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Abstract

A numerically tractable Stochastic Model Predictive Control (SMPC) strategy using Con-
ditional Value at Risk (CV aR) optimization for discrete-time linear time-invariant systems,
with state and input constraints, subject to additive uncertainty, is presented. SMPC strate-
gies make use of the probabilistic description of uncertainty to define chance constraints which
allow a certain admissible level of constraint violation. SMPC strategies require the initial
state of a system to be within a particular set, referred to as feasibility set, probabilistically,
such that the derived control input, when applied to the system, gives rise to states that are
also within the feasibility set satisfying all chance constraints on the system. This leads to
recursive feasibility of the SMPC strategy. Such strategies are restrictive in nature when the
uncertainty in the system is unbounded, as in the case of White Gaussian noise. In such a
case, the feasibility set is very small and leads to a strategy that is very conservative. To
reduce this conservatism, some constraint violations are permitted. However, such violations
affect the closed-loop behaviour of the system leading to performance degradation. This per-
formance degradation can be quantified as a penalty on the system for violating constraints,
and intuitively, it can be thought of as a risk taken by the system in that undesirable state.
An approach following the exact penalty method is proposed using the CV aR function to
determine the penalty cost. The same optimal solution as the original constrained problem
is obtained from a single unconstrained minimization. Since accurate computation of the
expected value of risk using the CV aR function is not possible, a scenario-based approxima-
tion of the CV aR is used to obtain an overall tractable and computationally efficient SMPC
strategy. An extensive simulation study of the double integrator system is provided to present
the functionality of the proposed method.
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Chapter 1

Introduction

In industry, it is imperative for a control system to efficiently deal with constraints on the
system in the presence of disturbances while providing a strategy that achieves optimal per-
formance. The optimal control solution is a simple linear state feedback for the case of linear
systems and quadratic performance indices and is computed easily by solving the steady state
Riccati equation [1]. However, this optimal analytic solution is difficult to achieve in the case
of constrained systems. In the pursuit of optimality, approximate solutions are considered,
and this is the most important reason for the success of Model Predictive Control (MPC).
MPC provides an appropriate trade-off between optimality and computational effort through
the implementation of the receding horizon principle while systematically handling constraints
on the system. The philosophy of MPC is simple; predict the behaviour of a system given
its model, measurements of the current state of the system and a hypothetical control input
trajectory or feedback control policy. The control inputs are parametrized by a finite num-
ber of variables which denote a finite number of degrees of freedom. The predicted cost of
the problem is optimized over these variables. The control input is applied to the system
in a receding horizon fashion wherein only the first element of the predicted control input
sequence is applied to the system at the current time instant. The horizon is shifted at the
next time instant and the optimization problem is carried out again to obtain a new sequence
of control inputs. The receding horizon strategy is instrumental in reducing the gap between
the predicted response and the actual response of the system.

Classical MPC faces a more challenging problem in the presence of uncertainty as the pre-
dicted behaviour and actual behaviour of the system can differ significantly. This motivates
the formulation of Robust MPC (RMPC) and Stochastic MPC (SMPC). Robust MPC ad-
dresses the presence of bounded uncertainty in control problems. RMPC strategies take into
account every possible future realization of uncertainty while optimizing over the control
policy although the future realizations of uncertainty are unknown to the controller at the
current time. Since RMPC does not discriminate between realizations of uncertainty based
on their likelihood of occurrence, the intensity of computation grows with problem size and
length of prediction horizon. In all practicality, it is most often the case that some of these
realizations of uncertainty are more likely to occur compared to the other realizations from
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2 Introduction

the pre-defined uncertainty set. As an example, for uncertainty that is represented as model
parameters, some realizations may be close to the nominal value of these parameters and
hence, maybe more likely to occur than other realizations that lie more towards the boundary
of the uncertainty set. Such model uncertainty can be represented as a stochastic variable
with a known probability distribution. The probability distribution of uncertainty is most
commonly addressed in the cost function. The MPC cost can be defined as the expected
value of the quadratic cost over the uncertainty distribution. This leads to the formulation
of SMPC strategies.

The objective of this thesis is to formulate a tractable SMPC strategy using Conditional
Value at Risk (CV aR) optimization that is computationally efficient while dealing with the
constraints and the uncertainty in the system. The following sections elaborate on the moti-
vation for this formulation of SMPC and ideas that stem from related works. This is followed
by an overview of the contributions in this thesis work and a compendium of related works.
Finally, the structure of the thesis is provided.

1-1 Motivation

The MPC algorithm requires the initial state to belong to a feasibility set which is a set of all
initially feasible states such that there exists a sequence of control inputs for which all future
predicted states are also feasible, thereby making the controller recursively feasible. This
feasibility set is known as the Controlled Positively Invariant (CPI) set. The elements of this
set are all initial states of the system for which a sequence of control inputs exist such that
the predicted states satisfy all the state constraints on the system. This hard requirement
often results in an empty initially feasible set for white Gaussian noise disturbance. Since
white Gaussian noise is unbounded, it is always possible that there exists a realization of
noise that violates hard constraints. In these circumstances, chance constraints are imposed
on the system which is an advisable trade-off between constraint satisfaction and optimal
performance [2, 3, 4]. For example, in engineering, chance constraints have been widely
used in power systems management to deal with the uncertainties that come with energy
availability. The constraints are modelled to ensure that a power plant can meet the energy
demand to atleast a certain confidence level [5]. Outside of engineering, chance constraints
have been used in finance for risk management to deal with the uncertainties that arise while
investing due to volatile market conditions [4, 6]. Recently, chance constraints have been
applied to mid term supply chain planning at multiple sites. The production level at each
site is determined by a chance constraint to avoid inventory depletion and and shortage due
to demand uncertainty [7].

Chance constraints can be defined as probabilistic constraints where the constraints on the
state are to be satisfied with atleast a priori specified probability level. Chance constraints
can also be specified as expectation constraints where the constraints on the state have to
be satisfied in expectation. However, there are multiple numerical issues with the evaluation
of chance constraints. For example, it is not possible to accurately estimate the probability
that a particular state violates the chance constraint. Monte-Carlo simulation is the only
way to estimate the probability of violation of the chance constraint at a particular state.
The computational demand of this estimate grows with increasing requirement of accuracy
leading to intractability of the problem. Moreover, the set of feasible states defined by a
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1-2 Research Question 3

chance constraint is usually non-convex which makes the optimization subject to the chance
constraint problematic [8]. A general method to obtain a tractable convex approximation of
the chance constraint is the scenario approach based on Monte Carlo sampling techniques
[9, 10, 11, 12]. The dynamics of the stochastic system are characterized by a finite set of
uncertainty realizations giving rise to a set of affine constraints. However, when applied to
MPC, the new state measurement at every time instant may not be feasible with respect to the
set of approximate affine constraints, thereby leading to the loss of recursive feasibility of the
MPC strategy and an unsolvable optimization problem. Hence, there is a need to formulate
a strategy that deals with constraints on the system subject to unbounded uncertainty that
controls the plant optimally with respect to the performance index and keeps the state within
the feasible set as much as possible. Consequently, performance degradation is unavoidable.
Nonetheless, it must be quantified and retained within a certain admissible level.
The performance index determines the performance of the system when the state is within
the feasible set. A simple method to quantify the performance degradation due to constraint
violation at an infeasible state is by adding an extra cost on the system during constraint
violation [13, 14]. This extra cost or penalty is determined by a penalty function which
penalizes the state that causes constraint violation. The penalty on the infeasible state
cannot be made arbitrarily high as a choice of infinite penalty will make the set of feasible
states empty almost always. Penalty methods are pervasive in optimization literature to
approximate a constrained optimization problem as an unconstrained optimization problem
[15, 16]. To ensure that the performance degradation remains within an admissible level, it
is important to choose a penalty function that takes into account the stochastic nature of
the system. Furthermore, the unconstrained problem with the augmented performance index
including the penalty function must be a close approximation of the original problem with
chance constraints. Since the optimization problem is solved in closed-loop, it is necessary that
this strategy is computationally efficient and numerically tractable. Taking into consideration
the above requirements, there is a need to formulate a suitable SMPC strategy.

1-2 Research Question

A tractable SMPC strategy must satisfy the chance constraints on the state of the system in
the presence of uncertainty and control the plant optimally with respect to the performance
index. The state of the system must be kept within the feasible set as much as possible. To
account for the performance degradation due to constraint violation, a penalty function is
used. The key considerations that contribute to the research question with respect to these
requirements are listed as follows.

• How should we choose a penalty function to account for performance degradation?

• Since the uncertainty in the system is unbounded, it is nearly impossible to evaluate the
probability of violation of constraints of a particular state. Hence, it may be necessary
to use sampled-approximation techniques. Thus, is the sampled-approximation of the
strategy sample efficient?

• The proposed tractable SMPC strategy is implemented using the receding horizon prin-
ciple. Hence, what are the consequences on the closed-loop performance of the proposed
strategy?
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4 Introduction

1-3 Contributions

The contributions in this thesis include a numerically tractable SMPC strategy using Condi-
tional Value at Risk (CV aR) optimization. The chance constrained problem is approximated
as a penalized unconstrained problem by using an exact penalty function [16]. This ensures
that the optimal solution of the chance constrained problem is achieved through a single
minimization of the penalized problem. The CV aR function is a coherent risk measure that
measures the risk that a system would face at an undesirable state. The CV aR is preva-
lent in literature due to its features of convexity, monotonicity and numerical tractability,
and is widely known as the tightest convex approximation of the chance constraint. Hence, a
weighted CV aR function can be used as the penalty function to determine performance degra-
dation and take appropriate measures to allow only a certain admissible level of constraint
violation. An efficient sampled-approximation of the CV aR is determined by interpreting the
probabilistic constraints as average-in-time rather than point-wise in time and maintaining
the violations averaged over time below a specified level. This thesis elaborates on the prob-
lem formulation and closed-loop behaviour of the formulated strategy of SMPC. Finally, a
numerical example is provided to illustrate the presented technique.

1-4 Related Works

A comprehensive exposition of MPC is provided in [17, 18]. Initial MPC strategies did
not guarantee nominal closed-loop stability in the absence of uncertainty due to accounting
system behaviour only over a finite horizon. This limitation was overcome by adding terminal
conditions on the state of the system to ensure that the system reached a desired steady
state value or a subset of feasible states. Closed-loop properties of stability and convergence
of MPC is elaborated in [19, 20, 21, 22, 23]. A preferable terminal condition is that the
system state at the end of the finite horizon belongs to a subset of the state space with a
property that once the subset of state space is entered, the state of the constrained system
will never leave the set. In this regard, stabilizing feedback laws were proposed which defined
the control input at time instants beyond the initial finite horizon. This introduces the
concept of set invariance [24, 25] and the dual-mode prediction paradigm [26, 27, 28, 29]. The
dual-mode prediction paradigm typically divides the prediction horizon into two intervals,
where the first interval optimizes over control inputs for the fixed finite horizon, and the
second interval defines a fixed stabilising feedback law over the subsequent infinite horizon.
These conditions and the strategy causes the controlled system to be stable in closed-loop
operation. However, it is important to ensure an acceptable degree of robustness in the
control strategy in the presence of uncertainty. This motivates the formulation of SMPC
which utilizes the probability distribution of uncertainty. Several approaches have been made
to obtain a tractable formulation of the stochastic optimal control problem [30]. Most of
these approaches are classified based on the dynamics of the system - linear dynamics or
non-linear dynamics. Stochastic tube approaches for linear systems are presented in [31,
32, 33, 34]. Stochastic tubes guarantee recursive feasibility and hence, ensure closed-loop
stability. Approaches based on optimization over arbitrary functions is not tractable. This
problem is addressed in [35, 36, 37] where the control policy is parametrized as an affine
function of the disturbance inputs that have been observed till the current time instance,
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1-5 Structure of the Thesis 5

from which a convex set of decision variables is derived. This helps in establishing input-
to-state stability for the closed-loop system. A series of articles [38, 39, 40, 41, 42] discuss
SMPC for linear systems with affine-disturbance feedback control policies. These approaches
discuss a tractable and recursively feasible receding horizon control (RHC) policy that ensure
mean squared boundedness of the closed-loop system. A significant development in the area
of approaches based on stochastic programming is the scenario approach [9, 11, 43, 10, 12].
Furthermore, constraint tightening approaches are presented in [44, 45]. SMPC makes use of
the probabilistic description of uncertainty to describe chance constraints. Chance constraints
may also be probabilistic constraints [2, 3, 46, 4] or expectations constraints [47, 48]. Since
the feasible set of chance constraints is usually non-convex, convex approximations of chance
constraints are presented in [8]. The CV aR function, widely known as the tightest convex
approximation of the chance constraint, is a coherent risk measure. A detailed description of
risk measures and the approximation of chance constraints using CV aR are given in [6, 49,
50, 51]. Penalty methods and exact penalty functions, which are used to obtain the optimal
solution using a single unconstrained minimization, are explained in detail in [15, 16]. The
work in this thesis also derives ideas from [13, 14, 52, 53, 54].

