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Abstract
The main aim of the research presented in this report is investigating analytical methods to model fluid-
structure interaction in large-scale offshore floating photovoltaics. The model that was attempted to be
solved analytically is based on a model presented by Pengpeng Xu (2022).

The dimensions in the equations were removed. Applying a perturbation method yielded hierarchic
partial differential equations by introducing the wave amplitude divided by the depth of the ocean as a
small perturbation parameter. The analytical solution of the first order problem was found by applying
separation of variables and by using a Fourier transform. For certain classes of problems it is shown in
this report that it is possible to analytically solve a model for fluid-structure interaction in offshore solar
farms for various initial conditions.
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Nomenclature

Abbreviations

Abbreviation Definition

EBVK Euler Bernoulli-von Karmann
LOFPV Large-scale offshore floating photovoltaics
FSI Fluid-structure interaction

Symbols

Symbol Definition Unit

b Beam width [m]
c1 External damping coefficient [kg/(m2s)]
c2 Internal damping coefficient [kg m /s]
d Beam thickness (in z-direction) [m]
E Young’s modulus [ (kg ) / (ms2)]
g Acceleration of gravity [m/s2]
h Depth of the ocean [m]
I Inertial moment [m4]
L Length of the beam [m]
p Water pressure [N/m2]
qw External distributed load [N/m]
S Cross-section area [m2]
t Time [s]
V Velocity [m/s]
w Transverse displacement [m]
wmax maximal transverse displacement [m]
x X coordinate [m]
z Z coordinate [m]

η Free surface elevation [m]
ν Poisson’s ratio [-]
ρw Density (water) [kg/m3]
ρs Material Density (beam) [kg/m3]
ϕ Fluid velocity potential [m2/s]

v



1
Introduction

Solar photovoltaics are expected to be the largest source of electricity by 2040 (IEA, 2020). Generating
large quantities of solar energy puts a heavy strain on land usage (Xu, 2022). Large-scale offshore
floating photovoltaics provides a solution to that problem (figure 1.1, Ocean Sun, 2019). Photovoltaic
panels are placed on a plate in the ocean. In figure 1.2 one can observe the detailed configuration
of a LOFPV (Ocean Sun, 2019). Modelling vibrations and forces in such a plate is crucial for the
construction of safe and reliable offshore solar farms.

Figure 1.1: LOFPV (Ocean Sun, 2019)
Figure 1.2: Detailed Construction of LOFPV (Ocean

Sun, 2019)

The purpose of this report is examining analytical methods for modelling fluid-structure interaction
(FSI) in large-scale offshore floating photovoltaics (LOFPV). Xu (2022) models FSI in LOFPV by rep-
resenting the floating plate as a nonlinear Euler-Bernoulli-von Kármann (EBVK) beam coupled to the
water in the ocean. The model of Xu is used and slightly changed in our report. To find an analytical
approach for representing FSI in LOFPV, we investigate different ways to solve Xu’s (2022) model. A
perturbation method is applied to deal with weak nonlinearities. With separation of variables and a
Fourier transform one can solve the linear model.

This Thesis is organised as follows. In Chapter 2 one can find a Theoretical Model for depicting
the semi-nonlinear fluid-structure interaction of large scale offshore floating photovoltaics. Chapter 3
presents the nondimensionalized model and contains details about dividing the model into different
order equations by using a perturbation method. In Chapter 4 the analytical solution of the first order
model is derived. Finally, in chapter 5 the conclusions of the report are presented.
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2
Model for Large-scale Offshore Floating

Photovoltaics
In this chapter one can find the representation of waves in a model for large-scale offshore floating
photovoltaics (LOFPV). The floating plate is modeled as a nonlinear Euler Bernoulli-van Karmann beam
(EBVK). The water potential in the ocean is modelled and the EBVK is linked to this model as a boundary
condition.

In section 2.1 one can find some key assumptions for modelling waves in a beam. Subsequently
section 2.2 contains the model beam. In particular in 2.1.2 it is shown how an equation of motion for
a vibrating beam can be obtained. Furthermore in section 2.1.3 the motion of water is explained with
linear potential theory. The derivations in section 2.1.4 connect the boundary conditions of the water
potential theory with the beam equation.

2.1. Assumptions
The transverse vibrations of the membrane is much bigger than the vertical displacement of the beam.
Therefore only the impact of the waves is used in our models. We make the following assumptions in
our model (Xu and Wellens, 2022), (Xu, 2022):

• Because the structural length is large compared to the deflection of the beam, an infinite domain
is chosen. Therefore there are boundary conditions on x at infinity. That means ∂nw

∂xn converges
to zero for every non-negative integer n as |x| −→ ∞.This is true because, the total amount of
energy in the beam has to be finite.;

• One also assumes that the ocean has a uniform depth h;
• A LFPV is held in place by an anchor and its movement can change as a result of wave, current
and wind loads. These global motions are neglected in our model;

• The floating membrane is impermeable;
• Both the PV panels and marine growth on the bottom of the planes can impact the stresses in
the membrane. But these effects are so small that they are not part of the model.

Figure 2.1 (Xu, 2022) shows a 2D model of LOFPV on the sea. Thus the movements in the LOFPV
can be depicted as a EVBK beam that only takes transverse deflections into account.

2.2. Model
2.2.1. Equation of Motion
The equation of motion EOM (Xu, 2022):

ρsS
∂2w

∂t2
+ EI

∂4w

∂x4
− 3

2
SE

(
∂w

∂x

)2
∂2w

∂x2
+ c1b

∂w

∂t
+ c2b

∂5w

∂t∂x4
= qw. (2.1)

2



2.2. Model 3

Figure 2.1: A picture of waves in the LOFPV Xu, 2022

The variable t represents the time in seconds. The variable x represents the place on the horizontal
axis. The transverse displacement of the beam is denoted by w. The function w depends on the
variables t and x. Also, E is Young’s modulus and ρs is the density of the material. The beam thickness
is d and b stands for the the width of the beam. The cross-section area is S = bd. The Poisson’s ratio
is represented by ν. The inertial moment is given by I = bd3

12(1−ν2) . The viscous and structural damping
coefficients are given by c1 and c2, respectively. The external distributed load has a constant value qw
and is uniformly distributed in the x-direction.

In appendix B the derivation of equation (2.1) can be found.

2.2.2. Potential Theory for Water
The water has a constant density ρw. The depth of the ocean is uniform and is equal to h. The Veloc-
ity potential ϕ(x, z, t) represents the invicid, irrotational and incompressible flow as (Xu and Wellens,
2022):

∂2ϕ

∂x2
+

∂2ϕ

∂z2
= 0. (2.2)

Since there is no flow of water at the seabed of the ocean, one can obtain the following boundary
condition.

∂ϕ

∂z

∣∣∣
z=−h

= 0. (2.3)

Let η(x, t) be the free surface elevation. At the free surface one obtains the following boundary
condition:

∂η

∂t
=

∂ϕ

∂z

∣∣∣
z=η

. (2.4)

Xu chooses to set the boundary conditions at free surface elevation at z = 0 (Xu, 2022). To improve
this model the boundary conditions at the surface of the ocean is taken at z = η. The free surface of
the ocean is not found at z = 0, but at z = η.

With the Bernoulli equation the kinematic boundary condition is obtained (Xu and Wellens, 2022).

p+ ρw
∂ϕ

∂t

∣∣∣
z=η

+ ρwgη = 0. (2.5)



2.2. Model 4

2.2.3. FSI Equations
Thewater models and the EOMof the beam are coupled at the boundary conditions. At z = η, substitute
w = η and qw = pb. Now the equations at the free surface are :

∂w

∂t
=

∂ϕ

∂z

∣∣∣
z=w

, (2.6)

ρsd
∂2w

∂t2
+

Ed3

12(1− ν2)

∂4w

∂x4
− 3Ed

2

(
∂w

∂x

)2
∂2w

∂x2
+ ρwgw + ρw

∂ϕ

∂t

∣∣∣
z=w

+ c1
∂w

∂t
+ c2

∂5w

∂t∂x4
= 0. (2.7)

Here qw has the unit [N ] because the pressure p[N/m], is multiplied with beam width b.
The variables S and I are changed to S = bd and I = bd3

12(1−ν2) . Also η is replaced by w.



3
Removing Dimensions & Nonlinearity

from FSE-equations
Before one wishes to solve the FSI equations in section 2.2.3, it is a good idea to nondimensionalize
the equations. We also look for ways deal with nonlinearity. In order to remove nonlinearity in these
equations one needs to apply a perturbation method.

In subsection 3.1 one can find an explanation of the Buckingham PI Theorem. Subsequently sub-
section 3.2 contains the steps that remove the dimensions from the FSI equations. Furthermore in
subsection 3.2 we also split the FSI equations into different hierarchical differential equations by apply-
ing the perturbation method.

3.1. Buckingham PI Theorem
The Buckingham Π Theorem is a valuable concept for making equations dimensionless. This theorem
roughly states that an equation with n physical variables expressed in k physical dimensions, can be
reduced to to an equation with n − k dimensionless variables. From this theorem one can obtain a
method for deriving groups of non dimensional variables from given dimensional parameters in an
equation.

In subsection 3.1.1. the Buckingham Π theorem is stated and explained with a simple example.
Furthermore in subsection 3.1.2 one can find the application of the Buckingham Π theorem to the FSI-
equations from equation 2.7.

3.1.1. Buckingham PI Theorem explained
Statement
Let there exist n number of physical variables such as depth, density force and k number of units such
as kilograms or seconds in an equation. Then the equation can be reformulated such that there exists
p = n− k number of dimensionless Pi groups ( Torczynski, 1988).

An equation of the form f(x1, . . . , xn) = 0, with independent physical parameters x1, ..xn can be
restated to an equation with π1, ...πp independent dimensionless parameters. These new independent
variables are called Pi-Groups. The new dimensionless equation has the form: g(π1, . . . , πp) = 0. Every
Pi-group is a product of powers of the dimensional parameters ( Torczynski, 1988):

πi = xa1
1 xa2

2 . . . xan
n .

Example
The acceleration of an object is be computed by dividing distance by time twice:

a =
d

t2
= acceleration(d, t).

