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Iterative deblending for simultaneous source data using
the deep neural network

Shaohuan Zu1, Junxing Cao1, Shan Qu2, and Yangkang Chen3

ABSTRACT

Simultaneous source technology can accelerate data ac-
quisition and improve subsurface illumination. But those ad-
vantages are compromised due to dense interference. To
address the intense interference in simultaneous source data,
we have investigated a method based on a deep neural net-
work. The designed architecture consists of convolutional
and deconvolutional networks. The convolutional network
can learn the local features of the training data set, and the
deconvolutional network constructs the output using the ex-
tracted features to match the ground truth. Because the main
computational cost results from the optimization of the
network parameters, the trained network can separate simul-
taneous source data efficiently. Besides, with the given dith-
ering code, we embed the trained network into an iterative
framework that can further improve the deblending. A numeri-
cal test on synthetic data demonstrates that the iterative
framework with the trained network can obtain comparable
performance with high efficiency compared to the conven-
tional method. Next, we test our method with two different
trained networks (one is from a synthetic data set, and the other
is from a field data set) on field data. The test results confirm
the performance of our method.

INTRODUCTION

Conventional seismic acquisition requires a large temporal inter-
val to ensure that receivers measure the response from only one
source. In simultaneous source acquisition, multiple sources are
fired and receivers measure responses from multiple sources, which

is very different from traditional seismic acquisition (Beasley, 2008;
Berkhout, 2008; Abma et al., 2010). In recent decades, simultane-
ous source technology has become popular in academia and indus-
try, due to its advantages in enhancing acquisition efficiency and
improving the quality of imaging (Abma et al., 2012; Bagaini et al.,
2012; Beasley et al., 2012; Alexander et al., 2013; Baardman and
van Borselen, 2013; Ibrahim and Sacchi, 2013; Li et al., 2013). Due
to the improved source sampling and higher energy of the signal
ratio, it is beneficial for obtaining high-quality imaging and accurate
inversion (Beasley et al., 2012; Berkhout and Blacquière, 2013;
Wu et al., 2018). Unfortunately, those benefits are hindered due to
interference caused by the blending.
To obtain good results from simultaneous source data, two catego-

ries of methods are explored. The first category is direct imaging,
which migrates the blended data directly and uses some additional
constraints to suppress the interference (Verschuur and Berkhout,
2011; Xue et al., 2016b; Bai et al., 2018; Zhang et al., 2018b, 2018c).
Berkhout et al. (2012) illustrate how the illumination property can be
further improved using blended data. Xue et al. (2016b) implement
shaping regularization into reverse time migration to attenuate the
interference caused by simultaneous sources.
Deblending is the second category, which first separates the simul-

taneous source data into the deblended data as received from tradi-
tional seismic acquisition, so the conventional seismic workflow can
directly process the deblended data (Doulgeris et al., 2012; Mahdad
et al., 2012; Wapenaar et al., 2012; Cheng and Sacchi, 2015, 2016;
Kumar et al., 2015; Zhou et al., 2016; Andersson et al., 2017; Chen
et al., 2018). In this paper, we focus on the second category.
Deblending methods can also be summarized in two ways. With a

dithering code, the response of one special source is viewed as the
coherent signal, whereas that of other sources is viewed as incoherent
interference in the common-receiver domain. The first deblending
method considers the coherent components as signal and the incoher-
ent components as noise. Thus, denoising is implemented to separate
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blended data (Huo et al., 2012). Filtering-based deblending has high
efficiency, but when the subsurface structure is complex, the deblend-
ing performance will not be good.
The second deblending method is by inversion that estimates

coherent and incoherent components from the blended record simul-
taneously. Compared to denoising, deblending by inversion has good
performance (van Borselen et al., 2012) because deblending via
inversion takes all of the information into consideration, such as the
dithering time and the spatial positions of shooting sources. The
inversion problem is underdetermined because the number of the
blended gather is less than that of the unblended gather. A constraint
term is required to regularize the inversion to be the desired solution,
which includes sparsity constraints in the Radon domain (Akerberg
et al., 2008; Ibrahim and Sacchi, 2013), curvelet domain (Lin and
Herrmann, 2009), seislet domain (Chen et al., 2014), and the low-
rank constraint (Cheng and Sacchi, 2015; Xue et al., 2016a).
In addition to deblending algorithms, some researchers aim to