1-5 Structure of the Thesis

The structure of the thesis is as follows. In chapter 2, relevant mathematical preliminaries
that forms an appropriate background of work related to the problem formulation in the thesis
is presented. The topics covered in this chapter include a general formulation of SMPC for
discrete-time linear time-invariant systems, convex approximations of chance constraints with
a focus on the scenario approach and CV aR, and penalty methods in optimization. Chapter
3 gives a detailed exposition of the problem formulation for a tractable SMPC strategy using
CV aR optimization with an evaluation of theory by means of a numerical example. Suitable
areas of application of the tractable SMPC strategy are also discussed. Finally, chapter 4
provides a discussion of the results and concluding remarks.
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Chapter 2

Technical Preliminaries

This chapter presents the technical preliminaries that elaborates on selected topics preceding
the problem formulation of the thesis work. A generic formulation of SMPC is provided
with a focus on chance constraints and performance index. Recursive feasibility of a SMPC
algorithm and concepts of stability and convergence based on the forms of the performance
index are discussed. A discussion on convex approximations of chance constraints, with an
emphasis on the scenario approach and CV aR is provided. Finally, penalty methods, with a
focus on the exact penalty method, is provided.

2-1 General Formulation of Stochastic MPC for Discrete-Time Lin-
ear Time-Invariant Systems

A linear time-invariant system that is subject to stochastic disturbances is considered. The
system is described by the following state space model [18].

xk+1 = F (xk, uk, wk) = Akxk +Bkuk + Ekwk (2-1)

where xk ∈ X ⊂ Rnx is the state, uk ∈ U ⊂ Rnu is the control input, and wk ∈ Rnw is
the additive disturbance at time k. The successor state is xk+1 at time k + 1. U is a non-
empty measurable compact convex control set and X is a closed convex set that contains
the origin in its interior that are defined by the constraints on the state and the control
input. The disturbance input wk ∈ Rnw is an exogenous disturbance with unknown current
and future values but known probability distribution. It is a random vector in a probability
space (Ω,F , P ) with support W ⊂ Rnw . Moreover, it is assumed for k 6= j, wk and wj are
statistically independent. In the stochastic MPC problem formulation, the matrices Ak and
Bk denote multiplicative model parameters. The additive disturbance input wk, along with
Ak and Bk, can be expressed as a linear expansion over a known basis set

(Ak, Bk, wk) = (A(0), B(0), 0) +
ρ∑
j=1

(A(j), B(j), w(j))δ(j)
k (2-2)

Janani Venkatasubramanian Master of Science Thesis



2-1 General Formulation of Stochastic MPC for Discrete-Time Linear Time-Invariant Systems 7

where, E(Ak) = A(0) and E(Bk) = B(0). The expected value of the disturbance input E(wk)
is taken as zero, that is w(0) = 0, and δ

(j)
k is a scalar random variable. The probability

distribution of δ(j)
k is known. The vector δ = (δ(1), ..., δ

(ρ)
k ) has different realizations at each

time instant but is assumed to be identically distributed for each k. Without loss of generality,
the following properties of δ are assumed.

E(δk) = 0, E(δkδTk ) = I (2-3)

Here, δk has a mean value of zero and a covariance matrix equal to the identity matrix. It is
also assumed that δk and δi are statistically independent for k 6= i. This assumption simplifies
the computation of predicted costs based on the expected value of sum of stage costs, which
in turn simplifies stability analysis of the system based on the cost function. A non zero
expected value E(δk) and a non zero expected value E(wk) is taken into account by using a
suitable state translation.
Let N , a positive integer, be the prediction horizon. The system is controlled by a feedback
controller, i.e., at each k, the input uk is the function of the state xk. A feedback policy
π = {π0(·), ..., πN−1(·)}, a sequence of measurable control laws is employed for each πi :
Rnx → Rnu , i = 0, ..., N − 1. The control laws π belong to a class of controllers Ψ which
is a set of continuous maps that map the origin of the state space to into the zero input,
π(0) = 0. The control input ui is selected as πi(xi) at the ith stage. When the system
is subject to unbounded disturbances and constraints on the input, i.e., U is bounded, the
system is globally asymptotically stable when the matrix pair (Ak, Bk) is stabilizable and the
eigenvalues of the system matrix Ak lie on or inside the unit circle for all k.

Assumption 2.1. The matrix pair (A,B) is stabilizable and all eigenvalues of the system
matrix A lie on or inside the unit circle.

2-1-1 Performance Index

The optimal control problem (OCP) is defined in terms of a performance index ĴN (xk,u,w),
also known as the predicted cost, that is evaluated over a horizon of N steps and is solved at
each time step. The predicted cost is given as,

Ĵk(xk,uk→k+N |k,wk→k+N ) = p(xN |k) +
N−1∑
i=0

q(xi|k, ui|k) (2-4)

where uk→k+N |k = {u0|k, ..., uN−1|k}, wk→k+N |k = {w0|k, ..., wN−1|k}, the function q : Rnx ×
Rnu → R+ gives the cost per stage and the function p : Rnx → R+ is the terminal cost. On
account of the stochasticity of wk, the predicted cost Ĵk(xk,uk→k+N |k,wk→k+N |k) is stochas-
tic. Since the probability distribution of wk is known, it is appropriate to use a predicted
cost that takes into consideration the stochastic nature of the model uncertainty through the
expectation of the predicted cost. The expected cost is given as,

Jk(xk,uk→k+N |k) = E
[(
p(xN |k) +

N−1∑
i=0

q(xi|k, ui|k)
)∣∣∣x0|k = xk

]
(2-5)

The terminal cost ensures that the system is closed-loop stable and the controller found is
stabilizing. Very commonly in literature, the stage costs and the terminal cost are given in
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8 Technical Preliminaries

terms of weighted l2 norms of the state and the control input to give a cumulative quadratic
cost.

Jk(xk,uk→k+N |k) = E
[(
xTN |kPxN |k +

N−1∑
i=0

(xTi|kQxi|k + uTi|kRui|k)
)∣∣∣x0|k = xk

]
(2-6)

where Q and R are positive definite matrices which are the state and control input weighting
matrices respectively, and P is a positive definite matrix that weights the terminal state at
the end of the horizon. For unconstrained systems, the optimal control solution is a simple
linear state feedback for the case of linear systems and quadratic performance indices and
is computed easily by solving the steady state Riccati equation [1]. The predicted control
sequence ensures that the predicted state converges to zero as k → ∞. However, for an
unconstrained problem with additive uncertainty, a feedback law cannot lead to convergence
of the state to zero identically. In this case, the expected value of the stage cost tends to a
finite limit.

2-1-2 Chance Constraints

State and input constraints can be defined in numerous ways. SMPC exploits the probabilistic
uncertainty descriptions to define chance constraints on the state [5, 55]. These constraints
require the state constraints to be satisfied with at least a priori specified probability level
[2, 3, 46, 4], or to be satisfied in expectation [47, 48]. Chance constraints may be defined in
terms of expected values as,

E(G(xi|k, wi|k)) ≤ 0, i = 0, 1, ..., N − 1 (2-7)
Probabilistic constraints that are point-wise in time can be defined as,

P (G(xi|k, wi|k) ≤ 0) ≥ 1− αi, i = 0, ..., N − 1 (2-8)
where, P (A) denotes the probability of some event A.
Alternatively, probabilistic constraints can be imposed over N time steps,

P (G(xi|k, wi|k) ≤ 0) ≥ 1− α, i = 0, ..., N − 1 (2-9)
where G(x,w) may be vector-valued and, α and N are some given probability and horizon,
respectively. For the probabilistic constraints defined point-wise in time, it is required that
the probability that each element of G(xi|k, wi|k) exceeding the value zero be less than αi
for i = 0, 1, ..., N − 1. For probabilistic constraints imposed over N time steps, the expected
value of each element of G(x,w) exceeding zero over N time steps should be less than αN .
Constraints may be constructed by combining constraints of these forms.

Given the performance index and constraints, the SMPC problem is formulated as a finite
horizon optimal control problem (FHOCP) by introducing chance constraints on the state.

J∗k (xk) = min
uk→k+N|k

Jk(xk,uk→k+N |k)

s.t. xi+1|k = Axi|k +Bui|k + Ewi|k, i = 0, ...N − 1
ui|k ∈ U , i = 0, ...N − 1
P (G(xi|k, wi|k) ≤ 0) ≥ 1− α, i = 0, ..., N − 1
x0|k = xk

(2-10)
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2-2 Feasibility and Stability of Stochastic MPC of Discrete-Time Linear Time-Invariant Systems 9

where J∗k (xk) is the optimal value function under the optimal control policy u∗k→k+N |k. The
receding horizon policy is implemented by applying the first element of the optimal control
input sequence u∗k to the system at time k.

2-2 Feasibility and Stability of Stochastic MPC of Discrete-Time
Linear Time-Invariant Systems

This section provides an overview of closed-loop concepts of recursive feasibility, convergence
and stability. The property of recursive feasibility is dependent on constraints on the system,
which are probabilistic in nature in SMPC strategies. The requirement of future feasibility of
probabilistic constraints induces constraints on the state that must be satisfied for a predefined
subset or all realizations of uncertainty. Once feasibility of the problem at all times is ensured,
convergence and stability is discussed. A general way to discuss stability is based on the
cost function of the problem. Stability with respect to different cost functions - expectation
cost and mean-variance cost are discussed. Supermartingale convergence, which is another
approach for analysing stability, is provided.

2-2-1 Recursive Feasibility

This subsection analyses the property of recursive feasibility of a SMPC strategy wherein the
predicted performance of the strategy is guaranteed to remain feasible at all future sampling
instants if it is initially feasible. Recursive feasibility is dependent on the satisfaction of
constraints by the state. In stochastic MPC strategies, probabilistic or expectation constraints
are used and are usually regarded as ’soft’ constraints since they are not expected to hold for
all possible realization of uncertainty. Nevertheless, for the problem to remain feasible, it is
required that all conditions and constraints of the system are met with surety, irrespective
of whether these constraints are to hold for all possible realizations of uncertainty or for a
predefined subset of uncertainty. Probabilistic or expectation constraints are feasible when
the state belongs to a predefined subset of the state space. This imposes further conditions
or constraints on the system for feasibility of the problem. These conditions can be explicitly
incorporated in the optimization problem to ensure robust feasibility. Another approach
to handling recursive feasibility is to allow the optimization problem to become infeasible
whenever necessary. This approach includes a penalty on constraint violation that is added
to the MPC cost [56, 57], or directly minimize a measure of distance of the state from the
feasible set whenever the problem is infeasible [58].
Consider the system as in (2-1) and the constraints of the following form

P (G(xi|k, ui|k, wi|k) ≤ 0) ≥ 1− α, i = 0, ..., N − 1 (2-11)

A Stochastic MPC controller is recursively feasible if and only if for all initially feasible states
x0|k = xk and k ≥ 0, and for all optimal control input sequences, the optimization problem
remains feasible for all time [18], [59]. For recursive feasibility, the set of all initially feasible
states must be a controlled positively invariant (CPI) set, which is defined as [24, 25],
Definition 2.1. Controlled Positively Invariant Set A set XN ⊆ Rnx is a controlled positively
invariant set for the system dynamics from (2-1) and constraints in (2-9), such that there exists
a uk ∈ U ⊂ Rnu such that P (G(xk, uk, wk) ≤ 0) ≥ 1− α and F (xk, uk, wk) ∈ XN .
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10 Technical Preliminaries

The term ’positively’ refers to the fact that only forward evolutions of the system in (2-1)
will be considered. This implies that for any xk ∈ XN , there must also exist a feasible
uk→k+N |k = {u0|k, ..., uN−1|k}, u0|k = uk, such that P (G(xk, uk, wk) ≤ 0) ≥ 1 − α and
xk+1 = F (xk, uk, wk) ∈ XN . The set XN is the maximal controlled positively invariant
(MCPI) set if it contains all other CPI sets. This CPI set of initially feasible states is defined
as,

