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Abstract 

Leakage is the main source of water loss in water distribution networks (WDNs). Therefore, leak detection and 

localization technology is a major concern for water utilities to save water and meet the ever-growing water 

demand. This study presents two methodologies for leak localization in District Metered Areas (DMAs): (1) a 

model-based method using the hydraulic model, flow and pressure measurements, as well as leak flow; (2) a 

data-driven method that relies on graph-based interpolation. The performance of the model-based method is 

proved to be negatively affected by model errors and limited sensors. To solve these two problems, on the one 

hand, flows and residuals between observed and model-simulated data in the non-leak situation are used to 

develop a residual model to calculate offset values for model output correction. On the other hand, graph-based 

interpolation is introduced to create ‘virtual’ sensor measurements in the presence of a limited number of 

sensors. The data-driven method proposed in this work uses graph-based interpolation to estimate the head 

signals at the nodes without sensors and subsequently create pressure maps. Leak localization is achieved by 

comparing pressure maps in the non-leak and leak situations. In this process, this methodology does not require a 

well-calibrated model and leak flow information. Both two methodologies are tested on fire hydrant leak tests in 

DMAs in the United Kingdom. Results obtained by using the model-based method illustrate the positive impact of 

model output correction on localization results and the performance of this method under different conditions 

such as different times of the leak and different sizes of leak flow. The data-driven method performs fairly well in 

DMAs with a higher spatial density of sensors. Furthermore, the results of both two methods are compared to 

demonstrate the suitability of the methods in different cases.  

 

Keywords: Leak localization; Model-based methods; Data-driven methods; Graph-based interpolation; Water 

distribution networks 
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Chapter 1. Introduction 

1.1 Background Introduction 

Water is a precious resource on our planet and plays an important role in human daily life. Although water covers 

around 71% of the earth, only a limited amount of water is drinkable and easily accessible. Water scarcity 

becomes an increasingly serious problem as climate change intensifies and the population grows. According to 

the report from WHO in 2019, approximately 10% of people globally are unable to access safe drinking water and 

half of the world does not have safe sanitation services (WHO, 2019).  

Drinking water is generally delivered to users through water distribution networks (WDNs). In this process, a 

significant challenge for water companies is the high level of water loss (difference between the volume of water 

put into the water distribution system and the volume charged to customers), which is also known as Non-

Revenue Water (NRW) (Liemberger & Wyatt, 2019a).  The main cause of water loss in WDNs is leakage, 

accounting for almost 70% of the total water loss (El-Zahab & Zayed, 2019). The volume of water leakage in WDNs 

varies considerably between different countries, ranging from 3% to 7% in the WDNs in good conditions (e.g., the 

Netherlands) to more than 50% in certain developing countries as shown in Figure 1 (Puust et al., 2010). In 

addition to the water quantity issue, leakage also leads to economic loss, environmental contamination, and 

potential health problems (Puust et al., 2010). An estimation of 126 billion cubic meters of NRW per year 

worldwide equals about 39 billion USD lost per year (Liemberger & Wyatt, 2019b). In 2015, engineers at the 

University of Sheffield proved that potentially harmful contaminants can enter through leaky water pipes and be 

transported through the WDN (University of Sheffield, 2015). 

 

Figure 1. NRW in different regions (Liemberger & Wyatt, 2019b). 

Figure 2 shows five phases involved in a burst cycle. Burst duration is determined by the overall period between 

the occurrence and reparation of the burst (Bakker, Vreeburg, et al., 2014a). Typically, large bursts are visible and 

easy to be detected and reported to water companies via the internet or service lines. Small leaks underground 
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often remain unnoticed for a long time, resulting in greater water loss (Wu & Liu, 2017). Therefore, when small 

leaks occur, it is crucial that water company operators are quickly aware of leaks in WDNs and then they provide 

timely information to maintenance technicians using leak detection and localization approaches, thereby helping 

them to find the exact leak and fix it as soon as possible. However, small leaks are quite challenging because they 

cause only weak hydraulic disturbances in WDNs, which can easily be masked by other unexpected behaviors in 

WDNs. This study will focus on leak localization techniques based on analyzing the hydraulic impact of the leak to 

shorten the ‘Location period’ (L) and save water.  

 

Figure 2. The life cycle of a burst event (Bakker, Vreeburg, et al., 2014a). 

 

1.2 Literature review 

Various methods were studied for leak detection and localization, and they can be divided into hardware-based 

and software-based methods (Li et al., 2015; Sophocleous et al., 2019; Zaman et al., 2020) as reported in Figure 3 

below.  

 

Figure 3. Classification of leak detection/localization methods (Alves et al., 2022; R. Li et al., 2015). 

Hardware-based approaches are commonly used for leak localization by water utilities, including acoustic 

emission methods such as listening rods, leak correlators as well as noise loggers, and non-acoustic methods like 

thermal infrared imaging (R. Li et al., 2015). Acoustic methods are less effective in the case of large diameters and 

new pipe materials (for example polyvinyl chloride, PVC, which is used in over half of the drinking water networks 

in the Netherlands), where the leakage sound is low in frequency and difficult to identify (Gao et al., 2005; 
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Sophocleous et al., 2019). Hardware-based methods are costly since they are labor-intensive and sometimes 

require expensive equipment. Software-based methods use in-situ sensors to monitor continuous data, such as 

pressure and flow instead of leak noise information between simulated and measured differences, to estimate 

the leak location using algorithms or models, making them well-adapted to diverse pipes. These approaches are 

more efficient and effective in reducing the search area of leaks. The combination of software-based and 

hardware-based methods makes it possible to pinpoint the leak eventually in a more timely and accurate manner.  

Software-based methods can be further divided into transient-based, model-based, and data-driven methods 

(Alves et al., 2022). Colombo et al. (2009) reviewed the transient-based leak detection methods, including inverse 

transient analysis, time domain analysis, and frequency domain analysis, which rely on transient flow analysis to 

extract high-frequency data from the generated pressure waves (R. Li et al., 2015). These approaches are mainly 

used on single pipelines above the ground due to the high effect of the system configuration and uncertainty 

(Puust et al., 2010). Furthermore, a vast number of sensors and complex computations are required in this 

process, resulting in extremely high costs.  

Model-based approaches use the hydraulic model to simulate the leak in the model environment and identify the 

leak by comparing the leak-driven hydraulic disturbance in the model system and the real networks. The most 

common model-based method is to consider leak localization as a fault isolation problem by doing pressure 

sensitivity analysis (Casillas Ponce et al., 2014; Perez et al., 2014; Pérez et al., 2011; Quevedo et al., 2011). Farley 

et al. (2013) used Genetic Algorithms (GA)-based optimization of the Jacobian sensitivity matrix to reduce the 

search area by subdividing a DMA. Correlation is calculated between the leak-driven pressure drops in the model 

environment and the real world. Perez et al. (2014) used the model-based method with non-binary pressure 

sensitivity analysis for leak localization and achieved satisfactory results on a 30-h fire hydrant leak test in DMA 

Nova Icaria in Spain. Although model-based methods have been validated in both simulated and real-life 

applications, their performance is strongly affected by model errors, measurement noise, and unknown nodal 

demands (Blesa & Pérez, 2018). To account for these uncertainties involved, mixed model-based/data-driven 

methods that combine model simulation and machine learning classification are proposed, such as K-nearest 

neighbors (KNNs) classifier (Soldevila et al., 2016) and Bayesian classifier (Soldevila et al., 2017), and Support 

Vector Machines (SVM) (Zhang et al., 2016).  

Data-driven approaches use data measurements coupled with algorithms to find the leak, which are less 

dependent on hydraulic model. Quiñones-Grueiro et al. (2018) developed an approach using SVMs to interpret 

pressure data for leak flow estimation and leak localization. Other research on machine learning algorithms, such 

as artificial neural networks and clustering has been conducted as followed (Romano et al., 2014; Wu et al., 2016). 

Next, deep learning algorithms like Convolutional Neural Networks (CNNs) have been applied for leak localization 

due to their strong capabilities in feature identification and pattern recognition. Javadiha et al. (2019) used off-

line pressure measurements and the model simulated pressure in the non-leak situation to create a pressure 

residual map with the help of Kriging interpolation. These residual maps were subsequently converted to 2-D 

pictures as image data corresponding to each leak location. Afterward, the authors proposed a CNNs solution for 

providing image classification and tested it on a benchmark network in Hanoi, Vietnam. J. Li et al. (2022) used a 

new densely connected convolutional network (ResNet) to improve the accuracy of leak localization. Data-driven 

methods usually require high quality and a large quantity of monitored data. Nonetheless, it is challenging to 

obtain valid data over a long time, especially for the data in different leak scenarios. Even if the long-term data is 

available, these methods are more operative for identifying the leak event (leak flow) that has previously 

occurred in WDNs. Apart from AI-based learning algorithms, Soldevila et al. (2019) and Soldevila et al. (2021) 
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compared the pressure at each node in non-leak and leak situations by using Kriging interpolation to locate the 

leak, which only requires historical pressure data in normal situations.  

 

1.3 Problem statement 

Although an increasing number of studies on promising software-based methods have been done, they are far 

from ideal. These techniques are not commonly applied by water utilities in real cases due to underdetermined 

performance of existing model-based and data-driven method (Romano et al., 2013; Zaman et al., 2020). This 

work proposes two different methods to locate the leak. Both of them are applied to real cases, using them to 

improve the localization performance.  

The first method builds on the model-based method developed by Quevedo et al. (2011) using a hydraulic model 

and pressure and flow measurements.  Despite the test and validation in real cases, this method is not widely 

used by water utilities since the performance is limited to the accuracy of the WDN model. Some model 

information such as pipe roughness coefficients and nodal demands is difficult to precisely measure, resulting in 

deviations between model outputs and measurements, which can lead to incorrect localization. Traditional 

solution to solve this problem is model calibration (Savic et al., 2009). However, it is costly for either computation 

or manpower since a lot of adjustment work on model parameters is required to meet the calibration 

criteria(Preis et al., 2011; Sophocleous et al., 2019).  Moreover, the limited number of sensors is another issue 

making it more difficult to capture the pressure changes driven by the leak in WDNs. This work presents a more 

efficient solution to compensate for the model errors in more DMAs at once to improve the leak localization, 

which has better prospects for commercial application. In addition, data interpolation is introduced to provide 

more available data (Soldevila et al., 2019). 

The other method is a data-driven method using pressure data as well as interpolation, which is an alternative 

method to achieve accurate leak localization without well-calibrated models. The basic idea comes from Soldevila 

et al. (2019) and Soldevila et al. (2021), in which the authors compare the pressure at each node (pressure map) 

in the non-leak and leak situations, where the pressure map is obtained by Kriging interpolation. However, Kriging 

interpolation does not consider the topological structure and hydraulic features of WDN. In this study, graph-

based interpolation is introduced due to its high better performance using synthetic data (X. Zhou et al., 2022a). It 

is explored for the first time using real data and employed for leak localization in real cases.  

Furthermore, methodologies for leak localization are rarely tested and validated in real cases, especially data-

driven methods. Given the influence of different factors on leak localization, the performance of both these two 

methods is investigated in different types of real DMAs and evaluated by two new performance metrics to 

provide an understanding of the applicability of these two methods in real life. 

 

1.4 Research questions 

The research objectives are to improve the model-based method and data-driven method for leak localization to 

achieve better localization performance and to test these methods in different situations in real DMAs. The 

following questions with specific sub-questions are formulated as follows: 
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Q1. How can we improve the model-based leak localization relative to the method developed by Quevedo et al. 

(2011)? 

SubQ1-1. How to improve the model-based leak localization by minimizing the residuals between observed 

and model-simulated data? 

SubQ1-2. Does graph-based interpolation improve localization precision? 

SubQ1-3. How does the localization performance vary under different conditions such as different structure 

of networks and different leak flow?  

Q2. Can we advise a data-driven approach using pressure and interpolation for leak localization in real WDNs? 

SubQ2-1. How does the graph-based interpolation perform in real WDNs? 

SubQ2-2. How does this data-driven approach perform in real WDNs? 

SubQ2-3. Compared with the model-based method, in which cases the data-driven approach is 

recommended for practical use? 

 

1.5 Thesis structure 

To answer the research questions in section 1.4, Chapter 2 will first show the framework of the research, 

explaining the relationship between the research questions and each chapter. Next, the model-based and data-

driven methods (including interpolation) will be explained respectively. Chapter 3 will show the basic information 

of the case study used for this research and describes the plan for artificial leak tests. Chapter 4 will present the 

localization accuracy of both model-based and data-driven approaches and discuss the results. Chapter 5 is the 

conclusion of this thesis and provides recommendations for future studies.  
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Chapter 2: Methodology 

Figure 4 illustrates the overall framework and flow of this research. The leak detection is out of the scope of this 

work, and it is assumed that the leak has been detected and the leak flow has been estimated efficiently in the 

DMA. The methods are used to find the leak which is simulated by opening the fire hydrant. The leak size is fixed 

as planned during the leak test and the leak location is determined by technicians from the water company. The 

methodology involves two parts: (1) a model-based method (in section 2.1) and (2) a data-driven method (in 

section 2.3) for leak localization. Hydraulic simulations were carried out using the software EPANET 2.2 and the 

WNTR package in Python (Klise et al., 2017). In the first part, a residual model is proposed to simulate the 

deviation between model outputs and measurements in the non-leak situation. Next, graph-based interpolation is 

integrated into the model-based method. In the second part, the accuracy of graph-based interpolation is first 

investigated using synthetic data in real WDNs to determine the variables used for leak localization. Then the 

data-driven method is implemented using real data for finding leaks in WDNs.  

 

Figure 4. Overview of the research. 
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2.1 Model-based method using pressure sensors 

This work aims at locating the leak in the simple DMA with a single inlet, which means no other elements are 

present in the DMA, such as outlets, pressure regulating valves (PRVs), and/or boosters. Flow measurements at 

the inlet, and pressure measurements at the inlet, critical point as well as additional five to eight nodes are 

available from Feb 2022. In this study, leak flow r is constant controlled by technicians during the time period of 

the leak test. It is assumed that only one leak occurs in the DMA (to simplify the problem) at a time (the same as 

the assumption in Casillas Ponce et al. (2014), Perez et al. (2014),  Pérez et al. (2011),and Soldevila et al. (2019)).  

 

2.1.1 General approach 
In this work, the model-based method used for leak localization can be described as Figure 5, including three 

stages: (1) data acquisition, (2) preprocessing, and (3) leak localization. In the first stage, data of flow and pressure 

measurements is collected every 1 min. Next, a residual model is proposed for each sensor using the flow and 

residual between model outputs and measurements in non-leak situation. Faulty sensors are detected and 

discarded before localization analysis. After the leak has been detected in WDNs, flow during the leak is used to 

calculate the offset values to correct the model output using the residual model. Then, the model-based method 

relying on pressure sensitivity analysis is implemented to locate the leak. Finally, localization results are assessed 

by two novel performance metrics proposed in section 2.4. 