optimize simultaneous source survey parameters to yield a notable
enhancement in the deblending (Abma, 2014; Nakayama et al.,
2018). If the survey parameters (such as dithering time, shot inline
spacing) are not appropriate, the coherency difference between the
signal and the interference will be small, which makes the deblend-
ing difficult. To maximize the coherence difference in a limited
range, Zu et al. (2016) propose a periodically varying code to im-
prove the deblending performance for marine seismic acquisition.
Halliday and Moore (2018) investigate the difference between
simultaneous source encoding using time dithers, time sequences,
and phase sequences.
In recent years, deep learning has shown excellent performance

in seismic exploration. Wang et al. (2018) implement a deep-learn-
ing-based approach that learns the nonlinear map from the training
data to interpolate seismic data. Yu et al. (2019) introduce deep
learning to seismic noise attenuation, which does not require linear
events, sparsity, or low-rank assumptions. Zhang et al. (2018a) ap-
ply conventional neural networks (CNNs) to predict lithology and
have obtained accurate predicted results. Yang and Ma (2019) use
the deep convolutional neural network to build the initial velocity
for full-waveform inversion. This big-data-driven method does not
require physical prior knowledge. Based on a deep neural network,
Li et al. (2019) propose SeisInvNet to learn the mapping relation
from time-series data to a spatial image. Chen et al. (2019) imple-
ment a convolutional neural network to classify waveforms, and

then they pick arrivals from the classified waveform group. Similar
to image segmentation, Shi et al. (2018) design a multilayer con-
volutional neural network to recognize salt bodies, where the
labels for training the network are the manual interpretation results.
Pham et al. (2018) adopt the encoder-decoder convolutional neural
network to detect channels automatically. Richardson and Feller
(2019) adopt a U-net model incorporating a ResNet architecture
to separate blended common-offset gathers where the training data
are generated from field and synthetic data. Baardman and Tsingas
(2019) implement a convolutional neural network to classify the
blended and unblended data patches, and then they use a regression
algorithm to separate the identified blended patch.
In this paper, we implement a deep neural network to separate

blended data iteratively. The designed architecture includes two
parts. The first part is a convolutional network to extract local fea-
tures. The second part is a deconvolutional network to construct the
deblended data using the features extracted from the convolutional
network. The highest computational cost is spent on the training
period to optimize the parameters; subsequently, the optimized net-
work is applied on test data efficiently. Meanwhile, with the known
dithering code, we embed the trained network into an iterative de-
blending framework. A test on synthetic data demonstrates that the
iterative scheme can obtain appealing deblended results compared
with the rank-reduction method. Furthermore, two tests on blended
field data (the common-receiver gather [CRG] and common-offset
gather) are respectively provided to verify the deblending perfor-
mance of our proposed method.

THEORY

Supervised learning that requires a large training data set is one
type of machine learning. Figure 1 shows the architecture of our de-
signed network, where the left input (the blended patch) and the right
target (the unblended patch) are the training data. The designed ar-
chitecture includes convolutional and deconvolutional networks. The
convolutional network containing a convolutional layer, activation
layer, and batch normalization (BN) layer is for extracting the local
features. The deconvolutional network including deconvolutional
layer and activation layer is for constructing the output that is close
to the ground truth.
A single convolutional layer can be formulated as

Yj ¼
XI

i

Wj � Xi þ bj; j ¼ 1; 2; : : : ; J;

(1)

where Xi denotes the input in the jth layer, I de-
notes the total number of inputs, Wj denotes the
convolutional kernel at the jth layer, which can
be viewed as a weight matrix, J is the number of
convolutional kernels, Yj denotes the extracted
feature map, and bj is the basis that controls
the horizontal shift of outputs. Because a single
convolutional layer is linear, it cannot describe
the nonlinear relationship. Jain et al. (1996) pro-
pose the multilayer neural networks that are com-
posed of convolution and activation functions to
solve the nonlinear problem. Combined with the
activation function, equation 1 can be written as

Figure 1. The architecture of a deep neural network that includes convolutional, ReLU
activation, BN, deconvolutional, and tanh activation operations.
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Yj ¼ f