XN ={xk : ∃uk→k+N |k s.t. P (G(xi|k, ui|k, wi|k) ≤ 0) ≥ 1− α , i = 0, ..., N − 1, k ≥ 0
and ui|k ∈ U}

(2-12)

Feasibility is ensured if the predicted state sequence at time k satisfies xi|k ∈ X for all possible
realizations of uncertainty sequence {δ0|k, ..., δi−1|k}, i > 0. The set of all possible realization
δk, i.e., the support of δ is ∆ ⊆ Rρ is given as,

Pr(δk ∈ ∆) = 1 and Pr(δk /∈ ∆) = 0 (2-13)

The constraints on the system can now be written as,

P (G(x0|k, u0|k, w0|k) ≤ 0) ≥ 1− α (2-14a)

P

(
max

δk,...,δk+i−1∈∆
G(xi|k, ui|k, wi|k) ≤ 0

)
≥ 1− α, i = 1, 2, ... (2-14b)

which are made robust with respect to {δk, ..., δi−1|k} but remain stochastic with respect to
wi|k. To verify recursive feasibility, suppose the control input sequence {u0|k, u1|k, ...} at time
k satisfies the constraints in (2-14), and the elements of the sequence of control inputs at time
k + 1 be ui|k+1 = ui+1|k, i = 0, 1, .... For δk ∈ ∆ and i = 1, (2-14a) can be written as,

P (G(x0|k+1, u0|k+1, w0|k+1) ≤ 0) ≥ p (2-15)

and implies xk+1 ∈ X . When i = j + 1, (2-14b) can be written as,

P

(
max

δk+1,...,δk+j∈∆
G(xj|k+1, uj|k+1, wj|k+1) ≤ 0

)
≥ p, j = 1, 2, ... (2-16)

and implies xj|k+1 ∈ X for all {δk, ..., δk+j} ∈ ∆ × ... × ∆. This shows that the conditions
in (2-14) provide a recursively feasible set of constraints that ensure the satisfaction of con-
straints in (2-9). These conditions are necessary and sufficient for recursive feasibility. Since
a maximization over a subset of uncertainty parameters δ is involved in (2-14b), recursive
feasibility can only be guaranteed for model uncertainty that has finite support. In practical
applications, restricting to uncertainty with finite support is not a limiting factor since con-
trol systems are usually not subjected to unbounded uncertainty. The disturbance input w,
however, is not required to have a finite support.
On imposing the constraints in (2-9) on the predicted state and control input trajectories over
a finite horizon, an appropriate terminal constraint is used. It is required that xN |k ∈ Xf for
all realizations of the uncertain sequence {δk, ..., δk+N−1} over the N step horizon. Using a
linear terminal control law uk = Kxk, it is required that for all xk ∈ Xf ,

(A(δ) +B(δ)K)xk + Ew(δ) ∈ Xf , ∀δ ∈ ∆ (2-17)
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and
P (F (xk,Kxk, wk) ≤ 0) ≥ 1− α (2-18)

Here, Xf is a robustly invariant subset of the feasible set X .

2-2-2 Convergence and Stability

Closed loop behaviour of the system is analysed based on the optimal value of the predicted
cost. The optimal value of the performance index is obtained by minimising it with respect
to probabilistic constraints that are constructed to ensure that the system is recursively
feasible. The performance index considered in the section takes the form of an expectation
of a quadratic cost as defined in (2-6). Using the dual-mode prediction paradigm [26, 27, 28,
29, 18], the predicted control sequence is parametrized as,

ui|k = Kxi|k + ci|k, i = 0, 1, ... (2-19)

where ck→k+N |k is the vector of optimization variables. Point-wise probabilistic constraints
of the form given in (2-11) are imposed on the system. For state x ∈ Xf , the constraint can
be be written as,

Pr(G((Φ(q)x+Dw(q)),K(Φ(q)x+Dw(q)), 0) ≤ 0) ≥ 1− α (2-20)

for x ∈ Xf , Φ(q) = A(q) + B(q)K. The MPC algorithm with a cost J(xk, ck→k+N |k) and
appropriate probabilistic constraints that satisfy recursive feasibility can now be re-written
as,

J∗k (xk) = min
ck→k+N|k

J(xk, ck→k+N |k)

s.t. P (G(x1|k,Kx1|k + c1|k, w1|k) ≤ 0) ≥ 1− α

P

(
max

δk,...,δk+i−1∈∆
G(xi+1|k,Kxi+1|k + ci+1|k, wi+1|k) ≤ 0

)
≥ 1− α, i = 1, ..., N − 2

P

(
max

δk,...,δk+N−2∈∆
G(xN |k, 0, 0) ≤ 0

)
≥ 1− α

(2-21)

where xN |kXf for all {δk, ..., δk+N−1} ∈ ∆× ...×∆.

Expectation Cost

In the absence of constraints and under uk = Kxk, the state in (2-1) satisfies the asymptotic
condition that limk→∞ E0(xk) = 0 and limk→∞ E0(xkxTk ) = Θ where Θ is the solution of

Θ− E((Ak +BkK)Θ(Ak +BkK)T ) = EE(wkwTk )ET (2-22)

if
P − E((Ak +BkK)TP (Ak +BkK)) � 0 (2-23)
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12 Technical Preliminaries

where, P which is positive definite. The infinite horizon quadratic cost is given by,
∞∑
i=0
E0(||xk||2Q + ||uk||2R) (2-24)

The expected value of the stage cost converges to a steady state value when the control input
is ui|k = Kxi|k. This is given by,

lss = lim
i→∞

Ek(||xi|k||2Q + ||ui|k||2R) = tr(Θ(Q+KTRK)) (2-25)

The predicted cost is given by,

J(xk, ck→k+N |k) =
∞∑
i=0
Ek(||xi|k||2Q + ||ui|k||2R − lss) (2-26)

From the definition of the predicted cost,

Ek(J(xk+1, ck+1→k+1+N |k)) ≤ J∗(xk)− (||xk||2Q + ||uk||2R − lss) (2-27)

Here, since optimality at time k + 1 implies J∗(xk+1) ≤ J(xk+1, ck+1→k+1+N |k) for any real-
ization of δk ∈ ∆, it follows that,

Ek(J∗(xk+1)) ≤ J∗(xk)− (||xk||2Q + ||uk||2R − lss) (2-28)

On taking the expectation of (2-28) conditioned over x0, the following inequality can be
derived.

1
r

r−1∑
k=0

E0(||xk||2Q + ||uk||2R) ≤ lss + 1
r

(J∗(x0)− E0(J∗(xr))) (2-29)

where, E0(Ek(J∗(xk+1))) = E0(J∗(xk+1)) and r > 0. As r →∞, the second term on the RHS
of the above inequality vanishes. The closed loop system then satisfies the quadratic stability
condition,

lim
r→∞

1
r

r−1∑
k=0

E0(||xk||2Q + ||uk||2R) ≤ lss. (2-30)

and P (G(x1|k, u1|k, w1|k) ≤ 0) ≥ 1− α for all k > 0. This bound implies that the control law
for the algorithm in (2-21) converges asymptotically to uk = Kxk and the state xk converges
with probability 1 to the minimal robustly positively invariant set under this feedback law as
k →∞.

Mean-Variance Cost

The cost used in the MPC algorithm in (2-21) is now give by a mean-variance predicted cost
[58],

J(xk, ck→k+N |k) =
∞∑
i=0

(||xi|k(0) ||2Q + ||ui|k(0) ||2R)

+ κ2
∞∑
i=0
Ek(||xi|k − xi|k(0) ||2Q + ||ui|k − ui|k(0) ||2R − lss)

(2-31)
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where lss is as given in (2-25) and κ is a constant. When κ2 6= 1, the mean-variance cost is
given by [60],

J(xk, ck→k+N |k) =(1− κ2)
∞∑
i=0

(||xi|k(0) ||2Q + ||ui|k(0) ||2R)

+ κ2
∞∑
i=0
Ek(||xi|k||2Q + ||ui|k||2R − lss)

(2-32)

The cost can be written as,

J(xk, ck→k+N |k) =
[
zk
1

] [
Wz wz1
wTz1 w1

] [
zk
1

]
(2-33)

where zk = (xk, ck) and Wz, wz1 and w1 are given by,

Wz = (1− κ2)W̄z + κ2Ŵz

{
W̄z −Ψ(0)T W̄zΨ(0) = Q̂

Ŵz − E(ΨT
k ŴzΨk) = Q̂

(2-34)

and

wTz1(I −Ψ(0)) =E(wTk [ET 0]ŴzΨk)
w1 = −tr(ΘŴx)

(2-35)

with Ŵx and Ψ(0) given as,

Ŵx =
[
Inx 0

]
Ŵz

[
Inx
0

]
, Ψ(0) =

[
Φ(0) B(0)D

0 M

]
(2-36)

where,

D =
[
Inu 0 . . . 0

]
andM =


0 Inu 0 . . . 0
0 0 Inu . . . 0
...

...
... . . . ...

0 0 0 . . . Inu
0 0 0 . . . 0


The cost in (2-31),

J(xk, ck→k+N |k) = xTkWxxk + cTkWcck + 2wTx1xk + 2wTc1ck + w1 (2-37)

The structure of Ψk and Ψ(0) in (2-35) and (2-34) implies that Wc and wc1 have a block
structure and is given by Wc = diag{S, ..., S} and wTc1 = [vT ... vT ] where S ∈ Rnu×nu and
v ∈ Rnu with S � 0. Equivalently, the cost is given as,

J(xk, ck→k+N |k) = ||ck→k+N |k||2Wc
+ 2wTc1ck→k+N |k (2-38)

Scalars β, γ and a matrix P � 0 can be found such that a bound

Ek(||xk+1||2P ) ≤ ||xk||2P − ||xk||2 + β2(||c∗0|k||
2
S + 2vT c∗0|k) + γ2E(||wk||2) (2-39)
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holds [58]. Satisfaction of constraints as in (2-21) and recursive feasibility follows from
the feasibility of ck+1→k+1+N = {c∗1|k, ..., c

∗
N−1|k, 0} at time k + 1. By the optimization

of the performance index subject to constraints implies, J∗(xk+1) ≤ ||ck+1→k+1+N |k||2Wc
+

2wTc1ck+1→k+1+N |k for all qk ∈ Q. Wc and wc1 have a block structure and therefore,

Ek(J∗(xk+1)) ≤ ||ck+1→k+1+N |k||2Wc
+ 2wTc1ck+1→k+1+N |k = J∗(xk)− (||c∗0|k||

2
S + 2vT c∗0|k)

(2-40)
and hence from (2-39),

Ek(||xk+1||2P ) ≤ ||xk||2P − ||xk||2 + β2(J∗(xk)− Ek(J∗(xk+1))) + γ2E(||wk||2) (2-41)

Taking expectations and summing over k = 0, ..., r − 1,

1
r

r−1∑
k=0

E0(||xk||2) ≤γ2E(||wk||2) + 1
r

(||x0||P − E0(||xr||2P ))

+ β2

r
(J∗(x0)− Ek(V ∗(xr)))

(2-42)

As r →∞,

lim
r→∞

1
r

r∑
k=0

E0(||xk||2) ≤ γ2E(||wk||2) (2-43)

and Prk(G(x1|k, u1|k, w1|k) ≤ 0) ≥ 1−α for all k > 0, which is the quadratic stability condition
for the closed loop system for some finite scalar γ. This shows that a finite upper bound on
the gain between the mean-square value of the additive disturbance and that of the closed
loop system state exists. This result, however, is weak as it does nto demonstrate how the
gain depends on the distribution of multiplicative model uncertainty. Using the conditions in
(2-34) and (2-35) and the cost in (2-32), the result in (2-30) can be generalized as,

Ek(J∗(xk+1)) ≤ J∗(xk)− (||xk||2Q + ||uk||2R − κ2lss) (2-44)

The closed loop quadratic stability condition can now be given as,

lim
r→∞

1
r

r∑
k=0

E0(||xk||2Q + ||uk||2R) ≤ κ2lss (2-45)

when κ > 1.