 

Figure 5. Schematic description of model-based method. 

 

2.1.2 Hydraulic model set up 
The hydraulic model of the entire service area was provided by the water company in the form of a geographic 

information system (GIS) file. The model of each DMA was split by shapefile from GIS and imported into EPANET 

2.2. Network structure (including pipes and nodes) and parameters (such as pipe length, diameters, and 
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roughness) were retrieved from the GIS system. These models are supposed to be able to represent the behavior 

of WDNs. At the inlet of each DMA, the entry point is modeled as a water reservoir in EPANET. Leak is modeled as 

extra demand added to every node in the DMA. The setting of the hydraulic time step, pattern time step, and 

reporting time step are the same as the scenario analysis time step (which is further explained in section 2.1.5) 

equal to 15 min in the EPANET model. 

The Darcy Weisbach formula is used for pipe head loss calculation in this study since it is the most theoretically 

correct one among all the head loss formulas (Rossman, 2000). 

ℎ𝑓𝑟 = 𝑓𝐷
8

𝜋2𝑔𝐷5
𝐿𝑄2 =  𝑘𝑓𝑟𝑄

2 (1) 

where ℎ𝑓𝑟  is the pipe friction headloss; 𝑓𝐷 is the Darcy friction factor; 𝐷 is the pipe diameter; 𝐿 is the pipe length; 

𝑘𝑓𝑟 is the frictional loss coefficient; and 𝑄 is the volumetric flow rate.  

Boundary conditions flow and pressure are measured at the entry point of each DMA. Head (the summation of 

the pressure and elevation) is input and set as the head pattern for the modeled reservoir as shown in Figure 6. 

Flow measurement is used to scale the demand pattern. The scaling factor for each time step 𝑡 equals the flow 

divided by the sum of based demand of each node. Base demand is determined based on the billing information 

collected by water utilities and reflects the average consumption in the year prior to the year that the model was 

built.  

𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟(𝑡) =
𝑄(𝑡)

𝑆𝑢𝑚 𝑜𝑓 𝑏𝑖𝑙𝑙𝑒𝑑 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑎𝑙𝑙 𝑢𝑠𝑒𝑟
 

(2) 

 

Figure 6. Flow and head patterns in EPANET. Left: Head pattern of the reservoir; Right: Demand pattern. 

 

2.1.3 Residual model development 
Nodal pressure is an essential indicator of hydraulic status of WDN (X. Zhou et al., 2022a). In an ideal situation, for 

each sensor, the pressure measurement should be the same as the model output in non-leak situation with 

perfect sensor and accurate mode. However, there are always residuals between measurements and model 

outputs (as shown in Figure 7) due to uncertainties particularly in nodal demand and pipe roughness coefficients 

as well as measurement noise (Soldevila et al., 2016). Here the measurement is the sum of measured pressure 

and elevation of a node. These residuals may lead to poor confidence in localization results (Perez et al., 2014).  
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Figure 7. Residuals between observed and model-simulated pressure head. Upper: The observed (blue) and model simulated 

pressure head (orange) of sensor P3 in DMA5 in the non-leak situation. Lower: The inflow of DMA6 (pink) and residuals (blue). 

In this study, for each node with sensor, we consider developing a simple model to simulate these residuals and 

to further use this model to calculate an offset to correct the model outputs. Residuals can be generally divided 

into static and dynamic errors. On the one hand, static errors are caused by elevation difference between sensor 

and the node in model. On the other hand, water flows from the entry point of the DMA to each sensor’s location 

along pipes. Water head drops due to the pipe resistance in this process. However, the model cannot precisely 

simulate the head loss in real life because of underdetermined nodal demand and network parameters. In the 

model environment, head loss in pipes consist of both friction losses and local losses, which can be estimated as 

follow (Bentley Systems et al., 2003), 

ℎ𝑙𝑜𝑠𝑠 = ℎ𝑓𝑟 + ℎ𝑚𝑖𝑛𝑜𝑟 = (𝑘𝑓𝑟 + 𝑘𝑚𝑖𝑛𝑜𝑟)𝑄
2 (3) 

where ℎ𝑙𝑜𝑠𝑠 is the total head loss; ℎ𝑓𝑟   is the pipe friction head loss; ℎ𝑚𝑖𝑛𝑜𝑟  is the minor loss; 𝑘𝑓𝑟 is the 

coefficient of pipe friction head loss; 𝑘𝑚𝑖𝑛𝑜𝑟  is the minor loss coefficient.  

Based on eq (8) where the pressure head is quadratic related to flow in pipes, we assume that the residuals have 

the same relation with flow. Consequently, for each senor node i, a simple quadratic function is proposed to 

model the residuals. 

𝑅𝑖(𝑡) = 𝑝𝑚𝑒𝑎𝑠,𝑖(𝑡) − 𝑝𝑚𝑜𝑑𝑒𝑙,𝑖(𝑡) = 𝐶1𝑖𝑄
2(𝑡) + 𝐶2𝑖 (4) 

where 𝑝𝑚𝑒𝑎𝑠 is the sum of measured pressure and elevation (at sensors i); 𝑝𝑚𝑜𝑑𝑒𝑙 is model simulated head; 𝐶2  is 

the dynamic correction factor; 𝐶2 is the static correction factor. 

The parameters 𝐶1 and 𝐶2 are estimated by least squares approach using historical flow and residuals in non-leak 

situation. According to Eq. (4) and Figure 8, residuals highly depend on the flow varying with user behavior. They 

are higher and more variable during peak hours, and smaller and more stable at night. The same difference in 
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residuals also exists between working days and weekends due to different water consumption pattern (S. L. Zhou 

et al., 2002). Since the model is applied to calculate the offset to correct model outputs after leak, residuals and 

flows used to build the residual model should be similar to the WDN behavior during the leak. Considering these 

factors, the observed flows and residuals before the leak are divided into weekdays and weekends. In this study, if 

the leak is detected on a weekday, flows and residuals from 3 complete weekdays (72 hours) prior to the leak are 

selected to determine 𝐶1 and 𝐶2 for each sensor since it gives a good balance between residual model fit 

accuracy and the efficiency of computation (avoid too large dataset). If the leak is detected on a weekend, dataset 

from the weekends (48 hours) one week ago are selected. The total length of time steps depends on the scenario 

analysis time step 𝑇𝑎. The offset values used to correct model outputs during the leak are updated daily on 

weekdays and weekly on weekends.  

 

Figure 8. Fitting of the residual model. 

 

2.1.4 Faulty sensor detection 
Sensors are not always accurate since pressure signals are sensitive to changes in conditions. Faulty sensors 

behave abnormally, leading to different patterns of measurements and model outputs. Therefore, it is of interest 

to detect and exclude those faulty sensors to guarantee the localization precision (Perez et al., 2014). Figure 9 

shows the flowchart of faulty sensor detection and removal. For the 72-h evaluation before the leak, each 

measurement is compared to model output value. Mean absolute percentage error (MAPE) is introduced to 

evaluate the differences between the reality and model at each sensor node i.  

𝑀𝐴𝑃𝐸𝑖 =
1

𝑁𝑝𝑏𝑛𝑑
∑𝑅𝑖(𝑡)

𝑁

𝑡=1

× 100% (5) 

where 𝑁 is the number of scenario analysis time step 𝑇𝑎; 𝑝𝑏𝑛𝑑 is the boundary head at the inlet of DMA. 

If the MAPE > 5%, then the sensor is considered a faulty sensor and excluded before localization analysis. In other 

cases, model outputs are corrected by adding offset values calculated by residual model. The MAPE after model 

output correction (MAPE1) should be within ± 0.25% in the DMA since 0.25% noise is often added to perfect data 

to simulate real-life situations. Pressure response to a leak may be masked by large differences between 

measurements and model outputs.  
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Figure 9. Flowchart of faulty sensor detection and removal. 

 

2.1.5 Model-based leak localization 
In Quevedo et al. (2011), leak isolation in WDNs is considered a fault isolation problem in the system. The main 

idea is of this model-based method to compute the correlation between the pressure drops driven by each 

potential leakage in the model network and the leak-driven pressure changes in real WDNs. The node with the 

highest correlation values is the most probable leaky node.  

In this research, three different time steps are involved, including the sensor sample time 𝑇𝑠, scenario analysis 

time step 𝑇𝑎, and the diagnosis sliding window 𝑇𝑤 (Meseguer et al., 2014a; Moors et al., 2018). The 𝑇𝑠 of pressure 

sensors and flow meter is 1 min. The initial setting of 𝑇𝑎  is 15 min since it is the typical sampling rate of flow and 

pressure sensors (Bakker, Vreeburg, et al., 2014a; Romano et al., 2013). As a result, pressure and flow 

measurements should be first averaged over 15 minutes to reduce nuisance noise of measurement (Meseguer et 

al., 2014a). 𝑇𝑤 depends on the overall leak period, which in this study is the duration of artificial leak test. 

The computation of correlation value for each node repeat at each 𝑇𝑎. First, the residual vector 𝑅𝑉 is created to 

represent the pressure responses to the leak in real life. Hydraulic simulation is made to obtain the model outputs 

𝑝0 at the nodes equipped with pressure sensors without leak in the model. An offset value 𝑝𝑜𝑓𝑓𝑠𝑒𝑡  calculated by 

residual model for each sensor node is added to 𝑝0 to correct model outputs. Pressure measurements 𝑝𝑖  are 

acquired from each pressure sensor during leak event. Each item is calculated by subtracting corrected 𝑝0 from 𝑝𝑖. 

𝑝𝑜𝑓𝑓𝑠𝑒𝑡,𝑖(𝑡) = 𝐶1𝑖𝑄
2(𝑡) + 𝐶2𝑖 (6) 

where 𝑝𝑜𝑓𝑓𝑠𝑒𝑡,𝑖 is the offset value for model output correction at sensor node i; 𝑄 is the consumption flow in leak 

situation. 

𝑅𝑉(𝑡) =  [

𝑝1(𝑡) − 𝑝1,0(𝑡)

⋮
𝑝𝑛𝑠(𝑡) − 𝑝𝑛𝑠,0(𝑡)

] (7) 

where 𝑝𝑖  is observed pressure at sensor node i; 𝑝𝑖,0 is corrected model pressure in non-leak situation at sensor 

node i; 𝑛𝑠 is the number of inner pressure sensors.  
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Second, fault signature matrix 𝐹𝑆𝑀 is built up, indicating the pressure responses to the leak in the model network. 

A leak (of specific flow) is modeled as extra demand added one by one to each node, the pressure drop at each 

sensor node is stored in the column of 𝐹𝑆𝑀. 

𝐹𝑆𝑀(𝑡) =  [

𝑝1,1(𝑡) − 𝑝1,0(𝑡) ⋯ 𝑝1,𝑛𝑛(𝑡) − 𝑝1,0(𝑡)
⋮ ⋱ ⋮

𝑝𝑛𝑠,𝑛𝑛(𝑡) − 𝑝𝑛𝑠,0(𝑡) ⋯ 𝑝𝑛𝑠,𝑛𝑛(𝑡) − 𝑝𝑛𝑠,0(𝑡)
] (8) 

where 𝑛𝑛 is the number of nodes.  

After that, each column of 𝐹𝑆𝑀  is correlated with 𝑅𝑉  by Pearson’s correlation coefficient to obtain the 

correlation vector rho, which is used to predict the leaky node. 

𝜌𝑅𝑉,𝐹𝑆𝑀(𝑡) =  [

𝜌𝑅𝑉,𝐹𝑆𝑀1(𝑡)

⋮
𝜌𝑅𝑉,𝐹𝑆𝑀𝑛(𝑡)

] 

 

(9) 

𝜌𝑅𝑉,𝐹𝑆𝑀𝑗
=
𝑐𝑜𝑣(𝑅𝑉, 𝐹𝑆𝑀𝑗)

𝜎𝑅𝑉𝜎𝐹𝑆𝑀𝑗

 (10) 

where 𝜌𝑅𝑉,𝐹𝑆𝑀𝑗
 is the correlation value of 𝑅𝑉 and the column 𝑗 of 𝐹𝑆𝑀. 

Eventually, all nodes are sorted by correlation values. The most probably leak node has the maximum correlation 

value. 

max
𝑗
(𝜌𝑅𝑉,𝐹𝑆𝑀𝑗

(𝑡)) ,   𝑗 = 1,… , 𝑛 (11) 

The most likely leaky node can be predicted either at each scenario analysis time step 𝑇𝑎, or as the cumulative 

result during the entire leak event 𝑇𝑤. 

Over the leak period 𝑇𝑤, for each node, the positive correlation values calculated at each time step 𝑇𝑎 are 

accumulated and averaged. By ranking the overall correlation values in descending order, the first node with the 

highest correlation value is the most probable leak location. 

 

2.2 Graph-based interpolation 

2.2.1 Theoretical background 
Graph-based interpolation developed by X. Zhou et al. (2022) is an accurate and convenient approach for head 

estimation using limited pressure sensors in WDNs. The theoretical background of this method is Graph Signal 

Processing (GSP), using weights to represent the similarity between signals on adjacent nodes. GSP has a wide 

range of applications, such as sensor networks, image and 3D point cloud processing, and machine learning 

(Ortega et al., 2018). In this study, the structure of WDN is natural graph, including vertices and weighted edges 

corresponding to nodes 𝒱 = {1, 2, … ,𝑁} and pipes ℰ = {𝑤𝑖𝑗}𝑖,𝑗∈𝒱, respectively. Pressure head at each node 



18 
 

equipped with sensors are graph signals. Graph-based interpolation can infer unknown head values by not only 

considering the relation of the distance between observed data, but also hydraulic features.  

In WDNs, if nodes i and j are connected then 𝑤𝑖𝑗 > 0, otherwise 𝑤𝑖𝑗 = 0. The adjacent matrix 𝒲 of the weighted 

graph can be written as: 

𝒲𝑖𝑗 = {
𝓌𝑖𝑗, if 𝓌𝑖𝑗 ∈ ℰ

  0,             otherwise
 (12) 

The weight 𝑤𝑖𝑗 quantifies the similarity of head signals between different nodes, which is assigned based on 

hydraulic features. X.Zhou et al. (2022) proposed four different ways to calculate weights, including uniform 

weight, nodal demand weight, Hazen-Williams weight, and model-simulated head loss weight. In this research, we 

use pipe length weight which requires less information from the model as described in Alves et al. (2022). Hazen-

Williams weight is replaced with Darcy-Weisbach weight since Darcy-Weisbach formula is used in this study to 

calculate the head loss. Four weights are increasingly dependent on the network parameters.  

