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Abstract: In almost all practical applications of control, technological and economical consid-
erations impose limits on communication speed, frequency of communication, and frequency of
actuator adjustment. Such limits turned the analysis of sampled data systems into a flourishing
field. Water systems pose a particular challenge: the systems are networks of canals and reservoirs
spread over large areas, and the actuators are relatively large and exposed to the elements. In
this study, a theorem on the local exponential stability of sampled data systems with variable
control time step and variable delay in the communication between the non-linear continuous
time process and the non-linear discrete time controller is presented. To illustrate the application
of the theorem, it is applied to a simple water system.
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1. INTRODUCTION

There is a long history of water level control in water
management. In fact, even a fixed weir can act as a water
level regulator for a lake with a varying inflow (van Nooijen
and Kolechkina, 2020b). Hand operated moveable weirs or
gates may even go back to prehistory (van Nooijen et al.,
2021). In modern water management, digital computers
are used to calculate the control actions and implement
those actions by adjusting moveable weirs or gates, or
adjust pump speeds (Mareels et al., 2005; Hadid et al.,
2019; van Nooijen and Kolechkina, 2018). Networks of
open channels form an important category of environmen-
tal systems. They are used not only to transport irriga-
tion and drainage water, but also as highways for barges
transporting raw materials and goods. Automatic control
of these systems poses specific problems (van Nooijen and
Kolechkina, 2020a). Remotely operated gates and weirs are
adjusted by electric motors. Using these has an associated
cost in terms of wear and tear. It therefore makes sense to
limit the number of adjustments to actuator settings. This
also helps save communications bandwidth. Allowing some
time to implement a control action may also help with
the larger actuators, where rapid adjustment is costly or
undesirable. Evidently, the time step depends on the time
scale on which the system operates. The control of the
water level of a large lake has another rhythm than the
management of a small irrigation canal. The question now
arises how non-trivial communication delays and control
time step variations affect these systems.

More general communications problems, such as dropped
packets or out of order arrival, will not be treated here.
For such problems, see Zhang et al. (2013) and refer-
ences therein. The increased generality achieved there
entails either restrictions on plant or controller form, or
assumptions on the existence of functions or functionals
that may take considerable effort to find. Examples are
the treatment of global stability in van de Wouw et al.
(2012), which achieves generality by assuming existence of
a family of approximate discrete time plant models that
meet specific criteria and a family of auxiliary functions,
and Tolić (2020), which assumes existence of a suitable
functionals and involves solving several matrix inequali-
ties. Dealing with sampled data systems with aperiodic
sampling has also received considerable attention, see for
example Hetel et al. (2017) and references therein, but
there additional delay in the feedback loop is not explicitly
considered. Again, for many of the methods discussed,
specific functionals need to be found.

The emphasis in this paper is on a simple method to
check local asymptotic stability of a physical network of
waterways where the actuators are controlled by a discrete
controller. The approach of Hu and Michel (2000) for
sampled data systems is extended to sampled data systems
with variable delays in the feedback loop by borrowing
an idea used in the treatment of linear sampled systems
by Åström and Wittenmark (1997). The most attractive
aspect of this approach is that local asymptotic stability
is linked to a specific property of a matrix that can be
constructed automatically once the derivatives of the time
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by Åström and Wittenmark (1997). The most attractive
aspect of this approach is that local asymptotic stability
is linked to a specific property of a matrix that can be
constructed automatically once the derivatives of the time

Stability analysis of non-linear sampled
data systems with time varying sample
period and delay in the feedback loop

R. R. P. van Nooijen ∗ A. G. Kolechkina ∗∗

∗ Faculty of Civil Engineering and Geosciences, Delft University of
Technology, Stevinweg 1, 2628 CN, Delft, Netherlands

(r.r.p.vannooyen@tudelft.nl)
∗∗ Delft Center for Systems and Control, Delft University of

Technology, Mekelweg 2, 2628 CD, Delft, Netherlands
(a.g.kolechkina@tudelft.nl)

Abstract: In almost all practical applications of control, technological and economical consid-
erations impose limits on communication speed, frequency of communication, and frequency of
actuator adjustment. Such limits turned the analysis of sampled data systems into a flourishing
field. Water systems pose a particular challenge: the systems are networks of canals and reservoirs
spread over large areas, and the actuators are relatively large and exposed to the elements. In
this study, a theorem on the local exponential stability of sampled data systems with variable
control time step and variable delay in the communication between the non-linear continuous
time process and the non-linear discrete time controller is presented. To illustrate the application
of the theorem, it is applied to a simple water system.

Keywords: sampled data system, communication delays, stability, open channel flow, water
management
1991 MSC: [2008]93C57

1. INTRODUCTION

There is a long history of water level control in water
management. In fact, even a fixed weir can act as a water
level regulator for a lake with a varying inflow (van Nooijen
and Kolechkina, 2020b). Hand operated moveable weirs or
gates may even go back to prehistory (van Nooijen et al.,
2021). In modern water management, digital computers
are used to calculate the control actions and implement
those actions by adjusting moveable weirs or gates, or
adjust pump speeds (Mareels et al., 2005; Hadid et al.,
2019; van Nooijen and Kolechkina, 2018). Networks of
open channels form an important category of environmen-
tal systems. They are used not only to transport irriga-
tion and drainage water, but also as highways for barges
transporting raw materials and goods. Automatic control
of these systems poses specific problems (van Nooijen and
Kolechkina, 2020a). Remotely operated gates and weirs are
adjusted by electric motors. Using these has an associated
cost in terms of wear and tear. It therefore makes sense to
limit the number of adjustments to actuator settings. This
also helps save communications bandwidth. Allowing some
time to implement a control action may also help with
the larger actuators, where rapid adjustment is costly or
undesirable. Evidently, the time step depends on the time
scale on which the system operates. The control of the
water level of a large lake has another rhythm than the
management of a small irrigation canal. The question now
arises how non-trivial communication delays and control
time step variations affect these systems.

