
Exploring the Synergy between Inverse Reinforcement Learning and
Reinforcement Learning From Human Feedback for Query Reduction

Ana Bǎtrı̂neanu

Supervisors: Luciano Cavalcante Siebert, Antonio Mone

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2022

Name of the student: Ana Bǎtrı̂neanu
Final project course: CSE3000 Research Project
Thesis committee: Luciano Cavalcante Siebert, Antonio Mone, Wendelin Böhmer

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Reinforcement Learning is a powerful tool for problems that
require sequential-decision-making. However, it often faces
challenges due to the extensive need for reward engineering.
Reinforcement Learning from Human Feedback (RLHF) and
Inverse Reinforcement Learning (IRL) hold the promise of
learning a reward function without manual encoding. While
RLHF uses feedback to estimate a reward function, IRL
learns from demonstrations, examples provided by a teacher.
In practice, both approaches have their advantages and dis-
advantages. IRL typically learns faster, provided that demon-
strations are correct and sufficiently diverse. However, obtain-
ing optimal demonstrations is inherently hard, since a teacher
may not cover all possibilities, and their examples might fail
to demonstrate the behaviour intended. Interactive feedback
is believed to be easier to provide than demonstrations. How-
ever, RLHF suffers from the curse of dimensionality and the
learner’s random behavior at early learning trials. It also re-
quires a large number of evaluative feedbacks, queries to a
human labeler. We propose a learning framework in which
these two approaches would potentially benefit from one an-
other, with the purpose of investigating whether we can re-
duce the number of queries RLHF needs. Furthermore, we
use Adversarial IRL (AIRL) and RLHF with preference com-
parisons. We examine our approach in two experimental stud-
ies. Our results indicate that combining AIRL with RLHF
yields promising outcomes, but the effectiveness highly de-
pends on the nature and number of demonstrations, and the
specifics of the environment.
Keywords: Reinforcement Learning from Human Feedback,
Adversarial Inverse Reinforcement Learning, Preference
Comparisons, Learning from demonstrations and feedback,
Proximal Policy Optimization

1 Introduction
Reinforcement Learning (RL) is a machine learning tech-
nique which focuses on goal-directed learning from inter-
action with an environment. In RL, an agent traditionally
navigates through an environment and attempts to make op-
timal actions or decisions through a process of trial and er-
ror, being guided by manually defined reward signals (Kauf-
mann et al. 2023). Although RL algorithms assume the exis-
tence of a reward function which the agent tries to maximize,
in complex applications, it may be impossible to hard-code
one. For example, suppose that we want to train a robot to
assist humans in a household environment. In this case, it
is unclear how to design a suitable reward function, since
it must account for the dynamic nature of the environment,
the diverse range of tasks the robot might encounter, and the
varying preferences and expectations of different users. As
a consequence, teaching by demonstrations and interactive
learning have become a powerful replacement for manual
coding and behavior tuning (Ezzeddine et al. 2018). Interac-
tive learning techniques can be categorized into two major
clusters: Learning from Feedbacks (LfF) and Learning from
Demonstrations (LfD) (Ezzeddine et al. 2018).

LfF assumes the existence of a trainer which iteratively
evaluates the agent’s behavior and provides feedback in dif-
ferent formats (binary comparisons, trajectory rankings, nu-
meric rewards, etc.) in order to improve the agent’s pol-

icy (state-action mapping) (Ezzeddine et al. 2018). Rein-
forcement Learning from Human Feedback (RLHF) is the
RL technique in which an initially unknown reward func-
tion is learned through human feedback. The learned reward
function is further on used to optimize the agent’s policy.
The trainer is a critical component, referred to as human-in-
the-loop (HITL). This approach overcomes the limitations
of traditional methods to define a reward function. Also,
benefits for agent alignment (the agent’s learning goals are
more closely aligned with human values, promoting ethi-
cally sound and socially responsible AI systems) have been
claimed to arise from this approach by (Kaufmann et al.
2023).

In contrast, in LfD the agent tries to learn its policy by ob-
serving the trainer demonstrations (Ezzeddine et al. 2018).
LfD techniques can be further classified into two main cat-
egories: ”Direct imitation learning1” and ”Apprenticeship
learning”. This paper focuses on the latter, which is also re-
ferred to as Inverse Reinforcement Learning (IRL). These
methods aim to infer the underlying goals and motivations
of the expert. In IRL, the agent learns a reward function by
observing demonstrations provided by a teacher.

IRL ((Abbeel and Ng 2004), (Ratliff, Bagnell, and Zinke-
vich 2006), (Ziebart et al. 2008)) and RLHF ((Christiano
et al. 2023), (Lee et al. 2023)) have been extensively stud-
ied on their own. There is also some research around com-
bining the two methods in order to benefit from the com-
plementary properties of IRL and RLHF in realistic sit-
uations ((Ezzeddine et al. 2018), (Argall, Browning, and
Veloso 2007), (Nicolescu and Mataric 2003)). This integra-
tion between the two can be effective to overcome some
challenges in the learning process, such as the correspon-
dence problem2 between the trainer and the agent, and to
make up for the unseen situations that are not covered in
the demonstrations (Ezzeddine et al. 2018). Moreover, the
mentioned papers investigate the synergy between IRL and
RLHF, by either using supervised learning approaches to di-
rectly learn the policy, or by investigating how human feed-
back can overcome the challenge of non-optimal demon-
strations. However, none of them focuses on investigating
whether the number of queries from the agent to a trainer
is reduced when integrating IRL in the RLHF process. This
gap creates an opportunity for our research.

This paper aims to combine the two RL methods and to
particularly investigate: ”To what extent can IRL comple-
ment RLHF to reduce the number of queries RLHF needs?”.

