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Abstract

In this paper, we introduce a random environment for the exclusion process in Zd obtained by
ssigning a maximal occupancy to each site. This maximal occupancy is allowed to randomly vary among
ites, and partial exclusion occurs. Under the assumption of ergodicity under translation and uniform
llipticity of the environment, we derive a quenched hydrodynamic limit in path space by strengthening
he mild solution approach initiated in Nagy (2002) and Faggionato (2007). To this purpose, we prove,
mploying the technology developed for the random conductance model, a homogenization result in
he form of an arbitrary starting point quenched invariance principle for a single particle in the same
nvironment, which is a result of independent interest. The self-duality property of the partial exclusion
rocess allows us to transfer this homogenization result to the particle system and, then, apply the
ightness criterion in Redig et al. (2020).
c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Hydrodynamic limit; Random environment; Random conductance model; Arbitrary starting point quenched
nvariance principle; Duality; Mild solution

1. Introduction

In recent years there has been extensive study of the scaling limit of random walks in both
tatic and dynamic random environment. In this realm, the random conductance model (RCM)
akes a prominent place. Various analytic tools have been developed to prove scaling properties

∗ Corresponding author.
E-mail addresses: s.floreani@tudelft.nl (S. Floreani), f.h.j.redig@tudelft.nl (F. Redig), federico.sau@ist.ac.at

(F. Sau).
https://doi.org/10.1016/j.spa.2021.08.006
0304-4149/ c⃝ 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY
icense (http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/spa
https://doi.org/10.1016/j.spa.2021.08.006
http://www.elsevier.com/locate/spa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spa.2021.08.006&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:s.floreani@tudelft.nl
mailto:f.h.j.redig@tudelft.nl
mailto:federico.sau@ist.ac.at
https://doi.org/10.1016/j.spa.2021.08.006
http://creativecommons.org/licenses/by/4.0/


S. Floreani, F. Redig and F. Sau Stochastic Processes and their Applications 142 (2021) 124–158

p
r
s
a
c

w
o

u

c
v
s

W

h
t
e
w

such as quenched invariance principles, local central limit theorems as well as detailed estimates
on the random walks such as heat kernel bounds (see, e.g., [10] for an overview on the subject).

A natural next step is to consider interacting particle systems in random environment, where
articles model transport of mass or energy, while the random environments model, e.g., impu-
ities or defects in the conducting material. The macroscopic effects of the environment may be
tudied through scaling limits such as hydrodynamic limits, fluctuations and large deviations
round the hydrodynamic limit, as well as via the study of non-equilibrium behavior of systems
oupled to reservoirs which, in random environment, is still a challenge.

Due to the presence of the random environment, these systems are typically non-gradient
and standard gradients methods to study the hydrodynamic behavior do not carry on. Nev-
ertheless, interacting particle systems with (self-)duality are especially suitable to make the
step from single-particle scaling limits towards the derivation of the macroscopic equation for
the many-particle system. Indeed, in such systems, the macroscopic equation can be guessed
from the behavior of the expectation of the local particle density which, in turn, amounts to
understand the scaling behavior of a single “dual” particle. However, this intuitive “transference
principle” from the scaling limit of one random walker to the macroscopic equation has to be
made rigorous.

1.1. Model

In the present work, we introduce a random environment for the exclusion process in Zd

obtained by assigning a maximal occupancy αx ∈ N to each site x ∈ Zd and we study its
hydrodynamic limit.

In what follows, we refer to random environment as the collection α = {αx , x ∈ Zd
}, for

which we assume the following.

Assumption 1.1 (Ergodicity and Uniform Ellipticity of α). We fix a constant c ∈ N for
hich the random environment α = {αx , x ∈ Zd

} is chosen according to a distribution P
n {1, . . . , c}Z

d
, which is stationary and ergodic under translations {τx , x ∈ Zd

} in Zd .

In particular, all realizations α of the random environment satisfy the following uniform
pper and lower bounds:

1 ≤ αx ≤ c , x ∈ Zd . (1.1)

Let us introduce the exclusion process in the environment α (see Fig. 1) and indicate the
onfiguration of particles by η = {η(x), x ∈ Zd

}, consisting of a collection of occupation
ariables indexed by the sites of Zd . These variables indicate the number of particles at each
ite, i.e.,

η(x) := number of particles at x .

e define the configuration space X α (endowed with the product topology) as

X α
:= Πx∈Zd {0, . . . , αx } ; (1.2)

ere the superscript emphasizes the dependence of the configuration space on the realization of
he environment. Hence, given a realization α of the random environment, the partial (simple)
xclusion process in the environment α, abbreviated by SEP(α), is the Markov process on X α

α
hose generator acts on bounded cylindrical functions ϕ : X → R, i.e., functions which
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Fig. 1. Schematic description of the one-dimensional partial exclusion process in the environment α = {αx , x ∈ Z},
here αx ∈ N denotes the maximal occupancy of site x ∈ Z.

epend only on a finite number of occupation variables, as follows (all throughout the paper,
·| will always denote the Euclidean norm):

Lαϕ(η) =

∑
{x,y}⊆Zd ,
|x−y|=1

{
η(x)(αy − η(y)) (ϕ(ηx,y) − ϕ(η))

+ η(y)(αx − η(x)) (ϕ(ηy,x ) − ϕ(η))

}
. (1.3)

n the above formula, ηx,y denotes the configuration obtained from η by removing a particle
if any) from the site x and adding a particle to the site y, i.e.,

ηx,y
=

{
η − δx + δy if η(x) ≥ 1 and η(y) < αy

η otherwise .
(1.4)

Condition (1.1) ensures the existence of the process (see, e.g., [35, Chapter 1]), which we
call {ηt , t ≥ 0}, defined via the generator (1.3). We highlight that SEP(α) is a inhomogeneous
variant of the partial exclusion process considered in [42] (see also [27]), where αx = m for
any x ∈ Zd and m is a natural number, while, for the choice αx = 1 for any x ∈ Zd , we recover
the simple symmetric exclusion process in Zd (see, e.g., [35]). Moreover, if there is only one
particle in the system, no interaction takes place and we are left with a single random walk
in the environment α, that we call random walk in the random environment α, abbreviated by
RW(α). More precisely, RW(α) is the Markov process {Xα

t , t ≥ 0} on Zd with law Pα induced
y the infinitesimal generator given by

Aα f (x) :=

∑
y∈Zd

|y−x |=1

αy ( f (y) − f (x)) , (1.5)

here f : Zd
→ R is a bounded function. For all x ∈ Zd , let Xα,x

= {Xα,x
t , t ≥ 0} denote the

andom walk RW(α) started in x ∈ Zd .

.2. Quenched hydrodynamics and discussion of related literature

The main result of this paper, Theorem 2.2, states that, under Assumption 1.1, for almost
very realization of the environment α, the path-space hydrodynamic limit of SEP(α) is a
eterministic diffusion equation with a non-degenerate diffusion matrix not depending on the
ealization of the environment. To this purpose, we run through the following steps. First, we
126
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show that SEP(α) is dual to RW(α) and we express the occupation variables of SEP(α) at
ime t as mild solutions of a lattice stochastic partial differential equation, linear in the drift.

Then we show that the microscopic disorder α undergoes a homogenization effect, in the form
f a quenched invariance principle for the random walks RW(α). In conclusion, we transfer
his homogenization effect from the random walk to the interacting particle system via the
forementioned duality. To the essence, this transference principle boils down to the following
wo requirements:

(i) Consistency of the initial conditions (see Definition 2.1) stating, roughly speaking, that
a law of large numbers holds for the initial particle densities;

(ii) The validity of a quenched homogenization result for the random walks RW(α) in the
form of an arbitrary starting point quenched invariance principle (see (3.1)).

The mild solution approach to hydrodynamic limits in random environment has been
nitiated in [39] in Zd with d = 1 and further developed to any dimension and with less
estrictive conditions in [21]. Hence, the idea of deriving the hydrodynamic limit in random
nvironment from a homogenization result for the dual random walk is not new. These
orks, though, lack of a proof of path space tightness for the empirical density fields of the
article system, as more classical tightness criteria such as Aldous-Rebolledo and Censov (see,
espectively, e.g., [33] and [17]) do not apply when employing a mild solution representation
or the density fields.

On the other hand, along with the derivation of the limiting hydrodynamic equation, the
roof of tightness for particle systems in random environment has been obtained in several
orks by introducing the so-called corrected empirical density field, an auxiliary process for
hich the evolution equation “closes” and the aforementioned tightness criteria apply. Thus,
ne has to face the extra step consisting in proving that the empirical density field and the
orrected one are close in a suitable sense. The idea of the corrected empirical density field has
een introduced in [31] for the exclusion process with random conductances on Zd with d = 1
nd later extended to the d-dimensional torus in [28], with d ≥ 1, and more general geometries
n [30]. The construction of the corrected empirical density field as in [28] is general enough
o apply, by employing the convergence of either the random walk generators or the associated
irichlet forms, also to different contexts, like in [25] for a one-dimensional subdiffusive

xclusion process, [23] for a zero range process with random conductances and our context of
ite-varying maximal occupancy exclusion process. However, we believe that a general strategy
o establish tightness and the hydrodynamic limit for sequences of tempered distribution-valued

ild solutions may be of help when stochastic convolutions, although not being martingales,
nsure a stronger space–time regularity of the stochastic processes as in the context, e.g., of
aussian SPDEs. In [40], in which the hydrodynamic limit of the simple exclusion process

n presence of dynamic random conductances is studied, a criterion for relative compactness,
ased on the notion of uniform stochastic continuity, has been presented. We apply this criterion
o our context of partial exclusion, which has the advantages to directly apply to the sequence
f mild solutions and avoid the introduction of the auxiliary sequence of the corrected empirical
ensity fields.

Next to the problem of ensuring relative compactness for the empirical density, another main
hallenge in the study of scaling limits of particle systems in random environment is to prove
homogenization result for the underlying environment. To get the desired homogenization

esult we employ, via a suitable random time change, several concepts and results developed
n the context of the random conductance model (RCM) (see, e.g., [10]). So far, the technology
127
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developed in the last two decades for RCM has not been employed in the context of particle
systems in random environment, other types of convergence being preferred. In particular, either
Γ -convergence (see, e.g., [30]) or two-scale convergence (see, e.g., [22,24]) were employed to
recover quenched hydrodynamic limits for the simple exclusion process in more general settings
than RCM with uniformly elliptic conductances.

For the RW(α) under Assumption 1.1, one does not need such a level of generality and it
s natural to try to use the existing quenched invariance principles for the random conductance

odel. However all quenched invariance principles for RCM (see, e.g., [1–3,7,43]) are derived
or the walk starting at the origin, which is, in general, too weak as a convergence to ensure
he quenched hydrodynamic limit for the particle system. To fill the gap between quenched
nvariance principle and quenched hydrodynamic limit, a homogenization result involving the
andom walks RW(α) starting from all spatial locations suffices. To this purpose, we choose to
xtend the quenched invariance principle valid for the random walk starting from the origin to
alks starting from arbitrary sequences of starting points; we believe the latter to be a result of

nterest in its own right. Note that this strengthening is not trivial due to the lack of translation
nvariance of the law of the random walk in quenched random environment.

The problem of deriving quenched arbitrary starting point invariance principles has been
osed in [41] and only recently solved in [14] for the static random conductance model on the
upercritical percolation cluster. In our context of random environment α, in order to prove the
uenched invariance principle with arbitrary starting positions for the dual random walk, we
se the formalism and ideas from [14].

The connection between the quenched invariance principle in RCM and hydrodynamics
n random environment seems to be promising, at least in the case of particle systems with
elf-duality, and this gives hope, for future works, to obtain path-space hydrodynamic limit
lso in degenerate environments. In conclusion, we remark that other strategies than self-
uality to prove hydrodynamic limits for interacting particle systems in random environment
re available and rely on the non-gradient methods (see, e.g., [26]) and methods based on
iemann-characteristics for hyperbolic concentration laws (see, e.g., [5]).

The remaining of the paper is organized as follows. In Section 2 we state the main theorem –
he quenched hydrodynamic limit in path space – and explain the strategy of the proof in more
etail. Section 3 is devoted to the arbitrary starting point quenched invariance principle and
ection 4 to the proof of the hydrodynamic limit. The proofs of some auxiliary results stated

n the body of the paper are collected in separate appendices at the end of the manuscript.