Supermartingale Convergence Analysis

The quadratic stability bounds exposed in (2-30) and (2-45) are valid in the presence of ad-
ditive uncertainty and guarantee asymptotic convergence of the state to a neighbourhood
around the origin. In the case that an additive disturbance input is not present, state con-
vergence is guaranteed on the basis of bounds on the evolution of the optimal value of the
cost. The analysis is based on a sequence of optimal cost values that forms a supermartingale
[61, 62].

An ellipsoidal set is defined as,

ωκ = {x : xTQx ≤ κ2lss} (2-46)
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2-3 Convex Approximations of Chance Constraints 15

and given a sequence of states {x0, x1, ...}, a sequence is defined as {x̂0, x̂1, ...} where x̂0 = x0
and

x̂k =
{
xk if xi /∈ ωk for all i < k, k>0
x̂k−1 if xi ∈ ωk for some i < k, k>0

(2-47)

If xk satisfies (2-28) for κ = 1 or (2-44) for κ > 1 then,

Ek(J∗(x̂k+1)) ≤ J∗(x̂k)− (||k̂k||2Q − κ2lss) ≤ J∗(x̂k) (2-48)

if xi /∈ ωk for all i ≤ k whereas J∗(x̂k+1) = J∗(x̂k) if xi ∈ ωk for any i ≤ k. The sequence
{J∗(x̂0), J∗(x̂1), ...} is a supermartingale, i.e., a sequence of random variables with the prop-
erty that Ek(J∗(x̂k+1)) ≤ J∗(x̂k) for all k ≥ 0. A result from [62] in the above context states
that for the optimization problem in (2-21) with either the cost given in (2-26) for κ = 1 or
the cost in (2-31) for κ > 1, the state of the closed loop system satisfies xk ∈ ωk for some k
with probability 1. To prove this, a function l(x) is defined as

l(x) =
{
||x||2Q − κ2lss if x/∈ ωk
0 if x∈ ωk

(2-49)

Here, l(x) > 0 if and only if x /∈ ωk. From 2-28, 2-44 and 2-47, for all k > 0,

Ek(J∗(x̂k+1))− J∗(x̂k) ≤ −l(x̂k) (2-50)

and summing over all k < r yields, for any r > 0,
r−1∑
k=0

E0(l(x̂k)) ≤ J∗(x0)− E0(J∗(x̂r)) (2-51)

The RHS of the above inequality has a finite upper bound as J∗(x) is bounded from below for
all x. By the Borel-Cantelli lemma [63], l(x̂k)→ 0 with probability 1 and hence x̂k → ωk with
probability 1. This implies that the state trajectory of the closed loop system converges to the
set ωk. Although the subsequent state may not stay in ωk, successive states must continually
return to ωk. The convergence of x̂ to ωk with probability 1 is equivalent to convergence in
probability [62] since Pr(l(x̂k) ≥ ε)→ 0 as k →∞ for all ε > 0.

For problems that have soft constraints that may be violated with a set frequency, analogous
stability and convergence results can be obtained. In applications that involve uncertainty
with unbounded support, satisfaction of probabilistic constraints cannot be guaranteed. For
these types of problems, supermartingale-like conditions as in (2-28) or (2-26) can be imposed
which ensure quadratic stability conditions.

2-3 Convex Approximations of Chance Constraints

Chance constraints can be defined as probabilistic constraints or expectation constraints with
probabilistic constraints appearing more commonly in literature. Consider a Chance Con-
strained Problem (CCP) of the form,

min
x∈X

f(x)

s.t. P (G(x,w) ≤ 0) ≥ 1− α
(2-52)
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where, f(x) is the performance index, w is a random vector in a probability space (Ω,F , P )
with support W ⊂ Rnw , α is a number between 0 and 1, G(x,w) = (g1(x,w), ..., gm(x,w)) :
Rnx×Rnw → Rm. Such a constraint is a compromise with the requirement of enforcing a hard
constraint G(x,w) ≤ 0 for all w ∈ W. Enforcement of such a hard constraint may be very
costly or even impossible. However, there are a few significant numerical complications of
the optimization problem subject to chance constraints. The disturbance w is usually multi-
dimensional. In such a case, it is difficult to check whether the chance constraint is satisfied
at the given point x as there are no efficient ways to compute the corresponding probabilities
accurately. Firstly, Monte-Carlo simulation is the only way to estimate the probability of a
chance constraint to be violated at a given point and the cost of this computation increases as
α decreases. The chance constrained version of the randomly perturbed constraint G(x,w),
even for the case when g(x,w) is a simple bilinear constraint, is extremely computationally
intractable. Secondly, the feasible set for a chance constraint is usually non-convex which
makes optimization subject to this constraint problematic [8].
A general method to build a computationally tractable approximation of the CCP is given
by the scenario approach based on Monte Carlo sampling techniques [9, 10, 11, 12]. Several
other approximations such as the Bernstein approximation, quadratic approximation and
the CV aR approximation have been proposed [8]. In particular, the scenario approach and
the CV aR approximation have found wide usage in literature. The main advantage of the
scenario approach is that no restrictions are imposed on the distribution of w. However,
since the approximation itself is random, the solution may not satisfy the chance constraint.
Therefore, it is important to determine the sample size Ns such that the solution satisfies
the original CCP with some probability 1 − β. The CV aR approximation on the other
hand, finds wide usage in literature due to its features of numerical tractability, convexity
and monotonicity [49]. Furthermore, it has been widely accepted as the tightest convex
approximation of the chance constraint.

2-3-1 The Scenario Approach

The scenario approach is a sample-based approach for obtaining tractable solutions for stochas-
tic programming problems [9, 10, 11, 12]. The basic idea in a sample-based approach is to
characterise the dynamics of the stochastic system by a finite set of realizations of uncertain-
ties. Typically, sample-based approaches do not require convexity assumptions with respect
to uncertainty. A sample-based approach allows for approximating a CCP as a deterministic
optimal control problem with the property that as the number of samples approaches infinity,
the approximation becomes exact. This leads to a high computational cost and is prohibitive
for practical applications. A significant development in the direction of compensating this
drawback is the scenario approach, which provides an insight into the sample complexity,
i.e., the number of samples that are required for an adequate approximation of the chance
constraints.
In the scenario approach, Ns sampled instances Ω = {w1, ..., wNs} of the uncertainty vector
are used to approximate the CCP in (2-52) to get,

min
x∈X

f(x)

s.t. G(x,wj) ≤ 0, j = 1, ..., Ns

(2-53)
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These sampled instances of the uncertainty are independent and are known as ’scenarios’. The
solution derived in this approach satisfies all unforseen constraints except for a user chosen
fraction that rapidly tends to zero as Ns increases. With a selected violation parameter
α ∈ (0, 1) and a confidence parameter β ∈ (0, 1), if Ns is chosen so as to satisfy the condition
[9],

ρ−1∑
i=0

(
Ns

i

)
αi(1− α)Ns−i ≤ β (2-54)

then, with probability no smaller than 1−β, the solution satisfies all constraints in the original
CCP but at most an α-fraction, i.e., P (w : F (x∗, w) � 0) ≤ α. Here, ρ is the support rank
of the decision space [64]. An explicit expression for Ns as a function of β and α is given as
[11],

Ns ≥
2
α

(
ln 1

β + ρ
)

(2-55)

If β is neglected, the solution x∗ is robust against uncertainty from set W upto the selected
level α. By choosing a large Ns, α can be made small. It is to be noted that x∗ is a random
quantity as it depends on the constraints extracted corresponding to Ω. It is possible that
the extracted constraints do not represent the uncertainty set very well. In this case, the
portion of unseen constraints violated by x∗ will be larger than α. Parameter β controls the
probability that this happens and the final result that x∗ violates at most an α-fraction of
constraints holds with probability 1−β. Theoretically, β plays an important role as selecting
β = 0 yields Ns = ∞. In practice, by (2-55), β can be selected to be a very small number
such as 10−10 or 10−20 and Ns still does not grow significantly. The main feature of these
results in [9] and [11] is that the probability of constraint violation rapidly decreases to 0 as
the number of scenarios grows.

The scenario approach to Stochastic MPC

A major challenge in SMPC is the solution of the FHOCP must satisfy the chance con-
straints at every time step. Various recent scenario-based approaches for SMPC are proposed
in [64, 65, 57, 66, 67]. The advantage of Scenario-based SMPC (SCMPC) is that it renders
the uncertain system into multiple deterministic affine systems by substituting the individ-
ual scenarios. This finite horizon scenario problem (FHSCP) is much simpler compared to
the FHOCP. The closed-loop behaviour of the system may be erratic at times due to highly
unlikely outliers in the sampled scenarios. This is obviated by a-posteriori scenario removal.
State constraints corresponding to R > 0 scenarios are removed after outcomes of all samples
have been observed. However, the sample complexity Ns must be appropriately increased.
The pair (Ns, R) is called sample-removal pair. The FHSCP is solved for possible combina-
tions of choosing R out of Ns scenarios. The combination that yields the lowest cost of all
solutions is selected. Since it is required to choose R out of Ns instances of the FHSCP, this
leads to prohibitive sample complexities for large values of R. An upper bound on Ns that
depends on the support rank of the chance constraints is derived for a fixed R.

Definition 2.2. Support Rank (a) The unconstrained subspace Li of a constraint i ∈ {0, ..., N−
1} in (2-10) is the largest linear subspace (in the set inclusion sense) of the search space RNnu
that remains unconstrained by all sampled instances of i, almost surely. (b) The support rank
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18 Technical Preliminaries

of a constraint i ∈ {0, ..., N − 1} in (2-10) is given as

ρi := Nnu − dimLi (2-56)

where dimLi represents the dimension of the unconstrained subspace Li.

It is to be noted that the support rank of a chance constraint is an inherent property of the
chance constraint and is not affected by the simultaneous presence of other chance constraints.

Let Vk|xk denote the first step violation probability, i.e., the probability with which the first
predicted state, from (2-1), falls out of the set X that are defined by the constraints.

Vk|xk := P (Axk +Buk + Ewk /∈ X |xk) (2-57)

The control input uk and Vk|xk depend on the scenarios Ωk = {w1
k, ..., w

Ns
k } that are submitted

at time k. The notation uk(Ωk) and Vk|xk(Ωk) shall be used to emphasize this fact. The
violation probability Vk|xk can be considered as a random variable on the probability space
(WNsN , PNsN ) with support in [0, 1]. Here, WNsN and PNsN denote the NsNth product of
the set W and the measure P . The distribution of Vk|xk(Ωk) is unknown but it is possible to
derive an upper bound on this distribution. To derive this upper bound, a few assumptions
are made. It is assumed that the set of feasible inputs U is bounded and convex and the state
constrained set X is convex. It is also assumed that the stage cost function q(·) and terminal
cost function p(·) in (2-5) are convex functions. Furthermore, with the assumption that the
disturbance input w is White Gaussian noise and and α ∈ [0, 1] being any violation level [64,
Theorem 6.7],

PNsN (Vk|xk(ωk) > α) ≤ UNs,ρ(α) (2-58)

UNs,ρ(α) := min
{

1,
(
R+ ρ1 − 1

R

)
B(α;Ns, R+ ρ1 − 1)

}
(2-59)

where B(·; ·, ·) represents the Beta distribution.

B(α;Ns, R+ ρ1 − 1) :=
R+ρ1−1∑
j=0

(
Ns

j

)
αj(1− α)Ns−j (2-60)

For a fixed value of R, Ns is selected such that UNs,ρ(α) ≤ β, where β is a desired confidence
probability level and PNsN (Vk|xk(ωk) > α) ≤ β holds.

However, this approach to SMPC is conservative when applied in a receding horizon fashion.
The focus is either on obtaining a robust solution [65, 57], or the chance constraints are over-
satisfied by the closed loop system [64, 66, 67]. This conservatism of SCMPC is addressed
by interpreting the chance constraints as a time average, rather than pointwise-in-time with
a high confidence, which is much less restrictive. This also reduces the sample complexity by
exploiting the nature of the structural properties of the FHOCP. The result in (2-58) is used
to obtain the bound on the expectation [12],

ENsN [Vk|xk] :=
∫
WNsN

Vk|xk(ωk)dPNsN (2-61)
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2-3 Convex Approximations of Chance Constraints 19

where, the operator ENsN is the expectation operator on (WNsN , PNsN ). A reformulation
via the indicator function 1 :WNsN → {0, 1} yields,

ENsN [Vk|xk] =
∫

[0,1]

∫
WNsN

1(Vk|xk(ωk) > α) dPNsNdα

=
∫

[0,1]
PNsN [Vk|xk(ωk) > α] dα

≤
∫

[0,1]
UNs,ρ(α) dα

(2-62)

A sample-removal pair (Ns, R) is admissible if its substitution in (2-62) yields,

ENsN [Vk|xk] ≤ ε (2-63)

where ε is a desired violation level. The admissibility of the sample-removal pair can be tested
by performing the numerical integration in (2-62). The integral value monotonically decreases
with Ns and monotonically increases with R. If R is fixed, then Ns can be determined easily,
example, by a bisection method. If R = 0, the integration can be replaced by the simple
analytic formula,

ENsN [Vk|xk] ≤
ρ

Ns + 1 = ε (2-64)

where ε is a specified level.