The distance is given by d and the time by t. The variable a corresponds to the acceleration. In this
equation there exist 3 physical variables. These 3 physical variables are expressed in 2 units: seconds

5



3.1. Buckingham PI Theorem 6

and meters. Therefore there exists 3-2 = 1 dimensionless quantity. Let π be a dimensionless Π-Group.

π = axdytz.

Because π does not have a dimension:

s0m0 = mxs−2xmysz.

To find the expression of π the following linear system needs to be solved:

x+ y = 0,

−2x+ z = 0.

A solution to this system is: x = 1, y = −1, z = 2.

π = a1d−1t2.

Now the equation for the acceleration can be rewritten as:

π = a1d−1t2 = 1,

π − 1 = 0.

3.1.2. Application to FSI-equations
In the equations 2.7 there exist 14 independent variables and 3 units ( s, m, kg). Thus these equations
can be restated as an equation with 11 dimensionless parameters (pi-groups).

First we list the dimensional parameters (in eq 2.7). Those are: x, z, t, ϕ, w, ρs, ρw, d, E, g, h, L,
wmax, c1 and c2. These dimensional parameters have units kg,m,s. Subsequently we choose ρs, ρw,
d, E, g, h, L, wmax, c1 and c2 as a subset of parameters which can be used to nondimensionalize x, z,
t, ϕ and w.

The first π-group can be written as:

π1 = xza1ta2ϕa3wa4ρa5
s ρa6

w da7Ea8ga9ha10La11wa12
maxc

a13
1 ca14

2 .

Next the equation is given in terms of its dimensions:

kg0m0s0 = m1ma1sa2(m2s−1)a3ma4(kgm−3)a5(kgm−3)a6ma7(kgm−1s−2)a8(ms−2)a9

ma10ma11ma12(kgm−2s−1)a13(kgms−1)a14 .

The product of all these units must be equal to the product of kg, m and s to a zero power. Next,
the dimensions are separated and we try to find the exponent that obtains the right solution.

m : 1 + a1 + 2a3 + a4 − 3a5 − 3a6 + a7 − a8 + a9 + a10 + a11 + a12 − 2a13 + a14 = 0,

kg : a5 + a6 + a8 + a13 + a14 = 0,

s : a2 − a3 − 2a8 − 2a9 − a13 − a14 = 0.

This linear system has an infinite number of solutions. Examples of possible solutions are:

a11 = −1, π1 = xL−1.

a5 =
1

6
, a8 =

1

6
, a14 = −1

3
, π1 = xρ

1
6
s E

1
6 c

− 1
3

2 .

To nondimensionalize z, t, ϕ and w, one can apply the same buckingham-π method to regroup
those variables into nondimensional π-groups. There are also an infinite number of ways to make z, t,
ϕ and w nondimensional.



3.2. Nondimensionalisation 7

Using the same method to nondimensionalize x, the variable z can for example be nondimension-
alized in the following number of ways:

π2 = zh−1,

π2 = zρ
1
6
s E

1
6 c

− 1
3

2 .

When we continue to nondimensionalize other variables, the options for t are:

π3 = tg
1
2 d

1
2 ,

π3 = tρ
− 1

3
s E

2
3 c

− 1
3

2 .

Subsequently one can remove the dimensions in the variable w:

π4 = ww−1
max,

π4 = wh−1,

π4 = wρ
1
6
wE

− 1
3 .

Finally the velocity potential, ϕ, can for example be restated as:

π5 = ϕρ
2
3
wE

− 1
3 c

− 1
3

2 .

3.2. Nondimensionalisation
First the boundary conditions are made linear. Secondly the dimensions in the FSI-equations are
removed. After removing dimensions the size of different terms is examined with a perturbation method.
The higher order and lower order terms of are separated into different equations. This yields a series
of hierarchically linear partial differential equations that one can solve.

3.2.1. Removing Non-linearity in the Kinematic Boundary Condition
One can observe that the boundary conditions are nonlinear in the equation 2.6. To remove this non-
linearity the variable ξ(x, z, t) = z−w(x,t)

h+w(x,t) is substituted in the function ϕ, such that ϕ(x, z, t) = ϕ̂(x, ξ, t).
The domain of ξ is −1 < ξ < 0, since the domain of z is −h < z < w(x, t). Substituting ϕ̂ in the
boundary conditions for z = w yields a linear kinematic boundary condition:

∂w

∂t
= ϕ̂ξξz = ϕ̂ξ

−w

h+ w
, ξ = 0.

Moreover substituting ϕ̂ in equation 2.7 yields:

ρsd
∂2w

∂t2
+

Ed3

12(1− ν2)

∂4w

∂x4
− 3Ed

2

(
∂w

∂x

)2
∂2w

∂x2
+ ρwgw + ρw[

∂ϕ̂

∂t
+

∂ϕ̂

∂ξ

−wt

h+ w
]
∣∣∣
ξ=0

+ c1
∂w

∂t
+ c2

∂5w

∂t∂x4
.

3.2.2. Nondimensionalizing Variables
In this sub section one can see how the system in section 2.2.3 are nondimensionalized.

The non-dimensional variables t̄, x̄, z̄, ϕ̄ and w̄ are introduced.

t̄ =
t

tc
, (3.1)

x̄ =
x

d
, (3.2)

z̄ =
z

h
, (3.3)

ϕ̂(x, ξ, t) = ϕ(x, z, t), (3.4)

ξ =
z − w

h+ w
=

z̄ − w̄wmax

h

1 + w̄wmax

h

, (3.5)

ϕ̄ =
ϕ̂

ϕc
, (3.6)

w̄ =
w

wmax
. (3.7)
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With this normalisation the new domain of the model is −∞ ≤ x̄ ≤ ∞, −1 ≤ ξ ≤ 0 and −1 ≤ w̄ ≤ 1.
The values of tc and ϕc are chosen by judicious guessing in paragraph 3.2.3.
This yields the following FSI-equation:

w̄t̄t̄ +
t2cE

d212(1− ν2)ρs
w̄x̄x̄x̄x̄ − 3Ew2

maxt
2
c

2ρsd4
(w̄x̄)

2w∗
x̄x̄ +

ρwgt
2
c

ρsd
w̄ +

ρwϕctc
ρswmaxd

[
ϕ̄t̄ + ϕ̄ξξt̄

]
(3.8)

+
c1tc
ρsd

w̄t̄ +
tcc2
ρsd5

w̄t̄x̄x̄x̄x̄ = 0, ξ = 0. (3.9)

Substituting ϕ̂(x, ξ(x, t), t) = ϕ(x, z, t) in the water potential equation yields an equation with nonlin-
ear terms:

ϕxx + ϕzz = ϕ̂xx + ϕ̂xξξx + (ϕ̂ξx + ϕ̂ξξξx)ξx + ϕ̂ξξxx + ϕξξξ
2
z

= ϕ̂xx + 2ϕ̂xξξx + ϕ̂ξξξ
2
x + ϕ̂ξξxx + ϕ̂ξξξ

2
z

=
ϕc

d2
ϕ̄x̄x̄ +

2ϕc

d2
ϕ̄x̄ξξx̄ +

ϕc

d2
ϕ̄ξξξ

2
x̄ +

ϕc

d2
ϕ̄ξξx̄x̄ +

ϕc

h2
ϕ̄ξξξ

2
z̄ = 0.

The derivatives for ξ(x, t) are:

ξx̄ =
−w̄x̄

wmax

h

(1 + w̄wmax

h )
−

(z̄ − w̄wmax

h )w̄x̄
wmax

h

(1 + w̄wmax

h )2
,

ξx̄x̄ = −
w̄x̄x̄

wmax

h

1 + w̄wmax

h

+
2(w̄x̄

wmax

h )2

(1 + w̄wmax

h )2
+

2(z̄ − w̄wmax

h )w̄2
x̄(

wmax

h )2

(1 + w̄wmax

h )3
−

(z̄ − w̄wmax

h )w̄x̄x̄
wmax

h

(1 + w̄wmax

h )2
,

ξz̄ =
1

1 + w̄wmax

h

,

ξz̄z̄ = 0,

ξt̄ =
−w̄t̄

wmax

h

(1 + w̄wmax

h )
−

(z̄ − w̄wmax

h )w̄t̄
wmax

h

(1 + w̄wmax

h )2
.

The boundary equation at the free surface elevation is given at z = w which is equivalent to ξ = 0.
When z = w, then z̄ = w̄wmax

h . The value of the function ξt̄ evaluated at z̄ = w̄wmax

h is : ξt̄ =
−w̄t̄

wmax
h

(1+w̄wmax
h )

.
Substituting the values of ξt̄ at z = w in the equation (3.9) the boundary condition yields:

w̄t̄t̄ +
t2cE

d212(1− ν2)ρs
w̄x̄x̄x̄x̄ − 3Ew2

maxt
2
c

2ρsd4
(w̄x̄)

2w∗
x̄x̄ +

ρwgt
2
c

ρsd
w̄ +

ρwϕctc
ρswmaxd

(3.10)[
ϕ̄t̄ + ϕ̄ξ

−w̄t̄
wmax

h

(1 + w̄wmax

h )

]
+

c1tc
ρsd

w̄t̄ +
tcc2
ρsd5

w̄t̄x̄x̄x̄x̄ = 0, ξ = 0. (3.11)

Substituting the values of t̄, ξ, ϕ̄ and w̄ in the kinematic boundary condition yields:

w̄t̄ =
tcϕc

hwmax
ϕ̄ξξz̄, ξ = 0. ⇒

w̄t̄ =
tcϕc

hwmax
ϕ̄ξ

1

1 + w̄wmax

h

, ξ = 0.

The boundary condition at the bottom of the ocean is restated as:

ϕc

h
ϕ̄ξξz̄ = 0, ξ = −1. =⇒

ϕc

h

1

1 + w̄wmax

h

ϕ̄ξ = 0, ξ = −1. =⇒

ϕ̄ξ = 0, ξ = −1.
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3.2.3. Simplifying FSI-equations
Choose ε as a very small and dimensionless variable. Substitute w̄ = εw̃ in the equations.