. Main result and strategy of the proof

As observable of the macroscopic behavior of the interacting particle system, we consider
he empirical density fields, indicated, for all N ∈ N, by XN

= {XN
t , t ≥ 0}. Given, for a

fixed realization of the environment α, a sequence of probability measures να
= {να

N }N∈N on
the configuration space X α , for all N ∈ N, the empirical density field XN is a measure-valued

rocess obtained as a function of the system η = {ηt , t ≥ 0} as follows:

XN
t :=

1
N d

∑
x∈Zd

δ x
N
ηt N2 (x) , (2.1)

where η is the process SEP(α) introduced in Section 1 initially distributed as να
N . We refer

to Pα
ναN

as the probability measure on the Skorokhod space D([0,∞),X α) of such process
and let Eα

α denote the corresponding expectation, while Pα and Eα indicate the law and

νN

η η
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the corresponding expectation, respectively, of the process starting from the configuration η.
e note that the definition (2.1) encodes a space–time diffusive rescaling of the microscopic

ystem. Moreover, due to the uniform upper bound in (1.1) on the maximal occupancies, we
iew (as done, e.g., in the textbook [17, Chapter 2]) the empirical density fields as processes
n D([0,∞),S ′(Rd )); here, S ′(Rd ) denotes the topological dual of the Schwartz class of
mooth and rapidly decreasing functions S (Rd ) and D([0,∞),S ′(Rd )) the Skorokhod space
f S ′(Rd )-valued càdlàg trajectories. For further details on the construction and topologies

of these spaces, we refer to, e.g., [17, Chapter 2, Section 6], [38], as well as [32, Chapter 2,
Section 4]. Hence, for all t ≥ 0, the action of XN

t on the test function G ∈ S (Rd ) is given
y

XN
t (G) :=

1
N d

∑
x∈Zd

G( x
N ) ηt N2 (x) . (2.2)

Let us remark that this choice of the functional spaces D([0,∞),S ′(Rd )), while being standard
when studying fluctuation fields, is less canonical in the context of hydrodynamic limits (cf.,
e.g., [33]). The motivation behind this choice is twofold. On the one side, the nuclear structure
of the pair S (Rd ) and S ′(Rd ) allows, in Section 4.1, to employ Mitoma’s tightness criterion
for processes in D([0,∞),S ′(Rd )), see [38]. On the other side, in Section 4.2, we need that
S (Rd ) is dense and invariant under the action of the semigroup on C0(Rd ) – the Banach space

f continuous and vanishing at infinity functions endowed with the supremum norm – of the
-dimensional Brownian motion {BΣt , t ≥ 0} with diffusion matrix Σ ∈ Rd×d , i.e., the strongly

continuous and contraction semigroup {SΣt , t ≥ 0} on C0(Rd ) associated to the following
second-order differential operator

AΣ
=

1
2∇ · (Σ ∇) .

As our goal is to study the limit of the N th empirical density field XN as N goes to infinity,
e need to require that the initial particle configurations suitably rescale to a macroscopic
rofile. We make this requirement precise in the following definition, in which P(X α) denotes
he space of probability measures on X α .

efinition 2.1 (Consistency of the Initial Conditions). We say that, for a given environment α,
sequence of probabilities να

:= {να
N }N∈N in P(X α) is consistent to a continuous macroscopic

rofile ρ̄ : Rd
→ [0, 1] if the following convergence

να
N

⎛⎝⎧⎨⎩η ∈ X α
:

⏐⏐⏐⏐⏐⏐ 1
N d

∑
x∈Zd

G( x
N )η(x) −

∫
Rd

G(u)EP [α0] ρ̄(u) du

⏐⏐⏐⏐⏐⏐ > δ

⎫⎬⎭
⎞⎠ −→

N→∞

0

(2.3)

holds for all G ∈ S (Rd ) and δ > 0.

We are ready to state our main theorem, whose proof is deferred to Section 4.

Theorem 2.2 (Hydrodynamic Limit in Quenched Random Environment). Let ρ̄ : Rd
→ [0, 1]

be a continuous macroscopic profile and, for all realizations of the environment α, let να
=

{να
N }N∈N be a sequence of probabilities on P(X α). Recall Definition 2.1, define

C :=

{
α ∈ {1, . . . , c}Z

d
: να is consistent with ρ̄

}
, (2.4)

and assume that P(C) = 1.
129
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Then, there exists two measurable subsets A and B ⊆ {1, . . . , c}Z
d

with P(A) = P(B) = 1
given, respectively, in (2.16) and (3.11)) such that, for all α ∈ A ∩ B ∩ C and for all T > 0,
e have the following weak convergence in D([0, T ],S ′(Rd )):{

XN
t , t ∈ [0, T ]

}
H⇒
N→∞

{
πΣt , t ∈ [0, T ]

}
, (2.5)

here the empirical density fields {XN
t , t ∈ [0, T ]}N∈N are given as in (2.1) and

πΣt (du) := EP [α0] ρΣt (u) du , (2.6)

ith {ρΣt , t ≥ 0} being the unique strong solution in Rd to{
∂tρ =

1
2∇ · (Σ ∇ρ)

ρ0 = ρ̄ .
(2.7)

n particular, the diffusion matrix Σ ∈ Rd×d in (2.7) and given in Proposition 3.4 is non-
egenerate, symmetric, positive-definite and does not depend on the particular realization of
he environment.

emark 2.3 (Existence and Uniqueness of the Limit). Let Cb(Rd ) denote the Banach space
f continuous and bounded functions from Rd to R endowed with the supremum norm. It is
ell-known (see, e.g., [20, Chapter 2, Section 3.1, Theorem 1]) that, ρ̄ being bounded and

ontinuous, the strong solution {ρΣt , t ≥ 0} to (2.7) exists, is unique and admits the following
tochastic representation in terms of the contraction and strongly continuous semigroup of
rownian motion {BΣt , t ≥ 0} on Cb(Rd ), still referred to – with a slight abuse of notation
as {SΣt , t ≥ 0}:

ρΣt = SΣt ρ̄ , t ≥ 0 . (2.8)

oreover, by [29, Theorem 1.4], there exists a unique element {πt , t ≥ 0} in the space
f S ′(Rd )-valued continuous trajectories C([0,∞),S ′(Rd )) (see, e.g., [29], [32, Chapter 2,
ection 4]) such that either one of the following two identities hold for all t ≥ 0 and

G ∈ S (Rd ):

πt (G) = π ρ̄(G) +

∫ t

0
πs(AΣG) ds or πt (G) = π ρ̄(SΣt G) , (2.9)

here

π ρ̄(du) := EP [α0] ρ̄(u) du . (2.10)

s a consequence of (2.8) and∫
Rd

SΣt G(u) H (u) du =

∫
Rd

G(u)SΣt H (u) du , G ∈ S (Rd ) , H ∈ Cb(Rd ) , t ≥ 0 ,

(2.11)

uch a unique element must coincide with {πΣt , t ≥ 0} in (2.6).

Before discussing the strategy of proof of Theorem 2.2, we present an ergodic theorem
Lemma 2.5) of importance at various stages of the paper; in particular, this allows us to exhibit
n Proposition 2.6 a class of initial distributions for SEP(α) which verify the assumption of
heorem 2.2. Preliminarily, we need the following definition.
130
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Definition 2.4. A subset F of C0(Rd ) is said to be equicontinuous if

lim
δ↓0

sup
u,v∈Rd
|u−v|<δ

sup
F∈F

|F(u) − F(v)| = 0 (2.12)

holds, bounded if

sup
F∈F

sup
u∈Rd

|F(u)| < ∞ (2.13)

holds, and uniformly integrable if

sup
F∈F

|F(u)| ≤ f (u) , u ∈ Rd , (2.14)

olds for some function f ∈ L1(Rd ) ∩ C0(Rd ).

emma 2.5. Under Assumption 1.1 on the environment, for P-a.e. realization of the
nvironment α, the following holds:

For all equicontinuous, bounded and uniformly integrable subsets F of C0(Rd ) (see
Definition 2.4), we have

sup
F∈F

⏐⏐⏐⏐⏐⏐ 1
N d

∑
x∈Zd

F( x
N )αx − EP [α0]

∫
Rd

F(u) du

⏐⏐⏐⏐⏐⏐ −→
N→∞

0 . (2.15)

The proof of Lemma 2.5 can be found in Appendix B. Moreover, we find convenient to
define

A :=

{
α ∈ {1, . . . , c}Z

d
: the claim in Lemma 2.5 holds for α

}
. (2.16)

By a detailed balance computation, it is simple to check that the following product measures

να
p = ⊗

x∈Zd
Binomial(αx , p) , (2.17)

re reversible measures for SEP(α), for all parameters p ∈ [0, 1]. In general, if the parameter p
depends on the site x ∈ Zd , the corresponding Bernoulli product measures are not invariant for
the exclusion dynamics. Nevertheless, as shown in Proposition 2.6, such probability measures
with slowly varying parameter satisfy the assumptions of Theorem 2.2.

Proposition 2.6. For all α ∈ A (see (2.16)) and for all continuous profiles ρ̄ : Rd
→ [0, 1],

the sequence of probabilities {ν
α,ρ̄
N }N∈N in P(X α) given, for all N ∈ N, by

ν
α,ρ̄
N := ⊗

x∈Zd
Binomial(αx , ρ̄( x

N )) (2.18)

s consistent with the continuous profile ρ̄ (Definition 2.1), thus, satisfying the assumption of
heorem 2.2.

Proof. Note that, for all realizations of the environment α, N ∈ N and x ∈ Zd , one has

Eα

ν
α,ρ̄
N

[η(x)] = αx ρ̄( x
N ) and Eα

ν
α,ρ̄
N

[(
η(x) − αx ρ̄( x

N )
)2
]

= αx ρ̄( x
N )
(
1 − ρ̄( x

N )
)
.

(2.19)
131
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Hence, by Chebyshev’s inequality, for all δ > 0 and G ∈ S (Rd ),

ν
α,ρ̄
N

⎛⎝⎧⎨⎩η ∈ X α
:

⏐⏐⏐⏐⏐⏐ 1
N d

∑
x∈Zd

G( x
N )
(
η(x) − αx ρ̄( x

N )
)⏐⏐⏐⏐⏐⏐ > δ

⎫⎬⎭
⎞⎠ −→

N→∞

0 (2.20)

holds true for all α. With the observation that, for all functions G ∈ S (Rd ) and continuous
profiles ρ̄ : Rd

→ [0, 1], the product of G and ρ̄ is continuous, bounded and integrable,
Lemma 2.5 yields the desired result for α ∈ A. □

2.1. Duality

For all given environments α, SEP(α) and RW(α), besides being the latter a particular
instance of the former when the system consists of only one particle, are connected through
the notion of stochastic duality, or, shortly, duality. This notion occurs in various contexts
(see, e.g., [35]) and, in the particular case of interacting particle systems, turns useful when
quantities of a many-particle system may be studied in terms of quantities of a simpler, typically
a-few-particle, system. Moreover, when this duality relation is established between two copies
of the same Markov process, one speaks about self-duality.

SEP(α) is a self-dual Markov process, meaning that there exists a function Dα
: X α

f ×X α
→

(with X α
f being the subset of configurations in X α with finitely-many particles), called

elf-duality function, given by

Dα(ξ, η) :=

∏
x∈Zd

η(x)!
(η(x) − ξ (x))!

(αx − ξ (x))!
αx !

1{ξ (x)≤η(x)} ,

or which the following self-duality relation holds: for all ξ ∈ X α
f and η ∈ X α ,

Lα Dα(·, η)(ξ ) = Lα Dα(ξ, ·)(η) . (2.21)

n particular, the l.h.s. corresponds to apply the generator Lα to the function D(·, η) and
valuate the resulting function at ξ ; similarly for the r.h.s. This property was proven for the
rst time in [42] for the homogeneous partial exclusion, i.e., for αx = m ∈ N for all x ∈ Zd ,
see also [27]) and extends to the random environment context.

We are interested in a particular instance of this self-duality property, namely when the dual
onfiguration consists in a single particle configuration, i.e., ξ = δx for some x ∈ Zd . In this
ase the function Dα(δx , η) =: Dα(x, η) reads

Dα(x, η) =
η(x)
αx

(2.22)

nd the self-duality relation reduces to

Aα Dα(·, η)(x) = Lα Dα(x, ·)(η) , (2.23)

hich may be checked by a straightforward computation. Relation (2.23) has to be interpreted
s a duality relation between SEP(α) and RW(α) with duality function Dα given in (2.22).

Notice that the generator Aα is, in view of Assumption 1.1, a bounded operator on both
anach spaces ℓ∞(Zd ,α) and ℓ1(Zd ,α), where α plays the role of reference measure on Zd

ssigning to each site x ∈ Zd the positive value αx . Likewise, Aα is a bounded operator on the
eighted Hilbert space ℓ2(Zd ,α) whose inner product is defined as

⟨ f, g⟩ :=

∑
f (x) g(x)αx . (2.24)
x∈Zd
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With a slight abuse of notation, we continue to use ⟨·, ·⟩ also for the bilinear map on
1(Zd ,α) × ℓ∞(Zd ,α) defined by the r.h.s. of (2.24); moreover, we let Aα and {Sα

t , t ≥ 0}

enote the generator and corresponding semigroup associated to RW(α), indistinguishably of
he Banach space they act on.