Uniform weight 𝑤𝑢: 𝑤𝑖𝑗 = 1  (13) 

Pipe length weight 𝑤𝑙:  𝑤𝑖𝑗 =
1

𝑙𝑖𝑗
 , 𝑙 is the pipe length between node i and j (14) 

Darcy-Weisbach weight 𝑤𝐷:  𝑤𝑖𝑗 =
𝑙𝑖𝑗

𝐷𝑖𝑗
 , 𝐷 is the pipe diameter (15) 

Head loss weight 𝑤ℎ: 

𝑤𝑖𝑗 = 𝑤𝑗𝑖 =

{
 

 
1

ℎ𝑖𝑗
 , ℎ𝑖𝑗 > 𝜀

1

𝜀
 , ℎ𝑖𝑗 < 𝜀

 , 

ℎ𝑖𝑗  is the head loss of pipe ij calculated 

by model simulation and 𝜀 is set at 0.001 

to prevent from extremely big value. 

(16) 

Head signals Head signals 𝐻 = [𝐻1, 𝐻2, … , 𝐻𝑁]
𝑇 in WDN are considered original graph signals, which are 

decomposed onto a set of Laplacian spectrums 𝒮 = [𝓈1, 𝓈2, … , 𝓈𝑁]  and corresponding eigenvectors 𝑈 =

[𝑢1, 𝑢2, … , 𝑢𝑁] by Graph Fourier Transform (GFT). In general, the variation of head signals at neighboring nodes is 

limited in WDNs, and it was proved that these ‘smooth’ changes of heads can be well explained by lower 

frequency and corresponding eigenvectors (Stanković et al., 2019; X. Zhou et al., 2022a). Smoothness of graph 

signals means higher similarity of head values (Ortega et al., 2018). Therefore, frequency limit 𝒻  is introduced to 

determine the low frequency part of 𝑈 and 𝐻 for approximation of the head signals over the entire WDN. 

Measured heads 𝑦𝑠 can be considered as the original signal 𝐻. A matrix 𝐷𝑠 is created as a 𝑀 ×𝑁 sampling matrix 

with 𝐷𝑠[𝑖, 𝑗] = 1 if the ith pressure sensor is installed at node j and 0 otherwise. The estimated low frequency 

spectrum is calculated as: 

𝒮𝒻 = 𝑝𝑖𝑛𝑣(𝐷𝑠𝑈𝒻)𝑦𝑠, 𝒻 ≤ 𝑀 (17) 

The reconstructed heads are: 

�̂� = 𝑈𝒻𝒮𝒻 (18) 

In the study of X. Zhou et al. (2022), the interpolation was validated in real networks using synthetic data 

generated by EPANET simulator. Table 1 shows that the head loss weight performs the best among all weights 

with the mean absolute error 0.25 m in a middle-sized WDNs including 480 nodes and 567 pipes with 30 pressure 

sensors. 
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Table 1. Results of graph-based interpolation using different weights (X. Zhou et al. 2022). 

Graph weight MAE [m] 

Uniform 0.509 

Demand 0.289 

Hazen-W 0.477 

Head loss 0.254 

 

2.2.2. Integration with model-based method 
Based on the research in Quevedo et al. (2011), more pressure sensors improve the reliability (higher maximum 

correlation value) and accuracy of localization (as shown in Table 2). However, in practical cases, water utilities 

usually install a limited number of sensors due to their tight budgets. In this research, virtual sensors are created 

over the entire WDN by graph-based interpolation. After the interpolation, the number of sensors (ns) equals the 

number of nodes (𝑛𝑛) in the WDN. The size of RV and FSM will be enlarged from ns rows to 𝑛𝑛 rows. Considering 

the accuracy of interpolation, the head loss weight is used to obtain the ‘virtual’ measurements of virtual sensors. 

Table 2. Results of model-based method using different number of sensors (Quevedo et al. 2011). 

Number of 
sensors [ns] 

Leak flow [l/s] Noise level [m] Max. correlation c [-] Distance [m] 

3 6.3 0.25  0.460 224 

15 6.3 0.25 0.546 109 

100 6.3 0.25 0.686 68.7 

 

2.3 Data-driven method with graph-based interpolation 

In this work, a data-driven method is developed to locate the leak in DMAs with flow and pressure measurement 

at the inlet and a few pressure sensors inside. It is assumed that an efficient method has been applied to detect 

the leak. The method is modified from the research of Soldevila et al. (2019) and Soldevila et al. (2021), in which 

the authors compare the pressure residuals over the entire WDN in non-leak and leak situation. Graph-based 

interpolation is introduced to estimate the pressure at the nodes without sensors. Bayesian theory is used 

eventually for temporal reasoning to improve the localization results. In this case, a large dataset in the leak 

situation is not required, nor is an estimation of leak flow and a well-calibrated model, all of which are strong 

benefits. Figure 10 shows the overview of this method. The performance of the method is assessed two metrics 

described in section 2.4.  
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Figure 10. Overview of data-driven leak localization method. 

Considering a WDN including 𝑛 nodes and 𝑛𝑠 sensors, a residual vector 𝑅 = [𝑅1, 𝑅2, … , 𝑅𝑛]
𝑇 is created at each 

time step 𝑡: 

𝑅𝑖(𝑡) = 𝑝𝑖(𝑡) − 𝑝𝑙𝑖(𝑡) (19) 

where 𝑝 = [𝑝1, 𝑝2, … , 𝑝𝑛] is the pressure map A in non-leak situation; 𝑝𝑙 = [𝑝𝑙1, 𝑝𝑙2, … , 𝑝𝑙𝑛] is the pressure map B 

in leak situation.  

The leak location is identified by the maximum pressure residual (Romano et al., 2017a; Soldevila et al., 2019a) 

𝐽 =
𝑎𝑟𝑔𝑚𝑎𝑥{𝑅(𝑡)}
𝑖 ∈ {1,… , 𝑛}

 (20) 

where 𝑅𝑖 is the item in vector 𝑅.  
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Soldevila et al. (2019) implemented this localization approach in the benchmark network Hanoi in the model 

environment. It is assumed that each node in the DMA is equipped with a sensor in an ideal situation. During the 

leak, the pressure residual profile is shown as Figure 11.  

 

Figure 11. Pressure residual profile of the leak node (Soldevila et al., 2019). 

In this study, graph-based interpolation is employed to obtain the pressure map in both non-leak and leak 

situations instead of the Kriging interpolation used by Soldevila et al. (2019) and Soldevila et al. (2021). It was 

proved that graph-based interpolation provides better head estimation than Kriging in X. Zhou et al. (2022) using 

fully synthetic data. Four different weights will be used to further explore the performance of graph-based 

interpolation with real measured data in WDNs. 

The residual vector 𝑅 is computed using measured data at each time step. In this case, historical data from the 

same time period as the leak in the previous three days are considered as valid measured data as to obtain the 

pressure map in non-leak situation as the reference. In order to consider the time evolution of the residuals, 

Bayesian reasoning is introduced to improve the localization precision.  

To avoid negative values, at each time step, the minimum component of 𝑅(𝑡) is added to every component i as 

an offset. 

𝑅𝑖
+(𝑡) = 𝑅𝑖(𝑡) + min (𝑅(𝑡)) (21) 

Then a likelihood index 𝒶𝑖(𝑡) is computed for each node and be normalized as 

𝒶𝑖(𝑡) =
𝑅𝑖
+(𝑡)

∑ 𝑅𝑗
+(𝑡)𝑛

𝑗=1

 (22) 

and later be combined with the initial leak probabilities for each node through Bayes rule. The updated posterior 

probability of leak is 

𝑃𝑖(𝑡) =
𝑃𝑖(𝑘 − 1)𝒶𝑖(𝑡)

∑ 𝑃𝑗(𝑘 − 1)𝒶𝑗(𝑡)
𝑛
𝑗=1

 (23) 
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The initial probability of leak is equal for every node as 𝑃𝑖(𝑘) = 1/𝑛. The leaky node has the highest probability of 

leak.  

𝐽(𝑡) =
𝑎𝑟𝑔𝑚𝑎𝑥{𝑃𝑖(𝑘)}
𝑖 ∈ {1,… , 𝑛}

 (24) 

 

2.4 Performance metrics 

Compared with leak detection, there are not many performance metrics proposed to evaluate the localization 

accuracy. Generally, most researchers use either the distance or the pipe length between the actual leak and the 

predicted leak. Moors et al. (2018) proposed false-positive rate to evaluate the localization results. It is the 

percentage of false positive nodes, which are the nodes with higher correlation value than the real leak node. This 

metric can show to what extent the localization approach can help reduce the search area of the leak.  

In this study, two novel metrics are proposed to assess the performance of the methodology: localization error 

(LE)and false positive path (FP path). LE focuses on nodes in WDNs. We draw a circle on the map with the 

predicted leak node as the center and the distance between actual and predicted leak node as the radius (Figure 

12). LE is the percentage of nodes inside the circle to all nodes. It should be as low as possible, indicating smaller 

search area of the leak and shorter linear distance. LE is used to evaluate the performance of both model-based 

and data-driven methods. 

𝐿𝐸 =
𝑁𝑜𝑑𝑒𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 (𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑚𝑎𝑥. 𝑐𝑜𝑟𝑟 𝑛𝑜𝑑𝑒; 𝑟 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑟𝑒𝑎𝑙 𝑙𝑒𝑎𝑘)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐷𝑀𝐴
× 100% (25) 

 

Figure 12. Conception drawing of localization error. 

However, nodes inside the circle maybe close in space but far away from each other from a hydraulic point of 

view. In addition, the uneven distribution of nodes in WDNs also affects the fairness of this metrics. Consequently, 

in more central areas, where nodes are more concentrated, LE is probably higher than in remote areas. But the 

distance between the leak and the predicted leak node is the same.  

FP path is calculated based on false positive nodes and pipe length in WDNs. In practice, when we search for the 

leak using model-based method, the node with the highest correlation value should be looked at first, and then 
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the second highest, the third, etc., until we find the actual leak node. The group of nodes that have higher 

correlation values than the actual leak node are false positive nodes. All pipes connected to those false positive 

nodes are possible search pipes. To avoid double counting one pipe from two nodes, only half of the pipe length 

is counted for one node. FP path equals the percentage of search pipe length to total pipe length, which should 

be as small as possible.  

𝐹𝑃 𝑝𝑎𝑡ℎ =
𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑒𝑎𝑟𝑐ℎ 𝑝𝑖𝑝𝑒 𝑙𝑒𝑛𝑔𝑡ℎ [𝑚] 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑖𝑝𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝐷𝑀𝐴  [𝑚]
× 100% (26) 

where possible search pipe length is the sum of half of all pipes connected to false positive nodes.  

A possible drawback is the sparse distribution of false positive nodes. They are not always close to and around the 

leak and a few maybe far away from the leak node. In this case, the actual search area is larger than the FP path 

shows.  

The results of both LE and FP path are split into four classes to improve the fairness of assessment.  If LE or FP 

path < 10%, it is interpreted as good, 10 – 20% as fair, between 20 - 40% as acceptable, and > 40% as poor.  

For data-driven method, the hydraulic pipe length between actual leak and predicted leak node is also used for 

performance evaluation.  
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Chapter 3: Case Study 

SES water is a water company in the UK,  providing drinking water services to an area of south London divided 

into over 300 DMAs with more than 750,000 people as shown in Figure 13. SES Water aims to reduce NRW by 15% 

from 2020 to 2025. They plan to detect and find leaks sooner by using software-based solutions since they are 

unable to renew infrastructure very often with a tight budget. 10 of DMAs are selected to test and validate the 

two approaches for leak localization. Each one of them is supplied by one inlet and equipped with one flow meter 

and a pressure sensor at the inlet and a pressure sensor at the critical point as well as additional 5 - 8 inner 

pressure sensors.  

 

Figure 13. Case study map: SES Water’s service area in South London, UK. 

 

3.1 Description of studied DMAs 

Table 3 shows the basic information of these 10 DMAs.  
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Table 3. Overview of 10 DMAs in South London, UK. 

DMA 
Average flow 

[l/s] 
Sensors Land use 

Elevation 
difference 

[m] 
Node 

Pipe length 
[km] 

 DMA1 1.36 6 Rural 45.6 88 7.2 

 DMA2 1.96 6 Rural 24.4 138 10.8 

 DMA3 2.40 6 Urban 12.6 96 3.9 

 DMA4 3.76 7 Urban 3.0 114 3.5 

 DMA5 3.76 7 Semi-Urban 38.1 215 11.9 

 DMA6 4.27 7 Urban 34.6 127 5.5 

 DMA7 5.50 8 Urban 46.8 285 10.2 

 DMA8 7.02 8 Semi-Urban 46.9 343 24.9 

 DMA9 9.15 8 Semi-Urban 15.7 314 13.0 

 DMA10 11.68 9 Urban 16.4 337 11.6 
*Sensors: The number of pressure sensors in each DMA; Elevation: The elevation difference between the lowest and the 

highest point in each DMA. 

All DMAs cover the total pipe length of 121.6 km and 2555 nodes. The selected DMAs have varying sizes from 88 

to 337 user nodes and different characteristics including the type of WDN, land use, and topography. A total of 87 

pressure sensors are placed with an average of 7 sensors in each DMA, respectively. Each pressure sensor covers 

13 to 34 nodes. The average flow of DMA varies greatly from 1.36 l/s (DMA1) to 11.68 l/s (DMA10).  Most DMAs 

are hybrids with branch and loop structures as shown in Figure 14, which is very different from the benchmark 

networks usually applied for test and validation of leak localization strategies. DMA1 and DMA2 are located in 

rural areas with farms around, and others are typically urban areas. The topographic elevation difference ranges 

from 3 m to 62 m. 7 DMAs have an elevation difference of more than 30 m, where the pressure has considerable 

validation.  

 

Figure 14. Network maps of 10 DMAs. 

 



26 
 

3.2 Leak tests plan 

Artificial leak tests are performed by technicians from SES Water by opening fire hydrants.  

A total of 22 leak tests including 47 leak events were performed in two stages as follows: 

• A leak test was conducted from Feb 03 to Apr 01 in each of the 10 DMAs at randomly selected locations. The 

protocol of the leak test is the same in leak size and duration but different in the execution time. Different 

sizes of leaks were controlled by how much the fire hydrant is opened. Specifically, constant leak flow leaks of 

0.8 or 1.5 l/s (i.e., most between 20% and 40% of the average inflow of the DMA) with durations of either 1.5 

or 1 hours were created, respectively. Leak tests were done either in the morning from 9:00 to 11:30 or from 

13:00 to 15:30. 

•  15 extra leak tests were carried out at 7 DMAs from May 07 to June 01 in order to further investigate 

different impact factors, including the longer duration, higher leak flow, nighttime test, and leak location 

(either in loop or branch area). Nighttime tests with the same leak flow and duration were performed in two 

DMAs. Different leak locations were explored in two larger DMAs with hybrid network structures. Higher leak 

flows of 2.0 and 2.5 l/s, as well as a longer duration (6 hours) of small leak of 0.8 l/s, were also scheduled.  

The leak tests were performed by ensuring clients were subject to as few disruptions as possible in the process. 

To achieve this, leak tests were scheduled to avoid the morning and evening peak hours to make sure the water 

supply service. The maximum test flow allowed to be performed was 2.5 l/s in the daytime. Table 4 and Table 5 

shows the plan of leak tests in detailed.  

