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Abstract: The paper presents a camera comprising 512ˆ 128 pixels capable of single-photon detection
and gating with a maximum frame rate of 156 kfps. The photon capture is performed through a gated
single-photon avalanche diode that generates a digital pulse upon photon detection and through a
digital one-bit counter. Gray levels are obtained through multiple counting and accumulation, while
time-resolved imaging is achieved through a 4-ns gating window controlled with subnanosecond
accuracy by a field-programmable gate array. The sensor, which is equipped with microlenses
to enhance its effective fill factor, was electro-optically characterized in terms of sensitivity and
uniformity. Several examples of capture of fast events are shown to demonstrate the suitability of
the approach.

Keywords: single-photon avalanche diode; SPAD; fluorescence; fluorescence lifetime imaging
microscopy; FLIM; fluorescence correlation spectroscopy; FCS

1. Introduction

Photon counting and single-photon detection have been available at least since the 1930s, with the
phtomultiplier tube (PMT) first and microchannel plate (MCP) later. These devices enable relatively
high sensitivity, known in this context as photon detection efficiency (PDE), and low dark counts,
quantified in terms of dark count rate (DCR), however they are generally bulky and they require
high voltages to operate, typically hundreds to thousands of volts. In the 1940s, researchers started
working with solid-state diodes operating in avalanche mode, known as avalanche photodiodes
(APDs); these devices were refined through the 1950s and 1960s to be then implemented in planar
processes. The devices required p-n junctions with guard rings and enhancement regions to prevent
premature breakdown at the edge of the junction. With the improvement of semiconductor processes
and the availability of more options, Cova and others began experimenting with Geiger-mode APDs
or single-photon avalanche diodes (SPADs) in the 1970s and 1980s, recognizing the potential of these
devices in capturing fast processes [1]. In the early 2000s, SPADs could be implemented in high-voltage
processes first [2] and in standard CMOS image sensor processes later [3–6].

With the availability of SPADs in deep-submicron CMOS processes, it became conceivable to
implement useful functionality in situ, possibly in pixel, so as to count photons and to time stamp
them upon detection. The major consequence of this trend was massively parallel timestamping with
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picosecond resolution (LSB), with a possible explosion of data generated on chip [7]. Timestamping
impinging photons individually has several uses. For instance, through time-correlated single-photon
counting (TCSPC) [8], it becomes possible to accurately characterize photo responses of fluorophores
when excited by fast light pulses. Fluorophores exhibit a time-dependent behavior, known as
lifetime, that is specific to the fluorophore and/or the environment it is in [9]. Fluorescence lifetime
imaging microscopy (FLIM) [10] is a technique used to characterize lifetime in fluorophores using
multiple excitations and histogramming; in general, FLIM may be used in a confocal microscope
with a single pixel, but it can also be used in widefield microscopy with a large number of pixels
capable of performing TCSPC independently, thus speeding up lifetime capture by several orders of
magnitude [11,12].

The first pixel with embedded time-to-digital converter (TDC) for in situ TCSPC was introduced
in the project MEGAFRAME [13,14]. The drawback of this approach was the reduced fill factor that
in turn required microlenses to recover, at least in part, lost sensitivity. As an alternative, researchers
proposed to use simpler pixels, with a single digital counter [15] or with dual digital counters [16].
The use of analog counters was also proposed to ensure large resolution at low cost in terms of fill
factor [17–19]. Due to the lack of a TDC though, these methods require a precise gate and significant
algorithmic complexity [20,21].

In this paper, we describe a photon counting imager comprising a programmable global shutter
with sub-150 ps skew and a minimum width of 4ns for time-resolved imaging applications. The image
sensor comprises an array of 512 ˆ 128 SPAD pixels that are read out in rolling mode, while the shutter
itself is global. Since each pixel has a one-bit counter embedded in it, a frame is read as a binary matrix
and can be converted to a multi-bit matrix externally by adding up subsequent frames, as first shown
in [22]. The chip was demonstrated for fast fluorescence imaging and could be used for FLIM in [23].
Throughout the paper, significant attention was given to circuit details that led to the exceptional skew
and to tradeoffs used during the design to achieve the target readout speed. A complete dynamic
and static characterization of the chip was also provided with images exemplifying the suitability of
the approach.