The rest of the report is structured as follows: Section 2
aims to provide background information by recalling the ba-
sic settings of RL, IRL and RLHF algorithms. Section 3 de-
scribes the methodology used in this research, while sec-
tion 4 outlines the experiments conducted in order to answer
the main research question. Section 5 goes over the results
achieved through the experiments and analyses them, while

1Direct imitation learning comprises those methods that use su-
pervised learning algorithms to directly imitate the expert’s policy.

2Correspondence problem due to some differences in physical
embodiment and perception of the trainer and the learner (Ezzed-
dine et al. 2018).

1



Fig. 1: The basic RL setting

section 6 includes a comprehensive discussion of the results
achieved. Section 7 addresses the topic of responsible re-
search within our study, followed by section 8 which out-
lines the conclusions and future research directions.

2 Background
In this section we focus on describing the most important
concepts of RL, RLHF and IRL.

2.1 Reinforcement Learning Terminology
In RL, an agent interacts with an environment by choos-
ing actions based on its current state, receives rewards, and
follows a policy to maximize a long-term cumulative re-
ward throughout episodes. (Sutton and Barto 2018) provide
a comprehensive overview of RL.
The basic interaction setup can be visualized in Fig. 1. The
agent chooses an action at time t given its current state
and based on its current policy (πst ). Afterwards, the agent
moves to the next state st+1 in a deterministic or stochas-
tic manner, and receives the immediate reward rt+1. Conse-
quently, the interaction loop is restarted. In this setting, the
reward function is known beforehand. The RL agent aims
at learning a policy that maximizes the expected return. The
policy is not fixed; it is iteratively improved through a pro-
cess called policy iteration. In policy iteration, the agent al-
ternates between evaluating how good the current policy is
(policy evaluation) and making the policy better (policy im-
provement / optimization).

2.2 Markov Decision Process
RL is a perfect fit for problems that require sequential-
decision-making (a series of decisions that all affect one an-
other). Therefore, the learning environment in RL is formal-
ized as a Markov decision process (MDP). An MDP is an
extension of a Markov Chain, through the addition of ac-
tions and rewards. In an MDP, an agent iteratively observes
its current state, takes an action that causes the transition to
a new state, and finally receives a reward that depends on the
action’s effectiveness (Kaufmann et al. 2023).

The canonical MDP is defined as a tuple (S, A, P as,s′ , R,
γ), where:
• S is a finite set of states. A particular state at time t is

denoted using St.
• A is a finite set of actions. A particular action at time t is

denoted using At.
• P as,s′ , transition function = P (s′ | s, a) (the probability

to move to state s’ by taking action a, given the current
state s).

• R : S ×A→ R represents the reward function.
• γ ∈ [0, 1] represents the discount factor (a constant quan-

tifying the importance of short-term and long-term re-
wards).

We call the value R(s, a) an instantaneous reward, the
immediate feedback received by performing action a in
state s. In an MDP, an H-step trajectory (where H is of-
ten referred to as horizon) is a sequence of state-action
pairs, ending in a terminal state. It is represented as
τ = (s0, a0, s1, a1, ..., sH). We define a segment σ =
(st0 , at0 , st0+1, at0+1, ..., sH′ ) as a continuous sequence of
steps within a larger trajectory, where t0 ≥ 0 and H ′ ≤ H .

A trajectory τ ’s return value is represented by the follow-
ing formula:

R(τ) =

H−1∑
h=0

γhR(sh, ah) (1)

(1) is the cumulative discounted sum of rewards along the
τ trajectory. Note that R can represent two different values,
depending on its signature: return value of τ trajectory or the
value of the reward function given a state and an action.

2.3 Proximal policy optimization algorithm
Proximal Policy Optimization (PPO) is an on-policy algo-
rithm. In short, on-policy learning algorithms evaluate and
improve the same policy which is being used to select ac-
tions.

PPO is part of the policy-gradient family of methods, and
more specifically, it belongs to the actor-critic family. Those
methods are able to handle continuous actions with ease.
Policy gradient methods work by computing an estimator of
the policy gradient and plugging it into a stochastic gradient
ascent algorithm. Standard algorithms belonging to this fam-
ily perform one gradient update per data sample. PPO differ-
entiates itself by having a novel objective function (Clipped
Surrogate Objective function) that enables multiple epochs
of minibatch updates. The Clipped Surrogate Objective is
a replacement for the policy gradient objective, and is de-
signed to improve training stability by limiting the change
you make to your policy at each time step (Schulman et al.
2017).

For our research, we have chosen to use PPO for both
RLHF and IRL algorithms, because of its scalability (to
large models and parallel implementations), data efficiency
and robustness (it is successful on a variety of problems
without hyperparameter tuning) (Schulman et al. 2017).

2.4 Reinforcement Learning From Human
Feedback with Preference Comparisons

A generic RLHF algorithm consists of repeating two phases
(Kaufmann et al. 2023):
1. Reward Learning

• Generate queries to ask the oracle (human labeler).
• Train a reward function approximator with the answers

provided by the oracle.
2. RL training

2



Algorithm 1: Generic RLHF Algorithm in an Actor-Critic
Scheme

1: Initialize parameters θ (policy), ϕ (critic), and ψ (re-
ward)

2: Initialize replay buffer β with randomly-generated tra-
jectories

3: Initialize database D of triples (σ1, σ2, µ), where σ1 and
σ2 are two segments and µ is a distribution over {1, 2}
indicating which segment the oracle preferred

4: for i = 1, ..., N do
5: // Reward learning
6: Generate queries from β
7: Update D with answers to queries from the oracle
8: Update ψ using D (e.g., to minimize Eq. 3)
9: // RL training

10: Update β with new trajectories generated with πθ
11: Update θ (actor) using β and Rψ
12: Update ϕ (critic) using β and Rψ
13: end for

• Running a deep RL algorithm using the currently
trained reward function approximator.