The boundary condition at ξ = 0 can be restated as:

w̃t̄t̄ +
t2cE

d212(1− ν2)ρs
w̃x̄x̄x̄x̄ − ε2

3Ew2
maxt

2
c

2ρsd4
(w̃x̄)

2w̃x̄x̄ +
ρwgt

2
c

ρsd
w̃+ (3.12)

ρwϕctc
ρswmaxdε

[
ϕ̄t̄ + ϕ̄ξ

−εw̃t̄
wmax

h

(1 + εw̃wmax

h )

]
+

c1tc
ρsd

w̃t̄ +
tcc2
ρsd5

w̃t̄x̄x̄x̄x̄ = 0, ξ = 0. (3.13)

Replacing w̄ = εw̃ in the equation for velocity potential yields:

ϕxx + ϕzz = ϕ̂xx + ϕ̂xξξx + (ϕ̂ξx + ϕ̂ξξξx)ξx + ϕ̂ξξxx + ϕξξξ
2
z

= ϕ̂xx + 2ϕ̂xξξx + ϕ̂ξξξ
2
x + ϕ̂ξξxx + ϕ̂ξξξ

2
z

=
ϕc

d2
ϕ̄x̄x̄ +

2ϕc

d2
ϕ̄x̄ξξx̄ +

ϕc

d2
ϕ̄ξξξ

2
x̄ +

ϕc

d2
ϕ̄ξξx̄x̄ +

ϕc

h2
ϕ̄ξξξ

2
z̄ = 0, =⇒

ϕ̄x̄x̄ + 2ϕ̄x̄ξξx̄ + ϕ̄ξξξ
2
x̄ + ϕ̄ξξx̄x̄ +

d2

h2
ϕ̄ξξξ

2
z̄ = 0.

the derivatives for ξ are:

ξx̄ =
−εw̃x̄

wmax

h

(1 + εw̃wmax

h )
−

(z̄ − εw̃wmax

h )εw̃x̄
wmax

h

(1 + εw̃wmax

h )2
,

ξx̄x̄ = −
εw̃x̄x̄

wmax

h

1 + εw̃wmax

h

+
2(εw̃x̄

wmax

h )2

(1 + εw̃wmax

h )2
+

2(z̄ − ε̃wwmax

h )ε2w̃2
x̄(

wmax

h )2

(1 + εw̃wmax

h )3
−

(z̄ − εw̃wmax

h )εw̃x̄x̄
wmax

h

(1 + εw̃wmax

h )2
,

ξz̄ =
1

1 + εw̃wmax

h

.

Furthermore the derivatives are substituted in the equation for velocity potential:

ϕ̄x̄x̄ + 2ϕ̄x̄ξ

( −εw̃x̄
wmax

h

(1 + εw̃wmax

h )
−

(z̄ − εw̃wmax

h )εw̃x̄
wmax

h

(1 + εw̃wmax

h )2

)
+ ϕ̄ξξ

( −εw̃x̄
wmax

h

(1 + εw̃wmax

h )
−

(z̄ − εw̃wmax

h )εw̃x̄
wmax

h

(1 + εw̃wmax

h )2

)2

+ϕ̄ξ(
−εw̃x̄x̄

wmax

h

1 + εw̃wmax

h

+
2(εw̃x̄

wmax

h )2

(1 + εw̃wmax

h )2
+

2(z̄ − εw̃wmax

h )ε2w̃2
x̄(

wmax

h )2

(1 + εw̃wmax

h )3
−

(z̄ − εw̃wmax

h )εw̃x̄x̄
wmax

h

(1 + εw̃wmax

h )2
) +

d2

h2
ϕ̄ξξ

1(
1 + εw̃wmax

h

)2 = 0.

The boundary condition at the surface, ξ = 0 can be reformulated as :

w̃t̄ =
tcϕc

hwmaxε
ϕ̄ξ

1

1 + εw̃wmax

h

, ξ = 0.

3.2.4. Finding Constants
With judicious guessing the values for variables tc and ϕc are found:

t2c =
d2ρs
E

, ϕc =
wmaxdε

tc
. (3.14)

Replacing the values ϕc and tc in equation (3.13) yields:

w̃t̄t̄ +
1

12(1− ν2)
w̃x̄x̄x̄x̄ − ε2

3w2
max

2d2
(w̃x̄)

2w̃x̄x̄ +
ρwgd

E
w̃ +

ρw
ρs

[
ϕ̄t̄ + ϕ̄ξ

−εw̃t̄
wmax

h

(1 + εw̃wmax

h )

]
(3.15)

+
c1√
Eρs

w̃t̄ +
c2

d4
√
Eρs

w̃t̄x̄x̄x̄x̄ = 0, ξ = 0. (3.16)
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After we replace ϕc and tc in the kinetic boundary condition at the surface:

w̃t̄ =
d

h
ϕ̄ξ

1

1 + εw̃wmax

h

, ξ = 0. ⇒

(1 + εw̃
wmax

h
)w̃t̄ =

d

h
ϕ̄ξ ξ = 0.

3.2.5. Hierarchical Differential Equations
In both the water potential and vibrations of the beam the equations are nonlinear in the previous
sections. Therefore both the unknown functions w̄ and ϕ̄ are expanded accordingly:

w̃ = w0 + εw1 + ε2w2, ϕ̄ = ϕ0 + εϕ1 + ε2ϕ2. (3.17)

We choose ε2 = (wmax

h )2, since it is assumed that the deflection of the beam is very small compared
to the depth of the ocean. The depth of a Norwegian Fjord is for example h = 200m and we assume
wmax = 0.02m− 0.2m. Thus ε ≈ 10−4 − 10−5.

Furthermore the value of ε = ρwgd
E . For a metal pontoon (for VLFS) the constants have the following

values: ρw = 1.025 · 103, g = 9.81, d = 2.0 · 10−2 and E = 1.6416 · 106 (Xu, 2022, p.65). Now we find
that: ε ≈ 1.225 · 10−4.

First Order Equations
In this subsection the O(ε0)-order components of the nondimensionalized FSI-equation are collected.

Because ξx̄ and ξx̄x are of at least orderO(ε2), we can extract theO(ε0) order equations for velocity
potential flow:

ϕ̄x̄x̄ +
d2

h2
ϕ̄ξξξ

2
z̄ = 0,⇒

ϕ̄x̄x̄ +
d2

h2
ϕ̄ξξ

1

(1 + εw̃wmax

h )2
= 0,⇒

(1 + εw̃
wmax

h
)2ϕ̄x̄x̄ = −d2

h2
ϕ̄ξξ,⇒

(1 + ε2(w0 + εw1 + ε2w2))
2ϕ̄x̄x̄ = −d2

h2
ϕ̄ξξ, =⇒

ϕ0x̄x̄ = −d2

h2
ϕ0ξξ.

The O(ε0)-order boundary conditions are:

ϕ0ξ = 0, ξ = −1.

w̃t̄ =
d

h
ϕ̄ξ, ξ = 0,⇒

w0t̄ =
d

h
ϕ0ξ, ξ = 0.

The O(ε0)-order component of the Euler-Bernoulli equation at ξ = 0 is :

w̃t̄t̄ +
1

12(1− ν2)
w̃x̄x̄x̄x̄ +

ρw
ρs

[
ϕ̄t̄

]
(3.18)

+
c1L

2√ρs

ρsd2
√
E

w̃t̄ +
c2
√
ρs

ρsd2L2
√
E
w̃t̄x̄x̄x̄x̄ = 0, ξ = 0. (3.19)

w0t̄t̄ +
1

12(1− ν2)
w0x̄x̄x̄x̄ +

ρw
ρs

[ϕ0t̄] (3.20)

+
c1L

2√ρs

ρsd2
√
E

w0t̄ +
c2
√
ρs

ρsd2L2
√
E
w0t̄x̄x̄x̄x̄ = 0, ξ = 0. (3.21)
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Furthermore new damping coefficients c̃1 and c̃2 are introduced such that: c1 = ε2c̃1 and c2 = ε2c̃2.
This approach is valid because the damping coefficients are often very small. In addition one can
not find the precise values of the hybrid damping coefficients beforehand (Xu, 2022). Hybrid damping
is defined as (structural damping exluded): when energy is dissipated by flowing waves, damping
occurs(Xu, 2022). Substituting c̃1 and c̃2 in the normalized Bernoulli-Euler equation (3.21) and collecting
the O(ε0)-terms yields:

w0t̄t̄ +
1

12(1− ν2)
w0x̄x̄x̄x̄ +

ρw
ρs

[ϕ0t̄] = 0, ξ = 0. (3.22)

For ϕ0 one can find the first separate equation:

ϕ0ξt̄t̄ +
1

12(1− ν2)
ϕ0x̄x̄x̄x̄ξ +

ρwh

ρsd
ϕ0t̄t̄ = 0, ξ = 0. (3.23)

In appendix C one can find the computations that were used to find the equation for ϕ0.
For w0 we can not find a separate equation:

w0t̄t̄t̄ +
1

12(1− ν2)
w0x̄x̄x̄x̄t̄ +

ρw
ρs

[ϕ0t̄t̄] = 0, ξ = 0,⇒

w0t̄t̄t̄ +
1

12(1− ν2)
w0x̄x̄x̄x̄t̄ −

d

h
ϕ0ξt̄t̄ −

d

h12(1− ν2)
ϕ0x̄x̄x̄x̄ξ = 0, ξ = 0,⇒

w0t̄t̄t̄ +
1

12(1− ν2)
w0x̄x̄x̄x̄t̄ − w0t̄t̄t̄ −

1

12(1− ν2)
w0x̄x̄x̄x̄t̄ = 0, ξ = 0,⇒

0 = 0.

Second Order Equations
In this subsection one can see how the O(ε)-order terms from the FSI-equations have been extracted.
Because ξx̄ and ξx̄x are of at least order O(ε2), ξ2x̄ is at least of order O(ε4), removing O(ε2)-order and
higher order components from the equation for water velocity potential yields:

ϕ̄x̄x̄ +
d2

h2
ϕ̄ξξ

1

(1 + ε2w̃)
2 = 0.

Moreover multiplying with the previous equation with(1+ ε2w̃)2 and removing O(ε2)-order terms yields:

ϕ̄x̄x̄ +
d2

h2
ϕ̄ξξ = 0.