The paper is organized as follows: Section 2 describes the architecture of the sensor and its
components. Section 3 analyzes the implications of using binary pixels towards image quality and
Sections 4 and 5 report the optical and electrical characterization of the sensor in the context of the
target applications. Section 6 concludes the paper.

2. Sensor Architecture

A single-photon avalanche diode (SPAD) is a p-n junction biased above breakdown, so as to
operate in Geiger mode. In this design, SPADs are similar to those in [24], comprising a circular p+
active region over n-well, whereas premature edge breakdown is prevented by means of p-well guard
rings. Figure 1 shows the cross-section of a planar implementation of a SPAD consistent with CMOS
processes. The SPADs are passively quenched, while an active recharge technique is provided [1,2].
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Figure 1. Planar single-photon avalanche diode (SPAD): the p+-n-well junction is biased above
breakdown so as to achieve infinite optical gain. A guard ring prevents premature edge breakdown by
reducing the electric field in areas at risk, such as the corners of the junction. The deep n-well acts as
an insulation mechanism to minimize electrical crosstalk, while optical crosstalk is generally reduced
using deep trench isolation (not available in this CMOS technology).
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The pixel can perform photon counting by means of a one-bit counter, implemented as a static
latch. The pixel achieves gated operation by way of three transistors acting as switches. The pixel
counter content is transferred to the exterior of the sensor via a fast digital readout channel capable
of transferring a complete frame in 6.4 µs. The sensor has a global shutter that gates all the pixels
simultaneously for a time as short as 3.8 ns.

The pixel conceptual diagram is shown in Figure 2a. The MOS switch “SPADOFF” is activated
to bring the SPAD below breakdown, thereby quenching any ongoing avalanche and preventing
any future avalanche in the same frame (see Figure 2b). The second MOS switch, “RECHARGE”,
is designed to bring the bias voltage close to ground, thereby rapidly recharging the SPAD to its idle
bias. This action reactivates the SPAD and, to avoid direct conduction from VDD to ground, it should
never be performed simultaneously to “SPADOFF”. The last MOS switch, “GATE”, is used to prevent
the one-bit counter from being accidentally set during the gating operations.
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Figure 2. Pixel architecture. (a) SPAD configuration with parasitic load (Canode); the MOS transistors
controlled by signals “SPADOFF”, “GATE”, and “RECHARGE” act as switches that implement gating.
The quenching transistor controlled by “BIAS” acts as a non-linear resistor used for quenching.
The one-bit counter (represented here as a simplified latch) is used to record photon detection;
(b) I-V characteristics of the SPAD pixel. In the ON state, the SPAD is biased above breakdown
(Vbd) by a voltage known as excess bias (Ve). When “SPADOFF” is activated, the SPAD bias is pushed
below breakdown; “GATE” is deactivated to isolate the counter; this is the OFF state. To bring the
SPAD back to the ON state, “GATE“ is activated, “SPADOFF” is deactivated, and “RECHARGE” is
activated for a short time, typically nanoseconds, thereby bringing the bias to the initial state above
breakdown. Photon detection triggers a similar cycle with a resulting change of state of the one-bit
counter from “L” to “H”.

The actual implementation of the pixel is shown in Figure 3. The recharging transistor is controlled
by a global “RECHARGE” signal. The switches are implemented as NMOS transistors, while the
latch is implemented by way of four NMOS transistors, connected as back-to-back NMOS inverters
to eliminate the need for PMOS transistors. The pull-up transistors are critical to control power
consumption in the latch during idle phases and settling time during set/reset phases. These transistors
can be controlled using an external voltage, “TOPGATE”. The column pull-up transistor is biased
so as to minimize the power required to bring the column to ‘L’ while ensuring a readout cycle of
6.4 µs/128 = 50 ns.