This algorithm is summarized in Algorithm 1 (Kaufmann
et al. 2023). If the oracle marks the segments σ1 and σ2

as equally preferable, then µ is uniform. Finally, if they
are marked as incomparable, then the comparison is not
included in the database (Christiano et al. 2023). The al-
gorithm assumes an off-policy actor-critic3 scheme for the
RL training phase. However, other RL policy learning ap-
proaches can be used, such as PPO (on-policy algorithm),
which we will also use in our research. For PPO, only the
recently generated transitions are used for training.

In this paper we have chosen to focus on RLHF with pref-
erence comparisons as feedback type, a commonly used ap-
proach. In addition, (Christiano et al. 2023) claim in their
paper to have found with predicting comparisons better per-
formance than with predicting scores for continuous con-
trol tasks. Throughout our research, we will use the term
”queries” and ”preference comparisons” interchangeably to
indicate the number of interactions, or the amount of feed-
back, between the agent and the human labeler.

The preference comparisons algorithm learns a reward
function from preferences between pairs of trajectories.
The comparisons are modeled as being generated from a
Bradley-Terry (or Boltzmann rational) model (Eq. 2), where
the probability of preferring trajectory A (σ1) over B (σ2) is
proportional to the exponential of the difference between the
return of trajectory A minus B. In other words, the difference
in returns forms a logit for a binary classification problem,
and accordingly the reward function is trained using a cross-
entropy loss (or equivalently using the maximum likelihood
principle) to predict the preference comparison ((Christiano
et al. 2023), (Gleave et al. 2022)). Eq. 3 illustrates the cross-
entropy loss between the predictions and the actual human

3The actor-critic algorithm is a type of RL algorithm that com-
bines aspects of both policy-based methods (Actor) and value-
based methods (Critic)

labels.

P̂ [σ1 ≻ σ2] =
exp

∑
r̂(o1t , a

1
t )

exp
∑
r̂(o1t , a

1
t ) + exp

∑
r̂(o2t , a

2
t )

(2)

where r̂ = reward function estimate

loss(r̂) = −
∑

(σ1,σ2,µ)∈D

µ(1)logP̂ [σ1 ≻ σ2]+µ(2)logP̂ [σ2 ≻ σ1]

(3)

2.5 Adversarial Inverse Reinforcement Learning
IRL algorithms seek to infer a reward function given a set
of demonstrations (D = {τ1, ..., τN}) of behavior in the en-
vironment. Demonstrations are usually assumed to be pro-
vided by an expert (human teacher), and come in the form
of trajectories composed of state-action pairs. Another as-
sumption is that the expert is following an optimal policy.
However, in recent work, these assumptions have been re-
laxed (Adams, Cody, and Beling 2022).

Adversarial Inverse Reinforcement Learning (AIRL) is a
practical and scalable IRL algorithm based on an adversar-
ial reward learning formulation. AIRL uses a generative ad-
versarial network (GAN) approach (Goodfellow et al. 2020),
where a discriminator (esentially acting as a reward model)
and a generator (policy optimization agent) are trained si-
multaneously.

The main idea behind the AIRL algorithm is the follow-
ing: The discriminator model utilizes both expert demonstra-
tions (which remain constant throughout the training) and
the latest agent’s trajectories as input (generated by the pol-
icy being learned, the generator). Its aim is to distinguish be-
tween the two sets of demonstrations. This process implic-
itly constructs a reward function. The policy, on the other
hand, aims to produce state-action pairs that the discrim-
inator cannot distinguish from the expert’s and is updated
based on the reward signal inferred from the discriminator.
The entire process is iterated to refine both the policy and
the discriminator.

For our research, we have chosen to focus on the AIRL al-
gorithm. Other options included the Maximum Entropy IRL
algorithm (Ziebart et al. 2008), which models behavior by
choosing the probability distribution over trajectories that
maximizes entropy while aligning with the observed feature
expectations. We opted for AIRL due to its ability to recover
reward functions that are robust to changes in dynamics, en-
abling us to learn policies even under significant variation in
the environment seen during training (Fu, Luo, and Levine
2018). The authors of the paper mention that rewards re-
covered by AIRL generalize better than those produced by
previous methods, and they demonstrate that AIRL performs
well even in high-dimensional control tasks.

3 Methodology
This section highlights the methodology used in investigat-
ing our main research question. We first discuss related work
to our approach. Subsequently, we introduce our proposed
learning framework which combines IRL and RLHF.

3



3.1 Related work
The authors of the following paper (Ezzeddine et al. 2018)
developed a methodology for learning from non-optimal
demonstrations and human feedback by combining IRL and
RLHF. Their methodology involved three phases: first, an
agent learns from a set of non-optimal demonstrations us-
ing a modified version of the Maximum Likelihood IRL
(MLIRL) algorithm to derive an initial policy; second, the
agent’s behavior is improved through an interactive learn-
ing phase where human evaluative feedback is incorporated;
and third, the improved policy and initial demonstrations are
combined in an extended IRL algorithm to refine the re-
ward function further. The feedback mechanism they used
involves the trainer providing explicit negative feedback
through a keyboard in response to incorrect actions. Positive
feedback is assumed when no negative feedback is given,
reducing the burden on the trainer. This interactive phase
continues until the trainer is satisfied with the agent’s be-
havior. Moreover, their methodology is tested on 3 environ-
ments: a grid-world navigation task, a highway car driving,
and a robotic case study. Finally, their paper demonstrates
that their proposed approach successfully learns the desired
behaviors from non-optimal demonstrations combined with
human evaluative feedback.

Our approach, as we will describe in the next section,
is inspired and based on the methodology implemented by
(Ezzeddine et al. 2018), and it is a simpler version of their
framework. We also use a different IRL algorithm, and a dif-
ferent procedure of providing feedback.

3.2 AIRLHF framework
The suggested framework in this paper is outlined in Fig. 2.
We will call AIRLHF the combination between the AIRL
algorithm and the RLHF algorithm. The algorithm consists
of three phases, respectively:
• Phase 1: An AIRL agent learns a reward function from

the given expert demonstrations and derives a prelimi-
nary policy.

