangi-Mbuthia and Ouma, 2016) was the first satellite launched in May 2018 by
the Kenyan Space Agency (KSA) in collaboration with the University of Nairobi, Machakos
University, and Sapienza University of Rome. The mission’s objective was for this 1U cube to
send colour images of Earth, as well as test in-orbit in-house technology. This first mission
was a predecessor to a 6U cube satellite, which was developed off the back of the successes of
1KUNS-PF. The tested components included the silicone solar panels, the telemetry electronic
board, and the three degrees of freedom (3DOF) attitude control system.

The primary mission was to verify the performance of the onboard subsystems receiving
telemetry data. The main design drivers were to simplify the onboard systems for basic but
well-proven functionality as well as use commercial off-the-shelf (COTS) components, ideally
with no custom developments.

The mission had two nominal operation modes. This is the setup phase and an experimental
phase. Phase one encompasses the detumbling procedure using passive magnetic attitude
stabilisers as well as data gathering of onboard systems before transmitting a beacon. The
second phase, triggered by a ground station command, starts the payload experiments. This
includes taking images of Earth and sending them back, and testing the momentum wheel. The
operation modes are further explained in Table 2.1, where a description of all three operational
modes and the conditions of the safety mode are provided.

CHAPTER 2. MISSION HERITAGE 13

Figure 2.9: 1KUNS-PF (Frezza et al., 2022)

Table 2.1: Operational modes of 1KUNS-PF (Mwangi-Mbuthia and Ouma, 2016)

Mode Description

Commissioning After deployment, 1KUNS-PF sends a Beacon Signal once per minute until reli-
able communication with ground stations is established. The desired attitude is
achieved using a passive magnetic stabilisation system.

Nominal In the first phase, telemetry is stored on board and downloaded to the ground
regularly, to assess the performance of the on-board systems and, in particular,
the experimental solar panel developed at the University of Nairobi. In the sec-
ond phase, the camera is switched on/off upon command, sending panchromatic
pictures of the Earth to the ground. Experiments on the momentum wheel func-
tionality and performance are conducted.

De-commissioning The UHF transmitter and all payloads are permanently turned off, including the
camera and momentum wheel. Batteries are fully discharged.

Safe Non-essential subsystems, such as payloads, are turned off; only the receiver re-
mains active, sending a beacon signal. The satellite waits for a command from
the ground to re-establish the nominal mode of operation.

Testing

As this was a low-budget, fast production mission, the ADC systems were not specially tested
other than simple software tests. This was due to financial and resource limitations, as this
was a university project. The tests were focused on TTC and Power systems.

2.2.4 Taifa-1

Taifa-1 was a 3U CubeSat launched in April 2023 and was the first Earth observation satellite
launch by the Kenya Space Agency. It was developed by SyariLabs and EnduroSat. It took
over two years and cost over $350,000. The mission’s purpose was to collect agricultural and
environmental data. This satellite was launched into a SSO of 550 km and an inclination of
97◦. The satellite was deployed at 508 km and had an orbit period of 95 minutes.8

8https://ksa.go.ke/news/taifa-1-satellite-launch accessed 12/01/24

https://ksa.go.ke/news/taifa-1-satellite-launch

CHAPTER 2. MISSION HERITAGE 14

Figure 2.10: Taifa-19

Testing

The system was simulated using the Systems Tool Kit (STK) from AGI (Ansys Government
Initiatives) simulation toolkit software available on MATLAB. Ansys STK allows the satellite
subsystems to be simulated using physics-based modelling environments10. The code itself
was written in MATLAB, and STK was used to model sensors to determine pointing accuracy
for the Nadir pointing, detumbling rates, also considering perturbations.

2.2.5 Discussion of CubeSat Missions

The CubeSat missions considered in this study ranged from 1U to 6U, with 3U platforms
being most common. They typically operated in Low Earth Orbit, often in Sun-synchronous
trajectories between 400 km and 600 km. This regime balances mission ambition, data quality
and resource limits, making it ideal for educational, research and technology-demonstration
objectives.

Most missions adopted two principal control modes: a detumbling mode to damp post-
deployment spin and a pointing mode usually Sun or Earth pointing to support payload func-
tions such as imaging or communications. The detumbling phase commonly employed B-dot
controllers driven by magnetometer and magnetorquer readings, offering a low-cost, low-power
solution well suited to CubeSat form factors.

Testing strategies for CubeSats have been less extensive than for larger spacecraft. Control
algorithms were often validated first in SIL, then in simple HIL setups such as Helmholtz
cages or air-bearing tables. MATLAB/Simulink dominated as the development environment,
leveraged under academic licences and supplemented by pre-existing libraries.

CubeSat missions thus suggest the following best practices for cost-conscious ADCS test
beds:

9https://currentaffairs.adda247.com/kenya-launched-its-first-operational-earth-

observation-satellite-taifa-1 last accessed 09/01/24
10https://www.ansys.com/products/missions/ansys-stk accessed 30-03-2024

https://currentaffairs.adda247.com/kenya-launched-its-first-operational-earth-observation-satellite-taifa-1
https://currentaffairs.adda247.com/kenya-launched-its-first-operational-earth-observation-satellite-taifa-1
https://www.ansys.com/products/missions/ansys-stk

CHAPTER 2. MISSION HERITAGE 15

• Develop and validate controllers rapidly in MATLAB/Simulink using pre-validated library
blocks under an academic licence.

• Implement B-dot detumbling with inexpensive magnetometers and magnetorquers, as
demonstrated across multiple missions.

• Design simple proportional–derivative Sun- or Nadir-pointing controllers and verify their
performance in SIL.

• Integrate compact HIL fixtures (Helmholtz cages, air-bearing tables) to inject realistic
magnetic and rotational stimuli, while managing space and budget requirements.

• Prioritise COTS sensors and actuators to reduce custom hardware effort and improve
reproducibility.

• Address gaps in documented HIL procedures by providing a unified, accessible test bench
framework.

These insights inform the design of an inexpensive, real-time ADCS test bench tailored to
CubeSat-scale constraints.
Having seen how both large programmes and student teams have approached ADCS validation,
the following section distils those lessons into formal test-modality definitions. In particular, it
contrasts variable-step (‘non-real-time’) runs with fixed-step, real-time execution, and shows
how SIL and HIL can interoperate.

2.3 Validation Approaches

This section reviews the principal validation approaches available for ADCS development, com-
paring their capabilities, resource requirements and suitability for education-based CubeSat
projects. Emphasis is placed on distinguishing non real-time versus real-time execution, and
on exploring how SIL and HIL methods may be combined into a cost-effective yet flight-
representative test bench.

2.3.1 CubeSat Trends and Reference Configuration

Recent surveys of CubeSat missions show that over 40 percent use 3 U form factors, largely
because this size balances payload capacity, power budget and attitude-control performance
under modest mass and volume constraints (Polat et al., 2016). 11 Most fly in 400–600 km
SSO or LEO and employ two primary control modes, magnetic-rate detumbling and Sun- or
Earth-pointing using low-cost magnetometers, magnetorquers and Sun sensors. These trends
directly inform the reference design chosen for this study, ensuring that the test bench is
representative of the majority of education-based CubeSat missions.

2.3.2 Non Real-Time Simulation

In non real-time environments, control algorithms execute with variable time steps, often
within high-fidelity desktop simulators (MATLAB/Simulink, AGI STK). These platforms offer
rich modelling of orbital dynamics, environmental perturbations and sensor imperfections, fa-
cilitating rapid prototyping and parameter sweeps without concern for strict timing constraints.

11https://www.nanosats.eu/ accessed on 19/12/23

https://www.nanosats.eu/

CHAPTER 2. MISSION HERITAGE 16

However, such setups cannot reveal latency-related faults, scheduling jitter or worst-case ex-
ecution times that commonly occur on embedded processors. Consequently, a purely non
real-time approach may leave time-critical issues undetected until late in development.

2.3.3 Real-Time Execution

Real-time testing enforces fixed-step execution of the ADCS code on target hardware or de-
terministic operating systems. By matching the control loop frequency to flight-like rates,
real-time execution exposes timing faults, callback overruns and interface latencies that would
be invisible in variable-step runs.

2.3.4 Software-in-the-Loop (SIL)

Software-in-the-Loop testing embeds the control software under development within a real-time
simulation environment, replacing physical hardware with high-fidelity models. Unlike HIL, SIL
requires no physical actuators or sensors, which dramatically lowers cost and increases flexibility
for early-stage validation. By executing control algorithms in a fixed-step real-time operating
system and interfacing with external simulation packages, SIL enables rapid prototyping and
performance assessment under realistic, yet fully virtual, conditions. A representative aerospace
example is the real-time SIL framework described by ?, where electric-power-steering and
motor-drive controllers were validated at millisecond resolution on a PC cluster by interfacing
Simulink code with high-fidelity plant models.

2.3.5 Hardware-in-the-Loop (HIL)

HIL testing integrates real hardware components with virtual simulation models in a closed-
loop environment to replicate operational conditions. This approach enables safe validation
of embedded control systems without risking damage to physical equipment. HIL is widely
used in aerospace, automotive and power-electronics industries to verify system performance,
reduce development costs and ensure reliability before full-scale implementation Mihalic et al.
(2022).

Several aerospace HIL setups have been reported. Formation-flying and object-capture rigs
often employ large moving platforms. For example, Carignan et al. (2022) describes a ground-
based robotic testbed using a Rotopod R2000 platform, providing full 6-DOF motion, and
Motoman SIA50D robots equipped with custom Schunk grippers (Figure 2.11). While these
platforms demonstrate realistic dynamics, their size and cost are prohibitive for university
budgets.

A more compact formation-flying HIL testbed uses wheeled robots to achieve 2-DOF mo-
tion for formation control experiments (Scharnagl and Schilling, 2016). Although financially
accessible, it does not match our reference mission, which should be a simple CubeSat mission.

For sensor validation, Farissi et al. (2019) employs a Helmholtz cage, similar to ITU-PSAT
II, to recreate the geomagnetic field and drive real-time dynamics in Simulink. This method is
directly relevant but requires substantial laboratory space.

Finally, Haraguchi (2024) tests a star tracker using a Raspberry Pi-driven display that shows
simulated star fields (Figure 2.12). This compact, low-cost arrangement closely resembles the
HIL architecture intended for development and will be evaluated further.

Several compact HIL setups are directly relevant to CubeSat ADCS:

• A three-axis Helmholtz cage drives magnetometers and magnetorquers with controlled
field vectors (Farissi et al., 2019).

CHAPTER 2. MISSION HERITAGE 17

Figure 2.11: Ground-based robotic formation-flying testbed (Carignan et al., 2022)

Figure 2.12: Compact star-tracker HIL setup (Haraguchi, 2024)

• A Raspberry Pi-driven display emulates Sun-sensor or star-tracker inputs in real time
(Figure 2.12) (Haraguchi, 2024).

These fixtures attach to EuroSim without recompilation, allowing seamless progression from
SIL to HIL and revealing quantisation effects, misalignment errors and interface mismatches
that SIL cannot capture.

2.4 Chapter Summary and Transition

This chapter has reviewed ADCS development and validation across three scales. Agency-
class missions demonstrate the benefits of real-time, fixed-step simulation, flat-sat layouts for
early hardware integration and seamless progression from SIL to HIL. University-led CubeSat
programmes highlight rapid prototyping in MATLAB/Simulink, magnetic-rate detumbling and
simple pointing loops, together with compact HIL fixtures such as Helmholtz cages and air-
bearing tables. Finally, the two principal validation approaches, SILT and HILT, have been
compared in terms of fidelity, cost and educational accessibility.

In Chapter 3, these lessons will inform the design of a generic CubeSat ADCS test bench.
The methodology for selecting a representative mission profile, defining performance require-
ments and implementing the SIL framework on EuroSim will be presented. Although initial
emphasis will be placed on software-in-the-loop execution, the architecture will be structured
to allow straightforward extension to hardware-in-the-loop in future work.

CHAPTER 3

Design context and Methodology
The preceding survey revealed that most university CubeSats employ 3 U platforms, B-dot
detumbling and simple pointing modes, yet few teams have a repeatable, real-time test infras-
tructure. This chapter, therefore, defines a mission and toolchain that balances realism, cost
and educational accessibility.

3.1 Reference Mission

Considering the test bed should be educational, low-cost, and durable, a SILT setup with
HILT and real-time capabilities was chosen. This will be implemented using EuroSim and
MATLAB/Simulink, as both are available under educational licenses, and support was available
for their implementation.

Based on the preceding analysis, an Earth observation mission using a 3U CubeSat con-
figuration was selected as the reference mission. From the previously analysed missions in
Section 2.1, the 1KUNS-PF and Taifi-1 missions were combined. Taifa-1’s 3 U form factor
and well-characterised Sun-sensor suite define our hardware envelope, while 1KUNS-PF’s ex-
tensive open-source requirements informed our performance benchmarks.

A circular low Earth orbit (LEO) at an altitude of 500km was selected as the reference
orbit. Mission specifications are summarised in Table 3.1. The hardware configuration is pri-
marily based on Taifi-1 and the SPS mission, with some variations to better suit the research
objectives. SPS provided simulated hardware and sensor specifications, which were particularly
helpful during the development phase. A summary of these specifications is given in Table 3.3.
The placement of hardware components is shown in Figure 3.1, with detailed positions listed
in Table 3.2.

To align with standard practices observed in CubeSat missions, similar control modes were
applied. Starting with a detumbling mode, followed by a pointing or orientation mode and
orbit manoeuvring modes. As this thesis is for demonstration purposes, focusing on orientation
(angular velocity and quaternions), the following modes were chosen. This research focuses on
the first two attitude control modes: the detumbling mode immediately after deployment from
the launcher, and the Sun acquisition mode. Upon release, the satellite is expected to rotate

Table 3.1: Reference missions specifications

Parameter Specification

Orbit LEO of 500 km

Size 3U – 100 × 100 × 340.5 [mm]

Weight 5 [kg]

Mission Objective Earth observation

Sensors Six Sun sensors, a Gyroscope, and a Magnetometer

Actuators A Magnetorquer and a Reaction Wheel

Control Modes Detumbling (passive) and Sun acquisition (active)

19

CHAPTER 3. DESIGN CONTEXT AND METHODOLOGY 20

0

5

20

10

15
Z

[c
m

]

20

20

10

25

30

Y [cm]

10

X [cm]

0 0
-10-10

Sun Sensors
Magnetometer
IMU
Magnetorquer

Figure 3.1: Hardware Positions

at a maximum rate of 10 ◦ s−1. The detumbling process will use magnetorquers in combination
with magnetometer data to reduce this to below 3 ◦ s−1, at which point the Sun acquisition
mode will be initiated.

In the Sun acquisition mode, six Sun sensors and a gyroscope will be used to determine
the Sun’s position and update the attitude estimate. The attitude control system includes a
magnetometer, magnetorquers, reaction wheels, Sun sensors, and a gyroscope. These compo-
nents will be modelled in software for simulation purposes, as the control system will initially
be verified in a purely simulated environment.

The simulation focuses on quaternion-based attitude representation and angular velocity
tracking. Linear position and velocity will not be modelled, as they are not critical for the
initial control objectives. The required attitude control specifications are outlined in Table 3.1.

1https://satsearch.co/products/bradford-mini-fine-sun-sensor accessed 15-03-25
2https://satsearch.co/products/newspace-systems-ngps-01-422-gps-receiver accessed 15-01-24
3https://satsearch.co/products/newspace-systems-nmrm-bn25o485-magnetometer accessed 15-01-

24
4https://satsearch.co/products/newspace-systems-nctr-m003-magnetorquer-rod accessed 15-01-

24
5https://satsearch.co/products/newspace-systems-nrwa-t065-reaction-wheel accessed 15-01-24
6https://satsearch.co/products/newspace-systems-nsgy-001-stellar-gyro accessed 15-01-24
7https://satsearch.co/products/iactec-space-drago-2 accessed 15-01-24

https://satsearch.co/products/bradford-mini-fine-sun-sensor
https://satsearch.co/products/newspace-systems-ngps-01-422-gps-receiver
https://satsearch.co/products/newspace-systems-nmrm-bn25o485-magnetometer
https://satsearch.co/products/newspace-systems-nctr-m003-magnetorquer-rod
https://satsearch.co/products/newspace-systems-nrwa-t065-reaction-wheel
https://satsearch.co/products/newspace-systems-nsgy-001-stellar-gyro
https://satsearch.co/products/iactec-space-drago-2

CHAPTER 3. DESIGN CONTEXT AND METHODOLOGY 21

Table 3.2: Sensor and Actuator Positions for 3U CubeSat where (0,0,0) is a corner where the
z-axis points along the long axis.

Component X (cm) Y (cm) Z (cm)

Sun Sensor 1 (-Y) 4 0 15

Sun Sensor 2 (+Y) 6 10 15

Sun Sensor 3 (-X) 0 6 15

Sun Sensor 4 (+X) 10 4 15

Sun Sensor 5 (-Z) 5 4 0

Sun Sensor 6 (+Z) 5 6 30

Magnetometer (Center) 5 5 14

IMU (Center) 5 5 16

GPS Antenna (+Z) 4 5 30

X-Axis Magnetorquer 5 1 15

Y-Axis Magnetorquer 1 5 15

Z-Axis Magnetorquer 5 5 1

Table 3.3: Hardware specifications.

Sensor Mass [g] Size (L×W×H) [mm] Key Parameters

Mini-FSS Fine Sun Sen-
sor1

<50 50×46×17 FOV ±30◦ (X, Y)

Noise 0.0333◦ (1σ)

Quantisation 0.0557◦

Bias 0.01◦

NMRM-Bn25o485 Mag-
netometer3

<85 99×43×17 Range ±100 µT

Noise 5× 10−11 T/
√
Hz

Scale Factor 150 ppm

Quantisation 0.0488 µT

Drift 1 nT/°C

NCTR-M003 Magnetor-
quer4

<30 72×15×13 Max Moment 400 Am2

Min Moment 0.4889 Am2

Resolution 0.2 Am2

Time Constant 0.2216 s

Bias 2 Am2

NRWA-T065 Reaction
Wheel5

1550 102×102×105 Max Torque 0.075 Nm

Time Delay 0.02 s

Resolution 2× 10−5 Nm

NSGY-001 Gyro6 <55 37×35.5×49 Range ±30◦/s

Noise 1.7× 10−5 rad/
√
s

Scale Factor 500 ppm

Quantisation 0.0146◦/s

Drift 1× 10−7 rad/s

CHAPTER 3. DESIGN CONTEXT AND METHODOLOGY 22

Requirements

The requirements for the overall simulation and GNC system are given below. Table 3.4
describes the requirements which are given for the hardware which is simulated, while Table 3.5
describes the requirements for the controller of the simulation. The values in the requirements
were found using research into previous missions and the specifications of the hardware used.
This list will be referred to at different points in the study to justify the completeness of
different components of the mission.

Table 3.4: Table of hardware requirements for reference mission. Sun Sensor (SS), Magne-
tometer (MM), Reaction Wheels (RW), Magnetorquer (MT) and Gyroscope (GYR).

ID Requirement

SS01 The Sun Sensor shall provide the Sun vector every 0.1 seconds.

SS02 The Sun Sensor shall provide the Sun position with an accuracy of 1° (3σ).

SS03 The Sun Sensor shall locate the Sun’s position within 10 minutes after activation.

SS04 The Sun Sensor shall have a field of view (FOV) of 30° × 30°.

SS05 The Sun Sensor noise shall be less than 0.05° (1σ).

MM01 The Magnetometer shall provide the magnetic field vector every 0.5 seconds.

MM02 The Magnetometer shall achieve measurement accuracy better than 5 nT (1σ).

GYR01 The Gyroscope shall have sensitivity better than 0.01°/s (36 arcsec/s).

GYR02 The Gyroscope shall provide measurements every 0.01 seconds (100 Hz).

RW01 The Reaction Wheels shall provide at least 0.05 Nm at 6000 rpm.

RW02 The Reaction Wheels shall not have drift exceeding 0.01°/s.

MT01 The Magnetorquer shall provide at least 0.005 Nm continuous torque.

Table 3.5: Table of control mode requirements for the reference mission. Detumbling mode
(DT), Sun acquisition mode (SA), and Guidance, Navigation, and Control (GNC).

ID Requirement

DT01 The detumbling of the satellite shall be completed within 2 orbits.

DT02 The angular rate shall be reduced below 0.5°/s around the x-axis at the end of the
manoeuvre.

DT03 The angular rate shall be reduced below 0.5°/s around the y-axis at the end of the
manoeuvre.

DT04 The angular rate shall be reduced below 0.5°/s around the z-axis at the end of the
manoeuvre.

SA01 The z-axis of the satellite shall align with the Sun vector within 1 orbit (90 minutes).

SA02 The z-axis of the satellite shall align with the Sun vector within 1.5 hours after
detumbling.

SA03 The pointing accuracy during sun acquisition shall be within 5°.

SA04 The sun shall be found within 1 orbit (90 minutes) after activation.

GNC01 The control loop shall operate at 10 Hz.

GNC02 The 5% settling time shall be less than 10 minutes.

GNC03 The 2% settling time shall be less than 15 minutes.

GNC04 The rise time shall be no more than 5 minutes.

GNC05 The overshoot shall be less than 10%.

CHAPTER 3. DESIGN CONTEXT AND METHODOLOGY 23

3.2 Test Bed Configuration

Previous sections have highlighted how real-time simulation and HIL and SIL methods have
been employed to validate ADCS in both large-scale and CubeSat missions. While missions
such as Gaia and Herschel-Planck employed highly customised and resource-intensive real-time
simulation environments (e.g., using EuroSim and bespoke Software Checkout Equipment),
CubeSat missions like MOVE-II and ITU-PSAT II demonstrated that lower-cost, adaptable
test environments can still provide critical validation for ADCS performance, particularly in
educational settings. However, many educational missions continue to suffer from high failure
rates due to limited access to comprehensive, real-time test facilities.

To address these challenges within the context of this research, a real-time CubeSat ADCS
test bench is developed based on the following methodology:

• MATLAB/Simulink is selected as the primary development environment for mod-
elling, simulation, and controller development. This decision leverages the availabil-
ity of university-wide licences and ensures that the tools used are widely accessible to
educational institutions.

• The Generic Guidance Navigation and Control Simulator (GGNCSim) and the
Generic Rendezvous And Docking Simulator (GRADS) library are utilised for the
sake of revising existing software for model development. These libraries provide a set of
modular, pre-validated Simulink blocks for sensors, actuators, propagation, environment
modelling, and utility functions. Originally developed for GNC system testing in ren-
dezvous and docking missions, their modularity and flexibility allow efficient adaptation
for CubeSat ADCS simulations, significantly reducing development time and ensuring
reliable model behaviour.

• EuroSim is integrated to provide a flexible real-time simulation environment. EuroSim’s
compatibility with MATLAB/Simulink models and its real-time scheduling capabilities
make it an ideal platform for HIL implementation and external hardware interfacing.
This software is also available under an educational license.

• A Raspberry Pi is selected as the embedded platform to run real-time simulations.
The Raspberry Pi provides an affordable, compact, and accessible platform capable of
supporting real-time execution of models and controller code, aligning with the project’s
objectives of cost-efficiency and educational accessibility.

This combination of tools and hardware enables the creation of a real-time test bench
that is technically robust and educationally accessible. The requirements listed in Table 9.6
define the necessary functional, hardware, software, usability, and educational constraints for
the development of the real-time CubeSat ADCS test bench.

3.3 Research Questions

Reflecting on the research of Chapter 2 and the discussion above, the following research
questions are given as a guide to the thesis. This thesis focuses on improving the accessibility
of CubeSat Attitude Determination and Control Systems (ADCS) testing while using low-cost
hardware. A particular emphasis is placed on evaluating how real-time simulation methods
can be leveraged to better represent system behaviour during development and prototyping,
compared to traditional non-real-time simulation methods. Furthermore, the study considers

CHAPTER 3. DESIGN CONTEXT AND METHODOLOGY 24

Table 3.6: Requirements for the real-time CubeSat ADCS test bench.

ID Requirement

SIM01 The simulator shall simulate CubeSat attitude dynamics in real-time.

SIM02 The simulator shall support real-time interaction with CubeSat ADCS hardware under
test.

SIM03 The simulator shall support real-time interaction with CubeSat ADCS software under
test.

SIM04 The test bench shall use commercially available off-the-shelf (COTS) components
where possible.

SIM05 The simulator shall be based on open-source or educational-licensed software tools.

SIM06 The simulator limitations and common errors will be highlighted to allow varying
levels of students to use and understand the implementation process.

SIM07 The total test bench cost shall not exceed €2000.

how testing environments can be made more accessible for educational and research-focused
CubeSat missions, where resources are often limited.

Research Questions

Main Research Question:
To what extent can low-cost hardware and simulation tools support real-time testing

of CubeSat ADCS algorithms in an educational context?

Sub-Research Questions:

• What components are required to develop a functional ADCS simulation and test
environment?

• What are the benefits and limitations of using simulated environments for testing
ADCS algorithms without access to flight hardware?

• Can the proposed setup incorporate hardware-in-the-loop (HIL) testing?

• How can a real-time test bench be designed to meet the needs of student-led and
institution-based CubeSat projects?

The Main Research Question centres on whether a combination of low-cost hardware
and openly available simulation tools can deliver a real-time test bench suitable for validating
CubeSat Attitude-Determination and Control Systems (ADCS) in an academic setting. Uni-
versity missions often suffer ADCS failures because time-critical software is tested only in slow,
offline simulations or, even worse, when in orbit. By shifting validation into an affordable,
real-time environment, this thesis aims to raise the capabilities of ground testing while keeping
costs within reach of student teams.

The four Sub-Research Questions provide a step-by-step path toward that goal:

(SQ1) By first designing a complete ADCS for the reference CubeSat, the thesis dissects the
subsystem into sensors, actuators, estimation algorithms, and control laws. From this
bottom-up exercise, it extracts the minimum set of models, interfaces, and computing

CHAPTER 3. DESIGN CONTEXT AND METHODOLOGY 25

resources a test bench must offer so that future teams can iterate on their own ADCS
designs with confidence.

(SQ2) Building on those components, the work evaluates pure simulation as an early-stage
validation tool, fast, risk-free, and inexpensive, yet inevitably limited by modelling accu-
racy. Quantifying the trade-offs between speed and realism clarifies when software-only
testing suffices and when additional resources are required.

(SQ3) The study then investigates extending the same architecture to HITL, analysing data-rate
constraints, interface latencies, and synchronisation demands. Demonstrating even a
partial HIL loop shows how the bench can bridge the gap from laboratory models to
flight-like performance.

(SQ4) Finally, the thesis turns to practical deployment: cost, licence choices, documentation,
and training material tailored to student teams with mixed experience levels. Emphasis
is placed on usability and robustness so that the bench remains effective even when
operated by non-expert users under academic time pressures.

Together, these four strands form a coherent roadmap: design and decompose an ADCS,
test its limits in simulation, extend the bench toward HIL, and package the result for widespread
educational use. Each subsequent chapter of the thesis is mapped explicitly to one or more of
these sub-questions.

3.4 Thesis Roadmap

The remainder of this thesis proceeds in six focused stages, each building on the last to deliver
a complete, low-cost, real-time ADCS test bench for a 3 U CubeSat:

ENV (Chap-
ter 5)

Flight
Dynamics
(Chapter 4)

Sensors
(Chapter 6)

Kalman Filter
(Chapter 6)

Controller
(Chapter 7)

Actuators
(Chapter 7)

Figure 3.2: Flowchart illustrating the system with ENV - Environment models, Flight Dynamics,
Sensors, Kalman Filter, Controller, and Actuators

Chapter 4 – Flight Dynamics. This chapter establishes the kinematic and dynamic
foundations required to describe CubeSat motion. It introduces the key state-variable rep-
resentations (Cartesian coordinates, orbital elements, Euler angles and quaternions), defines
the body-fixed, inertial and local frames, and derives the rigid-body equations of motion that
govern rotational dynamics.

Chapter 5 – Space Environment. Here the principal external disturbances are developed:
the Earth’s gravity field (including higher-order harmonics), geomagnetic field, aerodynamic
drag and solar-radiation pressure. Each model is presented in theory, then its implementation
in the GRADS library is validated via acceptance tests.