As it follows from a detailed balance relation, RW(α) is reversible with respect to the
weighted counting measure α. More precisely, Aα is self-adjoint in ℓ2(Zd ,α) and, moreover,
or all f ∈ ℓ1(Zd ,α) (resp. ℓ2(Zd ,α)) and g ∈ ℓ∞(Zd ,α) (resp. ℓ2(Zd ,α)) and for all t ≥ 0,
e have

⟨Sα
t f, g⟩ = ⟨ f, Sα

t g⟩ , (2.25)

r, equivalently,

αx pα
t (x, y) = αy pα

t (y, x) , x, y ∈ Zd , t ≥ 0 , (2.26)

or the corresponding transition probabilities.

.2. Strategy of the proof

The self-duality relation (2.23) suggests that the limiting collective behavior of the particle
ensity is connected to the limiting behavior of the diffusively rescaled RW(α). Let us describe
he strategy of the proof of our main result and the role of this connection.

.2.1. Mild solution representation
As a first observation, by following closely [39] and [21], for all realizations of the

nvironment α, we apply Dynkin’s formula to the bounded cylindrical functions {Dα(x, · ) :
α

→ R}x∈Zd given in (2.22): for all initial configurations η ∈ X α , we have

Dα(x, ηt ) = Dα(x, η) +

∫ t

0
Lα Dα(x, · )(ηs) ds + Mα

t (x) , x ∈ Zd , t ≥ 0 , (2.27)

here {Mα
t (x), t ≥ 0}x∈Zd is a family of martingales w.r.t. the natural filtration of the process

hose joint law is characterized in terms of their predictable quadratic covariations (see (4.2)–
4.3); for an explicit construction of these martingales, see Appendix A). We remark that in
2.27) Lα acts on the function Dα(·, ·) w.r.t. the η-variables. We recall from (2.23) that the
unction Dα

: Zd
× X α

→ R of the joint system is a duality function between SEP(α) and
W(α). Hence, by using (2.23), we rewrite (2.27) as

Dα(x, ηt ) = Dα(x, η) +

∫ t

0
Aα Dα(·, ηs)(x) ds + Mα

t (x) , x ∈ Zd , t ≥ 0 , (2.28)

ielding a system (indexed by x ∈ Zd ) of linear – in the drift – stochastic integral equations. As
consequence, the solution of this system may be represented as a mild solution by considering

he semigroup {Sα
t , t ≥ 0} associated to the generator Aα of RW(α), i.e., we have

Dα(x, ηt ) = Sα
t Dα(·, η)(x) +

∫ t

0
Sα

t−s dMα
s (x) , x ∈ Zd , t ≥ 0 , (2.29)

here∫ t

0
Sα

t−s dMα
s (x) :=

∫ t

0

∑
Pα(Xα,x

t−s = y) dMα
s (y) (2.30)
y∈Zd
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(for a definition of Xα,x and its law, see the end of Section 1.1; for a proof of the absolute
convergence of the latter infinite sum, we refer the reader to Lemma A.2).

Combining the definitions (2.1)–(2.2) and (2.22) with the mild solution representation in
(2.29), we rewrite the empirical density fields, for all test functions G ∈ S (Rd ), as follows:

XN
t (G) =

1
N d

∑
x∈Zd

G( x
N ) Dα(x, ηt N 2 )αx

=
1

N d

∑
x∈Zd

G( x
N ) Sα

t N 2 Dα(·, η0)(x)αx +
1

N d

∑
x∈Zd

G( x
N )

(∫ t N 2

0
Sα

t N 2−s dMα
s (x)

)
αx .

urthermore, because both Aα and the corresponding semigroup are self-adjoint in ℓ2(Zd ,α)
see (2.25)), we obtain:

XN
t (G) =

1
N d

∑
x∈Zd

SN ,α
t N2 G( x

N ) Dα(x, η0)αx +
1

N d

∑
x∈Zd

(∫ t N2

0
SN ,α

t N 2−s
G( x

N ) dMα
s (x)

)
αx

=
1

N d

∑
x∈Zd

SN ,α
t N2 G( x

N ) η0(x) +
1

N d

∑
x∈Zd

(∫ t N2

0
SN ,α

t N2−s
G( x

N ) dMα
s (x)

)
αx

= XN
0 (SN ,α

t N2 G) +

∫ t

0
dMN

s (SN ,α
t N2−s

G) , (2.31)

here we adopted the shorthand, for all G ∈ S (Rd ),∫ t

0
dMN

s (SN ,α
t N2−s

G) :=
1

N d

∑
x∈Zd

(∫ t N2

0
SN ,α

t N2−s
G( x

N ) dMα
s (x)

)
αx , (2.32)

with

SN ,α
t G( x

N ) := Sα
t G( ·

N )(x) , x ∈ Zd , t ≥ 0 . (2.33)

ence, we obtain in (2.31) the same decomposition as in, e.g., [21,25,39,40], in which the
mpirical density field is written as a sum of its expectation (the first term on the r.h.s. of
2.31)), and “noise”(the second term), which is not a martingale.

.2.2. From the arbitrary starting point invariance principle towards the path space
ydrodynamic limit

As in those works, our first aim is to prove that, for P-a.e. α, the finite-dimensional
istributions of the empirical density fields converge in probability to those of the solution of the
ydrodynamic equation (2.7). Moreover, since convergence in probability of finite-dimensional
istributions is implied by the convergence in probability of single marginals, it suffices to
rove convergence of one-dimensional distributions. In particular, we will show in Section 4
hat, for all G ∈ S (Rd ), t ≥ 0 and δ > 0,

Pα
ναN

(⏐⏐⏐⏐⏐
∫ t N2

0
dMN

s (SN ,α
t N2−s

G)

⏐⏐⏐⏐⏐ > δ

)
−→
N→∞

0 (2.34)

holds for all environments α, and that (recall (2.10))

Pα
α

(⏐⏐⏐XN (SN ,α
2 G) − π ρ̄(SΣG)

⏐⏐⏐ > δ
)

−→ 0 (2.35)

νN 0 t N t N→∞
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holds for P-a.e. environment α. Hence, provided that {XN
t , t ≥ 0} is relatively compact in

([0,∞),S ′(Rd )) and that all limit points belong to C([0,∞),S ′(Rd )), (2.34)–(2.35) and the
niqueness result in Remark 2.3 would then yield a quenched (w.r.t. the environment law P)
onvergence in probability of finite-dimensional distributions for the empirical density fields.

More specifically, the convergence in (2.34) (whose proof is close in spirit to that in all
ther related works) relies on Chebyshev’s inequality and the uniform upper bound (1.1) on
he environment α. This result is established in Section 4.2 below. For what concerns (2.35),
s done in the aforementioned references, the idea is to go through a homogenization result
hich ensures convergence – in a sense to be made precise – of semigroups for P-a.e. α. In
articular, provided α is an environment for which the following L1-convergence

1
N d

∑
x∈Zd

⏐⏐⏐SN ,α
t N 2 G( x

N ) − SΣt G( x
N )
⏐⏐⏐αx −→

N→∞

0 , t ≥ 0 , (2.36)

olds for all G ∈ S (Rd ), Markov’s inequality, the uniform boundedness of the occupation
variables {η(x), x ∈ Zd

} and (2.36) yield

Pα
ναN

(⏐⏐⏐XN
0 (SN ,α

t N 2 G) − XN
0 (SΣt G)

⏐⏐⏐ > δ
)

−→
N→∞

0 , t ≥ 0 , (2.37)

or that same environment α and all test functions G ∈ S (Rd ). By combining (2.37) – which
ill hold for P-a.e. α – with the assumption of P-a.s. consistency of initial conditions (see the

tatement of Theorem 2.2 and Definition 2.1), we obtain (2.35) for P-a.e. α. All the details of
he proof of (2.35) may be found in Proposition 4.4.

In view of these considerations, the proof of convergence of the finite dimensional distribu-
ions of the empirical density fields boils down to show (2.34) and (2.36). Several methods have
een developed in, e.g., [21,24,25,39] to obtain (2.36). The road we follow here is to derive
2.36) from quenched invariance principle results for random conductance models (RCM) (see,
.g., [10]) in the following two steps:

(i) By viewing our random walks RW(α) as random time changes of suitable RCM, we
derive from well-known analogous results in the context of RCM, a quenched invariance
principle for the random walk RW(α) started from the origin.

(ii) By means of the space–time Hölder equicontinuity of the semigroups {SN ,α
t , t ≥ 0}N∈N

(see (2.33) for its definition), heat kernel upper bounds and building on the ideas in [14,
Appendix A.2], we obtain: for P-a.e. realization of the environment α,

For all T > 0 and G ∈ C0(Rd ),

sup
t∈[0,T ]

sup
x∈Zd

⏐⏐⏐SN ,α
t N2 G( x

N ) − SΣt G( x
N )
⏐⏐⏐ −→

N→∞

0 ,

holds true.

(2.38)

elating the above convergence of Markov semigroups to the weak convergence in path-space
f the corresponding Markov processes, it is straightforward to check that (2.38) implies the
eak convergence of the finite dimensional distributions of RW(α) with arbitrary starting
ositions, i.e., for P-a.e. α,
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For all u ∈ Rd and for any sequence of points {xN }N∈N ⊆ Zd such that xN
N → u as

N → ∞,

Eα

[
G1

(
X

α,xN
t1 N2

N

)
· · · Gn

(
X

α,xN
tn N2

N

)]
−→
N→∞

E
[
G1

(
BΣ,ut1

)
· · · Gn

(
BΣ,utn

)]
holds true for all n ∈ N, 0 ≤ t1 < . . . < tn and G1, . . . ,Gn ∈ C0(Rd ), where
{BΣ,ut := BΣt + u, t ≥ 0} is the Brownian motion introduced in Section 2 started
from u ∈ Rd .

holds true for all n ∈ N, 0 ≤ t1 < . . . < tn and G1, . . . ,Gn ∈ C0(Rd ), where {BΣ,ut :=

BΣt + u, t ≥ 0} is the Brownian motion introduced in Section 2 started from u ∈ Rd .
Moreover, as a direct consequence of the heat kernel upper bound in Proposition 3.7,

he tightness of the random walks {
1
N Xα,xN

t N2 , t ≥ 0}N∈N in D([0,∞),Rd ) can also be
erived (see, e.g., [40, Lemma C.3]). In view of this implication, we will refer to (2.38)
s the arbitrary starting point invariance principle. See also Theorem 3.1 for a slightly
ore precise statement regarding the convergence in (2.38) and Remark 3.8 for a discussion

n the equivalence between (2.38) and the weak convergence in path-space of the corre-
ponding Markov processes; for a general result on the fact that the convergence in (2.38)
mplies convergence of the corresponding Markov processes we refer the interested reader to
34, Theorem 4.29].

As shown in Corollary 3.2, the convergence in (2.38) implies, in particular, for P-a.e. α and
or all T > 0 and G ∈ S (Rd ),

sup
t∈[0,T ]

1
N d

∑
x∈Zd

⏐⏐⏐SN ,α
t N2 G( x

N ) − SΣt G( x
N )
⏐⏐⏐αx −→

N→∞

0 . (2.39)

ote that the above convergence differs from (2.36) by the uniformity of the convergence over
ounded intervals of times.

The results (2.38) and (2.39) are stronger than what is strictly needed for the proof of
onvergence of finite dimensional distributions of the empirical density fields, but they turn
ut to be very useful in the proof of relative compactness of the probability distributions of{

XN
t , t ∈ [0, T ]

}
N∈N (2.40)

n D([0, T ],S ′(Rd )). Indeed, because the random walk RW(α) semigroups enter in the decom-
osition of the empirical density fields, it has to be expected that some sort of equicontinuity
n time of such semigroups is needed for the sequence (2.40) to be tight. This intuition can be

ade rigorous by means of a combination of the tightness criteria developed in [38, Theorem
.1] and [40, Appendix B], which apply directly to the empirical density fields decomposed as
ild solutions. We refer the reader to Section 4.1 for all the details on the proof of tightness.

. Arbitrary starting point quenched invariance principle

This section is devoted to the proof of a quenched homogenization result for the dual random
alk in random environment α, RW(α) with generator Aα given in (1.5) and corresponding

emigroup {Sα
t , t ≥ 0}. More precisely, we will prove the following theorem:

heorem 3.1 (Arbitrary Starting Point Quenched Invariance Principle). There exists a mea-
urable subset B ⊆ {1, . . . , c}Z

d
(defined in (3.11)) with P(B) = 1 and such that, for all
136
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environments α ∈ B, for all T > 0 and G ∈ C0(Rd ), (2.38) holds, i.e.,

sup
t∈[0,T ]

sup
x∈Zd

⏐⏐⏐SN ,α
t N2 G( x

N ) − SΣt G( x
N )
⏐⏐⏐ −→

N→∞

0 . (3.1)

The proof of the above theorem is deferred to Section 3.3, and goes through the proof
f three intermediate results: the quenched invariance principle for the random walk started
rom the origin (see Proposition 3.4 in Section 3.1), the space–time equicontinuity of the
andom walk semigroups (see Proposition 3.6 in Section 3.2) and heat kernel upper bounds
see Proposition 3.7 in Section 3.2).