Table 4. Overview of leak test scenarios in the first stage. 

Date DMA Time Test flow [l/s] DMA Time Test flow [l/s] 

3-2-2022 DMA2 09:00-10:30 0.8 DMA5 13:00-14:30 0.8   
10:30-11:30 1.5 

 
14:30-15:30 1.5 

10-3-2022 DMA8 09:00-10:30 0.8 DMA1 13:00-14:30 0.8   
10:30-11:30 1.5 

 
14:30-15:30 1.5 

15-3-2022 DMA6 09:00-10:30 0.8 DMA3 13:00-14:30 0.8   
10:30-11:30 1.5 

 
14:30-15:30 1.5 

23-3-2022 DMA10 09:00-10:30 0.8 DMA4 13:00-14:30 0.8   
10:30-11:30 1.5 

 
14:30-15:30 1.5 

24-3-2022 DMA7 09:00-10:30 0.8 DMA9 09:00-10:30 0.8   
10:30-11:30 1.5 

 
10:30-11:30 1.5 

 

Table 5. Overview of leak test scenarios in the second stage. 

Date DMA Time Test flow [l/s] Research goal 

5-5-2022 DMA3 09:00-10:30 0.8 Different times of the leak. 
a. Nighttime tests in DMA3 and DMA6 
b. Switching time leak tests in DMA3, DMA6, 
DMA1, DMA9, and DMA5. 

  
10:30-11:30 1.5 

1-6-2022 DMA3 01:00-02:30 0.8   
02:30-03:30 1.5 

3-5-2022 DMA6 09:00-10:30 0.8   
10:30-11:30 1.5 

4-5-2022 DMA6 01:00-02:30 0.8   
02:30-03:30 1.5 
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10-5-2022 DMA1 09:00-10:30 0.8   
10:30-11:30 1.5 

12-5-2022 DMA9 13:00-14:30 0.8   
14:30-15:30 1.5 

13-5-2022 DMA5 09:00-10:30 0.8   
10:30-11:30 1.5 

16-5-2022 DMA10 09:00-10:30 0.8 Different leak locations in hybrid networks. 
a. Due to the larger service area of DMAs, 
DMA10 and DMA7, as well as the more 
complex layout of the networks, these two 
DMAs are chosen for additional leak tests 

  
10:30-11:30 1.5 

17-5-2022 DMA10 09:00-10:30 0.8   
10:30-11:30 1.5 

26-5-2022 DMA7 09:00-10:30 0.8   
10:30-11:30 1.5 

27-5-2022 DMA7 09:00-10:30 0.8   
10:30-11:30 1.5 

24-5-2022 DMA9 09:00-15:00 0.8 Longer duration of small leak flow. 

25-5-2022 DMA4 09:00-15:00 0.8 

18-5-2022 DMA3 11:00-12:00 0.8 Bigger leak size.   
12:00-13:00 1.5   
13:00-14:00 2.0   
14:00-15:00 2.5 

23-5-2022 DMA4 11:00-12:00 0.8   
12:00-13:00 1.5   
13:00-14:00 2.0   
14:00-15:00 2.5 
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Chapter 4: Results and Discussions 

4.1 Sensor evaluation 

Before the localization analysis, every sensor should be assessed based on MAPE in Eq. (5) before and after model 

output correction in the non-leak situation (see section 2.1.4). An overview of sensor evaluation in DMA3 using 

72-h data in the non-leak situation is shown as an example in Table 6. In Figure 15, the observed and model-

simulated head at sensor P1 node were obtained from Mar 09 to Mar 12 (3 weekdays) in 2022. Ideally, observed 

heads are aligned with model simulated values shown as the best-fitting line (red) in Figure 16 (Left). In practice, 

data points deviate slightly from the best-fitting line in the presence of uncertainties. A quadratic residual model 

fitted to 72-h flow and residuals is used to correct model outputs. However, residuals still exist and the MAPE1 

after calibration is still higher than 0.25%. Therefore, sensor P1 is considered a faulty sensor and thus is not used 

in localization analysis. The other five sensors are valid sensors with MAPE1 < 0.25%.  

Table 6. Overview of the sensor evaluation in DMA3 

Name MAPE [%] C1 C2 MAPE1 [%] 
Remove sensor? 

[Yes/No] 

DMA3_P1 0.94 -118340 -0.01 0.35 Yes 

DMA3_P2 1.27 -103481 -0.39 0.12 No 

DMA3_P3 0.67 -100059 0.09 0.09 No 

DMA3_P4 0.75 -101122 0.03 0.09 No 

DMA3_P5 0.37 -101465 0.35 0.09 No 

DMA3_CP 1.84 -97233 2.21 0.10 No 

 

 

Figure 15. The time evolution of pressure head at sensor P1 node in DMA3. Blue and orange lines represent the observed 

and model-simulated data, respectively. The green line stands for model output after correction.   
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Figure 16. Left: Model-simulated and observed heads (sum of measured pressure and elevation of the node) in the non-leak 

situation; The red line represents the ideal situation with an accurate model and perfect sensor. Right: The relation between 

residuals and flow rate. 

In total, there are 72 pressure sensors installed in 10 DMAs. Figure 17 illustrates the MAPE of each sensor in the 

non-leak situation before and after model output correction. The average MAPE of all sensors is 1.37%, in which 

case pressure changes driven by small leaks can be easily masked by residuals leading to poor results 

(Sophocleous et al., 2019). Before model output correction, only 15 sensors have MAPE < 0.25%. The MAPE of 

sensor P1 in DMA4 is even higher than 20%. As a result, we can see network models in these case studies cannot 

always represent the hydraulic status in real life due to uncertainties, particularly in nodal demand. The average 

MAPE1 is 0.19% after model output correction, which is reduced by 86.6%. Based on the sensor evaluation results, 

13 sensors that show abnormal behavior are considered faulty sensors. One faulty sensor in each DMA on 

average. Consequently, they are discarded before localization analysis. Detailed information on sensor evaluation 

is shown in Appendix 1.  

 

Figure 17. MAPE of each sensor in non-leak situation before (blue) and after (orange) model output correction. 
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In DMA9, there are 8 pressure sensors distributed in the network. However, the observed values at each sensor 

node show very different trends and shapes from model outputs as reported in Figure 18, especially during 

daytime. Therefore, the network model of DMA9 cannot represent the real situation in WDN. The deviations in 

the model simulated and observed values cannot be easily modeled as quadratic function related to flow. It can 

probably be explained by the wrong sensor settings. Consequently, DMA9 is considered a biased DMA equipped 

with faulty sensors. Leak tests performed in this DMA are considered invalid and are not included in the 

subsequent analysis of localization results. 

 

Figure 18. The observed pressure head (blue), model simulated data (orange), and the corrected values (green) in the non-

leak situation in DMA9. 
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4.2 Graph-based interpolation 

In this study, four different graph weights are used for graph-based interpolation (defined in section 2.2.1) to 

obtain the pressure heads at the nodes without a sensor. The performance of interpolation is evaluated by mean 

absolute error (MAE) as: 

𝑀𝐴𝐸 =
1

𝑁
∑|𝐻𝑖̅̅ ̅ − 𝐻𝑖|

𝑁

𝑖=1

 

where 𝐻𝑖̅̅ ̅ is the interpolated head of node, 𝑁 is the number of unknown nodes and 𝐻𝑖 is the model simulated 

head at the node without sensor. In this interpolation process, the known head signal at each sensor node is 

generated by model simulation in EPANET using boundary flow and pressure in the non-leak situation. The 

connectivity and other model parameters such as pipe diameter and pipe length are provided from the SES Water. 

Head loss calculated by the EPANET simulator at the morning peak hour (7 am) is used to determine the head loss 

weight of each pipe.  

 

Figure 19. MAE under different combinations of graph weight w and frequency limit 𝑓. Unit: m; Deeper blue stands for higher 

MAE. 

Figure 19 shows interpolation results in DMA7 using different combinations of graph weight 𝑤 and frequency 

limit 𝑓 in non-leak situation. DMA8 contains 285 nodes, and a total pipe length of 10.2 km. 8 pressure sensors are 

installed in the DMA. The largest head loss in DMA7 is only 0.17 m, which indicates the slow varying and very 

smooth change of head signals among different nodes. In the middled-size DMA described in Zhou et al., (2022), 

there are 480 nodes with 30 pressure meters installed. In comparison, the low spatial density of pressure sensors 

in DMA7 can be reflected by the low ratio of sensors to nodes, which is an unfavorable condition for interpolation.  

The MAE obtained by graph-based interpolation in DMA7 range from 0.01 to 1.55 m. In general, higher MAE 

corresponds to a larger frequency limit 𝑓. According to the research by Zhou et al., (2022), graph-based 

interpolation performs better with slow varying heads as they are more aligned with the smoothness hypothesis 

of this method. Larger 𝑓 can introduce fast varying basic vectors, resulting in the decrease of stability of the 
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interpolation results. However, if the 𝑓 is too small, head changes in the WDN cannot be well translated into 

varying basic vectors and thus accurate interpolation cannot be obtained. For DMA7, the lowest MAE of 0.01 m is 

achieved when using the head loss weight and a frequency limit of 4.  

 

Figure 20. The MAE of interpolation using different graph weights at different times of three days in DMA7. 

Figure 20 shows the variation of MAE in DMA7 over time with the optimal frequency limit 𝑓 at 4. In general, the 

pattern of MAE obtained for each graph weight changes the same as the flow pattern. The accuracy of 

interpolation is better with the smaller flow and goes lower with higher flow. The flow rate has less impact on the 

MAE of interpolation through the use of head loss weight compared with the other weights. The difference 

between the MAE obtained from the interpolation using the head loss weight and the MAE of the other weights is 

smallest at night, when the flow rate is the lowest during the day. Overall, the head loss weight outperforms the 

others due to the most accurate estimation of the relationship of heads at different nodes. In conclusion, the 

performance of interpolation can be greatly improved by adding more model information. Based on the equation 

for different weights, the uniform weight, length weight, and Darcy weight are increasingly accurate explanation 

of the hydraulic features among each node. However, there is not much difference between the MAE of uniform 

weight, length weight, and Darcy weight.  

Table 7 shows the best selection of graph weight 𝑤 and frequency limit 𝑓 in 10 DMAs, in which the graph-based 

interpolation achieves the lowest MAE. Apart from DMA1, head loss weight performs the best in other DMAs, 

which is similar to the results of Zhou et al. (2022). In DMA2, it is not only length weight gives the best results with 

MAE=0.02 m, but other weights also perform similarly with MAE from 0.03 – 0.08 m. The optimal frequency limit 

𝑓 in 10 DMAs varies from 33.3% to 83.3% of the number of sensors, and it mostly concentrated in the range of 40 

- 60%. In Zhou et al., (2022), the authors recommend the frequency limit 𝑓 as 90% of the number of sensors, 

which is very different from the results in our case studies. The reason can be explained by the different 

magnitude of head loss in this research. The max. head loss in the case DMA is 6.12 m in the study of Zhou et al., 

(2022), and in the case of 10 DMAs the max. head loss ranges from 0.07 to 2.66 m. Therefore, lower frequency 

limit 𝑓 can better describe the varying of head signals in this study. Considering the measurement errors or 

inappropriate setting of sensor locations in real-life applications, the smaller f set as 50% of the number of 

sensors is recommended here.  
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Table 7. The best selection of graph weight and the frequency limit for the lowest MAE in 10 DMAs. 

DMA Graph weight Frequency limit f 
Min. MAE 

[m] 
Sensors 

f / sensors 
[%] 

Nodes 

DMA1 head loss 5 0.00 6 83.3 88 

DMA2 length 3 0.02 6 50.0 138 

DMA3 head loss 3 0.01 6 50.0 96 

DMA4 head loss 4 0.01 7 57.1 114 

DMA5 head loss 3 0.03 7 42.9 215 

DMA6 head loss 3 0.09 7 42.9 127 

DMA7 head loss 4 0.01 8 50.0 285 

DMA8 head loss 5 0.05 8 50.0 343 

DMA9 head loss 3 0.04 8 37.5 314 

DMA10 head loss 3 0.07 9 33.3 337 
* MAE is calculated using 72-h data in the non-leak situation; Sensor: Total number of sensors including the pressure sensor 

at the boundary of the DMA. 
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4.3 Model-based leak localization 

4.3.1 General results of model-based method  
The model-based method with/without model output correction is applied to 10 different DMAs in South London, 

UK. Five leak events in DMA9 are not included due to faulty pressure sensors (see section 4.1). Therefore, there 

are 47 leak events in total taken into account (see section 3). The duration of these artificial leak events is 1 hour 

or 1.5 hours or 6 hours. One-minute step pressure and flow data are provided by the water company. In the study 

of this section, the scenario analysis time step is 15 minutes, which means the original data at a resolution of one 

minute is resampled to 15 minutes. For example, four localization results are generated and averaged in an hour 

leak event to get an overall result.  

The performance of model-based leak localization is reported in Table 8. Both metrics LE and FP path indicate the 

percentage of search area of the leak (see section 2.4). Table 8 shows the percentage of leak events 

corresponding to each of the four result classes under each strategy. BASE stands for no model output correction 

and faulty sensors removal; RE stands for removing faulty sensors; MP means model output correction.  

Table 8. The localization results of the percentage of leak events in different result classes. 

Results category 
BASE RE MP MP+RE 

LE FP path LE FP path LE FP path LE FP path 

Good [0-10%] 8.5% 23.4% 10.6% 10.6% 29.8% 57.4% 40.4% 63.8% 

Fair [10-20%] 12.8% 2.1% 12.8% 4.3% 29.8% 17.0% 27.7% 14.9% 

Acceptable [20-40%] 31.9% 51.1% 44.7% 44.7% 19.1% 10.6% 17.0% 21.3% 

Poor [>40%] 46.8% 23.4% 31.9% 40.4% 21.3% 14.9% 14.9% 0.0% 

 

Results in Table 8 illustrate that the model output correction and faulty sensor removal have a significant positive 

impact on the performance of model-based leak localization. With the help of model output correction and faulty 

sensor removal (MP+RE), for 68.1% of leak events, the final candidates involved only less than 20% of all nodes as 

possible leak locations from the view of localization error (LE). Considering the false positive path (FP path), for 

78.7% of leak events, the leak is possible to be found within 20% of the total pipe length in the WDN. In contrast, 

localization results of more than 70% of leak events fall into ‘Acceptable’ or ‘Poor’ classes using the BASE strategy. 

The general improvement in performance is most likely explained by the reduction of differences between 

observed and model-simulated data by model output correction and faulty sensor removal.  