• Phase 2: A RLHF agent receives RAIRL, πAIRL,
learned during Phase 1, as initializations (thus, becoming
an AIRLHF agent). The agent’s reward function is im-
proved, guided by the human trainer who provides feed-
back through preference comparisons. Once the robust
reward function is learned, it is used to re-learn the pol-
icy of the environment and to optimize it (πAIRLHF ).

• Phase 3: The improved and final reward function
(RAIRLHF ) and the final policy derived (πAIRLHF ) in
the precedent phase, are evaluated. The performance of
the AIRLHF agent is compared to the performance of an
individual RLHF agent.

To restate, RLHF suffers from random behavior at early
learning trials, especially when learning starts from scratch.
As a consequence, it needs a large number of evaluative
feedbacks and has a slow convergence rate to the desired
policy. Hence, by initializing RLHF with a reward and pol-
icy learned from AIRL, we make sure RLHF’s learning does
not start from scratch, with the intention to accelerate its
learning process and lower the number of queries it needs.

AIRLAIRLR ,

AIRLHFAIRLHFR ,

AIRLHFAIRLHFR ,

AIRLRAIRLHFR =

AIRLAIRLHF=

Fig. 2: AIRLHF Algorithm

IRL algorithms are influenced by the number of demon-
strations they receive. In order to investigate to what extent
IRL can complement RLHF, we believe it is sensible to also
vary, alongside the number of queries RLHF needs, the num-
ber of demonstrations our AIRL algorithm will learn from.
To do so, we will investigate two scenarios for our AIRL
agent, respectively:

1. AIRL agent learns from a varying number of optimal,
expert demonstrations.

2. AIRL agent learns from a varying number of suboptimal
demonstrations.

In real-world applications, the conditions of sufficiently
diverse and highly optimal demonstrations are hard to meet.
Moreover, as described in the section 3.1, the focus of the
work of (Ezzeddine et al. 2018) is also on enhancing learn-
ing by overcoming non-optimality in demonstrations. In
their work, they also mention the fact that most IRL papers
use the traditional assumption of the IRL that demonstra-
tions are optimal or near to the optimal. As a consequence,
very few papers consider suboptimality in demonstrations,
and more research is needed in this area. Therefore, we deem
it is important to also investigate the impact an IRL algo-
rithm with manually defined suboptimality can have upon a
RLHF algorithm.

3.3 Synthetic feedback and demonstrations
Due to the limited time of our research, we have only made
use of feedback (queries) and demonstrations generated syn-

4



thetically. That is, no real-human data was collected and in-
cluded in our research. However, using synthetic data en-
sures consistency and reproducibility in our experiments and
provides a clear benchmark for evaluating our RLHF and
AIRLHF implementations. In the future, our research can
be extended with human-generated data.

4 Experimental setup
In this section we will present our experimental setup. In
Appendix A we outline the technologies and some more im-
plementation details we have used in order to set up our ex-
periments.

4.1 Experimental Setup
We evaluate the approach presented in this paper
through two case-studies: two classic control environments,
CartPole-v0 (see Appendix B) and Pendulum-v1 (see Ap-
pendix B). These environments are commonly used to
benchmark RL algorithms due to their simplicity and the
control challenge they present. We deemed these environ-
ments to be good starting points in the area of this research,
and we believe our results on them will be useful for future
directions.

For each environment, we have settled the same exper-
imental setup, which can be depicted in Fig.3. We intro-
duced suboptimality into our demonstrations by adding a
controlled level of randomness. For this research, we fo-
cused on settings where there was a 10% chance of taking a
random action and a 20% chance of switching between the
expert and random actions. Due to the limited time of our
research, we impose a threshold on the number of demon-
strations we will experiment with, equal to the number of
comparisons of the baseline RLHF agent.

Run RLHF with
different number of

comparisons

Run AIRLHF with
varying number of

optimal / suboptimal
demonstrations, and
different number of

comparisons

Set RLHF baseline
Evaluate policy

periodically using
true reward

Compare AIRLHF
agents with RLHF

baseline

Fig. 3: Experimental setup

CartPole-v0 Environment. The objective in this environ-
ment is to balance a pole on a moving cart by applying forces
to the left or right. For every step taken, there is a +1 reward.
The CartPole problem is considered to be solved when the
average reward is greater than or equal to 195.0 over 100
consecutive trials (Brockman et al. 2016).

Pendulum-v1 Environment. The goal in this environ-
ment is to swing a pendulum to keep it upright by applying

torque. The reward is designed so that a better performance
corresponds to a reward closer to 0.

Evaluation. For each of the figures that will follow in Sec-
tion 5, we have used an identical process of evaluation: while
the policy is learned, we evaluate it periodically on the true
reward, for a number of times. At each evaluation point, the
agent’s performance is tested over 5 episodes with a sepa-
rate test environment. We refer to a test environment as an
environment that does not have the reward learned through
RLHF, but the true reward. The mean reward across these
episodes is calculated and logged against the corresponding
time step. At the end of the process, we evaluate the final
derived policy on the true reward, over 100 episodes. We
report these results in Table 1, which includes useful infor-
mation with regards to the reward mean, standard deviation
and 95% confidence interval achieved.

Note. Deep RL seems fairly brittle with respect to random
seeds in a lot of common use cases (Islam et al. 2017). Ran-
dom seeds can give a weaker / stronger impression on the
performance than the reality confirms. Therefore, it is im-
portant to test out different seeds in our environments. As
a consequence and as (Islam et al. 2017) indicates, we will
average many trials using different random seeds in our ex-
periments.

5 Results and Analysis
The aim of this section is to present and analyze the re-
sults gathered from the experiments presented in the previ-
ous chapter. We will first discuss our results on the CartPole-
v0 environment, followed by the Pendulum-v1 environment.