More general communications problems, such as dropped
packets or out of order arrival, will not be treated here.
For such problems, see Zhang et al. (2013) and refer-
ences therein. The increased generality achieved there
entails either restrictions on plant or controller form, or
assumptions on the existence of functions or functionals
that may take considerable effort to find. Examples are
the treatment of global stability in van de Wouw et al.
(2012), which achieves generality by assuming existence of
a family of approximate discrete time plant models that
meet specific criteria and a family of auxiliary functions,
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aspect of this approach is that local asymptotic stability
is linked to a specific property of a matrix that can be
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evolution functions and output functions of the plant
and controller have been determined. Those derivatives
themselves can in principle be determined automatically
either through symbolic differentiation in suitable software
or through automatic differentiation (Bischof et al., 2008;
Naumann, 2012). As an illustration, the resulting theorem
is applied to a simple process consisting of a lake fed by a
stream and discharging into a river over an adjustable weir.
Such a process could be a component in a larger network.
A PI controller is used to keep the exposition as clear
as possible. For this simple system the relation between
controller coefficients, stability, and system response is
examined for different controller time steps and delays.

2. A GENERAL DESCRIPTION OF THE TYPE OF
SYSTEM UNDER CONSIDERATION

Consider a continuous process with an np-dimensional
state vector xp

ẋp (t) = fp,1 (xp (t) , up (t)) (1)

yp (t) = fp,2 (xp (t)) (2)

xp (0) = x(0)
p (3)

that is linked to a discrete time controller with an nc-
dimensional state vector xc

xc (k + 1) = fc,1 (xc (k) , uc (k)) (4)

yc (k) = fc,2 (xc (k) , uc (k)) (5)

xc (0) = x(0)
c (6)

by a sampler that also models the variable feedback loop
delay ρk

uc (k) =

{
0 k = 0

yp (τk − ρk) k > 0
(7)

and a zero order hold that links the controller output to
the process input

up (t) = yc (k) , τk ≤ t < τk+1 (8)

where the τk are the points in time when the input to the
process changes. To keep the notation compact, from this
point onward the convention x (τ0 − ρ0) � 0 will be used.
As in Hu and Michel (2000), the system can be simplified
by inserting (8) into (1) and (7) into (4) and (5). Next (2)
and the modified version of (5) are used to eliminate yp
and yc. With new variables

x (t) = xp (t) ; u (k) = xc (k) (9)

and new time evolution functions

f (x, υ, u) = fp,1 (x, fc,2 (u, fp,2 (υ))) (10)

g (υ, u) = fc,1 (u, fp,2 (υ)) (11)

the evolution in time can be written as

ẋ (t) = f (x (t) , x (τk − ρk) , u (k)) , τk ≤ t < τk+1 (12)

u (k + 1) = g (u (k) , x (τk − ρk)) (13)

x (τ0) = x(0)
p (14)

u (τ0) = x(0)
c (15)

where it is assumed that the controller starts up with
uc (0) = 0. It will be assumed that

f ∈ C1 (Rnp × Rnp × Rnc ,Rnp) , f (0, 0, 0) = 0 (16)

g ∈ C1 (Rnc × Rnp ,Rnc) , g (0, 0) = 0 (17)

and that there exists a µ such that the τk satisfy

lim
k→∞

τk = ∞, sup
k∈N

{τk+1 − τk} = µ < ∞ (18)

and the ρk+1 satisfy

τk < τk+1 − ρk+1 < τk+1 (19)

To prepare for the formulation of the theorem, some
auxiliary definitions are needed, namely, the matrices that
describe the linearisation of the system

A =
∂f (x, υ, u)

∂x

∣∣∣∣
(0,0,0)

, A0 =
∂f (x, υ, u)

∂υ

∣∣∣∣
(0,0,0)

,

B =
∂f (x, υ, u)

∂u

∣∣∣∣
(0,0,0)

(20)

and two functions F ∈ C (Rnp × Rnp × Rnc ,Rnp) and
G ∈ C (Rnc × Rnp ,Rnc) that represent the remainder
terms after linearisation of the continuous and discrete
system respectively

lim
(x,υ,u)→(0,0,0)

F (x, υ, u)√
‖x‖2 + ‖υ‖2 + ‖u‖2

= 0 (21)

lim
(u,υ)→(0,0)

G (u, υ)√
‖υ‖2 + ‖u‖2

= 0 (22)

Given these definitions, the time evolution of the system
follows from

ẋ (t) = Ax (t) +A0x (τk − ρk) +Bu (τk) (23)

+F (x (t) , u (τk − ρk) , u (τk)) , τk ≤ t < τk+1

u (τk+1) = Cu (τk) +Dx (τk − ρk) (24)