�XI

i

Wj � Xi þ bj

�
; j ¼ 1; 2; : : : ; J; (2)

where f denotes the activation function that rescales the extracted
feature map in a nonlinear manner (Oyedotun and Khashman,
2017). The common activation functions include tanh, sigmoid,
and rectified linear unit (ReLU). Yu et al. (2019) compare the three
activation functions. In the designed architecture, two activation
functions (ReLU and tanh) are used herein. The ReLU operation
can be formulated as

fðxÞ ¼ maxð0; xÞ: (3)

The ReLU activation returns its argument x when it is greater than
zero and returns zero otherwise. Although ReLU is relatively sim-
ple, it still maintains the nonlinearity or “switch on” characteristic
that is similar to a biological neuron. Because the target value varies
from −1 to 1, the tanh activation function is applied in the last layer
as shown in Figure 1. The tanh function is expressed as

tanhðxÞ ¼ ex − e−x

ex þ e−x
: (4)

Ioffe and Szegedy (2015) point out that the BN operation enjoys
fast training, better performance, and low sensitivity to initializa-
tion. We add a BN layer after the activation layer
and obtain the following formula:

Yj ¼ Bf

�XI

i

Wj � Xi þ bj

�
;

j ¼ 1; 2; : : : ; J; (5)

where B denotes the BN operation. Equation 5
describes the step “Conv + ReLU + BN” shown
in Figure 1. For a layer with d-dimensional input
u ¼ ðu1; u2; : : : ; uk; : : : ; udÞ, the BN operation
can be expressed as

BðukÞ ¼ λ
uk − EðukÞffiffiffiffiffiffiffiffiffiffiffiffi

VðukÞ
p þ β; (6)

where EðukÞ denotes the mean value of uk, VðukÞ
denotes the variance of uk, and λ and β denote the
scale and shift parameters, which will be updated
at each layer. In the designed architecture, the de-
convolutional operation is the transposed convo-
lution that yields the output that is close to the
ground truth (Zeiler et al., 2010, 2011; Noh et al.,
2015). Tsai et al. (2018) use a deconvolutional
operation to recover the first-break arrival time.
In this paper, we use the deconvolutional opera-
tion to restore the deblended data.
Before updating the network parameters, we

need to set the cost function. Given the input x
and target y, the loss function can be character-
ized as

LðΘÞ ¼ 1

N

XN
i¼1

kF ðxi;ΘÞ − yik2F; (7)

where xi ∈ x denotes the input patch, Θ denotes the network param-
eters, N denotes the total training pairs, k · kF represents the Frobe-
nius norm, yi ∈ y denotes the ground truth patch, F ðxi;ΘÞ denotes

1 2 3 4 5 6
Position (km)

0  

0.5

1  

D
ep

th
 (

km
)

A B

Figure 2. The geometry of the simultaneous source survey, where
two sources denoted by crosses (A and B) move in the same direc-
tion with a small spacing, circles denote shooting positions and
triangles denote receivers.

The 1st patch

The 2nd patch

The 3rd patch

The 1st patch

The 2nd patch

The 3rd patch

Figure 3. Ten training pairs are randomly selected from 1000 training pairs, where the
first and third rows show the blended data (input) and the second and fourth rows display
the unblended data (ground truth).
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the estimated output ~yi, and the process from xi to ~yi is shown in
Figure 1. Usually, the stochastic gradient descent (SGD) algorithm
can provide an effective way to train the network. However, the
SGD algorithm requires the hyperparameter to be chosen. In this pa-
per, we choose the ADADELTA algorithm. The ADADELTA algo-
rithm can modify the learning rate automatically and is robust to
noisy gradient information. For further detail about ADADELTA,
the reader is referred to Zeiler (2012).

Iterative deblending based on the deep neural network

Taking two-source acquisition as an example, the survey is dis-
played in Figure 2, where two crosses denote the shooting sources,
circles represent the predesigned shooting positions, and triangles
stand for receivers. In this survey, the first source (A) fires without
dithering time, the second source (B) fires with the dithering time.
According to the linearity of the wavefield, the blending formula in
the common-receiver domain can be expressed as

dble ¼ d1 þ Γ2d2; (8)

where diði ¼ 1; 2Þ denotes the individual record that is from all of
the corresponding shooting positions for the ith source and Γ2 is the
blending operator for the second source. Applying the inverse of Γ2

to equation 8, we can obtain pseudodeblended data for the second
source

Γ−1
2 dble ¼ Γ−1

2 d1 þ d2: (9)