5.1 Results on CartPole-v0
RLHF baseline. The benchmarks achieved on RLHF can
be depicted in Fig. 4a, which highlights the evaluation of 3
RLHF learners, with a varied number of comparisons: 250,
800 and 1400 (numbers inspired from (Islam et al. 2017)).
Given our collected results, we arrive at the conclusion that
our RLHF agents with 250 comparisons and 800 compar-
isons perform similarly, but do not manage to solve the
CartPole-v0 problem, as their reward mean does not go past
195.0. However, our RLHF agent with 1400 comparisons
managed to solve the environment and was chosen as the
baseline.

AIRLHF with optimal demonstrations. We will first il-
lustrate the results gathered from AIRL with optimal demon-
strations + RLHF, which can be depicted in Fig. 4b. Analyz-
ing the results gathered, we see how we can set the amount of
queries as low as 10, and still achieve outstanding numbers.
In both scenarios, the agents successfully achieve a reward
mean close to 450. Therefore, both agents solve the Cart-
Pole problem. Comparing these results to our RLHF base-
line of 1400 comparisons, we conclude that we can decrease
the number of queries from 1400 to 10 (approximately 93%
decrease).

AIRLHF with suboptimal demonstrations. Subse-
quently, we analyze the results gathered from AIRL with

5



(a) RLHF agents with varying comparisons. (b) AIRLHF agents with different compar-
isons and optimal demonstrations.

(c) AIRLHF agents with different compar-
isons and suboptimal demonstrations, com-
pared to the RLHF baseline agent.

(d) A comparison between our selected
RLHF baseline agent and the mean-curve
of all suboptimal AIRLHF agents.

Fig. 4: Performance on CartPole-v0 as measured by the true mean reward over time. Each learner (curve) represents the mean of 5 runs with different seeds (34, 43, 52, 61, and
70). For (a), evaluation was done 6 times with 8 parallel environments. For (b), (c) and (d), evaluation was done 400 times with 8 parallel environments. The horizontal dotted line at
195.0 reward mean represents the baseline of solving this environment.

suboptimal demonstrations + RLHF. Fig. 4c outlines the top
3 AIRLHF agents with the highest reward means achieved,
against our selected baseline RLHF agent, and Fig. 4d
provides a closer look between the baseline agent and a
mean of all the suboptimal experts we tested. More than
half of the suboptimal AIRLHF agents we experimented
with were far from the performance achieved by the RLHF
baseline. The ones that came closer are only the top 3
aforementioned. However, we get the idea that in this
scenario, we cannot reduce the number of queries, since
the suboptimal agents perform worse, or barely similar to
our baseline agent.

5.2 Results on Pendulum-v1

RLHF baseline. We first outline the benchmarks set by
running RLHF on Pendulum-v1. Fig. 5a describes the eval-
uation of 3 RLHF learners on the Pendulum-v1 environment
with a different number of comparisons: 250, 800 and 1400.

Pendulum-v1 is an unsolved environment, which means
it does not have a specified reward threshold at which it is
considered solved, like CartPole-v0 has. However, some re-
search papers that aim to benchmark RL algorithms do men-
tion that a possible ”solved score” for Pendulum-v1 would
be near -140. They explain it is a number taken from cur-
rent leader boards in RL communities (Oller, Glasmachers,
and Cuccu 2020). We will not judge on such a limit, as
in general, Pendulum-v1 still remains an unsolved environ-
ment. Our chosen RLHF baseline agent, the one with 1400
comparisons, does exceed -140, more specifically it attains
a value of -131.8. We have chosen the 1400 comparisons
RLHF agent since it attains the highest reward mean and an
adequate standard deviation (a bit lower than the other two
agents we had).

AIRLHF with optimal demonstrations Results can be
visualized in 5b. We observe that the AIRLHF agents do not
exceed the RLHF baseline. We can only conclude that the
best AIRLHF agent (the one who learned from 1400 com-
parisons and 1400 demonstrations) performs barely similar
to our selected baseline. We cannot reduce the number of
queries to achieve the same, or better, results.

AIRLHF with suboptimal demonstrations Results are
shown in Fig. 5c. Interestingly, our experiments reveal that
our AIRLHF agents trained with suboptimal demonstra-
tions, which included controlled randomness, performed
better on average compared to those trained with optimal
demonstrations. Comparing to the RLHF baseline, the best
AIRLHF agents managed to perform very similar to it. How-
ever, we cannot make a reduction in the number of queries,
since the performance of the agents is very similar, but does
not exceed the baseline.

6 Discussion
In this section we will further interpret and discuss the re-
sults we achieved. In addition, we will highlight certain lim-
itations of our approach.

To begin with, Table 2 reiterates the conclusions reached
from our results. Table 3 revises our judgement, for each
environment, on the performance of the best AIRLHF agents
in comparison to the selected RLHF baseline agent.

Optimal demonstrations. With regards to the CartPole-
v0 environment, we expected to see AIRLHF agents out-
performing the RLHF baseline. CartPole-v0 is a simple en-
vironment, has discrete actions and straightforward dynam-
ics, and a relatively simple task. While training was done, we
analyzed the trend AIRL agents had (see Appendix C). Hav-
ing optimal demonstrations, AIRL quickly converged to a
reward mean of almost 500. Therefore, we believe that AIRL
found a good initialization for the reward and policy, which
was later passed to RLHF.

On the other hand, on the Pendulum-v1 environment, the
results were surprising. Given that Pendulum-v1 is bit more
complex than CartPole-v0, has continuous state and action
spaces, we hypothesize the following: optimal demonstra-
tions might have led to overfitting and reduced exploration.
We suspect that AIRL did not find a good enough initial-
ization with the number of timesteps (400k) and demonstra-
tions we provided. We suspect that increasing the number of
optimal demonstrations above 1400 (our threshold) would
provide better results. Also, in Appendix D we included a
figure illustrating the training trend of the AIRL agents.