CHAPTER 3. DESIGN CONTEXT AND METHODOLOGY 26

Chapter 6 – Navigation. This chapter describes how the simulated spacecraft “sees” its
environment. Detailed models of sun sensors, magnetometers, gyroscopes and the IMU are
introduced, including noise and bias characteristics. The extended Kalman filter architecture is
then developed, showing how these measurements are fused to estimate attitude (quaternion)
and angular velocity.

Chapter 7 – Control. With state estimates in hand, the ADCS control laws are pre-
sented. The B-dot algorithm for magnetorquer-only detumbling is derived, followed by a
proportional–derivative controller for Sun-acquisition. Stability, performance and switching
logic between modes are discussed.

Chapter 8 – Functional Simulator. The GRADS-based Simulink simulator is assembled
here. Its software architecture, solver selection and component acceptance tests are described
in detail. This functional (non-real-time) bench verifies that the combined environment, navi-
gation and control models meet the mission requirements.

Chapter 9 – Real-Time Implementation. The final test-bench is realised in EuroSim on a
Raspberry Pi. This chapter covers MATLAB code generation, EuroSim model integration (“dos
and don’ts”), hardware interfaces and end-to-end acceptance tests that run the detumbling
and Sun-acquisition sequences in true real-time.

Chapter 10 – Conclusion. The thesis closes by revisiting the research questions, sum-
marising key contributions, reflecting on limitations and outlining future extensions toward full
HILT validation.

CHAPTER 4

Flight Dynamics
For an Attitude Determination and Control System (ADCS) to operate reliably, the underlying
dynamics model must reproduce a satellite’s translational and rotational motion with sufficient
accuracy. This chapter establishes the mathematical foundation used by the CubeSat simula-
tor. It first clarifies how a satellite’s state is numerically represented, ranging from Cartesian
position and velocity to attitude descriptions such as Euler angles and quaternions, highlight-
ing why quaternions are ultimately preferred for real-time attitude propagation. The analysis
then explains the role of reference frames: an inertial frame for orbital motion, a body-fixed
frame for onboard hardware, and intermediate frames such as LVLH for disturbance modelling.
Transformations between these frames are essential, for example, when converting an inertial
magnetic-field vector into body coordinates for a magnetometer model. Finally, Newton–Euler
translation and rigid-body rotation are combined into a six-degree-of-freedom equation set
that drives the simulation core. Together, these elements provide the kinematic and dynamic
context required for the sensor models, Kalman filters, and control laws developed in later
chapters.

As stated earlier, the simulator does not model position and velocity in full detail, focusing
instead on attitude representation; however, these elements are still briefly discussed in this
chapter for completeness.

4.1 State variables

This section will discuss the various variables which are used in the development and creation
of the simulator.

4.1.1 Cartesian Coordinates

Cartesian coordinates represent an object’s position and velocity using six parameters: three
for position (x , y , z) and three for velocity (ẋ , ẏ , ż). The x , y , and z axes are mutually
perpendicular and intersect at the origin, which is typically defined relative to an inertial
reference frame.

This system allows any point in space to be uniquely identified by its intersection with
planes perpendicular to each axis. This will not be used in the simulation set-up as it relates
to position and velocity. However, it is used to describe the behaviour of the satellite in a later
chapter. Therefore, a brief description was included.

4.1.2 Orbital elements

The orbital elements can be used when describing the position and direction of the orbit.
Again, this set of state variables will not be used in the simulator but is used in later chapters
for discussion of results. Consider an elliptical orbit, Figure 4.1a and Figure 4.1b show the
variables used to describe this orbit. The size is determined by the semi-major axis a, and the
shape is determined by the eccentricity e.

The inclination angle i is between the orbital plane and the equator. An angle of more
than 90 degrees means the satellite is in a retrograde orbit, and it rotates opposite that of
Earth’s rotation. The right ascension of the ascending node Ω is the angle between the vernal

27

CHAPTER 4. FLIGHT DYNAMICS 28

(a) Orbital elements 1 Montenbruck and Gill
(2001)

(b) Orbital elements 2 Montenbruck and Gill
(2001)

Figure 4.1: Comparison of orbital elements

equinox and the location where the satellite crosses the equator from south to north. Taking
the angle between the direction of the ascending node and perigee gives the argument of
perigee ω(Montenbruck and Gill, 2001). To determine the location of a satellite at a given
time, a sixth parameter is needed. This could be the time of pericenter passage τ , or most
commonly, the mean anomaly at t0 is used, M0. This is defined as (Mooij, 2022b):

M0 = n(t0 − τ) (4.1)

where

n =

√
µ3

a
(4.2)

This means that the mean anomaly can be expressed with:

M = M0 + n(t0 − τ) = n(t − τ) (4.3)

4.1.3 Euler Angles

Euler angles represent a spacecraft’s orientation through three sequential rotations about its
body-fixed axes: roll (ϕ), pitch (θ), and yaw (ψ), corresponding to rotations about the x , y ,
and z axes, respectively (Wertz, 1980). Although intuitive and easy to visualise, they suffer
from singularities such as gimbal lock, where two axes align and one rotational degree of
freedom is lost. Gimbal lock can be mitigated by altering the rotation sequence at the limits
of Euler angles, but this introduces additional computational overhead, and residual numerical
error may still compromise detumbling performance. Because the control modes used in this
thesis, particularly B-dot detumbling, require continuous, singularity-free attitude propagation,
Euler angles are retained solely for plotting results (using a 1-2-3 sequence).

4.1.4 Quaternions

Quaternions, also known as Euler symmetric parameters, provide a four-parameter attitude
description consisting of a scalar part and a three-component vector:

q =


q1
q2
q3
q4

 , q21 + q22 + q23 + q24 = 1. (4.4)

CHAPTER 4. FLIGHT DYNAMICS 29

They are free from kinematic singularities, require only basic arithmetic, and permit smooth
interpolation of orientations, making them well suited to real-time simulation. Classical Ro-
drigues parameters and Modified Rodrigues Parameters were also evaluated; both offer three-
parameter descriptions with reduced singular-axis issues, yet each retains a singularity at 180◦

and necessitates parameter switching or shadow-set logic. Given the modest computational
load of quaternions on the target hardware and their lack of singularities over the full attitude
range, quaternions were adopted as the primary internal representation.

4.1.5 Angular Velocity

In addition to position and orientation, which are not the main focus of this study, the rotational
motion of the spacecraft is characterised by its angular velocity vector ω. This vector represents
the rate of rotation of the body frame relative to the inertial frame, typically expressed in
the body-fixed reference frame. Angular velocity is crucial for describing the spacecraft’s
rotational dynamics and is used directly in both the equations of motion and attitude control
algorithms. It complements the attitude representation (Euler angles or quaternions) in defining
the complete rotational state of the spacecraft.

4.2 Reference frames

Modelling a satellite’s orientation and rotation in space requires a thorough understanding
of the various reference frames involved. With the correct implementation and theoretical
knowledge, the simulation can better represent the mission conditions and successfully be used
to validate the control algorithms. Different systems and system performances require different
origins of their reference frame. This section will describe three reference frames and their use
cases. First is the body fixed frame, then the Earth-centred inertial frame, followed by the
instrument frame.

4.2.1 Earth-Centred Inertial Frame (ECI)
(
FI

)
The Earth-Centred Inertial (ECI) frame provides the inertial reference in which Newton’s trans-
lational and rotational equations of motion are formulated. It is quasi-fixed with respect to
the distant stars; that is, it does not co-rotate with the Earth and is therefore convenient for
expressing forces, torques, and absolute attitude.

The frame’s origin is at the Earth’s centre of mass. Its z-axis is directed towards the mean
north-celestial pole, the x-axis towards the mean vernal equinox, and the y -axis completes a
right-handed triad. In this thesis, the ECI axes correspond to the conventional J2000 system,
defined by the mean equator and mean equinox at noon on 1 January 2000 (Mooij, 2022a;
Vallado and McClain, 2013). Although a spacecraft’s attitude is ultimately expressed with
respect to a body-fixed frame, the ECI frame supplies the non-rotating reference against which
that attitude is measured or propagated.

4.2.2 Hardware Frame (FH)

The satellite carries several instruments—sensors and actuators—each with its own local ref-
erence frame. In the simulator, every sensor reading and actuator command is generated in
its native frame and then transformed into a common frame before being used in the state-
estimation process. The simulated sensors comprise six Sun sensors, an IMU, a GPS receiver,
and a magnetometer; the simulated actuators comprise a set of reaction wheels and a three-axis

CHAPTER 4. FLIGHT DYNAMICS 30

magnetorquer. Scientific payloads are not modelled and are therefore excluded. The spatial
locations of all simulated hardware components are listed in Table 3.2.

4.2.3 Body fixed (FB)

This reference frame is used to describe the orientation of the sensor actuators and other
instruments on board with respect to the satellite’s body. The origin lies in the centre of
mass of the body, and the three axes coincide with the body’s geometry. This reference frame
describes the angular rotations represented by Euler angles, roll ϕ, pitch θ and yaw ψ which
show the rotations around the x, y and z axes respectively (Wertz, 1980).

4.2.4 Vertical Frame (FV)

The vertical frame, often called the local-horizontal local-vertical (LHLV) frame, is commonly
used to express gravitational acceleration acting on a spacecraft. It treats the Earth as a perfect
sphere: the z-axis points radially towards the planet’s geometric centre, while the x-axis lies
in the local meridian plane and the y -axis completes the right-hand triad.

Because the Earth is an oblate spheroid, the true gravity vector is not perfectly radial;
small north-south and east-west components arise in addition to the dominant radial term.
These departures are usually negligible for CubeSat-scale analyses but should be noted when
high-precision modelling is required.

4.3 Reference Frame Transformations

To move between reference frames Mooij (2022a), appropriate transformations must be ap-
plied. For instance, while the equations of motion are typically expressed in the inertial frame,
sensor measurements are provided in the hardware (or body) frame. To propagate the motion
using sensor data, it must first be transformed into the appropriate reference frame. This
section presents several commonly used transformation techniques.

A basic transformation between two reference frames is given in Equation (4.5), where T
is the translation vector between the origins of frames FA and FB , and CB,A is the direction
cosine matrix (DCM) representing the rotation from FA to FB :

vB = T+ CB,AvA (4.5)

A rotation about a single axis is referred to as a unit-axis rotation. These are defined to be
positive according to the right-hand rule. The matrices in Equation (4.6), Equation (4.7),
and Equation (4.8) represent rotations by an arbitrary angle θ about the x , y , and z axes,
respectively:

CX(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (4.6)

CY(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (4.7)

CZ(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (4.8)

CHAPTER 4. FLIGHT DYNAMICS 31

The order of rotations is critical and non-commutative: for example, an x-y -z rotation sequence
is not equivalent to a z-y -x sequence. Each axis rotation is orthonormal, and a composite
rotation in x-y -z order is given by:

CXYZ(θ) = CZ(θ)CY(θ)CX(θ) (4.9)

When Euler angles (ϕ, θ,ψ) are used (typically representing roll, pitch, and yaw), the rotation
matrix becomes:

R =

 cosψ cos θ cos θ sinψ − sin θ
sinϕ sin θ cosψ − cosϕ sinψ sinϕ sin θ sinψ + cosϕ cosψ sinϕ cos θ
cosϕ sin θ cosψ + sinϕ sinψ cosϕ sin θ sinψ − sinϕ cosψ cosϕ cos θ

 (4.10)

Alternatively, rotations can be efficiently represented using quaternions, which define a rotation
about a unit vector. Quaternion-based transformations avoid singularities and reduce compu-
tational load by eliminating the need for multiple matrix multiplications. The DCM derived
from a unit quaternion q = [q1, q2, q3, q4] is shown in Equation 4.11, where vI is the vector in
the inertial frame and vB is the transformed vector in the body frame:

CI ,B =

q21 + q24 − q22 − q23 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) q22 + q24 − q21 − q23 2(q2q3 + q1q4)
2(q1q3 + q2q4) 2(q2q3 − q1q4) q23 + q24 − q21 − q22

 (4.11)

4.4 Equations of Motion

The simulator models the satellite as a rigid body with fixed mass properties; internal mass
motion and orbital translation are not considered here. All vectors are expressed in the body
frame FB unless stated otherwise.

4.4.1 Rotational Dynamics

Euler’s equation gives the external moment

M = I ω̇ + ω × Iω, (4.12)

where I is the inertia matrix and ω = [ω1 ω2 ω3]
T is the body-frame angular rate with respect to

the local-vertical frame FA. Gravity-gradient, control, and disturbance torques are appended
directly to Equation (4.12) when required.

4.4.2 Attitude Kinematics

Attitude is propagated with the unit quaternion q = [q1 q2 q3 q4]
T. Its time derivative is

q̇1

q̇2

q̇3

q̇4

 =
1

2


q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3


ω1

ω2

ω3

 . (4.13)

Because the local-vertical frame rotates at the orbital rate n about its transverse axis a2,
the angular rate used in Equation (6.22) is

ωB/A = ωB/N + n a2. (4.14)

Equations (4.12), (4.14) and (6.22) form the rotational state model required by the Ex-
tended Kalman Filter and by the pointing and detumbling controllers in later chapters.

CHAPTER 5

Space Environment
The space environment introduces a range of perturbations that significantly influence the
motion and attitude of a satellite in orbit. This chapter discusses the primary environmental
disturbances acting on the CubeSat, including atmospheric drag, solar radiation pressure,
Earth’s gravitational anomalies, and magnetic field interactions.

Each perturbation is mathematically characterised, and an estimation of its expected mag-
nitude is provided. The models used to represent these effects are sourced from a simulation
library, but dedicated acceptance tests are performed to verify that each model behaves as in-
tended. The model library is called GRADS, and more information can be found in Chapter 8.
The verified environmental models form a critical part of the simulation environment used for
the development and validation of the CubeSat ADCS system.

5.1 Gravitational Field

To simulate the gravitational force acting on a satellite in orbit around Earth, Newton’s law of
gravitation can be used as shown in Equation 5.1 where g is the gravitational acceleration, m
is the mass of the satellite, R is the distance from the satellite to the centre of Earth and µE is
the gravitational parameter of Earth, which is µE = 3.9860047 · 104m3/s2. r̂ is the normalised
position vector. This is also referred to as the central field model because it describes the
gravitational field around a central, spherically symmetric mass distribution. Assuming that
the Earth is spherically symmetric simplifies calculations and allows the gravitational field to
be expressed using radial coordinates (OpenCourseWare, 2004). The inverse-square law states
that the gravitational force decreases proportionally to the square of the distance from the
central mass.

F = mg = m
µE
R2

r̂ (5.1)

The gravitational acceleration g, can be simulated as a constant or varying with radius.
One method for near-spherical bodies is the spherical harmonics model. This model describes
the gravitational potential, which is the potential energy per unit mass and quantifies the
work needed to move a unit mass from a reference point (infinity) to another point without
acceleration. This can then be used to find g by finding the gradient of the potential. The
gravitational potential is given by Equation 5.2, and the gradient of potential is shown in
Equation (5.3) given in the vertical frame (FV) where, R, τ and δ are the spherical positions
where R is the radial distance, τ is the longitude and δ latitude.

U(R, τ , δ) =
µ

R

[
1 +

nmax∑
n=2

(
Re

R

)n n∑
m=0

Pm
n (sin δ)× (Cm

n cosmτ + Sm
n sinmτ)

]
(5.2)

gv =

gδ
gτ
gR

 =

gn
ge
gd

 =

 − 1
R

∂U
∂δ

− 1
R cos δ

∂U
∂τ

−∂U
∂R

 (5.3)

∂U

∂δ
=
µ

R

nmax∑
n=2

(
Re

R

)n n∑
m=0

(Cm
n cosmτ + Sm

n sinmτ)
∂Pm

n (sin δ)

∂δ
(5.4)

33

CHAPTER 5. SPACE ENVIRONMENT 34

∂U

∂τ
=
µ

R

nmax∑
n=2

(
Re

R

)n n∑
m=0

m (Sm
n cosmτ − Cm

n sinmτ)Pm
n (sin δ) (5.5)

∂U

∂R
=

µ

R2

[
1 +

nmax∑
n=2

(
Re

R

)n

(n + 1)
n∑

m=0

Pm
n (sin δ) (Cm

n cosmτ + Sm
n sinmτ)

]
(5.6)

The normalised Legendre polynomial is denoted as Pm
n (sinδ) and captures the angular

variation in the gravitational potential. The Legendre polynomials are found using a recursive
formula.

Cm
n and Sm

n represent the distribution of mass on Earth and how they deviate from a
perfect sphere. They are derived from measurements of the gravitational field. Specifically,
Cm
n represents the cosine components, while Sm

n represents the sine components.
n is the degree and represents the scale of spherical harmonics. The higher the degree, the

more localised the representation of the gravitational field.
m is the order and represents the zonal or longitudinal variations. When m = 0, the varia-

tions are called zonal harmonics, which represent variations only in latitude and are symmetric
around Earth’s rotational axis. When 0 < m < n, these are tesseral harmonics, representing
variations in both latitude and longitude . When m = n, this is called sectorial harmonics,
which capture significant longitudinal variations, found in Vallado and McClain (2013).

The standard gravitational parameter, µ, is taken as 3.986× 1014m3s−2, while the Earth’s
equatorial radius, Re , is set to 6.3781×106m. These values are provided by the ITG-Grace2010s
gravity field model, which is derived from the Gravity Recovery and Climate Experiment
(GRACE) mission and describes Earth’s gravity field with high precision.

The model includes spherical harmonic coefficients up to degree and order 180, as indicated
by the values of nmax = 180 and mmax = 180. The fully normalised coefficients Cnm and Snm
are stored as 180×181 matrices. These coefficients represent the cosine and sine components
of the gravitational potential, respectively, enabling the modelling of Earth’s gravity field.

Given that g is found in the format of Equation (5.3), Equation (5.1) can be used to find
the appropriate force. m is the satellite’s mass and has been set to 5kg.

5.2 Magnetic Field

The next pertubation to be simulated is the magnetic moments and forces. This affects
the satellite in many (small) ways. First, the charged particles cause ionisation in the upper
layers of the atmosphere, and therefore, the density causes a drag effect. Charged particles
can also interact with the satellite, potentially influencing its electrostatic or electromagnetic
environment and tracking and communications. Another is the interaction with the onboard
electromagnets, affecting the torque and attitude control (Vallado and McClain, 2013). The
magnetic field strength varies from 25,000 nT to 65,000 nT1.

The Earths magnetic field or geomagnetic field, can be simulated with a spherical harmonics
model. It is mainly a magnetic dipole which is tilted relative to Earths rotational axis. It is
expressed by a gradient of the scalar potential given in Equation (5.7) where V is a series of
spherical harmonics which can be found in Equation (5.8)

B = −∆V (5.7)

1https://www.ncei.noaa.gov/products/geomagnetism-frequently-asked-questions, Last accessed
26/12/24

https://www.ncei.noaa.gov/products/geomagnetism-frequently-asked-questions

CHAPTER 5. SPACE ENVIRONMENT 35

V (R, τ , δ) = Re,m

k∑
n=1

n∑
m=0

[gm
n cos(mτ) + hmn sin(mτ)]Pm

n (sin δ) (5.8)

where

cos(mτ) = cos [(m − 1)τ] cos τ − sin τ sin [(m − 1)τ] (5.9)

sin(mτ) = sin [(m − 1)τ] cos τ + cos τ sin [(m − 1)τ] (5.10)

Re,m is the equatorial radius of Earth, gm
n and hmn are Gaussian coefficients and R, τ , δ are

the radius, longitude and latitude. The Gauss coefficients are determined empirically and are
available in the International Geomagnetic Reference Field (IGRF) model, which is updated
periodically.

It is assumed that the Legendre coefficients are Schmidt normalised before a set of coef-
ficients are applied. This means they are scaled in a way that ensures orthonormality under
integration over a sphere. ∫ π

0
[Pm

n (sin δ)]2 sin δ dδ =
2

2n + 1
(5.11)

The Gauss functions P ′m
n are related to the Schmidt function with

Pm
n = Sn,mP

m,n
n (5.12)

where

Sn,m =

√
(2n −m)(n −m)!

(n +m)(2n − 1)!
(5.13)

Evaluating using recursive relations gives:

S0,0 = 1, Sn,0 = Sn−1,0 ∀n ≥ 1, Sn,m = Sn,m−1

√
(n −m + 1)(δ1m + 1)

n +m
∀m ≥ 1

(5.14)
and P ′m

n can be found to be

P ′
0,0 = 1, P ′

n,n = sin δ∗P ′
n−1,n−1, P ′

n,m = cos δ∗P ′
n−1,m − Kn,mP

′
n−2,m (5.15)

where

Kn,m =
(n − 1)2 −m2

(2n − 1)(2n − 3)
∀n > 1, Kn,m = 0 for n = 1 (5.16)

Now the derivatives can be found as Equation (5.17) to find the radial, latitude, and
longitude directions magnetic field components.

−∂V
∂R

=
nmax∑
n=1

(
Re

R

)n+2

(n + 1)
n∑

m=0

[gm
n cos(mτ) + hmn sin(mτ)]P ′

n,m(cos δ) (5.17)

CHAPTER 5. SPACE ENVIRONMENT 36

− 1

R

∂V

∂δ∗
=

nmax∑
n=1

(
Re

R

)n+2 n∑
m=0

[gm
n cos(mτ) + hmn sin(mτ)]

∂P ′
n,m

∂δ∗
(5.18)

− 1

R sin δ∗
∂V

∂τ
= −

nmax∑
n=1

(
Re

R

)n+2 n∑
m=0

m [gm
n sin(mτ)− hmn cos(mτ)]P ′

n,m(cos δ) (5.19)

to find

BV =
(
Bn Be Bd

)T
=

 − 1
R

∂V
∂δ∗

− 1
R sin δ∗

∂V
∂τ

−∂V
∂R

T

(5.20)

The magnetic field in the veritical frame can then be transformed to the body frame using
Equation (5.21) and a magnetic moment can be found as shown in Equation (5.24). MRM is
the residual magnetic moment in Am2 which can be found using Equation (5.22).

BB = CB,VBV (5.21)

MRM = Rm
e

√(
g0
1

)2
+
(
g1
1

)2
+
(
h11
)2

(5.22)

where

CB,V = CB,ICI,V (5.23)

and

MM,B = MRM × BB (5.24)

5.3 Aerodynamics Drag

As the reference mission will be in LEO a considerable amount of disturbance force will come
from atmospheric drag. The atmospheric drag force is influenced by a number of factors
such as time, altitude, solar activity. The force for this simulation is found in the following
method. First the density is determined at a specific altitude. The density can be found
mathematically, however measurement tables can also be used and are easily accessible. For
this simulation the NRLMSISE-00 (0N, 0E) reference value table is used which is altitude and
not time dependent. As this is a point-wise table, an interpolation method also needs to be
considered to accurately determine the densities between each measurement. Depending on
the time steps, these jumps in values can be larger or smaller depending on the point in the
atmosphere. Plotting the density for different altitudes show that the density is exponential
and decays the higher the altitude. Therefore taking a linear interpolation method could cause
large jumps in values which is not ideal.

The disturbance force can then be found using this density and Equation (5.25).

FA,R = −1

2
∗ Cd ∗ ρ ∗ |VR |VR ∗ Sref (5.25)

Cd is assumed to be 2 for our reference mission (de Vries, 2010). The force is typically in the
aerodynamic frame and therefore needs to be transformed into the inertial frame for it to be
considered in the simulator. This is done through Equation 5.26.

CHAPTER 5. SPACE ENVIRONMENT 37

FA,I = CI,RFA,R (5.26)

In addition to the force, a moment is also generated as found in Equation (5.27) where
the moment arm is given as Equation (5.28) and CB,R is found using the transformation in
Equation (5.29).

MA,B = ∆rB × (CB,RFA,R) (5.27)

∆rB = rcp − rcm (5.28)

CB,R = CB,ICI,R (5.29)

5.4 Solar Radiation Pressure (SRP)

Solar radiation pressure applies a force on the satellite caused by the photon absorbing and
reflecting the exposed surface of the satellite. The magnitude is small and normally only affects
the orientation minimally, but it will be considered as the satellite will experience sunlight and
eclipse as it orbits around the Earth. Solar radiation pressure can be expressed as a function
of solar flux (Φ) and the speed of light (c) as given in Equation (5.30). The speed of light
is taken as 2.99772458 x 1010 cm/s (Vallado and McClain, 2013). Solar flux is 1367 W/m2

at 1 AU radius from the Sun. This value is used in the simulation of this thesis as the orbit
is around Earth. If a more accurate value is required, the inverse square law can be used as
shown in Equation (5.31) where RH is |rH | and rH = r − rSun. PS ,0 = 4.56 · 10−6N/m2 and
R1au = 1.49597870691 · 1011m.

PS =
Φ

c
(5.30)

PS = PS,0
R2
H

R2
1au

(5.31)

The solar radiation pressure will depend on many factors. This includes exposed surface
area, distance from the sun, orientation to the sun and whether the satellite is in an eclipse or
not.

Eclipse

The status of the illumination depending on the eclipse can be represented by the illumination
ν. When the satellite is in direct sun light, the satellite is not in eclipse and the illumination
is complete and is equal to 1. For partial eclipse, the illumination is between 0 and 1 and
is called the penumbra. The full eclipse has an illumination value of 0. The conical shadow
model, as shown in Figure 5.1(Mooij, 2022b), can be used to determine the eclipse status.
The model neglects the atmosphere or oblateness of the bodies. Re is the radius of the Sun,
Re is the radius of the Earth, ssun = rs − re and s = r − re where, r is the distance to the
satellite. The fundamental plane is perpendicular to the shadow axis. This will intersect the
shadow axis at

s0 = −sTsSun
|sSun|

(5.32)

CHAPTER 5. SPACE ENVIRONMENT 38

Figure 5.1: Conical shadow model

The distance of the satellite to the shadow axis is given as

L =
√
s2 − s20 (5.33)

The shadow cone angles are given as

sin f1 =
Rs + Re

sSun
and sin f2 =

Rs − Re

sSun
(5.34)

For Earth, the half cone angle of the umbra (f1) is 0.264 deg whereas the half angle for the
penumbra (f2) is 0.269 deg. The distances for c1 and c2, which, are the distances from the
fundamental plane to the vertices V1 and V2 of the shadow cones, are then given by the
following

c1 = s0 +
Re

sin f1
and c2 = s0 −

Re

sin f2
(5.35)

and the radii of the shadow cones in the fundamental plane is given by

R1 = c1 tan f1 and R2 = c2 tan f2 (5.36)

The eclipse status is determined by the following conditions. No eclipse indicates when the Sun
is fully visible. A complete eclipse, or Umbra, is where the satellite lies entirely in Earth’s deep
shadow and no sunlight reaches. The annular eclipse is where the Earth blocks the central disc
of the sun, but a ring remains. Finally penumbra is where only a portion of the sun is blocked
by the Earth.

1. No Eclipse (ν = 1):

s0 ≤ −Re sin f1 ∧ L > R1 (5.37)

2. Complete Eclipse (Umbra, ν = 0):

R2 < 0 ∨ L < |R2| (5.38)

CHAPTER 5. SPACE ENVIRONMENT 39

Figure 5.2: Occultation of the Sun by a spherical body

3. Annular Eclipse:
c2 > 0 ∨ R2 > 0 ∨ L < R2 (5.39)

4. Partial Eclipse (Penumbra, 0 < ν < 1): All other cases.
The degree of the suns’ occultation by the Earth can be found by considering the overlap of
the apparent circular disks as seen from the observer’s point of view. The moon will be ignored
for simplicity. Figure 5.2 shows the occultation of the sun by a spherical body.
where

a = arcsin

(
Rs

|rSun − r|

)
, b = arcsin

(
Re

s

)
, and c = arccos

(
−sT(rSun − r)

s|rSun − r|

)
(5.40)

Given that |a− b| < c < a+ b the area of the occulted segment of the apparent solar disk is
given by

A = ACFC ′ + ACDC ′ (5.41)

The occulted area can be given by

A = a2 arccos
(x
a

)
+ b2 arccos

(
c − x

b

)
− cy (5.42)

where the auxiliary parameters are given by

x =
c2 + a2 − b2

2c
and y =

√
a2 − x2 (5.43)

Finally the remaining fraction of the sunlight can be given by

ν = 1− A

πa2
(5.44)

The forces resulting from the solar radiation pressure, with consideration to the eclipse
conditions, can then be found by the following method. Assuming the satellite is a sphere, the
force can be found in Equation 5.45, where PS is the energy flux of the solar radiation, Sref is
the effective cross-sectional area of the satellite and Cr is the reflectivity of the satellite. r̂H
is the unit vector from the satellite to the Sun. This equation assumption can be applied as

CHAPTER 5. SPACE ENVIRONMENT 40

the satellite body being simulated is small. For larger bodies, a more detailed analysis can be
done considering each surface of the body and its material coefficient.