Let Mk := 1X c(xk+1) denote a random variable indicating that xk+1 /∈ X , i.e., 1X c : Rnx →
0, 1 is the indicator function on the complement X c of X . At each time step k, there are a
total of D = (NsN + 1) random variables, i.e., the scenarios and the disturbance {Ωk, wk} ∈
W(NsN+1) = WD. Define Wk = {w0,Ω0, ..., wk,Ωk} ∈ W(k+1)D for any t ∈ {0, ..., T − 1}.
These variables allow for the expression of the variables xk(Wt−1), Vk(Wt−1,Ωk) and Mk(Wt)
to be expressed in terms of the elementary uncertainties. Observe that Mk ∈ {0, 1} is a
Bernoulli random variable with random parameter Vk because,

E[Mk|Wk−1,Ωk] =
∫
W
Mk(Wk)dP (Ωk)

= Vk(Wk−1,Ωk)
(2-65)

Then, with the admissible sample complexity Ns, the expected time-average of closed loop
constraint violations remains below the specified level ε,

ETD
[

1
T

T−1∑
k=0

Mk

]
≤ ε (2-66)

for any T ∈ N and the operator ETD is the expectation operator on (WTD, P TD).

2-3-2 Risk Functions and Conditional Value at Risk (CV aR)

Let (Ω,F) be a sample space equipped with sigma algebra F on which uncertain outcomes
(Z = Z(w)) are defined. A risk function ρ(z) maps Z onto the extended real line R̄ =
R ∪ {+∞} ∪ {−∞} [6]. The space Z of allowable random functions Z(w) for which ρ(Z) is
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defined is chosen as Z := Lp(Ω,F , P ) 1. It is assumed that Z is a linear space of F-measurable
functions, the risk functions ρ : Z → R̄ are proper, i.e., ρ(Z) > −∞ for all Z ∈ Z and the
domain dom(ρ) := {Z ∈ Z : ρ(Z) < +∞}.

The following axioms are associated with risk function. For Z1, Z2 ∈ Z, the point-wise partial
order is denoted as Z2 � Z1 which means Z2(w) ≥ Z1(w) for all w ∈ Ω.

(A1) Convexity: ρ(αZ1 + (1 − α)Z2) ≤ αρ(Z1) + (1 − α)ρ(Z2) for all Z1, Z2 ∈ Z and all
α ∈ [0, 1].

(A2) Monotonicity: If Z1, Z2 ∈ Z and Z2 � Z1, then ρ(Z2) ≥ ρ(Z1).

(A3) Translation Equivalence: If a ∈ R and Z ∈ Z, then ρ(Z + a) = ρ(Z) + a.

(A4) Positive Homogeneity: If a > 0 and Z ∈ Z, then ρ(aZ) = aρ(Z)

The risk functions satisfying axioms (A1)-(A4) are called coherent risk measures. The popular
notion Value at Risk (V aR), widely used in the fields of statistics and finance, is defined as,

V aR1−α(Z) := min
η∈R
{η : P (Z ≤ η) ≥ 1− α} (2-67)

However, V aR has undesirable characteristics of lack of convexity. The more popular coherent
risk measure, CV aR, attempts to address the shortcomings of V aR. While V aR represents
the worst-case loss with a probability, CV aR represents the expected loss if the worst case
threshold is crossed, i.e., it represents the expected loss that will occur beyond the V aR
threshold. CV aR is defined as,

CV aR1−α(Z) = E[Z ≥ V aR1−α(Z)] (2-68)

which is,
CV aR1−α(Z) = 1

α

∫
Z≥V aR1−α(Z)

ZP (dw) (2-69)

CV aR1−α(Z) := inf
η∈R

(
η + 1

α
E[(Z − η)+]

)
(2-70)

Considering the chance constraint in the CCP in (2-52), the V aR of the random function
F (x,w) is given as,

V aR1−α(G(x,w)) := min
η∈R
{η : P (G(x,w) ≤ η) ≥ 1− α} (2-71)

The corresponding CV aR is given as,

CV aR1−α(G(x,w)) = min
η∈R

(
η + 1

α
E[(G(x,w)− η)+]

)
(2-72)

1Lp(Ω,F , P,Rn) denotes the linear space of all F-measurable functions φ : Ω → Rn such that∫
Ω ||φ(w)||pdP (w) ≤ +∞. An element of Lp(Ω,F , P,Rn) is a class of functions φ(w) which may differ from

each other on sets of P-measure zero. For n = 1, the space is denoted as Lp(Ω,F , P ). It is assumed that
p ∈ [1,+∞), P is a probability measure on (Ω,F) and expectations are taken with respect to P.
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2-4 Exact Penalty Method for Unconstrained Optimization 21

It can be verified that CV aR1−α(G(x,w))→ V aR1−α(G(x,w)) as α ↓ 0. If G(x,w) is convex
for almost every w, then CV aR1−α(G(x,w)) is also convex. As CV aR is considered as an
approximation of V aR, and as CV aR is also convex, the chance constraint in (2-52) can be
replaced by the CV aR constraint as [50],

CV aR1−α(G(x,w)) ≤ 0 (2-73)

Furthermore, since it is difficult to evaluate a conditional expectation when the probability
distribution is continuous over an infinite support of the random vector, a Monte-Carlo or a
sampled approach is taken. A number of independent and identically distributed samples of
w, w1, ..., wNs , called ’scenarios’, are extracted. The sample-average approximation of CV aR
is now given as,

CV aR1−α(G(x,w)) = min
η∈R

(
η + 1

αNs

Ns∑
j=1

((G(x,wj)− η)+)
)

(2-74)

2-4 Exact Penalty Method for Unconstrained Optimization

The basic idea of penalty methods is to eliminate some or all constraints and add a penalty
term to the cost cost function. This penalty term penalizes infeasible states by prescribing
a high cost to these states. Penalty methods have been proposed in literature that solve a
constrained minimization problem by means of a single unconstrained problem [68, 69, 16]. A
penalty method may yield a Lagrange multiplier of the problem in a single minimization and
it may require a second minimization to yield an optimal solution. This holds true for a wide
class of differentiable penalty functions. Non-differentiability is an essential characteristic of a
penalty function if the penalty method is to yield an optimal solution in a single minimization
[16]. Consider the following problem,

min f(x)
s.t. x ∈ X ⊂ Rnx , fi(x) ≤ 0, i = 1, ...,m

(2-75)

The function fi : Rnx → R is assumed to be real valued and convex and the set X is assumed
to be closed and convex. The following assumptions are made.

Assumption 2.2. Problem (2-75) has a non-empty and compact set of optimal solutions.

Assumption 2.3. Problem (2-75) has atleast one Lagrange multiplier (or Kuhn-Tucker vector
as defined in [70]).

With assumption 2.2, the ordinary perturbation function, which is a closed proper convex
function, is given as,

q(u) = inf{f(x) : x ∈ X , fi(x) ≤ ui, i = 1, ...,m} (2-76)

The ordinary dual function, which is a closed proper concave function, is given as,

g(λ) = inf
u
{q(u) +

m∑
i=1

λiui} (2-77)
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Furthermore, q(0) = minu≤0 q(u) = supλ g(λ). The dual function g is maximized at points
which are Lagrange multipliers of the problem and assumption 2.3 guarantees existence of
atleast one such point.
Consider penalty functions p : R→ R which satisfy the following conditions:

(C1) p is convex.

(C2) p(t) = 0 for all t ≤ 0 and p(t) > 0 for all t > 0.

Now, consider the penalized problem

inf
x∈X

{
f(x) +

m∑
i=1

pi(fi(x))
}

(2-78)

where the the penalty functions pi : R→ R satisfy the conditions (C1) and (C2). Let x̃ ∈ X
be a solution of the problem (2-78). Denote by p∗i : R → (−∞,+∞] the convex conjugate
function of pi

p∗i (t∗) = sup
t
{tt∗ − pi(t)} (2-79)

The following relationship may be verified.

inf
x∈X

{
f(x) +

m∑
i=1

pi(fi(x))
}

= inf
u

{
q(u) +

m∑
i=1

pi(ui)
}

= max
λ

{
g(λ)−

m∑
i=1

p∗i (λi)
} (2-80)

where the last equality follows by the direct application of Fenchel-duality theorem [70].
Assuming that x̃ exists, the following proposition is made.

Proposition 2.1. (a) For x̃ to also be a an optimal solution of the original problem (2-75),
it is required that,

lim
t→0+

p(t)
t
≥ λ̄ (2-81)

for some Lagrange multiplier λ̄ of problem (2-75).

(b) For problem (2-75) and (2-78) to have the same solutions, it is sufficient that

lim
t→0+

p(t)
t

> λ̄ (2-82)

Proof. (a) If x̃ is an optimal solution of problem (2-75), from (2-80),

f̄ = f(x̃) +
m∑
i=1

pi(fi(x̃)) = max
λ

{
g(λ)−

m∑
i=1

p∗i (λi)
}

(2-83)

where f̄ denotes the optimal value of problem (2-75). Let λ̄ be any vector attaining the
maximum above. Then,

f̄ +
m∑
i=1

p∗i (λ̄i) = g(λ̄) ≤ f̄ (2-84)
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Since p∗i (t∗) ≥ 0 for all t∗, we get,

p∗i (λ̄i) = 0, i = 1, ...,m, g(λ̄) = f̄ (2-85)

showing that λ̄ must be a Lagrange multiplier of problem (2-75). Now the relation
p∗i (λ̄i) = 0, i = 1, ...,m by the definition of pi, p∗i implies (2-81).

(b) If x̄ is an optimal solution of problem (2-75), then by (2-82) and by the definition of a
Lagrange multiplier,

f(x̄) +
m∑
i=1

pi(fi(x̄)) = f(x̃) +
m∑
i=1

λ̄ifi(x̄)

≤ f(x) +
m∑
i=1

λ̄ifi(x̄) ≤ f(x) +
m∑
i=1

pi(fi(x̄)) , ∀x ∈ X
(2-86)

Hence x̄ is also a solution of problem (2-78). Conversely, if x̃ is a solution of problem
(2-78), then x̃ is either a feasible point in which case it is also a solution of problem
(2-75), or it is infeasible in which case fi(x̃) > 0 for some i. Since pi(t) > 0 for all t > 0,
then (2-82) for any solution x̄ of problem (2-75),

f(x̃) +
m∑
i=1

pi(fi(x̃)) > f(x̃) +
m∑
i=1

λ̄ifi(x̃)

≥ f̄ = f(x̄) +
m∑
i=1

pi(fi(x̄))
(2-87)

which is a contradiction. Hence, problems (2-75) and (2-78) have exactly the same
optimal solutions.

Proposition 2.1(b) generalizes a known result for the penalty function p(t) = c max{0, t} with
c being the penalty parameter which has been discussed in [71, 72, 73]. It is sufficient that
c be greater than some Lagrange multiplier of the problem for the original problem (2-75)
and the penalized problem (2-78) to have the same optimal solutions. A useful upper bound
to the maximum magnitude of the Lagrange multipliers can be obtained if an interior point
to the constraints and a lower bound to the optimal value are known. It can be inferred
from proposition 2.1(a) shows that unless some Lagrange multiplier is zero and the problem
is essentially unconstrained, an optimal solution to problem (2-75) cannot be obtained by
solving problem (2-78) by using a differentiable penalty function.
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Chapter 3

Tractable SMPC using Conditional
Value at Risk Optimization

A detailed formulation of a tractable Stochastic MPC strategy using CV aR optimization
for discrete-time linear time-invariant systems with constraints on the state and he input is
presented in this chapter. An approach to incorporate soft constraints on the state through
an exact penalty method is introduced. The penalty functions makes use of CV aR to penalize
infeasible states. This penalty is added as an extra cost on the system to account for closed-
loop performance degradation due to violation of constraints by infeasible states. The closed-
loop behaviour of this formulation is discussed and the formulation is evaluated by means of
a numerical example. Finally, a brief overview of suitable applications of this formulation is
provided.