The pixel content is stored in a latch at the bottom of the column (not shown in the figure) that
stores its value for 50 ns while the other three columns are multiplexed out to the external PAD.
A 4:1 multiplexer serializes the output of the latches of four columns to the PADs; it is operated at
four times that speed, i.e., 4/50 ns = 80 MHz, which is the maximal operating speed of the PADs in
this technology and represents a good speed-power tradeoff.

The block diagram of the sensor, known as SwissSPAD, is shown in Figure 4a. The timing diagram
for the pixel is shown in Figure 4b. The chip features a balanced network that distributes a low-skew
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version of signals “SPADOFF”, “RECHARGE”, and “GATE” (Figure 4c). Due to their nanosecond
length, “RECHARGE”, and “GATE” are distributed as three precisely timed rising-edge signals that
are recomposed in situ by means of a pulse generator (PG) shown in Figure 4d.
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Figure 3. Pixel schematic. The counter is implemented as a latch, which is reset by “RESET” and biased
by “TOPGATE”. The content of the counter is read out using a rolling shutter mechanism by setting
“ROW” to “H”; when the counter has recorded a photon, a pull-down transistor sets the column to “L”
and this state is transferred to a latch at the bottom of the column (not shown in the figure) and then to
a PAD via a multiplexer for external processing. A pull-up ensures return of the column to “H” state
when no photons are detected. “RECHARGE” and “SPADOFF” are used to turn on and off the SPAD,
while “GATE” is used as a pass gate and “BIAS” determines the equivalent resistance used as ballast.
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BI
AS

 

SP
AD

O
FF

 VOP VDD 

SPAD 
GATE 

RE
CH

AR
GE

 

VDD VDD 
TOPGATE 

To Column  
Registers  
 

To Column  
Pullups 
 ROW 

RE
SE
T 

RO
W

 DECO
DER 

COLUMN SERIALIZERS 

512x128 PIXELS 

FPGA 

READOUT 
CONTROL 

SPAD Array 

PG 

PG 

PG 

Delay 
PG 

PG 

PG 

PG 

PG 

Time- 
critical 
Signals 

Figure 4. Block diagram of the sensor: (a) overall block diagram; (b) timing diagram; (c) balanced tree
network for time-critical signal distribution; (d) pulse generation mechanism for in situ generation of
accurate pulses insensitive to rise/fall time asymmetries.

The timing diagram shows a typical readout cycle, wherein a memory reset is performed at the
beginning of the cycle and a series of gating operations follows, until the next readout is performed.
The gates are spaced an arbitrary time period (25 ns in this example) and are generally synchronized
with a light source. This is done to maximize the effective spatio-temporal fill factor when a fast but
dim response is expected from a pulsed light source, as, for example in FLIM. Fewer gates or even a
single gate is possible, however, it results in an effective spatio-temporal FF computed as

FF “ FFG¨DC “ FFG
N¨ tGATE
TFRAME

“ FFG¨ fGATE¨ tGATE (1)
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where FFG is the geometric fill factor, DC the duty cycle of gating, N the number of gates in a frame,
tGATE the time length of the gate, TFRAME the period of the frame, and fGATE the frequency of the
gate. Note that even though we reduce the temporal FF, light will usually impinge within the gate
synchronized with a laser, while the DCR will be reduced. The duty cycle is generally selected to
be a fraction of the lifetime of a fluorophore. The delay between gate and excitation light is varied
a minimum of 20 ps and a maximum of TFRAME/N, so as to scan the entire laser period 1/fGATE.
N is chosen to minimize the pile-up effect. Since the counter only counts, at most, one event, no
accumulation is possible during a frame but only digitally after multiple frames. This enables us to
construct gray levels in images at the expense of a reduced frame rate [22].