The average pressure drop of all leak events is 0.55 m. However, according to findings in section 4.1, before 

model output correction, the mean error between observed and model-simulated data in the non-leak situation is 

1.34 m transformed by a value of 1.37% of the average MAPE. In this case, it is difficult to identify the leak in 

which node causes the pressure drop because it can be masked by the difference due to the mismatch of model 

and reality (Sophocleous et al., 2019). The mean error is reduced to 0.16 m by model output correction, in which 

case the pressure response to the leak is more prominent, making it easier to find the leak. The percentage of 

leak events with poor results decreases greatly from 46.8% to 14.9% for LE and from 23.4% to 0.0% for FP path.  
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Table 9. Performance of four strategies in different DMAs. 

DMA 
Leak 

events 
Average 
flow [l/s] 

BASE RE MP MP+RE 

LE FP path LE FP path LE FP path LE FP path 

DMA1 4 1.4 55.8% 23.5% - - 1.0% 2.3% - - 

DMA2 2 2.0 9.0% 96.0% - - 41.0% 32.0% - - 

DMA3 10 2.4 37.6% 26.8% 44.5% 34.4% 7.4% 9.1% 5.8% 5.6% 

DMA4 7 3.8 53.7% 42.4% 26.9% 64.0% 36.7% 18.7% 17.9% 14.9% 

DMA5 4 3.8 32.0% 7.5% - - 30.0% 24.0% - - 

DMA6 6 4.3 18.5% 2.1% 19.7% 53.0% 21.7% 2.3% 40.0% 13.7% 

DMA7 6 5.5 35.3% 49.0% - - 13.3% 7.8% - - 

DMA8 2 7.0 60.5% 30.0% - - 18.0% 1.0% - - 

DMA10 6 11.7 75.0% 56.3% 54.5% 29.2% 71.5% 52.0% 43.0% 12.7% 

Average   41.9% 37.1% 37.6% 43.0% 26.7% 16.6% 23.4% 12.7% 
*’-‘means no faulty sensor in the DMA; The average results of all leak events using RE or MP+RE also involve the results in the 

DMA without faulty sensors. 

Table 9 shows the performance of four strategies in 9 DMAs, respectively. Both metrics LE and FP path are 

average results of all leak events in each DMA. Comparing the results using the strategy of BASE and MP, it can be 

seen that the overall performance of MP strategy is better than or similar to that of BASE strategy in 8 DMAs 

except for DMA2. For DMA2, although LE is only 9.0% using the BASE strategy, FP path is extremely high at 96.0%, 

which means the correlation value of the leak node is very low, and the final list of pipe candidates involved 

almost all pipes in the network. In this case, the predicted leak node with the maximum correlation value near the 

actual leak node is probably a spurious event. Results in the other 8 DMAs prove that model output correction 

can improve localization performance.  

Six faulty sensors are distributed in DMA3, DMA4, DMA6, and DMA10, three of which are in DMA6 and one in 

each of the remaining three DMAs. Table 9 illustrates that only in DMA10 is the improvement in localization 

precision more obvious by removing faulty sensors (RE). The performance in DMA3 and DMA6 is even worse. The 

possible reason is the very limited number of pressure sensors leads to insufficient sensitivity to pressure changes 

in the system. Although some sensors are not accurate enough, they still help to capture the leak-driven pressure 

changes as much as possible. However, comparing the results using the strategy of MP and MP+RE, the 

performance of MP+RE is slightly better in DMA3 and greatly in DMA4 and DMA10. The poor results in DMA6 can 

be probably explained by the inappropriate removal of faulty sensors which are excluded based on the criteria 

defined in section 2.1.4. Therefore, only four valid sensors remain in DMA6, and the actual leak node is very close 

to one of the removed sensors P1 as shown in Figure 21. 

These findings above give two insights into the application of the methodology. First, comparing the results of the 

four different strategies together, MP+RE still has the best performance in general. Compared to the average 

result of all leak events from the strategy BASE, MP+RE outperforms in terms of LE and FP path by 44.9% and 

61.1%, respectively. The applicability of MP+RE in different types of DMAs in different conditions can be 

confirmed by the best results obtained in seven DMAs. Model output correction contributes more to improved 

localization performance than faulty sensor removal does. Second, in practice, the criteria for faulty sensors 

should be determined with great care. In this study, the criteria work well in most case studies, but it has not 

been tested in other WDNs such as in other countries or owned by other water companies, or equipped with 

other brands of sensors.  
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Figure 21. Distribution of sensors in DMA6. Left: all sensors are shown; Right: only four valid sensors are shown. 

Leak events in DMA10 have the worst results as reported in Table 9. Although the results of FP path are 

acceptable, the value of LE is high, which indicates the long distance between the actual leak and the predicted 

leak node. DMA10 is the largest DMA with an average flow of 11.68 l/s, and it has a hybrid structure network with 

several loops on both sides of the transport main as shown in Figure 22. There are nine pressure sensors and P5 

was removed as a faulty sensor. However, leak flow ranges from 7% to 15% of average flow. Pressure responses 

to leaks are very limited at about 0.2 m. These results are consistent with the fact that leak-driven pressure 

changes can be hidden by pressure variations due to customer use in larger DMAs. In addition, eight valid sensors 

concentrate in the northern area. If a leak is detected in the south, it will be hard to have a good prediction due to 

weak responses in pressure sensors.  

 

Figure 22. The network layout of DMA10 and the location of three fire hydrant leaks. 
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In addition, another finding from Table 9 is that FP path is usually smaller than LE. Two metrics focus on candidate 

nodes and pipe length, respectively. The larger differences between LE and FP path values mainly appear in DMA2, 

DMA6, DMA8, and DMA10. A common feature of these leak locations in those four DMAs is that they are in areas 

where there is a relatively higher concentration of nodes in the DMA. Another reason is that some nodes inside 

the circle are probably not hydraulically related to others. Consequently, it seems that FP path has a higher 

tolerance for uneven distribution of nodes in the DMAs.  

 

4.3.2 Results of model-based method in different situations 
In Table 9, the results of leak events are divided into different DMAs for a summary. The performance is very 

different in different DMAs even with the same strategy. It is of interest to consider all leak events into different 

categories and to investigate the impact factors of the performance. According to results in section 4.3.1, model 

output correction and faulty sensor removal (MP+RE) work well in most cases. Therefore, this section focuses on 

the strategy of MP+RE.  

1. The time of the leak 

To investigate the relationship between the localization performance and the time of the leak, all regular leak 

events of 0.8 l/s or 1.5 l/s are categorized as the time of the day, morning, daytime, and nighttime. The average 

results in different time classes are reported in Table 10 below. 

Table 10. The localization performance of MP+RE strategy in different time classes. 

Time of the leak Leak events 
MP+RE 

LE FP path 

Morning 24 24.8% 12.1% 

Daytime 10 25.2% 12.7% 

Nighttime 4 28.5% 21.0% 

 

It shows that the localization performance is better for leak events in the morning in terms of both LE and FP path, 

in comparison to the leaks that happened during the daytime or nighttime. The main reason is the more 

significant pressure responses to the leak (e.g., In DMA3, pressure drop driven by the leak in the morning: 0.71 m; 

daytime: 0.60 m; nighttime: 0.33 m). The number of leak events is unbalanced in different time classes, but the 

trend of performance is clear from morning to night. Although larger uncertainties exist in the morning time due 

to greater fluctuations in flow, the higher head loss still makes it easier to find the leak in the WDN (Moors et al., 

2018).  

2. Leak size 

The leak flow of most leak events is set at 0.8 l/s or 1.5l/s. In addition, there are leak events at 2.0 l/s and 2.5 l/s in 

DMA3 and DMA4 (see section 3.2). Although leak flow is fixed and controlled by the fire hydrant, the relative leak 

size is different relative to each DMA. The relationship between the performance of MP+RE and relative leak size 

is explored in this section. Therefore, the results of all leak events are classified into three categories based on 

relative leak size: small, medium, and large. In Bakker et al. (2014), the authors propose a function of the average 

flow to estimate the minimum detectable leak size in the DMA:  

𝑄𝑙𝑒𝑎𝑘,𝑚𝑖𝑛 = 0.27 × 𝑄𝐷𝑀𝐴
0.87  (27) 
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which is about 20% of the average flow transformed into our case studies. As a result, the small class of relative 

leak size is set as 0% to 20%. It is useful to know to what extent the MP+RE strategy can reduce the search area of 

the hard-to-detect leak. 

Table 11. The localization performance of MP+RE strategy in different classes of relative leak size. 

Relative leak size Leak events 
MP+RE 

LE FP path 

Small [0-20%] 14 33.9% 12.9% 

Medium [20-40%] 19 20.2% 12.9% 

Large [>40%] 14 9.7% 8.6% 

 

Table 11 shows the localization performance of the MP+RE strategy in different classes of relative leak flow. The 

average results in LE and FP path of 14 leak events fall into the ‘good’ class when the relative leak flow is larger 

than 40%. For the 19 medium-sized leak events, only two of them in DMA6 have poor results which have been 

explained in section 4.3.1. The rest of the leak events have ‘fair’ or ‘good’ results, which means the search area is 

reduced to less than 20% of the nodes or networks. For the 14 small-sized leak events, although the performance 

of localization is fair from the FP path point of view, there are three leak events in DMA10 where the results are 

very poor in terms of LE which are even higher than 50%. The relative leak flow of these three leaks is even 

smaller 10%, which are usually considered background leaks that are hard to detect and find.  

These findings illustrate that the MP+RE strategy can effectively deal with large and most medium leaks. For 

small-size leaks with relative leak size > 10%, in general, a ‘fair’ or ‘acceptable’ result can be expected. Leaks with 

a relative leak size < 10% are difficult to locate by using model-based method with model output correction and 

fault sensor removal.  

3. The location of the leak 

In Pérez et al. (2011), the authors mention that the leak-driven pressure drops are not significant in a highly 

looped network as in their case study DMA Nova Icaria. In this study, DMA7 is a hybrid network selected to 

research the relationship between the leak location and localization performance. Six leak events were simulated 

at three different locations in DMA7 as shown in Figure 23.  

Table 12. The localization results of MP+RE strategy in DMA7.  

DMA7 Leak events Leak location 
Pressure drops 

[m] 
MP+RE 

LE FP path 

Location 1 2 Loop 0.03 12.0% 8.5% 

Location 2 2 Loop 0.03 20.5% 13.5% 

Location 3 2 Branch 0.06 7.5% 7.0% 

 

In Table 12, pressure drops mean the mean pressure drops at all sensor node caused by the leak. It is proved that 

pressure responses to the leak in branch area is more significant than that in loop area. As a result, the 

performance of the methodology in different areas is consistent with the magnitude of leak-driven pressure drops 

in different network structure areas. 
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Figure 23. The network layout of DMA7. Three leak nodes are shown as yellow stars. 

4. Scenario analysis time step 

The scenario analysis time step 𝑇𝑎 is usually restricted by the sampling rate in practice. The initial setting of  𝑇𝑎 is 

15 min in this study since the sampling rate of flow and pressure is usually 15 min (Bakker, Vreeburg, et al., 2014b; 

Romano et al., 2017b). In this research, both pressure and flow data are collected every 1 min. Therefore, the 

relationship between Ta and the localization results is investigated for 1 min, 5 min, 10 min, 15 min, and 30 min to 

see if it is worthwhile for water utilities to increase the sampling rate of sensors. In each DMA, two regular leak 

events of 0.8 l/s and 1.5 l/s are selected for this study.  

Table 13. LE of MP+RE strategy for different scenario analysis time step 

LE 
Leak events 

Scenario analysis time step  𝑇𝑎 

DMA 30 min 15 min 10 min 5 min 1 min 

DMA1 2 2.0% 2.0% 5.5% 5.5% 5.5% 

DMA2 2 41.0% 41.0% 42.0% 41.0% 42.0% 

DMA3 2 1.5% 3.0% 11.0% 15.0% 19.0% 

DMA4 2 33.0% 33.0% 33.0% 33.0% 33.0% 

DMA5 2 20.0% 20.0% 24.0% 22.0% 20.0% 

DMA6 2 13.0% 13.0% 13.0% 13.0% 13.0% 

DMA7 2 12.0% 12.0% 12.0% 12.0% 13.5% 

DMA8 2 61.0% 18.0% 41.0% 33.5% 33.5% 

DMA10 2 75.0% 76.3% 77.5% 74.0% 80.5% 

Average 
 

28.7% 24.3% 28.8% 27.7% 28.9% 
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Table 14. FP path of MP+RE strategy for different scenario analysis time step 

FP path 
Leak events 

Scenario analysis time step  𝑇𝑎 

DMA 30 min 15 min 10 min 5 min 1 min 

DMA1 2 6.0% 4.5% 5.0% 5.0% 5.0% 

DMA2 2 40.5% 32.0% 76.5% 50.0% 55.5% 

DMA3 2 8.0% 1.0% 13.5% 15.5% 15.5% 

DMA4 2 37.0% 39.0% 37.0% 37.0% 37.0% 

DMA5 2 10.0% 8.0% 12.0% 8.0% 8.0% 

DMA6 2 2.0% 2.0% 2.0% 2.0% 2.0% 

DMA7 2 9.0% 8.5% 9.0% 8.0% 9.0% 

DMA8 2 10.0% 1.0% 8.0% 20.5% 22.0% 

DMA10 2 18.0% 25.0% 21.0% 20.0% 20.0% 

Average 
 

15.6% 13.4% 20.4% 18.4% 19.3% 

 

Table 13 and Table 14 show the results for different scenario analysis time steps in terms of LE and FP path, 

respectively. The selection of Ta has an impact on the localization performance in most cases. There is not much 

difference in results between using 1-, 5- and 10-min solutions. Overall, their results are worse than those using 

15- and 30-min solutions. This is most likely caused by the effect of the nuisance noise, in which case sensor 

measurements are not sufficiently smoothed out during the  𝑇𝑎 (Meseguer et al., 2014b). For the rest of solutions, 

the performance using 15-min solution is slightly better than that of a 30-min solution. It can be seen that a long  

𝑇𝑎 is also not a good choice since subtle pressure changes caused by the leak may be filtered out, leading to 

worse results.  

In Mounce et al. (2012), earlier detection of leaks can be achieved by a shorter sampling time. However, for the 

model-based leak localization method used in this research, a shorter sampling time can shorten the scenario 

analysis time step, but it provides a limited improvement in the localization performance, and a too-short  𝑇𝑎 can 

even result in worse results. In addition, a high sampling rate usually means extra costs for DMA instruments. 

Considering the results of different scenario analysis time steps, 15-min solution outperforms the others and is 

set as the  𝑇𝑎 for subsequent studies on interpolation and data-driven methods.  

 

4.3.3 Model-based method with interpolation 
In addition to graph-based interpolation, sensor calibration and inaccurate sensor removal are also included for 

comparison to investigate the effect of interpolation on the model-based leak localization. Based on the 

interpolation results of the synthetic data from EPANET simulation, the head loss weight and 50% of the number 

of sensors are set as the graph weight and frequency limit for graph-based interpolation, respectively. 