6



(a) RLHF agents with varying comparisons. (b) AIRLHF agents with different comparisons and
optimal demonstrations.

(c) A comparison between our selected RLHF baseline
agent and the mean-curve of all suboptimal AIRLHF
agents.

Fig. 5: Performance on Pendulum-v1 as measured by the true mean reward over time. Each learner (curve) represents the mean of 5 runs with different seeds (34, 43, 52, 61, and
70). For (a), evaluation was done 12 times with 4 parallel environments. For (b) and (c), evaluation was done 200 times with 4 parallel environments.

Table 1: Results on CartPole-v0 and Pendulum-v1 when evaluating the derived policy on the true reward. Mean and std are the average of 5 runs with seeds (34, 43, 52, 61, and
70). Evaluation was done over 100 episodes.

Experiment Metrics

Environment Agent Comparisons Demonstrations Mean Std CI 95%

CartPole-v0
RLHF 250 - 171.28 ±1.36 171.28 ± 1.19
RLHF 800 - 162.09 ±8.56 162.09 ± 7.50
RLHF 1400 - 207.57 ±1.39 207.57 ± 1.21
AIRLHF optimal 10 20 424.94 ±0.54 424.94 ± 0.47
AIRLHF optimal 10 60 395.93 ±17.44 395.93 ± 15.28
AIRLHF suboptimal 250 150 10.59 ±6.48 10.59 ± 5.67
AIRLHF suboptimal 250 500 37.92 ±2.85 37.92 ± 2.50
AIRLHF suboptimal 500 150 32.01 ±1.87 32.01 ± 1.64
AIRLHF suboptimal 500 500 24.71 ±3.70 24.71 ± 3.24
AIRLHF suboptimal 800 800 92.12 ±7.59 92.12 ± 6.65
AIRLHF suboptimal 1200 1200 49.48 ±2.75 49.48 ± 2.41
AIRLHF suboptimal 1400 1400 108.49 ±3.19 108.49 ± 2.80

Pendulum-v1
RLHF 250 - -448.97 ±329.40 -448.97 ± 288.73
RLHF 800 - -650.36 ±386.49 -650.36 ± 338.77
RLHF 1400 - -317.70 ±323.37 -317.70 ± 283.44
AIRLHF optimal 1200 1400 -662.30 ±429.89 -662.30 ± 376.81
AIRLHF optimal 1400 1400 -557.99 ±461.25 -557.99 ± 404.30
AIRLHF suboptimal 800 1000 -663.30 ±494.36 -663.30 ± 433.32
AIRLHF suboptimal 800 1400 -387.42 ±386.27 -387.42 ± 338.58
AIRLHF suboptimal 1000 1400 -441.73 ±426.76 -441.73 ± 374.07
AIRLHF suboptimal 1200 1400 -332.04 ±359.14 -332.04 ± 314.80

Table 2: Main conclusions derived from the AIRLHF framework, when comparing
the selected RLHF baseline with the benchmarks achieved by the AIRLHF agents,
with regards to decreasing the number of queries.

AIRL optimal demonstrations + RLHF AIRL suboptimal demonstrations + RLHF
CartPole-v0 ≈ 93% decrease no decrease

Pendulum-v1 no decrease no decrease

Suboptimal demonstrations. With regards to the
CartPole-v0 environment, we did not expect to see that

Table 3: Our judgements on the performance of the AIRLHF agents when compared
to the selected RLHF agent, for each environment.

AIRL optimal demonstrations + RLHF AIRL suboptimal demonstrations + RLHF
CartPole-v0 out-performing worse / barely similar

Pendulum-v1 worse / barely similar very similar

introducing a relatively small amount of noise into the
demonstrations would disturb the learning process in such
a large amount. However, we believe that increasing the

7



number of suboptimal demonstrations would improve the
performance of the AIRLHF agents. However, this should
be investigated in future extensions of our work, by also
varying the amount of randomness introduced and reporting
the resulted behaviors.

Moreover, on the Pendulum-v1 environment, the results
were, again, interesting. We suspect that the variability and
diversity introduced by the suboptimal demonstrations en-
hanced the robustness and generalizability of the learned
policies. As a consequence, we believe this could have led to
a better exploration of the state space and possibly provided
richer learning signals. We believe that AIRL was able to
handle the suboptimality in the demonstration data and pro-
vided a good enough initialization to RLHF. We also believe
that a larger amount of demonstrations would surpass the
baseline, allowing us to reduce the number of queries.

7 Responsible Research
While conducting our research, no human data was used
for either IRL or RLHF. Although human behavior usually
plays a huge part in IRL and RLHF through the demonstra-
tions and feedback the agents learn from, it also gives rise
to ethical implications with regards to how the human data
was selected, stored and used. On a further note, gathering
human data is a long-term process. Thus, in the limited time
allocated for our research, as described in the section 3.3,
we opted for synthetic demonstrations and synthetic queries.
Using synthetic feedback and demonstrations ensures a high
level of consistency and reproducibility in our experiments.
Synthetic data, based on predefined algorithms and reward
structures, eliminates the variability and biases that human-
generated data might introduce. This consistency allows us
to focus on the performance of the RL algorithms without
the added complexity of human error or subjective judg-
ments. Furthermore, synthetic data provides a clear and con-
trolled benchmark for evaluating the effectiveness of our
RLHF and AIRLHF implementations. By using synthetic
preferences and demonstrations, we can establish a baseline
performance that can be compared to results obtained with
human-generated data in future extensions of our work. This
step is crucial for validating our methodology and ensuring
that any improvements or changes in performance metrics
can be attributed to the algorithms themselves rather than
variations in data quality or sources.