Replacing ϕ̄ and w̃ with w0,w1,w2, ϕ0, ϕ1, ϕ2 and extracting the O(ε)-order terms yields:

ϕ1x̄x̄ +
d2

h2
ϕ1ξξ = 0. (3.24)

The boundary condition at the surface, ξ = 0 :

(1 + ε2(w0 + εw1 + ε2w2))(w0t̄ + εw1t̄ + ε2w0t̄) =
d

h
(ϕ0ξ + εϕ1ξ + ϕ2,ξ), ξ = 0.

The O(ε) component is collected at the kinematic boundary condition:

w1t̄ =
d

h
ϕ1ξ, ξ = 0. (3.25)

TheO(ε)-order boundary condition on the ocean floor:

ϕ1ξ = 0, ξ = −1. (3.26)
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Since 1
1+ε2w̃ can be written as a geometric series:

1

1 + ε2w̃
=

∞∑
n=0

(−ε2w̃)n = 1− ε2w̃ +O((ε2w̃)2),

the Bernoulli-Euler boundary condition at ξ = 0 is:

w̃t̄t̄ +
1

12(1− ν2)
w̃x̄x̄x̄x̄ − ε2

3w2
max

2d2
(w̃x̄)

2w̃x̄x̄ + εw̃ +
ρw
ρs

[
ϕ̄t̄ + ϕ̄ξ

−ε2w̃t̄

(1 + ε2w̃)

]
+
ε2c̃1L

2√ρs

ρsd2
√
E

w̃t̄ +
ε2c̃2

√
ρs

ρsd2L2
√
E
w̃t̄x̄x̄x̄x̄ = 0,⇒

w̃t̄t̄ +
1

12(1− ν2)
w̃x̄x̄x̄x̄ − ε2

3w2
max

2d2
(w̃x̄)

2w̃x̄x̄ + εw̃ +
ρw
ρs

[
ϕ̄t̄ + ϕ̄ξ(−ε2w̃t̄)(1− ε2w̃ +O((ε2w̃)2))

]
+
ε2c̃1L

2√ρs

ρsd2
√
E

w̃t̄ +
ε2c̃2

√
ρs

ρsd2L2
√
E
w̃t̄x̄x̄x̄x̄ = 0.

After one substitutes w̃ = w0 + εw1 + ε2w2 and ϕ̄ = ϕ0 + εϕ1 + ε2ϕ2 and extracts the O(ε) order
terms, one obtains the following equation:

w1t̄t̄ +
1

12(1− ν2)
w1x̄x̄x̄x̄ +

ρw
ρs

[ϕ1t̄] = −w0, ξ = 0

For ϕ1 one can find a separate non-homogeneous partial differential equation:

ϕ1ξt̄t̄ +
1

12(1− ν2)
ϕ1x̄x̄x̄x̄ξ +

ρwh

ρsd
ϕ1t̄t̄ = −w0,t̄, ξ = 0. (3.27)

In appendix C one can find the steps that were used to derive the partial differential equation for ϕ1.

Third Order Equations
In this subsection the O(ε2) order equation is found. The functions ξx̄ and ξx̄x̄ are of at least order
O(ε2). The function ξ2x̄ is of order O(ε4).

Removing O(ε4)-terms from the differential equation for velocity potential yields:

ϕ̄x̄x̄ + 2ϕ̄x̄ξ

( −εw̃x̄
wmax

h

(1 + εw̃wmax

h )
−

(z̄)εw̃x̄
wmax

h

(1 + εw̃wmax

h )2

)
+ϕ̄ξ

(−εw̃x̄x̄
wmax

h

1 + εw̃wmax

h

+−
z̄εw̃x̄x̄

wmax

h

(1 + εw̃wmax

h )2

)
+

d2

h2
ϕ̄ξξ

1(
1 + εw̃wmax

h

)2 = 0.

Multiplying the previous equation with (1 + ε2w)2 and removing O(ε4)-order terms yields:

ϕ̄x̄x̄(1 + 2ε2w) + 2ϕ̄x̄ξ(−ε2w̃x̄ − ε2z̄w̃x̄) + ϕ̄ξε
2w̃x̄x̄(−1− z̄) +

d2

h2
ϕ̄ξξ = 0.

Substituting ϕ0, ϕ1, ϕ2, w0, w1, w2 and z̄ = ξ(1+ ε2w̃)+ ε2w̃ in the previous equation and collecting the
higher order terms yields:

ϕ2x̄x̄ + 2w0ϕ0x̄x̄ + 2ϕ0x̄ξw0x̄(−1− ξ) + ϕ0ξw0x̄x̄(−1− ξ) +
d2

h2
ϕ2ξξ = 0.

The O(ε2)-order boundary conditions are:

w2t̄ + w0w0t̄ =
d

h
ϕ2ξ, ξ = 0.

ϕ2,ξ = 0, ξ = −1.
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The Euler Bernoulli-boundary condition can be written as:

w̃t̄t̄ +
1

12(1− ν2)
w̃x̄x̄x̄x̄ − ε2

3w2
max

2d2
(w̃x̄)

2w̃x̄x̄ + εw̃ +
ρw
ρs

[
ϕ̄t̄ + ϕ̄ξ(−ε2w̃t̄)(1− ε2w̃ +O((ε2w̃)2))

]
+
ε2c̃1L

2√ρs

ρsd2
√
E

w̃t̄ +
ε2c̃2

√
ρs

ρsd2L2
√
E
w̃t̄x̄x̄x̄x̄ = 0, ξ = 0.

Collecting the O(ε2)-order components of the Euler-Bernoulli equation yields:

w2t̄t̄ +
1

12(1− ν2)
w2x̄x̄x̄x̄ − 3w2

max

2d2
(w0x̄)

2w0x̄x̄ + w1 +
ρw
ρs

[ϕ2t̄ + ϕ0ξ(−w0t̄)]

+
c̃1L

2√ρs

ρsd2
√
E

w0t̄ +
c̃2
√
ρs

ρsd2L2
√
E
w0t̄x̄x̄x̄x̄ = 0, ξ = 0.



4
Solving the FSI-Equations

In chapter 3 the main FSI-equations were separated into different order problems. In this chapter the
O(ε0)-order boundary value is solved analytically. In section 4.1 one can find the derivation for the
analytical solution with a Fourier transform. Section 4.2 contains a few examples for different initial
conditions.

4.1. Solving the First Order Problem
In this chapter one can see how it is possible to find the first order solution of the normalized FSI-
equations from the previous chapter 3

The boundary value problem for the first order variable ϕ0 :

ϕ0x̄x̄(x̄, ξ, t̄) = −d2

h2
ϕ0ξξ(x̄, ξ, t̄), (4.1)

ϕ0ξ(x̄, ξ, t̄) = 0, ξ = −1, (4.2)

ϕ0ξt̄t̄ +
1

12(1− ν2)
ϕ0x̄x̄x̄x̄ξ +

ρwh

ρsd
ϕ0t̄t̄ = 0, ξ = 0. (4.3)

To solve this equation separation of variables is applied. In section 4.1.2 a Fourier transform is
applied to solve the first order FSI-equations.

4.1.1. Separation of Variables
We apply separation of variables: ϕ0(x̄, ξ, t̄) = ϕ̂(x̄, t̄)h(ξ). Substituting both ϕ̂ and h(ξ) in equation
(4.3) yields:

ϕ̂x̄x̄(x̄, t̄)h(ξ) =
−d2

h2
ϕ̂(x̄, t̄)h′′(ξ), (4.4)

h′(−1) = 0, (4.5)

ϕ̂t̄t̄h
′(0) +

1

12(1− ν2)
ϕ̂x̄x̄x̄x̄h

′(0) +
ρwh

ρsd
ϕ̂t̄t̄h(0) = 0. (4.6)

Let h(0)
h′(0) = K̃. We also introduce the variable c: c2 = 1

12(1−ν2)
(
1+ ρwhK̃

ρsd

) . We assume c2 > 0. The

beam equation (4.6) can be restated as:

ϕ̂t̄t̄ + c2ϕ̂x̄x̄x̄x̄ = 0. (4.7)

Furthermore we assume that for the variable ϕ̂(x̄, t̄) two initial conditions exist:

ϕ̂(x̄, 0) = f(x̄), ϕ̂t̄(x̄, 0) = g(x̄). (4.8)

14
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4.1.2. Fourier Transform
Subsequently the Fourier transform of equations (4.4-4.8) with respect to the spatial variable x̄ is taken.
The Fourier transform of variable ϕ̂(x̄, t̄) is given by U = U(ω, t̄).

−ω2Uh(ξ) = −d2

h2
Uh′′(ξ),⇒ h′′(ξ) =

h2ω2

d2
h(ξ), (4.9)

h′(−1) = 0, (4.10)
Ut̄t̄ + c2ω4U = 0, (4.11)

U(ω, 0) = f̂(ω), Ut̄(ω, 0) = ĝ(ω). (4.12)

The functions f̂(ω) and ĝ(ω) are respectively the Fourier transforms of f(x̄) and g(x̄).
The equation (4.11) is an ordinary differential equation and can easily be solved. The solution is:

U(ω, t̄) = f̂(ω) cos(cω2t̄) + ĝ(ω)
sin(cω2t̄)

cω2
. (4.13)

According to Guenther and Lee, 1988 (p. 203-204), the Fourier inverse of (4.13) is :

ϕ̂(x̄, t̄) =

∫ ∞

−∞
[K(y − x̄, t̄)f(y) + L(y − x̄, t̄)g(y)] dy, (4.14)

where the functions K and L are:

K(x̄, t̄) =
1√
4πct̄

sin
(
x̄2

4ct
+

π

4

)
,

L(x̄, t̄) =
1

πc

{
πx̄

2

[
S

(
x̄2

4ct̄

)
+ C

(
x̄2

4ct̄

)]
+

√
πct̄ sin

(
x̄2

4ct̄
+

π

4

)}
.

The functions S(z) and C(z) are (Guenther and Lee, 1988):

C(z) =
1√
2π

∫ z

0

s−1/2 cos s ds,

S(z) =
1√
2π

∫ z

0

s−1/2 sin s ds.