+G (x (τk − ρk) , u (τk))

From (23) it follows that

x (t) = x (τk) + (t− τk)A0x (τk − ρk) + (t− τk)Bu (τk)

+

t∫

τ=τk

Ax (τ) + F (x (τ) , x (τk − ρk) , u (τk)) dτ (25)

or

x (t) = e(t−τk)Ax (τk)

+

t∫

τ=τk

e(t−τ)AdτA0x (τk − ρk) +

t∫

τ=τk

e(t−τ)AdτBu (τk)

+

t∫

τ=τk

e(t−τ)AF (x (τ) , x (τk − ρk) , u (τk)) dτ (26)

For a proof of (26) see, for instance, Sideris (2013, Corol-
lary 4.1). Next, two vectors and a matrix are defined that
link the continuous problem to a discrete problem.

ω (k) =

[
x (τk − ρk)

x (τk)
u (τk)

]
(27)

Ω (k) = (28)


τk+1−ρk+1∫

τ=τk

e(τk+1−ρk+1−τ)AF (x (τ) , x (τk − ρk) , u (τk)) dτ

τk+1∫

τ=τk

e(τk+1−τ)AF (x (τ) , x (τk − ρk) , u (τk)) dτ

G (x (τk − ρk) , u (τk))
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Hk = (29)

J (k, ρk+1)A0 e(τk+1−ρk+1−τk)A J (k, ρk+1)B

J (k, 0)A0 e(τk+1−τk)A J (k, 0) dτB
D 0 C




where

J (k, ρ) =

τk+1−ρ∫

τ=τk

e(τk+1−ρ−τ)Adτ (30)

This makes it possible to write

ω (k + 1) = Hkω (k) + Ω (k) (31)

3. THEORETICAL RESULTS

For matrices ‖·‖ is the norm induced by the Euclidean
vector norm.

Lemma 1. Let A, A0, B, F , µ, τk and ρk be as defined
earlier. Let the time evolution of x be given by (12). There
is a δ3 > 0 such that for ‖ω (k)‖ ≤ δ3 and t ∈ [τk, τk+1)

‖x (t)‖ ≤ (1 + µ (‖A0‖+ ‖B‖+ 2)) e(1+‖A‖)(t−τk) ‖ω (k)‖
(32)

The proof of the bound (32) was extracted from the proof
of Lemma 2.2 in Hu and Michel (2000).

Proof. From (21), continuity of F , and F (0, 0, 0) = 0, it
follows that there is a δ2 > 0 such that

‖F (x, υ, u)‖ ≤ ‖x‖+ ‖υ‖+ ‖u‖ (33)

whenever max (‖x‖ , ‖υ‖ , ‖u‖) ≤ δ2. Now suppose that for
all δ3 > 0 there is ω (k) with ‖ω (k)‖ < δ3 and a t1 > τk
such that ‖x (t1)‖ > δ2. Now let

c0 = (1 + (τk+1 − τk) (‖A0‖+ ‖B‖+ 2)) eµ(‖A‖+1) (34)

and take δ3 = δ2/c0. From ‖x (τk)‖ < δ2, ‖x (t1)‖ > δ2,
and continuity, it follows that there is a t0 ∈ [τk, t1) such
that ‖x (t)‖ < δ2 for τk ≤ t < t0 and ‖x (t0)‖ = δ2. From
(25), it follows that for t ∈ [τk, τk+1)

‖x (t)‖ ≤ ‖x (τk)‖
+(t− τk) (‖A0‖ ‖x (τk − ρk)‖+ ‖B‖ ‖u (τk)‖) (35)

+

t∫

τ=τk

‖A‖ ‖x (τ)‖+ ‖F (x (τ) , x (τk − ρk) , u (τk))‖ dτ

and from (33), it now follows that

‖x (t)‖ ≤ ‖x (τk)‖
+(t− τk) ((‖A0‖+ 1) ‖x (τk − ρk)‖+ (‖B‖+ 1) ‖u (τk)‖)

+

t∫

τ=τk

(‖A‖+ 1) ‖x (τ)‖ dτ

≤ (1 + µ (‖A0‖+ ‖B‖+ 2)) ‖ω (k)‖

+

t∫

τ=τk

(‖A‖+ 1) ‖x (τ)‖ dτ (36)

By the Grönwall inequality this implies that

‖x (t0)‖ ≤
(1 + µ (‖A0‖+ ‖B‖+ 2)) ‖ω (k)‖ e(t0−τk)(‖A‖+1)

≤ (1 + µ (‖A0‖+ ‖B‖+ 2)) e(t0−τk)(‖A‖+1)

(1 + (τk+1 − τk) (‖A0‖+ ‖B‖+ 2)) eλ(‖A‖+1)
δ2

< δ2 (37)

which contradicts our assumption. Therefore, there must
be a 0 < δ3 < δ2/c0 such that for ‖ω (k)‖ ≤ δ3, it follows
that ‖x (t)‖ ≤ δ2 for all t ∈ [τk, τk+1]. For ‖ω (k)‖ ≤ δ3, it
follows that

‖x (t)‖ ≤ (1 + µ (‖A0‖+ ‖B‖+ 2)) ‖ω (k)‖ e(t−τk)(‖A‖+1)

Lemma 2. Let A, A0, B, C, D, F , G, Ω, ω, µ, τk and ρk
be as defined earlier. For any given ν > 0 there exists a
δ1 (ν) > 0 such that

‖x (t)‖ ≤ c0 ‖ω (k)‖ (38)

‖Ω (k)‖ ≤ ν ‖ω (k)‖ (39)

whenever ‖ω (k)‖ ≤ δ1 for k ∈ N and τk ≤ t < τk+1 where
c0 as in (34) and with µ as in (18). This is a variation on
Lemma 2.2 in Hu and Michel (2000).