In order to promote transparency in research and deploy-
ment of RL systems, the complete set-up of our research
has been made public on Github 4. In deep RL systems, re-
producibility can be affected by extrinsic factors (e.g. hy-
perparameters or codebases) and intrinsic factors (e.g. ef-
fects of random seeds or environment properties) (Hen-
derson et al. 2019). To overcome this matter, we ensured
the reproducibility and extensibility of our research by re-
porting all hyperparameters used, implementation details,
experimental-setup, always providing the seeds we used and
by writing clear, coherent and commented code that can be
easily scaled to new experiments, new algorithms, and new
environments. Moreover, we include a transparent review of

4Github repository

our methodology, the AIRLHF framework, and instructions
on how to use it.

8 Conclusions and Future Work
This paper presented an approach of combining AIRL with
RLHF with preference comparisons to investigate whether
the number of queries can be reduced. Starting from the
idea that RLHF suffers from random behavior at early learn-
ing stages and most of the times needs a large number of
evaluative feedbacks to converge to a desired policy, we in-
tegrated AIRL in the learning process with the purpose of
overcoming the aforementioned challenges. More specifi-
cally, we designed a framework in which AIRL would find
a reward and policy, which would later be passed as input to
RLHF. Furthermore, we believed RLHF would benefit from
these initializations, and would proceed to optimize the re-
ward and derive a final policy. We also deemed necessary
to investigate our approach with both optimal and subop-
timal demonstrations, since in practice, perfect demonstra-
tions are hard to obtain. We conducted our research on two
environments. For each, we set as baseline the best perform-
ing RLHF agent, and compared it with agents of our frame-
work (AIRLHF agents). To achieve suboptimality, we in-
troduced controlled randomness, in a proportion of ≈10%.
From the evaluation results, we have concluded that when
using suboptimality, a large number of demonstrations needs
to be provided. This number would typically need to equal
or potentially exceed the number of comparisons used by
the baseline RLHF agent, in order to be able to decrease
the number of queries used by the AIRLHF agents. When
having optimal demonstrations, we concluded that the envi-
ronment’s dynamics and specifics greatly influence the out-
come of our framework. We derived the conclusion that in
some environments, a larger number of optimal demonstra-
tions and execution time is needed in order to provide a good
initialization to RLHF. In other environments, a relatively
small number of optimal demonstrations is enough to pro-
vide a good starting point to RLHF.

While implementing our approach we also found impor-
tant points for future research. Firstly, we only use syn-
thetic data. We believe a combination of human and syn-
thetic data could improve our results. Secondly, we only use
random queries. This means that we generate random trajec-
tories. An alternative approach is to use an active selection
of queries (e.g. pick trajectories which have a great variance
of rewards between each other). This approach would elim-
inate redundant queries, and potentially lower their number.
Thirdly, we use a standard exploration factor in our envi-
ronments. A future direction could be to increase the ex-
ploration and investigate whether it impacts the number of
queries. In addition, our work can be extended with other
IRL algorithms, such as Maximum Entropy IRL, and other
techniques of generating feedback. Lastly, other possible
combinations between IRL and RLHF can be investigated.

References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.;
Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.;

8

https://github.com/anabat8/airlhf_rp


Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard,
M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Leven-
berg, J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.; Olah,
C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever, I.; Tal-
war, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viégas,
F.; Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu,
Y.; and Zheng, X. 2015. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. Software available
from tensorflow.org.
Abbeel, P.; and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on machine learning,
1. ACM.
Adams, S.; Cody, T.; and Beling, P. A. 2022. A survey of in-
verse reinforcement learning. Artificial Intelligence Review,
55(6): 4307–4346.
Argall, B.; Browning, B.; and Veloso, M. 2007. Learn-
ing by demonstration with critique from a human teacher.
In Proceedings of the ACM/IEEE International Conference
on Human-Robot Interaction, HRI ’07, 57–64. New York,
NY, USA: Association for Computing Machinery. ISBN
9781595936172.
Barto, A. G.; Sutton, R. S.; and Anderson, C. W. 1983. Neu-
ronlike adaptive elements that can solve difficult learning
control problems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13(5): 834–846.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. .
Christiano, P.; Leike, J.; Brown, T. B.; Martic, M.; Legg, S.;
and Amodei, D. 2023. Deep reinforcement learning from
human preferences. arXiv:1706.03741.
Ezzeddine, A.; Mourad, N.; Araabi, B. N.; and Ahmadabadi,
M. N. 2018. Combination of learning from non-optimal
demonstrations and feedbacks using inverse reinforcement
learning and Bayesian policy improvement. Expert Systems
with Applications, 112: 331–341.
Fu, J.; Luo, K.; and Levine, S. 2018. Learning Robust
Rewards with Adversarial Inverse Reinforcement Learning.
arXiv:1710.11248.
Gleave, A.; Freire, P.; Wang, S.; and Toyer, S. 2020. seals:
Suite of Environments for Algorithms that Learn Specifica-
tions. https://github.com/HumanCompatibleAI/seals.
Gleave, A.; Taufeeque, M.; Rocamonde, J.; Jenner, E.;
Wang, S. H.; Toyer, S.; Ernestus, M.; Belrose, N.; Em-
mons, S.; and Russell, S. 2022. imitation: Clean Imitation
Learning Implementations. arXiv:2211.11972v1 [cs.LG].
arXiv:2211.11972.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2020. Generative adversarial networks. Commun. ACM,
63(11): 139–144.
Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup,
D.; and Meger, D. 2019. Deep Reinforcement Learning that
Matters. arXiv:1709.06560.