As a consequence of Theorem 3.1 and Lemma 2.5, and recalling from there the characteri-
ations of the subsets B and A ⊆ {1, . . . , c}Z

d
, respectively, we obtain:

orollary 3.2. For all environments α ∈ A∩B, for all T > 0 and G ∈ S (Rd ), (2.39) holds,
.e.,

sup
t∈[0,T ]

1
N d

∑
x∈Zd

⏐⏐⏐SN ,α
t N2 G( x

N ) − SΣt G( x
N )
⏐⏐⏐αx −→

N→∞

0 . (3.2)

The proof of the above corollary – whose main ideas are adapted from [40, Proposition 5.3]
– is postponed to Appendix B.

3.1. Quenched invariance principle for RW(α) starting from the origin

For all realizations α of the environment, the random walk RW(α), Xα,0
= {Xα,0

t , t ≥ 0}

with generator given in (1.5) and with the origin of Zd as starting position – can be
iewed as a random time change of a specific RCM, i.e., the continuous-time random walk

Xω,0
= {Xω,0

t , t ≥ 0}, abbreviated by RW(ω) and with law Pω (and corresponding expectation
Eω), starting from the origin of Zd and evolving on Zd according to the generator given by

Aω f (x) :=

∑
y∈Zd

|y−x |=1

ωxy ( f (y) − f (x)) , x ∈ Zd , (3.3)

where f : Zd
→ R is a bounded function and

ωxy := αxαy , ∀ x, y ∈ Zd such that |x − y| = 1 . (3.4)

Indeed, when in position x ∈ Zd , the walk Xα,0 spends there an exponential holding time with
parameter λα

x given by

λα
x =

∑
y∈Zd

|y−x |=1

αy , (3.5)

and then jumps to a neighbor of x , say z, with probability rα(x, z) given by

rα(x, z) =
αz

λα
x
. (3.6)

he corresponding quantities (3.5) and (3.6) for the walk Xω,0 are given, respectively, by

λω
x =

∑
y∈Zd

αxαy = αxλ
α
x , (3.7)
|y−x |=1
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and

rω(x, z) =
αxαz

αxλα
x

= rα(x, z) . (3.8)

ence, if we define the random time change {R(t), t ≥ 0} by

R(t) :=

∫ t

0
αXω,0

s
ds , (3.9)

hen, in law,

{Xω,0
R−1(t)

, t ≥ 0} = {Xα,0
t , t ≥ 0} ,

here R−1 is the inverse of the continuous piecewise linear and increasing bijection R :

0,∞) → [0,∞).
In what follows, we let Ω denote the space of all conductances ω with ωxy ∈ {1, . . . , c2

}

ndowed with the Borel σ -algebra induced by the discrete topology. Recall the definition of P
n Assumption 1.1. We then let Q be the probability measure on Ω for which, for all measurable
U ⊆ Ω ,

Q(U) = P
(

α ∈ {1, . . . , c}Z
d

:
∃ ω ∈ U s.t. ωxy = αxαy

∀ x, y ∈ Zd with |x − y| = 1

)
. (3.10)

e remark that the measure Q inherits the invariance and ergodicity under space translations
rom P (see Assumption 1.1). We then have the following result, taken from [43, Theorem 1.1
nd Remark 1.3].

heorem 3.3 (Quenched Invariance Principle for RW(ω) Started from the Origin [43]). The
quenched invariance principle holds for the random walk RW(ω) started from the origin with a
limiting non-degenerate covariance matrix Λ, i.e., for Q-a.e. environment ω and for all T > 0,
the following convergence in law in the Skorokhod space D([0, T ],Rd ) holds{

Xω,0
t N 2

N
, t ∈ [0, T ]

}
H⇒
N→∞

{
BΛt , t ∈ [0, T ]

}
,

where the r.h.s. is a Brownian motion on Rd starting at the origin with a non-degenerate
covariance matrix Λ ∈ Rd×d independent of the realization of the environment ω.

We remark that [43] and [36] were the first two works in which the quenched invariance
principle for RCM with ergodic and uniformly elliptic conductances was proven for any
dimension d ≥ 1. We refer to, e.g., [3,7,8,11,37] as a partial list for further results in which
the uniform ellipticity assumption on the conductances has been replaced by more general
conditions on the conductance moments.

In order to get the quenched invariance principle for the random walk RW(α), we only need
to check that the random time change defined in (3.9) properly rescales. In the proof of the
following result, we follow closely Section 6.2 in [1].

Proposition 3.4 (Quenched Invariance Principle for RW(α) Started from the Origin). The
quenched invariance principle holds for the random walk RW(α) started from the origin with
a limiting non-degenerate covariance matrix Σ :=

1
EP [α0]Λ. Here Λ is the covariance matrix

ppearing in Theorem 3.3. In particular, the covariance matrix Σ does not depend on the
pecific realization of the environment α, but only on the law P .
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Remark 3.5. For later purposes, we define

B :=

{
α ∈ {1, . . . , c}Z

d
: the invariance principle for RW(α) in Proposition 3.4 holds

}
.

(3.11)

Proof. Consider the random walk Xω,0 starting from the origin and the corresponding process
of the environment α as seen from the random walk Xω,0, i.e.,{

τXω,0
t

α, t ≥ 0
}

⊆ {1, . . . , c}Z
d
. (3.12)

y our Assumption 1.1 and [16, Lemma 4.3], P is an invariant (actually reversible) and ergodic
aw for the process in (3.12). Hence, recalling the random time change {R(t), t ≥ 0} defined
n (3.9), Birkhoff’s ergodic theorem for the process in (3.12) yields, for P-a.e. environment α,

lim
t→∞

R(t)
t

= EP [α0] . (3.13)

ecause R : [0,∞) → [0,∞) is a strictly increasing bijection, (3.13) is, in turn, equivalent to

lim
t→∞

R−1(t)
t

=
1

EP [α0]
. (3.14)

he conclusion of the theorem follows from the argument in Section 6.2 in [1] as soon as we
rove that, for all t > 0 and ϵ > 0, we have, for P-a.e. α (recall from (3.4) that ω = ω(α)
ith ωxy = αxαy for all x, y ∈ Zd with |x − y| = 1),

lim sup
N→∞

Pω

⎛⎜⎝
⏐⏐⏐⏐⏐⏐⏐

Xω,0
R−1(t N2)

− Xω,0
1

EP [α0] t N2

N

⏐⏐⏐⏐⏐⏐⏐ > ϵ

⎞⎟⎠ = 0 , (3.15)

here Pω denotes the law of Xω.
We are, thus, left with the proof of (3.15). Fix t > 0 and ϵ > 0. Then, for all δ > 0, we

have

Pω

⎛⎜⎝
⏐⏐⏐⏐⏐⏐⏐

Xω,0
R−1(t N2)

− Xω,0
1

EP [α0] t N2

N

⏐⏐⏐⏐⏐⏐⏐ > ϵ

⎞⎟⎠
≤ Pω

⎛⎜⎝
⏐⏐⏐⏐⏐⏐⏐

Xω,0
R−1(t N2)

− Xω,0
1

EP [α0] t N2

N

⏐⏐⏐⏐⏐⏐⏐ > ϵ,

⏐⏐⏐⏐ R−1(t N 2)
N 2 −

t
EP [α0]

⏐⏐⏐⏐ ≤ δ

⎞⎟⎠
+ Pω

(⏐⏐⏐⏐ R−1(t N 2)
N 2 −

t
EP [α0]

⏐⏐⏐⏐ > δ

)
. (3.16)

he second term on the r.h.s. of (3.16) goes to zero as N → ∞ by (3.14), while the first term
s bounded above by

Pω

⎛⎝ sup
|s−r |≤δ

⏐⏐⏐⏐⏐ Xω,0
s N2 − Xω,0

r N2

N

⏐⏐⏐⏐⏐ > ϵ

⎞⎠ . (3.17)

r,s≤T
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for some positive T = T (t, c) independent of N ∈ N. Due to Theorem 3.3 and the continuity of
he trajectories of the limit process, the expression in (3.17) vanishes as N → ∞ and δ → 0,
.e.,

lim
δ↓0

lim sup
N→∞

Pω

⎛⎝ sup
|s−r |≤δ
r,s≤T

⏐⏐⏐⏐⏐ Xω,0
s N2 − Xω,0

r N2

N

⏐⏐⏐⏐⏐ > ϵ

⎞⎠ = 0 . (3.18)

ndeed, let X̃ω,0
= {X̃ω,0

t , t ∈ [0, T ]} denote the piecewise linear interpolation of the jump
rocess Xω,0. Then, due to the continuity of the trajectories of the limiting Brownian motion
n Theorem 3.3, the same theorem holds with C([0, T ],Rd ) (the Banach space of continuous
unctions from [0, T ] to Rd endowed with the supremum norm; see, e.g., [9, Chapter 8])
nd X̃ω,0 in place of D([0, T ],Rd ) and Xω,0, respectively. By Prohorov’s theorem (see, e.g.,

[9, Theorem 6.2]) and the characterization of tightness of probability measures on C([0, T ],Rd )
see, e.g., [9, Theorem 8.2]), we have, for all ϵ > 0,

lim
δ↓0

lim sup
N→∞

Pω

⎛⎝ sup
|s−r |≤δ
r,s≤T

⏐⏐⏐⏐⏐ X̃ω,0
s N2 − X̃ω,0

r N2

N

⏐⏐⏐⏐⏐ > ϵ

⎞⎠ = 0 . (3.19)

or all δ > 0 and ϵ > 0, Xω,0 being a nearest-neighbor random walk implies that

lim sup
N→∞

Pω

⎛⎝ sup
|s−r |≤δ
r,s≤T

⏐⏐⏐⏐⏐ X̃ω,0
s N2 − X̃ω,0

r N2

N

⏐⏐⏐⏐⏐ > ϵ

⎞⎠ = lim sup
N→∞

Pω

⎛⎝ sup
|s−r |≤δ
r,s≤T

⏐⏐⏐⏐⏐ Xω,0
s N2 − Xω,0

r N2

N

⏐⏐⏐⏐⏐ > ϵ

⎞⎠
holds true. This and (3.19) yield (3.18), thus, concluding the proof of the proposition. □

3.2. Hölder equicontinuity of the semigroup and heat kernel upper bounds for RW(α)

In this section, α is an arbitrary realization of the environment. We start by proving that
the family of semigroups corresponding to the diffusively rescaled random walks RW(α) are
Hölder equicontinuous in both space and time variables. It is well-known (see, e.g., [18,44]
as references in the context of graphs) that Hölder equicontinuity of solutions to parabolic
partial differential equations may be derived from parabolic Harnack inequalities (see, e.g.,
[18, Definition 1.6]). In our context, for all bounded functions f : Zd

→ R, the parabolic
partial difference equation that Sα

·
f (·) =

{
Sα

t f (x), t ≥ 0, x ∈ Zd
}

solves reads as follows:

αx
∂

∂t
ψ(t, x) =

∑
y

αxαy(ψ(t, y) − ψ(t, x)) , t ≥ 0 , x ∈ Zd , (3.20)

with initial condition ψ(0, ·) = f . By applying the Moser iteration scheme as in [18, Section
2], we recover the parabolic Harnack inequality ([18, Theorem 2.1]) for positive solutions
of (3.20). We note that α, viewed as a σ -finite measure on Zd and due to the assumption
of uniform ellipticity, plays the role of speed measure (cf. m in [18, Section 1.1]; see also
[4, Remark 1.5] for an analogous discussion).

In conclusion, by applying the aforementioned parabolic Harnack inequality as, e.g., in
[18, Proposition 4.1] and [44, Theorem 1.31], we obtain the following result:
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Proposition 3.6 (Hölder Equicontinuity of Semigroups). There exists C > 0 and γ > 0 such
that, for all realizations α of the environment, for all N ∈ N and for all G ∈ C0(Rd ), we have⏐⏐⏐SN ,α

t N2 G( x
N ) − SN ,α

s N2 G( y
N )
⏐⏐⏐ ≤ C sup

u∈Rd
|G(u)|

(√
|t − s| ∨ |

x
N −

y
N |

√
t ∧ s

)γ
(3.21)

or all s, t > 0 and x, y ∈ Zd .