Combining equations 8 and 9, we get

D ¼ Fm; (10)

where

D ¼
�

dble
Γ−1
2 dble

�
; F ¼

�
I Γ2

Γ−1
2 I

�
; m ¼

�
d1
d2

�
: (11)

When the trained networkΘ is established, the estimation ofm from
equation 10 can be achieved using

m̂ ¼ FðD;ΘÞ: (12)

Using different training data sets, the trained network can accom-
plish different tasks. In this paper, we use the blended data as input
and the unblended data as ground truth to train the network. There-
fore, the trained network can separate the blended data. Note that
deblending is a little different from denoising. On the one hand, the
incoherent interference is the useful signal for other sources, on the
other hand, with the dithering time, the incoherent interference can
be computed and subtracted iteratively (Mahdad et al., 2011).

Denoising aims to reserve useful signal and re-
ject noise; however, deblending is not only to re-
cover the coherent signal but also the incoherent
interference. Given the dithering code, the itera-
tive deblending framework is expressed as

mi ¼ FðD − ðF − IÞmi−1;ΘÞ; (13)

where i ∈ ð1; 2; : : : ; nÞ represents the ith itera-
tion. In the first iteration (i ¼ 1;m0 ¼ 0),
m1 ¼ F ðD;ΘÞ, which is the same as equation 12.
In the next iteration, the input data are
D − ðF − IÞm1, where the incoherent interfer-
ence has been estimated and subtracted from the
blended record to a certain extent. With several
iterations, mi−1 converges to the unblended data
m. Then, equation 13 can be rewritten as

a)

b)

Figure 4. (a) The loss curve varies with the iterations, where it is not
easy to detect the change after five iterations. (b) The S/N curve
changes with the iterations.

Figure 5. The detailed mapping process separates the blended patch using the trained
network, where the convolutional part is to extract the features and the deconvolutional
part is to generate the estimated data from the extracted features.
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mi ¼ F ðD − ðF − IÞmi−1;ΘÞ
¼ F ðFm − ðF − IÞmi−1;ΘÞ;
¼ F ðmi−1;ΘÞ (14)

which means that the input is the same as the output in the last
iteration.

EXAMPLES

Synthetic data

In the supervised learning literature, the trained network can fin-
ish different tasks using different training data sets. To train the net-
work for deblending, we first simulate 1000 training data sets. Each
training data set has 256 time samples and 128 traces. Figure 3 dis-
plays 10 training pairs randomly selected from the 1000 training
pairs, where the first and third rows show the input (blended) data
and the second and fourth rows show the ground truth (unblended)
data. Before training the network, we split the training data set
into patches (32 × 32 pixels) without overlap as the black
rectangles shown in Figure 3. So the total number of patches is
1000 × 256∕32 × 128∕32 ¼ 32,000. In the training step, the
ADADELTA method is implemented to minimize the loss function.

Figure 6. The test blended CRG, where the record of the first
source is coherent and that of the second source is incoherent.

a) b) c) d)

Figure 7. The deblending performance using the proposed method. (a) The deblended result of the first source that corresponds to the coherent
components in the test data shown in Figure 6. (b) The deblended result of the second source that corresponds to the incoherent components in
the test data. (c and d) The estimation errors.

a) b) c) d)

Figure 8. The deblended results corresponding to (a) the first and (b) second source using the rank-reduction method. (c and d) The cor-
responding errors.
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ADADELTA can be viewed as parameter-free because it is insen-
sitive to the hyperparameter selection and it can also avoid the con-
tinual decay of the learning rate (Zeiler, 2012). The mean square
error as expressed in equation 7 is the common method to monitor
the training process. The closer ~yi is to yi, the smaller JðΘÞ is.

Another way to evaluate the deblending performance is the
signal-to-noise ratio (S/N), which can be expressed as

S∕N ¼ 10 log10
kyik2

kyi − ~yik2
: (15)