Proof. From (32) it follows that there is a δ3 > 0 such
that for ‖ω (k)‖ ≤ δ3

‖x (t)‖ ≤ (1 + µ (‖A0‖+ ‖B‖+ 2)) e(1+‖A‖)(t−τk) ‖ω (k)‖

for all t ∈ [τk, τk+1). This proves (38). Next, suppose that
ν is given. Take ε1 > 0 such that

ν = ε1

(
1 + 2µ exp (µ ‖A‖)

√
c20 + 1

)
(40)

By (21), (22), and continuity, there is a δ4 > 0 such that

‖F (x, υ, u)‖ ≤ ε1

√
‖x‖2 + ‖u‖2 + ‖υ‖2 (41)

‖G (u, υ)‖ ≤ ε1

√
‖υ‖2 + ‖u‖2 (42)

whenever

√
‖x‖2 + ‖u‖2 + ‖υ‖2 ≤ δ4. Next take δ1 =

min
(
δ3, δ4/

(
c0
√
3
))
. Now, ‖ω (k)‖ ≤ δ1 ≤ δ3, so for

t ∈ [τk, τk+1]

‖x (t)‖ ≤ c0 ‖ω (k)‖ ≤ δ4/
√
3, ‖x (τk − ρk)‖ ≤ δ4/

√
3,

‖u (τk)‖ ≤ δ4/
√
3

and therefore

√
‖x (t)‖2 + ‖x (τk − ρk)‖2 + ‖u (τk)‖2 ≤ δ4

for t ∈ [τk, τk+1]. Now,

‖Ω (k)‖ ≤
τk+1−ρk+1∫

τ=τk

e(τk+1−ρk+1−τ)‖A‖ ‖F (x (τ) , x (τk − ρk) , u (τk))‖ dτ

+

τk+1∫

τ=τk

e(τk+1−τ)‖A‖ ‖F (x (τ) , x (τk − ρk) , u (τk))‖ dτ

+ ‖G (x (τk − ρk) , u (τk))‖

By using (41) and (42), we find
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Hk = (29)

J (k, ρk+1)A0 e(τk+1−ρk+1−τk)A J (k, ρk+1)B

J (k, 0)A0 e(τk+1−τk)A J (k, 0) dτB
D 0 C




where

J (k, ρ) =

τk+1−ρ∫

τ=τk

e(τk+1−ρ−τ)Adτ (30)

This makes it possible to write

ω (k + 1) = Hkω (k) + Ω (k) (31)

3. THEORETICAL RESULTS

For matrices ‖·‖ is the norm induced by the Euclidean
vector norm.

Lemma 1. Let A, A0, B, F , µ, τk and ρk be as defined
earlier. Let the time evolution of x be given by (12). There
is a δ3 > 0 such that for ‖ω (k)‖ ≤ δ3 and t ∈ [τk, τk+1)

‖x (t)‖ ≤ (1 + µ (‖A0‖+ ‖B‖+ 2)) e(1+‖A‖)(t−τk) ‖ω (k)‖
(32)

The proof of the bound (32) was extracted from the proof
of Lemma 2.2 in Hu and Michel (2000).

Proof. From (21), continuity of F , and F (0, 0, 0) = 0, it
follows that there is a δ2 > 0 such that

‖F (x, υ, u)‖ ≤ ‖x‖+ ‖υ‖+ ‖u‖ (33)

whenever max (‖x‖ , ‖υ‖ , ‖u‖) ≤ δ2. Now suppose that for
all δ3 > 0 there is ω (k) with ‖ω (k)‖ < δ3 and a t1 > τk
such that ‖x (t1)‖ > δ2. Now let

c0 = (1 + (τk+1 − τk) (‖A0‖+ ‖B‖+ 2)) eµ(‖A‖+1) (34)

and take δ3 = δ2/c0. From ‖x (τk)‖ < δ2, ‖x (t1)‖ > δ2,
and continuity, it follows that there is a t0 ∈ [τk, t1) such
that ‖x (t)‖ < δ2 for τk ≤ t < t0 and ‖x (t0)‖ = δ2. From
(25), it follows that for t ∈ [τk, τk+1)

‖x (t)‖ ≤ ‖x (τk)‖
+(t− τk) (‖A0‖ ‖x (τk − ρk)‖+ ‖B‖ ‖u (τk)‖) (35)

+

t∫

τ=τk

‖A‖ ‖x (τ)‖+ ‖F (x (τ) , x (τk − ρk) , u (τk))‖ dτ

and from (33), it now follows that

‖x (t)‖ ≤ ‖x (τk)‖
+(t− τk) ((‖A0‖+ 1) ‖x (τk − ρk)‖+ (‖B‖+ 1) ‖u (τk)‖)