FS ,I = −Cr
PSSref

c
r̂H (5.45)

The corresponding moment is obtained by taking the cross-product of the force with the
vector from the centre of mass to the centre of pressure, the point at which the resultant
radiation force is assumed to act. For a uniformly illuminated sphere, this point coincides with
the geometric centre, so ∆rB is typically set to zero unless slight offsets are introduced to
model manufacturing tolerances:

MS ,B = ∆rB × (CB,IFS ,I) (5.46)

5.5 Acceptance tests

The environment models used in this thesis were taken from the GRADS library, where they
have undergone prior verification and validation. Nevertheless, to ensure consistency and
correctness within the specific simulation framework developed here, a series of acceptance
tests were carried out. These tests focus on key model outputs and behaviours and are
intended to confirm that the models respond realistically under expected operating conditions.
A summary of the acceptance tests and their methods is presented in Table 5.1.

Five environment blocks: gravity, magnetic field, atmospheric drag, solar-radiation pressure,
and the eclipse model, were verified. For each block, two checks were applied, an analytical
spot calculation and a short numerical run to confirm trend behaviour.

• Gravity. The 1/r2 model reproduces g = µ/r2 at r = 7000 km; the spherical-harmonics
model yields the expected ≈ 3% increase in gravity magnitude from equator to pole,
confirming the J2 term.

• Magnetic field. Output strength remains within the IGRF 25–65 µT envelope, and a
0◦−360◦ longitude sweep produces the correct smooth sinusoid.

• Atmospheric drag. Model force at 300 km matches a hand calculation to within 3 %;
doubling velocity increases drag by a factor of four, validating the F ∝ V 2 relation.

• Solar radiation pressure. The force at 1 AU agrees with the flux-over-c estimate; the
SRP term drops to zero when the eclipse flag is raised.

• Eclipse logic. A satellite placed on the Earth–Sun line behind Earth registers full eclipse,
while a scripted penumbral transit yields a smooth illumination ramp.

These tests confirm that the GRADS environment blocks are correctly integrated and be-
have consistently with the theory presented earlier in this chapter.

CHAPTER 5. SPACE ENVIRONMENT 41

Table 5.1: Environment Model Acceptance Tests

Model Acceptance Test Method Notes

Gravity (Central
Field)

Verify gravity acceleration at 7000 km
matches theoretical g = µ/r2

Hand Calculation Compare to
≈ 7.98m/s2

Gravity (Spherical
Harmonics)

Compare gravity magnitude at equator
and pole (expect small difference)

Limited Simu-
lation + Visual
Check

Consistency check
for oblateness ef-
fect

Magnetic Field Confirm magnetic field strength falls
within 25,000 nT – 65,000 nT range

Hand Calculation Compare output
to IGRF expected
range

Magnetic Field Verify smooth field rotation as satellite
longitude varies 0° to 360°

Limited Simula-
tion + Visual Plot

Smooth sinusoidal
variation expected

Atmospheric Drag Calculate drag force at 300 km altitude
using table density

Hand Calculation Use simple drag
force formula for
estimate

Atmospheric Drag Confirm drag force scales with velocity
squared

Limited Simula-
tion

Double veloc-
ity, check force
quadruples

Solar Radiation Pres-
sure (SRP)

Calculate SRP force at 1 AU Hand Calculation Compare to PS =
Φ/c estimate

Solar Radiation Pres-
sure (SRP)

Verify SRP force drops to zero during
eclipse

Limited Simula-
tion

Illumination factor
ν goes to zero

Eclipse Model Confirm full eclipse detection when satel-
lite is behind Earth

Hand Calculation Satellite along
Earth-Sun axis
should trigger
eclipse

Eclipse Model Check smooth illumination factor transi-
tion through penumbra

Limited Simula-
tion + Visual Plot

Smooth decrease
and increase in il-
lumination

CHAPTER 6

Navigation
The navigation subsystem provides real-time attitude information by combining measurements
from multiple sensors and an Extended Kalman Filter (EKF). The objective of this chapter
is to develop, implement and validate the sensor models and the EKF used in the CubeSat
simulator. First, the sensors are introduced, sun sensors, magnetometer, gyroscope and IMU,
detailing their measurement principle, placement in the body frame and the error sources
injected (bias, noise and misalignment). Next, the coordinate transformations are derived to
express all measurements in the common body frame. Then, the design of the quaternion-
based EKF is presented, including the state and measurement models, noise covariance tuning
and consistency checks. Finally, the numerical results and acceptance tests, which demonstrate
the filter’s accuracy and robustness against the reference mission requirements, are shown.

6.1 Sensors

Now that the environment has been simulated and forces or moments have been calculated
from each of the different environmental perturbations, the satellite must now ”feel” these
forces. For that, the sensors must also be simulated.

6.1.1 Sun sensor

There are three types of Sun sensors used in spacecraft attitude determination. These are
analogue Sun sensors, Sun presence sensors and digital Sun sensors. The analogue Sun sensors,
also referred to as cosine detectors, operate by outputting a current proportional to the solar
flux incident on a group of photodiodes. The current varies depending on the angle of incidence.
This is shown in Equation 6.1 where I (θ0) is the maximum current when the sun is directly
incident.

I (θ) = I (θ0) cos θ (6.1)

The analogue sensors are sensitive to small transmission losses due to Fresnel reflection as
well as limited effective photocell area due to simplicity. Fresnel reflection refers to the partial
reflection of light caused by an interface between two surfaces with different refractive indices.
They typically have a conical field of view, which limits the field of view. Analogue sensors
provide continuous data. A simple schematic can be seen in Figure 6.1 where n is the normal
vector, P is the incident sunlight, and θ is the angle of incidence.

Figure 6.1: Analogue sun sensor

43

CHAPTER 6. NAVIGATION 44

Sun presence sensors provide binary outputs to indicate whether the sun is within their
field of view. They are mainly used to protect other instruments, navigation, and to activate
hardware like solar panels when the Sun is detected. Sun presence sensors operate as a step
function.

Digital Sun sensors are the most advanced type of Sun sensor as they output a discrete
encoded function of the Sun’s angle. They have a small field of view but provide high accuracy.

For this study, a Fine Sun sensor (FSS) was chosen. A fine Sun sensor is a type of analogue
sun sensor and works as follows. The light passes through an aperture, triggering photosensitive
cells, which are then used to determine the Sun vector. The Sun sensor model utilises the
attitude quaternion q, the Sun’s position rsun in the inertial frame, and the position of the
satellite r in the same frame. The output consists of the intensity currents from the four
quadrants of the sensor, as well as a logic bit indicating whether the Sun is within the field of
view (FOV).

The model begins by calculating the Sun vector in the instrument frame.

esun−instru = Cinstr,BCBI

(
rsun − r

|rsun| |r|

)
(6.2)

To determine which areas of the quadrants are illuminated, the angles between the Sun
vector’s x-component and the y- and z-axes are calculated as:

tanαy = −esun,inst(3)

esun,inst(1)
(6.3)

tanαz = −esun,inst(2)

esun,inst(1)
(6.4)

These angles are then corrected for the Sun sensor’s accuracy and divided by the tangent
of the FOV to account for the physical constraints of the sensor. The centre of the illuminated
section is mapped to the instrument frame using:(

Nyss
Nzss

)
= 0.5

(
tanαy

tan(FOV)
tanαz

tan(FOV)

)
(6.5)

The current is then proportional to the illuminated area, and the sensor model outputs the
ratio of the measured intensity to the maximum intensity. It is assumed that the thickness of
the sensor material does not affect the illuminated area and is therefore ignored. The intensity
ratios are given by

Q1 =
I1

Imax
= (0.5− Nyss)(0.5− Nzss)

Q2 =
I2

Imax
= (0.5 + Nyss)(0.5− Nzss)

Q3 =
I3

Imax
= (0.5− Nyss)(0.5 + Nzss)

Q4 =
I4

Imax
= (0.5 + Nyss)(0.5 + Nzss)

(6.6)

Bias and white noise are added to these values to produce the final intensity measurements.
A slit sensor typically consists of two sensors: one aligned parallel to the satellite’s spin axis

and the other offset by an angle θo . The FOVs of these sensors intersect at the spin equator.
The sensor sends an event pulse whenever its FOV covers the Sun. The Sun angle can then

CHAPTER 6. NAVIGATION 45

be determined as a function of the satellite’s angular velocity ω and the time step ∆t, or by
using Napier’s rule for spherical triangles, as shown in Equation (6.7):

tanβ =
tan θo

sin(ω∆t)
(6.7)

Napier’s rule is used to solve right-angled spherical triangles.
The equation can be corrected for three possible physical misalignments of the instrument:
1. Separation Misalignment: This occurs when the two sensors’ FOVs are not aligned.

It can be corrected by applying θ0 = θ0 + ∆θ, resulting in the modified relation shown in
Equation (6.8):

tanβ =
tan(θ0 +∆θ)

sin(ω∆t)
(6.8)

2. Elevation Misalignment: This arises when the first sensor is not aligned with the
satellite’s spin axis, represented by an error ϵ. It is corrected by applying θo = θo + ϵ, resulting
in the following relation:

tanβ =
tan(θ0 + ϵ)

sin(ϕ+ ω∆t)
(6.9)

3. Azimuth Misalignment: This refers to when the two FOVs intersect the Sun’s equator,
separated by an angle δ in the spin plane. Here, ω∆t = ω∆t0 − δ. The corrected equation is:

tanβ =
tan(θ0)

sin(ω∆t − δ)
(6.10)

When all three misalignments are considered, the final expression for the corrected Sun
angle is:

tanβ2∆tϵδ =

(
tan(θo +∆θ + ϵ)− tan ϵ cos(ω∆t − δ)

sin(σ − δ)

)2

+ tan2 ϵ (6.11)

Mission Implementation

Six fine Sun sensors were chosen, one mounted on each face of the satellite, located at the
centre of each surface. Each sensor is assumed to have a 60◦ FOV. The physical locations
of the sensors are shown in Section 3.1, and their orientations are given in Table 6.1. The
fine sun sensors are oriented relative to the CubeSat body frame using Euler angles (ϕ, θ, ψ)
following the 3-2-1 rotation sequence.

Table 6.1: Fine Sun Sensor (FSS) orientations in body frame (Euler angles).

Sensor ϕ (deg) θ (deg) ψ (deg)

SS1 (-Y) 90 0 0

SS2 (+Y) -90 0 0

SS3 (-X) 0 -90 0

SS4 (+X) 0 90 0

SS5 (-Z) 180 0 0

SS6 (+Z) 0 0 0

CHAPTER 6. NAVIGATION 46

0 200 400 600 800 1000
Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Fo

rc
e/

D
is

tu
rb

an
ce

 C
om

po
ne

nt
s

Ny1

Nz1

Ny2

Nz2

Ny3

Nz3

Ny4

Nz4

Ny5

Nz5

Ny6

Nz6

(a) Sun Sensor Results without Noise

0 200 400 600 800 1000
Time [s]

-0.4

-0.2

0

0.2

0.4

0.6

Fo
rc

e/
D

is
tu

rb
an

ce
 C

om
po

ne
nt

s

Ny1

Nz1

Ny2

Nz2

Ny3

Nz3

Ny4

Nz4

Ny5

Nz5

Ny6

Nz6

(b) Sun Sensor Results with Noise

Figure 6.2: Comparison of sun sensor outputs with and without noise.

The individual sun sensor model used took, the radius of the satellite, the sun vector and
a transformation matrix (Cbi) for the sun vector to be transformed into the body frame. The
outputs were the lit status, which indicated whether certain conditions were met for the sensor
to send data. These conditions were if the vector was within the satellite’s field of view and
whether the satellite was in eclipse. The model has to be repeated six times for the six sensors,
and a function was created to extract the outputs when a sensor would give a positive lit status
to be then fed into the Kalman filter.

Some of the models in the GRADS library were not completely verified, as the library also
had adjustments from other authors. This was the case for this model, as it was found that
some vectors were being accepted as within the FOV when the Sun vector came from behind
the sensors. Therefore, an extra clause was added to only allow the values when the third
component of the normalised Sun vector (Sb3) was positive. When implementing the model
onto Eurosim, it was found that this model was incompatible. The initial tests were performed
with the GRADS model and were later adjusted to allow for real-time implementation. The
code for the fine sun section can be found in Listing A.1. These limitations will be discussed
in chapter 9.

A test was performed where the outputs of the Sun sensors were extracted to determine
whether the sensors correctly activated based on the sun vector’s location. The simulation
was run for 1000 seconds with an initial angular velocity of [0.01, 0.01, 0.001] rad/s. This is a
relatively high starting velocity, and since no controller was active in the model, large rotations
persisted throughout the simulation. This approach allowed the sensor setup to be tested
within a shorter simulation time, although such high angular velocities are not expected under
real mission conditions. The simulation initially used idealised sensor models.

Figure 6.2a shows the extracted Ny and Nz components for the six Sun sensors. Only
one sensor was active at a time, and transitions between active sensors were rare during the
simulation. The sun vector path was also animated to verify that it crossed only one sensor
field of view at a time. Although this sensor configuration is common and has heritage in
previous missions, limitations are present: in periods where the sun is not visible to any sensor,
additional sensing or data fusion techniques would be required.

In practice, Sun sensors are not ideal, and various errors must be introduced. The model
parameters used to introduce these errors are summarised in Table 6.2. These values are based
on the mission heritage reviewed in Chapter 2.

Figure 6.2 compares the ideal sun–vector components with the same signals after injecting
bias, noise and quantisation error based on the Bradford Mini Fine Sun Sensor1. The added
0.01◦ bias, 1σ noise of 0.0333◦ and 0.0557◦ quantisation produce small perturbations in both

1https://satsearch.co/products/bradford-mini-fine-sun-sensor accessed 22/03/2025

https://satsearch.co/products/bradford-mini-fine-sun-sensor

CHAPTER 6. NAVIGATION 47

Table 6.2: Fine Sun Sensor model parameters used for simulation.

Parameter Value Unit

Field of View (X, Y) 30 deg

Bias (X, Y) 0.01 deg

Noise (1σ) (X, Y) 0.0333 deg

Quantisation Step (X, Y) 0.0557 deg

amplitude and waveform. In particular, the quantisation manifests as a stepped profile, while
the random noise slightly broadens the signal around its true value. Despite these effects, the
overall temporal trend is preserved, and the error magnitudes match the sensor’s datasheet
specifications, confirming that our noise-injection model has been implemented correctly.

6.1.2 Magnetometer

Magnetometers are sensors that measure both the direction and magnitude of the magnetic
field. They are lightweight, contain no moving parts, and provide a simple and reliable solution
for attitude determination in Low Earth Orbit (LEO). These sensors generate three voltages
proportional to the magnetic field intensity along three orthogonal axes corresponding to the
body reference frame.

Magnetometers can be used to determine the attitude of a satellite by comparing the
measured magnetic field with a model of the Earth’s magnetic field. While they are not the
most accurate sensors for attitude determination due to uncertainties in the magnetic field
model and variations in Earth’s magnetic field, they are often sufficient for many satellite
applications where absolute pointing accuracy is not essential. The magnetic field strength
decreases with 1

r3
of the Earth’s radius, making magnetometers unsuitable for altitudes above

1000 km.
For attitude determination in space, particularly in LEO, the most commonly used magne-

tometers include: Fluxgate Magnetometers, known for their reliability and accuracy. Anisotropic
Magneto-Resistive (AMR) Magnetometers, are valued for their compactness and low power
consumption, making them ideal for small satellites. Giant Magneto-Resistive (GMR) Magne-
tometers, offer higher sensitivity than AMR sensors but are less common. Hall Effect Magne-
tometers are occasionally used for coarse measurements due to their simplicity and robustness.
In this study, the model used is based on a triaxial AMR magnetometer, which provides
voltage measurements along three orthogonal axes. The voltages are then corrected for biases,
misalignments, and scale factors as part of the software model.

The magnetometer model provides a voltage, which can be corrected for biases, misalign-
ments, and scale factors. The functional form is given as:

Vm = V (B) + (bB + (I+ SB +MB)V (B)) + vB (6.12)

here B is the local magnetic intensity, bB is the magnetometer bias, SB is the magnetometer
scale factor, MB represents the magnetometer misalignment, and vB is the white noise vector.
The measurement voltage is then expressed as:

Vm

Vmax
=

bB
Vmax

+ (I+ SB) eB +
vB

Vmax
(6.13)

Here, Vmax represents the maximum voltage output, and eB is the unit vector in the
direction of the magnetic field lines.

CHAPTER 6. NAVIGATION 48

Mission Implementation

The magnetometer was not available as a pre-built component in GRADS, so one was developed
using the theory outlined earlier. Table Table 6.3 summarises the error parameters used for
our simulated magnetometer, based on the NewSpace Systems NMRM-Bn25o485 flux-gate
device2. In particular:

• Drift of 1× 10−9 T/◦C and scale-factor error of 150 ppm match the datasheet.

• Noise density of 1 × 10−12 T/
√
Hz and a quantisation step of 0.0488µT agree with

the device’s specifications.

• The measurement range is ±100µT.

• The nominal misalignment angle is ≤ 0.0005◦, but this proved too small to produce
visible component errors in our plots. Therefore it was increased it to 0.005◦ to illustrate
the impact of axis orthogonality error on the measured vector.

Figure 6.4 contrasts the magnetometer output with noise disabled (but with scale-factor
error and misalignment applied) against the fully noisy case. Without noise, the measured field
closely follows the true model apart from the small offset introduced by scale and alignment
errors. When noise is enabled, high-frequency jitter appears around the baseline, broadening
the distribution of residuals and increasing the filter’s steady-state covariance. This highlights
the importance of realistic noise modelling for tuning the EKF’s measurement covariance and
verifying its robustness against spurious fluctuations.

Unlike the Sun sensors, of which there are multiple, only a single magnetometer is used
in the system. Figure 6.4 compares the magnetometer’s output with and without simulated
noise, based on the configuration settings listed in Table 6.3. The magnetometer receives the
magnetic field vector in the CubeSat’s body frame and outputs the same vector, but with
added simulated error components such as noise and potential bias.

As seen in Figure 6.4, the magnitude of the Earth’s magnetic field at low Earth orbit is
relatively small, typically between 20 and 60 µT. This means that any noise introduced by the
sensor or environment can have a noticeable impact on the signal, making accurate modelling
of these disturbances essential for realistic simulation results. To minimise interference from
onboard electronics and structural components, the magnetometer is positioned at the centre
of the CubeSat.

Table 6.3: Magnetometer model parameters used for simulation.

Parameter Value Unit
Drift 1× 10−9 T/°C
Scale Factor Error 150 ppm -
Misalignment Angle 0.005 deg

Noise (at 100 Hz) 1× 10−12 T/
√
Hz

Quantisation Step 0.0488 µT
Measurement Range ± 100 µT

2https://satsearch.co/products/newspace-systems-nmrm-bn25o485-magnetometer accessed
22/03/2025

https://satsearch.co/products/newspace-systems-nmrm-bn25o485-magnetometer

CHAPTER 6. NAVIGATION 49

Figure 6.3: Magnetometer

0 200 400 600 800 1000
Time [s]

-3

-2

-1

0

1

2

3

M
ag

ne
tic

 F
ie

ld
 C

om
po

ne
nt

 [T
] #10-5

Bx

By

Bz

(a) Magnetometer Results without Noise

0 200 400 600 800 1000
Time [s]

-6

-4

-2

0

2

4

6
M

ag
ne

tic
 F

ie
ld

 C
om

po
ne

nt
 [T

] #10-5

Bx

By

Bz

(b) Magnetometer Results with Noise

Figure 6.4: Comparison of Magnetometer outputs without and with noise.

6.1.3 Inertial Measurement Unit (IMU)

The Inertial Measurement Unit (IMU) typically consists of accelerometers and gyroscopes,
which measure linear acceleration and angular velocity, respectively, in three orthogonal axes.

Accelerometer

The accelerometer measures the linear acceleration of the satellite relative to an inertial frame.
This measurement combines the real acceleration of the satellite with the acceleration due to
gravity, both expressed in the body frame. The measured acceleration am is modelled as:

am = a+ ba + (I+ Sa)a (6.14)

where a is the true acceleration in the body frame, ba is the accelerometer bias, and Sa

represents the scale factor and misalignment matrix. The bias ba introduces a time-dependent
offset in the measurements and is typically modelled as a random walk process, such that:

dba
dt

= wa (6.15)

where wa is normally distributed white noise. The scale factor and misalignment matrix
Sa accounts for imperfections in sensor manufacturing and installation, and can be expressed,
with the addition of a random walk, in matrix form as:

CHAPTER 6. NAVIGATION 50

Sa =

 sx mxy mxz

myx sy myz

mzx mzy sz

 x random walks (6.16)

where sx , sy , sz are the scale factors along each axis, and mi j terms represent the cross-axis
misalignments. These parameters cause deviations in the measured acceleration, which must
be calibrated to improve accuracy.

6.1.4 Gyroscope

The gyroscope measures the angular velocity ω of the satellite relative to an inertial frame. It
outputs a voltage proportional to the angular velocity, which is used to calculate changes in
orientation. The measured angular velocity ωm can be expressed as:

ωm = ω + bω + (I+ Sω)ω, (6.17)

where ω is the true angular velocity, bω is the gyroscope bias (commonly referred to as
gyroscopic drift), and Sω is the scale factor and misalignment matrix, similar in form to the
accelerometer’s scale factor matrix. The bias bω is also modeled as a random walk:

dbω
dt

= wω (6.18)

where wω represents white noise. The gyroscope can operate in two modes: rate gyro mode,
where it measures angular velocity, and rate-integrating mode, where angular displacement is
measured by integrating the angular velocity over time. For rate gyros, the angular rate ωM

i

can be modelled as:

ωM
i = srθR (6.19)

where sr is the scale factor and θR is the angular velocity. For rate-integrating gyros, the
angular displacement is obtained as:

ωM
i =

siθi
∆t

(6.20)

The misalignment and scale factor matrix for the gyroscope, Sω, is similarly expressed as:

Sω =

 sp mpq mpr

mqp sq mqr

mrp mrq sr

 x random walks (6.21)

This matrix accounts for imperfections in sensor alignment and scaling, which can significantly
impact the measured angular velocity.

6.1.5 Reference mission

The satellite utilises a single three-axis gyroscope to provide angular velocity measurements.
The key sources of measurement errors include bias drift, scale factor errors, random noise,
and quantisation effects. are detailed in Table 6.4. To validate the error modelling, Figure 6.5
compares the gyroscope outputs with ideal conditions (no errors) against outputs with the
full error model applied. The comparison demonstrates the expected degradation in signal
quality, confirming that the error models were implemented correctly. Table 6.4 details the

CHAPTER 6. NAVIGATION 51

0 200 400 600 800 1000
Time [s]

0

5

10

15
G

yr
os

co
pe

 O
ut

pu
t [

ra
d/

s]
#10-3

!x

!y

!z

(a) Gyro Results without Noise

0 200 400 600 800 1000
Time [s]

-5

0

5

10

15

20

G
yr

os
co

pe
 O

ut
pu

t [
ra

d/
s]

#10-3

!x

!y

!z

(b) Gyro Results with Noise

Figure 6.5: Comparison of Gyro outputs without and with noise.

error parameters inspired by the NewSpace Systems NSGY-001 stellar gyro3. The bias drift is
1× 10−7, rad/s, the scale factor error is 500, ppm, the misalignment angle is 0.5◦, the angular
random walk is 1.7×10−5, rad/

√
s, and the quantisation step is 0.0146◦/s over a measurement

range of ±30◦/s.
To validate the error modelling, Figure 6.5 compares the ideal output (scale factor and

misalignment only) against the fully noisy output (including random walk and quantisation).
Without noise, the gyroscope follows the true angular rate apart from a small static offset due
to scale factor and alignment errors. When noise is enabled, high-frequency jitter appears,
matching the angular random walk specification, and the output exhibits a stair step profile
from quantisation. Over longer intervals, the bias drift produces a slow deviation from the true
rate. This confirms that each error source has been correctly implemented and supports the
tuning of the filter’s measurement covariance.

Table 6.4: Three-Axis Gyroscope model parameters used for simulation.

Parameter Value Unit

Drift 1× 10−7 rad/s

Scale Factor Error 500 ppm -

Misalignment Angle 0.5 deg

Noise (ARW) 1.7× 10−5 rad/
√
s

Quantisation Step 0.0146 deg/s

Measurement Range ± 30 deg/s

6.2 Modelling errors

This section highlights important errors present in an IMU and the output signal. The physical
representation of the signal error can be seen in Figure 6.6. (Balaban et al., 2010) (Mooij,
2022b)

• Bias is the constant offset by a certain value. This can occur due to insufficient calibra-
tion, or a shift in the physical placement of a sensor or internal component. This can
be symbolised by Yf = X + β + noise, where β is the bias factor.

3https://satsearch.co/products/newspace-systems-nsgy-001-stellar-gyro accessed 22/03/2025

https://satsearch.co/products/newspace-systems-nsgy-001-stellar-gyro

CHAPTER 6. NAVIGATION 52

• Drifting is a time-varying offset. Much like the bias factor, this is applied to the output
signal, however, the difference is that it varies with time. The error can be symbolised
by Yf = X + δ(t) + noise, where δ(t) is the time-varying factor.

• Scaling is also known as gain failure, where a constant factor is applied to the magnitude
of the signal received. This can be represented by Yf = X+αx+noise where α(t) is the
scaling factor and can be time-varying. It is usually caused by manufacturing tolerances
or ageing.

• Saturation is where the maximum or minimum value that the sensor can measure is
exceeded but displays itself as a constant max min value.

• Deadzone is where no measurements can be taken due to a form of static friction being
felt or the sensor locks, which results in a lock-in.

• Sign assymmetry occurs with the scale factor error, which is caused by a misalignment
of the push and pull amplifiers in the electronic sensor configuration.

• Hystersis is caused by past sensor readings interrupting the current readings, which is
caused by the system being in more than one internal state.

• Quantisation occurs when an analogue signal is trying to be interpreted by a finite
number of digits causing an error.

• Misalignments are caused by physical aspects, such as the mounting or placement of
the sensor not being aligned to sensitive axes.

• Noise is a random factor, which can be applied to the signal. It can also vary ran-
domly with time. This factor can be modelled under certain assumptions, however, the
generation of these assumptions is often the problem.

• Hard Faults are when the signal is limited to a certain level and can be symbolised as
C which can then be applied as Yf = C + noise. This error can also be subdivided
into two subcategories. First is the Loss of signal where the sensor no longer sends out
a signal or is blocked, so the output is read as 0, whereas ”Stuck sensor” refers to a
specific value C which is constantly outputted.

• Intermittents or Non-linearity is when a factor is applied to the nominal readings in
irregular intervals throughout its lifetime. This error is difficult to simulate and identify
due to its random nature.

6.3 Navigation Filters

Now that the satellite senses the environment, the data from the sensors must be converted
into the satellite’s attitude, position, velocity or whatever is needed. Each sensor outputs a
variable, which needs to be converted to useful information about the motion and orientation
of the satellite. In this simulation, the attitude is represented by the quaternions with the
angular velocity, providing the rate of change of attitude as well as the position and velocity
in the ECEF frame.

The sun sensor outputs a sun vector, which, when combined with an onboard sun position
model, helps determine the satellite’s orientation relative to the Sun. The gyroscope provides
the rate of change of orientation, allowing for updates to the attitude over time. The gyroscope

CHAPTER 6. NAVIGATION 53

Figure 6.6: Sensor errors Mooij (2022b)

can be used to estimate changes in angular velocity, and the magnetometer determines the
satellite’s orientation relative to the Earth’s magnetic field when used in conjunction with an
onboard magnetic field model.