The steps that are necessary to obtain the solution (4.14) can be found in appendix D.
The function h(ξ) is obtained by solving equation (4.9):

h(ξ) = c1e
hω
d (ξ+1) + c2e

−hω
d (ξ+1),

h(ξ) = c1e
−|ω|(ξ+1)h

d ,

h′(−1) = −c1|ω|
h

d
e−|ω|(0)h

d = 0,⇒ c1 = 0

For real values of ω the solution is h(ξ) = 0 and the solution ϕ0 = 0 is trivial. Hence the values of ω are
not purely real. To find a function h(ξ) we investigate solutions of equation (4.9) for complex values of
ω.

Purely Imaginary Values for Omega
If one assumes that ω is purely imaginary and can be written as ω = iω̃. Such that ω̃ is real. Replacing
ω with iω̃ in equation (4.11) will ultimately yield the same solution ϕ̂(x̄, t̄) in equation (4.14).

Now one can solve the following ODE to find h(ξ):

h′′(ξ) =
h2(iω̃)2

d2
h(ξ), (4.15)

h′(−1) = 0. (4.16)
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The ODE (4.15), satisfying the boundary condition (4.16) can be solved by:

h(ξ) = c1 cos
(
hω̃

d
(ξ + 1)

)
= c1

ei
hω̃
d (ξ+1) + e−ihω̃

d (ξ+1)

2
. (4.17)

The inverse Fourier transform of function (4.17) is (Haberman, 2014, p.483):

h(ξ) = πc1

(
δ

(
x̄− h

d
(ξ + 1)

)
+ δ

(
x̄+

h

d
(ξ + 1)

))
. (4.18)

The value of h(0)
h′(0) depends on ω. This means that the constant c in equation (4.7) depends on ω. In

this report the value of h(0)
h′(0) is estimated.

h(0) = c1 cos(
hω̃

d
), h′(0) = −c1hω̃

d
sin(hω̃

d
), (4.19)

h(0)

h′(0)
≈ −

cos(hω̃d )
hω̃
d sin(hω̃d )

. (4.20)

We have not found the inverse Fourier transform of cos(hω̃
d )

hω̃
d sin(hω̃

d )
. At ω̃ = 1, the value of K̃ is equal to

− cos(h
d )

h
d sin(h

d )
. In our model we choose to compute ϕ0 with this value of K̃. Studying the dependence of

h(0)
h′(0) on ω and the impact of this dependence on the constant c and the final solution is recommended
for further research.

Complex Values for Omega
If one assumes that ω is a complex number with both a real and an imaginary part one can write
ω = ω1 + iω2.The values of ω1 and ω2 are both real.

For these values of ω one can solve the following ODE to find h(ξ):

h′′(ξ) =
h2(ω1 + iω2)

2

d2
(4.21)

h(ξ), (4.22)
h′(−1) = 0. (4.23)

The ODE (4.23) with boundary condition (4.22) have the solution:

h(ξ) = e(ω1+iω2)
h
d (ξ+1), (4.24)

h(ξ) = e−|ω1|hd (ξ+1)(c1 cos(ω2
h

d
(ξ + 1)) + c2 sin(ω2

h

d
(ξ + 1)) (4.25)

h′(−1) = −|ω1|
h

d
c1 + ω2

h

d
c2 = 0,⇒ c2 = c1

|ω1|
ω2

. (4.26)

h(ξ) = c1e
−|ω1|hd (ξ+1)(cos(ω2

h

d
(ξ + 1)) +

|ω1|
ω2

sin(ω2
h

d
(ξ + 1))). (4.27)

The Fourier inverse of e−|ω1|hd (ξ+1) is: 2h
d (ξ+1)

x̄2+h2

d2
(ξ+1)2

. The Fourier inverse of cos(ω2
h
d (ξ + 1) is

2π
δ(x̄−h

d (ξ+1))+δ(x̄+h
d (ξ+1))

2 . Fourier inverse of 1
ω2

sin(ω2
h
d (ξ + 1) is:{

0 |x̄| > h
d (ξ + 1),

π |x̄| < h
d (ξ + 1).

(4.28)

The function F ′(ξ) = |ω1|e−|ω1|hd (ξ+1) has the anti derivative F (ξ) = d
he

−|ω1|hd (ξ+1).The Fourier

inverse of F is F (ξ) = 2(ξ+1)

x̄2+h2

d2
(ξ+1)2

and F ′(ξ) =
2(x̄2+h2

d2
(ξ+1)2)−4h2

d2
(ξ+1)2

(x̄2+h2

d2
(ξ+1)2)2

=
2(x̄2−h2

d2
(ξ+1)2)

(x̄2+h2

d2
(ξ+1)2)2

.
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After applying an inverse Fourier transform:

h(ξ) = c1
2h
d (ξ + 1)

x̄2 + h2

d2 (ξ + 1)2
2π(

δ(x̄− h
d (ξ + 1)) + δ(x̄+ h

d (ξ + 1))

2
) + c1 (4.29)0 |x̄| > h

d (ξ + 1),

π
2(x̄2−h2

d2
(ξ+1)2)

(x̄2+h2

d2
(ξ+1)2)2

|x̄| < h
d (ξ + 1).

(4.30)

Final Solution
We can find ϕ0 by taking a convolution integral (Haberman, 2014, p.483). In case ω is purely imaginary:

ϕ0(x̄, ξ, t̄) = c1π

∫ ∞

−∞

(∫ ∞

−∞
[K(y − x̃, t̄)f(y) + L(y − x̃, t̄)g(y)] dy

)
(δ(x̃− x̄− h

d
(ξ + 1)) + δ(x̃− x̄+

h

d
(ξ + 1))) dx̃ =

c1π

∫ ∞

−∞

[
K(y − (x̄− h

d
(ξ + 1)), t̄)f(y) + L(y − (x̄− h

d
(ξ + 1), t̄)g(y)

]
dy+

c1π

∫ ∞

−∞

[
K(y − (x̄+

h

d
(ξ + 1)), t̄)f(y) + L(y − (x̄+

h

d
(ξ + 1), t̄)g(y)

]
dy.

For the other case, where: ω = ω1 + iω2 :

ϕ0(x̄, ξ, t̄) = c1

∫ ∞

−∞

(∫ ∞

−∞
[K(y − x̃, t̄)f(y) + L(y − x̃, t̄)g(y)] dy

)
2π h

d (ξ + 1)

((x̃− x̄)2 + h2

d2 (ξ + 1)2

(δ(x̃− x̄− h

d
(ξ + 1)) + δ(x̃− x̄+

h

d
(ξ + 1))) dx̃

+c1

∫ h
d (ξ+1)

−h
d (ξ+1)

(∫ ∞

−∞
[K(y − x̃, t̄)f(y) + L(y − x̃, t̄)g(y)] dy

)
π
2(x̄2 − h2

d2 (ξ + 1)2)

(x̄2 + h2

d2 (ξ + 1)2)2
dx̃ =

c1

(∫ ∞

−∞

[
K(y − (x̄− h

d
(ξ + 1)), t̄)f(y) + L(y − (x̄− h

d
(ξ + 1)), t̄)g(y)

]
dy

)
π

h
d (ξ + 1)

+

cq

(∫ ∞

−∞

[
K(y − (x̄+

h

d
(ξ + 1)), t̄)f(y) + L(y − (x̄+

h

d
(ξ + 1)), t̄)g(y)

]
dy

)
π

h
d (ξ + 1)

+

c1

∫ h
d (ξ+1)

−h
d (ξ+1)

(∫ ∞

−∞
[K(y − x̃, t̄)f(y) + L(y − x̃, t̄)g(y)] dy

)
π
2(x̄2 − h2

d2 (ξ + 1)2)

(x̄2 + h2

d2 (ξ + 1)2)2
dx̃.

The initial conditions are when ω is purely imaginary:

ϕ0(x̄, ξ, 0) = 2π

∫ ∞

−∞
f(x̃)

c1
2
(δ(x̃− x̄− h

d
(ξ + 1)) + δ(x̃− x̄+

h

d
(ξ + 1))) dx̃ =

c1π(f(x̄− h

d
(ξ + 1)) + f(x̄− h

d
(ξ + 1))),

ϕ0t̄(x̄, ξ, 0) = 2π

∫ ∞

−∞
g(x̃)

c1
2
(δ(x̃− x̄− h

d
(ξ + 1)) + δ(x̃− x̄+

h

d
(ξ + 1))) dx̃ =

c1πg(x̄− h

d
(ξ + 1)) + g(x̄− h

d
(ξ + 1)).

The initial conditions are for complex values of ω equal to:

ϕ0(x̄, ξ, 0) = c1

∫ ∞

−∞
f(x̃)

2π h
d (ξ + 1)

((x̃− x̄)2 + h2

d2 (ξ + 1)2
(δ(x̃− x̄− h

d
(ξ + 1)) + δ(x̃− x̄+

h

d
(ξ + 1)))dx̃+

c1

∫ h
d (ξ+1)

−h
d (ξ+1)

f(x̃)π
2(x̄2 − h2

d2 (ξ + 1)2)

(x̄2 + h2

d2 (ξ + 1)2)2
dx̃,

ϕ0t̄(x̄, ξ, 0) = c1

∫ ∞

−∞
g(x̃)

2π h
d (ξ + 1)

((x̃− x̄)2 + h2

d2 (ξ + 1)2
(δ(x̃− x̄− h

d
(ξ + 1)) + δ(x̃− x̄+

h

d
(ξ + 1)))dx̃+

c1

∫ h
d (ξ+1)

−h
d (ξ+1)

g(x̃)π
2(x̄2 − h2

d2 (ξ + 1)2)

(x̄2 + h2

d2 (ξ + 1)2)2
dx̃.
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4.2. Example: Vibrations in a Metal Beam
In this section of behaviour of the functions ϕ0 and w0t̄ on a metal beam for different initial conditions is
shown. First the behaviour of a standing wave on a metal plate is predicted. Secondly a source-term
is added to the standing wave.

4.2.1. Modelling a Standing Wave in a Metal Beam
The following functions and constants are chosen for modelling a standing wave in a metal beam: g = 0,
c1 = 1 and f = sin(x̄)1[−80000,80000]. We choose to define f one large domain instead of an infinite
domain. This is done because Maple is used to compute the functions of ϕ0 and w0t̄ and computing
the values of ϕ0 an infinite domain is extremely time-consuming. In this example we use the solution
ϕ0 in equation 4.31.