When training the network, two methods are implemented to evalu-
ate the training process. Figure 4 shows the training loss and S/N
varying with iterations. In Figure 4a, the loss decreases sharply at
the first two iterations. However, after five iterations, it is difficult to
observe the obvious loss variation. From the S/N curve shown in
Figure 4b, we can observe that the S/N increases quickly at the first
two iterations. Although the increase of S/N slows down after five
iterations, we can see the improvement clearly. After finishing the
training step, the updated network can be implemented to separate
the test data. Figure 5 illustrates how to separate the blended data
using the trained network. In Figure 5, one blue panel shows the 32
extracted features from the previous layer. With the deepening of
the layer, more important features are captured by the convolutional
network. The deconvolutional network is to construct the deblended
result using the extracted features from the convolutional network.
Figure 6 shows the test data, which is the blended CRG. With the
dithering code, the record of the second source is incoherent. Before
testing, we split the blended data into patches (the size is 32 × 32,

and the stride is four) as inputs to the network.
After three iterations, we obtain the two de-
blended results shown in Figure 7a and 7b. The
result shown in Figure 7a corresponds to the co-
herent components in Figure 6, and the result
shown in Figure 7b corresponds to the incoherent
components in Figure 6. Figure 7c and 7d shows
the estimation errors corresponding to the two
sources. For a quantitative evaluation of the de-
blending performance, we calculate the S/N of
the deblended result shown in Figure 7a in the
three iterations. In the three iterations, the S/N
values s are 21.5, 24.8, and 25.3 dB, respectively.
The improvement of the S/N demonstrates
the effectiveness of our proposed method
clearly. All of the tests were carried out on a per-
sonal laptop with the Keras platform and the
graphics processing unit (GPU) was a Quadro
M600M. The size of the training patch is
32; 000 × 32 × 32, and the training process in-
cluding 30 iterations took 1464.2 s. The size
of the test patch is 2850 × 32 × 32, and the test
process takes 2.2 s at each iteration. Figure 8a
and 8b shows the deblended results by the
rank-reduction method, where the fixed size of
the window is 20 × 24, the preserved rank is
three, and the number of iterations is 50. Fig-
ure 8c and 8d displays the estimation errors cor-
responding to the rank-reduction method. In this
example, the rank-reduction method took 71.8 s
and the final S/N is 25.7 dB. Through the com-
parison of computational time and S/N, we can
initially conclude that after training the network,
our proposed method can obtain comparable

The 1st patch

The 2nd patch

The 1st patch

The 2nd patch

Figure 10. The training data set is used to train the network for separation of the real
blended CRG. The top row shows the blended data, and the bottom row shows the
ground truth. In this case, we shift five pixels to extract patches as pointed out by the
black and green rectangles.

a) b)

Figure 9. (a) The unblended CRG. (b) The blended CRG where the
signal is coherent and the interference is incoherent.
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performance with high efficiency compared to the rank-reduction
method.

Field data examples

In this section, two field data sets are provided to demonstrate the
effectiveness of our proposed method. The first field data are a CRG
as shown in Figure 9a. Although there is some random noise, we
can distinguish the coherent events. To simulate the blended data
shown in Figure 9b, we first shift the CRG using the dithering time
to generate the incoherent interference, and then we add the
incoherent interference to the coherent data. The coherent signal
is contaminated by the incoherent interference because they have
the same energy. To separate the blended CRG, we simulate four
pairs of hyperbolic data sets as shown in Figure 10, where the first
row represents the blended CRG and the second row shows the
ground truth. Each data set has 500 time samples and 120 traces.
To enlarge the training data size, we extract patches (30 × 30 pixels)
by shifting five pixels. The total number of training patches is
4 × ðð500 − 30Þ∕5þ 1Þ × ðð120 − 30Þ∕5þ 1Þ ¼ 7220. The archi-
tecture is the same as that previously described in Figure 1. After
training, the trained network is embedded into the iterative frame-
work to separate the blended CRG as shown in Figure 9b. Because
the blended CRG is generated from one CRG with dithering code,
we only show one deblended result to avoid redundancy. Figure 11a
displays the deblended result, where the incoherent interference is
separated out and the random noise is partially suppressed. From
the deblended result, it is easier to distinguish the coherent events.
To determine the damage to the signal clearly, we calculate the
difference between the deblended result and the unblended data
(Figure 9a) and show it in Figure 11b. The damages to the coherent
signal are pointed out by arrows. The S/N improves from −0.7 to
5.3 dB. Another way to observe the damage to signal is the local
similarity (Fomel, 2007; Zu et al., 2019). The local similarity meas-
urement assumes that signal and noise are orthogonal. If signal is
leaked, the local similarity value will be large. Figure 11c represents
the local similarity between Figure 11a and 11b. From the local
similarity, we can clearly see the damage to the signal indicated
by the red values. Figure 11d shows the removed incoherent inter-
ference from the blended CRG. From this case, we conclude that
our proposed method can well separate the blended field data using
the network trained from synthetic data set.