3. Binary Pixels

SwissSPAD is an all-digital, clock-driven sensor comprising pixels that can only detect one photon
in a frame: we call these pixels “binary pixels”. Photons impinge a binary pixel with an expected
arrival rate χ (photons per second) and are distributed in time following a Poisson distribution (the

probability of k counts per second is p pcps “ kq “ χke´χ

k! ). Thus, the probability of detecting one or
more photons per second is p pcps ą 0q “ 1´ e´χ. For a non-unity photon detection probability (PDP)
and non-zero FF, the probability of photon detection per frame p pcp f ą 0q “ 1´ e´χ¨ PDP¨ FF¨ TFRAME .
The expected photon counts per second measured in the pixel will thus become [25]

E pCMq “
1´ e´χ¨ PDP¨ FF¨ TFRAME

TFRAME
(2)

where CM is the measured SPAD count rate. Thus, even if one photon per frame is expected to impinge
on the pixel, the pixel will detect it, on average, a fraction of the time, i.e., it will detect a fraction
of a count, on average, per frame. Dark noise in a SPAD is dominated by three sources: thermal
(trap-assisted and tunneling), noise, and afterpulsing. Assuming a large dead time, afterpulsing can be
ignored and thus, with the exception of hot pixels, most exhibit a noise approaching Poisson statistics.
The rate of occurrence of this noise is quantified by dark count rate (DCR). Thanks to its Poissonian
nature, DCR is added to the equation as follows

E pCMq “
1´ e´pχ¨ PDP¨ FF`DCRq¨ TFRAME

TFRAME
(3)

From this equation, one can derive the correction factor for the expected detected SPAD count
rate E pCDq “ χ¨ PDP¨ FF`DCR, by simply solving the equation w.r.t E(CD), as follows

CD «
´ln p1´ CM¨ TFRAMEq

TFRAME
(4)

Note that E(CM) and E(CD) were replaced by CM, and CD, respectively, since it is assumed that the
correction is applied to a single sample generated by the detector and not the expected value achieved
over a very large number of measurements. As can be seen from the equation, this correction is only
needed for high values of CM, above 15 kcps.

However, in this condition, the asymptotic behavior can be used to extend the dynamic range of
the pixel, as has been known in the silicon photomultiplier community for several years [26] and in
the radiation community from the 1970s [27]. This can be done both in time and in space, whenever
multiple pixels are added to make a larger one [28,29]. Figure 5 shows the theoretical and measured
response of a binary pixel in clock-driven and in event-driven modes, as compared to the linear
response of a non-binary pixel. In clock-driven mode, SPAD recharge or memory reset is applied
periodically, asynchronously with respect to SPAD activity, while in event-driven mode recharge is
done Tdead after a SPAD avalanche, thus synchronously with SPAD activity. While clock-driven resets
at high frequency are not used in single SPAD devices because of possible afterpulsing, arrays with
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long Tdead do not show increased afterpulsing. Recent work is indicating a trend towards higher pixel
resolution and advanced processing [30,31].Sensors 2016, 16, 1005 6 of 15 
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4. Sensor Fabrication

The sensor microphotograph is shown in Figure 6; the inset shows a detail of the pixels. An array
of microlenses (CSEM, Basel, Switzerland) was deposited on the chip matching the pixel pitch to
improve light collection through light concentration [32,33]. The microlens array, shown in an artist’s
rendering in Figure 7a [34], was measured and simulated as a function of the f-number of the main
objective lens, yielding the plot of Figure 7b.
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Thus, the effective fill factor achieved with a lens of f/10 was 60% with high reliability
and reproducibility over the entire array. The pixel PDP and DCR are plotted in Figure 8 at
room temperature.
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Figure 8. Pixel characterization: (a) PDP vs. wavelength at given excess bias voltages; (b) DCR
distribution at 40 ˝C for Ve = 4.5 V, with an average of 1169 cps and a median of 302 cps. In the inset
the DCR distribution is shown.