The initial conditions on the metal plate are:

ϕ0(x̄, ξ, 0) = π

(
f

(
x̄− h

d
(ξ + 1)

)
+ f

(
x̄− h

d
(ξ + 1)

))
,

ϕ(x̄,−1, 0) = 2πf(x̄),

ϕ0t̄(x̄, ξ, 0) = 0.

The water velocity potential is:

ϕ0(x̄, ξ, t̄) = π

∫ 80000

−80000

[
K(y − (x̄− h

d
(ξ + 1)), t̄) sin(y)

]
dy + π

∫ 80000

−80000

[
K(y − (x̄+

h

d
(ξ + 1)), t̄) sin(y)

]
dy.

(4.31)

With the kinematic boundary condition, one can obtain the function for the speed of the deflections
of the beam:

w0t̄ =
d

h
ϕ0ξ(x̄, 0, t̄) = (4.32)

π

∫ 80000

−80000

∂

∂ξ

[
K(y − (x̄− h

d
(ξ + 1)), t̄) sin(y)

]∣∣∣∣
ξ=0

dy+ (4.33)

π

∫ 80000

−80000

∂

∂ξ

[
K(y − (x̄+

h

d
(ξ + 1)), t̄) sin(y)

]∣∣∣∣
ξ=0

dy. (4.34)

For the computations we model waves in a metal beam. The constants have the following values:
ρs = 6.0× 102, d = 2.0× 10−2, ν = 3.0× 10−1, ρw = 1.025× 103 and h = 8.0× 10−1 (Xu, 2022, p. 65).
The constant c has for this case the value:

c =

√√√√√√√√
1

12(1− ν2)

1 +
ρwh

(
−

d cos(h
d )

h sin(h
d )

)
ρsd


≈ 0.1787906717. (4.35)

Furthermore the values of function w0t̄ are shown in figure 4.1. The speed of the beam is modelled
on a domain of −4000 < x̄ < 4000. Because of x̄ = x

d = x
0.02 , the domain of the function in the real

world is: −80m < x < 80m. In addition the nondimensionalised values of t̄ are shown in the plot for
0 < t̄ < 10000. Because t̄ = t

tc
and tc ≈ 0.0003824s, the values of t are 0s < t < 3.83s. In figure 4.1

one can see 3.5 standing waves in 5.74 seconds. Thus the period of the wave can be approximated by
T = 3.83

7.5 ≈ 0.509s. In figure 4.2 the function ϕ0(x̄, ξ, t̄) is shown for different values of t̄. One can notice
that the amplitude of the waves for different values of t̄ is different. However, there is no displacement
of the waves in the x̄- or ξ-direction.

In appendix A one can find the Maple-code that was used to produce the figures 4.1 and 4.2.
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Figure 4.1: The function w0t̄ (On a metal plate)

(a) ϕ0 at t̄ = 0.001 (b) ϕ0 at t̄ = 1000 (c) ϕ0 at t̄ = 15000

Figure 4.2: Water Velocity Potential: ϕ0
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4.2.2. Modelling a Standing Wave in a Metal Beam with an Added Source
The following functions and constants are chosen for modelling a standing wave in a plate: g = 0,
c1 = 1 and f = sin(x̄)1[−80000,80000] + 201[0,5]. Here the function f from the previous subsection is
applied again and a source is added between x̄ = 0 and x̄ = 5.

The initial conditions on the metal plate are:

ϕ0(x̄, ξ, 0) = π(f(x̄− h

d
(ξ + 1)) + f(x̄− h

d
(ξ + 1))),

ϕ(x̄,−1, 0) = 2πf(x̄) = sin(x̄)1[−80000,80000] + 201[0,5],

ϕ0t̄(x̄, ξ, 0) = 0.

From these equations one can notice that we are adding a source-term to the bottom of the ocean
(ξ = −1). This source can be caused by for example an explosion on the bottom of the ocean.

The water velocity potential is:

ϕ0(x̄, ξ, t̄) = π

∫ 80000

−80000

[
K(y − (x̄− h

d
(ξ + 1)), t̄) sin(y)

]
dy + 20π

∫ 5

0

[
K(y − (x̄− h

d
(ξ + 1)), t̄)

]
dy

(4.36)

+π

∫ 80000

−80000

[
K(y − (x̄+

h

d
(ξ + 1)), t̄) sin(y)

]
dy + 20π

∫ 5

0

[
K(y − (x̄+

h

d
(ξ + 1)), t̄)

]
dy.

(4.37)

By applying the kinematic boundary condition, one can obtain the function for the speed of the
deflections of the beam:

w0t̄ =
d

h
ϕ0ξ(x̄, 0, t̄) = (4.38)

d

h
π

∫ 80000

−80000

∂

∂ξ

[
K(y − (x̄− h

d
(ξ + 1)), t̄) sin(y)

]∣∣∣∣
ξ=0

dy+ (4.39)

d

h
20π

∫ 5

0

∂

∂ξ

[
K(y − (x̄− h

d
(ξ + 1)), t̄)

]∣∣∣∣
ξ=0

dy+ (4.40)

d

h
π

∫ 80000

−80000

∂

∂ξ

[
K(y − (x̄+

h

d
(ξ + 1)), t̄) sin(y)

]∣∣∣∣
ξ=0

dy+ (4.41)

d

h
20π

∫ 5

0

∂

∂ξ

[
K(y − (x̄+

h

d
(ξ + 1)), t̄)

]∣∣∣∣
ξ=0

dy. (4.42)

Furthermore the values of function w0t̄ are plotted in figure 4.3. The values of t̄ are shown in the
plot for 0 < t̄ < 10000. Because t̄ = t

tc
and tc ≈ 0.0003824, the values of t are 0s < t < 3.83. In figure

4.1 one can see 6 standing waves in 5.74 seconds. Thus the period of the wave can be estimated by
T = 3.83

6.5 ≈ 0.589s. The waves in figure 4.1 have a similar frequency compared to the waves in figure
4.3.

In figure 4.4 the values of function ϕ0(x̄, ξ, t̄) are presented for different values of t̄. One can see
that the source first spreads from ξ = −1 to ξ = 0 between figure 4.4a and 4.4b. Between t̄ = 1000
and t̄ = 15000 the increase in velocity potential between x̄ = 0 and x̄ = 5 decreases gradually.
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Figure 4.3: The function w0t̄ (On Metal Plate) with a source-term

(a) ϕ0 at t̄ = 0.001 (b) ϕ0 at t̄ = 1000 (c) ϕ0 at t̄ = 15000

Figure 4.4: Water Velocity Potential ϕ0 with source-term at ξ = −1, beween x̄ = 0 and x̄ = 5.



5
Conclusion

5.1. Examining Analytical Solutions
The purpose of this report is to investigate analytical methods for modelling fluid structure interaction
in large-scale offshore floating photovoltaics. To do so, we looked at nonlinear FSI equations. Fur-
thermore these equations were nondimensionalized. With a perturbation method the non-linearity was
dealt with. Different order equations were found by collecting the different order terms. The perturbation
constant ε was equal to the amplitude of wmax divided by the depth of the ocean, h. By applying sep-
aration of variables and a Fourier transform we tried to examine analytical solutions to the O(1)-order
equations.

The equations which we tied to solve are (Xu, 2022):

∂2ϕ

∂x2
+

∂2ϕ

∂z2
= 0‘, −∞ < x < ∞, −h < z < w, (5.1)

∂ϕ

∂z

∣∣∣
z=−h

= 0, −h < z < w, (5.2)

∂w

∂t
=

∂ϕ

∂z

∣∣∣
z=w

, 0 < t < ∞, −h < z < w, (5.3)

ρsd
∂2w

∂t2
+

Ed3

12(1− ν2)

∂4w

∂x4
− 3Ed

2

(
∂w

∂x

)2
∂2w

∂x2
+ ρwgw + ρw

∂ϕ

∂t

∣∣∣
z=w

+ c1
∂w

∂t
+ c2

∂5w

∂t∂x4
= 0. (5.4)

The function ϕ(x, z, t) denotes the water velocity potential. The vertical deflection of the beam is
expressed by the function w(x, t). To get rid of the non-linearity at the boundary conditions placed at
z = w, the variable z is replaced with ξ = z−w

h+w . Next the equations are nondimensionalized. After
applying a perturbation method with a small dimensionless constant ε we can collect the first order-
terms.

The O(ε0)-order equations expressed in ϕ0 are:

ϕ0x̄x̄(x̄, ξ, t̄) = −d2

h2
ϕ0ξξ(x̄, ξ, t̄), (5.5)

ϕ0ξ(x̄, ξ, t̄) = 0, ξ = −1, (5.6)

ϕ0ξt̄t̄ +
1

12(1− ν2)
ϕ0x̄x̄x̄x̄ξ +

ρwh

ρsd
ϕ0t̄t̄ = 0, ξ = 0, (5.7)

w0t̄ =
d

h
ϕξ, ξ = 0. (5.8)

in order to find a solution separation of variables is applied. In equation (5.7) we substitute ϕ0(x̄, ξ, t̄) =

ϕ̂(x̄, t̄)h(ξ) and obtain a beam equation. By applying a Fourier transform with respect to x̄ to (5.5 to
5.7), a solution can be found. The function of ϕ̂ with initial conditions:

ϕ̂(x̄, 0) = f(x̄), ϕ̂t̄(x̄, 0) = g(x̄),

22
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is equal to:

ϕ̂(x̄, t̄) =

∫ ∞

−∞
[K(y − x̄, t̄)f(y) + L(y − x̄, t̄)g(y)] dy, (5.9)

where the functions K and L are:

K(x̄, t̄) =
1√
4πct̄

sin
(
x̄2

4ct
+

π

4

)
,

L(x̄, t̄) =
1

πc

{
πx̄

2

[
S

(
x̄2

4ct̄

)
+ C

(
x̄2

4ct̄

)]
+

√
πct̄ sin

(
x̄2

4ct̄
+

π

4

)}
.