The performance of model-based method with interpolation is reported in Table 15. It shows the percentage of 

leak events corresponding to each of the four result classes under each strategy. BASE stands for no model output 

correction and faulty sensors removal; RE stands for removing faulty sensors; MP means model output correction; 

GP means graph-based interpolation. 
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Table 15. The localization results of the percentage of leak events in different result classes. 

Results category 
BASE+GP RE+GP MP+GP MP+RE+GP 

LE FP path LE FP path LE FP path LE FP path 

Good [0-10%] 21.3% 31.9% 4.3% 12.8% 19.1% 12.8% 8.5% 10.6% 

Fair [10-20%] 10.6% 4.3% 6.4% 8.5% 10.6% 8.5% 14.9% 10.6% 

Acceptable [20-40%] 29.8% 34.0% 25.5% 25.5% 25.5% 29.8% 25.5% 12.8% 

Poor [>40%] 38.3% 29.8% 63.8% 53.2% 44.7% 48.9% 51.1% 66.0% 

 

In general, with virtual sensors created by graph-based interpolation, the model-based method performs best in 

the absence of model output correction and faulty sensor removal (BASE+GP). 22.2% and 31.9% of leak events 

have good results in terms of LE and FP path, respectively. However, for the other strategies, more than half of 

leak events have poor results.  

For four different strategies, RE+GP shows the worst performance, which is the same when there is no graph-

based interpolation involved (see section 4.3.1). It can be explained by the lower accuracy of graph-based 

interpolation caused by fewer sensors (X. Zhou et al., 2022b). When interpolation is applied in practice using real 

data measurements, it differs from the behavior of WDNs in the simulated environment although the head loss 

weight obtained from model simulations is used to represent the hydraulic relationships of different nodes. The 

accuracy of interpolation is not quantifiable in terms of MAE or other statistical values due to the absence of data 

at nodes without sensors. As a result, it is difficult to compare the magnitude of errors of interpolation with 

pressure drops driven by the leak.  

Comparing the results using interpolation with (BASE+GP) or without model output correction (MP+GP), 

correction even makes the performance even worse in general. The possible reason is the inappropriate use of 

model output correction tactics. For graph-based interpolation, the relationship of head signals between different 

nodes is interconnected by the head loss weight obtained from the EPANET simulator. However, with model 

output correction, head signals at each sensor node are changed by adding an offset value. Therefore, in this case, 

the hydraulic relationship between head signal at each node cannot be very precisely represented by the head 

loss weight.  

Considering both LE and FP path, poor results (> 40%) are in DMA5, DMA7, DMA8 and DMA10 as reported in 

Table 16. Test flow in these DMAs is smaller with the relative leak flow less than 40% of the average flow. Apart 

from the smaller leak flow, another possible reason is the lower spatial density of sensors in the DMA. The ratio of 

total nodes to the number of pressure sensors is over 30 in these four DMAs. Compared with the results reported 

in Table 9, it can be seen that the negative effect of the low density of sensor on the localization performance is 

more significant when interpolation is used.  

By comparing the average value of LE or FP path using different strategies, the overall performance of the model-

based method with graph-based interpolation is worse than that without interpolation, which is especially true in 

the presence of model output correction as reported in Table 16.  

Furthermore, graph-based interpolation requires more extra effort in computation. Taking the duration of leak 

tests of 0.8 l/s in this study as an example, the scenario analysis time step is 15 min, which means the 

interpolation needs to be done 5 times for a 1.5-hour leak for each node. The number of total nodes in 9 DMAs 

varies from 88 to 343, which is relatively small compared with the DMA Nova Icaria which is commonly used as a 

case study for leak localization. The computation work is even more greatly increased for large WDNs. As a result, 
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both in terms of improving the localization performance and the complexity of the approach itself, the 

interpolation cannot bring more benefits to the model-based leak localization. So far, based on the results of this 

study, interpolation is not recommended for integration with the model-based approach.  

Table 16. Comparison of the performance of the best strategy with or without interpolation 

DMA Leak events 
Nodes/Sensors 

[-] 
BASE BASE+GP MP+RE 

LE FP path LE FP path LE FP path 

DMA1 4 15 55.8% 23.5% 34.5% 15.5% 1.0% 2.3% 

DMA2 2 23 9.0% 96.0% 37.5% 26.0% 41.0% 32.0% 

DMA3 10 16 37.6% 26.8% 17.7% 17.1% 5.8% 5.6% 

DMA4 7 16 53.7% 42.4% 27.9% 28.7% 17.9% 14.9% 

DMA5 4 31 32.0% 7.5% 34.3% 47.3% 30.0% 24.0% 

DMA6 6 18 18.5% 2.1% 35.0% 19.7% 40.0% 13.7% 

DMA7 6 36 35.3% 49.0% 43.0% 45.7% 13.33% 7.83% 

DMA8 2 43 60.5% 30.0% 47.5% 60.0% 18.0% 1.0% 

DMA10 6 37 75.0% 56.3% 73.8% 55.5% 43.0% 12.7% 

Average 
  

41.9% 37.1% 39.0% 35.0% 23.3% 12.7% 

 
 

4.4 Data-driven leak localization 

4.4.1 General results of data-driven method 
To investigate the performance of the data-driven approach described in Section 2.3, seven DMAs with more than 

one regular leak test are selected (43 leak events). The three days of historical data in the non-leak situation are 

used to create the pressure interpolation maps to be compared with the maps created during the leak. As 

mentioned earlier, the data are reduced to every 15 min by averaging all the samples. As a result, the method is 

applied to each analysis time step (15 min) to obtain a residual map. Finally, taking the evolution of the residual 

maps into account, Bayesian temporal reasoning is used to generate an overall result during the leak event and 

give a prediction on the leak node with the highest possibility.  

Although the accuracy of interpolation is the best using the model-simulated head loss as the graph weight (in 

section 4.2), the uniform weight is applied for the data-driven method in order to minimize the dependence on 

the network information. Here only the connectivity and typology of the network are required for graph-based 

interpolation. As described in section 2.1.3 and 2.1.4, both model output correction and faulty sensor detection 

require more network information. Therefore, the original data is used for data-driven leak localization. The 

residual map is generated at each time step and the overall result of each leak event will be obtained using 

Bayesian temporal reasoning, identifying the most probable leak node. Due to the difference in principles of leak 

localization, the performance of the data-driven approach is evaluated by localization error (LE).  

The performance of the data-driven approach is shown in Table 17. It shows the percentage of leak events 

corresponding to each of the four result classes under each strategy. LE stands for localization error. Overall, 30.2% 

of leak events have good results with the candidate nodes less than 10% of nodes in the DMA. Less than 18.6% of 

leak events have poor results (> 40%). The average value of LE of all leak events is 23.8% as reported in Table 18, 

which is even similar to the average results (LE=23.6%) of the model-based method with model output correction 

and faulty sensor removal.  
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Table 17. The localization results of the percentage of leak events in different result classes. 

Results category 
Data-driven 

LE 

Good [0-10%] 30.2% 

Fair [10-20%] 27.9% 

Acceptable [20-40%] 23.3% 

Poor [>40%] 18.6% 

 

The localization results of leak events using the data-driven method are shown in Table 18. Localization error (LE) 

ranges from 6.0% to 48.3% in different DMAs. It is very clear that LE is strongly related to the spatial density of 

pressure sensors quantified by the ratio of the number of nodes to sensors. To be more specific, the correlation 

between LE and the ratio of nodes to sensors is extremely high as 0.957. This is most likely explained by the 

higher accuracy of graph-based interpolation in the presence of more sensors. It was supported by the research 

from Zhou et al. (2022), in which the authors used synthetic data in a real middle-sized DMA. In this way, it can be 

seen that the effect of the density of sensors on leak localization performance is consistent with its effect on 

interpolation precision when graph-based interpolation is applied. In addition, a relatively high correlation of 

0.732 also exists between LE and the average flow of the DMA. It can be attributed to the small proportion of leak 

flow to the average flow. This phenomenon is similar to the localization results using the model-based method.  

Table 18. Performance of data-driven method in different DMAs. 

DMA 
Leak 

events 
Average 
flow [l/s] 

Nodes/ 
Sensors [-] 

Data-driven  

LE 

DMA1 4 1.4 15 12.0% 

DMA3 10 2.4 16 13.2% 

DMA4 7 3.8 16 6.0% 

DMA5 4 3.8 31 26.5% 

DMA6 6 4.3 18 16.0% 

DMA7 6 5.5 36 48.3% 

DMA10 6 11.7 37 44.7% 

Average 
   

23.8% 

 

In Romero-Ben et al. (2022), the authors used graph-based interpolation with the length weight (see section 2.2.1) 

for pressure head estimation and a different approach for localization analysis and tested it using the synthetic 

data from the BattLeDIM 2020 challenge. The benchmark network comprises three areas, where Area A contains 

655 nodes with 29 pressure sensors (the ratio of nodes to sensors is 22). The implementation of their data-driven 

method helps to locate 8 leak events in Area A. 6 out of 8 synthetic leaks are located within 300 m away from the 

actual leak pipes. Taking the DMA size and difference in datasets into account, this is comparable to our findings 

in the DMAs with a similar level of the density of sensors as shown in Table 19. This is the first work for the 

implementation of data-driven method with graph-based interpolation for leak localization using real data 

measurements.  
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Table 19. Comparison of localization performance in Romero-Ben et al. (2022) and this study. 

Area A in L-Town Distance [m] DMA in the UK Distance [m] 

Leak 1 299.33 Leak 1 339 

Leak 2 192.88 Leak 2 67 

Leak 3 335.93 Leak 3 377 

Leak 4 249.28 Leak 4 64 

Leak 5 278.91 Leak 5 81 

Leak 6 435.27 Leak 6 171 

Leak 7 224.31 
  

Leak 8 74.28 
  

 

As discussed in section 4.2, head loss weight achieves the highest accuracy of graph-based interpolation with the 

synthetic data without noise. However, in this section, the uniform weight is set initially as the graph weight for 

interpolation since it needs the least information from the model network. Length weight, Darcy weight, and head 

loss weight progressively increase the requirements of the model parameters (see Table 20). To further explore 

the relationship between localization performance and different graph weights, one leak event in each of 7 DMAs 

is selected.  

Table 20. The model information is required for each graph weight calculation. 

Graph weight Topology Pipe length Pipe diameter Pipe roughness 

Uniform weight + - - - 

Length weight + + - - 

Darcy weight + + + - 

Head loss weight + + + + 
*The symbol ‘+’ means the information is required. 

 

Figure 24. The relationship between the graph weight and localization error. 
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From Figure 24, the uniform weight slightly outperforms the others. There is not much difference between the 

results of uniform weight and head loss weight, except for the leak events in DMA5 and DMA10. Generally, it 

seems that head loss weight with more model information does not bring better localization results. The possible 

reason is the inaccurate model parameters in DMA5 and DMA10 and there is no strong proof of the interpolation 

accuracy in real life. Therefore, uniform weight is still recommended for this data-driven localization approach.  

 

4.4.2 Comparison to model-based method 
Compared with model-based leak localization, the data-driven method is less dependent on accurate information 

about WDNs, which is the biggest advantage of this method. Apart from the accurate model parameters, the 

model-based approach requires leak flow, which is difficult to know exactly in real life unless an algorithm for leak 

flow estimation has been implemented. As a result, in cases where the two approaches perform similarly or 

where no sufficient model parameters are available, the data-driven approach is theoretically better. 

43 leak events in 7 DMAs were analyzed by both model-based and data-driven approaches. Therefore, the results 

of these leak tests are compared in this section. As shown in section 4.4.1, apart from the small leak flow, the 

density of sensors is an important impact factor. Localization error (LE) is used to evaluate the localization 

performance. Table 21 shows the performance of the data-driven method and model-based method. BASE stands 

for the model-base method without correction or faulty sensors removal. MP+RE means the model-based 

method with model output correction and faulty sensor removal. 

Table 21. General comparison of data-driven method and model-based method. 

DMA Leak events 
Average flow 

[l/s] 
Nodes/Sensors 

[-] 
Data-driven  MP+RE BASE 

LE LE LE 

DMA1 4 1.4  15 12.0% 1.0% 55.8% 

DMA3 10 2.4  16 13.2% 5.8% 37.6% 

DMA4 7 3.8  16 6.0% 17.9% 53.7% 

DMA5 4 3.8  31 26.5% 30.0% 32.0% 

DMA6 6 4.3  18 16.0% 40.0% 18.5% 

DMA7 6 5.5  36 48.3% 13.3% 35.3% 

DMA10 6 11.7  37 44.7% 43.0% 75.0% 

Average 
   

23.8% 21.6% 44.0% 

 

Without model output correction and faulty sensor removal, the data-driven method outperforms the model-

based method in every DMAs. With model output correction and faulty sensor removal, the average results of the 

model-based method improve a lot, which is better in DAM1, DMA3, DMA7 and DMA10. MP+RE strategy is more 

robust and general in different situations, especially in the case of limited sensors. However, the comparison of 

the results using three strategies in Table 21 also illustrates the high dependence of the model-based method on 

the accuracy of the hydraulic model. In contrast, data-driven method can give ‘good’ or ‘fair’ results with a rough 

model with only typology information in the presence of more sensors.  
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Table 22. Results of long-time leak events (6h). 

DMA Test time [h] 
Data-driven MP+RE 

LE LE 

DMA4 09:00-15:00 0.26 0 

 

Another finding in long-time leak events is reported in Table 22. It shows the performance of long-time leak tests 

using both model-based and data-driven methods. The result shows that the data-driven approach performs 

better on long-time leak events in DMA4, where the maximum correlation node is the same as the actual leak. 

The possible reason could be the Bayesian temporal reasoning (see section 2.3) recursively during the 6 hours.  

In summary, in DMA with high-density pressure sensors, the data-driven approach using graph-based 

interpolation has comparable or even better localization performance than the model-based approach with 

model output correction and faulty sensor removal. Combined the results in Romero-Ben et al. (2022) with the 

results in this research, the data-driven approach can be used in practice to reduce the search area of the leak in 

any case where the DMA is equipped with high-density sensors and the model parameters are insufficient or 

inaccurate. On the contrary, with fewer sensors and a high-quality hydraulic model, the model-based approach 

has better localization performance in more general conditions.  
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Chapter 5: Conclusions and Recommendations 

As the main contribution of non-revenue water, leakage is an important issue not only for drinking water 

companies but also for all people and society. This study presents the implementation of model-based method 

and data-driven method to solve the problem of leak localization for case studies in South London, UK. Both two 

methods are tested on artificial fire hydrant leak tests. On the one hand, the model-based method is used and the 

performance is highly improved with model output correction and faulty sensor removal. On the other hand, a 

data-driven method with graph-based interpolation is developed and proved to perform well in areas with a high 

spatial density of pressure sensors. The two main research questions proposed in section 1.4 are answered.  

1. How can we improve the model-based leak localization relative to the method developed by Quevedo et al. 

(2011)? 

The main idea of the model-based method proposed by Quevedo et al. (2011) is to calculate the correlation 

between the pressure drops driven by each potential leak in the model and the pressure drops in real WDNs. 