The second result is an upper bound for the heat kernel of the random walk RW(α), i.e.,

qα
t (x, y) :=

1
αy

Pα(Xα,x
t = y) ≡

pα
t (x, y)
αy

. (3.22)

ore precisely, we need to ensure that the tails of the heat kernels satisfy a uniform integrability
ondition. To this aim, many results of heat kernel upper bounds which have been established
n the literature, such as Gaussian upper bounds (see, e.g., [6, Theorem 2.3]), would suffice.
ere, we follow Nash–Davies’ method as in Section 3 in [13] applied to our context. Indeed,
y [13, Theorem 3.25], if Nash inequality in [13, Eq. (3.18)] holds true, then there exists a
onstant c′ > 0 depending only on the dimension d ≥ 1 and c such that

qα
t (x, y) ≤

c′

1 ∨
√

td
e−D(2t;x,y) , (3.23)

here

D(r; x, y) := sup
ψ∈ℓ∞(Zd ,α)

(
|ψ(x) − ψ(y)| − rΓ (ψ)2) (3.24)

nd

Γ (ψ)2
:= sup

x∈Zd

⎧⎨⎩ ∑
y:|y−x |=1

αy

2

(
eψ(y)−ψ(x)

− 1
)2

⎫⎬⎭ , (3.25)

ith the above quantity corresponding to the equation one line above [13, Theorem 3.9].
or what concerns Nash inequality, since α(x)α(y) ≥ 1 for all x, y ∈ Zd , we have, for all

f ∈ ℓ1(Zd ,α),

Eα( f, f ) :=
1
2

∑
x∈Zd

∑
y:|y−x |=1

α(x)α(y) ( f (y) − f (x))2

≥
1
2

∑
x∈Zd

∑
y:|y−x |=1

( f (y) − f (x))2

≥ C ∥ f ∥
2+

4
d

ℓ2(Zd ,ν)
∥ f ∥

−
4
d

ℓ1(Zd ,λ)
, (3.26)

here λ is the counting measure on Zd . Note that for the last inequality above we used Nash
nequality for the continuous-time simple random walk (see, e.g., [44, Eq. (1.8)]), with the
onstant C > 0 depending only on the dimension d ≥ 1. Due to the assumed uniform ellipticity

of α (see Assumption 1.1), the equivalence of the norms ∥·∥ℓp(Zd ,λ) and ∥·∥ℓp(Zd ,α) together with
3.26) yield

Eα( f, f ) ≥ C c
−

(
1+

2
d

)
∥ f ∥

2+
4
d

ℓ2(Zd ,α)
∥ f ∥

−
4
d

ℓ1(Zd ,α)
, (3.27)

hich corresponds to [13, Eq. (3.18)] with A =

(
C−1c1+

2
d

)
, ν = d and δ = 0. Therefore, we

et (3.23) by [13, Theorem 3.25] for ρ = 1.
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Finally, by arguing as in the proof of Lemma 1.9 in [44] and by the uniform ellipticity of
, we obtain the following proposition:

roposition 3.7 (Heat Kernel Upper Bound). There exists a constant c > 0 depending only on
d ≥ 1 and c such that, for all environments α, t > 0 and x, y ∈ Zd , the following upper bound
holds:

Pα
(
Xα,x

t = y
)

≤
c

1 ∨
√

td
e
−

|x−y|

1∨
√

t . (3.28)

.3. Proof of Theorem 3.1

Let us conclude the proof of Theorem 3.1.

roof of Theorem 3.1. First we prove that, for all α ∈ B (see (3.11)), for all t ≥ 0 and
G ∈ C0(Rd ), we have

sup
x∈Zd

⏐⏐⏐SN ,α
t N2 G( x

N ) − SΣt G( x
N )
⏐⏐⏐ −→

N→∞

0 . (3.29)

e follow the ideas in [14, Appendix A.2]. For all u ∈ Rd and ε > 0, let Bε(u) (resp. Bε(u))
enote the open (resp. closed) Euclidean ball of radius ε > 0 centered in u ∈ Rd . Moreover,
or all α, we define

σ N
ε (u) := inf

{
t ≥ 0 :

Xα,0
t N2

N
∈ Bε(u)

}
and σε(u) := inf

{
t ≥ 0 : BΣt ∈ Bε(u)

}
o be the first hitting times of Bε(u) of the random walks and Brownian motion, respectively.
hen, as a consequence of Proposition 3.4 (see also Remark 3.5) and the strong Markov
roperty of both processes, we have, for all α ∈ B, for all t ≥ 0, T > 0 and G ∈ C0(Rd ),∑

y
N ∈Bε(u)∩Zd

N

Eα

[
G

(
Xα,y

t N2

N

)]
Pα
ε,u,T

( y
N

)
−→
N→∞

∫
Bε(u)

E
[
G(BΣt + v)

]
Pε,u,T (dv) , (3.30)

here

Pα
ε,u,T

( y
N

)
:= Pα

⎛⎝ Xα,0
σ N
ε (u)

N
=

y
N

⏐⏐⏐⏐σ N
ε (u) < T

⎞⎠
and Pε,u,T (dv) := P(BΣσε(u) = dv

⏐⏐σε(u) < T ) .

Let {xN }N∈N ⊆ Zd be such that xN
N → u as N → ∞. Then, by the triangle inequality, we

ave, for all ε > 0,⏐⏐⏐SN ,α
t N2 G( xN

N ) − SΣt ( xN
N )
⏐⏐⏐

≤

⏐⏐⏐⏐⏐⏐⏐⏐S
N ,α
t N2 G

( xN
N

)
−

∑
y Zd

Eα

[
G

(
Xα,y

t N2

N

)]
Pα
ε,u,T

( y
N

)⏐⏐⏐⏐⏐⏐⏐⏐

N ∈Bε(u)∩ N
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⏐⏐⏐⏐⏐⏐⏐⏐
∑

y
N ∈Bε(u)∩Zd

N

Eα

[
G

(
Xα,y

t N 2

N

)]
Pα
ε,u,T

( y
N

)
−

∫
Bε(u)

E
[
G(BΣt + v)

]
Pε,u,T (dv)

⏐⏐⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐∫
Bε(u)

E
[
G(BΣt + v)

]
Pε,u,T (dv) − SΣt G( xN

N )
⏐⏐⏐⏐ . (3.31)

s for the first term on the r.h.s. above, for all environments α ∈ B, we have, by Hölder’s
nequality,⏐⏐⏐⏐⏐⏐⏐⏐S

N ,α
t N 2 G

( xN
N

)
−

∑
y
N ∈Bε(u)∩Zd

N

Eα

[
G

(
Xα,y

t N 2

N

)]
Pα
ε,u,T

( y
N

)⏐⏐⏐⏐⏐⏐⏐⏐
≤

∑
y
N ∈Bε(u)∩Zd

N

⏐⏐⏐SN ,α
t N 2 G

( xN
N

)
− SN ,α

t N 2 G
( y

N

)⏐⏐⏐ Pα
ε,u,T

( y
N

)
≤ sup

y
N ∈Bε(u)

⏐⏐⏐SN ,α
t N 2 G

( xN
N

)
− SN ,α

t N 2 G
( y

N

)⏐⏐⏐ .
he above upper bound, since xN

N → u as N → ∞, yields, by Proposition 3.6 and the uniform
oundedness of the function G ∈ C0(Rd ),

lim
ε→0

lim sup
N→∞

⏐⏐⏐⏐⏐⏐⏐⏐S
N ,α
t N2 G

( xN
N

)
−

∑
y
N ∈Bε(u)∩Zd

N

Eα

[
G

(
Xα,y

t N2

N

)]
Pα
ε,u,T

( y
N

)⏐⏐⏐⏐⏐⏐⏐⏐ = 0 (3.32)

or all environments α ∈ B and t ≥ 0. A similar argument employing the uniform continuity
f G ∈ C0(Rd ) and the translation invariance of the law of Brownian motion ensures

lim
ε→0

lim sup
N→∞

⏐⏐⏐⏐∫
Bε(u)

E
[
G(BΣt + v)

]
Pε,u,T (dv) − SΣt G( xN

N )
⏐⏐⏐⏐ = 0 (3.33)

or all t ≥ 0. By combining (3.30)–(3.33), we obtain, for all α ∈ B, for all G ∈ C0(Rd ), t ≥ 0,
∈ Rd and approximating points xN

N → u,⏐⏐⏐SN ,α
t N2 G( xN

N ) − SΣt G( xN
N )
⏐⏐⏐ −→

N→∞

0 . (3.34)

In order to go from pointwise (i.e., (3.34)) to uniform convergence over points in Zd

i.e., (3.29)), we crucially use the heat kernel upper bound in Proposition 3.7 and the Hölder
quicontinuity in Proposition 3.6. First, note that proving (3.29) for continuous and compactly
upported functions G ∈ Cc(Rd ) suffices, due to the density of Cc(Rd ) in C0(Rd ) and the
ontractivity of the semigroups {SN ,α

t N2 , t ≥ 0} and {SΣt , t ≥ 0} w.r.t. the supremum norms
n Zd

N and Rd , respectively. Hence, for all G ∈ Cc(Rd ) and for all compact sets K ⊆
d , (3.34), Proposition 3.6 and the uniform continuity of SΣt G ∈ C0(Rd ) imply, for all
∈ B,

sup
x
N ∈K∩

Zd
N

⏐⏐⏐SN ,α
t N2 G( x

N ) − SΣt G( x
N )
⏐⏐⏐ −→

N→∞

0 . (3.35)
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Letting supp(G) ⊆ Rd denote the compact support of G ∈ Cc(Rd ), we have

sup
x
N ∈Kc∩Zd

N

⏐⏐⏐SN ,α
t N2 G( x

N ) − SΣt G( x
N )
⏐⏐⏐

≤ sup
u∈Rd

|G(u)| sup
x
N ∈Kc∩Zd

N

{
Pα

(
Xα,x

t N2

N
∈ supp(G)

)
+ P(BΣt + x ∈ supp(G))

}
. (3.36)

hus, by the heat kernel upper bounds for RW(α) (Proposition 3.7) and analogous bounds for
the non-degenerate Brownian motion {BΣt , t ≥ 0}, we can choose K ⊆ Rd such that the r.h.s.
in (3.36) is arbitrarily small. This yields (3.29) for all α ∈ B.

To go from (3.29) to (3.1) in which the convergence is uniform over bounded intervals of
time, we apply [19, Chapter 1, Theorem 6.1]. Indeed, for all realizations of the environment
α, the semigroups {SN ,α

t , t ≥ 0}N∈N and {SΣt , t ≥ 0} are strongly continuous contraction
semigroups in the Banach spaces {C0(Z

d

N )}N∈N and C0(Rd ) (endowed with the corresponding
upremum norms), respectively; moreover, the projections πN : C0(Rd ) → C0(Z

d

N ) given by
N G( x

N ) := G( x
N ) are linear and such that supN∈N ∥πN ∥N = 1 < ∞, with ∥πN ∥N denoting

the operator norm of πN . □

Remark 3.8 (Equivalent Formulations of the Arbitrary Starting Point Quenched Invariance
Principle). If one assumes, for a given realization of the environment α, the invariance principle
for the random walk RW(α) with arbitrary starting positions, i.e.,

For all T > 0, for any macroscopic point u ∈ Rd and for any sequence of points
{xN }N∈N ⊆ Zd such that xN

N → u as N → ∞, the laws of {
1
N Xα,xN

t N2 , t ∈ [0, T ]}N∈N,
the diffusively rescaled RW(α) started from xN

N , converge weakly to the law of
{BΣ,ut := BΣt + u, t ∈ [0, T ]}, the Brownian motion started from u ∈ Rd and
with a non-degenerate covariance matrix Σ independent of the realization of the
environment α

(3.37)

hen (3.34) follows immediately by the uniform continuity of SΣt G ∈ C0(Rd ). By the same
rgument used in the final part of the proof of Theorem 3.1 (i.e., the part of the proof
mmediately after (3.34) involving the heat kernel upper bound in Proposition 3.7 and the
ölder equicontinuity in Proposition 3.6) one gets the convergence in (2.38). Therefore, in view
f the discussion just after (2.38), we obtain that, under Assumption 1.1, (2.38) and (3.37) are
quivalent.

emark 3.9 (Quenched Local CLT). As already mentioned, (3.1), namely the arbitrary starting
oint quenched invariance principle for the diffusively rescaled random walks RW(α), is
tronger than the quenched invariance principle for RW(α) starting from the origin. Another
ell-known strengthening of the quenched invariance principle is the quenched local central

imit theorem (see, e.g., [3, Theorem 1.11 and Remark 1.12], which applies to our context) for
W(α): if we denote by kΣt the heat kernel of the Brownian motion started at the origin, it
olds that, for P-a.e. environment α and for any ℓ, T > 0 and δ > 0,

lim
N→∞

sup
y

sup
t∈[δ,T ]

⏐⏐⏐⏐⏐N d Pα

(
Xα,0

t N2

N
=

y
N

)
− kΣt ( y

N )

⏐⏐⏐⏐⏐ = 0 . (3.38)

| N |<ℓ
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The proof of (3.38) resembles that of Theorem 3.1 and, thus, one may wonder whether (3.38)
directly yields (3.1). However, (3.38) does not seem to be of help when proving (3.29), being
the supremum over space in the arrival point and not in the starting point – fixed to be the
origin – and being the supremum over time only on bounded intervals away from t = 0.