3-1 Problem Formulation

A linear time-invariant system that is subject to stochastic disturbances is considered. The
system is described by the following state space model.

xk+1 = Axk +Buk + Ewk

zk = Cxk +Duk
(3-1)

Here, xk ∈ Rnx is the state, uk ∈ Rnu is the control input and zk ∈ Rnz is the output at time
k. The successor state is xk+1 at time k+1. The disturbance input wk ∈ Rnw is an exogenous
disturbance with unknown current and future values but known probability distribution. It
is a random vector in a probability space (Ω,F , P ) with support W ⊂ Rnw .

Assumption 3.1. The disturbance input (wk)k∈N≥0 is assumed to be a realization of a
stochastic process with wk ∈ G(0,Qw) where G denotes a family of Gaussian distributed ran-
dom variables with zero mean and covariance matrix Qw. Moreover, for k 6= j, wk and wj
are statistically independent. Thus, the additive disturbance is Gaussian white noise.
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Assumption 3.1 simplifies the computation of predicted costs based on the expected value of
sum of stage costs, which in turn simplifies stability analysis of the system based on the cost
function. The matrices A, B, E, C and D are of suitable dimensions with real elements.

The system is subject to constraints on the state and control input. Consider constraints of
the form,

X := {x ∈ Rnx : g(x,w) ≤ 0}, U := {u ∈ Rnu : h(u) ≤ 0} (3-2)

where g : Rnx × Rnw → Rm and h : Rnu → Rm2 . The constraints on the state x define a
closed convex set X ⊂ Rnx that contains the origin in its interior. The constraints on the
control input u define a non-empty measurable compact convex control set U ⊂ Rnu .

Let N , a positive integer, be the prediction horizon. The system is controlled by a feedback
controller, i.e., at each k, the input uk is the function of the state xk. A feedback policy
π = {π0(·), ..., πN−1(·)}, a sequence of measurable control laws is employed for each πi :
Rnx → Rnu , i = 0, ..., N − 1. The control laws π belong to a class of controllers Ψ which
is a set of continuous maps that map the origin of the state space to into the zero input,
π(0) = 0. The control input ui is selected as πi(xi) at the ith stage. Starting at time k = 0,
and assuming that wk = 0, ∀k, the system has an initial state x0 ∈ Rnx . Suppose the state is
generated by (2-1), if there exists a controller π ∈ Ψ such that

xk → 0 as k →∞

then, the state x0 is a null controllable point in the state space. The set of all null controllable
points define a set in the state space known as the recoverable set. The recoverable set is the
whole state space only when the system is globally asymptotically stable. When the system
is subject to unbounded disturbances and constraints on the input, i.e., U is bounded, the
system is globally asymptotically stable when the matrix pair (A,B) is stabilizable and the
eigenvalues of the system matrix A lie on or inside the unit circle.

Assumption 3.2. The matrix pair (A,B) is stabilizable, the matrix pair (A,C) is observable,
and all eigenvalues of the system matrix A lie on or inside the unit circle.

Retaining the state within the feasible set X for the entire prediction horizon requires the
initial state to belong to a set of feasible initial states given as,

XN = {xk : ∃uk→k+N |k s.t. xi|k ∈ X and ui|k ∈ U ∀k ≥ 0, i = 0, 1, ..., N − 1} (3-3)

This requirement is often too conservative and results in poor performance. In most industrial
applications, the best performance is usually achieved near the boundary of the feasible set
X , and thus, violation of the hard constraints is unavoidable due to the uncertain nature
of the system. In such cases, chance constraints can be viewed as a compromise with the
requirement to enforce hard constraints in an uncertain system which may be very expensive
or even impossible. Chance constraints on the state trajectory is proposed as,

P (x ∈ X ) ≥ 1− α (3-4)

and considering state constraints of the form given in (3-2),

P (g(x,w) ≤ 0) ≥ 1− α (3-5)
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where, the chance constraint requires the probability of any predicted state x not belonging to
the set X to be less than α. The optimal control problem is defined in terms of a performance
index JN (xk,uk→k+N |k,wk→k+N |k) that is evaluated over the horizon of N steps and is solved
at each time step, where uk→k+N |k = {u0|k, ..., uN−1|k} and wk→k+N |k = {w0|k, ..., wN−1|k}.
The predicted cost is given as,

Ĵk(xk,uk→k+N |k,wk→k+N ) = p(xN |k) +
N−1∑
i=0

q(xi|k, ui|k) (3-6)

where, the function q : Rnx × Rnu → R+ gives the cost per stage and the function p :
Rnx → R+ is the terminal cost. On account of the stochasticity of wk, the predicted cost
Ĵk(xk,uk→k+N |k,wk→k+N |k) is stochastic. Since the probability distribution of wk is known,
it is appropriate to use a predicted cost that takes into consideration the stochastic nature
of the model uncertainty through the expectation of the predicted cost. The expected cost is
given as,

J̄k(xk,uk→k+N |k) = E
[(
p(xN |k) +

N−1∑
i=0

q(xi|k, ui|k)
)∣∣∣x0|k = xk

]
(3-7)

The terminal cost ensures that the system is closed-loop stable and the controller found is
stabilizing.

Assumption 3.3. The functions p(·) and q(·) are assumed to be convex functions.

Given the performance index and constraints, the chance constrained problem can be formu-
lated as,

J∗k (xk) = min
uk→k+N|k

J̄k(xk,uk→k+N |k)

s.t. xi+1|k = Axi|k +Bui|k + Ewi|k, i = 0, ...N − 1
P (xi|k ∈ X ) ≥ 1− α
ui|k ∈ U , i = 0, ...N − 1
x0|k = xk

(3-8)

where, J∗k (xk) is the optimal value function under the optimal control policy u∗k→k+N |k. The
receding horizon policy is implemented by applying the first element of the optimal control
input sequence u∗k to the system at time k. However, there are a few significant numerical
complications of this optimization problem with respect to chance constraints [8]. Firstly,
Monte-Carlo simulation is the only way to estimate the probability of a chance constraint to be
violated at a given point and the cost of this computation increases as α decreases. Secondly,
the feasible set for a chance constraint is usually non-convex which makes optimization subject
to this constraint problematic. The chance constraint can be approximated by the scenario
approach to render the constraint as a combination of multiple affine constraints. However,
as the initial state at each sampling time is a new state measurement, the assumption that
x0 ∈ X is strong. The SCMPC may not have an initial feasible state which leads to an empty
feasible set. This renders the SCMPC as unsolvable.

A simple method to obviate this problem is to penalize infeasible states by incorporating a
penalty function in the performance index giving rise to a soft constraint approach [15]. A
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similar approach is elaborated in [13, 14], where an additional cost penalizes the state when
there is a ’high probability’ of constraint violation. However, the probability of constraint
violation is not quantified in this approach. A contribution in this thesis is to incorporate an
exact penalty method while keeping the state constraint violation in the system within certain
admissible levels. A computationally efficient approximation is used to maintain admissible
violation levels to achieve a tractable SMPC strategy in closed-loop.

The expected cost including the penalty function for the added cost in the case of constraint
violation is of the form,

Jk(xk,uk→k+N |k,wk→k+N ) = J̄k(xk,uk→k+N |k,wk→k+N ) +
N−1∑
i=0

c.pX (xi|k) (3-9)

where, pX : Rnx → R is the penalty function and c is the penalty parameter. The penalty on
a feasible state which does not violate constraints is set to zero, i.e., pX (x) = 0, x ∈ X and
for an infeasible state that violates constraints, pX (x) ≥ 0, x /∈ X . However, the penalty on
the infeasible state cannot be arbitrarily high as a choice of an infinite penalty even for a very
large violation will make the set of feasible states almost always empty. Hence, the following
assumption is made.

Assumption 3.4. The penalty function for constraint violation is a finite valued convex
function, pX : Rnx → R+ with pX (x) = 0, x ∈ X .

If the penalty function pX (x) is an exact penalty function and the value of c is greater than
some Lagrange multiplier of the problem, then the penalty method yields the optimal solution
through a single unconstrained optimization [16]. The simplest form of an exact penalty
function would be cmax{0, g(x,w)} where the value of c is greater than some Lagrange
multiplier of the problem. An upper bound on the Lagrange multiplier can be found by
making use of Slater’s condition [74]. However, since the constraints on the state of the
system take the form of chance constraints, it is required to choose a penalty function that
is motivated by the presence of stochasticity in the system. The requirement for the penalty
function to be a convex function is necessary for the penalty method to be exact. The CV aR
function is widely known in literature as the tightest convex approximation of the chance
constraint [8]. Furthermore, intuitively, the CV aR accounts for the risk that the system will
face at an undesirable state and it can be used to determine performance degradation due to
violation of constraints at the infeasible state. Hence, the CV aR can be suitably incorporated
as a penalty function.

Given the chance constraint in (3-5), the Value at Risk (VaR) of the random function g(x,w)
is given as,

V aR1−α(g(x,w)) := min
η∈R
{η : P (g(x,w) ≤ η) ≥ 1− α} (3-10)

While V aR represents the worst-case loss with a probability, CV aR represents the expected
loss if the worst case threshold is crossed, i.e., it represents the expected loss that will occur
beyond the V aR threshold. The CV aR is defined as the conditional expectation of g(x,w)
exceeding V aR,

CV aR1−α(g(x,w)) := E[g(x,w)|g(x,w) ≥ V aR1−α(g(x,w))] (3-11)
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28 Tractable SMPC using Conditional Value at Risk Optimization

which can also be formulated as,

min
η∈R

(
η + 1

α
E[(g(x,w)− η)+]

)
(3-12)

The chance constraint in (3-5) can be replaced by the CV aR constraint as,

CV aR1−α(g(x,w)) ≤ 0 (3-13)

As required in CV aR, an exact evaluation of the expected value of a random function g(x,w)
is either impossible or prohibitively expensive [51] and hence a simple sampled-average ap-
proximation is used. The sample-average approximation of CV aR is now given as,

CV aR1−α(g(x,w)) = min
η∈R

(
η + 1

αNs

Ns∑
j=1

((g(x,wj)− η)+)
)

(3-14)

for which a number of independent and identically distributed samples of w, w1, ..., wNs , called
’scenarios’, are extracted. The CV aR constraint is now reduced to a combination of multiple
affine constraints.

The sample complexity or the number of scenarios Ns depends on the support rank of the
problem, which is usually the number of decision variables of the problem Nnu. The optimal
control sequence u∗k→k+N |k, when applied to the system following the receding horizon prin-
ciple must be able to satisfy the constraints on the system. At each time step k, the problem
is solved using the current state measurement xk and new scenarios have to be generated at
each time step k ∈ T . Let Vk|xk denote the first step violation probability, i.e., the probability
with which the first predicted state falls out of the set X that are defined by the constraints.

Vk|xk := P (Axk +Buk + Ewk /∈ X |xk) (3-15)

The following theorem gives an explicit bound on the a priori probability of violation, and
thereby deriving a bound on the number of scenarios [11].

Theorem 1. Given a violation level α ∈ [0, 1], the prediction horizon N and the support rank
ρ = Nnu, then

PNsN (Vk|xk(ωk) > α) = B(α;Ns, ρ− 1) (3-16)

where,

B(α;Ns, ρ− 1) =
ρ−1∑
j=0

(
Ns

j

)
αj(1− α)Ns−j (3-17)

Ns is selected such that B(α;Ns, ρ− 1) ≤ β, where β is a desired confidence probability level
and PNsN (Vk|xk(ωk) > α) ≤ β holds.

However, this bound is rather conservative and may lead to over-satisfaction of chance con-
straints of the problem (3-8). Hence, a less conservative approach is used to obtain a bound
on the expectation of the probability distribution by interpreting the chance constraints as a
time average [12].