+

t∫

τ=τk

(‖A‖+ 1) ‖x (τ)‖ dτ

≤ (1 + µ (‖A0‖+ ‖B‖+ 2)) ‖ω (k)‖

+

t∫

τ=τk

(‖A‖+ 1) ‖x (τ)‖ dτ (36)

By the Grönwall inequality this implies that

‖x (t0)‖ ≤
(1 + µ (‖A0‖+ ‖B‖+ 2)) ‖ω (k)‖ e(t0−τk)(‖A‖+1)

≤ (1 + µ (‖A0‖+ ‖B‖+ 2)) e(t0−τk)(‖A‖+1)

(1 + (τk+1 − τk) (‖A0‖+ ‖B‖+ 2)) eλ(‖A‖+1)
δ2

< δ2 (37)

which contradicts our assumption. Therefore, there must
be a 0 < δ3 < δ2/c0 such that for ‖ω (k)‖ ≤ δ3, it follows
that ‖x (t)‖ ≤ δ2 for all t ∈ [τk, τk+1]. For ‖ω (k)‖ ≤ δ3, it
follows that

‖x (t)‖ ≤ (1 + µ (‖A0‖+ ‖B‖+ 2)) ‖ω (k)‖ e(t−τk)(‖A‖+1)

Lemma 2. Let A, A0, B, C, D, F , G, Ω, ω, µ, τk and ρk
be as defined earlier. For any given ν > 0 there exists a
δ1 (ν) > 0 such that

‖x (t)‖ ≤ c0 ‖ω (k)‖ (38)

‖Ω (k)‖ ≤ ν ‖ω (k)‖ (39)

whenever ‖ω (k)‖ ≤ δ1 for k ∈ N and τk ≤ t < τk+1 where
c0 as in (34) and with µ as in (18). This is a variation on
Lemma 2.2 in Hu and Michel (2000).

Proof. From (32) it follows that there is a δ3 > 0 such
that for ‖ω (k)‖ ≤ δ3

‖x (t)‖ ≤ (1 + µ (‖A0‖+ ‖B‖+ 2)) e(1+‖A‖)(t−τk) ‖ω (k)‖

for all t ∈ [τk, τk+1). This proves (38). Next, suppose that
ν is given. Take ε1 > 0 such that

ν = ε1

(
1 + 2µ exp (µ ‖A‖)

√
c20 + 1

)
(40)

By (21), (22), and continuity, there is a δ4 > 0 such that

‖F (x, υ, u)‖ ≤ ε1

√
‖x‖2 + ‖u‖2 + ‖υ‖2 (41)

‖G (u, υ)‖ ≤ ε1

√
‖υ‖2 + ‖u‖2 (42)

whenever

√
‖x‖2 + ‖u‖2 + ‖υ‖2 ≤ δ4. Next take δ1 =

min
(
δ3, δ4/

(
c0
√
3
))
. Now, ‖ω (k)‖ ≤ δ1 ≤ δ3, so for

t ∈ [τk, τk+1]

‖x (t)‖ ≤ c0 ‖ω (k)‖ ≤ δ4/
√
3, ‖x (τk − ρk)‖ ≤ δ4/

√
3,

‖u (τk)‖ ≤ δ4/
√
3

and therefore

√
‖x (t)‖2 + ‖x (τk − ρk)‖2 + ‖u (τk)‖2 ≤ δ4

for t ∈ [τk, τk+1]. Now,

‖Ω (k)‖ ≤
τk+1−ρk+1∫

τ=τk

e(τk+1−ρk+1−τ)‖A‖ ‖F (x (τ) , x (τk − ρk) , u (τk))‖ dτ

+

τk+1∫

τ=τk

e(τk+1−τ)‖A‖ ‖F (x (τ) , x (τk − ρk) , u (τk))‖ dτ

+ ‖G (x (τk − ρk) , u (τk))‖

By using (41) and (42), we find

‖Ω (k)‖ ≤ 2 exp (µ ‖A‖)

×
τk+1∫

τ=τk

ε1

√
‖x (τ)‖2 + ‖x (τk − ρk)‖2 + ‖u (τk)‖2dτ

+ε1

√
‖x (τk − ρk)‖2 + ‖u (τk)‖2

≤ 2 exp (µ ‖A‖)
τk+1∫

τ=τk

ε1

√
c20 ‖ω (k)‖2 + ‖ω (k)‖2dτ

+ε1 ‖ω (k)‖

≤ ε1

(
1 + 2µ exp (µ ‖A‖)

√
c20 + 1

)
‖ω (k)‖

= ν ‖ω (k)‖ (43)

which proves (39).

With Lemma 2, the approach from Hu and Michel (2000)
can be used to prove the following theorem.

Theorem 3. Assume that τk, ρk, f , and g satisfy (18), (19),
(16), and (17) respectively, and Hk is as defined in (29). If

lim sup
k→∞

max
λ∈σ(Hk)

|λ| < 1 (44)

where σ (Hk) is the spectrum of Hk, and each subsequence
of {Hk}∞k=1 contains a subsequence which converges to a
Schur stable matrix, and the solutions Pk of H�

k PkHk −
Pk = −I satisfy

lim sup
k→∞

‖Pk+1 − Pk‖ < 1 (45)

then the trivial solution (x, u) = (0, 0) of (12-13) is
exponentially stable. (For the details of the proof see
Appendix A).