. Proof of the hydrodynamic limit

In this section we present the proof of Theorem 2.2, which consists of two steps: ensuring
ightness of the empirical density fields and establishing convergence of their finite dimensional
istributions to the unique solution of (2.7). In both steps, we use the following representation
or the renormalized occupation variables: for all realizations of the environment α, there exists
probability space such that a.s., for all initial configurations η ∈ X α , for all x ∈ Zd and t ≥ 0,

ηt (x)
αx

= Sα
t ( η(·)

α·
)(x) +

∫ t

0
Sα

t−sdMα
s (x) , (4.1)

here {Mα
·

(x), x ∈ Zd
} is a family of square integrable martingales w.r.t. the natural filtration

f SEP(α) (see also (2.29)–(2.30)), whose predictable quadratic covariations are given by

⟨Mα(x),Mα(y)⟩t = −1{|x−y|=1}

∫ t

0
αxαy

(
ηs (x)
αx

−
ηs (y)
αy

)2
ds (4.2)

for x, y ∈ Zd with x ̸= y, and

⟨Mα(x),Mα(x)⟩t = −

∑
y∈Zd

|y−x |=1

⟨Mα(x),Mα(y)⟩t (4.3)

for x ∈ Zd . The identity in (4.1) expresses the solution of the following infinite system of
stochastic differential equations (cf. (2.22)–(2.23)){

d( ηt (·)
α·

)(x) = Aα( ηt− (·)
α·

)(x) dt + dMα
t (x) , x ∈ Zd , t ≥ 0

η0(x)
αx

=
η(x)
αx

, x ∈ Zd ,

s a mild solution (see, e.g., [15, Chapter 6, Section 1]). The rigorous proof of the identity
n (4.1) – in which the r.h.s. contains infinite summations – is postponed to Appendix A. The
dea of the proof is to first provide a so-called “ladder representation” for SEP(α) in terms of

symmetric exclusion process which allows at most one particle per site; then obtain a mild
olution representation analogous to the one in (4.1) for such “ladder” exclusion process as
one in, e.g., [21,39,40]. The same strategy can be applied to rigorously verify the identities
n (4.2)–(4.3). We refer to Appendix A for further details.

.1. Tightness

In the proof of tightness for the empirical density fields we employ the uniform convergence
ver time of the semigroups established in Theorem 3.1 and Corollary 3.2. Tightness in
uenched random environment, which by Mitoma’s tightness criterion [38] follows from
ightness of the following real-valued processes{

XN
t (G), t ∈ [0, T ]

}
N∈N , ∀ G ∈ S (Rd ) , (4.4)

has been established via the strategy of employing corrected empirical density fields [23,25,28,
31] and [30]. In what follows, we opt for a different strategy by applying the tightness criterion
developed in [40, Appendix B], which, for convenience of the reader, we report below.
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Theorem 4.1 (Tightness Criterion [40, Theorem B.4]). For a fixed T > 0, let
{
ZN

t , t ∈

[0, T ]}N∈N be a family of real-valued stochastic processes with laws {P N
}N∈N. Then, this

amily is tight in the Skorokhod space D([0, T ],R) if the following conditions hold:

(T1) For all t in a dense subset of [0, T ] which includes T ,

lim
ℓ→∞

lim sup
N→∞

P N (⏐⏐ZN
t

⏐⏐ > ℓ
)

= 0 .

(T2) For all ε > 0, there exists hε > 0 and Nε ∈ N such that, for all N ≥ Nε, there
exist deterministic functions ψN

ε , ψε : [0, hε] → [0,∞) and non-negative values φN
ε

satisfying the following properties:

(i) The functions ψN
ε are non-decreasing.

(ii) For all h ∈ [0, hε] and t ∈ [0, T ], we have

P N (⏐⏐ZN
t+h − ZN

t

⏐⏐ > ε
⏐⏐F N

t

)
≤ ψN

ε (h) , a.s. ,

where
{
F N

t , t ≥ 0
}

denotes the natural filtration of
{
ZN

t , t ≥ 0
}
.

(iii) For all h ∈ [0, hε], we have ψN
ε (h) ≤ ψε(h) + φN

ε .
(iv) φN

ε → 0 as N → ∞.
(v) ψε(h) → 0 as h → 0.

As we show in the proof of Proposition 4.2, this criterion, the semigroup convergence in
Theorem 3.1 and the following mild solution representation of the empirical density fields (see
also (2.31))

XN
t+h(G) = XN

t (SN ,α
hN 2 G) +

∫ (t+h)N 2

t N2
dMN

s (SN ,α
(t+h)N2−s

G) , t, h > 0 , G ∈ S (Rd ) , (4.5)

yield tightness directly for the processes in (4.4).

Proposition 4.2 (Tightness). For all environments α ∈ A ∩ B (see (2.16) and (3.11)) and for
all T > 0, the sequence{

XN
t , t ∈ [0, T ]

}
N∈N

is tight in D([0, T ],S ′(Rd )). As a consequence, {XN
t , t ≥ 0}N∈N is tight in D([0,∞),S ′(Rd )).

Proof. All throughout the proof, we fix α ∈ A ∩ B. As mentioned above, it suffices to show
that conditions (T1) and (T2) in Theorem 4.1 hold for{

ZN
t , t ∈ [0, T ]

}
N∈N =

{
XN

t (G), t ∈ [0, T ]
}

N∈N , (4.6)

for all G ∈ S (Rd ). Because (T1) is a consequence of Proposition 4.4, it suffices to show (T2).
To this purpose, we fix G ∈ S (Rd ) and set, for all ε > 0, h ≥ 0 and N ∈ N,

ψN
ε (h) :=

C
ε2 sup

h′∈[0,h]
sup
x∈Zd

⏐⏐⏐G( x
N ) − SN ,α

h′ N 2 G( x
N )
⏐⏐⏐ (4.7)

ψε(h) :=
C
ε2 sup

h′∈[0,h]
sup
u∈Rd

⏐⏐G(u) − SΣh′ G(u)
⏐⏐ (4.8)

and

φN
ε :=

C
2 sup sup

⏐⏐⏐SN ,α
t N2 G( x

N ) − SΣt G( x
N )
⏐⏐⏐ , (4.9)
ε t∈[0,T ] x∈Zd
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where

C := sup
N∈N

1
N d

∑
x∈Zd

⏐⏐G( x
N )
⏐⏐αx (4.10)

s a constant independent of N ∈ N and, since α ∈ A (see (2.16)), finite. As a consequence
f the triangle inequality, Theorem 3.1 and the continuity of h ∈ [0,∞) ↦→ SΣh G ∈ C0(Rd ),
he functions in (4.7)–(4.9) satisfy the conditions in items (i), (ii), (iv) and (v) of the tightness
riterion in Theorem 4.1. In the remainder of the proof, we verify also the remaining condition
iii) in that theorem.

By (4.5) and the triangle inequality, we have, for all t, h ≥ 0 and N ∈ N,

Pα
ναN

(⏐⏐XN
t+h(G) − XN

t (G)
⏐⏐ > ε

⏐⏐F N
t

)
≤ Pα

ναN

(⏐⏐⏐XN
t (SN ,α

hN 2 G − G)
⏐⏐⏐ > ε

2

⏐⏐⏐F N
t

)
(4.11)

+ Pα
ναN

(⏐⏐⏐⏐⏐
∫ (t+h)N2

t N2
dMN

s (SN ,α
(t+h)N 2−s

G)

⏐⏐⏐⏐⏐ > ε

2

⏐⏐⏐⏐F N
t

)
,

with F N
t := σ {XN

s , s ≤ t}. The boundedness of the occupation variables of SEP(α), the
convergence in (3.2) and the continuity of h ∈ [0,∞) ↦→ SΣh G ∈ C0(Rd ) allows us to choose
hε > 0 and Nε ∈ N such that the first term on the r.h.s. in (4.11) equals zero for all h ∈ [0, hε],
N ≥ Nε and t ≥ 0, i.e.,

Pα
ναN

(⏐⏐⏐XN
t (SN ,α

hN 2 G − G)
⏐⏐⏐ > ε

2

⏐⏐⏐F N
t

)
= 0 , h ∈ [0, hε] , N ≥ Nε . (4.12)

s for the second term on the r.h.s. in (4.11), by Chebyshev’s inequality and the first inequality
n (4.14), we obtain, for all h ∈ [0, hε], N ≥ Nε and t ≥ 0,

Pα
ναN

(⏐⏐⏐⏐⏐
∫ (t+h)N2

t N2
dMN

s (SN ,α
(t+h)N 2−s

G)

⏐⏐⏐⏐⏐ > ε

2

⏐⏐⏐⏐F N
t

)
≤ ψN

ε (h) , a.s. . (4.13)

By combining (4.11)–(4.13), condition (iii) in Theorem 4.1 holds true for the process (4.6),
thus yielding the desired result. □

4.2. Convergence of finite dimensional distributions

In the following proposition – which is an adaptation of, e.g., [39, Lemma 12], [21, Lemma
3.1], [40, Lemma 5.1] – we prove (2.34). To this purpose, recall the definitions of Pα

ναN
, Pα

η ,
Eα
ναN

and Eα
η at the beginning of Section 2 (below (2.1)).

Lemma 4.3. For any given realization of the environment α, for all N ∈ N, G ∈ S (Rd ),
η ∈ X α and t ≥ 0, we have

Eα
η

⎡⎢⎣
⎛⎝ 1

N d

∑
x∈Zd

αx

∫ t N2

0
SN ,α

t N2−s
G( x

N ) dMα
s (x)

⎞⎠2
⎤⎥⎦

≤
1

2N d

1
N d

∑(⏐⏐G( x
N )
⏐⏐2 −

⏐⏐⏐SN ,α
t N2 G( x

N )
⏐⏐⏐2)αx ≤

1
2N d

1
N d

∑ ⏐⏐G( x
N )
⏐⏐2 αx . (4.14)
x∈Zd x∈Zd
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As a consequence of (4.14) and the uniformity of the upper bound w.r.t. η ∈ X α , we further
et

Eα
ναN

⎡⎢⎣
⎛⎝ 1

N d

∑
x∈Zd

αx

∫ t N2

0
SN ,α

t N2−s
G( x

N ) dMα
s (x)

⎞⎠2
⎤⎥⎦ −→

N→∞

0 , (4.15)

here {να
N }N∈N is the sequence of probability measures on X α given in Theorem 2.2.

roof. A simple computation employing the explicit form of the predictable quadratic
ovariations of the martingales (4.2)–(4.3) yields

Eα
η

⎡⎢⎣
⎛⎝ 1

N d

∑
x∈Zd

αx

∫ t N2

0
SN ,α

t N2−s
G( x

N ) dMα
s (x)

⎞⎠2
⎤⎥⎦

=

∫ t N2

0

1
N 2d

∑
x,y∈Zd
|x−y|=1

(
SN ,α

t N2−s
G( x

N ) − SN ,α
t N2−s

G( y
N )
)2
αxαy Eα

η

[(
ηs (x)
αx

−
ηs (y)
αy

)2
]

ds .

ecause a.s. 0 ≤

(
ηs (x)
αx

−
ηs (y)
αy

)2
≤ 1, we further get

Eα
η

⎡⎢⎣
⎛⎝ 1

N d

∑
x∈Zd

αx

∫ t N2

0
SN ,α

t N2−s
G( x

N ) dMα
s (x)

⎞⎠2
⎤⎥⎦

≤
1

N d

∫ t N2

0

1
N d

∑
x,y∈Zd
|x−y|=1

αxαy

(
SN ,α

t N2−s
G( x

N ) − SN ,α
t N2−s

G( y
N )
)2

ds

=
1

2N d

∫ t N2

0
−

d
ds

⎛⎝ 1
N d

∑
x∈Zd

⏐⏐⏐SN ,α
t N2−s

G( x
N )
⏐⏐⏐2 αx

⎞⎠ ds

=
1

2N d

⎛⎝ 1
N d

∑
x∈Zd

(⏐⏐G( x
N )
⏐⏐2 −

⏐⏐⏐SN ,α
t N2 G( x

N )
⏐⏐⏐2)αx

⎞⎠ ≤
1

2N d

⎛⎝ 1
N d

∑
x∈Zd

⏐⏐G( x
N )
⏐⏐2 αx

⎞⎠ .