6.3.1 Filter Selection

The attitude-estimation problem combines nonlinear quaternion dynamics, gyroscope bias evo-
lution and vector measurements (magnetometer plus sun sensor). Several Bayesian filters were
considered:

• Linear Kalman Filter (LKF) is optimal only for linear models. Application to quaternion
kinematics would require local linearisation at each step, incurring modelling error and
poor convergence in highly nonlinear regimes.

• Unscented Kalman Filter (UKF) uses deterministic sigma points to capture second-
order statistics without explicit Jacobians. Although more accurate than the EKF under
strong nonlinearity, it requires roughly two to three times more function evaluations per
step, straining the real-time budget on single-board computers.

• Extended Kalman Filter (EKF) applies a first-order Taylor expansion to exploit avail-
able Jacobians of the process and measurement models. It delivers acceptable accuracy
for quaternion attitude estimation with minimal computational overhead and fits com-
fortably within the real-time constraints.

On balance, the EKF offers the best compromise among estimation accuracy, computa-
tional complexity and implementation simplicity for a 100Hz real-time attitude estimator on
Raspberry Pi 5 / Orange Pi 5 Plus.

CHAPTER 6. NAVIGATION 54

6.3.2 Extended Kalman Filter (EKF)

The EKF is used to fuse nonlinear sensor measurements into a best estimate of the attitude
quaternion and gyroscope biases. At each discrete time step k , it executes:

First, the prediction uses the non-linear process model

xk+1 = f
(
xk ,uk

)
+wk , wk ∼ N

(
0,Q

)
.

Here x contains the quaternion and bias, u is the control input (gyro readings), and Q is the
process-noise covariance. The a-priori state estimate is

x̂k̄+1 = f
(
x̂k ,uk

)
.

To propagate uncertainty, the Jacobian of f with respect to x is computed,

Fk =
∂f

∂x

∣∣∣
x̂k ,uk

,

and the covariance is updated as

Pk̄+1 = Fk Pk F
T
k + Q.

Next, the update incorporates the non-linear measurement model

zk+1 = h
(
xk+1

)
+ vk+1, vk+1 ∼ N

(
0,R

)
,

where z contains magnetometer and sun–sensor outputs and R is the measurement-noise
covariance. The measurement Jacobian is

Hk+1 =
∂h

∂x

∣∣∣
x̂k̄+1

.

The Kalman gain follows as

Kk+1 = Pk̄+1H
T
k+1

(
Hk+1 Pk̄+1H

T
k+1 + R

)−1
.

The state correction is applied to the innovation zk+1 − h(x̂k̄+1),

x̂k+1 = x̂k̄+1 +Kk+1

(
zk+1 − h(x̂k̄+1)

)
,

and the covariance is finalised by

Pk+1 =
(
I−Kk+1Hk+1

)
Pk̄+1.

In words, the prediction step propagates both the quaternion and its uncertainty through
the known dynamics, while the update step corrects that prediction using the newest sensor
readings. The Jacobians Fk and Hk capture local linearisations, and the tuning of Q and R
balances trust between model and measurements.

6.4 EKF Implementation

To implement the Extended Kalman Filter (EKF), the process was divided into several stages
to address the various variables involved. The first step involved testing the quaternion prop-
agation from angular velocity (ω) to confirm the correctness of the implementation. It is also
important to test the propagation methods for the magnetic field lines and the sun vectors.

CHAPTER 6. NAVIGATION 55

0 200 400 600 800 1000
Time [s]

0

2

4

|q
| e

rr
or

#10-6

q propagation error

Figure 6.7: Quaternion Propagation error

This was followed by validating whether, under ideal conditions, the outputs from the sun
sensors (Ny and Nz) could be used to back-calculate the Sun vector. Subsequently, a sim-
plified EKF utilising data from a single sun sensor was developed and tested. An additional
step incorporated a magnetometer (Bb) into the filter. After this, a multi-sun-sensor EKF
configuration was evaluated. Finally, a fully integrated EKF system was developed, combining
data from the magnetometer, gyroscope, and six sun sensors positioned at different locations
on the CubeSat.

The initial conditions used for the simulation were:

• Propagators.State.w0 = [0.01; 0.01; 0.001];

• Propagators.State.q0 = [0.0; 0.0; 0.0; 1];

6.4.1 Propogation

This section starts with quarterion propagation based on the theory discussed previously. It
then continues to propagate the magnetic field lines and sun vector, which will later be used
in the EKF implementation. This section does not apply the filter yet but only tests the
conversion methods.

Quarterion propagation

This process takes the angular velocity from the simulator and determines the quaternion using:
q̇1

q̇2

q̇3

q̇4

 =
1

2


q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3


ω1

ω2

ω3

 . (6.22)

Figure 6.7 shows the magnitude of quaternion error over 1000 seconds with errors ranging
from 4 · 10−6 to 1 · 10−6, making the propagator a good fit for the Kalman filter.

Quaternion-Error Computation
To quantify the attitude difference between a reference quaternion qref and an estimated

quaternion qest, define the error quaternion by

qe = qest ⊗ q−1
ref , (6.23)

where ⊗ denotes quaternion multiplication and

q−1 =

[
−qv
q4

]
for q =

[
qv
q4

]
. (6.24)

CHAPTER 6. NAVIGATION 56

This formulation computes the relative rotation between the estimated and reference orien-
tations. By multiplying the estimated quaternion with the inverse of the reference, the resulting
error quaternion qe represents the rotation required to align the estimated orientation with the
true one. Since both quaternions are unit norm, the resulting error quaternion is also unit
norm, i.e., ∥qe∥ = 1, and it encodes only the difference in orientation.

The corresponding rotation-angle error δθ is

δθ = 2arccos
(
qe,4
)
, (6.25)

and the axis of rotation is
ê =

qe,v
sin
(
δθ/2

) . (6.26)

The angle error δθ provides a scalar measure of the misalignment between the two orientations,
capturing the minimum rotation angle needed to correct the estimated attitude back to the
reference frame.

Magnetic field vector propagation

The magnetometer measures the magnetic field, where the output of the sensor is a three-
variable vector in the body frame. The reference data is taken in the inertial frame, therefore,
the only conversion needed was that from body to inertial frame. This was done with Equa-
tion (4.11) and repeated again below. Sample data was taken from the magnetometer and
converted using predetermined quaternion values, which showed that the conversion method
converted the body frame back to an inertial frame correctly.

CI ,B =

q21 + q24 − q22 − q23 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) q22 + q24 − q21 − q23 2(q2q3 + q1q4)
2(q1q3 + q2q4) 2(q2q3 − q1q4) q23 + q24 − q21 − q22

 (6.27)

]

Sun Vector Propagation

Sun sensor measurements are taken in each sensor’s local frame. Each of the six sensors is
mounted in a different orientation. The Euler angles that define each sensor’s orientation with
respect to the body frame are listed in Table 6.1.

To compare the measured and reference sun vectors, three transformation strategies were
evaluated:

1. Convert the reference Sun vector into Ny ,Nz components in the sun sensor frame, and
compare directly with sensor outputs.

2. Convert the Ny ,Nz components from the sensor back into the inertial frame.

3. Convert both the Ny ,Nz components and the reference sun vector into the body frame.

To transform Ny ,Nz values into a 3D sun vector in the sun sensor frame, the following formula
is used:

RSun =

−Nz

Ny

1

 · 1√
N2
y + N2

z + 1
(6.28)

CHAPTER 6. NAVIGATION 57

0 200 400 600 800 1000
Time [s]

-0.5

0

0.5

1

1.5

2
S

en
so

r O
ut

pu
t (

N
y,

 N
z)

nmeas
y

nest
y

nmeas
z

nest
z

(a) Propagating sun vector in Ny ,Nz compo-
nents

0 200 400 600 800 1000
Time [s]

0

0.05

0.1

0.15

0.2

A
bs

ol
ut

e
E

rr
or

 (N
or

m
) jnmeas

y ! nest
y j

jnmeas
z ! nest

z j

(b) Error plot of sun vector components
Ny ,Nz

Figure 6.8: Sun vector components in the sensor frame

This vector is then rotated into the body frame using the rotation matrix defined by Equa-
tion (4.10) and the Euler angles in Table 6.1. Subsequently, the body-frame sun vector can
be rotated into the inertial frame using Equation (4.11).

An analysis was performed to determine which transformation method introduces the least
error. This decision is critical for sensor fusion, especially since Sun sensors have a limited
field of view. Periods without data (visible in the figures) occur when the sun is outside the
sensor’s view. This was verified by checking the lit status was zero as well as checking the
eclipse conditions when the values dropped. These blind spots highlight the need for data
fusion from multiple sensors.

Method 1
Figure 6.8 illustrates the results for Method 1, where the reference sun vector is converted into
Ny ,Nz components in the sensor frame. Section 6.4.1 shows the propagated values including
small discretisation effects and missing data during sensor blind periods. The body vector
was converted to the sun sensor frame using the following equation where ϕ, θ,ψ are the
transformation angles from the body frame of the satellite to the sun sensor frame :

R⊤(ϕ, θ,ψ) =

 cosψ cos θ cos θ sinψ − sin θ
sinϕ cosψ sin θ − cosϕ sinψ sinϕ sinψ sin θ + cosϕ cosψ sinϕ cos θ
cosϕ cosψ sin θ + sinϕ sinψ cosϕ sinψ sin θ − sinϕ cosψ cosϕ cos θ


(6.29)

The corresponding error plot in Section 6.4.1 shows that this method produces the largest
errors.

Method 3

Figure 6.9 presents the results for Method 3, where both the measurements and the refer-
ence sun vector are converted into the body frame. This method results in significantly lower
errors—approximately one order of magnitude lower than Method 1.

Method 2

Figure 6.10 shows the performance of Method 2, where sensor data are converted into
the inertial frame. This method performs better than Method 1 but slightly worse than
Method 3. Method 3 was found to be the most efficient likely due to reduced accumulation
of transformation errors. Although all methods involve transforming between frames, Method
3 brings both the measured and reference sun vectors into the body frame, avoiding repeated

CHAPTER 6. NAVIGATION 58

0 200 400 600 800 1000
Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

S
un

 V
ec

to
r (

B
od

y
Fr

am
e)

Xref
Xpred
Yref
Ypred
Zref
Zpred

(a) Propagating sun vector in the body frame

0 200 400 600 800 1000
Time [s]

0

0.005

0.01

0.015

0.02

A
bs

ol
ut

e
E

rr
or

 (N
or

m
) X

Y
Z

(b) Error plot of sun vector in the body frame

Figure 6.9: Sun vector in the body frame

back-and-forth transformations between sensor and inertial frames. This results in more stable
comparisons and lower overall error. As such, converting both the measurements and reference
vector to the body frame was chosen as the optimal method.

0 200 400 600 800 1000
Time [s]

0

0.2

0.4

0.6

0.8

1

S
un

 V
ec

to
r C

om
po

ne
nt

 (N
or

m
al

is
ed

)

Xref
Xpred
Yref
Ypred
Zref
Zpred

(a) Propagating sun vector in the inertial
frame

0 200 400 600 800 1000
Time [s]

0

0.005

0.01

0.015

0.02

0.025

0.03

S
un

 v
ec

to
r c

om
po

ne
nt

 e
rr

or

X Error
Y Error
Z Error

(b) Error plot of sun vector in the inertial
frame

Figure 6.10: Sun vector in the inertial frame

With the body-frame method selected, development of the Extended Kalman Filter (EKF)
can proceed using this approach for Sun vector propagation.

6.4.2 EKF Structure

The theoretical foundations of the Extended Kalman Filter (EKF) have been introduced pre-
viously. This section describes the practical construction of the EKF used in this work.

Tuning Parameters

The EKF tuning relies on three main covariance matrices: the process noise matrix Q, the
measurement noise matrix R, and the initial error covariance matrix P0.

The process noise matrix Q determines how closely the filter adheres to the internal model
dynamics. It is typically tuned by adjusting the diagonal values. Smaller values indicate
stronger confidence in the model, reducing reliance on potentially noisy sensor measurements.

CHAPTER 6. NAVIGATION 59

The measurement noise matrix R characterises the uncertainty associated with the sensor
inputs. Higher values indicate reduced trust in the sensor measurements, leading the filter to
favour the model prediction during updates.

The initial error covariance matrix P0 represents the filter’s initial confidence in the state
estimate. Smaller values suggest high initial confidence and imply that the error between the
initial predicted state and the true state is expected to be small.

The estimation methods for all were based on trial and error as each variable changed a
different behaviour in the predictions and the filters nature being quite simple allowed for this.

State Transition Matrix F

The state transition matrix F is computed based on the relationship between the input angular
velocity and the predicted quaternion state. Since the filter estimates only the vector part of
the quaternion, the dynamics can be linearised assuming small angular velocity and discrete
time steps.

Let the angular velocity be ω = [ωx ,ωy ,ωz]
⊤. The quaternion kinematics are approximated

as:

F = I3 +
1

2
Ω×∆t

where ∆t is the sampling interval, and Ω× is the skew-symmetric matrix of ω, defined as:

Ω× =

 0 ωz −ωy

−ωz 0 ωx

ωy −ωx 0


This formulation yields a linear approximation of the continuous-time quaternion dynamics

suitable for use in the prediction step of the EKF.

Measurement Matrix H

The measurement matrix H defines the relationship between the state and the expected sensor
measurements. In this implementation, the measurement model assumes that a known inertial
vector vinertial, such as the Sun vector or magnetic field direction, is observed in the body
frame. This observation is modelled through a rotation using the quaternion:

zpred = R(q) · vinertial
Here, q = [q1, q2, q3]

⊤ represents the vector part of the quaternion, while the scalar part
q4 is reconstructed to maintain unit norm as:

q4 =
√
1− q21 − q22 − q23

To obtain the Jacobian H, the rotation matrix is differentiated with respect to the quater-
nion vector components. The full quaternion is written as:

q =


q1
q2
q3
q4


The Jacobian matrix H ∈ R3×3 is then defined as:

CHAPTER 6. NAVIGATION 60

H =
[
∂R(q)·vinertial

∂q1

∂R(q)·vinertial
∂q2

∂R(q)·vinertial
∂q3

]
Each derivative includes both explicit dependence on q1, q2, and q3, and implicit depen-

dence through q4, due to the unit quaternion constraint:

∂q4
∂qi

=
−qi
q4

, i ∈ {1, 2, 3}

Thus, the partial derivatives of the rotated vector become:

∂R(q) · vinertial
∂qi

= 2

(
Mi · vinertial +

qi
q4

M4 · vinertial
)

where Mi are matrices resulting from differentiating the rotation operation with respect to
the quaternion components.

In this implementation, the structure of H is also made conditional on the availability of
certain sensor inputs. For example, the presence or absence of sun sensor data (e.g., indicated
by a ”lit” status flag) dynamically modifies the rows of H during runtime.

6.4.3 EKF with One magnetometer

The first sensor integrated into the Extended Kalman Filter (EKF) was the magnetometer. The
EKF receives measured magnetic field vectors from the sensor and compares them with the
expected magnetic field calculated from an internal inertial model. Using this comparison and
the appropriate coordinate transformation (e.g., the direction cosine matrix), the quaternion
representing the spacecraft’s attitude is updated.

The resulting covariance estimates from the filter are shown in Figure 6.12, while the
corresponding component-wise attitude errors are presented in Figure 6.11. The filter settings
used for this simulation are summarised in Section 6.4.3.

EKF Initial Parameters

Simulation Setup:

• Final time: Tfinal = 1000

• Initial state: x0 = [0 0 0 1]T

Covariance Matrices:

• Process noise (Q): diag(5× 10−8, 2× 10−8, 5× 10−6)

• Measurement noise (R): diag(0.01, 0.01, 0.1)

• Initial error covariance (P0): diag(7× 10−3, 7× 10−3, 7× 10−3)

6.4.4 EKF with One Sun Sensor

This experiment implements the Extended Kalman Filter (EKF) using data from a single sun
sensor. Compared to the magnetometer case, the integration was more challenging due to
using only one sensor. Specifically, the sun sensor has a limited field of view, meaning that
during certain periods of the simulation, the sun was outside its observable range and no
measurements were available.

To account for these conditions, the process noise was reduced while the measurement
noise was increased, as detailed in Section 6.4.4. Additionally, the sun sensor provides only

CHAPTER 6. NAVIGATION 61

0 200 400 600 800 1000
Time [s]

-0.04

-0.02

0

0.02

0.04

0.06

Q
ua

te
rn

io
n

D
iff

er
en

ce
 C

om
po

ne
nt

s

"q1

"q2

"q3

"q4

Figure 6.11: EKF with one magnetometer - q error

0 200 400 600 800 1000
Time [s]

-0.1

0

0.1

qe
1

-p1
+p1
qee1

0 200 400 600 800 1000
Time [s]

-0.1

0

0.1

qe
2

-p2
+p2
qee2

0 200 400 600 800 1000
Time [s]

-0.2

0

0.2

qe
3

-p3
+p3
qee3

Figure 6.12: EKF with one magnetometer - q error with sigma

partial directional information in two dimensions (Ny ,Nz), which introduces uncertainty when
reconstructing the full three-dimensional sun vector. This was also present in the sun vector
propagation previously discussed.

From an observability perspective, a single vector measurement constrains only two degrees
of freedom in 3D space. The rotation about the sun vector itself remains unobservable. This
under-constrained configuration leads to ambiguity: multiple attitudes can produce the same
projected sun vector in the sensor frame. As a result, the EKF receives a low-rank measurement
update, and the Kalman gain remains small. This weakens the correction step, causing the

CHAPTER 6. NAVIGATION 62

error covariance to contract slowly and reducing the filter’s responsiveness to actual state
deviations.

Furthermore, because sun sensor outputs are typically normalised direction vectors, the loss
of scale information can amplify small angular errors. Without redundant measurements to
compensate for noise, the filter becomes highly sensitive to even minor deviations in the sensor
data.

Although the overall error was lower than in the magnetometer-only case, the estimation
became less reliable over time. The error increases significantly toward the end of the simu-
lation. This is in contrast to the magnetometer case, where the state error gradually returns
to zero. Although the error is low, it should be noted that so is the Q; therefore, the filter is
mainly using the internal model. This navigation method is not recommended and highlights
the importance of multiple reliable sensors.

EKF Parameters for Sun Sensor Integration

Simulation Setup:

• Initial state: x0 = [0 0 0 1]T

Covariance Matrices:

• Process noise (Q): diag(5× 10−9, 2× 10−14, 2× 10−9)

• Measurement noise (R): diag(0.01, 0.01, 0.2)

• Initial error covariance (P0): diag(7× 10−6, 7× 10−6, 7× 10−6)

0 200 400 600 800 1000
Time [s]

-0.05

0

0.05

Q
ua

te
rn

io
n

D
iff

er
en

ce
 C

om
po

ne
nt

s

"q1

"q2

"q3

"q4

Figure 6.13: EKF with one sun sensor - q error

6.4.5 EKF with Magnetometer and Sun sensor

With both the sun sensor and magnetometer integrated into the Extended Kalman Filter
(EKF), the system benefits from complementary and more stable sensing. The sun sensor’s
periodic data gaps are mitigated by the continuous, though noisy, magnetometer readings.
Likewise, the sun sensor reinforces orientation estimation when visible, improving accuracy
during periods of magnetometer drift or noise.

As shown in Figure 6.15, the combined EKF yields lower overall errors than the magnetometer-
only case and is less sensitive to the instability observed in the sun sensor-only configuration.
While the initial error covariance P0 is relatively large and the measurement noise for both
sensors is high, the fused system demonstrates improved stability. Despite the magnetometer’s

CHAPTER 6. NAVIGATION 63

consistent measurements, its signal magnitude is small and susceptible to noise. In contrast,
the sun sensor provides stronger directional cues when in view. The upper and lower bounds of
P are closer to the quarterion error indicating the filter is working as expected and is producing
relevant values.

Overall, the combined EKF produces a more stable and robust estimate that remains
comfortably within the covariance bounds, outperforming both individual sensor configurations.
The Kalman filter can be found in Listing A.3.

Some improvements include more detailed methods of tuning. This process was done on
some literature inspiration and trial and error. Therefore a Montecarlo process is recommended
for future work and was not explored in this thesis due to time limitations. For a proper EKF
implementation, more in-depth tests should be performed with a variety of different input and
sensor data.

EKF Parameters for Magnetometer and Sun Sensor Integration

Simulation Setup:

• Initial state: x0 = [0 0 0 1]T

Covariance Matrices:

• Process noise (Q): diag(2× 10−6, 2× 10−6, 2× 10−7)

• Sun sensor noise (Rsun): diag(7× 10−1, 7× 10−1, 8× 10−1)

• Magnetometer noise (Rmag): diag(0.5, 0.5, 0.5)

• Initial error covariance (P0): diag(1× 10−3, 3× 10−3, 7× 10−3)

CHAPTER 6. NAVIGATION 64

0 500 1000 1500 2000
Time [s]

-0.02

0

0.02
qe

1

-p1
+p1
qee1

0 500 1000 1500 2000
Time [s]

-0.02

0

0.02

qe
2

-p2
+p2
qee2

0 500 1000 1500 2000
Time [s]

-5

0

5

qe
3

#10-3

-p3
+p3
qee3

Figure 6.14: EKF with one sun sensor and one magnetometer - q error with sigma

0 500 1000 1500 2000
Time [s]

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Q
ua

te
rn

io
n

D
iff

er
en

ce
 C

om
po

ne
nt

s

"q1

"q2

"q3

"q4

Figure 6.15: EKF with one sun sensor and one magnetometer- q error

CHAPTER 7

Control
Accurate attitude control is essential to meet the detumbling, sun-pointing and stability re-
quirements of the reference CubeSat mission introduced in Chapter 2. Having established the
dynamics (Chapter 4) and developed a real-time state estimator (Chapter 6), this chapter
presents the control layer that uses those estimates to generate torques and drive the satellite
toward its desired orientation.

It begins by recalling the mission control objectives, then introduces the primary control
modes:

1. Detumbling via magnetic-rate (B–dot) control using the three-axis magnetorquer.

2. Sun acquisition using a proportional–derivative (PD) law on reaction wheels to align the
+z body-axis with the sun vector.

Each mode’s mathematical law is derived in the body frame, and the actuator models, mag-
netorquer torque curves and reaction-wheel dynamics are described in Section 7.2.

The chapter then details the tuning process for each controller, showing how gains were
chosen to satisfy settling-time, overshoot and steady-state error targets under real-time, noisy-
measurement conditions. Finally, simulation results from the combined estimator–controller
loop demonstrate compliance with the pointing and stability requirements on the real-time test
bench introduced in Chapter 9.

7.1 Control modes

Now that the state variables required for controlling the satellite can be estimated, the control
modes determine what the satellite is to do next. In this study, two modes will be used to
determine what control torque is to be applied by the actuators. The two modes are detumbling
and sun acquisition. Detumbling will occur when the satellite is first released or when a motion
gets out of control. Detumbling will determine the rate of rotation and apply an opposite force
to counteract the motion. This will be done with the magnetorquers using a b-dot algorithm.
The Sun acquisition mode will be done using the sun sensors and reaction wheels to point
the satellite to the desired orientation in relation to the Sun vector. This will be done with a
simple PID controller.

7.1.1 Detumbling Mode

The detumbling mode aims to reduce the satellite’s rotation rate, induced by its release, to a
specific threshold by generating an opposing magnetic field using magnetorquers. This mode
employs an open-loop control system, meaning the output is independent of the feedback from
the system’s response.
The Ḃ control law determines the dipole moment M, as shown in Equation (7.1), where Kb

is the controller gain, which can be tuned for better performance.

M = −Kb × Ḃ (7.1)

Determining the rate of change of the magnetic field, Ḃ, can be challenging if the angular
velocity is unknown. In such cases, the change in the magnetic field over a time step can be

65

CHAPTER 7. CONTROL 66

used as an approximation. However, if the angular velocity ω is known, Ḃ can be estimated
more accurately using:

Ḃ ≈ B0 × ω (7.2)

7.1.2 B-dot Algorithm Implementation

The B-dot algorithm was implemented is shown the simulation as a passive attitude stabilisation
method. The model created can be found in Figure 7.1. Unlike active control strategies, B-dot
is not fast-acting; complete detumbling can take several hours, depending on the initial angular
velocity and environmental conditions. The algorithm operates using the control law defined
in Equation (7.1), which applies a magnetic dipole moment proportional to the negative time
derivative of the local magnetic field.

Since the Earth’s magnetic field is relatively weak in low-Earth orbit—typically 20–60µT—the
torque produced by magnetorquers is small. For that reason, a comparatively large gain, KḂ ,
was chosen so the controller can meaningfully influence the satellite dynamics. The value is
set on the high side to make the drop in angular velocity visible within the short simulation
window.

Despite these adjustments, B-dot control remains fundamentally limited: magnetorquers
cannot generate torque about the Earth’s magnetic field vector itself. Consequently, angular
velocity components aligned with the field (typically the ω3 component in body coordinates)
are not directly damped. This explains the persistent drift even as other axes show effective
damping. The tuning process was done with a trial and error process starting at one over
the expected magnetic field magnitude. The tuning process was not very sensitive and values
could be tuned freely. It was expected that the angular velocity would decrease over time.

The simulation was run over a 1000-second window. Although this is a relatively short
duration for evaluating B-dot performance, a gradual decline in angular velocity was observed.
The initial angular velocity was intentionally low to highlight the damping trend, in contrast
to the more extreme spin rates encountered immediately after deployment. Since this thesis
focuses on test methods rather than full-on-orbit detumbling behaviour, the simplified scenario
was deemed sufficient for demonstration.

For comparison, a control-off case was also simulated. In the absence of B-dot control,
the spacecraft’s angular velocity increased steadily, approximately 0.01 rad/s every 150 sec-
onds, due to accumulated disturbances and numerical integration drift. This highlights the
importance of incorporating detumbling logic in early mission phases. The B-dot controller
effectively reversed this trend and initiated angular momentum damping, verifying its function
within the scope of the test.

Bdot controller

B-dot Control Gain:

• KḂ = [2 2 2]× 105 Nm · s/T

Used in magnetic rate damping: T = −KḂ · Ḃ

7.1.3 Sun Acquisition Mode

The Sun acquisition mode utilises a PD (Proportional-Derivative) controller to align the satel-
lite with the Sun based on data from the Sun sensor. The goal is to minimise the error between

CHAPTER 7. CONTROL 67

Figure 7.1: BDot Controller

0 200 400 600 800 1000
Time [s]

0

0.005

0.01

0.015

0.02

0.025

k!
k

[r
ad

/
s]

k!k

(a) With B-dot controller applied

0 200 400 600 800 1000
Time [s]

0

0.005

0.01

0.015

0.02

0.025

0.03
k!

k
[r
ad

/
s]

k!k

(b) Without B-dot controller

Figure 7.2: Comparison of angular velocity magnitude with and without B-dot controller.

the satellite’s current state and its desired orientation by controlling the input variables ac-
cordingly.
A PD controller operates by addressing two components:

• The proportional term (P) depends on the present error.

• The derivative term (D) predicts and counteracts future errors based on their rate of
change.

Each term has a gain parameter (Kp and Kd), which can be tuned to optimise the system’s
performance. These gains can be constant or time-dependent, depending on the specific
requirements of the system.
The proportional controller establishes a direct relationship between the control input u(t) and
the error signal e(t).

u(t) = Kpe(t) (7.3)

Here, Kp is the proportional gain, which acts as an amplifier for the error signal. High gain
values can lead to instability due to excessive system responses and noise amplification, whereas
low gains result in slower corrections and possibly divergence of errors.
The derivative controller addresses the rate of change of the error, thereby enhancing system
stability by reducing overshoots:

CHAPTER 7. CONTROL 68

Figure 7.3: Transient and steady-state response analysis (Mooij, 2022b)

Table 7.1: Effects of gain manipulation (Mooij, 2022b)

Parameter Rise time Overshoot Settling time Steady-state er-
ror

Stability

Kp Decrease Increase Small change Decrease Degrade

Kd Minor decrease Minor decrease Minor decrease No effect in theory Improve (if Kd is
small)

u(t) = Kd
de(t)

dt
(7.4)

By combining all components, the PD controller can leverage their strengths while minimising
individual weaknesses. The complete PD equation is given in Equation (7.5):

u(t) = Kpe(t) + Kd
de(t)

dt
(7.5)

The impact of tuning each gain parameter on system performance is summarised in Table 7.1,
while Figure 7.3 illustrates the transient and steady-state response characteristics.