The functions C and S are respectively cosine and sine Fresnel integrals. The constant c is equal
to c2 = 1

12(1−ν2)

1+
ρwh

h(0)
h′(0)

ρsd

 . To find the function h(ξ) the following equation has to be solved:

h′′(ξ) =
h2ω2

d2
h(ξ), h′(−1) = 0. (5.10)

If ω is purely real this ordinary differential equation cannot be solved. Also if the values of ω are complex
values with a nonzero real there does exist a solution for equations 5.10. Furthermore if ω has purely
imaginary values, one can also find a solution for h(ξ). Applying an inverse Fourier transform to solution
h(ξ) for purely imaginary values of ω with respect to ω yields:

h(ξ) = πc1

(
δ(x̄− h

d
(ξ + 1)) + δ(x̄+

h

d
(ξ + 1))

)
.

The analytical solution of (5.5- 5.7) is:

ϕ0(x̄, ξ, t̄) = c1π

∫ ∞

−∞

[
K(y − (x̄− h

d
(ξ + 1)), t̄)f(y) + L(y − (x̄− h

d
(ξ + 1), t̄)g(y)

]
dy+ (5.11)

c1π

∫ ∞

−∞

[
K(y − (x̄+

h

d
(ξ + 1)), t̄)f(y) + L(y − (x̄+

h

d
(ξ + 1), t̄)g(y)

]
dy. (5.12)

The initial conditions are:

ϕ0(x̄, ξ, 0) = c1π(f(x̄+
h

d
(ξ + 1)) + f(x̄− h

d
(ξ + 1))),

ϕ0t̄(x̄, ξ, 0) = c1π(g(x̄+
h

d
(ξ + 1)) + g(x̄− h

d
(ξ + 1))).

5.2. Recommendations for Further Research
In this section two ideas are presented that could be explored for further research. First one can
study the Impact of Dispersion by solving a higher order equation. This higher order equation is found
by collecting the O(ε1)-terms after implementing a perturbation method. Secondly the value of the
variable c depends on ω. After applying both separation of variables and a Fourier transform to the
equations (5.5-5.7) one can observe that c does depend on ω. In our research we have chosen c as a
constant. Can one find a solution ϕ0 if c depends on ω?

5.2.1. The Impact of Dispersion
With the perturbation method one can also find the O(ε1)-terms in the FSI-equations. The nonhomo-
geneous O(ε1)-order problem is:

ϕ1x̄x̄ +
d2

h2
ϕ1ξξ = 0, (5.13)

ϕ1ξ = 0, ξ = −1, (5.14)

ϕ1ξt̄t̄ +
1

12(1− ν2)
ϕ1x̄x̄x̄x̄ξ +

ρwh

ρsd
ϕ1t̄t̄ = −w0,t̄, ξ = 0, (5.15)

w1t̄ =
d

h
ϕ1ξ, ξ = 0. (5.16)
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The equation (5.15) is nonhomogeneous because the gρww-term in equation (5.4) becomes aO(ε1)-
term after nondimensionalizing the FSI-equations. This gρww-component represents the dispersion of
the water. Collecting the O(ε1)-terms after applying the perturbation method yields the nonhomoge-
neous equation (5.15). For further research we recommend solving the O(ε1)-problem. By obtaining
the solution one can study the impact of dispersion for fluid-structure interaction in LOFPV.

5.2.2. Constant c
The main solution in (5.12) depends on the constant c. This constant c depends on the values of h(0)
and h’(0):

c =

√√√√√ 1

12(1− ν2)

(
1 +

ρwh
h(0)

h′(0)
ρsd

) (5.17)

To find this constant we solve (5.10) for purely imaginary values of ω and evaluate the solution in
ξ = 0. This yields:

h(0)

h′(0)
= −

d cos hω
d

hω sin hω
d

.

Xu (2022, p.61) solves FSI-equations with an eigenvalue of ω = 1. Therefore we choose substitute the
value of h(0)

h′(0) at ω = 1 in (5.17):

h(0)

h′(0)
≈ −

d cos h
d

h sin h
d

,

c ≈
√√√√ 1

12(1− ν2)
(
1− ρw cos (h

d )

ρs sin (h
d )

) .
For further research we recommend examining the impact of the ω-dependency on c and the final

solution ϕ0 by trying to compute the values of c for different values of ω.
Another challenging problem for further research could be examining whether analytical solutions

exist of the O(ε0)-order equations (5.5-5.7) for values of c depending on ω.
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A
Maple Computations

The code in figure A.1 and A.2 was used to produce the plots for water velocity potential and speed of
beam deflection in chapter 4.

Figure A.1: Code for figures of w0t̄

Figure A.2: Code for figures of ϕ0

26



B
Modelling Transverse Vibrations in a

Beam
In this appendix the beam equation from section 2.2.1 is derived from physics.

The transverse vibrations are modelled for a homogeneous beam which can have fixed length L.
In our paper an infinite length is chosen. One can think of a nonbended beam as composed of many
horizontal fibers. When a beam is bent, a portion of the fibers will be compressed and another portion
of the fibers will be pulled out.

The deflection is modelled with the x and z coordinates. In this model the beam is only subject
to small, transverse vibrations. The beam will only move in a vertical direction. In this model the
transverse vibrations of the beam are represented by the movement of the neutral axis. In figure B.1
one can see the neutral axis (Guenther& Lee, 1988, p.195). The unbent beam fibre at (x, 0, 0) on the
neutral axis will after bending be (x, 0, w(x, t)) at time t. The variable w(x, t) represents the bending of
the beam.

One assumes that the density of the beam ρs stays constant over time. Because composition of
the beam material is equal everywhere on the beam, the density does not depend on x. Thus ρs is
constant.

To derive a differential equation of the vibrating beam, a part of the beam is considered between x
and x+∆x. With Newton’s second law:

d

dt

∫ x+∆x

x

Sρswt(ξ, t)dξ =
∑

vertical forces. (B.1)

The vertical forces are: ∫ x+∆x

x

b(−c1wt(ξ, t)− c2wtxxxx(ξ, t) + qw)dξ. (B.2)

Here −c1wt(ξ, t) represents viscous damping and c2wtxxxx corresponds to the structural damping
of the material. Both the upthrust of the water and the gravitational forces cancel each other out and
are therefore not included in this model. The load in the one dimensional x-direction on the structure
is uniform and equal to qw.

F is the shear. The surface forces are:

F (x+∆x, t)− F (x, t) =

∫ x+∆x

x

Fx(ξ, t)dξ. (B.3)

After substituting, one can obtain the equation:

Sρswtt(x, t) = Fx(x, t) + S[−c1wt(x, t)− c2wtxxxx + qw]. (B.4)

LetM(x, t) be the bending moment in the cross section at x as a result of the beam to the right of x.
Let F (x+∆x, t) be the positive upward shear force andM(x+∆x, t) be the positive bending moment
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Figure B.1: Movement in a beam (Guenther & Lee, 1988, p.193)

acting on the area (x, x + ∆x) at the point x + ∆x. The part beam at the left of the cross section will
exert a shear F (x, t). Then we find:

M(x+∆x, t) + F (x, t)∆x = M(x, t). (B.5)

As ∆x goes to zero:

∂M

∂x
= −F. (B.6)

Geometric reasoning (Guenther & Lee,1988, p.194) is used to describe M in terms of w. In figure
B.2 one can observe the bending of the beam (Guenther and Lee, 1988,p.195). At z units above the
neutral axis the fiber has length (R−z)∆θ. This fiber is compressed by z∆θ units. The unstrained fiber
has length ∆s = ∆x = R∆θ. Therefore the strain in the fiber is: z∆θ

∆x = z
R . By Hooke’s law the force

on the small area from z to z +∆z and from x to x +∆x is equal to: Fe = E
1−ν2 (

z
R )b∆z. The bending

moment M is caused by Fe:

|M | = Eb

R(1− ν2)

∫ h/2

−h/2

z dz =
EI

R
, (B.7)

where I represents:

I =
bh3

12(1− ν2)
. (B.8)

If the limit of ∆x approaches 0, the radius R converges to the radius of the curvature of the neutral
axis. Also 1

R is the curvature of the neutral axis at x (Guenther and Lee, 1988, p. 195):

1

R
=

|wxx|
(1 + w2

x)
3/2

≈ |wxx|. (B.9)

For small vibrations one can obtain: |M | = EI|wxx|. If M is positive, then the neutral axis bends
downward. Thus w is concave and wxx > 0. If M is negative, then the neutral axis bends upward. In
that case w is convex and wxx < 0. Thus M = EIuxx is true.
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Figure B.2: Bending of a Beam (Guenther & Lee, 1988, p.195)

M = EIwxx, (B.10)
F = −EIwxxx. (B.11)

Substituting (B.11)in (B.4) yields:

ρxwtt +
EI

S
wxxxx = −c1wt − c2wtxxxx + qw. (B.12)

Boertjens (2022) formulates an equation for the beam by deriving the Hamiltonian integral. First the
work performed to bend the beam can be computed with the following integral :

A =
1

2
ES

∫ L

0

[ux +
1

2
w2

x]
2 dx+

1

2
EI

∫ L

0

w2
xx dx. (B.13)

Here u is the horizontal displacement of the beam and w is the vertical displacement of the beam.
Furthermore the kinetic energy of the beam is given by (Boertjens, 2000):

Ek =
µ

2

∫ L

0

[u2
t + w2

t ] dx. (B.14)

The mass of the beam per unit length is given by µ = Sρw The Hamiltonian integral is given by:

F =
1

2

∫ t2

t1

∫ L

0

{
ES[ux +

1

2
w2

x]
2 + EIw2

xx − µ[u2
t + w2

t ]

}
dx dt. (B.15)

Hamilton’s principle asserts that the variation of F is equal to 0. After computing the variation of F ,
one can derive the Euler equations. Then the beam equation is:

ρsSwtt + EIwxxxx − SE
∂

∂x
[wx(ux +

1

2
w2

x)] = 0. (B.16)



30

Because the horizontal deflection u is ignored in our model, we can say that ux = 0. Therefore the
beam equation becomes:

ρsSwtt + EIwxxxx − SE
3

2
(wx)

2
wxx = 0. (B.17)

If one adds the load and the damping from equation (B.12) to equation (B.17) one can find the
equation shown in section 2.2.1:

ρsSwtt + EIwxxxx − 3

2
SE (wx)

2
wxx + c1bwt + c2bwtxxxx = qw. (B.18)



C
Computations of the Equations

C.1. Finding Equations for phi
In this section the main goal is to extract a homogeneous PDE for ϕ0 and a non-homogeneous PDE for
ϕ1 using respectively the O(ε0)-order differential equations and O(ε1)-order differential equations from
chapter 3.