The sensor was also characterized in terms of afterpulsing. The measurement was achieved by
means of the inter-arrival response method introduced in [35]. The pixels were exposed to a uniform
wide-spectrum light source and the inter-arrival time of the response was stored in the FPGA for
an integration time of 80 s. A histogram was then constructed confirming the exponential behavior
of the response due to the Poissonian nature impinging photons. Afterpulsing probability APP(t) is
approximated as

APP ptq «
r8

t rhM pτq ´ hF pτqs dτ
r8

0 hM pτq dτ
, t ą tDT (5)

In the equation, hM pτq is the measured histogram, hF pτq the exponential fit, and tDT the dead
time of the pixel, in this case 6.4 µs. Crosstalk probability, or simply crosstalk, XT pτq is computed in a
similar way, wherein the inter-arrival time is measured between two adjacent pixels, as

XT ptq «

r8
t

“

hij pτq ´ hF pτq
‰

dτ
r8

0 hij pτq dτ
(6)

where hij pτq is the inter-arrival time histogram measured between pixels i and j. Afterpulsing and
crosstalk are reported in Figure 9a,b, respectively.
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Figure 9. Afterpulsing and crosstalk: (a) inter-arrival histogram showing no measurable afterpulsing
above the dead time of 6.4 µs, the inset shows a zoom of the plot; (b) crosstalk measured using the same
method. Note that in this case the dead time is zero, given by the fact that two pixels are independently
firing upon detection of a photon [25].
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5. Results

The sensor was used to image a large number of biological samples using fluorescence intensity
and fluorescence lifetime imaging microscopy. Fluorescence intensity was achieved using a setup based
on a dual port Leica SR GSD super resolution microscope (Leica Microsystems, Wetzlar, Germany)
where SwissSPAD and an Andor iXon3 897 BV EMCCD were placed on the two ports of the microscope
using the same illumination conditions for comparison purposes (Figure 10). As an illustration, several
biological samples are shown hereafter. First, let us consider BPAE cells labeled with MitoTracker Red
CMX Ros, Alexa Fluor 488, and DAPI dyes. SwissSPAD was used at Ve = 4.5 V. The EMCCD raw
intensity image was converted to a photon count image using counts D = (d ´ b) ˆ gamp/gEM, where d
is the digital intensity value, b the bias offset, gamp the preamp gain value and gEM the EM gain. Due
to pixel size differences, 2 ˆ 2 SPAD pixels and 3 ˆ 3 EMCCD pixels were binned to obtain counts
for the same area. MATLAB software was used to find the overlapping area of the two images and
compare the intensities.

Figure 10. (a) Schematic microscope setup used in the imaging experiments based on the Leica SR GSD
microscope (Leica Microsystems Wetzlar, Germany); (b) SEM scan of the microlens array deposited on
the sensor; (c) Optical micrograph of the microlens array.

Figure 11 shows the images obtained with the EMCCD (a) and SwissSPAD (b); the exposure times
were 10 ms and 73.4 ms, respectively, to match the number of collected photons. The scale shows the
number of collected photons per exposure. Figure 12 shows a widefield image of a cellular cluster
magnified 10ˆ using the same microscope setup.
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Figure 11. BPAE cell imaging. The cells were labeled with MitoTracker Red CMX Ros, Alexa Fluor 488,
and DAPI dyes and imaged in a microscope using two ports matching the photon counts per pixel in
each sensor. (a) shows the EMCCD and (b) the SwissSPAD images obtained with 10 ms and 73.4 ms
exposure, respectively. The scales indicate photon counts per frame.
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Figure 12. Widefield fluorescence imaging of BPEA QGS cellular clusters labeled with MitoTracker
Red CMX Ros, Alexa Fluor 488, and DAPI dyes (magnification = 10ˆ). The dead column in the image
is due to a false connection between the imager and the FPGA.