7.1.4 PD Controller Implemetation

A proportional-derivative (PD) controller will use reaction wheels to actuate control torques.
A more detailed discussion of reaction wheels will follow. The controller aimed to align the
satellite’s body-fixed +X axis with the Sun vector, thereby achieving Sun-pointing attitude
stabilisation. The gain values used are summarised in the box below. The complete simulator
was used to tune the PD controller. The environment perturbation and EKF were active during
the tuning of this controller. The gains for Kd and Kp were tuned with trial and error. The
impact of Kp was larger than that of Kd. Therefore, the tuning of Kd was more aggressive
than that of Kp. Requirement SA01 indicates that the controller should have an effect within
90 minutes. This is true as the position is steady after 100 seconds.

In contrast to the B-dot algorithm, the PD controller demonstrated significantly faster
and more responsive behaviour. As shown in Figure 7.4, the system reached steady-state

CHAPTER 7. CONTROL 69

Figure 7.4: PD Controller

0 20 40 60 80 100
Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

!
i
[r
a
d
/
s]

!x

!y

!z

Figure 7.5: PD controller results

alignment in just under 50 seconds. The response was smooth, with no observable overshoot
or oscillation, and remained stable for the remainder of the 100-second simulation.

The controller operated using noisy sensor data, adding realism to the test scenario. The
gains were manually tuned to strike a balance between responsiveness and stability, without
inducing instability or excessive oscillations. The proportional term provided corrective torque
based on orientation error, while the derivative term added damping to suppress rapid move-
ments.

The reaction wheels were able to produce sufficient torque to make precise adjustments,
allowing the controller to compensate for sensor noise effectively. The absence of overshoot
suggests that the system was not overly aggressive, and the chosen gains were appropriate for
the level of noise and the dynamics involved.

It is important to note that this scenario assumes idealised actuator behaviour, with no
reaction wheel saturation or momentum build-up. In practice, factors such as actuator limits,
external disturbances, and eclipse periods would require additional handling. Nonetheless,
within the scope of this simulation, the PD controller proved highly effective in achieving rapid
and robust Sun-pointing control and serves as a useful benchmark for comparison with the
slower, passive B-dot algorithm.

PD Controller Gains:

• Proportional gain (Kp): [0.017 0.017 0].017 Nm/rad

• Derivative gain (Kd): [0.15 0.15 0.15] Nm · s/rad

CHAPTER 7. CONTROL 70

7.2 Actuators

With the use of the PD controller or the Bdot controller, a control torque is calculated. This
is now channeled to the appropriate actuators. In this case, magnetorquer and reaction wheels
will be used.

7.2.1 Magnetorquers

Magnetorquers, also known as magnetic coils or electromagnets, are devices used to generate
magnetic dipole moments for controlling the angular momentum and attitude of a satellite.
These systems are critical for correcting biases and attitude drifts that naturally occur during
a satellite’s mission. The fundamental working principle relies on applying an electric current
to a series of looped coils, which generates a magnetic moment m perpendicular to the plane
of the coils. This relationship is given in Equation (7.6), where n is the unit vector normal
to the loop plane, A is the enclosed area, N is the number of coil loops, and I is the applied
current:

m = NIAn (7.6)

The resulting magnetic dipole d can be expressed as a function of the material permeability µ:

d = µm = µNIAn (7.7)

The magnetic moment generated by the magnetorquer interacts with the Earth’s magnetic field
to create a torque, enabling the satellite to control its orientation. The torque is generated as
a result of the cross product between the magnetic dipole moment m and the Earth’s magnetic
field vector B.

MMT = m× BB (7.8)

The magnetic torque MMT is subject to various error sources that affect the system’s output.
These include biases (bMT), scaling factors (SMT), misalignments (cross-axis coupling MMT),
and noise (wMT). The mathematical representation of the magnetic torque considering these
factors is Mmx ,MT

Mmy ,MT

Mmz,MT

 =

Mx ,MT

My ,MT

Mz,MT

+

bx ,MT

by ,MT

bz,MT



+

 sx ,MT mxy ,MT mxz,MT

myx ,MT sy ,MT myz,MT

mzx ,MT mzy ,MT sz,MT

Mx ,MT

My ,MT

Mz,MT

+

wx ,MT

wy ,MT

wz,MT

 .

(7.9)

To compute the torque in the satellite’s body frame, the Earth’s magnetic field vector B must
first be transformed from the inertial frame using the attitude matrix CBI :

BB = CBIBI (7.10)

The magnetorquer output depends on the commanded dipole moment m, which is controlled
by the magnetic control law and the geomagnetic field. The performance of the magnetorquer
is further influenced by hardware limitations such as output delays, saturation, and quantisation
errors, which can be included in the model if necessary to ensure realistic simulations.

CHAPTER 7. CONTROL 71

Reference mission

The magnetorquers in the reference mission will have the following errors and characteristics.

Table 7.2: Magnetorquer model parameters used for simulation.

Parameter Value Unit

Time Constant 0.2216 s

Resolution 0.2000 Am2

Max Moment 400 Am2

Min Moment 0.4889 Am2

Bias Moment 2 Am2

Nonlinearity Gain 1 -

7.2.2 Reaction Wheels

Reaction wheels are essential components of satellite attitude control systems, providing precise
and smooth adjustments to angular momentum without the use of propellant. They are widely
used for stabilising the satellite and absorbing cyclic loads during manoeuvres. Reaction wheels
operate by varying the angular velocity of spinning wheels, which generates angular momentum
due to the conservation of angular momentum principle. This angular momentum is transferred
to the satellite body, enabling precise orientation changes.
The angular momentum of a reaction wheel, hrw , is expressed as:

hrw = Iω (7.11)

where I is the moment of inertia of the spinning wheel, and ω is its angular velocity. The total
external torque acting on the satellite can be expressed as:

Mext +Mc = ḣcm + ω × hcm (7.12)

Here, Mext is the external torque, Mc is the commanded control torque, hcm is the angular
momentum of the satellite body, and ω is the angular velocity of the satellite relative to the
inertial frame. Reaction wheels apply control torques by adjusting their rotational speed, which
generates a counteracting torque on the satellite due to conservation of angular momentum.

A typical reaction wheel assembly consists of three orthogonally mounted wheels, with an
optional fourth wheel for redundancy. In a pyramid configuration, the wheels are mounted on
the XY plane and tilted toward the Z-axis by an angle β. This configuration ensures efficient
torque application around all three axes. The relationship between the commanded control
torque Mc and the wheel torques Mw is represented as:

Mc = VMw (7.13)

where V is the configuration matrix. For the pyramid configuration, V is given by:

V =

cosβ 0 − cosβ 0
0 cosβ 0 − cosβ

sinβ sinβ sinβ sinβ

 (7.14)

The wheel torques can then be calculated using the pseudo-inverse of V :

CHAPTER 7. CONTROL 72

Mw = V−1Mc (7.15)

Reaction wheels are subject to several physical and operational characteristics that influence
their performance. Friction is one of the primary factors and consists of Coulomb friction, which
is constant and depends on wheel rotation direction, and viscous friction, which depends on
wheel speed. The total friction torque can be expressed as:

Tfric = NC sgn(ω) + fs (7.16)

where NC is the Coulomb friction coefficient, and fs is the viscous friction coefficient. In ad-
dition, misalignments in the mounting of reaction wheels introduce errors that are accounted
for using a matrix Mw , representing global or individual wheel misalignments. Other consid-
erations include saturation, where the maximum angular momentum and torque achievable
by the wheels are limited by their design, and output delays, which affect performance in
fast-changing dynamic conditions.
The reaction wheel model incorporates a motor constant km, which relates the commanded
current Ic to the motor torque Mm:

Mm = km Ic (7.17)

In practical applications, the delivered moment accounts for various error sources and is ex-
pressed as:

Mw = V−1Mc − kv ωw + kc sgn
(
ωw

)
(7.18)

where kv is the viscous friction coefficient vector, and kc is the Coulomb friction coefficient
vector. These factors allow for realistic modelling of reaction wheels and enable accurate
control of satellite attitude in simulations.

Reference mission

For this reference mission, the following characteristics are used.

Table 7.3: Reaction Wheel model parameters used for simulation.

Parameter Value Unit

Bearing Noise Std Dev. 0 Nm

Max Torque Limit 0.075 Nm

Time Delay 0.02 s

Resolution 2× 10−5 Nm

Initial Torque 0 Nm

Initial Momentum 0 Nms

CHAPTER 8

Functional Simulator
This chapter outlines the methodology for developing the simulator. The simulator was created
using MATLAB/Simulink, incorporating components from prebuilt libraries and custom mod-
ules. The software architecture is first described in Section 8.1, outlining key characteristics of
the simulation such as solver choices and Model characteristics. Integration and acceptance
tests were conducted to validate the simulator’s performance prior to porting it to Eurosim.

8.1 Simulator Overview and Architecture

The purpose of the simulator is to create an environment that models the conditions in which
the CubeSat will operate and to ensure that the satellite system can respond effectively to any
changes. Initially, the simulator will be built using MATLAB Simulink. Once completed, it will
be ported to Eurosim, the real-time simulation environment. Part of the simulation will run
on a Raspberry Pi, enabling the user to send simulated commands to the virtual satellite for
a SIL demonstration. Later, a hardware component can be added, allowing hardware sensors
to interact with the simulator and send commands, resulting in a partial HIL demonstration.
The main objective of this study is to determine if testing of a CubeSat ADCS using affordable
resources is possible.
Figure 3.2 illustrates the top-level setup of the simulator. The environment models incorporate
various aspects that the satellite will encounter, which will be discussed in more detail later in
this section. These environment models serve as inputs to the sensor models, where expected
errors (such as bias, saturation, and drift) are applied based on the specific sensors used. The
output from the sensors is then processed by a Kalman filter, which estimates the states using
the noisy measurements. These estimated states are utilised by the controller to generate
actuator commands, which are subsequently executed in the actuator model. The actuator
model adjusts the environment to close the loop. Each component will be described, and
verification tests will be conducted to ensure that they exhibit the expected behaviours.

Magnetic Force
Model

Aerodynamic
Drag

Solar Radiation
Pressure

Forces

Moments

Gravitational
Force

Rigid Body
Dynamics

Angular Velocity

Quaternions

Quaternions

Rotational
Dynamics

Angular VelocityGyroscope

Magnetic FieldMagnetometer

Sun VectorSun Sensor

Quaternions

Extended
Kalman Filter

Control Torque PD Controller

Control Torque Bdot Controller

Moment Reaction Wheels

Moment Magnetorquer

Time

Figure 8.1: Flowdiagram of Simulator with I/O

73

CHAPTER 8. FUNCTIONAL SIMULATOR 74

8.2 Generic Rendezvous And Docking Simulator (GRADS)

To build up aspects of this simulator, prebuilt models were used. The GRADS library is
a set of MATLAB Simulink models, originally built as a method of testing GNC systems for
docking and rendezvous missions to clean up space debris (Mooij, 2022a). The simulator library
contains sensors and actuators component models, as well as propagators, environment models,
and utilities, which include reference frame transformations, time elements and mathematical
operators.
The benefit of using the GRADS library compared to creating a new set of models is the
modularity of the library. The models can be placed and tuned depending on the mission
case. To be properly integrated into the simulator, several acceptance tests were performed,
although the models themselves have been separately validated.

8.3 Solver Choice and Analysis

The simulator was implemented in Simulink and later ported to Eurosim for further analysis.
Simulink provides a variety of numerical solvers, broadly categorised as discrete (fixed-step)
and variable-step. By default, Simulink applies the ode45 variable-step solver, which is general-
purpose and dynamically adjusts the integration step size to balance accuracy and performance.
However, this default solver is not suitable for real-time systems. In embedded environments
such as the onboard computer (OBC) of a CubeSat, the controller must run at fixed time
intervals, with no dynamic adjustment of execution frequency. Additionally, Eurosim requires
all models to use a discrete (fixed-step) solver, meaning the model must be explicitly configured
for such execution.

• Variable-step solvers (e.g., ode45) adjust time steps based on estimated local error.
They are effective in simulation for achieving accuracy with fewer steps but are unpre-
dictable in execution time and unsuitable for deployment.

• Fixed-step solvers (e.g., ode4) use a constant time step, ensuring predictable timing and
compatibility with real-time systems. This makes them ideal for embedded applications
where timing determinism is critical.

To evaluate the effects of solver choice, a comparative analysis was performed using three
solver configurations for a 1700-second simulation of the environment model:

1. ode45 – variable-step, with a maximum tolerance of 10−14 and maximum step size of
40 seconds. (Simulink default)

2. ode4 – fixed-step with a 10-second interval

3. ode4 – fixed-step with a 0.01-second interval (100 Hz, used as reference)

The 0.01 s (100 Hz) configuration was selected as the reference because it closely matches the
control update rates commonly used in OBC flight software. While individual components in
the system (e.g., sensors, actuators) may operate at different frequencies, this rate provides a
high-fidelity baseline for evaluating solver accuracy.
Results as shown in Figure 8.2 showed that:

• The ode45 (variable-step) solver exhibited variable error across time, as expected from
its adaptive behaviour.

CHAPTER 8. FUNCTIONAL SIMULATOR 75

0 1000 2000 3000 4000 5000 6000 7000
Time [s]

0

20

40

60

80

100

120

‖E
rr

or
‖

[m
]

ode4 (Fs = 0.1 Hz)
ode45

Figure 8.2: Frequency Analysis (normal error)

• The ode4 with 10-second steps resulted in smooth but consistently offset outputs, due
to the coarser temporal resolution.

These differences are not just academic, they highlight the importance of solver configuration
in systems where real-time performance and accuracy are both crucial.
In addition to accuracy, solver selection directly impacts computational efficiency—a key con-
straint in CubeSat missions. Variable-step solvers incur higher CPU usage due to frequent
internal calculations and error estimation. This can lead to increased power consumption and
may exceed the capabilities of power- and compute-constrained OBCs.
By contrast, fixed-step solvers provide predictable execution at the cost of some precision.
For this reason, choosing a fixed-step solver with a step size aligned to the system’s control
frequency (e.g., 10–100 Hz) offers a good trade-off between real-time feasibility, accuracy, and
power efficiency.
This analysis informed the decision to use ode4 with a step size of 0.01 seconds as the reference
configuration, and to compare all other results against it for evaluating real-time compatibility
and model fidelity.

8.3.1 Environment Models

The environment model block is separated into the physics models and the forces and moment
models. The physics models represent the fundamental physical phenomena that affect space-
craft dynamics and interaction in the space environment. The forces and moments models
then take these models and convert them into what the satellite will feel in terms of forces
and moments. These physics models include:

1. Celestial body positions: Sun and Moon position models in ECI (J2000) coordinates that
are needed for gravity and illumination calculations.

CHAPTER 8. FUNCTIONAL SIMULATOR 76

2. Gravitational models of varying complexity:

• Simple Gravitational Acceleration model for basic gravity effects

• Spherical Harmonics Gravitational Acceleration for more complex gravity field mod-
elling

• Central Gravity Field Acceleration for point-mass approximations

• Third-body acceleration to account for gravitational effects from bodies other than
Earth

3. Magnetic field models:

• Magnetic Dipole model for basic magnetic field representation

• Central Magnetic Field model for Earth’s main field

• Spherical Harmonics Magnetic Field for more detailed field mapping

• Simplified Magnetic Dipole for efficient approximations

4. Time reference models, particularly the Greenwich Mean Sidereal Time (GMST) which
provides accurate time reference in the J2000 frame

5. Solar-related models:

• Solar Flux models (both variable and constant)

• Illumination factor between the Sun and Earth

• Eclipse Sun-Earth status detection

6. Directional models:

• Normalised Sun Direction in body frame

• Normalised Earth Direction in both ECI and body frame

7. Atmospheric models, including the Fixed-Time Simplified NRLMSISE-00 density model
for atmospheric drag calculations

Given that the case study mission is a LEO orbit, the following models from the environment
model library were used.

• Gravitational model: Spherical Harmonics Gravitational Acceleration (vertical frame -
NED (North East Down))

• Magnetic field model: Spherical Harmonics Magnetic Field (vertical frame - NED)

• Time reference model: Greenwich Mean Sidereal Time (J2000)

• Solar model: Varying Solar Flux model and Eclipse Sun-Earth model.

• Atmospheric model: Fixed-Time Simplified NRLMSISE-00 density

From here, the forces and moments blocks had to be chosen. GRADS has a large number of
flexible modules which were chosen to fit this reference mission. The first being the ’Aerody-
namic Drag Force and Moment: Box’, where ’Box’ refers to the dimensions of the box could be
given to better determine the force generated by the density. The spherical harmonics, which
output the gravitational acceleration, were also converted to a force given the dimensions and

CHAPTER 8. FUNCTIONAL SIMULATOR 77

Magnetic
Field Model

Atmospheric
Density Model

Solar Flux
Model

Gravitational
Model

Magnetic Force
& Moment

Aerodynamic
Drag

SRP Force

Gravitational
Force

k1

k2

k3

k4

Σ

Rigid Body
Dynamics

(EOM/SAT)

F

Figure 8.3: Integrated environment model showing selective activation of force models using
coefficient parameters (k1 to k4).

mass of the satellite. The magnetic field is considered the magnetic field generated by the
satellite to determine what it could feel, and finally, the solar radiation pressure determines
the force given the satellite’s illumination factor and solar radiation pressure. From here, the
forces are fed into the Rigid body propagator to determine the velocity and position in the
inertial frame. The moments are fed into the Rotational Dynamics block, which determines
the angular velocity as well as the quaternions of the satellite.

8.3.2 Acceptance testing for GRADS components

Even though the GRADS library has already been verified and tested, an acceptance test for
this application is needed. All used environment components were connected to the Equations
of Motion (EOM) for the satellite to show the combined satellite dynamics. Each environment
block can be activated, and the effects can be measured by setting a variable ’K’ seen in
Figure 8.3 to ’0’ (deactivate) to ’1’ (activate).
The acceptance tests were done by introducing the different perturbations individually while
monitoring the changes in the radius and velocity. The magnitudes of each perturbation have
been discussed in Chapter 5, showing that gravity and drag are of a larger magnitude as
compared to solar radiation pressure and the magnetic field. Using this logic, the environment
models were integrated. Further description of the tests performed can be seen in Table 5.1.

8.3.3 Propagators and Utilities

There are several propagators available in the GRADS library, each suited for different types of
orbital and attitude dynamics simulations. The simplest orbit propagators do not require an
environmental block and only account for the effects of a central gravity field. More advanced
options include those for rigid-body translational motion, such as Cowell’s method (3 Degrees
of Freedom (DOF)) and the Clohessy-Wiltshire equations. Additionally, there are multiple
formulations for rigid-body rotational dynamics, allowing the use of Euler equations, quater-
nions, or Modified Rodrigues Parameters (MRP) depending on the application. The rigid-body
rotational dynamics models also offer coupling with reaction wheels, making them useful for
attitude control system simulations. Furthermore, 6-DOF rigid-body models are available,
along with variable-mass variations, which are crucial for scenarios where fuel consumption
significantly affects the system’s behaviour.

CHAPTER 8. FUNCTIONAL SIMULATOR 78

-1 -0.5 0 0.5 1
rIx [km] #104

-1

-0.5

0

0.5

1
r Iy

 [k
m

]
#104

rG10

(a) Radius Plot with Gravity order 10

0 1000 2000 3000 4000 5000 6000
Time [s]

-1

-0.5

0

0.5

1

v I [m
/s

]

#104

videal
x

videal
y

(b) Velocity Plot with Gravity order 10

Figure 8.4: Gravity Model validation showing radius and velocity plots with gravity order 10

For this simulation, Cowell’s method is chosen to propagate the translational motion. Since this
simulation involves a single spacecraft in a simple Low Earth Orbit (LEO) without any relative
motion considerations, Cowell’s method is sufficient. It provides direct numerical integration
of Newton’s equations of motion without the need for additional assumptions, making it a
straightforward and general approach for this scenario. For the spacecraft’s attitude dynamics,
quaternions are used instead of Euler angles to avoid singularities (gimbal lock), which can
occur in the latter.
Other components, such as reference frame transformations and time converters (simulation
time to Modified Julian Date (MJD)), were also used.

8.4 Requirements

This section reflects on the requirements given in Chapter 2 and discusses how each requirement
was met. The requirements are split between sensor and actuator performance and controller
performance.

CHAPTER 8. FUNCTIONAL SIMULATOR 79

Table 8.1: Compliance with sensor and actuator hardware requirements.

Requirement Compliance Summary

SS01 The simulation used a 0.1 s time step, meeting the sun sensor sampling rate require-
ment.

SS02 Sensor noise was modelled with a 1° standard deviation (3σ), meeting the accuracy
requirement.

SS03 The PD controller aligned with the Sun within 50 s, well below the 10-minute threshold.

SS04 The field of view was set to 30°, fulfilling the coverage requirement.

SS05 Sun sensor noise was modelled at 0.033°, which is within the 0.05° limit.

MM01 The magnetometer sampled at 0.02 s intervals, exceeding the 0.5 s requirement.

MM02 Simulated accuracy was better than 5 nT (1σ), meeting the requirement.

GYR01 Model noise allowed sensitivity near 0.01°/s, aligning with the requirement.

GYR02 The gyroscope sampling rate was 0.01 s (100 Hz), as required.

RW01 Reaction wheels provided 0.075 Nm, exceeding the 0.05 Nm minimum at 6000 rpm.

RW02 Drift was modelled as negligible, well below the 0.01°/s limit.

MT01 Magnetorquer output ranged from 0.4 to 400 µNm, exceeding the 0.005 Nm require-
ment.

Table 8.2: Compliance with control mode and performance requirements.

Requirement Compliance Summary

DT01 Simulation duration of 1000 s is well within the 2-orbit (6000 s) limit.

DT02–DT04 Angular rates in all axes were reduced below 0.5°/s, fulfilling all detumbling axis re-
quirements.

SA01 Sun alignment occurred within 50 s using the PD controller, satisfying the 90-minute
limit.

SA02 Not explicitly tested; detumbling and acquisition were performed separately. Integration
is recommended for future work.

SA03 Pointing accuracy during acquisition was consistently below 0.5°, well within the 5°
requirement.

SA04 The Sun was found within 1 orbit (90 minutes), as required.

GNC01 The control loop operated at 10 Hz, meeting the required update rate.

GNC02–GNC05 For the PD controller, rise time, settling time, and overshoot were all within acceptable
limits. These were not evaluated for the B-dot controller.

CHAPTER 9

Real Time Simulation
This chapter describes the translation of our CubeSat ADCS models from offline MAT-
LAB/Simulink into a fully real-time test bench. Building on the functional simulation and
control design in Chapter 8 and Chapter 7, it demonstrates how EuroSim, together with Or-
angePi and Raspberry Pi 5, can execute the same environment, sensor and controller code
under hard real-time constraints.
First, Section 9.1 reviews the software choices. MATLAB for model development and EuroSim
for the real-time aspects, and justifies them in terms of cost and license availability. Section
8.2 then describes the hardware platform, detailing the Raspberry Pi 5 and Orange Pi 5
Plus configurations used to run EuroSim and interface with ADCS hardware. Section 9.3
explains the MATLAB code-generation workflow, including model structuring, code export via
rtwbuild and the workarounds required by its limitations. Section 9.4 provides a step-by-step
guide to importing those generated modules into EuroSim’s ModelEditor, ScheduleEditor and
SimulationCtrl interfaces, highlighting the dos and don’ts discovered.
To ensure fidelity, Section 9.5 presents acceptance tests that verify each imported Simulink
component behaves as expected in the real-time environment. Section 8.6 then details the
final integrated model, showing how the EKF and PD/B-dot controllers run at 100 Hz and
produce identical results to the offline benchmark. Finally, Section 8.7 revisits the original
requirements, demonstrating how the real-time bench meets timing, accuracy and cost targets
set out in Chapter 2. Together, these sections complete the thesis’s aim of delivering an
affordable, reproducible path from simulation to hardware-in-the-loop ADCS testing.

9.1 Software

This section gives a short description of the software used for the simulation development, not
including real-time simulation set-up.

9.1.1 MATLAB

In Chapter 2, all three large-scale satellites were found to have used MATLAB for their con-
troller design and testing. This, of course, is not a realistic view of the control designs of
all satellites, but does indicate the wide-scale use of the software. Looking at the MATLAB
website, it was found that projects such as the NASA Synchronised Position Hold Engage Re-
orient Experiment Satellites (SPHERES), which are control algorithm testing robots that move
around the International Space Station (ISS), are first tested and simulated in MATLAB and
Simulink according to the Mathworks customer stories page.1. Another similar story names
Lockheed Martin Space, Indian Space Research Organisation, as well as Kenya Space Agency,
to name a few larger organisations, which use MATLAB to test and simulate their systems and
subsystems. This indicates the wide-scale use of the software in the space sector. Therefore,
using something which is used in industry will make the current testbed more realistic.

MATLAB contains several features and add-ons which can be used for a variety of system
testing purposes. For this thesis project, the add-ons used will be Simulink, Aerospace Blockset,

1https://nl.mathworks.com/company/user_stories/researchers-test-control-algorithms-for-

nasa-spheres-\satellites-with-a-matlab-based-simulator.html Last accessed 23/01/24

81

https://nl.mathworks.com/company/user_stories/researchers-test-control-algorithms-for-nasa-spheres- \ satellites-with-a-matlab-based-simulator.html
https://nl.mathworks.com/company/user_stories/researchers-test-control-algorithms-for-nasa-spheres- \ satellites-with-a-matlab-based-simulator.html

CHAPTER 9. REAL TIME SIMULATION 82

Table 9.1: Matlab package pricing

Package
Standard price
(EUR per year)

Home price
(EUR per year)

Student price
(EUR per year)

Academic price
(EUR per year)

MATLAB 900 119 69 262

Simulink 1360 35 20 262

Simulink 3D Animation 520 35 20 105

Aerospace Blockset 780 35 20 105

Aerospace Toolbox 560 35 20 105

Aerospace Toolbox, and Simulink 3D Animation. Simulink is an add-on which allows you to
use a block diagram environment to design and simulate systems. In this case, this is the
control system. This does not need specifically written code, only for additional functions, but
can be done fully by plugging together sub-system blocks. Simulink 3D Animation can then
be used to animate the systems created using Simulink. Therefore, given the popularity and
the features present, MATLAB will be used as the base language.

Costs

The pricing of MATLAB alone is relatively high.2 Mathworks charges extra for the add ons. The
standard, home, academic and student use licenses and the prices are indicated in Table 9.1.
The standard price is used for governments and large-scale companies. The home price is for
personal use. Finally, academic packages are for educational institutes. As shown in the table,
the personal use packages (student and home) are considerably cheaper than the standard and
academic prices; however, the standard price is nowhere near the academic package. As the
purpose of this thesis is to benefit academic-run projects, the student and academic prices are
considered in the total budget of the project.
For this thesis, an academic license is being used as supplied by the Delft, University of
Technology.

9.1.2 Eurosim

Eurosim3 is a simulation tool used for real-time simulations and hardware in the loop testing.
It was first developed in 1996 for the European Robotic Arm program but has continued to
be developed and used for more recent projects such as Gaia and Herschel-Planck. It is an
engineering simulator framework which supports designs in the verification and development
stages and can be used with MATLAB. Eurosim can be integrated with other simulators and
has an inbuilt SGI clock for synchronising. The software was freely available for this thesis,
but it is an expensive software, which was created and improved by the EuroSim consortium,
of which Airbus is one of the partners. The price is not specified on the website, but after a
conversation with members at Airbus, it was concluded that this is a commercially available
product, which can be acquired through consultation with the Eurosim team. Educational
purposes are granted a license, however, commercial companies would need to pay a fee,
which is determined from a consultation. Given that the project aims to create a low-cost,
reliable simulator, this software will be used to prove the essence of this project and other
open-source alternatives, such as the sat-rs software developed by the University of Stuttgart

1Last accessed 27/02/24 https://nl.mathworks.com/help/simulink/gs/create-a-simple-model.

html
2https://nl.mathworks.com/pricing-licensing accessed on 24/01/24
3https://www.eurosim.nl/products/addons/ggncsim/index.shtml, Last accessed 10/01/24

https://nl.mathworks.com/help/simulink/gs/create-a-simple-model.html
https://nl.mathworks.com/help/simulink/gs/create-a-simple-model.html
https://nl.mathworks.com/pricing-licensing
https://www.eurosim.nl/products/addons/ggncsim/index.shtml

CHAPTER 9. REAL TIME SIMULATION 83

Figure 9.1: Eurosim logo2

Figure 9.2: GGNCSim 4

and Airbus, will also be considered and compared. The software allows for real-time simulations
and would be used for the onboard computer simulation segment. The base language used is
C code.