ENsN [Vk|xk] :=
∫
WNsN

Vk|xk(ωk)dPNsN (3-18)
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where, the operator ENsN is the expectation operator on (WNsN , PNsN ). A reformulation
via the indicator function 1 :WNsN → {0, 1} yields,

ENsN [Vk|xk] =≤
∫

[0,1]
B(α;Ns, ρ− 1) dα (3-19)

The integration can be replaced by a simple analytic formula,

ENsN [Vk|xk] ≤
ρ

Ns + 1 = ε (3-20)

where ε is a specified level. Let Mk := 1X c(xk+1) denote a random variable indicating that
xk+1 /∈ X , i.e., 1X c : Rnx → 0, 1 is the indicator function on the complement X c of X . At
each time step k, there are a total of D = (NsN + 1) random variables, i.e., the scenarios and
the disturbance {Ωk, wk} ∈ W(NsN+1) = WD. Then, with the admissible sample complexity
Ns, the expected time-average of closed-loop constraint violations remains below the specified
level ε,

END
[

1
N

N−1∑
k=0

Mk

]
≤ ε (3-21)

for anyN ∈ N and the operator ETD is the expectation operator on (WTD, P TD). To interpret
the expected time-average of closed-loop violation in terms of the CV aR constraint, denote

ḡ(x, η, w) := η + 1
α

[(g(x,w)− η)+] (3-22)

The CV aR constraint is then equivalent to

E[ḡ(x, η, w)] ≤ 0 (3-23)

Let the indicator function for constraint violation xk+1 /∈ X be given as,

Mk = 1{x|ḡ(x,η,w)≥0}(xk+1) (3-24)

Then, given a sample complexity Ns and violation level ε, the expected time average of
closed-loop constraint violation remains below the specified violation level,

1
N

N−1∑
k=0

CV aR1−α(g(xk, wk)) ≤ ε (3-25)

Given the sample complexity Ns for the sample-average approximation of CV aR, the perfor-
mance index of the tractable stochastic MPC strategy using CV aR optimization is now given
as,

Jk(xk,uk→k+N |k) = J̄k(xk,uk→k+N |k,wk→k+N ) + max
{

0,
N−1∑
i=0

cCV aR1−α(g(xi|k, wi|k))
}

(3-26)
which is,

Jk(xk,uk→k+N |k) =E
[
p(xN |k) +

N−1∑
i=0

(q(xi|k, ui|k))
∣∣∣x0|k = xk

]

+ max
{

0,
N−1∑
i=0

cCV aR1−α(g(xi|k, wi|k))
} (3-27)
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30 Tractable SMPC using Conditional Value at Risk Optimization

where, the penalty parameter c is chosen as a value greater than a Lagrange multiplier of the
problem (2-10). As Ns number of scenarios are extracted, the sampled average approximation
of the expected stage costs, terminal cost and CV aR is given as,

Jk(xk,uk→k+N |k) = 1
Ns

Ns∑
j=1

(
p(xjN |k) +

N−1∑
i=0

(q(xji|k, ui|k))
)

+ max
{

0,
N−1∑
i=0

c
[
ηi + 1

αNs

Ns∑
j=1

([g(xji|k, w
j
i|k)− ηi]+)

]} (3-28)

As c takes higher values, the approximate unconstrained problem becomes increasingly ac-
curate and closer to the original constrained problem. The stage costs q(xi|k, ui|k) and the
terminal cost p(xN |k) can be given in terms of weighted l2 norms of the state and the control
input to give a cumulative quadratic cost.

Jk(xk,uk→k+N |k) =E
[
||xN |k||2P +

N−1∑
i=0

(||xi|k||2Q + ||ui|k||2R)
∣∣∣x0|k = xk

]

+ max
{

0,
N−1∑
i=0

cCV aR1−α(g(xi|k, wi|k))
} (3-29)

The cost in terms of the l2 norm of the output of the system zk can be given as,

Jk(xk,uk→k+N |k) =E
[
||xN |k||2P +

N−1∑
i=0

(||zi|k||2)
∣∣∣x0|k = xk

]

+ max
{

0,
N−1∑
i=0

cCV aR1−α(g(xi|k, wi|k))
} (3-30)

as zk accounts for both the predicted state and control input.

The tractable stochastic MPC problem is now formulated as,

J∗k (xk) = min
ηk→k+N|k,uk→k+N|k

Jk(xk,uk→k+N |k)

s.t. xi+1|k = Axi|k +Bui|k + Ewi|k, i = 0, ...N − 1
ui|k ∈ U , i = 0, ...N − 1
x0|k = xk

(3-31)

where, ηk→k+N |k = {η0|k, ..., ηN−1|k} is the V aR at each time step. The first element of the
optimal control input sequence, u∗0|k, is applied to the system. The horizon is now shifted
according to the receding horizon principle and the optimization problem is carried out again.

3-2 Closed-Loop Performance

The implementation of the controller in based on the receding horizon principle, where an
optimization problem is solved at each time instant for a control horizon of length N . The
model of the system as well as the performance index and optimization problem are time
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invariant. The variable involved can be designed as functions of i ∈ [0, N ] rather than the
current time k itself. To ensure that the optimization problem is feasible at all times, ensuring
recursive feasibility, it is required that the initial state belongs to a predefined subset of the
state space wherein all probabilistic constraints are satisfied and a sequence of control inputs
exist such that all predicted stated lie in this set. This feasibility set is given as,

XN ={xk : ∃uk→k+N |k s.t. P (g(xi|k, wi|k) ≤ 0) ≥ 1− α , i = 0, ..., N − 1, k ≥ 0
and ui|k ∈ U}

(3-32)

Since the constraints are probabilistic, an admissible level of constraint violation is allowed.
Given the chance constraints on the system as in 3-5, the admissible level of violation is given
as,

P (g(x,w) ≥ 0) ≤ α (3-33)

An approximation of the chance constraints as multiple affine constraints by means of the
scenario approach does not yield a problem that is feasible at all times. This is due to the new
sampling of the state at every time instant that is affected by unbounded uncertainty that
may not satisfy the finite affine constraints formed from sampled realizations of uncertainty.
A way to overcome this is to allow the problem to become infeasible whenever necessary but
penalize the violation to account for performance degradation. The problem formulation as
given in (3-31) using the augmented cost with penalty function as given in (3-26) is an exact
penalty method which gives the optimal solution through a single unconstrained minimization.
Hence, the problem formulation in (3-31) equivalent to,

J∗k (xk) = min
uk→k+N|k

J̄k(xk,uk→k+N |k)

s.t. xi+1|k = Axi|k +Bui|k + Ewi|k, i = 0, ...N − 1
CV aR1−α(g(xi|k, wi|k)) ≤ 0, i = 0, ...N − 1
ui|k ∈ U , i = 0, ...N − 1
x0|k = xk

(3-34)

which is feasible when the initial state xk belongs to the following set.

XN ={xk : ∃uk→k+N |k s.t. CV aR1−α(g(xi|k, wi|k) ≤ 0) ≥ 1− α , i = 0, ..., N − 1, k ≥ 0
and ui|k ∈ U}

(3-35)

3-3 Illustrative Example

Consider a ’double integrator’ system of the form:

xk+1 =
(

1 0
1 1

)
xk +

(
1
0

)
u(k) +

(
1
0

)
wk

zk =

 0 0
0.7 0
0 0.7

xk +

0.33
0
0

uk
(3-36)
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32 Tractable SMPC using Conditional Value at Risk Optimization

The input is constrained as,

− 0.5 ≤ uk ≤ 0.5, uk ∈ R, k ∈ N (3-37)

The disturbance is assumed to be a Gaussian distributed random variable with zero mean
and variance 0.2.

wk ∈ G(0, 0.2), wk ∈ R (3-38)

The state is parametrized as x =
(
x1
x2

)
and the constraint on the state is given as

x2 ≥ 0 (3-39)

It is assumed that the system has an initial state x0 =
(

0
10

)
. In the presence of uncertainty,

the task of the controller is to steer the state to the origin while satisfying the constraints on
the system. The cost function used is of the form,

Jk(xk,uk→k+N |k) = E
[
||xN |k||2P+

N−1∑
i=0

(||zi|k||2)+c.max{0, CV aR1−α(g(xi|k, wi|k))}
∣∣∣x0|k = xk

]
(3-40)

When the predicted state violates the constraints, a non zero penalty is added to the cost
function. This notifies the controller of constraint violation and a suitable control input is
generated. The approximated matrices for the stage costs are,

Q =
(

0.72 0
0 0.72

)
, R =

(
0.332

)
(3-41)

and the weighting matrix for the terminal cost, by solving the discrete-time Riccati equation,
is given as,

P =
(

1.6 0.9
0.6 1.33

)
(3-42)

By selecting the prediction horizon N = 5 and the expected average-over-time constraint
violation level ε = 0.05, the sample complexity is derived as Ns = 99 by employing the
approach in [12]. The regular scenario approach as in [11] yields Ns = 660 and the sampled-
approximation approach in [51] yields a value of Ns = 2400 approximately. This shows
that the interpretation of probabilistic constraints as an average-in-time rather than point-
wise is relatively more sample efficient compared to the other typical approaches. Two sets
of simulation results are presented with 100 trials in each set. One set of simulations are
performed as per standard deterministic MPC and the other as per the tractable stochastic
MPC algorithm in (3-31). Fig. 3-1b shows the trajectory of x2 on using deterministic MPC
and Fig. 3-1a shows the trajectory of x2 using tractable stochastic MPC.

Deterministic MPC is the standard approach of MPC and is included to compare its perfor-
mance with that of stochastic MPC. The design of the controller for deterministic MPC is
elaborated in [75]. When the state of the system is ’far’ from the constraint boundary, both
standard deterministic MPC and stochastic MPC perform similarly. In standard determin-
istic MPC, the disturbance is assumed to be equal to its mean value, zero, over the control
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(a) Stochastic MPC (b) Deterministic MPC

Figure 3-1: Trajectory of state x2, Constraint: x2 ≥ 0

horizon. Due to this assumption, the controller in deterministic MPC does not predict the
possibility of a constraint violation, when the system is close to the constraint boundary.
In reality, the possibility that the disturbance w is greater than zero is high at most time
instants, and therefore, since the control input is unable to predict the disturbance, con-
straints are violated. The controller for SMPC, on the other hand, takes into account the
possibility of constraint violation due to disturbance by using a number of sample disturbance
values. Hence, the controller for SMPC provides a more realistic control input, as compared
to deterministic MPC, to compensate for uncertainties. This is supported in the Fig. 3-2.

The estimate of the probability density of the state x2 using both controllers, SMPC and
deterministic MPC, shows that the probability of constraint violation at all times is signifi-
cantly lower while applying SMPC. Furthermore, the performance of the controller of SMPC
is determined by the penalty added to the cost in the case of constraint violations. As an
exact penalty function is used, the performance of the controller must improve with an in-
crease in the penalty parameter. With increase in the penalty parameter, more emphasis
is laid on satisfaction of the chance constraints on the system by increasing the ’weight’ of
the ’risk’ in case of constraint violation. This is supported by Fig. 3-3 and Fig. 3-4. Fig.
3-3 shows the gradual increase in the mean of x2 with an increase of the penalty parameter
and lower probability of constraint violation. Fig. 3-4 shows a monotonic increase in the
median value of x2 signifying higher constraint satisfaction, showing a monotonic increase in
the performance of the algorithm 3-31 as is expected of penalty methods in optimization.

3-4 Areas of Application and Extensions

The crux of SMPC is the definition of chance constraints which utilize the probabilistic
descriptions of uncertainty. Chance constraints enable the system to allow for an admissible
level of closed-loop constraint violations in a probabilistic sense. CV aR, which is known
as the tightest convex approximation of the chance constraint, has been adapted from the
field of mathematical finance. MPC has a huge potential for application in this field for
applications such as portfolio optimization and central bank operations. In terms of the
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(a)

(b) (c)

Figure 3-2: An estimate of the probability density of x2, 3-2a over 40 time instants, 3-2b at
time instant k = 11 (overshoot region) and, 3-2c at time instant k = 40 (steady state region)

portfolio optimization problem, the CV aR is the expected wealth at any given point in time
conditional that the wealth is below the V aR level. CV aR is used to represent constraints
as convex functions of future asset allocation and an attempt is made to limit expected
losses which are larger than the V aR. In multi-agent systems, joint constraints are used to
impose probabilistic constraints on the entire system rather than on each agent. CV aR can
be used to represent the joint constraints, and its sampled approximation is beneficial when
when probability descriptions of uncertainty are inaccurate. In this regard, the proposed
formulation in this thesis can be applied to the portfolio optimization problem, and to obtain
a centralized optimization problem for multi-agent systems.