In view of Lemma 2.5, lim supN→∞

1
Nd

∑
x∈Zd

⏐⏐G( x
N )
⏐⏐2 αx < ∞, thus, concluding the

roof. □

Since, with probability one, only one particle jumps at the time, for all environments α, and
or all T > 0 and G ∈ S (Rd ), we have

Eα
ναN

[
sup

t∈[0,T ]

⏐⏐XN
t+ (G) − XN

t− (G)
⏐⏐] ≤

2 supu∈Rd |G(u)|
N d

−→
N→∞

0 . (4.16)

y combining this with the relative compactness of {XN
t , t ≥ 0} in D([0, T ],S ′(Rd )) (see

roposition 4.2), we obtain that all limit points of {XN
t , t ≥ 0} belong to C([0, T ], S ′(Rd )).

ence, Remark 2.3 and the following proposition conclude the proof of Theorem 2.2.
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Proposition 4.4. Recall the definitions (2.16), (2.4) and (3.11), and fix α ∈ A∩B∩C. Then,
or all δ > 0, t ≥ 0 and G ∈ S (Rd ), we have

Pα
ναN

(⏐⏐XN
t (G) − πΣt (G)

⏐⏐ > δ
)

−→
N→∞

0 , (4.17)

here {πΣt , t ≥ 0} is given in (2.6).

roof. Due to the uniform boundedness of the environments α (Assumption 1.1) and the
ecomposition (2.31) of the empirical density fields, we obtain, for all δ > 0,

Pα
ναN

(⏐⏐XN
t (G) − πΣt (G)

⏐⏐ > δ
)

≤ Pα
ναN

(⏐⏐⏐XN
0 (SN ,α

t N2 G) − πΣt (G)
⏐⏐⏐ > δ

2

)
+ Pα

ναN

(⏐⏐⏐⏐⏐
∫ t N2

0
dMN

s (SN ,α
t N2−s

G)

⏐⏐⏐⏐⏐ > δ

2

)
. (4.18)

ence, by Chebychev’s inequality and Lemma 4.3, the second term on the r.h.s. in (4.18)
anishes as N → ∞. Concerning the first term on the r.h.s. in (4.18), in view of πΣt (G) =
ρ̄(SΣt G) (see Remark 2.3), we proceed as follows:

Pα
ναN

(⏐⏐⏐XN
0 (SN ,α

t N2 G) − πΣt (G)
⏐⏐⏐ > δ

2

)
≤ Pα

ναN

(⏐⏐⏐XN
0 (SN ,α

t N2 G) − XN
0 (SΣt G)

⏐⏐⏐ > δ

4

)
+ Pα

ναN

(⏐⏐XN
0 (SΣt G) − π ρ̄(SΣt G)

⏐⏐ > δ

4

)
. (4.19)

or the first term on the r.h.s. in (4.19), by Markov’s inequality and the uniform boundedness
f the occupation variables {η(x), x ∈ Zd

}, we obtain

Pα
ναN

(⏐⏐⏐XN
0 (SN ,α

t N2 G) − XN
0 (SΣt G)

⏐⏐⏐ > δ

4

)
≤

4
δ

1
N d

∑
x∈Zd

⏐⏐⏐SN ,α
t N2 G( x

N ) − SΣt G( x
N )
⏐⏐⏐αx .

In turn, this latter upper bound vanishes for all environments α ∈ A ∩ B, for all G ∈ S (Rd )
and t ≥ 0, in view of Corollary 3.2. The second term on the r.h.s. in (4.19) vanishes because
S (Rd ) is invariant under the action of the Brownian motion semigroup and because of the
assumed consistency of the initial conditions (see Definition 2.1) for α ∈ C (see (2.4)). This
concludes the proof. □
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Appendix A. Mild solution and ladder construction

In this section we derive the mild solution representation for SEP(α). More in detail, we
tart from a so-called α-ladder symmetric exclusion process (see, e.g., [27]), we obtain the
.s. mild solution representation as in e.g. [21, Section 3] and [40, Proposition 4.1] for this
adder counterpart and, then, by means of a projection which preserves the Markov property,
e derive an a.s. mild solution representation for SEP(α).
Let us fix a realization of the environment α satisfying Assumption 1.1. Then, we define

{N̄·({(x, i), (y, j)}) : x, y ∈ Zd with |x − y| = 1, i ∈ {1, . . . , αx }, j ∈ {1, . . . , αy}}.

(A.1)

o be a family of independent and identically distributed compensated Poisson processes with
ntensity one.

We denote by (N̄,F, {Ft : t ≥ 0},P) the probability space on which this compensated
oisson processes are defined. This randomness will be responsible (see Lemma A.1) for the
tirring construction (see, e.g., [35, p. 399]) of the so-called ladder symmetric exclusion process
ith parameter α ∈ {1, . . . , c}Z

d
, the particle system with configuration space

X̃ α = {η̃ : η̃(x, i) ∈ {0, 1} for all x ∈ Zd and i ∈ {1, . . . , αx }} (A.2)

nd with infinitesimal generator L̃α acting on bounded cylindrical functions ϕ̃ : X̃ α → R as
ollows:

L̃αϕ̃(η̃) =

∑
{x,y}∈Zd
|x−y|=1

L̃α
xy ϕ̃(η̃) , (A.3)

here

L̃α
xy ϕ̃(η̃) =

αx∑
i=1

αy∑
j=1

{
η̃(x, i) (1 − η̃(y, j)) (ϕ̃(η̃(x,i),(y, j)) − ϕ̃(η̃))

+ η̃(y, j) (1 − η̃(x, i)) (ϕ̃(η̃(y, j),(x,i)) − ϕ̃(η̃))
}
.

Here η̃(x,i),(y, j) denotes, also in this context, the configuration obtained from η̃ ∈ X̃ α by
removing a particle at position (x, i) and placing it on (y, j).

This process may be considered as a special case of a symmetric exclusion process on the
set Z̃d

= {(x, i), x ∈ Zd , i ∈ {1, . . . , αx }}. For this reason and from the uniform boundedness
assumption of the environment, we obtain the following representation of {η̃t , t ≥ 0}, whose

roof is completely analogous to the one of, e.g., [21, Section 3] and [40, Proposition 4.3]. We
estate this result below for convenience of the reader.

emma A.1 (Mild Solution for the Ladder Exclusion). Fix an environment α ∈ {1, . . . , c}Z
d
.

For P-a.e. realization of the compensated Poisson processes {N̄·({·, ·})} and for all initial
onfigurations η̃ ∈ X̃α , we have, for all (x, i) ∈ Z̃d and t ≥ 0,

η̃t (x, i) = S̃α
t η̃0(x, i) +

∫ t

0
S̃α

t−s dM̃α
s (x, i) . (A.4)

n the above formula, {S̃α
t , t ≥ 0}, resp. { p̃α

t (·, ·), t ≥ 0}, corresponds to the transition
˜ d
emigroup, resp. probabilities, associated to the continuous-time random walk on Z whose
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infinitesimal generator Ãα is given below:

Ãα f (x, i) =

∑
y∈Zd

|y−x |=1

αy∑
j=1

( f (y, j) − f (x, i)) , (x, i) ∈ Z̃d ,

here f : Z̃d
→ R is a bounded function. Moreover, for all (x, i) ∈ Z̃d and t, s ≥ 0,

dM̃α
s (x, i) ≡ dM̃α

s ((x, i), η̃s− ) :=

∑
y∈Zd

|y−x |=1

αy∑
j=1

(η̃s− (y, j) − η̃s− (x, i)) dN̄s({(x, i), (y, j)}) ,

(A.5)

and ∫ t

0
S̃α

t−s dM̃α
s (x, i) :=

∑
y∈Zd

αy∑
j=1

∫ t

0
p̃α

t−s((x, i), (y, j)) dM̃α
s (y, j) ,

where the above time-integrals are Lebesgue–Stieltjes integrals w.r.t. the realizations of the
compensated Poisson processes. Furthermore, the infinite summations in (A.4) are P-a.s. – for
all times and initial configurations – absolutely convergent.

We leave to the reader to check that, P-a.s., for all times t ≥ 0 and initial configurations
η̃ ∈ X̃ α , the predictable quadratic covariations of the martingales {M̃α

t (·), t ≥ 0} in (A.4) read
as

⟨M̃α(x, i), M̃α(y, j)⟩t = −1{|x−y|=1}

∫ t

0
(η̃s(x, i) − η̃s(y, j))2 ds (A.6)

for (x, i), (y, j) ∈ Z̃d with x ̸= y, and

⟨M̃α(x, i), M̃α(x, i)⟩t = −

∑
y∈Zd

|x−y|=1

αy∑
j=1

⟨M̃α(x, i), M̃α(y, j)⟩t (A.7)

or (x, i) ∈ Z̃d .
In the following lemma, we show how to obtain SEP(α), with generator given in (1.3),

rom the ladder symmetric exclusion process with parameter α (see, e.g., [27] for further
etails on this construction). By combining this result with Lemma A.1, we obtain a mild
olution representation of SEP(α) which employs the same randomness used to define the
adder process.

emma A.2 (Mild Solution for SEP(α)). Fix an environment α ∈ {1, . . . , c}Z
d
.

Let η ∈ X α and η̃ ∈ X̃ α be configurations satisfying the following relation:

η(x) =

αx∑
i=1

η̃(x, i) , x ∈ Zd . (A.8)

et {η̃t , t ≥ 0} be the ladder symmetric exclusion process with parameter α, started from
˜ ∈ X̃ α presented above and represented as in Lemma A.1. Then, the stochastic process
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{ηt , t ≥ 0} taking values in X α defined in terms of {η̃t , t ≥ 0} as follows

ηt (x) :=

αx∑
i=1

η̃t (x, i) , t ≥ 0 , x ∈ Zd , (A.9)

s a Markov process with infinitesimal generator Lα as given in (1.3) and started from η ∈ X α .
Moreover, for P-a.e. realization of the compensated Poisson processes in (A.1) and for all

nitial configurations η ∈ X α , we have (cf. the definition of the semigroup {Sα
t , t ≥ 0} in

ection 2.2, as well as (2.29)–(2.30))(
ηt
α

)
(x) = Sα

t ( η
α

)(x) +

∫ t

0
Sα

t−s dMα
s (x) , t ≥ 0 , x ∈ Zd , (A.10)

here

dMα
s (x) :=

1
αx

αx∑
i=1

dM̃α
s ((x, i)) , x ∈ Zd , (A.11)

with {M̃α
t (·), t ≥ 0} being the martingales given in (A.5) and defined in terms of the ladder

exclusion process {η̃t , t ≥ 0} started from any configuration η̃ ∈ X̃ α related to η ∈ X α as
in (A.8); furthermore, the predictable quadratic covariations of the martingales in (A.11) are
those given in (4.2)–(4.3).

Proof. Arguing as in [27, Theorem 4.2(a)], the process {ηt , t ≥ 0} defined in (A.9) is Markov;
furthermore, it is simple to check that, by uniqueness in law of the solution to the martingale
problem associated to (Lα, η) (see, e.g., [35, Chapter 1]), its infinitesimal generator is Lα (we
refer to [27, Section 4.1] for further details).

As for the second part of the claim, by definition of the process {ηt , t ≥ 0} in terms of
the process {η̃t , t ≥ 0} and formula (A.4), we obtain, P-a.s., for all x ∈ Zd and t ≥ 0, the
following expression for ηt (x):

ηt (x) :=

αx∑
i=1

η̃t (x, i)

=

αx∑
i=1

∑
y∈Zd

αy∑
j=1

(
p̃α

t ((x, i), (y, j)) η̃0(y, i) +

∫ t

0
p̃α

t−s((x, i), (y, j)) dM̃α
s (y, j)

)
.

(A.12)

Since the infinite summations above are absolutely convergent, we may re-order them so to
obtain:

ηt (x) =

∑
y∈Zd

Yt (y) ,

where

Yt (y) :=

αx∑
i=1

αy∑
j=1

p̃α
t ((x, i), (y, j)) η̃0(y, j) +

∫ t

0

αx∑
i=1

αy∑
j=1

p̃α
t−s((x, i), (y, j)) dM̃α

s (y, j) .

(A.13)

We observe that, for all sites x, y ∈ Zd and labels i, i ′
∈ {1, . . . , αx }, j, j ′

∈ {1, . . . , αy},
p̃α((x, i), (y, j)) = p̃α((x, i ′), (y, j ′)); in other words, the transition probabilities p̃α(·, ·) do not
t t t
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depend on the labels, but only on the sites. Therefore, we define p̃α
t (x, y) := p̃α

t ((x, i), (y, j)).
f we combine this with the definition of η0(y) :=

∑αy
j=1 η̃0(y, j), the expression in (A.13)

ewrites as follows:

Yt (y) = αx p̃α
t (x, y) η0(y) +

∫ t

0
αx p̃α

t−s(x, y)
αy∑
j=1

dM̃α
s ((y, j), η̃s− ) .

ecalling from Section 2.2 the definition of transition probabilities {pα
t (·, ·), t ≥ 0} associated

o RW(α) and after observing that

pα
t (x, y) =

αy∑
j=1

p̃α
t ((x, i), (y, j)) = αy p̃α

t (x, y) , (A.14)

he proof of the identity (A.10) is concluded.
In order to recover the predictable quadratic covariations (4.2)–(4.3) for the martingales

Mα
t (·), t ≥ 0}, it suffices to combine (A.11) with (A.6)–(A.7) and (A.9); we leave the details

o the reader. □

We take the construction and (A.9) in Lemma A.2 as a definition of our partial exclusion
rocess SEP(α). In particular, we consider the process {ηt , t ≥ 0} as a Markov functional of
he ladder process {η̃t , t ≥ 0}, whose evolution, in turn, is prescribed in Lemma A.1 in terms
f the compensated Poisson processes {N̄ (·, ·)} in (A.1) and its initial configuration η̃0 ∈ X̃ α .

However, to any given SEP(α)-configuration η ∈ X α there may correspond, in general, many
compatible ladder configurations”, namely configurations η̃ ∈ X̃ α of the following type:{

η̃ ∈ X̃ α :

αx∑
i=1

η̃(x, i) = η(x) for all x ∈ Zd

}
.