9.1.3 GGNCSim/GRADS

GGNCSim (Mooij and Ellenbroek, 2011) or Generic Guidance, Navigation and Control Sim-
ulation is a toolbox used to develop and test GNC simulation models. It was used to test
the ADCS of Gaia, Herschel, Planck, and SPS-2 (Oomen, 2020) to name but a few. Others
include non-space related projects, such as robotic arms and vehicle simulations. GGNCSim
models have already been validated, which is beneficial for time in this research.
The models contain biases, nonlinearity, scale factor errors, noise, misalignment errors, satu-
ration and quantisation.

9.2 Hardware

The hardware used and purchased for this test setup is summarised in Table 9.3 and Table 9.4.
There were two ways of achieving the set-up discussed in this thesis. The tables describe
the associated costs with Raspberry PI 5 in Table 9.4 and with an Orange Pi in Table 9.3.
It is noted that the cost of the Raspberry Pi 5 configuration is cheaper than the Orange Pi
configuration; however, the Raspberry Pi 5 has more components needed.

Initially, the Raspberry Pi 4 was considered for running the simulation software. However,
after assessing the computational demands of EuroSim, it became clear that although the Pi 4
was capable, the Raspberry Pi 5 and the Orange Pi 5 Plus were more suitable options. Their
specifications are compared in Table 9.5. While the Pi 4 and Pi 5 share many similarities, the Pi
5 introduces key advantages such as PCIe support and an onboard real-time clock (RTC). One
limitation of lower-cost computing platforms like the Pi 4 is the absence of a hardware-based
RTC, which can be critical for time-synchronised, real-time tasks.
To investigate the impact of the system clock on time-stamping accuracy, a BNO055 9-axis

2Last accessed 27/02/24 https://nl.mathworks.com/help/simulink/gs/create-a-simple-model.

html
4https://www.eurosim.nl/products/addons/ggncsim/ggnclogobig.jpgLast accessed 27/02/24

https://nl.mathworks.com/help/simulink/gs/create-a-simple-model.html
https://nl.mathworks.com/help/simulink/gs/create-a-simple-model.html
https://www.eurosim.nl/products/addons/ggncsim/ggnclogobig.jpg

CHAPTER 9. REAL TIME SIMULATION 84

(a) Raspberry Pi 5 (b) Orange Pi Plus

Figure 9.3: Comparison of Raspberry Pi 5 and Orange Pi Plus

absolute orientation sensor4 was connected to a Raspberry Pi 4 using the I2C interface. This
sensor includes a 3-axis accelerometer, 3-axis magnetometer, and a 3-axis gyroscope, and it
also measures temperature. The board used is an LSM9DS1, operating at 3V. The IMU pin
configuration is shown in Figure 9.4.

Figure 9.4: BNO055 IMU pins

The pinout of the Raspberry Pi 4 is shown in Figure 9.5, where pins 3 and 5 are used as the
I²C data line (SDA) and clock line (SCL).

4Last accessed 14/08/24 https://learn.adafruit.com/adafruit-lsm9ds1-accelerometer-plus-

gyro-plus-magnetometer-9-dof-breakout/overview

https://learn.adafruit.com/adafruit-lsm9ds1-accelerometer-plus-gyro-plus-magnetometer-9-dof-breakout/overview
https://learn.adafruit.com/adafruit-lsm9ds1-accelerometer-plus-gyro-plus-magnetometer-9-dof-breakout/overview

CHAPTER 9. REAL TIME SIMULATION 85

Figure 9.5: Raspberry Pi 5 pins

5

The IMU was used to collect data for 10 seconds with a script in Python. Below is a sample
of the output. The first value represents the timestamp, followed by x, y, and z acceleration,
gyroscope readings, magnetic field, and temperature. Although a 0.1-second interval was
intended, the actual differences ranged from 0.1 to 0.12 seconds.

Listing 9.1: IMU measurements

1 1722256275.94 12.32 1.70 1.26 -0.45 0.67 -0.34 -33.00 -13.25 5.75

31.00 \\

2 1722256276.06 11.36 0.60 1.01 -3.81 4.22 -0.82 -32.88 -13.69 -1.25

31.00 \\

3 1722256276.17 1.64 -4.70 2.71 -2.79 4.44 -0.19 -27.69 -9.50 -18.25

31.00 \\

4 1722256276.29 -2.93 -4.88 4.96 -2.27 5.33 -0.50 -16.25 -4.50 -29.75

31.00

This discrepancy, although small in short durations, would compound over extended tests. To
reduce this drift, an external RTC module (Seeed Studio DS1307)6 was added to the setup.
The RTC, powered independently and connected via I²C (address 0x68), was used alongside
the IMU (address 0x28). The schematic of the RTC is shown in Figure 9.6.

5Last accessed 14/08/24 https://www.hackatronic.com/raspberry-pi-5-pinout-specifications-

pricing-a-complete-guide/
6Last accessed 14/08/24 https://wiki.seeedstudio.com/Pi_RTC-DS1307/

https://www.hackatronic.com/raspberry-pi-5-pinout-specifications-pricing-a-complete-guide/
https://www.hackatronic.com/raspberry-pi-5-pinout-specifications-pricing-a-complete-guide/
https://wiki.seeedstudio.com/Pi_RTC-DS1307/

CHAPTER 9. REAL TIME SIMULATION 86

Table 9.2: Difference in time for IMU measurements. With and without an external RTC.

Without RTC [s] Difference [s] With RTC [s] Difference [s]
Measurement 1 1722256275.94 - 09:30:01.382 -

Measurement 2 1722256276.06 0.12 09:30:01.491 0.106

Measurement 3 1722256276.17 0.11 09:30:01.600 0.109

Measurement 4 1722256276.29 0.12 09:30:01.707 0.107

Figure 9.6: RTC DS1307 pins

The updated measurements below include time stamping using the RTC, formatted with full
date and time. While still not perfect, the intervals improved slightly to around 0.106–0.11
seconds.

Listing 9.2: IMU Measurment after RTC

1 2024 -08 -14 09:30:01.382 -24.35 -8.2 6.34 2.07257 0.5115996

5.3941582 -43.1875 37.5 11.5 -94\\

2 2024 -08 -14 09:30:01.491 29.05 4.69 -8.42 0.321795 -7.02601 -4.23351

-32.0625 50.5625 0.0625 -94\\

3 2024 -08 -14 09:30:01.600 -12.26 -11.59 -1.98 -3.311762 9.48259

5.3210 -38.75 33.0625 24.0625 -94\\

4 2024 -08 -14 09:30:01.707 2.61 -4.0600 1.32 -0.85630 -8.847728

-3.0292 -36.75 47.5 10.375 -94

The time difference comparison for both configurations is summarised in Table 9.2.
Although an external RTC can be added to any Pi model, having built-in support as found on
the Pi 5 and Orange Pi simplifies integration and improves reliability. These tests demonstrate
the importance of hardware-based timekeeping for real-time applications and highlight how
integrated RTCs contribute to more consistent data acquisition for simulation and control
systems.

CHAPTER 9. REAL TIME SIMULATION 87

(a) SSD for Orange Pi plus (b) SSD for Raspberry Pi 5

Figure 9.7: SSD for Raspberry Pi and Orange Pi Plus

PCIe support is another important differentiator. EuroSim requires high-speed Non-Volatile
Memory Express (NVMe) solid-state drive (SSD) access for efficient operation, which the Pi 4
cannot accommodate directly. NVMe is a high-performance, scalable host controller interface
designed specifically for accessing PCI Express-based solid-state drives. In contrast, the Pi 5
can support PCIe storage via an external HAT, while the Orange Pi offers native PCIe con-
nectivity, simplifying the setup. This was a decisive factor in selecting hardware for EuroSim
integration.

Other considerations included video output compatibility. The Pi 4 and Pi 5 use Micro HDMI,
which is less common and slightly less convenient in educational or multi-user environments.
In comparison, the Orange Pi 5 Plus includes full-sized HDMI ports, which are typically easier
to source and use, especially in classroom or demonstration settings. The available I/O ports
can be seen in Figure 9.8.

While the Raspberry Pi 5 requires an additional HAT to interface with NVMe SSDs, the Or-
ange Pi can connect directly, offering a more integrated and hardware-efficient solution for
high-speed data access.

Although the Orange Pi 5 Plus is approximately twice the price of the Raspberry Pi 5, it was
selected for final testing due to its superior performance and native PCIe support. A notable
limitation of the Orange Pi is its lack of integrated wireless connectivity, whereas the Raspberry
Pi 5 includes both Wi-Fi and Bluetooth. Since EuroSim requires an internet connection for
initial configuration and potential external communication, this limitation was resolved using
a wired Ethernet connection or a compatible USB Wi-Fi module.

9.3 MATLAB Code Generation

Preparing models for EuroSim requires careful configuration using MATLAB’s specialised code
generation tools. The primary method involves the use of the rtwbuild(’ModelName’) func-
tion, which converts Simulink models into C code compatible with the EuroSim simulation
environment.

9.3.1 Code Configuration

There are two main strategies for generating code: building the entire system model at once
or compiling it block by block. The block-by-block approach provides greater flexibility and
control, allowing for fine-tuned adjustments to individual model components. However, as
models grow in size and complexity, this method becomes more error-prone due to increased
signal routing and interdependencies.

CHAPTER 9. REAL TIME SIMULATION 88

Table 9.3: Set-up Cost for Orange Pi Plus

Hardware Cost [€]

Orange Pi Plus (32GB) 150.00

Lexar NM620 1TB SSD 59.90

HDMI cable 3.98

Ethernet cable 8.99

Keyboard 27.99

Mouse 8.95

Mini screwdriver set 35.95

RTC clock module 5.19

Adapter (USB to flash drive) 23.99

Memory card 9.99

Total 334,93

Table 9.4: Set-up Cost with Raspberry Pi 5

Hardware Cost [€]

Raspberry Pi 5 (8GB) 65.00

Pi 5 metal case 15.72

NVMe PCIe Gen3x4 Kingspec SSD 77.26

Pineberry Pi interface 14.95

Micro HDMI cable 10.99

Keyboard 27.99

Mouse 8.95

Mini screwdriver set 35.95

RTC clock module 5.19

Adapter (USB to flash drive) 23.99

(nice to have) Ethernet cable 8.99

Memory card 9.99

Total 304,97

Several essential rules must be followed during model development. For instance, each model
must include at least one input or output port to ensure proper signal communication. Failure
to do so may result in simulation or build errors.
To support this process, a dedicated build script was developed. This script checks and modifies
model settings based on twelve validation criteria to ensure full compatibility with EuroSim. By
systematically verifying each model and applying required adjustments, the script reduces the
need for manual configuration and significantly lowers the risk of user error. This automation
improves both the efficiency and reliability of the model preparation workflow. The script can
be found in Listing A.4.
The build script implements several critical configuration settings across four main categories:

CHAPTER 9. REAL TIME SIMULATION 89

Table 9.5: Comparison of Raspberry Pi 4, Raspberry Pi 5, and Orange Pi 5 Plus

Feature Raspberry Pi 4 Raspberry Pi 5 Orange Pi 5 Plus

CPU Broadcom
BCM2711, Quad-
core Cortex-A72 @
1.5 GHz

Broadcom
BCM2712, Quad-
core Cortex-A76 @
2.4 GHz

Rockchip RK3588,
Octa-core (4x A76
@ 2.4 GHz + 4x A55
@ 1.8 GHz)

GPU VideoCore VI VideoCore VII ARM Mali-G610
MP4

RAM Options 2–8 GB LPDDR4 4–16 GB LPDDR4X-
4267

8–32 GB
LPDDR4/4X

USB Ports 2x USB 3.0, 2x USB
2.0

2x USB 3.0, 2x USB
2.0

2x USB 3.0 Type-A,
2x USB 2.0, 1x USB
3.0 Type-C

Ethernet Gigabit Ethernet Gigabit Ethernet
with PoE+ support

2x 2.5 GbE RJ45
ports

Video Output 2x Micro HDMI (up
to 4K@60)

2x Micro HDMI
(4K@60 HDR)

2x HDMI 2.1 (up
to 8K@60), 1x
HDMI input, 1x
USB-C DisplayPort
(8K@30)

Storage MicroSD MicroSD (SDR104
mode)

MicroSD, eMMC
module, M.2 NVMe
SSD

Wireless Wi-Fi 802.11ac,
Bluetooth 5.0

Wi-Fi 802.11ac,
Bluetooth 5.0

Optional Wi-Fi 6 /
Bluetooth via M.2 E-
Key

Power Input USB-C (5 V / 3 A) USB-C (5 V / 5 A)
with PD support

USB-C (5 V / 4 A)

Real-Time
Clock

No Yes (external battery
required)

Yes (external battery
required)

Price (approx.) €60 (4 GB model) €65 (8 GB model) €150 (32 GB model)

Solver Configuration

Fixed step discrete solver, 0.01 s step size (100 Hz) A fixed step solver ensures each sim-
ulation time step consumes the same wall-clock interval, which is essential for real-time
scheduling in EuroSim. A 100 Hz rate matches typical ADCS loop frequencies, allowing
sensors, filters and actuators to be serviced within a known deadline.

ode4 (4th-order Runge–Kutta) solver for continuous blocks Any continuous-time dynam-
ics (e.g.simple disturbance models) are integrated with the classical fourth order Runge-
Kutta method (ode4). This provides a favourable trade–off between numerical accuracy
and execution time, without introducing variable-step behaviour that would violate real
time constraints.

Generic Real–Time (GRT) target The GRT system target file is selected so that Simulink
generates plain, POSIX-free ANSI C. This maximises portability and allows EuroSim’s

CHAPTER 9. REAL TIME SIMULATION 90

Figure 9.8: RaspberryPi 5 and Orange Pi Plus

build system to compile the code into its own simulation libraries.

Code Generation Settings

Code only (no compile or simulate) Export C source and headers without invoking a local
compiler or simulator. All subsequent builds and link steps are handled within EuroSim’s
environment, avoiding conflicts with Simulink’s toolchain.

Structured folder layout Generated files are organised into src/, inc/ and lib/ subdirecto-
ries. This separation simplifies EuroSim integration and prevents overcrowded directories.

Reusable functions rather than inlining Blocks are configured to emit separate C functions
for reusable logic rather than monolithic inlined code. This reduces code size, improves
instruction-cache behaviour and makes the output easier to inspect and debug.

Parameter Management

Runtime-tunable parameters All controller gains, sensor biases and filter covariances are
declared as tunable parameters. EuroSim can load these from external files or a user
interface at startup, eliminating the need to regenerate code for each parameter tweak.

Separate Outputs and Update functions Estimation and control algorithms are split into
distinct output–generation and state–update routines. This separation aligns with Eu-
roSim’s execution cycle and aids in isolating timing or numerical issues during debugging.

Performance Optimisation

Disable automatic logging MATLAB-format (.mat) logging is turned off to prevent dynamic
memory allocations and file-I/O delays that would risk missed deadlines in a real-time
loop.

CHAPTER 9. REAL TIME SIMULATION 91

(a) Bus Creator in Simulink (b) MUX in Simulink

Disable SIMD optimisations Processor-specific vector instructions (e.g.SSE2, AVX) are dis-
abled to ensure the generated C code uses only standard constructs. This maximises
compatibility across diverse host machines and embedded boards supported by EuroSim.

Once compiled, each block should get a folder with a name in the format ”ModelName grt rtw”.
These folders can then be transferred to the Raspberry Pi / Orange Pi. As each block of our
simulator has been exported separately, MATLAB may repeat functions depending on the
functionality of the block. When compiling in Eurosim, it may error due to repeated defined
function, but these can be deleted easily. The functions are usually inside the ”.c” files, which
can be opened and the functions commented out or deleted. As long as one definition is
present, it will work. On top of this, there are several files which are needed from MATLAB
to compile the models. These can be exported from MATLAB, or, within Eurosim, there are
several example simulations which have been exported from MATLAB and can be copied into
your folder. As long as the version matches, it will work.

9.3.2 MATLAB Limitations

Several limitations of MATLAB Simulink were encountered during the development of the
simulation model, particularly in the context of real-time code generation and model portability.
One key technical constraint is the use of bus creators instead of MUX blocks. While MUX
blocks are commonly used for signal grouping, they can introduce ordering issues during C code
generation. These inconsistencies may cause the model to fail during compilation or execution
in external environments. Bus signals, in contrast, maintain named signal structures that are
more robust for embedded deployment.
Another major limitation is the inability to use multiple direct copies of the same model block.
For instance, duplicating the Sun sensor model six times caused variable conflicts due to shared
workspace definitions, leading to failures in variable resolution during simulation. To resolve
this, model ”instances”, a Eurosim feature, must be used instead, ensuring that each block
maintains a unique context.
MATLAB does support the use of initialisation scripts to configure mask parameters program-
matically. However, this can become difficult to manage, especially when exporting models
to environments such as EuroSim. In those cases, constants are often accessed and modified
directly within the generated data.c files for each model instance, which may not be ideal for
maintainability.
Randomisation within the model also introduces challenges. Functions such as rand or custom
Gaussian noise generators are seeded globally, meaning all calls to the same random function
use the same seed unless explicitly overridden. As a result, multiple “random” sources may
produce identical outputs unless properly handled, which undermines the realism of simulated
noise and variation.
Finally, the complexity of signal routing can become a major source of implementation error.
In the initial version of the model, over 500 internal signal connections were present, making

CHAPTER 9. REAL TIME SIMULATION 92

debugging and management impractical. This was eventually reduced to 17 blocks and around
100 meaningful connections. Even at this reduced level, managing connections in Simulink
remains cumbersome, and mistakes can easily propagate if signals are misrouted or not clearly
labelled. Tools such as the ”execution order” viewer and debugging interface were instrumental
in identifying and resolving these issues.

9.4 Eurosim implementation, How to, dos and donts

Once the model files have been uploaded to the Raspberry/ Orange PI, the generated .c files for
each model must be further converted to enable compatibility with the EuroSim environment.
This additional conversion step is required because Simulink generates standalone C code that
references its own main function, which must be replaced by the main structure defined by
EuroSim. During this process, variable names are standardised, and new EuroSim-specific
variables are introduced.
In cases where multiple instances of the same model are used (e.g., multiple Sun sensor blocks),
direct reuse of Simulink-generated code can lead to conflicts. To automate the conversion and
ensure compatibility, a custom tool developed by Leon Bremer (Airbus) was employed7. This
command-line utility, called simulink2c, converts the Simulink-generated code into EuroSim
format. The tool is executed using the following syntax from the terminal:

simulink2c -i 1 NameOfFile

The number can be replaced with any number and refers to the number of instances required.
In this thesis case, it will be six instances of the Sun sensor.
Once the conversion is complete, the code is ready for use in building a simulator. In addition
to the converted source files, a Simulink library folder, which contains all the necessary shared
scripts and an error-handling script, which prevents the models from erroring due to the indi-
vidual main files not being called, is added to the model directory for use during simulation
execution.
An example of this header is found in Listing A.5.
EuroSim itself is structured around three primary interfaces used to construct and operate the
simulator:

• ModelEditor for configuring model structure and input/output mappings

• ScheduleEditor for defining the model’s execution order and timing

• SimulationCtrl for running and monitoring the simulation

Each of these tools is discussed in the following sections.

9.4.1 ModelEditor

The ModelEditor is used to define the build options for EuroSim. Within this interface, the
various components of your model are introduced, and the connections between blocks are
established.
It is recommended to open a terminal within the model directory that contains all the generated
.rtw folders. From this terminal, launching the ModelEditor can be done simply by typing
ModelEditor, which opens the interface shown in Figure 9.14.

7Private communication

CHAPTER 9. REAL TIME SIMULATION 93

Figure 9.10: Opening ModelEditor in Terminal

The first step is to add all the model blocks. To do this, right-click on Untitled.model in the
interface. A drop-down menu will appear; hover over Add, and then select Add Directory.
This opens a file browser where each .rtw folder should be added individually. Unfortunately,
bulk selection is not supported, so for large models this process can be time-consuming.
In addition to the model blocks, it is important to add the MATLAB library folder (named
2023b (Matlab version) in this thesis) and the error-handling script. The library folder should
be added using Add Directory, while the error script must be added via Add File, since
directory mode does not allow individual file selection.

Figure 9.11: Example folders in ModelEditor

Once all model components have been included, the build paths must be configured. This
is done by selecting Tools from the top menu bar and choosing Build Options from the
dropdown list. A window will appear containing multiple input fields. Only the first, larger field
needs to be filled in. Here, specify the paths to all required folders necessary for compilation.
For example, if the 2023b directory contains subfolders extra, external, and Simulink,
then the paths 2023b/extra, 2023b/external, and 2023b/Simulink must be entered. Ad-
ditionally, the paths to all .rtw module directories should be included.
Once the build paths are set, close the options window and press Build All from the secondary
toolbar. EuroSim will then initialise the required files and prepare the simulator for setup.
Common Errors:

• Missing or inaccessible files: This typically indicates that the build paths were not con-
figured correctly. EuroSim relies on the Build Options to locate files; if these are
incomplete or incorrect, compilation will fail.

CHAPTER 9. REAL TIME SIMULATION 94

Figure 9.12: Finding BuildOptions

• Multiple definition errors: These often occur when functions are defined more than once
across different model files. For instance, utility functions such as those in rtGetNaN.c

may be duplicated in multiple .rtw folders. To avoid this, such files can be centralised
into a shared folder and included only once.

• Redundant function definitions: Occasionally, the same function may appear in more
than one generated .c file. A typical solution is to comment out one of the duplicates.
An example of such a function is provided in Listing 9.3, where commenting out the
second definition resolved the compilation issue.

.

Listing 9.3: rt roundd snf(real T u)

1 real_T rt_roundd_snf(real_T u)

2 {

3 real_T y;

4 if (fabs(u) < 4.503599627370496E+15) {

5 if (u >= 0.5) {

6 y = floor(u + 0.5);

7 } else if (u > -0.5) {

8 y = u * 0.0;

9 } else {

10 y = ceil(u - 0.5);

11 }

12 } else {

13 y = u;

14 }

15

16 return y;

17 }

ParameterExchange in ModelEditor

Once the compilation is complete, the ModelEditor interface will display ALL DONE. It is good
practice at this stage to use Clean All followed by Build All to ensure that all blocks are

CHAPTER 9. REAL TIME SIMULATION 95

Figure 9.13: BuildOptions

Figure 9.14: ModelEditor Interface on Eurosim

correctly initialised.
The next step involves establishing connections between the model blocks using a ParameterEx-
change file. To create this file, right-click on the .model name in the ModelEditor interface,
select New, and then choose New ParameterExchange. This will open a new window with
three panes, as shown in Figure 9.15.
All signal connections from the Simulink model must now be re-established manually within
this interface. A helpful rule of thumb is to group related signals into exchange groups. To
do this, right-click on the lower wide pane and select Add Exchange Group from the title bar
menu.
One effective strategy is to group the connections by inputs to blocks. For each model block,
focus only on its inputs, this ensures that all essential data pathways are accounted for. It is
not necessary to connect every single input and output: some outputs can be used purely for
monitoring, while some inputs may be set later via SimulationCtrl.
Once all necessary parameter connections have been added, the ParameterExchange file can
be saved and closed. The same can then be done for the overall ModelEditor session.

CHAPTER 9. REAL TIME SIMULATION 96

Figure 9.15: Parameter Exchange Editor in ModelEditor Interface on Eurosim

9.4.2 ScheduleEditor

After the ParameterExchange configuration is complete, the connection schedule must be
defined using the ScheduleEditor. This tool can also be launched from the terminal by entering
the command ScheduleEditor. The interface is illustrated in Figure 9.16.
Upon opening the ScheduleEditor, you will be prompted to connect a .model file. If this
dialogue does not appear automatically, it can be accessed by selecting File > Connect

Model File from the menu. Connecting the model file allows the ScheduleEditor to access
all functions and parameter definitions.
The interface consists of several key components. The top grey bar provides buttons for Flow,
Task, and Timer, which are used to configure simulation logic in the workspace below. Below
this, there are four main state windows: Initialising, Standby, Executing, and Exiting.

• Initialising: This state defines how the model starts up. Typically, a Task block is placed
between the State Entry and Pause arrows. Double-clicking the Task block opens a
new window where you can add all Initialise functions from each model block into
the right-hand panel.

• Standby: This tab is often unused in basic setups. In this thesis, no functions were
added here.

• Executing: This defines the main simulation loop. You must add a Timer block and a
Task block, connected by an arrow. The default timer rate is 100 Hz, though this can
be adjusted. Multiple Task-Timer pairs may be used for components requiring different
update rates. Within each Task block, the Output, Update, and ParameterExchange

functions must be added. The order in which these functions are listed determines exe-
cution priority and signal timing. If the update or execution order is unclear, MATLAB’s
debugging tools (under the Execution Order tab) can provide a visual breakdown of
both high-level and low-level call sequences.

• Exiting: In this final state, a Task block should be added and connected to the
Terminate arrow. Inside the Task, all Terminate functions from each model block
must be listed to ensure proper shutdown.

CHAPTER 9. REAL TIME SIMULATION 97

Figure 9.16: ScheduleEditor Interface on Eurosim

Figure 9.17: Finding BuildOptions

If confusion arises about which functions to call (e.g., Output vs. Update), you can open the
associated .c files in the .rtw folders to inspect the function definitions. Once all tasks are
configured across all four states, the schedule setup is complete.
An example of a Task is shown as follows:

9.4.3 SimulationCtrl

The SimulationCtrl interface is used to run the model by handling simulation initialisation,
execution, and termination. A typical view of the interface is shown in Figure 9.21.
To begin, both the schedule file and the model file must be loaded. This can be done by
clicking New, which will prompt the user to select these files. Once loaded, the interface layout
updates as shown in Figure 9.22.
The left-hand pane displays a tree menu containing several key features:

• Scenarios: This section allows the user to define specific simulation conditions or con-
figurations, useful when testing particular system behaviours or fault cases.

• Real-Time Monitoring: During simulation, variables can be observed in real time
either as live value displays or plotted graphs. This enables immediate feedback and

CHAPTER 9. REAL TIME SIMULATION 98

Figure 9.18: API Interface showing variable values

performance assessment.

• MMIs (Man-Machine Interfaces): This tab allows the user to set up data recorders,
which log specified variables over the course of the simulation. Additionally, stimulus
files can be added, which contain predefined or real-time data that can be fed back into
the model. Stimuli may represent environmental conditions, sensor inputs, or even data
from live hardware. An example of this code can be seen in Listing 9.4. This highlights
EuroSim’s support for hardware-in-the-loop (HIL) testing.

• Initial Conditions: As the name suggests, this menu allows users to set initial values
for simulation variables during the model’s initialisation phase.

Once setup is complete, the model can be initialised by pressing the Init button. This
activates the Go button, which starts the simulation when pressed.
Some common errors here involve incorrect parameter exchanges, incorrect scheduling of those
parameter exchanges, and not building your ModelEditor .model file before running your sim-
ulation on SimulationCtrl. Even if a model has been run before successfully and you turn off
your Pi, you should always build the model on ModelEditor first.