4. A SIMPLE EXAMPLE OF A WATER SYSTEM

The system to be used as example is a small lake with an
area of a = 1hm2 receiving an unregulated inflow from
a stream and with an outflow to a river that is regulated
by a moveable weir (Fig. 1). It receives an inflow of qin.
Losses due to evaporation and seepage from the lake to the
groundwater are neglected. The desired water level or set-
point is h∗ which is given relative to a height datum, for
instance, the Amsterdam Ordnance Datum (NAP). The
aim of the control system will be to keep the mean water
level h within a given margin ∆h = 0.2m of the set-point
h∗. It is assumed that the inflow is a stationary process
with a long term average of q∗ = 0.3m3/s. As disturbance,
an additional inflow of 0.2m3/s over a period of 3600 s is
used (Fig. 2). An automated measurement station with
several sensors does some data preprocessing to determine
the average water level and removes all of the measurement
noise. It is also assumed that for level fluctuations within
the margins, the area of the lake may be taken to be
constant. The lake will be modelled by

ḣ (t) =
qin (t)− qw (h (t) , hcr (t))

a
(46)

h (0) = h∗ (47)

where

qw (h, hcr) = bcw

(
2

3

)3/2 √
gmax (0, h− hcr)

3/2
(48)

models the flow over the weir, h is the water level in the
lake upstream of the weir, hcr is the crest level, b = 1.75m

height datum

h
cr

h

Fig. 1. A typical moveable weir

is the width of the weir, cw = 1.0 is a constant depending
on the weir design, and g = 9.81m/s2 is the gravitational
acceleration at the location of the weir. Let level h∗

cr < h∗

be the crest level such that qw (h∗, h∗
cr) = q∗ which for the

above values follows from

q∗ = 1.75

(
2

3

)3/2 √
g (h∗ − h∗

cr)
3/2

= 0.3m3s (49)

so

h∗ − h∗
cr =

3

2

(
q∗

bcw
√
g

)2/3

� 0.216m (50)

A Taylor series expansion around the setpoint gives

qw (h, hcr) = q∗ + cL ((h− h∗)− (hcr − h∗
cr)) (51)

+ F (h− h∗, hcr − h∗
cr)

where

F (x, z) = qw (h∗ + x, h∗
cr + z)− q∗ − cL (x− z) (52)

is the remainder term, and the linear terms in the expan-
sion are cL and −cL with

cL =
3

2

q∗

h∗ − h∗
cr

� 2.081m2/s (53)

The controller will act at times τk = k∆τ for k = 0, 1, . . .,
and the communication delay will be ρ with 0 < ρ < ∆τ .
As system state x, we take x (t) = h (t) − h∗. In this
example, a discrete PI controller with coefficients cP and
cI is used, which is modelled by

u (k + 1) = u (k) + x (τk − ρk) (54)

hcr (τk) = h∗
cr − cPx (τk − ρk)− cIu (k) (55)

This results in

ẋ (t) = (56)

qin (t)− qw (h∗ + x (t) , h∗
cr − cPx (τk − ρk)− cIu (k))

a
u (k + 1) = u (k) + x (τk − ρk) (57)

If qin (t) = q∗ and qw is replaced by (51), then (56) can be
written as

ẋ (t) =
−cL (x− cPx (τk − ρk)− cIu (k))

a
(58)

−F (x,−cPx (τk − ρk)− cIu (k))

a
so in this case, Hk defined in (29) is constructed using

A = −cL
a
,A0 =

cLcP
a

,B =
cLcI
a

, C = 1, D = 1 (59)

5. NUMERICAL EXPERIMENTS

Numerical experiments were conducted for τk = k∆τ
and ρk = ρ with various combinations of ∆τ and ρ. A
disturbance of an amplitude 0.2m3/s and a duration of
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Fig. 2. Inflow for all tests
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Fig. 3. Level as a function of time for optimal cP and cI
with ∆τ = 900 s and different ρ
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Fig. 4. Level as a function of time for optimal cP and cI
for different ∆τ with ρ = 0.2∆τ

3600 s (Fig. 2) will be used to test system behaviour. Runs
for different ∆τ and ρ with cP and cI chosen to minimize
the modulus of the largest eigenvalue were performed. For
fixed ∆τ and increasing ρ the maximum deviation from
set-point and the time needed to get back to the set-point
increase with ρ. (Fig. 3). A similar pattern is seen when
∆τ is varied, but the ratio ρ/∆τ is held constant (Fig. 4).
For constant ∆τ , the range of allowed cI decreases with
increasing ρ (Fig. 5a, 5b). The size of the region of values
of cP and cI for which the system is stable shrinks with
increasing ∆τ (Fig. 5b, 5c). Numerical experiments showed
that for points outside the stability region the systems did
indeed become unstable.

6. CONCLUSIONS

A theorem was presented that provides sufficient condi-
tions for stability for a non-linear continuous time system
with a non-linear discrete time controller where the control
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Fig. 5. Plots of the region where maxλ∈σ(H) |λ| ≤ 1 for the
lake with weir and PI controller for several values of
∆τ and ρ (colour indicates the value of |λ|)

time step may vary and where the feedback loop contains
a variable delay factor. A strong point of the method is
that, once time evolution functions and output functions
of the plant and controller have been determined, the
derivatives of these functions needed for the theorem can
be determined by symbolic or automatic differentiation.
This removes the need for manual construction of Lya-
punov functionals. Extension to delays in the feedback
loop longer than one time step is expected to be a mat-
ter of extending the state vector of the controller and
perhaps some technical modifications to the theorem. A
bigger challenge will be adapting the theorem to allow for
time delays within the continuous process while keeping
verification of stability relatively simple.