Fluorescence lifetime images could be obtained by sliding the gate start time from 0 to 10 ns with
a step of 20 ps and integrating 255 frames per step, whereas the gate timing performance is essential
for high quality FLIM images. The timing performance of the gate is summarized in Figure 13: the
response of the sensor is shown in Figure 13a for a random pixel with minimum gate width and
the uniformity of its position and length is shown in Figure 13b. Figure 13 shows steep edges of the
counting response of the sensor when gating is used, and should not be mistaken with the signal shape
of the “Gate” signal. The photosensitive window is defined by the falling edge of “Recharge” and
falling edge of “Gate” (if “Gate” occurs after “Recharge”). A large vertical dimension with 128 pixels
resulting in 3 mm long metal wires introduces an undesired RC component, limiting the minimal
gate width. Although the metal wires of “Gate” and “Recharge” are equal, “Recharge” was designed
larger to enable a shorter signal. This introduces a mismatch in “Gate” and “Recharge“ RC, and
nonuniformity of photosensitive window widths. Smaller technology nodes will decrease transistor
gate capacitances, and wider metal lines through the column can reduce the resistance while keeping
the parasitic capacitance dominated by the lateral component constant. The use of repeaters is also
an option. Both the metal widening and repeater though can reduce fill factor. A smaller pixel pitch
will also reduce the RC component of the line. The right edge of Figure 13a corresponds to the falling
edge of the “Recharge” signal and it represents the critical edge for FLIM. A theoretical approach of
a FLIM measurement with gating is a convolution between an exponential distribution signal and a
rectangular gate signal. The fall time of the falling edge should be small in comparison to the lifetime of
the exponential distribution to assure high precision measurements. This fall time is a similar measure
as the instrumentation response function (IRF) in TCSPC.

Sensors 2016, 16, 1005 9 of 15 

 

Fluorescence lifetime images could be obtained by sliding the gate start time from 0 to 10 ns with 
a step of 20 ps and integrating 255 frames per step, whereas the gate timing performance is essential 
for high quality FLIM images. The timing performance of the gate is summarized in  
Figure 13: the response of the sensor is shown in Figure 13a for a random pixel with minimum gate 
width and the uniformity of its position and length is shown in Figure 13b. Figure 13 shows steep 
edges of the counting response of the sensor when gating is used, and should not be mistaken with 
the signal shape of the “Gate” signal. The photosensitive window is defined by the falling edge of 
“Recharge” and falling edge of “Gate” (if “Gate” occurs after ‘Recharge’). A large vertical dimension 
with 128 pixels resulting in 3 mm long metal wires introduces an undesired RC component, limiting 
the minimal gate width. Although the metal wires of “Gate“ and “Recharge“ are equal, “Recharge“ 
was designed larger to enable a shorter signal. This introduces a mismatch in “Gate” and “Recharge“ 
RC, and nonuniformity of photosensitive window widths. Smaller technology nodes will decrease 
transistor gate capacitances, and wider metal lines through the column can reduce the resistance 
while keeping the parasitic capacitance dominated by the lateral component constant. The use of 
repeaters is also an option. Both the metal widening and repeater though can reduce fill factor. A 
smaller pixel pitch will also reduce the RC component of the line. The right edge of Figure 13a 
corresponds to the falling edge of the “Recharge” signal and it represents the critical edge for FLIM. 
A theoretical approach of a FLIM measurement with gating is a convolution between an exponential 
distribution signal and a rectangular gate signal. The fall time of the falling edge should be small in 
comparison to the lifetime of the exponential distribution to assure high precision measurements. 
This fall time is a similar measure as the instrumentation response function (IRF) in TCSPC. 

 
Figure 12. Widefield fluorescence imaging of BPEA QGS cellular clusters labeled with MitoTracker 
Red CMX Ros, Alexa Fluor 488, and DAPI dyes (magnification = 10×). The dead column in the image 
is due to a false connection between the imager and the FPGA. 