Therefore, when we say that the particle system {ηt , t ≥ 0} starts from the configuration
∈ X α , we first need to specify how to initialize the underlying ladder process and, then,

unequivocally follow the Poissonian source of randomness yielding (A.10) and (A.11). We will
always assume that, given an initial configuration η ∈ X α , the compatible ladder configurations
˜ ∈ X̃ α are chosen according to some probability distribution independent of the compensated
oisson processes in (A.1). We can, for instance, make the deterministic choice of filling up

he ladders at each site starting from bottom to top.

ppendix B. Proofs of auxiliary results

In order to fix notation, for all compact subsets K ⊆ Rd , Cb(K) (resp. Cc(K)) denotes
he space of continuous and bounded (resp. compactly supported) functions from K to R
ndowed with the supremum norm, while M+(K) denotes the space of non-negative finite
orel measures on K endowed with the weak∗ topology w.r.t. Cb(K). Moreover, for all µ ∈

+(K) and F ∈ Cb(K), we define

µ(F) :=

∫
K

F(u)µ(du) . (B.1)

.1. Proof of Lemma 2.5
roof of Lemma 2.5. The methodology of the proof is inspired by [12, Theorem 8.2.18].
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By applying [24, Proposition 3.2] to the integrable function g : α ∈ {1, . . . , c}Z
d

↦→ α0 ∈ R,
there exists a (translation invariant) measurable subset A ⊆ {1, . . . , c}Z

d
such that P(A) = 1

olds, as well as⏐⏐⏐⏐⏐⏐ 1
N d

∑
x∈Zd

G( x
N )αx − EP [α0]

∫
Rd

G(u) du

⏐⏐⏐⏐⏐⏐ −→
N→∞

0 (B.2)

old for all α ∈ A and G ∈ Cc(Rd ), the subspace of C0(Rd ) of compactly supported functions.
In the remainder of this proof, α ∈ A; moreover, we define

YN ,α
:=

1
N d

∑
x∈Zd

δ x
N
αx and Y := EP [α0] du (B.3)

s elements in S ′(Rd ).
Recall from the proof of Theorem 3.1 the definitions of the open and closed Euclidean balls

ℓ(u) and Bℓ(u). Then, for all ℓ > 0, since the restriction map |Bℓ(0) : Cc(Rd ) → Cc(Bℓ(0)) is
nto and since Cc(Bℓ(0)) ≡ Cb(Bℓ(0)), (B.2) implies that, for all α ∈ A, YN ,α

ℓ weakly converge
s non-negative finite Borel measures as N → ∞ to Yℓ, where

YN ,α
ℓ (du) :=

1
N d

∑
x
N ∈Bℓ(0)

δ x
N

(du)αx and Yℓ(du) := EP [α0] 1
{u∈Bℓ(0)} du . (B.4)

y the compactness of Bℓ(0) ⊆ Rd , for all δ > 0, there exists a finite sub-cover Uℓ(δ) :=

Bδ(ui )}n
i=1 of open balls of radius δ > 0 (with n = n(δ) ∈ N). Moreover, by defining

recursively V1 := Bδ(u1) ∩ Bℓ(0) and Vi := {Bδ(ui ) ∩ Bℓ(0)} \ Vi−1, it is simple to check that
he pairwise disjoint sets Vℓ(δ) := {Vi }

n
i=1 cover Bℓ(0) and Yℓ(∂Vi ) = 0 for all i = 1, . . . , n,

here ∂Vi denotes the boundary of Vi in the subspace topology on Bℓ(0). Hence,

sup
F∈F

⏐⏐⏐YN ,α
ℓ (F) − Yℓ(F)

⏐⏐⏐ ≤ sup
F∈F

n∑
i=1

1
N d

∑
x
N ∈Vi

⏐⏐F( x
N ) − F(ui )

⏐⏐αx

+ sup
F∈F

sup
u∈Rd

|F(u)|
n∑

i=1

⏐⏐⏐⏐⏐⏐ 1
N d

∑
x
N ∈Vi

αx −

∫
Vi

EP [α0] du

⏐⏐⏐⏐⏐⏐
+ sup

F∈F

n∑
i=1

EP [α0]
∫

Vi

|F(u) − F(ui )| du . (B.5)

he boundedness of F (see (2.13)), and the convergence (recall that YN ,α
ℓ weakly converges

o Yℓ as N → ∞ as well as Yℓ(∂Vi ) = 0 for all i = 1, . . . , n)

YN ,α
ℓ (Vi ) −→

N→∞

Yℓ(Vi ) , i = 1, . . . , n , (B.6)

nsure that, for all δ > 0, the second term on the r.h.s. in (B.5) vanishes as N → ∞:

sup
F∈F

sup
u∈Rd

|F(u)|
n∑⏐⏐⏐⏐⏐⏐ 1

N d

∑
x

αx −

∫
Vi

EP [α0] du

⏐⏐⏐⏐⏐⏐ −→
N→∞

0 . (B.7)

i=1 N ∈Vi
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The first and third terms on the r.h.s. in (B.5) are both bounded above by

sup
u,v∈Rd
|u−v|<δ

sup
F∈F

|F(u) − F(v)|
{
YN ,α
ℓ (Bℓ(0)) + Yℓ(Bℓ(0))

}
; (B.8)

ence, by the definition (2.12) of equicontinuity of the subset F ⊆ C0(Rd ) and

lim sup
N→∞

YN ,α
ℓ (Bℓ(0)) + Yℓ(Bℓ(0)) = 2Yℓ(Bℓ(0)) < ∞ , (B.9)

e obtain

lim
δ↓0

lim sup
N→∞

sup
F∈F

⎧⎨⎩
n∑

i=1

1
N d

∑
x
N ∈Vi

⏐⏐F( x
N ) − F(ui )

⏐⏐αx +

n∑
i=1

EP [α0]
∫

Vi

|F(u) − F(ui )| du

⎫⎬⎭ = 0 .

(B.10)

ence, (B.7) and (B.10) combined with (B.5) yield, for all ℓ > 0,

sup
F∈F

⏐⏐⏐YN ,α
ℓ (F) − Yℓ(F)

⏐⏐⏐ −→
N→∞

0 . (B.11)

The uniform integrability assumption (see (2.14)) and the upper bound αx ≤ c < ∞ (see
ssumption 1.1) ensure

lim
ℓ→∞

lim sup
N→∞

sup
F∈F

⎧⎨⎩ 1
N d

∑
| x

N |>ℓ

⏐⏐F( x
N )
⏐⏐αx + EP [α0]

∫
{|u|>ℓ}

|F(u)| du

⎫⎬⎭ = 0 . (B.12)

he triangle inequality

sup
F∈F

⏐⏐YN ,α(F) − Y(F)
⏐⏐ ≤ sup

F∈F

⏐⏐⏐YN ,α
ℓ (F) − Yℓ(F)

⏐⏐⏐
+ sup

F∈F

⎧⎨⎩ 1
N d

∑
| x

N |>ℓ

⏐⏐F( x
N )
⏐⏐αx + EP [α0]

∫
{|u|>ℓ}

|F(u)| du

⎫⎬⎭ ,

(B.13)

hich holds for all ℓ > 0 and N ∈ N, combined with (B.11) and (B.12), yields the desired
esult. □

.2. Proof of Corollary 3.2

roof of Corollary 3.2. In what follows, let α be an environment in the subset A ∩ B ⊆

1, . . . , c}Z
d

(see (2.16) and (3.11)). Fix T > 0 and G ∈ S (Rd ) ⊆ C0(Rd ). Let G+ and G−

e the positive and negative parts of G (G = G+
− G−); then, G±

∈ L1(Rd ) ∩ C0(Rd ) (hence
hey satisfy (3.1)) and there exist functions H±

∈ S (Rd ) (see, e.g., [40, Proposition 5.3] for
n explicit construction) such that

0 ≤ G±(u) ≤ H±(u) , u ∈ Rd . (B.14)

s a consequence, there exist constants C± > 0 such that

sup |SΣt G±(u)| ≤
C±

2d , u ∈ Rd . (B.15)

0≤t≤T 1 + |u|
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This follows from the bounds (B.14), the fact that SΣt acts as convolution with a non-degenerate
Gaussian kernel and the use of Fourier transformation in S (Rd ). Moreover, because of the

niform continuity of G± and the contractivity of the semigroup in C0(Rd ), we have

sup
t∈[0,T ]

sup
|u−v|<δ

⏐⏐SΣt G±(u) − SΣt G±(v)
⏐⏐ ≤ sup

t∈[0,T ]
sup

|u−v|<δ

⏐⏐G±(u) − G±(v)
⏐⏐ −→

δ→0
0 .

s a consequence, for all T > 0, both subsets of C0(Rd ) given by

F[0,T ](G±) :=
{
SΣt G±

∈ C0(Rd ) : t ∈ [0, T ]
}

(B.16)

atisfy the assumptions in Lemma 2.5. Therefore, since α ∈ A, Lemma 2.5 ensures that, for
ll G ∈ S (Rd ) and T > 0, we have

sup
t∈[0,T ]

⏐⏐⏐⏐⏐⏐ 1
N d

∑
x∈Zd

SΣt G±( x
N )αx −

∫
Rd

SΣt G±(u)EP [α0] du

⏐⏐⏐⏐⏐⏐ −→
N→∞

0 . (B.17)

Let us now prove

sup
t∈[0,T ]

1
N d

∑
x∈Zd

⏐⏐⏐SN ,α
t N2 G±( x

N ) − SΣt G±( x
N )
⏐⏐⏐αx −→

N→∞

0 , (B.18)

rom which (3.2) follows.
Since |c| = c + 2 max{−c, 0} for all c ∈ R, we have

sup
t∈[0,T ]

1
N d

∑
x∈Zd

⏐⏐⏐SN ,α
t N2 G±( x

N ) − SΣt G±( x
N )
⏐⏐⏐αx

≤ sup
t∈[0,T ]

1
N d

∑
x∈Zd

(
SN ,α

t N 2 G±( x
N ) − SΣt G±( x

N )
)
αx

+ sup
t∈[0,T ]

2
N d

∑
x∈Zd

max
{
SΣt G±( x

N ) − SN ,α
t N2 G±( x

N ), 0
}
αx . (B.19)

s for the first term in the r.h.s. above, by detailed balance (see (2.26)),
∑

x∈Zd pα

t N2 (y, x) = 1,
s well as

∫
Rd SΣt G±(u) du =

∫
Rd G±(u) du, we obtain

sup
t∈[0,T ]

⏐⏐⏐⏐⏐⏐ 1
N d

∑
x∈Zd

(
SN ,α

t N2 G±( x
N ) − SΣt G±( x

N )
)
αx

⏐⏐⏐⏐⏐⏐
= sup

t∈[0,T ]

⏐⏐⏐⏐⏐⏐ 1
N d

∑
y∈Zd

G±( y
N )αy

∑
x∈Zd

pα

t N2 (y, x) −
1

N d

∑
x∈Zd

SΣt−s G±( x
N )αx

⏐⏐⏐⏐⏐⏐
≤

⏐⏐⏐⏐⏐⏐ 1
N d

∑
x∈Zd

G±( x
N )αx −

∫
Rd

G±(u)EP [α0] du

⏐⏐⏐⏐⏐⏐
+ sup

t∈[0,T ]

⏐⏐⏐⏐⏐⏐ 1
N d

∑
x∈Zd

SΣt G±( x
N )αx −

∫
Rd

SΣt G±(u)EP [α0] du

⏐⏐⏐⏐⏐⏐ ;

hus, the first expression on the r.h.s. of (B.19) vanishes as N → ∞ by (B.17).
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B

Moreover, we have, for all N ∈ N and x ∈ Zd ,

sup
t∈[0,T ]

max
{
SΣt G±( x

N ) − SN ,α
t N2 G±( x

N ), 0
}
αx ≤ sup

t∈[0,T ]
SΣt G±( x

N )αx . (B.20)

Therefore, for all ℓ > 0 and combining (B.15) and (B.20), we obtain

lim sup
N→∞

sup
t∈[0,T ]

2
N d

∑
x∈Zd

max
{
SΣt G±( x

N ) − SN ,α
t N2 G±( x

N ), 0
}
αx

≤ lim sup
N→∞

sup
t∈[0,T ]

sup
|

x
N |≤ℓ

⏐⏐⏐SΣt G±( x
N ) − SN ,α

t N 2 G±( x
N )
⏐⏐⏐ 1

N d

∑
| x

N |≤ℓ

αx (B.21)

+ lim sup
N→∞

2
N d

∑
| x

N |>ℓ

C± αx

1 + |
x
N |

2d . (B.22)

y Theorem 3.1 applied to the functions G± and supN∈N
1

N d

∑
| x

N |≤ℓ αx < ∞, (B.21) equals
zero for all ℓ > 0, while (B.22) vanishes as ℓ → ∞. This concludes the proof. □
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