Application of the results to a simple water system pro-
vided insight into the effect of control time step size and
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of cP and cI for which the system is stable shrinks with
increasing ∆τ (Fig. 5b, 5c). Numerical experiments showed
that for points outside the stability region the systems did
indeed become unstable.

6. CONCLUSIONS

A theorem was presented that provides sufficient condi-
tions for stability for a non-linear continuous time system
with a non-linear discrete time controller where the control
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lake with weir and PI controller for several values of
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time step may vary and where the feedback loop contains
a variable delay factor. A strong point of the method is
that, once time evolution functions and output functions
of the plant and controller have been determined, the
derivatives of these functions needed for the theorem can
be determined by symbolic or automatic differentiation.
This removes the need for manual construction of Lya-
punov functionals. Extension to delays in the feedback
loop longer than one time step is expected to be a mat-
ter of extending the state vector of the controller and
perhaps some technical modifications to the theorem. A
bigger challenge will be adapting the theorem to allow for
time delays within the continuous process while keeping
verification of stability relatively simple.

Application of the results to a simple water system pro-
vided insight into the effect of control time step size and

communication delay on controller performance. For the
example system, the range of allowed values for cP and cI
decreases with increasing time step size.
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Appendix A. PROOF OF THEOREM 3

Some lemmas are used to split the proof up into manage-
able parts. These will be stated and proved first.

Lemma 4. Suppose {Hk}∞k=1 is a sequence of square ma-
trices such that

lim sup
k→∞

max
λ∈σ(Hk)

|λ| < 1 (A.1)

where σ (Hk) is the spectrum of Hk and each subsequence
of {Hk}∞k=1 contains a subsequence which converges to a
Schur stable matrix. In that case there is a k0 such that for
k ≥ k0 for each Hk there is a positive definite symmetric
solution Pk of

H�
k PkHk − Pk = −I (A.2)

and there is a m ∈ R such that

sup
k≥k0

‖Pk‖ = m (A.3)

I ≤ Pk ≤ mI (A.4)

‖Hk‖ ≤
√
m− 1 (A.5)

Proof. According to (A.1), there exists a δ > 0 such that

lim sup
k→∞

max
λ∈σ(Hk)

|λ| = 1− δ

therefore there is a k0 such that

sup
k≥k0

max
λ∈σ(Hk)

|λ| ≤ 1− δ

2

so for all k ≥ k0, Hk is Schur stable, and there is a positive
definite symmetric solution Pk of H�

k PkHk − Pk = −I.
Now suppose that ‖Pk‖ for k ≥ k0 is not bounded. In that
case for each m ∈ N, m > 0 there must be a km > k0 such
that ‖Pkm‖ > m. But the sequence Hkm must contain a
subsequence converging to a Schur stable matrix H. Next
suppose that P is the solution of H�PH − P = −I. By
continuity we must have Pkm → P which contradicts the
unboundedness of ‖Pkm‖.
From (A.2) follows that Pk ≥ I. It then follows that

‖Hk‖ =
√
maxλ∈σ(Hk)

(
H�

k Hk

)
≤

√
m− 1.

Lemma 5. If 0 < q < 1 and m ≥ 1 and

p (z) = q + 2zm
√
m− 1 +mz2

then there is a ν with 0 < ν < 1 such that

0 < p (ν) < 1

Proof. If m = 1 then p (z) = q + z2 and any 0 < z <√
1− q will do. If m > 1 then consider

q − 1 + 2zm
√
m− 1 +mz2 = 0

This has roots

z1,2 =
−2m

√
m− 1±

√
4m2 (m− 1) + 4m (1− q)

2m

= −
√
m− 1±

√
(m− 1) +

1

m
(1− q)

Clearly z1 < 0 < z2, p (z1) = p (z2) = 1, and p (0) = q so
there must be a 0 < ν < min (z2, 1) such that p (ν) < 1.

Lemma 6. Let A, A0, B, C, D, F , G, Ω, ω, µ, τk and ρk
be as defined earlier. For any k1 ∈ N and any ε1 > 0 there
is a δ (k1, ε1) such that ‖ω (0)‖ ≤ δ (k1, ε1) implies that
‖ω (k1)‖ ≤ ε1.
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Proof. Pick ν ∈ (0, 1) and let δ1 (v) be as in Lemma 2.
The proof will use finite induction on k. Define

δ (k1, ε1) =
min {ε1, δ1 (v)}∏k1−1
j=0 (‖Hj‖+ 1)

(A.6)

Now according to (31) and (39)

‖ω (1)‖ ≤ ‖H0‖ ‖ω (0)‖+ ‖Ω (0)‖
≤ ‖H0‖ ‖ω (0)‖+ ν ‖ω (0)‖
≤ (‖H0‖+ 1) ‖ω (0)‖

so

‖ω (1)‖ ≤ (‖H0‖+ 1) ‖ω (0)‖

≤ min {ε1, δ1 (v)}∏k1−1
j=1 (‖Hj‖+ 1)

≤ δ1 (v)

Induction step: suppose that for k′ ≤ k < k1 we have

‖ω (k′)‖ ≤ min {ε1, δ1 (v)}∏k1−1
j=k (‖Hj‖+ 1)

then according to (31) and (39)

‖ω (k′ + 1)‖ ≤ (‖Hk‖+ 1) ‖ω (k′)‖

≤ min {ε1, δ1 (v)}∏k1−1
j=k′+1 (‖Hj‖+ 1)

which implies that

‖ω (k1)‖ ≤ (‖Hk1
‖+ 1) ‖ω (k1 − 1)‖

≤ (‖Hk1
‖+ 1)

min {ε1, δ1 (v)}∏k1−1
j=k1−1 (‖Hj‖+ 1)

= min {ε1, δ1 (v)} ≤ ε1

Now we get to the proof of Theorem 3.