a)

b)

c)

Figure 12. The second training data set: (a) the unblended data
(ground truth), (b) the incoherent interference, and (c) the input data
that is very noisy because the incoherent interference has the same
energy as the unblended data.

a) b) c) d)

Figure 11. (a) The deblended result, (b) the difference between deblended data and unblended data (Figure 9a), (c) the similarity between
(a and b), and (d) the removed components from Figure 9b.
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In the second field example, we choose a field data set to train the
network. The training pair is shown in Figure 12. Figure 12a shows
the ground truth, which is part of a stacked profile from the Gulf of
Mexico. The stacked profile contains dipping events, horizontal
events, and faults. Before training the network, the input data should
be simulated. We flip the stacked profile and shift it using a dither-
ing code to generate the incoherent interference, which is shown in
Figure 12b; then we add the incoherent interference to the stacked
profile to generate the input data as shown in Figure 12c. Because
the incoherent interference is caused by other sources that have the
same energy as the coherent events, the input data are very noisy.
Note that the simulated input data are different
from the stacked data that are processed by the
traditional seismic workflow using the blended
data. Similar to earlier examples, we adopt the
overlap scheme to extract patches. The size of
the stacked profile as shown in Figure 12a is
400 × 2300, the patch is 20 × 20, and the sliding
step is 10. Thus, the total number of training
patches is ½ð400 − 20Þ∕10þ 1� × ½ð2300 − 20Þ∕
10þ 1� ¼ 8931. After training, we test our pro-
posed method on a common-offset gather from
another region. Figure 13a displays the conven-
tional common-offset gather. Figure 13b shows
the blended common-offset gather. Compared
to the training data set, the test data set is rela-
tively simple. In other words, the training data
contain most local features of the test data. Fig-
ure 14a and 14b shows the two deblended results.
After three iterations by our proposed method,
we can obtain two clean common-offset gathers
from one noisy blended common-offset gather.
In the two deblended results, the weak and strong
events are clear and random noise and incoherent
interference are separated out. Figure 14c shows
the difference between the original data as shown
in Figure 13a and the deblended data as shown
in Figure 14a. Through Figure 14c, it can be ob-
served that the original data contain much ran-
dom noise and there is a little damage to the
coherent signal between 0.4 and 0.8 s. Figure 14d
displays the difference between blended data as
shown in Figure 13b and deblended data as
shown in Figure 14a, which contains random

noise and incoherent interference. To see the performance in detail,
a magnification of the rectangles in Figures 13 and 14 is shown in
Figure 15. Figure 15a shows the magnified section from the original
data as shown in Figure 13a, which contains some random noise.
Figure 15b shows the magnified section from blended data as
shown in Figure 13b, where the incoherent interference seriously
contaminates the coherent events. Figure 15c shows the magnified
section of the deblended data shown in Figure 14a, where the ran-
dom noise and incoherent interference are separated. Figure 15d
displays the magnified section from Figure 14c, which is random
noise in the original data. Figure 15e shows the magnified section

a) b)

c) d)

Figure 14. The two deblended results corresponding to (a) the first source and (b) the
second source, (c) the difference between Figures 13a and 14a, and (d) the difference
between Figures 13b and 14a.

a) b)Figure 13. (a) The conventional common-offset
gather and (b) the blended common-offset gather.
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from Figure 14d, which represents the removed components by the
proposed method. The magnified section confirms the deblending
performance of the proposed method.

CONCLUSION

We have proposed a deblending method based on a deep neural
network to separate blended data. In the designed network, the con-
volutional network extracts features from a training data set and
then the deconvolutional network constructs the deblended data us-
ing the extracted features. Because the trained network can be effi-
ciently applied on new test data, we embed the trained network into
the iterative framework to further improve the deblending perfor-
mance. The deblended results of the synthetic example confirm that
the iterative framework combining the trained network can obtain
good performance. Furthermore, the examples of deblending of
field data prove that the networks trained with synthetic data sets
and trained with field data sets can well separate the real blended
data. Although our proposed method requires iteration, the increase
of computational cost is very low. Thus, our proposed method can
be easily applied on large data sets.
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