3-4-1 Portfolio Optimization

For the portfolio optimization problem [76], the model and discrete-time wealth dynamics are
given as follows. The returns of risky assets and the interest rate of the bank account are
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Figure 3-3: Estimate of probability density of x2 over 40 time instants over 100 trials for different
values of the penalty parameter.

Figure 3-4: A Boxplot illustrating the variation of the median value of x2 over 40 time instants
over 100 trials for different values of the penalty parameter.
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36 Tractable SMPC using Conditional Value at Risk Optimization

given by,

rt+1 =Gxt + g + εrt

rBt+1 =FBxt + hb
(3-43)

where rt ∈ Rn is the vector of asset returns, µt(xt) ∈ Rn is the expected return of rt, xt ∈ Rm
is the vector of factors and εrt ∈ Rn is a Gaussian White noise process with covariance matrix
H. A risk free possibility to invest in a bank account is allowed with an interest rate rBt (xt).
It is assumed that the factors are driven by stochastic processes,

xt+1 = Θt(xt) + Ψt(xt)εxt (3-44)

where, Θt(xt) ∈ Rm, Ψt(xt) ∈ Rm×k, and εxt ∈ Rk is a white noise process with unity
covariance. Furthermore,

Θt(xt) =Axt + b

Ψt(xt) =I
(3-45)

where A ∈ Rm×m and b ∈ Rm. The portfolio return can be expressed as,

Rt+1 = rBt+1 + uTt (rt+1 − 1T rBt+1) = FBxt + hB + uTt (Fxt + h) + uTt ε
r
t (3-46)

where F = G − 1TFB, h = g − 1ThB, ut = [u1t, ..., unt]T and ujt denotes the fraction of the
portfolio invested in the jth risky investment. The wealth dynamics are given by,

Wt+1 =(1 +Rt+1)Wt

wt+1 = ln(1 +Rt+1) + wt
(3-47)

whereWt ∈ R denotes the portfolio value at time t and wt = lnWt. These nonlinear dynamics
are replaced by a Taylor approximation and the wealth dynamics are now obtained as,

wt+1 = wt + FBxt + hB + uTt (Fxt + h)− 1
2u

T
t Hut + uTt ε

r
t (3-48)

where V ar(Rt+1) = uTt Hut. The conditional mean mw
t+k and variance V w

t+k of the portfolio
wealth and factor, as defined in [76] in terms of the returns, factors and investments, are used
to define the objective of a portfolio optimization problem to balance expected returns and
possible risks. State constraints for log-wealth values are given as,

P (wt+i > Lt+i) ≥ pt+i, i = 1, ..., k (3-49)

where Lt+i is the constraint level at time t+ i with a confidence probability of pt+i. This is
known as the V aR constraint. The CV aR constraint is given as,

E[wt+i ≤ η(pt+i)] ≥ L̄t+i (3-50)

where η(pt+i) denotes the V aR with confidence pt+i and L̄t+i denotes the CV aR(pt+i) con-
straint.
A simple portfolio optimization problem involves the maximization of a risk-averse objec-
tive function which balances the expected return and the possible risks. The mean-variance
variance objective function is used for this purpose and is given by,

max
Ut+k

mw
t+k + 1

2λV
w
t+k (3-51)
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where λ ≤ 1 denotes the level of risk aversion and Ut+k = [ut, ..., ut+k−1]T . In the case when
λ = 1, the V aR or CV aR constraint may be used. The CV aR(pt+i) constraint is preferred
due to its feature of convexity. The optimization problem is formulated as,

max
Ut+k

mw
t+k + 1

2V
w
t+k

s.t. FuUt+k ≤ f
E[wt+i ≤ η(pt+i)] ≥ L̄t+i, i = 1, ..., k

(3-52)

This optimization problem is known as the ’strategic asset allocation’ problem describing a
portfolio optimization problem with time-varying returns and objectives typical for long-term
investments. Since CV aR(pt+i) is difficult to estimate for all factors (states) with uncertainty,
it can be used in an exact penalty to form an optimization problem without state constraints,
given as,

max
Ut+k

mw
t+k + 1

2V
w
t+k +

k∑
i=1

c.CV aR(pt+i)

s.t. FuUt+k ≤ f
(3-53)

SMPC is applied and the portfolio is optimized at each time instant upto k steps ahead. This
is a straightforward application of the formulation developed in this thesis.

3-4-2 Joint Chance Constrained Multi Agent Systems

Consider multi-agent systems with state and control input constraints subject to unbounded
stochastic uncertainty. Users of multi-agent systems would like to bound the probability
of system failure rather than the probabilities of individual agents’ failure. In this regard,
joint chance constraints are imposed which limits the probability of having at least one agent
failing to satisfy any of its state constraints. In such cases, agents are coupled through the
join chance constraints even if they are not coupled through state constraints. Consider the
multi agent joint chance constraint FHOCP formulated as [54],

min
u1:I

0→N

I∑
i=1

J i(ui0→N ,xi0→N )

s.t. xik+1 = Aixik +Biuik + wik

uimin ≤ uik ≤ uimax

P
( I∧
i=1

gi(xi0→N ,wi
0→N ) ≤ 0

)
≥ 1− α

wik ∼ G(0,Qiw)
i = 1, ..., I, k = 0, ..., N − 1

(3-54)

where, at time k, xik ∈ Rnx is the state of the ith agent, uik ∈ Rnu is the control input of the
ith agent, wik ∈ Rnw is the additive disturbance on the ith agent, ui0→N = [uiT0 , ..., uiTN−1]T and
xi0→N = [xiT0 , ..., xiTN−1]T , and α risk bound of the system given by the user. The joint chance
constraint in the formulation requires that the probability that all the state constraints of all
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agents are satisfied must be more than 1− α, where α is the upper bound of the probability
of failure (risk bound). The joint constraint is hard to evaluate as it is difficult to compute
an integral of multi-variable probability distribution over an arbitrary region. For ease of
computation, the joint chance constraint is now approximated using the CV aR function as,

CV aR1−α(g(x,w)) = min
η∈R

(
η + 1

α
E[(g(x,w)− η)+]

)
(3-55)

where g(x,w) = max{g1(x1
0→N ,w1

0→N ), ..., gI(xI0→N ,wI
0→N )} and gi : Rnx × Rnw , and η ∈ R

is the Value at Risk of the system. The constraint is now given as,

CV aR1−α(g(x,w)) ≤ 0 (3-56)

The multi-agent FHOCP using joint chance constraints is now reformulated as a centralized
optimization problem, and is given as,

min
u1:I

0→N ,η

I∑
i=1

J i(ui0→N ,xi0→N )

s.t. xik+1 = Aixik +Biuik + wik

uimin ≤ uik ≤ uimax
CV aR1−α(g(x,w)) ≤ 0
wik ∼ G(0,Qiw)
i = 1, ..., I, k = 0, ..., N − 1

(3-57)

The new decision variables introduced are η1:I which is the V aR for each agent and they
represent the worst case threshold of risk bound for each agent. Using the exact penalty
method, the centralized state unconstrained optimization problem is given as,

min
u1:I

0→N ,η

I∑
i=1

J i(ui0→N ,xi0→N ) + c max{0, CV aR1−α(g(x,w))}

s.t. xik+1 = Aixik +Biuik + wik

uimin ≤ uik ≤ uimax
wik ∼ G(0,Qiw)
i = 1, ..., I, k = 0, ..., N − 1

(3-58)

In [54], the joint chance constraint is decomposed into individual constraints for each agent by
determining the bound on the risk. The bound on the risk is determined using the inverse of
the cumulative distribution of the univariate Gaussian distribution. This requires knowledge
of the variance of the probability distribution. Inaccurate information of the probability dis-
tribution will lead to erroneous decomposition of the joint chance constraint. As the sampled
approximation of CV aR does not require information about the probability distribution of
uncertainty, the formulation in (3-58) is a relative improvement over the formulation in [54].
Furthermore, this centralized problem can be made decentralized with suitable definition of
V aR, and hence the CV aR of each agent, to ensure that probability of system failure is
within specified bounds.

Janani Venkatasubramanian Master of Science Thesis



Chapter 4

Conclusion

In this chapter, the proposed tractable SMPC strategy using CV aR is summarized. Various
aspects of the proposed strategy, with focus on sample complexity of the approximation of
chance constraints and exact penalty method are discussed. Finally, this chapter concludes
with possible future extensions based on this thesis work.

4-1 Summary and Discussion

Satisfaction of constraints in the stochastic setting has proven to be significant complication.
In the presence of uncertainty affecting the system, hard constraints on the state are not
satisfied. Employing the probability descriptions of uncertainty affecting the state, chance
constraints are defined which allow constraint violation upto a certain admissible level. Since
the feasible set of states defined by a chance constraint is usually non-convex, convex approx-
imations such as the scenario approach and CV aR can be applied. In the case of unbounded
uncertainty, satisfaction of multiple affine constraints defined by the scenario approach is not
guaranteed. Therefore, for practicality, the state of the system is allowed to become infeasible
and violate constraints upto a certain level. To account for the performance degradation due
to constraint violation, a penalty is added to the cost of the system at the infeasible states to
form an augmented cost. To this end, incorporation of a penalty function in the cost gives rise
to a penalty method for optimization. An attempt is made towards using an exact penalty
method wherein, a single unconstrained minimization of the augmented cost gives the same
optimal solution as the original constrained problem. A suitable choice for forming an exact
penalty function is the CV aR function which determines the risk faced by the system at an
infeasible state. The CV aR, an expectation constraint, gives the expected loss when the worst
case threshold for constraint violation is crossed. As evaluation of expectation constraints is
difficult, a sampled-average approximation is used. A penalty parameter is used to weight
the penalty function and is ideally chosen as a value greater than some Lagrange multiplier
of the problem. With respect to the penalty function, the following technical considerations
are discussed.
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40 Conclusion

4-1-1 Sample Complexity

The CV aR constraint that is used to approximate the chance constraint is an expected value
constraint. It gives the risk on the system when the worst case threshold is crossed. A sample-
average approximation for CV aR is proposed in [51]. In the context of MPC, the scenario
approach is used to determine sample complexity [11, 65]. However, these methods prove
to be computationally taxing and lead to over-satisfaction of the constraints on the system.
A sample efficient method is provided in [12] by interpreting the probabilistic constraint
violations as the expected average-over-time of closed-loop constraint violations.

4-1-2 Penalty Parameter for Exact Penalty Function

For a penalty method to be exact, a single unconstrained minimization of the cost must yield
the same optimal solution as the original constrained problem. The penalty parameter that
weights the penalty function is chosen as a value greater than a Lagrange multiplier of the
problem. A bound on the maximum magnitude on the Lagrange multiplier can be obtained
as explained in [74]. This method uses the optimal value of the dual function of the cost, and
this optimal value is not readily available. Hence, an ad hoc method of varying the penalty
parameters to observe the effect of the change of parameters on the performance is used in the
chosen double integrator example. As is expected of regular penalty methods, as the penalty
parameter increases in value, the performance of the SMPC strategy observably improves.

4-2 Future Directions

This thesis presents a penalty method for SMPC using CV aR as the penalty function. The
penalty parameter is usually a value greater than a Lagrange multiplier of the problem. This
parameter is varied in an ad hoc manner to demonstrate its effects on performance. For future
work, there is scope to determine how the penalty parameter must be selected and varied to
evaluate performance of the SMPC strategy. Feasibility of the unconstrained problem using
an exact penalty method would imply feasibility of the original state-constrained problem.
However, convergence and other notions of stability must be explored in a rigorous manner
for this formulation. Further, this formulation can be easily adapted to multi-agent systems
to decompose joint chance constraints by using CV aR. It is easy to determine a centralized
optimization scheme for the multi-agent system using the CV aR penalty method. Efforts
can be taken in the direction of forming a decentralized scheme for multi-agent systems. This
would lead to a tractable formulation for distributed SMPC.
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Glossary

List of Acronyms

MPC Model Predictive Control

RMPC Robust Model Predictive Control

SMPC Stochastic Model Predictive Control

CV aR Conditional Value at Risk

CPI Controlled Positively Invariant

RHC Receding Horizon Control

OCP Optimal Control Problem

FHOCP Finite Horizon Optimal Control Problem

MCPI Maximal Controlled Positively Invariant

CCP Chance Constrained Problem

SCMPC Scenario-based SMPC

FHSCP Finite Horizon Scenario Problem

V aR Value at Risk
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