Proof. The proof of Theorem 3 is similar to the proof
of the corresponding theorem in Hu and Michel (2000).
According to Lemma 4, there is a k0 such that (A.3) holds
and for k ≥ k0 there is a symmetric positive definite Pk

such that Pk = H�
k PkHk+I. From (44) and (45) it follows

that there is a k0 and a q such that 0 < q < 1 and for
k ≥ k0

max
λ∈σ(Hk)

|λ| < q, ‖Pk+1 − Pk‖ < q (A.7)

Next define

V (ω (k)) = ω (k)
�
Pk−1ω (k) (A.8)

and calculate

V (ω (k + 1))− V (ω (k)) =

−ω (k)
�
ω (k) + 2ω (k)

�
H�

k PΩ (k) + Ω (k)
�
PkΩ (k)

+ω (k)
�
(Pk − Pk−1)ω (k)

so

V (ω (k + 1))− V (ω (k)) = (A.9)

≤ − (1− q) ‖ω (k)‖2

+2m
√
m− 1 ‖Ω (k)‖ ‖ω (k)‖+m ‖Ω (k)‖2

According to Lemma 4, for any value of ν̃ > 0 it is possible
to find a δ1 (ν̃) such that ‖Ω (k)‖ ≤ ν̃ ‖ω (k)‖ provided that
‖ω (k)‖ ≤ δ1 (ν̃). This gives

V (ω (k + 1))− V (ω (k)) ≤ (A.10)(
−1 + q + 2m

√
m− 1ν̃ +mν̃2

)
‖ω (k)‖2

According to Lemma 5, we can pick a ν (0 < ν < 1) such
that

r =

√
m− 1 + q + 2νm

√
m− 1 +mν2 < 1 (A.11)

Now define
α = min (1,− ln r) (A.12)

and for every ε > 0 define

ε0 =
ε

c0
√
m
e−αµ (A.13)

Next use Lemma 6

δ = δ

(
k0,min

(
δ1 (v)√

m
, ε0e

−k0α

))
(A.14)

with δ1 (v) from Lemma 2 to get

‖ω (k0)‖ ≤ min

(
δ1 (v)√

m
, ε0e

−k0α

)
(A.15)

From (A.9) and ‖ω (k0)‖ ≤ δ1(v)√
m

we get

V (ω (k0 + 1))− V (ω (k0)) ≤ (A.16)(
q − 1 + 2vm

√
m− 1 +mv2

)
‖ω (k0)‖2

so

V (ω (k0 + 1)) ≤
(
q + 2vm

√
m− 1 +mv2

)
V (ω (k0))

where ‖ω (k0)‖2 ≤ V (ω (k0)) follows from (A.8) and k ≥
k0 and therefore Pk0

≥ I. Now

V (ω (k0 + 1)) ≤ r2V (ω (k0))

and

‖ω (k0 + 1)‖2 ≤ V (ω (k0 + 1)) ≤ r2V (ω (k0))

≤ r2m ‖ω (k0)‖2 < (δ1 (v))
2

Now suppose that for a given k > k0 for all k′ such that
for all k0 ≤ k′ ≤ k − 1

‖ω (k′)‖ ≤ δ1 (v)

and
V (ω (k′ + 1)) ≤ r2V (ω (k′))

then

V (ω (k + 1)) ≤
(
q + 2vm

√
m− 1 +mv2

)
V (ω (k))

≤ r2V (ω (k)) ≤ r2(k−k0)V (ω (k0))

and therefore

‖ω (k + 1)‖2 ≤ V (ω (k + 1)) ≤ r2V (ω (k))

≤ r2(k+1−k0)m ‖ω (k0)‖2 < (δ1 (v))
2

and

‖ω (k + 1)‖ ≤ r(k+1−k0)e−k0α
ε
√
m

c0
√
m
e−αµ

Now for all k ≥ k0 and t ∈ [τk, τk+1) we have ‖ω (k)‖ ≤
δ1 (v) so

‖x (t)‖ ≤ (1 + µ (‖A0‖+ ‖B‖+ 2)) e(1+‖A‖)(t−τk) ‖ω (k)‖

≤ (1 + µ (‖A0‖+ ‖B‖+ 2)) e(1+‖A‖)(t−τk)

(1 + µ (‖A0‖+ ‖B‖+ 2)) e(1+‖A‖)(τk+1−τk)
‖ω (k)‖

≤ r(k+1) ε√
m
e−αµ ≤ ε√

m
e−(k+1−α)µ

and therefore (x, u) = (0, 0) is exponentially stable.