Islam, R.; Henderson, P.; Gomrokchi, M.; and Precup, D.
2017. Reproducibility of Benchmarked Deep Reinforce-
ment Learning Tasks for Continuous Control. CoRR,
abs/1708.04133.
Kaufmann, T.; Weng, P.; Bengs, V.; and Hüllermeier, E.
2023. A Survey of Reinforcement Learning from Human
Feedback. arXiv, arXiv:2312.14925.
Lee, H.; Phatale, S.; Mansoor, H.; Mesnard, T.; Ferret,
J.; Lu, K.; Bishop, C.; Hall, E.; Carbune, V.; Rastogi,
A.; and Prakash, S. 2023. RLAIF: Scaling Reinforce-
ment Learning from Human Feedback with AI Feedback.
arXiv:2309.00267.
Nicolescu, M. N.; and Mataric, M. J. 2003. Natural methods
for robot task learning: instructive demonstrations, general-
ization and practice. In Proceedings of the second interna-
tional joint conference on autonomous agents and multia-
gent systems, 241–248. ACM.
Oller, D.; Glasmachers, T.; and Cuccu, G. 2020. Analyzing
Reinforcement Learning Benchmarks with Random Weight
Guessing. arXiv:2004.07707.
Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus,
M.; and Dormann, N. 2021. Stable-Baselines3: Reliable Re-
inforcement Learning Implementations. Journal of Machine
Learning Research, 22(268): 1–8.
Ratliff, N. D.; Bagnell, J. A.; and Zinkevich, M. A. 2006.
Maximum margin planning. In Proceedings of the 23rd In-
ternational Conference on Machine Learning, ICML ’06,
729–736. New York, NY, USA: Association for Computing
Machinery. ISBN 1595933832.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv:1707.06347.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition.
Towers, M.; Terry, J. K.; Kwiatkowski, A.; Balis, J. U.; Cola,
G. d.; Deleu, T.; Goulão, M.; Kallinteris, A.; KG, A.; Krim-
mel, M.; Perez-Vicente, R.; Pierré, A.; Schulhoff, S.; Tai,
J. J.; Shen, A. T. J.; and Younis, O. G. 2023. Gymnasium.
Ziebart, B.; Maas, A.; Bagnell, J.; and Dey, A. 2008. Maxi-
mum Entropy Inverse Reinforcement Learning. 1433–1438.

A RL Libraries and Technologies
For the purposes of our research, we have mainly used the
following libraries and technologies to build our framework
and run our experiments:

• Gym (newer and maintained version: Gymnasium (Tow-
ers et al. 2023)) Library: Gym is a standard API for rein-
forcement learning, and has a diverse collection of refer-
ence environments.

• Imitation Library (Gleave et al. 2022): Imitation provides
clean implementations of reward learning and training
algorithms (including AIRL and RLHF with preference
comparisons). Moreover, it uses Modular PyTorch imple-
mentations of the aforementioned algorithms.

9

https://github.com/HumanCompatibleAI/seals


• Stable Baselines 3 (SB3) Library (Raffin et al. 2021):
SB3 contains a set of reliable implementations of RL al-
gorithms in PyTorch. It is also compatible with the Imi-
tation Library.

• seals Library(Gleave et al. 2020): seals is a toolkit for
evaluating specification learning algorithms, such as re-
ward or imitation learning. The environments are com-
patible with Gym. This library also includes multiple ren-
ovated Gym environments, designed specifically for re-
ward learning (this involves removing any side-channel
sources of reward information such as episode bound-
aries, etc.).

• TensorBoard (Abadi et al. 2015): As TensorFlow’s visu-
alization toolkit, it provides the visualization and tooling
needed for machine learning experimentation. SB3 also
provides an integration with TensorBoard.

• Hugging Face: Open source, provides trained models of
agents with tuned hyperparameters.

We have chosen those RL libraries in particular
due to their user-friendly APIs, modularity, scalability
and popularity in our research area. We have specifi-
cally used HumanCompatibleAI/ppo-seals-CartPole-v0 and
HumanCompatibleAI/ppo-Pendulum-v1 as experts from
Hugging Face to generate optimal demonstrations.

In addition, all of our experiments were conducted on a
laptop with Intel Core i7 processor and NVDIA RTX 3050
Ti.

B CartPole Environment

Fig. 6: CartPole-v0

The CartPole environment is a Classic Control environ-
ment with a discrete action space, corresponding to the ver-
sion of the cartpole problem described in the paper (Barto,
Sutton, and Anderson 1983). A pole is attached to a cart,
which moves along a frictionless track. The pendulum is
placed upright on the cart and the goal is to balance the pole
by applying forces in the left and right direction on the cart
(Towers et al. 2023). Since the goal is to keep the pole up-
right for as much as possible, there is a reward +1 for every
step taken, including the termination step.

We chose to use the renovated CartPole environment from
the Seals library (Gleave et al. 2020), as opposed to using it
directly from the Gymnasium library (Towers et al. 2023).
The renovated environment is particularly useful because it
has a fixed episode length (500 steps), helping us in remov-
ing possible biases towards shorter or longer episode bound-
aries.

Fig. 7: Pendulum-v1

The Pendulum environment is a Classic Control environ-
ment, where the goal is to swing a pendulum to keep it up-
right. The pendulum starts in a random position, and the
agent must apply torque to maintain an upright position,
minimizing the angle and angular velocity while keeping the
control effort (torque) small. The state space consists of the
pendulum’s angle and angular velocity, and the action space
is a continuous range of torques. The reward is designed so
that a better performance corresponds to a reward closer to 0,
indicating minimal deviation from the upright position with
minimal effort.

We chose to use the Pendulum-v1 Environment from the
Gymnasium Library directly since it already had a fixed
episode length, and the Seals library does not yet have a ren-
ovated environment for it.

C AIRL, optimal demonstrations, training
on CartPole-v0

Fig. 8: Trend observed while training AIRL with optimal demonstrations. Figure rep-
resents the mean of 10 AIRL learners, with the following seeds: 0, 9, 34, 43, 52, 61,
70, 79, 88, 97.

D AIRL, optimal demonstrations, training
on Pendulum-v1

Fig. 9: Trend observed while training AIRL with optimal demonstrations. Figure rep-
resents the mean of 5 AIRL learners, with the following seeds: 34, 43, 52, 61, 70.

10