Fewer sensors and large model errors are two factors that have a negative impact on localization precision. To 

solve these two problems, model output correction and faulty sensor removal, as well as graph-based 

interpolation are introduced in this work.  

Results from testing the method in fire hydrant leaks show that the strategy of model output correction and 

faulty sensor removal greatly improves the performance of the model-based method in the absence of highly 

accurate models. In this case, the pressure responses to the leak can be easier to recognize. The search area of 

68.1% of leak events can be reduced by more than 80% with respect to total nodes in the DMA. Considering the 

pipes, 63.8% of leak events are possible to find within 10% of the total networks. In general, this strategy works 

reasonably well on detectable leaks (relative leak size > 20%) and also has the chance to locate hard-to-find leaks 

with acceptable results. It is noteworthy that the removal of faulty sensors should be done with great care, 

especially in areas with very limited sensors. In addition, other unfavorable conditions, including nighttime and 

loop structure correspond to lower pressure drops caused by the leak. Sensitivity analysis to scenario analysis 

time steps Ta shows that an excessively short Ta cannot enhance the localization precision due to the negative 

effect of measurement noise. However, if Ta is too long, the subtle pressure responses to the leak are probably 

filtered out, leading to poor results. The optimal analysis time step is 15 min in this work.  

Graph-based interpolation cannot further improve the model-based leak localization. With interpolation, more 

than 50% of leak tests have poor results (> 40%) in terms of either LE or FP path. The localization performance is 

even worse when the interpolation and model output correction are implemented at the same time due to the 

change in the hydraulic relationship between different nodes.  

For the wide application of the proposed methodology in practice, some research questions need to be 

investigated. For example, it is of interest to assess whether the quadratic function proposed in this work for 

model output correction can also work well in WDNs from other countries or using different types of pressure 

sensors and if there is another function that can better explain the relationship between flow and residuals. In 

addition, the criteria for faulty sensor detection are relatively specific in our cases. Consequently, more research is 

needed to complete the process of faulty pressure sensor detection to ensure that only the measurements from 

normal sensors are used for localization analysis.  
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Furthermore, the principle of either the LE or FP path proposed in this work or the performance metrics 

developed by other researchers is related to the information of the real leak location. However, in real life, the 

location of a leak is unknown to us. Therefore, it is very useful to find an indicator strongly correlated to the 

reliability of leak localization. In this case, water companies can make a better decision on whether to trust the 

localization results and take action. 

2. Can we advise a data-driven approach using pressure and graph-based interpolation for leak localization in 

real WDNs? 

In this work, the data-driven method is proposed to locate leaks. Graph-based interpolation is used to create 

pressure maps in non-leak and leak situations. Compared with the model-based method used in this study, the 

implementation of the data-driven method for leak localization gives two main advantages. Firstly, it is less 

dependent on the model accuracy since it only requires topology information of the network. Secondly, the 

volume of leak flow is not required for this methodology. As we know, it is hard to measure in real life unless an 

effective method is applied for the calculation/estimation. The use of graph-based interpolation for head signal 

estimation and for data-driven leak localization has been investigated (see section 2.3) in real WDNs and 

benchmark networks, respectively. However, this is the first time that the data-driven method involving graph-

based interpolation is tested on fire hydrant leak tests using real data measurements.  

This methodology performs fairly well in fire hydrant leaks. For 58.1% of leak events, the search area involved less 

than 20% of all nodes. Results of leak events in different DMAs show how important the spatial density of 

pressure sensors is to localization precision. Combing the results in Romero-Ben et al. (2022) and in this study, 

this methodology is expected to give sufficiently accurate results in areas with a node-to-sensor ratio of about 20.  

Compared with the results of the model-based method with model output correction and faulty sensor removal, 

the data-driven method can give comparable or even better localization results in areas with a higher spatial 

density of pressure sensors. As a consequence, the data-driven approach is highly recommended in cases where 

the water utilities cannot provide accurate hydraulic model information or where the network parameters are not 

easily measured. However, when the data measurements are very limited, the model-based method shows better 

performance in general. Water companies need to weigh the cost of extra pressure sensors against the cost of 

investigating and measuring model parameters to determine which approach to eventually use in practice.  

To further improve the performance of this data-driven method, several research tasks remain open. In our case, 

the deployment of pressure sensors (amount, placement) is more friendly to the model-based method. Therefore, 

it is interesting to investigate the optimal deployment of sensors aiming at improving the accuracy of graph-based 

interpolation. Since interpolation provides more available data in non-leak and leak situations, it is worthwhile to 

study how to process these data to identify the leak. The localization strategy used in this work proposed by 

Soldevila et al. (2019) is different from that in Romero-Ben et al. (2022). More research on localization analysis 

needs to be done after the interpolation stage. In addition, in this study, three days of historical data are used to 

generate the pressure map in the non-leak situation. A related task is to investigate the performance of this 

methodology using historical data of different days.  
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Appendix 1. Sensor evaluation 

Table 23 shows the properties of all pressure sensors in our case studies. Orange color indicates the faulty sensors. 

Table 23. Sensor evaluation 

SensorID MAPE_0 [%] C1 C2 MAPE_1 [%] 

DMA2_P1 0.02 15767.36 -0.08 0.01 

DMA2_P2 0.94 15068.10 -0.94 0.01 

DMA2_P3 1.40 11147.25 -1.37 0.01 

DMA2_P4 0.71 -100142.56 -0.32 0.15 

DMA2_P5 1.28 -151875.63 -0.66 0.17 

DMA2_CP 0.56 -124289.18 0.99 0.14      

DMA5_P1 0.95 27786.62 0.41 0.07 

DMA5_P2 1.17 28031.66 0.62 0.07 

DMA5_P3 2.43 28212.24 1.79 0.07 

DMA5_P4 1.40 27732.33 0.84 0.07 

DMA5_P5 1.28 28199.85 0.71 0.07 

DMA5_P6 1.16 27846.03 0.60 0.07 

DMA5_CP 2.51 27317.01 1.93 0.07      

DMA8_P1 0.43 2464.17 0.33 0.10 

DMA8_P2 0.23 8803.43 -0.76 0.12 

DMA8_P3 0.42 1265.08 0.39 0.11 

DMA8_P4 0.15 1248.98 0.09 0.11 

DMA8_P5 0.11 798.48 0.07 0.14 

DMA8_P6 0.08 338.57 -0.11 0.11 

DMA8_P7 0.34 285.99 0.36 0.12 

DMA8_CP 0.67 13861.30 -1.53 0.11      

DMA1_P1 0.32 40415.99 -0.53 0.01 

DMA1_P2 0.26 19210.37 -0.40 0.02 

DMA1_P3 0.22 67014.89 0.20 0.01 

DMA1_P4 0.11 68763.86 -0.28 0.01 

DMA1_P5 0.26 65825.46 -0.49 0.01 

DMA1_CP 0.31 71866.67 -0.57 0.01      

DMA6_P1 2.22 -30249.18 -2.02 0.13 

DMA6_P2 1.89 -16135.33 -1.93 0.03 

DMA6_P3 1.72 -10623.98 -1.85 0.01 

DMA6_P4 1.89 -10759.13 -2.05 0.01 

DMA6_P5 1.73 -10987.47 -1.85 0.01 

DMA6_P6 2.73 2664.45 -3.28 0.32 

DMA6_CP 1.77 -2155.99 -2.07 0.25      

DMA3_P1 0.94 -118340.23 -0.01 0.36 
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DMA3_P2 1.27 -103481.26 -0.39 0.12 

DMA3_P3 0.67 -100059.42 0.09 0.09 

DMA3_P4 0.75 -101121.85 0.03 0.09 

DMA3_P5 0.37 -101464.62 0.35 0.09 

DMA3_CP 1.84 -97233.36 2.21 0.10      

DMA10_P1 1.35 1446.92 0.63 0.07 

DMA10_P2 0.19 1641.37 -0.14 0.04 

DMA10_P3 1.22 1787.09 0.50 0.04 

DMA10_P4 1.16 1766.22 0.46 0.04 

DMA10_P5 3.37 -1176.72 -1.92 0.78 

DMA10_P6 0.35 992.69 0.07 0.07 

DMA10_P7 0.72 1000.84 -0.60 0.07 

DMA10_P8 1.72 2230.48 0.75 0.04 

DMA10_CP 1.06 1224.70 0.49 0.03      

DMA4_P1 22.69 -284371.14 19.31 1.61 

DMA4_P2 1.53 -14479.65 -0.54 0.12 

DMA4_P3 1.74 -14987.06 -0.64 0.13 

DMA4_P4 3.10 -11237.50 -1.36 0.11 

DMA4_P5 0.11 -8584.35 0.08 0.10 

DMA4_P6 0.54 -11655.26 -0.10 0.13 

DMA4_CP 0.55 -10744.52 0.45 0.14      

DMA7_P1 0.98 -1837.09 -1.22 0.01 

DMA7_P2 0.74 -2298.19 -0.88 0.01 

DMA7_P3 0.99 -19862.46 -0.54 0.10 

DMA7_P4 1.14 -3092.62 -1.38 0.01 

DMA7_P5 0.01 -2727.88 0.09 0.01 

DMA7_P6 3.15 -2843.81 -3.92 0.01 

DMA7_P7 0.34 -3416.03 -0.32 0.01 

DMA7_CP 0.08 -2769.74 0.01 0.00      

DMA9_P1 0.48 -9009.18 1.11 1.03 

DMA9_P2 0.46 -8868.28 1.08 1.02 

DMA9_P3 0.76 -7636.10 1.23 1.00 

DMA9_P4 0.15 -6568.06 0.64 1.00 

DMA9_P5 1.46 -6946.02 1.78 1.00 

DMA9_P6 0.51 -6688.20 0.95 1.01 

DMA9_P7 0.81 -6646.72 -0.16 1.02 

DMA9_CP 0.78 -8809.38 1.34 1.03 
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Appendix 2. Model-based localization results 

Localization error 

Date DMA Time [h] Test Flow [l/s] BASE RE MP MP+RE 

RUN1 UK Winter time 
     

3-2-2022 DMA2 09:00-10:30 0.8 0.09 0.09 0.41 0.41 

  
 

10:30-11:30 1.5 0.09 0.09 0.41 0.41  
DMA5 13:00-14:30 0.8 0.32 0.32 0.20 0.20   

14:30-15:30 1.5 0.32 0.32 0.20 0.20 

10-3-2022 DMA8 09:00-10:30 0.8 0.61 0.61 0.00 0.19 

  
 

10:30-11:30 1.5 0.60 0.55 0.61 0.17  
DMA1 13:00-14:30 0.8 0.69 0.69 0.02 0.02   

14:30-15:30 1.5 0.16 0.16 0.02 0.02 

15-3-2022 DMA6 09:00-10:30 0.8 0.46 0.13 0.39 0.13   
10:30-11:30 1.5 0.13 0.13 0.13 0.13  

DMA3 13:00-14:30 0.8 0.30 0.30 0.19 0.03   
14:30-15:30 1.5 0.30 0.30 0.03 0.03 

23-3-2022 DMA10 09:00-10:30 0.8 0.98 0.72 0.98 0.81   
10:30-11:30 1.5 0.98 0.77 0.98 0.72  

DMA4 13:00-14:30 0.8 0.50 0.33 0.40 0.33   
14:30-15:30 1.5 0.50 0.33 0.39 0.33 

24-3-2022 DMA7 09:00-10:30 0.8 0.33 0.29 0.12 0.12   
10:30-11:30 1.5 0.33 0.29 0.12 0.12 

RUN2 UK Summer Time 
     

3-5-2022 DMA6 09:00-10:30 0.8 0.13 0.07 0.39 0.68   
10:30-11:30 1.5 0.13 0.33 0.13 0.68 

4-5-2022 DMA6 01:00-02:30 0.8 0.13 0.26 0.13 0.04   
02:30-03:30 1.5 0.13 0.26 0.13 0.46 

5-5-2022 DMA3 09:00-10:30 0.8 0.30 0.30 0.03 0.03   
10:30-11:30 1.5 0.30 0.30 0.03 0.03 
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10-5-2022 DMA1 09:00-10:30 0.8 0.69 0.69 0.00 0.00   
10:30-11:30 1.5 0.69 0.69 0.00 0.00 

13-5-2022 DMA5 09:00-10:30 0.8 0.32 0.32 0.40 0.40   
10:30-11:30 1.5 0.32 0.32 0.40 0.40 

16-5-2022 DMA10 09:00-10:30 0.8 0.54 0.73 0.51 0.55 

  
 

10:30-11:30 1.5 0.68 0.73 0.50 0.16 

17-5-2022 DMA10 09:00-10:30 0.8 0.66 0.16 0.66 0.17 

  
 

10:30-11:30 1.5 0.66 0.16 0.66 0.17 

18-5-2022 DMA3 11:10-12:10 0.8 0.28 0.69 0.06 0.06 

  
 

12:10-13:10 1.5 0.30 0.69 0.06 0.06 

  
 

13:10-14:10 2 0.69 0.69 0.06 0.06 

  
 

14:10-15:10 2.5 0.69 0.69 0.06 0.06 

23-5-2022 DMA4 11:00-12:00 0.8 0.64 0.24 0.06 0.06 

  
 

12:00-13:00 1.5 0.64 0.24 0.64 0.06 

  
 

13:00-14:00 2 0.64 0.24 0.41 0.06 

  
 

14:00-15:00 2.5 0.24 0.24 0.41 0.09 

25-5-2022 DMA4 09:00-15:00 0.8 0.60 0.26 0.26 0.26 

26-5-2022 DMA7 09:00-10:30 0.8 0.67 0.49 0.32 0.09 

  
 

10:30-11:30 1.5 0.67 0.49 0.09 0.09 

27-5-2022 DMA7 09:00-10:30 0.8 0.06 0.71 0.00 0.00 

  
 

10:30-11:30 1.5 0.06 0.71 0.12 0.12 

1-6-2022 DMA3 01:00-02:30 0.8 0.30 0.30 0.11 0.11   
02:30-03:30 1.5 0.30 0.19 0.11 0.11 
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False-positive path 