(a) (b)

Figure 13. Timing characterization of the gating mechanism: (a) characteristic sensitivity at the 
minimum gate width of 3.8 ns; (b) gate position (in time) statistics as a function of pixel position [23].  

Figure 14 reports fluorescence intensity images of samples stained with Safranin and Fast Green, 
having peak excitation wavelengths of 530 nm and 620 nm, respectively. Filtering was used in two 

Figure 13. Timing characterization of the gating mechanism: (a) characteristic sensitivity at the
minimum gate width of 3.8 ns; (b) gate position (in time) statistics as a function of pixel position [23].



Sensors 2016, 16, 1005 10 of 15

Figure 14 reports fluorescence intensity images of samples stained with Safranin and Fast Green,
having peak excitation wavelengths of 530 nm and 620 nm, respectively. Filtering was used in
two subsequent exposures of the same sample and software based recomposition was then applied.
Pictures on Figures 11, 12, and 14 were corrected for DCR and possible count compression using
Equation (4).
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memory is high enough to keep up with the data rate generated by the FPGA at any ENOB, USB-2, 
and USB-3 links to the PC do not allow continuous recording at all ENOBs, making an intermediate 
memory like DDR2 necessary. An USB-2 link can transfer eight-bit frames continuously. 

The sequence of Figure 17 shows images of an analog oscilloscope obtained without 
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Figure 14. Composite fluorescence image of a thin slice of a plant root stained with a mixture of
fluorescent dyes. The picture was obtained with two 20 nm interference filters centered at 530 and
640 nm, respectively. The dead column in the image is due to a false connection between the imager
and the FPGA.

Thanks to the frame readout period of 6.4 µs, one can achieve a maximum frame rate of 156 kfps,
whereas a Virtex™ IV or Spartan™ 6 FPGA (Xilinx, San Jose, CA, USA.) is used to acquire and store
the one-bit frames. Figure 15 shows the physical appearance of the system, whereas a daughterboard
hosting SwissSPAD is electrically connected to a motherboard hosting two Xilinx-IV FPGAs for
acquisition and formatting of the data that are then sent to a Mac/PC through USB2 link.
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Figure 15. Physical appearance of the camera based on SwissSPAD; a daughterboard hosting the chip
is electrically connected to a motherboard hosting two Xilinx-IV that process the raw frames generated
by the chip and format them to send them through a USB2 link.

To construct gray level images, the one-bit frames may be accumulated in the FPGA and
transferred to the Mac/PC through a USB-2 or USB-3 link; by doubling the number of frames, the
pixel intensity resolution increases by one bit [22]. The tradeoff between pixel effective number of
bit (ENOB) and effective frames-per-second (EFPS) is shown in Figure 16. While the speed of a DDR
memory is high enough to keep up with the data rate generated by the FPGA at any ENOB, USB-2,
and USB-3 links to the PC do not allow continuous recording at all ENOBs, making an intermediate
memory like DDR2 necessary. An USB-2 link can transfer eight-bit frames continuously.

The sequence of Figure 17 shows images of an analog oscilloscope obtained without accumulation
(156 kfps, 1 bit) and with several levels of accumulation from 4ˆ to 65,536ˆ, resulting in a pixel ENOB
of 2 and 16 bits, respectively, during the cumulative frame. Unlike conventional cameras, the pixel
ENOB is derived by the simple expression

ENOB “ log2

´

Npixel

¯



Sensors 2016, 16, 1005 11 of 15

where Npixel is the maximum possible number of accumulated counts in the pixel during a cumulative
frame. The SNR per pixel, and over the entire sensor, is approximated by

SNRpixel “
b

Npixel

This approximation assumes no readout noise and lower count rates with linear response, thus
a Poisson limited noise at any frame rates and no saturation. The images in Figure 17 show Poisson
limited noise in the images at five different exposure times.
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In Figure 18a sequence of a fast event is shown; the frame rate was fix at 1200 frames-per-second,
of which one frame every 100 ms is depicted. A global shutter was used achieving deep-subnanosecond
uncertainty of the gate width and position.Sensors 2016, 16, 1005 12 of 15 
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Figure 18. Sequence of a drop fall recorded at 1200 fps; the frame-to-frame time interval shown in the
sequence was 100 ms.