Listing 9.4: Example of Stimulus File

1 # EuroSim recording file

2 Version: Mk7 -rev3 -pl10

3 Date recorded: Mon -May -05 -08:55:33 -CST -2025

4 Mission: ../../ ekf.mdl

5 # enough data for stimulating 100812 timesteps with recordsize 344

6 Dict: ../../ please.Linux/please.dict

7 SimTime: /simulation_time

8 TimeFormat: relative

9 Number of variables: 9

10 /simulation_time: struct timespec

11 /EKF_grt_rtw/EKF.c/ExtY [0]. qpred: double [4], C array

12 /EKF_grt_rtw/EKF.c/ExtY [0]. sun_res: double [3], C array

13 /EKF_grt_rtw/EKF.c/ExtY [0]. mag_res: double [3], C array

CHAPTER 9. REAL TIME SIMULATION 99

Figure 9.19: Recorder tab which records the selected outputs

14 /EKF_grt_rtw/EKF.c/ExtY [0].K: double [18], C array

15 /EKF_grt_rtw/EKF.c/ExtY [0]. sigma_diag: double [3], C array

16 /EKF_grt_rtw/EKF.c/ExtY [0]. Qerror: double [4], C array

17 /RDY_grt_rtw/RDY.c/ExtY [0]. w_BI: double [3], C array

18 /RDY_grt_rtw/RDY.c/ExtY [0].q: double [4], C array

9.5 Acceptance and Implementation Testing of Simulink Models
onto Eurosim

To make sure the method of implementation is correct, multiple tests were performed. These
test was done by comparing the output of a Simulink model to the model in EuroSim. The
first test was done using the model shown in Figure 9.23. The example model only contains
two blocks, LQR and RB. The LQR block is a simple LQR controller, and the RB block is
a rigid body dynamics model. There is one input for the RB block and two outputs, which
feed into the LQR block, making the parameter exchanges simple. The results of this test can
be seen in Figure 9.24. The thick lines show a common error of frequency mismatch. The
model was exported with a 40-second time step while the blocks were run at 100Hz (0.01s)
in Eurosim, leading to an error in results. The second plot shows the actual errors when the
model was implemented correctly. This shows large spikes in errors, which occur when the
lines cross.
The second test was done using the model shown in Figure 9.25. This model is more complex
as it includes parallel blocks. It also has a loop which doesn’t include all blocks which makes
parameter exchange scheduling interesting. This model was exported correctly, and the outputs
from both models match nearly perfectly.

CHAPTER 9. REAL TIME SIMULATION 100

Figure 9.20: Graphs in SimulationCtrl

Figure 9.21: SimulationCtrl Interface on Eurosim

Figure 9.22: SimulationCtrl Interface on Eurosim

9.6 Final Model Implementation

The final model with all environment, sensors, actuators, propagators and more was condensed
to 17 blocks and over 100 parameter exchanges. All of these must be done manually. The

CHAPTER 9. REAL TIME SIMULATION 101

LQR RB

Torque

q,ω

Figure 9.23: Flowchart illustrating the interaction for first example between LQR and RB. LQR
provides torque to RB, and RB outputs q and ω back to LQR.

1000 2000 3000 4000 5000
Time [s]

-500

0

500

1000

1500

2000

2500

A
bs

ol
ut

e
D

iff
er

en
ce

 [m
]

X
Y
Z

(a) Absolute difference in position between
Simulink and Eurosim

1000 2000 3000 4000 5000
Time [s]

0

2000

4000

6000

8000

10000

P
er

ce
nt

ag
e

D
iff

er
en

ce
 [%

]

X
Y
Z

(b) Percentage difference in position between
Simulink and Eurosim

Figure 9.24: Validation of Eurosim implementation against Simulink reference model

MJD GMST RSpherical SphHar

Civ

Accel2Force Cowell

Figure 9.25: Detailed system architecture showing all main components and data flow.

0 20 40 60 80 100
Time [s]

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

A
ng

ul
ar

 V
el

oc
ity

Simulink Var 1
Simulink Var 2
Simulink Var 3
Eurosim Var 1
Eurosim Var 2
Eurosim Var 3

(a) Angular velocity comparison between
Simulink and Eurosim

0 20 40 60 80 100
Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

Q
ua

te
rn

io
ns Simulink Var 4

Simulink Var 5
Simulink Var 6
Simulink Var 7
Eurosim Var 4
Eurosim Var 5
Eurosim Var 6
Eurosim Var 7

(b) Quaternion orientation comparison be-
tween Simulink and Eurosim

Figure 9.26: Comparison of attitude dynamics between Simulink and Eurosim implementations

flow diagram of the simulation can be seen below. Of course, this was not done at once but
over different stages. First, the environment models are added and tested. Compared with the

CHAPTER 9. REAL TIME SIMULATION 102

Magnetic
Field Model

Atmospheric
Density Model

Solar Flux
Model

Gravitational
Model

Time

Magnetic Force
& Moment

Aerodynamic
Drag

SRP Force

Gravitational
Force

Σ

Rigid Body
Dynamics

(EOM/SAT)

F

Figure 9.27: Compact layout of the environment-to-dynamics model with left-to-right flow.

MATLAB Simulink data. Then the sensors and actuators, the EKF and finally the controller
and actuators. The results are shown and discussed below.

TIME MAG

ATM

GRAV

SRP

RB

RDY

GYR

MAGN

SS

EKF PD RW

BDOT MAGNT

9.6.1 Environment

The environment model can be found in Figure 9.27. Each block is generated separately
based on the methodology discussed previously. The results of the model can be found in
Figure 9.28. The model is simple with no controller and with ideal conditions. The absolute
difference shows a growing error with time. There is a presence of small jitter which is coming
from the variability of Eurosim. Figure b shows large jumps similar to the acceptance tests
when the values cross each other or the zero bar. This can be explained as if the value
is supposed to be zero, and a value near zero is found; this can be seen as a large offset.
Therefore was concluded not to be a problem. One difference is the exponential curve, which
can be seen but could not be seen on the acceptance test. This could be explained by step
size differences or Eurosim model jitter.

9.6.2 Sensor Addition

Figure 9.29 shows the environment model with the addition of rotational dynamics as well as
sensor models. These sensor models include one gyroscope, six sun sensors and a magnetome-
ter. The results shown in Figure 9.30, show the expected jumps when the zero line is crossed.
Other results, however, overlap perfectly, showing good model configuration.

CHAPTER 9. REAL TIME SIMULATION 103

1000 2000 3000 4000 5000
Time [s]

-500

0

500

1000

1500

2000
A

bs
ol

ut
e

D
iff

er
en

ce
 [m

]

X
Y
Z

(a) Absolute difference for radius Plot with
environment models

1000 2000 3000 4000 5000
Time [s]

0

2

4

6

8

P
er

ce
nt

ag
e

D
iff

er
en

ce
 [%

]

X
Y
Z

(b) Percentage difference for velocity Plot
with environment models

Figure 9.28: Results of environment models

Time
Magnetic

Field Model

Atmospheric
Density Model

Solar Flux
Model

Gravitational
Model

Magnetic Force
& Moment

Aerodynamic
Drag

SRP Force

Gravitational
Force

Σ

Rigid Body
Dynamics

(EOM/SAT)

Rotational
Dynamics

Sensors
(Gyroscope,
Sun Sensor,

Magnetometer)

Figure 9.29: Environment-to-dynamics model with clockwise flow: Time input, forces, sum-
mation, dynamics, and sensors.

9.6.3 EKF in Eurosim

Given the previously mentioned method, the Extended Kalman filter was then ported to Eu-
rosim. The results can be seen in Figure 9.31. Here, it was found that the sun sensor was
not compatible when in a non-ideal condition due to the noise module. Therefore, a function
was used in its place. These new results, shown as a covariance plot in Figure 9.31, show a
small deviation in the results. Although by the end of the simulation, the results are closer
together, and the error decreases. This could be due to the addition of a different sun sensor,
although the MATLAB results were also collected with the new sun sensor function. Another
source of the error could be that the errors are very small and in the previous tests, the errors
were clouded by the spikes, which could have misled the strong alignment. Lastly, the order
of execution could be a cause of this error. The dips and jumps in the errors align, which is

CHAPTER 9. REAL TIME SIMULATION 104

1000 2000 3000 4000 5000 6000
Time [s]

-3

-2

-1

0

1

2

3
S

en
so

r O
ut

pu
t

Simulink Ny (Nx)
Simulink Nz (Ny)
EuroSim Ny
EuroSim Nz

(a) Absolute difference of sun sensor measure-
ments

1000 2000 3000 4000 5000 6000
Time [s]

0

0.5

1

1.5

2

2.5

3

A
bs

ol
ut

e
D

iff
er

en
ce

Ny Axis (Nx - Ny)
Nz Axis (Ny - Nz)

(b) Percentage difference for sun sensor mea-
surements

Figure 9.30: Results of sensor models

0 200 400 600 800 1000

-0.02

0

0.02

q 1

0 200 400 600 800 1000
-0.02

0

0.02

q 2

0 200 400 600 800 1000
Time [s]

-5

0

5

q 3

#10-3

Figure 9.31: Error covariance plot. The darker shades are Simulink, and the lighter shade is
Eurosim.

encouraging.

9.6.4 PD in Eurosim

Here, the PD controller was added. As shown in Figure 9.32, an even larger difference is found;
however, the settling time is close to identical. This could be an accumulated error from the
EKF, which then applies to the PD controller. This deviation indicates there may be a block
which does not respond as intended.
Overall, the performance of Eurosim is encouraging but also challenging. Eurosim is a very
promising tool as it can offer real-time environments and the possibility to include hardware;
however, more complex models can be hard to implement without a full understanding of the

CHAPTER 9. REAL TIME SIMULATION 105

0 10 20 30 40 50
Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

q er
r (r

ad
)

Figure 9.32: PD Error covariance plot for first 50 seconds

backend operations of Eurosim. It is also good that it can run on low-cost hardware, which is
ideal for educational projects with limited budgets. The interface is also simple to understand,
which can help with usability. For simple unit tests of ADCS, this can be a great tool for
student engineers.

9.7 Requirements

This section shows the compliance with the requirements given in Chapter 3.

Table 9.6: Compliance summary for simulator requirements.

ID Compliance Summary

SIM01 Achieved. Real-time simulation of CubeSat attitude dynamics was successfully
demonstrated.

SIM02 Partially achieved. Hardware was not tested directly, but its capabilities were
investigated and documented for future development.

SIM03 Achieved. Real-time interaction with ADCS software was successfully demon-
strated.

SIM04 Achieved. The setup used widely available COTS components, including Rasp-
berry Pi and Orange Pi boards.

SIM05 Achieved. All tools used were educationally licensed, although not fully open-
source.

SIM06 Partially achieved. The interface was accessible, but the documentation was com-
plex and assumed prior software knowledge. Further improvements are suggested.

SIM07 Achieved. The complete test bench was assembled for under €500, well below
the €2000 limit.

CHAPTER 10

Conclusion and Recommendations
This study set out to answer the following research question:

To what extent can low-cost hardware and simulation tools support real-time test-
ing of CubeSat ADCS algorithms in an educational context?

By combining MATLAB/Simulink models with the GRADS and GGNCSIM libraries and the
EuroSim real-time framework, the project demonstrates that a credible and functional ADCS
test bench can be assembled for under €500. The platform currently supports SILT) experi-
ments and shows significant promise for future HIL testing.
A complete functional simulator was built in MATLAB, incorporating environmental perturba-
tions, realistic sensor and actuator models, and both B-dot and PD control laws. EKFs were
evaluated under three configurations: magnetometer-only, single sun sensor, and dual-sensor
fusion. The dual-sensor fusion case produced the lowest quaternion error and remained numer-
ically stable for at least 1 000 s. Real-time code was auto-generated and ported to EuroSim.
Despite some build system limitations, particularly function replication and bus versus mux

conflicts, a twelve-step build workflow was developed that ensures consistent compilation on
both Raspberry Pi 5 and Orange Pi 5 Plus hardware.
Closed-loop tests verified successful detumbling and sun acquisition at a rate of 100Hz with
no deadline overruns. B-dot control reliably reduced angular velocity, while the open-loop
configuration diverged, validating the controller. The PD controller aligned the +X axis to
the Sun in under 50 seconds, well within the SA01 requirement of 90 minutes, and achieved a
steady-state pointing error below 0.5◦.

Addressing the Sub-Research Questions

• What components are required to develop a functional ADCS simulation and
test environment?
The system requires models for environmental effects, sensors (magnetometer, sun sen-
sors), actuators (magnetorquers), filters (EKF), and controllers (B-dot, PD). Simulink,
along with add-ons like the Aerospace Toolbox and Simulink 3D Animation, provided
the modeling framework. Real-time execution relied on EuroSim and supported libraries
such as GRADS and GGNCSim.

• What are the benefits and limitations of using simulated environments for testing
ADCS algorithms without access to flight hardware?
Simulated environments allow early-stage validation and debugging in a controlled set-
ting, reducing risk before deployment. They also provide repeatable scenarios for ed-
ucational use. However, they can’t capture all real-world dynamics and are limited by
the fidelity of the models and numerical integration challenges. EuroSim in particular
becomes more cumbersome with increasing model complexity.

• Can the proposed setup incorporate hardware-in-the-loop (HIL) testing?
Yes. Stimulus-file-based experiments confirmed that EuroSim can support HIL operation.
While full HIL integration was beyond this thesis’s scope, the system architecture is
capable of supporting it. The next logical step is to interface with physical sensors and
actuators.

107

CHAPTER 10. CONCLUSION AND RECOMMENDATIONS 108

• How can a real-time test bench be designed to meet the needs of student-led
and institution-based CubeSat projects?
By leveraging widely-used tools (e.g., MATLAB), low-cost embedded hardware, and
real-time frameworks like EuroSim, a test bench can be constructed affordably and
incrementally. Documenting each stage of integration helps manage complexity and
lowers the barrier for other student teams.

Limitations

The major limitation encountered was the increasing complexity of porting advanced Simulink
models to EuroSim. As models grow, issues such as redundant function generation and manual
block separation become more frequent, slowing the development process. Automating this
process, or developing a higher-level interface to manage modular integration, would signifi-
cantly streamline workflow.
Hardware itself was not a bottleneck: modern single-board computers like the Raspberry Pi 5
and Orange Pi 5 Plus handled real-time execution without deadline misses. Their performance
is expected to improve over time, further increasing the system’s robustness.
Lastly, although the current system supports SITL, the absence of full HIL integration leaves
a gap in practical testing capabilities. Connecting actual sensors and actuators remains an
essential next step.

10.1 Recommendations

To extend this work and build a more complete test ecosystem, the following recommendations
are proposed:

1. Implement full hardware-in-the-loop (HIL) integration. Start with low-risk com-
ponents (e.g., sun sensors or magnetometers) that do not involve mechanical motion.
Gradually progress to actuators like magnetorquers, and finally consider motion platforms
for 3D testing.

2. Adopt more flight-representative ADCS algorithms. Explore control approaches
such as quaternion-based PID, nonlinear observers, or adaptive filtering to evaluate the
scalability and precision of the current test bench for real-world missions.

3. Automate model modularisation and code generation. Investigate scripting tools
or APIs to partition Simulink models into EuroSim-compatible modules automatically.
This would significantly reduce manual effort and allow for rapid iteration and experi-
mentation.

4. Streamline EuroSim integration. Explore command-line control or API-level access
to automate build, test, and deployment procedures. This would enhance reproducibility
and open the door to continuous integration pipelines for model testing.

5. Expand educational outreach. Package this test bench as a teaching tool, including
tutorials, troubleshooting guides, and example missions. This could improve CubeSat
training programs and reduce ADCS-related mission failures in academic settings.

6. Benchmark alternative real-time frameworks. Compare EuroSim with open-source
platforms like sat-rs or Xcos for Scilab to assess cost-benefit tradeoffs and compatibility
with educational or low-cost space initiatives.

CHAPTER 10. CONCLUSION AND RECOMMENDATIONS 109

This thesis contributes a low-cost, real-time CubeSat ADCS test bench that bridges the gap
between purely numerical studies and expensive professional facilities. Despite some limitations,
the architecture is scalable, the process is reproducible, and the outcomes are educationally
meaningful. With modest extensions, the system can support full HIL testing and serve as a
hands-on platform for training future spacecraft engineers.

APPENDIX A

Appendix A

A.1 Simplified Fine Sun Sensor Model (MATLAB)

Listing A.1: Simplified Fine-Sun-Sensor model

1 function [lit , Ny, Nz] = fss_model(...

2 Sb_B , eclipse , ... % inputs

3 phi_deg , theta_deg , psi_deg , ... % mount (deg)

4 FOV_X_deg , FOV_Y_deg , ...

5 BIAS_X_rad , BIAS_Y_rad , ...

6 NOISE_X_sigma , NOISE_Y_sigma , ...

7 Q_X_rad , Q_Y_rad) % quantisation (rad)

8 %#codegen

9

10 deg2rad = pi /180;

11

12 %% --- convert once

13 phi = deg2rad * phi_deg;

14 theta = deg2rad * theta_deg;

15 psi = deg2rad * psi_deg;

16

17 hf1 = deg2rad * FOV_X_deg;

18 hf2 = deg2rad * FOV_Y_deg;

19

20 %% --- body -> sensor frame rotation

21 cph = cos(phi); sph = sin(phi);

22 cth = cos(theta);sth = sin(theta);

23 cps = cos(psi); sps = sin(psi);

24

25 C = [cth*cps , cth*sps , -sth ; ...

26 sph*sth*cps -cph*sps , sph*sth*sps+cph*cps , sph*cth ; ...

27 cph*sth*cps+sph*sps , cph*sth*sps -sph*cps , cph*cth];

28

29 Sf = C * Sb_B (:); % [ux; uy; uz]

30 ux = Sf(1); uy = Sf(2); uz = Sf(3);

31

32 %% FOV and front side test

33

34 front = (uz <= 0);

35 insideY = abs(uy/uz) <= tan(hf1);

36 insideZ = abs(-ux/uz) <= tan(hf2);

37 noEcl = (eclipse == 0);

38

39 lit = double(front && insideY && insideZ && noEcl);

40

41 if ~lit % not lit: return zeros fast

42 Ny = 0; Nz = 0;

43 return

44 end

45

46 %% -deal tangent angles

110

APPENDIX A. APPENDIX A 111

47 Ny_ideal = uy / uz; % tan(alpha_y)

48 Nz_ideal = -ux / uz; % tan(alpha_z)

49

50 %% --- bias + Gaussian noise

51 Ny_meas = Ny_ideal + BIAS_Y_rad + NOISE_Y_sigma * randn();

52 Nz_meas = Nz_ideal + BIAS_X_rad + NOISE_X_sigma * randn();

53

54 %% --- quantise

55 Ny = round(Ny_meas / Q_Y_rad) * Q_Y_rad;

56 Nz = round(Nz_meas / Q_X_rad) * Q_X_rad;

57 end

A.2 Initialise Model Script (MATLAB)

Listing A.2: Simulation set-up

1 %% ---------------- Simulation timing

2 tfinal = 1000; % [s]

3 T_sample = 0.01; % main Simulink sample time

4

5 % sensor sample times [s]

6 Sensors.FineSunSensor.SAMPLE = 0.05;

7 Sensors.Magnetometer.SAMPLERATE = 0.02;

8 Sensors.ThreeAxisAccelerometer.SAMPLERATE = 0.04;

9 Sensors.ThreeAxisGyroscope.SAMPLERATE = 0.01;

10

11 %% ---------------- Satellite characteristics

12 Sat.mass = 5; % [kg]

13 Sat.ReflectionCoefficient= 0.8;

14 Sat.SurfaceArea = 0.02; % [m^2]

15 Sat.DragCoefficient = 2;

16

17 %% ---------------- Environment

--

18 % Gravity model (ITG GRACE 2010 s, n=m=10)

19 load itg_grace2010s

20 Environment.Gravity.SH.RE = RE;

21 Environment.Gravity.SH.MU = MU;

22 Environment.Gravity.SH.C = C;

23 Environment.Gravity.SH.S = S;

24 Environment.Gravity.Degree = 10;

25 Environment.Gravity.Order = 10;

26

27 % Magnetic dipole (IGRF like simplification)

28 Environment.MagneticDipole.g10 = -2.9557E-05;

29 Environment.MagneticDipole.g11 = -1.6718E-06;

30 Environment.MagneticDipole.h11 = 5.0800E-06;

31 Environment.MagneticDipole.B0 = 3.12e-5; % [T]

32 Environment.EarthAngularRate = 7.2921151467e-5;% [rad/s]

33 Environment.Mag.M_RM = [1.5; -1.0; 0.5] * 1e-3; % [A m2]

APPENDIX A. APPENDIX A 112

34

35 %% ---------------- Initial orbital state

36 h = 500e3; % 500 km

circular

37 x_sat = 0.10; y_sat = 0.10; z_sat = 0.30; % bus dims [m]

38

39 Propagators.System.mass = Sat.mass;

40 Propagators.System.mu = MU;

41

42 r0 = [RE + h; 0; 0];

43 v0 = [0; sqrt(MU/r0(1)); 0];

44 Propagators.State.Translational.r0 = r0;

45 Propagators.State.Translational.v0 = v0;

46

47 Ix = (1/12)*Sat.mass*(y_sat^2 + z_sat ^2);

48 Iy = (1/12)*Sat.mass*(x_sat^2 + z_sat ^2);

49 Iz = (1/12)*Sat.mass*(x_sat^2 + y_sat ^2);

50 Propagators.System.I = diag([Ix, Iy, Iz]);

51 Propagators.System.Iinv = diag (1./[Ix, Iy, Iz]);

52

53 Propagators.State.w0 = [0; 0; 0];

54 Propagators.State.q0 = [0; 0; 0; 1];

55

56 %% ---------------- Epoch (UTC)

--

57 Utilities.TimeUtilities = struct(’Year’ ,2021,’Month ’,10,’Day’

,21,...

58 ’Hour’,23,’Minute ’,45,’Sec’ ,10.8);

59

60 %% ---------------- Orbital elements (for OrbCar)

61 Utilities.CoordinateTransformations = struct(...

62 ’e’, 0, ...

63 ’a’, RE + h, ...

64 ’i’, 0, ...

65 ’w’, 0, ...

66 ’O’, 0, ...

67 ’tp’, 45*60, ...

68 ’mu’, MU);

69

70 [Vi0 , Xi0] = OrbCar(Utilities.CoordinateTransformations.mu, ...

71 Utilities.CoordinateTransformations.e, ...

72 Utilities.CoordinateTransformations.a, ...

73 Utilities.CoordinateTransformations.i, ...

74 Utilities.CoordinateTransformations.w, ...

75 Utilities.CoordinateTransformations.O, ...

76 Utilities.CoordinateTransformations.tp);

77

78 %% ------------------ Magnetometer

79 Sensors.Magnetometer = struct(...

80 ’MISALIGNMENT_1 ’, 0.5e-3*pi /180*[1 1], ...

81 ’MISALIGNMENT_2 ’, 0.5e-3*pi /180*[1 1], ...

82 ’MISALIGNMENT_3 ’, 0.5e-3*pi /180*[1 1], ...

83 ’DRIFT ’, 1e-9*[1 1 1], ...

APPENDIX A. APPENDIX A 113

84 ’SCALE_FACTOR ’, 8e -9*[1 1 1], ...

85 ’NOISE ’, 1e -12*[1 1 1], ...

86 ’SEED’, 0, ...

87 ’QUANTIZATION ’, 0.0488e -6*[1 1 1], ...

88 ’RATE_MIN ’, -1e-4, ...

89 ’RATE_MAX ’, 1e-4);

90

91 %% ------------------ Fine sun sensor (6 faces)

92 FSS = Sensors.FineSunSensor;

93 FSS = struct(...

94 ’SAMPLE ’, 0.05, ...

95 ’FOV_X ’, 30, ’FOV_Y’, 30, ...

96 ’BIAS_X ’, deg2rad (0.01) *0.01 ,...

97 ’BIAS_Y ’, deg2rad (0.01) *0.01 ,...

98 ’NOISE_X ’, deg2rad (0.0333) *100 ,...

99 ’NOISE_Y ’, deg2rad (0.0333) *100 ,...

100 ’QUANTIZATION_X ’,deg2rad (0.0557) ,...

101 ’QUANTIZATION_Y ’,deg2rad (0.0557) ,...

102 ’PHI’, 90,’THETA’, 0,’PSI’,0, ... % SS1 -Y

103 ’PHI1’,-90,’THETA1 ’, 0,’PSI1’,0, ... % SS2 +Y

104 ’PHI2’, 0,’THETA2 ’,-90,’PSI2’,0, ... % SS3 -X

105 ’PHI3’, 0,’THETA3 ’, 90,’PSI3’,0, ... % SS4 +X

106 ’PHI4’ ,180,’THETA4 ’, 0,’PSI4’,0, ... % SS5 -Z

107 ’PHI5’, 0,’THETA5 ’, 0,’PSI5’,0); % SS6 +Z

108 Sensors.FineSunSensor = FSS;

109

110 %% ------------------ Gyroscope

--

111 Sensors.ThreeAxisGyroscope = struct(...

112 ’DRIFT ’, 1e-7*[1 1 1], ...

113 ’SCALE_FACTOR ’, 5e -5*[1 1 1], ...

114 ’MISALIGNMENT_1 ’, 0.5e-5*pi /180*[1 1], ...

115 ’MISALIGNMENT_2 ’, 0.5e-5*pi /180*[1 1], ...

116 ’MISALIGNMENT_3 ’, 0.5e-5*pi /180*[1 1], ...

117 ’NOISE ’, 1.7e -9*[1 1 1], ...

118 ’QUANTIZATION ’, 0.00146* pi /180*[1 1 1], ...

119 ’SEED’, 0, ...

120 ’RATE_MIN ’, -0.175, ...

121 ’RATE_MAX ’, 0.175);

122

123 %% ------------------ EKF tunings

124 rng (42)

125 x0 = [0;0;0;1];

126 Q = diag ([2e-10 2e-10 2e-10]);

127 Rsun = diag ([0.7 0.7 0.8]) *100;

128 Rmag = diag ([0.5 0.5 0.5]) *100;

129 P0 = diag ([1e-2 3e-2 7e-2]) *0.1;

130

131 %% Attitudecontrol gains

132 K_p = 0.017*[1 1 1];

133 K_d = 0.15 *[1 1 1];

134 K_d_bdot = 2e5 *[1 1 1];

135

APPENDIX A. APPENDIX A 114

136 %% ------------------ Actuators

--

137 Actuators.Magnetorquers = struct(...

138 ’Tc’ ,0.2216,’mResolution ’ ,0.002*[1 1 1], ...

139 ’mMax’ ,40*[1 1 1],’mMin’ ,0.001*[1 1 1], ...

140 ’Bias’ ,0.5*[1 1 1],’C’ ,[1 1 1], ...

141 ’M’,[0.9993 0.0267 -0.0256;

142 -0.0260 0.9993 0.0267;

143 0.0263 -0.0260 0.9993]);

144

145 Actuators.ReactionWheelsSimple = struct(...

146 ’bearingnoise ’,zeros (3,1), ...

147 ’limit ’ ,0.1*[1 1 1], ...

148 ’delaytime ’ ,0.01*[1 1 1], ...

149 ’RES’,5e-6*[1 1 1], ...

150 ’initial_t ’,zeros (3,1), ...

151 ’initial_m ’,zeros (3,1));

A.3 Extended Kalman Filter

Listing A.3: Extended Kalman Filter

1 % EKF Update Using Top 3 Sun Sensors + Magnetometer

2 function [x_out , P_out , sun_residual , mag_residual , K_out_combined ,

sigma_diag] = ekf_update_sun_mag_combined(...