Date DMA Test Run Time Test Flow [l/s] BASE RE MP MP+RE 

RUN1 UK Winter Time 
     

3-2-2022 DMA2 09:00-10:30 0.8 0.94 0.96 0.26 0.26   
10:30-11:30 1.5 0.94 0.96 0.38 0.38  

DMA5 13:00-14:30 0.8 0.13 0.13 0.08 0.08   
14:30-15:30 1.5 0.13 0.13 0.08 0.08 

10-3-2022 DMA8 09:00-10:30 0.8 0.33 0.33 0.01 0.01   
10:30-11:30 1.5 0.26 0.57 0.01 0.01  

DMA1 13:00-14:30 0.8 0.28 0.28 0.03 0.03   
14:30-15:30 1.5 0.07 0.07 0.06 0.06 

15-3-2022 DMA6 09:00-10:30 0.8 0.02 0.01 0.02 0.02   
10:30-11:30 1.5 0.01 0.01 0.02 0.02  

DMA3 13:00-14:30 0.8 0.23 0.22 0.01 0.01   
14:30-15:30 1.5 0.22 0.20 0.01 0.01 

23-3-2022 DMA10 09:00-10:30 0.8 0.75 0.19 0.84 0.25   
10:30-11:30 1.5 0.80 0.19 0.82 0.25  

DMA4 13:00-14:30 0.8 0.56 0.45 0.45 0.39   
14:30-15:30 1.5 0.54 0.36 0.45 0.39 

24-3-2022 DMA7 09:00-10:30 0.8 0.12 0.30 0.11 0.09   
10:30-11:30 1.5 0.31 0.30 0.09 0.08 

RUN2 UK Summer Time 
     

3-5-2022 DMA6 09:00-10:30 0.8 0.01 0.79 0.01 0.05   
10:30-11:30 1.5 0.01 0.84 0.01 0.10 

4-5-2022 DMA6 01:00-02:30 0.8 0.01 0.92 0.01 0.24   
02:30-03:30 1.5 0.01 0.92 0.01 0.24 

5-5-2022 DMA3 09:00-10:30 0.8 0.17 0.17 0.03 0.03   
10:30-11:30 1.5 0.22 0.22 0.01 0.01 

10-5-2022 DMA1 09:00-10:30 0.8 0.30 0.30 0.00 0.00   
10:30-11:30 1.5 0.28 0.28 0.00 0.00 

13-5-2022 DMA5 09:00-10:30 0.8 0.13 0.13 0.78 0.78   
10:30-11:30 1.5 0.12 0.12 0.87 0.87 
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16-5-2022 DMA10 09:00-10:30 0.8 0.31 0.34 0.30 0.06 

  
 

10:30-11:30 1.5 0.35 0.34 0.34 0.07 

17-5-2022 DMA10 09:00-10:30 0.8 0.57 0.29 0.32 0.05 

  
 

10:30-11:30 1.5 0.57 0.29 0.52 0.02 

18-5-2022 DMA3 11:10-12:10 0.8 0.22 0.22 0.16 0.12 

  
 

12:10-13:10 1.5 0.23 0.24 0.17 0.16 

  
 

13:10-14:10 2 0.43 0.44 0.07 0.07 

  
 

14:10-15:10 2.5 0.32 0.51 0.07 0.07 

23-5-2022 DMA4 11:00-12:00 0.8 0.35 0.92 0.04 0.04 

  
 

12:00-13:00 1.5 0.33 0.92 0.24 0.03 

  
 

13:00-14:00 2 0.33 0.92 0.10 0.03 

  
 

14:00-15:00 2.5 0.34 0.89 0.11 0.10 

25-5-2022 DMA4 09:00-15:00 0.8 0.54 0.11 0.02 0.10 

26-5-2022 DMA7 09:00-10:30 0.8 0.28 0.27 0.13 0.12 

  
 

10:30-11:30 1.5 0.31 0.28 0.13 0.12 

27-5-2022 DMA7 09:00-10:30 0.8 0.99 0.74 0.00 0.00 

  
 

10:30-11:30 1.5 0.99 0.70 0.00 0.00 

1-6-2022 DMA3 01:00-02:30 0.8 0.34 0.52 0.07 0.07   
02:30-03:30 1.5 0.28 0.44 0.07 0.07 
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Appendix 3. Model-based leak localization with interpolation 

Localization error 

Date DMA Time [h] Test Flow [l/s] BASE+GP RE+GP MP+GP MP+RE+GP 

RUN1 UK Winter time 
     

3-2-2022 DMA2 09:00-10:30 0.8 0.42 0.42 0.41 0.41 

  
 

10:30-11:30 1.5 0.33 0.33 0.41 0.41  
DMA5 13:00-14:30 0.8 0.35 0.35 0.33 0.33   

14:30-15:30 1.5 0.36 0.36 0.33 0.33 

10-3-2022 DMA8 09:00-10:30 0.8 0.36 0.39 0.58 0.58 

  
 

10:30-11:30 1.5 0.59 0.37 0.58 0.60  
DMA1 13:00-14:30 0.8 0.00 0.00 0.12 0.12   

14:30-15:30 1.5 0.00 0.00 0.12 0.12 

15-3-2022 DMA6 09:00-10:30 0.8 0.39 0.67 0.64 0.39   
10:30-11:30 1.5 0.39 0.67 0.64 0.20  

DMA3 13:00-14:30 0.8 0.30 0.88 0.15 0.16   
14:30-15:30 1.5 0.19 0.88 0.15 0.16 

23-3-2022 DMA10 09:00-10:30 0.8 0.98 0.18 0.90 0.79   
10:30-11:30 1.5 0.98 0.16 0.89 0.85  

DMA4 13:00-14:30 0.8 0.52 0.42 0.33 0.33   
14:30-15:30 1.5 0.52 0.41 0.33 0.33 

24-3-2022 DMA7 09:00-10:30 0.8 0.48 0.29 0.26 0.26   
10:30-11:30 1.5 0.29 0.29 0.26 0.26 

RUN2 UK Summer Time  
     

3-5-2022 DMA6 09:00-10:30 0.8 0.39 0.67 0.64 0.67   
10:30-11:30 1.5 0.13 0.67 0.64 0.67 

4-5-2022 DMA6 01:00-02:30 0.8 0.67 0.67 0.64 0.67   
02:30-03:30 1.5 0.13 0.67 0.64 0.67 

5-5-2022 DMA3 09:00-10:30 0.8 0.45 0.45 0.15 0.15   
10:30-11:30 1.5 0.36 0.36 0.30 0.30 

10-5-2022 DMA1 09:00-10:30 0.8 0.69 0.69 0.02 0.02 
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10:30-11:30 1.5 0.69 0.69 0.02 0.02 

13-5-2022 DMA5 09:00-10:30 0.8 0.33 0.33 0.33 0.33   
10:30-11:30 1.5 0.33 0.33 0.33 0.33 

16-5-2022 DMA10 09:00-10:30 0.8 0.63 0.63 0.31 0.55 

  
 

10:30-11:30 1.5 0.48 0.48 0.31 0.44 

17-5-2022 DMA10 09:00-10:30 0.8 0.68 0.68 0.52 0.42 

  
 

10:30-11:30 1.5 0.68 0.68 0.50 0.50 

18-5-2022 DMA3 11:10-12:10 0.8 0.06 0.68 0.74 0.74 

  
 

12:10-13:10 1.5 0.00 0.74 0.71 0.74 

  
 

13:10-14:10 2 0.28 0.74 0.71 0.74 

  
 

14:10-15:10 2.5 0.00 0.74 0.74 0.74 

23-5-2022 DMA4 11:00-12:00 0.8 0.07 0.89 0.72 0.72 

  
 

12:00-13:00 1.5 0.07 0.72 0.07 0.68 

  
 

13:00-14:00 2 0.07 0.72 0.07 0.68 

  
 

14:00-15:00 2.5 0.07 0.72 0.07 0.68 

25-5-2022 DMA4 09:00-15:00 0.8 0.63 0.29 0.26 0.26 

26-5-2022 DMA7 09:00-10:30 0.8 0.22 0.17 0.65 0.65 

  
 

10:30-11:30 1.5 0.17 0.34 0.65 0.65 

27-5-2022 DMA7 09:00-10:30 0.8 0.71 0.75 0.05 0.13 

  
 

10:30-11:30 1.5 0.71 0.71 0.05 0.13 

1-6-2022 DMA3 01:00-02:30 0.8 0.11 0.88 0.02 0.00   
02:30-03:30 1.5 0.02 0.62 0.00 0.00 
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False-positive path 

Date DMA Time [h] Test Flow [l/s] BASE+GP RE+GP MP+GP MP+RE+GP 

RUN1 UK Winter Time 
     

3-2-2022 DMA2 09:00-10:30 0.8 0.24 0.24 0.67 0.67   
10:30-11:30 1.5 0.28 0.28 0.67 0.67  

DMA5 13:00-14:30 0.8 0.45 0.45 0.33 0.33   
14:30-15:30 1.5 0.60 0.60 0.32 0.32 

10-3-2022 DMA8 09:00-10:30 0.8 0.59 0.42 0.54 0.52   
10:30-11:30 1.5 0.61 0.43 0.52 0.50  

DMA1 13:00-14:30 0.8 0.00 0.00 0.14 0.14   
14:30-15:30 1.5 0.00 0.00 0.14 0.14 

15-3-2022 DMA6 09:00-10:30 0.8 0.28 0.51 0.39 0.46   
10:30-11:30 1.5 0.29 0.51 0.38 0.41  

DMA3 13:00-14:30 0.8 0.30 0.19 0.21 0.07   
14:30-15:30 1.5 0.30 0.14 0.25 0.10 

23-3-2022 DMA10 09:00-10:30 0.8 0.83 0.05 0.24 0.21   
10:30-11:30 1.5 0.84 0.05 0.24 0.20  

DMA4 13:00-14:30 0.8 0.54 0.46 0.57 0.60   
14:30-15:30 1.5 0.54 0.46 0.50 0.46 

24-3-2022 DMA7 09:00-10:30 0.8 0.33 0.33 0.65 0.65   
10:30-11:30 1.5 0.33 0.25 0.64 0.64 

RUN2 UK Summer Time 
     

3-5-2022 DMA6 09:00-10:30 0.8 0.18 0.51 0.39 0.43   
10:30-11:30 1.5 0.05 0.51 0.38 0.50 

4-5-2022 DMA6 01:00-02:30 0.8 0.37 0.53 0.38 0.54   
02:30-03:30 1.5 0.01 0.57 0.38 0.54 

5-5-2022 DMA3 09:00-10:30 0.8 0.39 0.39 0.19 0.19   
10:30-11:30 1.5 0.39 0.39 0.30 0.30 

10-5-2022 DMA1 09:00-10:30 0.8 0.31 0.31 0.03 0.03   
10:30-11:30 1.5 0.31 0.31 0.14 0.14 

13-5-2022 DMA5 09:00-10:30 0.8 0.49 0.49 0.63 0.63   
10:30-11:30 1.5 0.35 0.35 0.62 0.62 
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16-5-2022 DMA10 09:00-10:30 0.8 0.31 0.31 0.45 0.69 

  
 

10:30-11:30 1.5 0.31 0.30 0.44 0.69 

17-5-2022 DMA10 09:00-10:30 0.8 0.49 0.61 0.60 0.35 

  
 

10:30-11:30 1.5 0.55 0.6 0.63 0.35 

18-5-2022 DMA3 11:10-12:10 0.8 0.07 0.18 0.01 0.00 

  
 

12:10-13:10 1.5 0.01 0.19 0.00 0.00 

  
 

13:10-14:10 2 0.07 0.60 0.50 0.53 

  
 

14:10-15:10 2.5 0.00 0.57 0.45 0.52 

23-5-2022 DMA4 11:00-12:00 0.8 0.08 0.91 0.90 0.90 

  
 

12:00-13:00 1.5 0.08 0.91 0.08 0.73 

  
 

13:00-14:00 2 0.08 0.90 0.08 0.42 

  
 

14:00-15:00 2.5 0.08 0.90 0.08 0.42 

25-5-2022 DMA4 09:00-15:00 0.8 0.61 0.38 0.30 0.46 

26-5-2022 DMA7 09:00-10:30 0.8 0.07 0.04 0.78 0.78 

  
 

10:30-11:30 1.5 0.07 0.06 0.78 0.78 

27-5-2022 DMA7 09:00-10:30 0.8 0.97 0.69 0.41 0.42 

  
 

10:30-11:30 1.5 0.97 0.67 0.41 0.42 

1-6-2022 DMA3 01:00-02:30 0.8 0.18 0.53 0.45 0.53   
02:30-03:30 1.5 0.00 0.50 0.45 0.49 
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Appendix4. Data-driven leak localization results 

Date DMA Time [h] Test Flow [l/s] LE Pipe length [m] Distance [m] 

RUN1 UK Winter Time 
     

3-2-2022 DMA5 13:00-14:30 0.8 0.20 210 189   
14:30-15:30 1.5 0.20 210 189 

10-3-2022 DMA1 13:00-14:30 0.8 0.12 356 339   
14:30-15:30 1.5 0.12 356 339 

15-3-2022 DMA6 09:00-10:30 0.8 0.12 187 171   
10:30-11:30 1.5 0.12 187 171  

DMA3 13:00-14:30 0.8 0.02 99 67   
14:30-15:30 1.5 0.02 99 67 

23-3-2022 DMA10 09:00-10:30 0.8 0.70 1114 634   
10:30-11:30 1.5 0.70 1114 634  

DMA4 13:00-14:30 0.8 0.07 74 64   
14:30-15:30 1.5 0.07 74 64 

24-3-2022 DMA7 09:00-10:30 0.8 0.49 709 509   
10:30-11:30 1.5 0.49 709 509 

RUN2 UK Summer Time 
     

3-5-2022 DMA6 09:00-10:30 0.8 0.12 187 171   
10:30-11:30 1.5 0.12 187 171 

4-5-2022 DMA6 01:00-02:30 0.8 0.24 501 417   
02:30-03:30 1.5 0.24 501 417 

5-5-2022 DMA3 09:00-10:30 0.8 0.02 99 67   
10:30-11:30 1.5 0.02 99 67 

10-5-2022 DMA1 09:00-10:30 0.8 0.12 356 339   
10:30-11:30 1.5 0.12 356 339 

13-5-2022 DMA5 09:00-10:30 0.8 0.33 761 578   
10:30-11:30 1.5 0.33 761 578 

16-5-2022 DMA10 09:00-10:30 0.8 0.47 812 569 

  
 

10:30-11:30 1.5 0.47 812 569 

17-5-2022 DMA10 09:00-10:30 0.8 0.17 478 279 
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10:30-11:30 1.5 0.17 478 279 

18-5-2022 DMA3 11:10-12:10 0.8 0.30 540 377 

  
 

12:10-13:10 1.5 0.30 540 377 

  
 

13:10-14:10 2 0.30 540 377 

  
 

14:10-15:10 2.5 0.30 540 377 

23-5-2022 DMA4 11:00-12:00 0.8 0.07 276 81 

  
 

12:00-13:00 1.5 0.07 276 81 

  
 

13:00-14:00 2 0.07 276 81 

  
 

14:00-15:00 2.5 0.07 276 81 

25-5-2022 DMA4 09:00-15:00 0.8 0.00 0 5 

26-5-2022 DMA7 09:00-10:30 0.8 0.22 380 263 

  
 

10:30-11:30 1.5 0.22 380 263 

27-5-2022 DMA7 09:00-10:30 0.8 0.74 1079 741 

  
 

10:30-11:30 1.5 0.74 1079 741 

1-6-2022 DMA3 01:00-02:30 0.8 0.02 99 67   
02:30-03:30 1.5 0.02 99 67 
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