The ability of SwissSPAD to acquire lifetime images was demonstrated in a lab setup using point
detection. Indocyanine green (ICG) in milk with a concentration of 40 µM was excited using a 790 nm
laser with 55 ps pulse width and 100MHz repetition rate synchronized with the SwissSPAD gating.
Fluorescence intensity from the excited spot was measured for 512 gate windows offset by a fraction
of the repetition period (25 ps). From the response similar to the IRF shown in Figure 13 convolved
with an exponential decay the lifetime is extracted by fitting against a set of models constructed from
the IRF used in these measurements. Figure 19 shows the per pixel extracted lifetime and normalized
intensity over the excited spot. The extracted lifetimes with µ = 636 ps and σ = 56 ps overestimate the
580 ps reference lifetime given in literature [36]. Homulle et al. showed in [37] how the accuracy of
lifetime extraction from gated measurements can be improved through refinement of the modeling
and simulation.
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Figure 19. (a) FLIM results show extracted lifetimes distribution of 31 ˆ 31 pixels compared to reference
lifetime of 40 µM ICG in milk (red). (b) shows the comparison of intensity and lifetime per pixel.

The sensor specifications are listed in Table 1. All the measurements were performed at room
temperature, unless otherwise indicated.
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Table 1. Specifications of the sensor SwissSPAD. All the values are reported at room temperature.

Parameter Value Condition

Peak PDE 20% 450 nm
Max. frame rate 156 kfps 1 bit ENOB 1

Readout noise 0 cps
Dark counts 200 cps 25 ˝C
Pixel pitch 24 µm
Active area 28.3 µm2 Drawn area
Imager size 12.3 ˆ 3.1 mm2

Operating temperature 25 ˝C
Afterpulsing probability 0.3% 1 µs dead time

Crosstalk <0.3%
PRNU <1.8% 2

Min. gate width 3.8 ns
Gate skew <150 ps Sigma

1 ENOB denotes effective number of bits for the pixel resolution. 2 PRNU denotes photo-response
non-uniformity without compensation.

The sensor is currently used by a number of researchers in different institutions under use
warranty based on GNU policies.

6. Conclusions

We reported on a 512 ˆ 128 SPAD image sensor operating at a maximum speed of 156 kfps with a
low-skew global shutter. The sensor has been successfully used in a variety of applications, involving
time-resolved capture of fast events. It can be operated in TCSPC mode to achieve, for instance,
FLIM images. The sensor is highly versatile and allows one to achieve tradeoffs between frame speed
and resolution. Thanks to its zero readout noise, the sensor noise is always Poisson limited, thus
enabling investigations in photon starved regimes. Future work includes extensive modeling for
super-resolution microscopy and the design of a larger array with reduced DCR and increased PDE.

Supplementary Materials: The full videos are available online at http://aqua.epfl.ch and http://www.
aqua.ewi.tudelft.nl/movies/.
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Abbreviations

The following abbreviations are used in this manuscript:

SPAD Single-photon avalanche diode
FLIM Fluorescence lifetime imaging microscopy
EMCCD Electromultiplied charge-coupled device
SNR Signal-to-noise ratio
PRNU Photo-response non-uniformity
DCR Dark count rate
PDP Photon detection probability
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PDE Photon detection efficiency
BPAE Bovine pulmonary artery endothelial cells
DAPI 41,6-Diamidino-2-phenylindole
IRF Instrumentation response function
TCSPC Time-correlated single photon counting
ENOB Effective number of bits
ICG Indocyanine green
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