3 Ny , Nz , lit_status , B_meas_body , omega_meas , x_in , P_in , psi ,

theta , phi , MJD , B_inertial , dt , R_sun , R_mag , Q)

4

5 % --- Unpack state

6 q_vec = x_in (1:3);

7 q4 = x_in (4);

8 omega_corr = omega_meas;

9

10 % --- Prediction step

11 q_pred = propagate_quaternion(x_in , omega_corr , dt);

12 x_pred = q_pred (1:3);

13 F = compute_F(q_pred , omega_corr , dt);

14 P_pred = F * P_in * F’ + Q;

15

16 % --- Initialize outputs

17 sun_residual = zeros(3, 1);

18 mag_residual = zeros(3, 1);

19 K_out_combined = zeros(3, 6); % Fixed size

20

21 x_out = x_in;

22 P_out = P_pred;

23 diagP = real(diag(P_out));

24 diagP (~ isfinite(diagP)) = 0; % Handle NaN/Inf

25 diagP(diagP < 0) = 0; % Clip negative to zero

26 sigma_diag = sqrt(diagP); % Now safe to take sqrt

27

28 %lit_status = 0;

29 if lit_status == 1

30 % SUN SENSOR UPDATE

APPENDIX A. APPENDIX A 115

31 R_ib = quat_to_dcm(q_pred);

32 S_inertial = SunPos(MJD);

33 S_pred_body = R_ib * S_inertial;

34 S_pred_body = S_pred_body / (norm(S_pred_body) + 1e-8);

35

36 S_meas_ss = sun_vec_meas(Ny, Nz);

37 Rbss = rotation_matrix_transpose(phi , theta , psi);

38 S_meas_body = Rbss \ S_meas_ss;

39 S_meas_body = S_meas_body / (norm(S_meas_body) + 1e-8);

40

41 sun_residual = S_meas_body - S_pred_body;

42 H_sun = compute_H_vector_sensor(x_pred , S_inertial);

43 v = S_pred_body;

44 J_norm = eye (3) - v * v’;

45 H_full_sun = J_norm * H_sun;

46

47 % MAGNETOMETER UPDATE

48 B_pred_body = R_ib * B_inertial;

49 B_meas_body = B_meas_body / (norm(B_meas_body) + 1e-8);

50 B_pred_body = B_pred_body / (norm(B_pred_body) + 1e-8);

51 B_inertial = B_inertial / (norm(B_inertial) + 1e-8);

52

53 mag_residual = B_meas_body - B_pred_body;

54 H_mag = compute_H_vector_sensor(x_pred , B_inertial);

55 v = B_pred_body;

56 J_norm = eye (3) - v * v’;

57 H_full_mag = J_norm * H_mag;

58

59 % COMBINED UPDATE

60 residual_combined = [sun_residual; mag_residual];

61 H_combined = [H_full_sun; H_full_mag];

62 R_combined = blkdiag(R_sun , R_mag);

63

64 S_combined = H_combined * P_pred * H_combined ’ + R_combined

;

65 K_combined = P_pred * H_combined ’ / S_combined;

66

67 delta_x_combined = K_combined * residual_combined;

68 q_vec_updated = x_pred + delta_x_combined (1:3);

69 q4_updated = sqrt(max(1e-12, 1 - dot(q_vec_updated ,

q_vec_updated)));

70 x_out = [q_vec_updated; q4_updated];

71

72 P_out = (eye(3) - K_combined * H_combined) * P_pred;

73 P_out = 0.5 * (P_out + P_out ’);

74

75 % --- Diagonal diagnostics

76 diagP = real(diag(P_out));

77 diagP(~ isfinite(diagP)) = 0;

78 diagP(diagP < 0) = 0;

79 sigma_diag = sqrt(diagP);

80

81 K_out_combined = K_combined;

82

83 elseif lit_status == 0

84 % MAGNETOMETER -ONLY UPDATE

APPENDIX A. APPENDIX A 116

85 R_ib = quat_to_dcm(q_pred);

86 B_pred_body = R_ib * B_inertial;

87

88 B_meas_body = B_meas_body / (norm(B_meas_body) + 1e-8);

89 B_pred_body = B_pred_body / (norm(B_pred_body) + 1e-8);

90 B_inertial = B_inertial / (norm(B_inertial) + 1e-8);

91

92 mag_residual = B_meas_body - B_pred_body;

93 H_mag = compute_H_vector_sensor(x_pred , B_inertial);

94 v = B_pred_body;

95 J_norm = eye (3) - v * v’;

96 H_full_mag = J_norm * H_mag;

97

98 residual_combined = mag_residual;

99 H_combined = H_full_mag;

100 R_combined = R_mag;

101

102 S_combined = H_combined * P_pred * H_combined ’ + R_combined

;

103 K_combined = P_pred * H_combined ’ / S_combined;

104

105 delta_x_combined = K_combined * residual_combined;

106 q_vec_updated = x_pred + delta_x_combined (1:3);

107 q4_updated = sqrt(max(1e-12, 1 - dot(q_vec_updated ,

q_vec_updated)));

108 x_out = [q_vec_updated; q4_updated];

109

110 P_out = (eye(3) - K_combined * H_combined) * P_pred;

111 P_out = 0.5 * (P_out + P_out ’);

112 % --- Diagonal diagnostics

113 diagP = real(diag(P_out));

114 diagP(~ isfinite(diagP)) = 0;

115 diagP(diagP < 0) = 0;

116 sigma_diag = sqrt(diagP);

117

118 % Pad to 3x6 for consistent size

119 K_out_combined = [K_combined , zeros(3, 3)];

120 end

121

122 end

123

124

125 % Sun Vector Measurement Calculation

126 function u = sun_vec_meas(Ny, Nz)

127 u3 = 1 / sqrt(Ny^2 + Nz^2 + 1);

128 u1 = -Nz * u3;

129 u2 = Ny * u3;

130 u = [u1; u2; u3];

131 end

132

133 % Quaternion to Direction Cosine Matrix (DCM)

134 function C_q = quat_to_dcm(q)

135 q1 = q(1); q2 = q(2); q3 = q(3); q4 = q(4);

136 C_q = [

137 q1^2 + q4^2 - q2^2 - q3^2, 2*(q1*q2 + q4*q3), 2*(q1*

q3 - q4*q2);

APPENDIX A. APPENDIX A 117

138 2*(q1*q2 - q4*q3), q2^2 + q4^2 - q1^2 - q3^2,

2*(q2*q3 + q4*q1);

139 2*(q1*q3 + q4*q2), 2*(q2*q3 - q4*q1), q3^2 +

q4^2 - q1^2 - q2^2

140];

141 end

142

143 % Rotation Matrix Transpose

144 function R_transpose = rotation_matrix_transpose(phi , theta , psi)

145 cphi = cosd(phi); sphi = sind(phi);

146 ctheta = cosd(theta); stheta = sind(theta);

147 cpsi = cosd(psi); spsi = sind(psi);

148

149 Cfssb = [cpsi*ctheta , ctheta*spsi , -stheta;

150 sphi*cpsi*stheta - spsi*cphi , stheta*spsi*sphi + cpsi

*cphi , sphi*ctheta;

151 stheta*cphi*cpsi + spsi*sphi , stheta*cphi*spsi - cpsi

*sphi , cphi*ctheta];

152

153 R_transpose = Cfssb;

154 end

155

156 % Compute Jacobian of the Sensor with Respect to Quaternion State

157 function H = compute_H_vector_sensor(q_in , V_inertial)

158 if length(q_in) == 3

159 % Only vector part provided

160 q_vec = q_in;

161 q4 = sqrt(max(1e-12, 1 - dot(q_vec , q_vec)));

162 q_full = [q_vec; q4]; % Create full quaternion

163 else

164 q_full = q_in;

165 end

166

167 % Unpack full quaternion

168 q1 = q_full (1); q2 = q_full (2); q3 = q_full (3); q4 = q_full (4);

169

170 % Compute partial derivatives

171 dRv_dq1 = 2 * (...

172 [q1, q2, q3; q2, -q1, q4; q3, -q4, -q1] * V_inertial ...

173 + (q1/q4) * [q4, q3, -q2; -q3, q4, q1; q2, -q1, q4] *

V_inertial);

174

175 dRv_dq2 = 2 * (...

176 [-q2, q1, -q4; q1, q2, q3; q4, q3, -q2] * V_inertial ...

177 + (q2/q4) * [q4, q3, -q2; -q3, q4, q1; q2, -q1, q4] *

V_inertial);

178

179 dRv_dq3 = 2 * (...

180 [-q3, q4, q1; -q4, -q3, q2; q1, q2, q3] * V_inertial ...

181 + (q3/q4) * [q4, q3, -q2; -q3, q4, q1; q2, -q1, q4] *

V_inertial);

182

183 H = [dRv_dq1 , dRv_dq2 , dRv_dq3]; % Jacobian matrix

184 end

185

186 % Propagate Quaternion State

APPENDIX A. APPENDIX A 118

187 function q_next = propagate_quaternion(q, omega , dt)

188 q = q / norm(q); % Ensure unit quaternion

189 q1 = q(1); q2 = q(2); q3 = q(3); q4 = q(4);

190

191 Omega = [...

192 q4, -q3, q2;

193 q3, q4, -q1;

194 -q2 , q1 , q4;

195 -q1 , -q2 , -q3];

196

197 q_dot = 0.5 * Omega * omega;

198 q_next = q + q_dot * dt;

199 q_next = q_next / norm(q_next); % Re -normalize to avoid drift

200 end

201

202 function y = Frac(x)

203 % Output the fraction of a real number

204 y = x - floor(x);

205 end

206

207 % Compute the State Transition Matrix

208 function F = compute_F(q, omega , dt)

209 Omega_cross = 0.5 * [...

210 0, omega (3), -omega (2);

211 -omega (3), 0, omega (1);

212 omega (2), -omega (1), 0];

213

214 F = eye(3) + Omega_cross * dt;

215 end

216

217 function RSun = SunPos(MJD)

218 % Computes the Sun ’s geocentric position based on Julian date

219 eps = deg2rad (23.43929111); % Earth ’s axial tilt

220 MJD_J2000 = 51544.5; % Modified Julian Date of J2000 .0

221 T = (MJD -MJD_J2000)/36525.0; % Julian century since J2000

222 twopi = 2*pi;

223 M = twopi * Frac (0.9931267 + 99.9973583*T);

224 L = twopi * Frac (0.7859444 + M/twopi + (6892.0* sin(M)+72.0* sin

(2.0*M)) / 1296.0 e3);

225 r = 149.619 e9 - 2.499 e9*cos(M) - 0.021 e9*cos(2*M);

226 seps = sin(eps);

227 ceps = cos(eps);

228 Cx = [1 0 0; 0 ceps -seps; 0 seps ceps];

229 RSun = Cx * [r*cos(L); r*sin(L); 0.0];

230 end

A.4 rtwbuild Script (MATLAB)

Listing A.4: rtwbuild Script

1 % Define the list of model names

2 modelNames = {’TIME’,’SS’, ’SRP’, ’RDY’, ’RB’, ’MGMTR ’, ’MAG’, ’I2S

’, ’GYR’, ’GRAV’,’EKF’,’CBI’,’ATM’,’BDOT’}; % Add all model

names here

APPENDIX A. APPENDIX A 119

3

4 % Loop through each model and apply settings

5 for i = 1: length(modelNames)

6 modelName = modelNames{i};

7

8 try

9 % Open the model

10 open_system(modelName);

11 fprintf(’Applying␣settings␣to:␣%s\n’, modelName);

12

13 % Set solver settings

14 set_param(modelName , ’Solver ’, ’FixedStepDiscrete ’); %

Correct fixed -step solver

15 set_param(modelName , ’FixedStep ’, ’0.01’); % Fixed step

size

16 set_param(modelName , ’SolverName ’, ’ode4’); % 4th order

Runge -Kutta

17

18 % Set Code Generation settings

19 set_param(modelName , ’SystemTargetFile ’, ’grt.tlc’); %

Ensure GRT target for code generation

20 set_param(modelName , ’GenCodeOnly ’, ’on’); % Generate code

only

21 set_param(modelName , ’PackageGeneratedCodeAndArtifacts ’, ’

on’); % Package code and artifacts

22

23 % Optimize interface settings for reusable functions

24 set_param(modelName , ’CodeInterfacePackaging ’, ’Reusable␣

function ’); % Make functions reusable

25

26 % Optimize parameter handling

27 set_param(modelName , ’DefaultParameterBehavior ’, ’Tunable ’)

; % Ensure parameters can be changed

28 set_param(modelName , ’InlineParams ’, ’off’); % Avoid

hardcoded parameters

29

30 % Disable unnecessary logging

31 set_param(modelName , ’CombineOutputUpdateFcns ’, ’off’); %

Disable Single output/update function

32 set_param(modelName , ’MatFileLogging ’, ’off’); % Disable

MAT -File Logging

33

34 % ** Disable SSE2 (emmintrin.h) Optimization (Correct way)**

35 set_param(modelName , ’InstructionSetExtensions ’, ’None’); %

Turns off SSE2 , AVX , and all SIMD optimizations

36

37 % Save model after changes

38 save_system(modelName);

39

40 % Generate code

41 fprintf(’Generating␣code␣for:␣%s\n’, modelName);

42 rtwbuild(modelName);

43

44 % Close the model (optional)

45 close_system(modelName , 0);

46

APPENDIX A. APPENDIX A 120

47 fprintf(’Successfully␣updated␣and␣generated␣code␣for:␣%s\n\

n’, modelName);

48

49 catch ME

50 % Handle errors without stopping the loop

51 fprintf(Error processing %s: %s\n’, modelName , ME.message);

52 end

53 end

54

55 fprintf(’Code␣generation␣completed␣for␣all␣models .\n’);

A.5 Example of .c files after simulink2c applied

Listing A.5: simulink2c Converter outcome

1 /*

2 ’Global_State_Variables

3 ␣␣␣␣ ExtU_ATM_T␣ExtU[1],

4 ␣␣␣␣ ExtY_ATM_T␣ExtY [1]

5 ␣␣

6 ␣␣’Entry_Point initialize

7 ’Entry_Point␣initialize_0

8 ␣␣

9 ␣␣’Entry_Point output

10 ’Entry_Point␣output_0

11 ␣␣

12 ␣␣’Entry_Point update

13 ’Entry_Point␣update_0

14 ␣␣

15 ␣␣

16 ␣␣’Entry_Point terminate

17 ’Entry_Point␣terminate_0

18 */

19

20

21 /*␣---␣*/

22 /*␣This␣model␣is␣converted␣by␣EuroSim ’s simulink2c convertor */

23 /* Date: 2025 -05 -04 T21 :58:48+08:00 */

24 /* Model: 1.7 */

25 /* Coder: 23.22023012023 */

26 /* --- */

27 #ifdef __eurosim__

28 #define malloc(size) esimMalloc(size)

29 #define calloc(nmemb ,membsize) esimCalloc(nmemb ,membsize)

30 #define realloc(ptr ,size) esimRealloc(ptr ,size)

31 #define free(address) esimFree(address)

32 #define rt_FREE(address) esimFree(address)

33 #include "ATM.h"

34 #include "rtwtypes.h"

35 #include <math.h>

36 #include <string.h>

37 #include "ATM_private.h"

38 #include <esim.h>

39 static RT_MODEL_ATM_T Model [1];

APPENDIX A. APPENDIX A 121

40 static ExtU_ATM_T ExtU [1];

41 static ExtY_ATM_T ExtY [1];

42 static int model_index;

43 #endif

44

45 /*

46 * ATM.c

47 *

48 * Academic License - for use in teaching , academic research , and

meeting

49 * course requirements at degree granting institutions only. Not

for

50 * government , commercial , or other organizational use.

51 *

52 * Code generation for model "ATM".

53 *

54 * Model version : 1.7

55 * Simulink Coder version : 23.2 (R2023b) 01-Aug -2023

56 * C source code generated on : Sun May 4 15:42:38 2025

57 *

58 * Target selection: grt.tlc

59 * Note: GRT includes extra infrastructure and instrumentation for

prototyping

60 * Embedded hardware selection: Intel ->x86 -64 (Windows64)

61 * Code generation objectives: Unspecified

62 * Validation result: Not run

63 */

64 \end{list}

65

66 \section{Cost}

67

68 \begin{table }[h!]

69 \centering

70 \caption{Hardware cost breakdown for the simulator setup .}

71 \renewcommand {\ arraystretch }{1.2}

72 \begin{tabular }{|p{8cm}|S[table -format =3.2]|}

73 \hline

74 \rowcolor{chapterband}

75 \textcolor{chaptercolor }{\ textbf{Hardware }} & \textcolor{

chaptercolor }{\ textbf{Cost [Euros]}} \\

76 \hline

77 Raspberry Pi 4 (4GB) & 60.00 \\

78 Raspberry Pi 5 (8GB) & 65.00 \\

79 Orange Pi (32GB) & 150.00 \\

80 Pi 5 metal case & 15.72 \\

81 NVMe PCIe Gen3x4 Kingspec SSD & 77.26 \\

82 Pineberry Pi interface & 14.95 \\

83 Lexar NM620 1TB SSD & 59.90 \\

84 HDMI cable & 3.98 \\

85 Micro HDMI cable & 10.99 \\

86 Ethernet cable & 8.99 \\

87 Keyboard & 27.99 \\

88 Mouse & 8.95 \\

89 Mini screwdriver set & 35.95 \\

90 RTC clock module & 5.19 \\

91 Adapter (USB to flash drive) & 23.99 \\

APPENDIX A. APPENDIX A 122

92 \hline

93 \rowcolor{gray !15}

94 \textbf{Total} & \textbf {568.86} \\

95 \hline

96 \end{tabular}

97 \label{tab:hardware_cost}

98 \end{table}

99

100

101

102

103

104

105 %\begin{lstlisting }[language=Matlab ,caption ={ rtwbuild Script},label

={lst:rtwbuild }]

106 %

Bibliography
Balaban, E., Saxena, A., Bansal, P., Goebel, K., and Curran, S. Modeling, detection, and
disambiguation of sensor faults for aerospace applications. Sensors Journal, IEEE, 9:1907 –
1917, 01 2010. doi: 10.1109/JSEN.2009.2030284.

Bashier, F. Design process-system and methodology of design research. In IOP Conference
Series: Materials Science and Engineering, volume 245, page 082030. IOP Publishing, 2017.
doi: 10.1088/1757-899X/245/8/082030. URL https://doi.org/10.1088/1757-899X/

245/8/082030.

Carignan, C., Scott, N., and Roderick, S. Hardware-in-the-loop simulation of satellite capture
on a ground-based robotic testbed. In ISAIRAS Conference Proceedings, USA, 2022. NASA
Goddard Space Flight Center.

Chapman, P., Colegrove, T., Di Filippantonio, D., Walker-Deemin, A., Davies, A., Myatt, J.,
Ecale, E., and Girouart, B. The gaia attitude & orbit control system. 06 2008.

Dam, R. F. and Siang, T. Y. 5 stages in the design thinking process. Interaction Design
Foundation, 2024. Accessed: 2024-11-06.

de Vries, W. Cubesat drag calculations, Sep 2010. Accessed: 2025-05-05.

European Space Agency. Real-time satellite network emulator. https://connectivity.esa.
int/projects/realtime-satellite-network-emulator, 2022. Accessed: 2025-04-26.

Farissi, M. S., Carletta, S., Nascetti, A., and Teofilatto, P. Implementation and hardware-
in-the-loop simulation of a magnetic detumbling and pointing control based on three-axis
magnetometer data. Aerospace, 6(12):133, 2019.

Frezza, L., Marzioli, P., Moretti, A., Kumar, S., Boscia, M., Bedetti, E., Picci, N., Gianfermo,
A., Amadio, D., Curiano, F., Piergentili, F., Gugliermetti, L., and Santoni, F. Shared cubesat
bus approach for the design and development of the sapienza s5lab nano-satellites. pages
480–485, 06 2022. doi: 10.1109/MetroAeroSpace54187.2022.9856103.

Garćıa Ortega, J., Tarrida, C. L., Quero, J. M., Delgado, F. J., Ortega, P., Castañer, L., Reina,
M., Angulo, M., Morilla, Y., and Garćıa López, J. Mems solar sensor testing for satellite
applications. In Conference on Design of MEMS for Aerospace Applications. IEEE, 2009.
doi: 10.1109/SCED.2009.4800503.

Guon, J., Monas, L., and Gill, E. Statistical analysis and modelling of small satellite reliability.
Faculty of Aerospace Engineering, Delft University of Technology, The Netherlands, January
2014.

Haraguchi, A. A hardware-in-the-loop star tracker test bed. Master’s thesis, California Poly-
technic State University, San Luis Obispo, 2024.

Kassem, M. M. and Sastry, N. xeoverse: A real-time simulation platform for large leo satellite
mega-constellations. In Proceedings of IFIP/IEEE Networking 2024, 2024. doi: 10.48550/
arXiv.2406.11366. URL https://arxiv.org/abs/2406.11366.

123

https://doi.org/10.1088/1757-899X/245/8/082030
https://doi.org/10.1088/1757-899X/245/8/082030
https://connectivity.esa.int/projects/realtime-satellite-network-emulator
https://connectivity.esa.int/projects/realtime-satellite-network-emulator
https://arxiv.org/abs/2406.11366

BIBLIOGRAPHY 124

Kemal Ure, N., Kaya, Y., and Inalhan, G. The development of a software and hardware-
in-the-loop test system for itu-psat ii nano satellite adcs. pages 1 – 15, 04 2011. doi:
10.1109/AERO.2011.5747481.

Kiesbye, J., Messmann, D., Preisinger, M., Reina, G., Nagy, D., Schummer, F., Mostad, M.,
Kale, T., and Langer, M. Hardware-in-the-loop and software-in-the-loop testing of the move-
ii cubesat. Aerospace, 6(12), 2019. ISSN 2226-4310. doi: 10.3390/aerospace6120130.

Mihalic, F., Truntic, M., and Hren, A. Hardware-in-the-loop simulations: A historical overview
of engineering challenges. Electronics, 11(24):2462, 2022. doi: AddDOIifavailable.

Montenbruck, O. and Gill, E. Satellite Orbits: Models, Methods and Applications. Springer,
first edition, January 2001.

Mooij, E. On-board constrained optimisation of final rendezvous: Technical notes 2 - functional
simulator design (unpublished). Delft University of Technology, 2022a. TU Delft.

Mooij, E. Lecture notes in Re-entry Systems. Delft University of Technology, October 2022b.

Mooij, E. and Ellenbroek, M. Multi-Functional Guidance, Navigation and Control Simulation
Environment - Rapid Prototyping of Space Simulations. IntechOpen, United Kingdom, 2011.
ISBN 978-953-307-970-7. doi: 10.5772/830.

Mwangi-Mbuthia, J. and Ouma, H. 1KUNS-PF: 1st Kenyan University NanoSatellite-Precursor
Flight. University of Nairobi, March 2016.

Oomen, M. M. The design of an attitude control system for the sps-2 satellite. Master’s thesis,
TU Delft, July 2020.

OpenCourseWare, M. Essentials of geophysics, chapter 2, 2004. URL
https://ocw.mit.edu/courses/12-201-essentials-of-geophysics-fall-

2004/7fa24d336366b74c52adb48ae6c8cf6f_ch2.pdf. Accessed: 2024-12-03.

Polat, H., Virgili-Llop, J., and Romano, M. Survey, statistical analysis and classification of
launched cubesat missions with emphasis on the attitude control method. Journal of Small
Satellites, 5:513–530, 01 2016.

Post, M. A., Li, J., and Lee, R. A low-cost photodiode sun sensor for cubesat and planetary
microrover. International Journal of Aerospace Engineering, 2013:Article ID 549080, 2013.
doi: 10.1155/2013/549080.

Puig-Suari, J., Turner, C., and Ahlgren, W. Development of the standard cubesat deployer
and a cubesat class picosatellite. In 2001 IEEE Aerospace Conference Proceedings (Cat.
No.01TH8542), volume 1, pages 1/347–1/353 vol.1, 2001. doi: 10.1109/AERO.2001.
931726.

Risquez, D., van Leeuwen, F., and Brown, A. G. A. Dynamical attitude model for gaia.
Experimental Astronomy, 34:669–703, July 2012.

Rodrigues, P. M. and Ramos, P. M. Design and characterization of a sun sensor for the sseti-
eseo project. In XVIII IMEKO World Congress: Metrology for a Sustainable Development,
Rio de Janeiro, Brazil, 2006. IMEKO.

https://ocw.mit.edu/courses/12-201-essentials-of-geophysics-fall-2004/7fa24d336366b74c52adb48ae6c8cf6f_ch2.pdf
https://ocw.mit.edu/courses/12-201-essentials-of-geophysics-fall-2004/7fa24d336366b74c52adb48ae6c8cf6f_ch2.pdf

BIBLIOGRAPHY 125

Sanchez-Portal, M., Marston, A., Altieri, B., Aussel, H., Feuchtgruber, H., Klaas, U., Linz,
H., Lutz, D., Merın, B., Muller, T., Nielbock, M., Oort, M., Pilbratt, G., Schmidt, M.,
Stephenson, C., Tuttlebee, M., and Group, T. H. P. W. The pointing system of the herschel
space observatory. Experimental Astronomy, 37(2), May 2014. ISSN 1572-9508. doi:
10.1007/s10686-014-9396-z.

Scharnagl, J. and Schilling, K. New hardware-in-the-loop testing concept for small satellite
formation control based on mobile robot platforms. In IFAC-PapersOnLine, volume 49,
pages 65–70. Zentrum für Telematik e.V., Würzburg, Germany, Elsevier Ltd, 2016. doi:
10.1016/j.ifacol.2016.11.127.

Tafazoli, S. A study of on-orbit spacecraft failures. Acta Astronautica - ACTA ASTRONAUT,
64:195–205, 02 2009. doi: 10.1016/j.actaastro.2008.07.019.

Vallado, D. A. and McClain, W. D. Fundamentals of Astrodynamics and Applications. Space
Technology Library. Microcosm Press, Hawthorne, CA, fourth edition edition, 2013. ISBN
978-1881883180. First Printing, printed on acid-free paper.

Wertz, J. Spacecraft Attitude Determination and Control. Kluwer Academic Publishers, first
edition, January 1980.

	List of Symbols
	List of Abbreviations
	Introduction
	Mission Heritage
	Large-Scale Satellite Missions
	Gaia
	Stackable Platform Structure (SPS) -2
	Herschel-Planck
	Discussion of Large Scale Missions

	Cubesat specific missions
	MOVE-II (Munich Orbital Verification Experiment II)
	ITU-PSAT II (Istanbul Technical University PicoSatellite II)
	1 Kenyan University Nano-Satellite Precursor Flight (1KUNS-PF)
	Taifa-1
	Discussion of CubeSat Missions

	Validation Approaches
	CubeSat Trends and Reference Configuration
	Non Real-Time Simulation
	Real-Time Execution
	Software-in-the-Loop (SIL)
	Hardware-in-the-Loop (HIL)

	Chapter Summary and Transition

	Design context and Methodology
	Reference Mission
	Test Bed Configuration
	Research Questions
	Thesis Roadmap

	Flight Dynamics
	State variables
	Cartesian Coordinates
	Orbital elements
	Euler Angles
	Quaternions
	Angular Velocity

	Reference frames
	Earth-Centred Inertial Frame (ECI) (to.FI)to.
	Hardware Frame (FH)
	Body fixed (FB)
	Vertical Frame (FV)

	Reference Frame Transformations
	Equations of Motion
	Rotational Dynamics
	Attitude Kinematics

	Space Environment
	Gravitational Field
	Magnetic Field
	Aerodynamics Drag
	Solar Radiation Pressure (SRP)
	Acceptance tests

	Navigation
	Sensors
	Sun sensor
	Magnetometer
	Inertial Measurement Unit (IMU)
	Gyroscope
	Reference mission

	Modelling errors
	Navigation Filters
	Filter Selection
	Extended Kalman Filter (EKF)

	EKF Implementation
	Propogation
	EKF Structure
	EKF with One magnetometer
	EKF with One Sun Sensor
	EKF with Magnetometer and Sun sensor

	Control
	Control modes
	Detumbling Mode
	B-dot Algorithm Implementation
	Sun Acquisition Mode
	PD Controller Implemetation

	Actuators
	Magnetorquers
	Reaction Wheels

	Functional Simulator
	Simulator Overview and Architecture
	Generic Rendezvous And Docking Simulator (GRADS)
	Solver Choice and Analysis
	Environment Models
	Acceptance testing for GRADS components
	Propagators and Utilities

	Requirements

	Real Time Simulation
	Software
	MATLAB
	Eurosim
	GGNCSim/GRADS

	Hardware
	MATLAB Code Generation
	Code Configuration
	MATLAB Limitations

	Eurosim implementation, How to, dos and donts
	ModelEditor
	ScheduleEditor
	SimulationCtrl

	Acceptance and Implementation Testing of Simulink Models onto Eurosim
	Final Model Implementation
	Environment
	Sensor Addition
	EKF in Eurosim
	PD in Eurosim

	Requirements

	Conclusion and Recommendations
	Recommendations

	Appendix A
	Simplified Fine Sun Sensor Model (MATLAB)
	Initialise Model Script (MATLAB)
	Extended Kalman Filter
	rtwbuild Script (MATLAB)
	Example of .c files after simulink2c applied