C.1.1. Differential Equation for phi0
The first order Bernoulli-Euler equation is:

w0t̄t̄ +
1

12(1− ν2)
w0x̄x̄x̄x̄ +

ρw
ρs

[ϕ0t̄] = 0, ξ = 0. (C.1)

Next we differentiate kinematic boundary condition with respect to t̄ and eliminate ε2-order compo-
nents. The function ξx̄ has order O(ε2):

w0t̄t̄ =
d

h
(ϕ0ξt̄ + ϕ0ξξξx̄), ξ = 0, (C.2)

w0t̄t̄ =
d

h
ϕ0ξt̄, ξ = 0. (C.3)

Substituting the values of (C.3) in equation (C.1) yields:

d

h
ϕ0ξt̄ +

1

12(1− ν2)
w0x̄x̄x̄x̄ +

ρw
ρs

[ϕ0t̄] = 0, ξ = 0.

Differentiating to t̄ and removing higher order terms yields:

d

h
ϕ0ξt̄t̄ +

1

12(1− ν2)
w0x̄x̄x̄x̄t̄ +

ρw
ρs

[ϕ0t̄t̄] = 0, ξ = 0. (C.4)

Substituting the four times differentiated (to x̄) kinematic boundary condition in (C.4) and removing
terms of orderε and ε2 yields:

d

h
ϕ0ξt̄t̄ +

d

h12(1− ν2)
ϕ0x̄x̄x̄x̄ξ +

ρw
ρs

[ϕ0t̄t̄] = 0, ξ = 0. (C.5)

C.1.2. Differential Equation for phi1
The second order Bernoulli-Euler equation is:

w1t̄t̄ +
1

12(1− ν2)
w1x̄x̄x̄x̄ +

ρw
ρs

[ϕ1t̄] = −w0, ξ = 0. (C.6)
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Next we differentiate kinematic boundary condition with respect to t̄ and eliminate higher order
components. The function ξx̄ has order O(ε2):

w1t̄t̄ =
d

h
(ϕ1ξt̄ + ϕ1ξξξx̄), ξ = 0, (C.7)

w1t̄t̄ =
d

h
ϕ1ξt̄, ξ = 0. (C.8)

Substituting the values of (C.6) in equation (C.8) yields:

d

h
ϕ1ξt̄ +

1

12(1− ν2)
w1x̄x̄x̄x̄ +

ρw
ρs

[ϕ1t̄] = −w0, ξ = 0.

Differentiating to t̄ and removing higher order terms yields:

d

h
ϕ1ξt̄t̄ +

1

12(1− ν2)
w1x̄x̄x̄x̄t̄ +

ρw
ρs

[ϕ1t̄t̄] = −w0t̄, ξ = 0. (C.9)

Differentiating the second order kinematic boundary condition four times with respect to x̄, removing
higher-order terms and substituting in (C.9) yields:

d

h
ϕ1ξt̄t̄ +

d

h12(1− ν2)
ϕ1x̄x̄x̄x̄ξ +

ρw
ρs

[ϕ1t̄t̄] = −w0t̄, ξ = 0. (C.10)



D
Solving a Beam Equation on an Infinite

Domain

In section 4.1. we try to solve a model for a variable ϕ̂ that is similar to a beam equation. In this appendix
one can see how this model is solved with a Fourier transform.

The model in subsection 4.1. is equal to:

ϕ̂t̄t̄ + c2ϕ̂x̄x̄x̄x̄ = 0, −∞ < x̄ < ∞, t > 0, (D.1)

ϕ̂(x̄, 0) = f(x̄), ϕ̂t̄(x̄, 0) = g(x̄), −∞ < x̄ < ∞, (D.2)

where c > 0. To this initial value problem a Fourier transform is applied with respect to x̄:

Ut̄t̄ + c2ω4U = 0,

U(ω, 0) = f̂(ω), Ut̄(ω, 0) = ĝ(ω),

where U = U(ω, t̄ is the Fourier transform of ϕ̂(x̄, t̄). After applying the Fourier transform we can
solve an ordinary differential equation. The solution is:

U(ω, t̄) = f̂(ω) cos(cω2t̄) + ĝ(ω)
sin(cω2t̄)

cω2
. (D.3)

The solution ϕ̂ is acquired by implementing an inverse Fourier transform:

ϕ̂(x̄, t̄) =
1

2π

∫ ∞

−∞
e−iωx̄

[
f̂(ω) cos(cω2t̄) + ĝ(ω)

sin(cω2t̄)

cω2

]
dω. (D.4)

The equation (D.4) must be considered as a formal solution. We check whether the formal solution
solves the original problem. To verify this solution, we first need a proposition:

Proposition
A proposition in (Guenther and Lee, 1988, p. 85) is used in our derivations. Let h(x, y) and hx(x, y) be
continuous for −∞ ≤ a < x < b ≤ ∞ and −∞ < y < ∞. The following equality holds for x ∈ (a, b):

d

dx

∫ ∞

−∞
h(x, y) dy =

∫ ∞

−∞
hx(x, y) dy.

This equality holds if the integral on the is convergent and the integral on the right is uniformly conver-
gent on each closed and bounded subinterval of (a, b).
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Secondly we verify if the formal solution satisfies the initial conditions :

ϕ̂(x̄, 0) =
1

2π

∫ ∞

−∞
e−iωx̄f̂(ω) dω.

ϕ̂t̄(x̄, 0) =
1

2π

∫ ∞

−∞
e−iωx̄ĝ(ω) dω.

With the Proposition the differentiation under the integral sign is justified. Thus the formal solution
satisfies the initial conditions.

Likewise we check whether the formal solution satisfies the original PDE (D.1). The proposition
allows ϕ̂ to be differentiated twice with respect to t̄ under the integral.

ϕ̂t̄t̄ =
−1

2π

∫ ∞

−∞
e−iωx̄

[
c2ω4f̂(ω) cos(cω2t̄) + cω2ĝ(ω) sin(cω2t̄)

]
dω.

Finally we can also use the proposition to differentiate under the integral times four timeswith respect
to x̄.

ϕ̂x̄x̄x̄x̄ =
1

2π

∫ ∞

−∞
ω4e−iωx̄

[
f̂(ω) cos(cω2t̄) + cω2ĝ(ω)

sin(cω2t̄)

cω2

]
dω.

Thus our the formal solution (D.4) satisfies ϕ̂t̄t̄ + c2ϕ̂x̄x̄x̄x̄ = 0.
We would like to express the formal solution directly in terms of f(x̄) and g(x̄). To achieve this we

first consider the integral:

1

2π

∫ ∞

−∞
e−iωx̄f̂(ω) cos (cω2t̄) dω =

1

2π

∫ ∞

−∞
f(y)

∫ ∞

−∞
eiω(y−x̄) cos(cω2t̄) dω dy.

According to Guenther and Lee, 1988, this integral can be rewritten with by applying a coordinate and
an inverse Fourier transform (Guenther and Lee, 1988, p.204):

1

2π

∫ ∞

−∞
e−iωx̄f̂(ω) cos (cω2t̄) dω =

1

2π
· 2 · 1

4
(
2π

ct̄
)1/2

∫ ∞

−∞

(
cos

(
(y − x̄)2

4ct̄

)
+ sin

(
(y − x̄)2

4ct̄

))
f(y) dy =

1√
4ct̄

∫ ∞

−∞
f(y) sin

(
(y − x)2

4ct̄
+

π

4

)
dy.

Furthermore the second part of the integral from the formal solution can be expressed as (Guenther
and Lee, 1988, p.204):

1

2π

∫ ∞

−∞
e−iωx̄ĝ(ω)

sin (cω2t̄)

cω2
dω =

1

2π

∫ ∞

−∞
g(y)

∫ ∞

−∞
eiω(y−x̄) sin(cω2t̄)

cω2
dω dy =

1

πc

∫ ∞

−∞

{
π(y − x̄)

2

[
S

(
(y − x̄)2

4ct̄

)
+ C

(
(y − x̄)2

4ct̄

)]
+

√
πct̄ sin

(
(y − x̄)2

4ct̄
+

π

4

)}
g(y) dy.

Where the functions C(z) and S(z) are the Fresnel integrals:

C(z) =
1√
2π

∫ z

0

s−1/2 cos s ds, S(z) =
1√
2π

∫ z

0

s−1/2 sin s ds.
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Subsequently the functions K(x̄, t̄) and L(x̄, t̄) are chosen such that:

K(x̄, t̄) =
1

4πct̄
sin
(

x̄2

4at
+

π

4

)
,

L(x̄, t̄) =
1

πc

{
πx̄

2

[
S

(
x̄2

4ct̄

)
+ C

(
x̄2

4ct̄

)]
+

√
πct̄ sin

(
x̄2

4ct̄
+

π

4

)}
.

Finally one can state the solution of the PDE (D.1) in terms of its initial conditions:

ϕ̂(x̄, t̄) =

∫ ∞

−∞
[K(y − x̄, t̄)f(y) + L(y − x̄, t̄)g(y)] dy.

From this solution in its final form we can see that it is important for the functions f and g to decay
fast when x̄ approaches infinity.



E
How Not To Solve The Problem

The main goal of this project is to find a solution for the FSI-equations in chapter 2. This appendix
contains methods to solve this equation that do not work. In the first section of this appendix one can
observe how a 2-dimensional beam equation with a dispersion competent cannot be solved with a
Fourier transform. In the second section of this appendix one can observe how only using separation
of variables is an impractical way to solve the beam-equations.

E.1. Beam Equation with Dispersion-terms
The FSI-equations in chapter 2 are nondimensionalized with different constants (compared to the
normalization from chapter 3). When we apply a perturbation method, a different first order equation is
obtained with a dispersion component.

E.1.1. Nondimensionalising equations
The FSI equations are nondimensionalized:

x̄ =
x

L
, z̄ =

z

h
,

ϕ̂(x, ξ, t) = ϕ(x, z, t), ξ =
z − w

h+ w
=

z̄ − w̄wmax

h

1 + w̄wmax

h

,

ϕ̄ =
ϕ̂

ϕc
, w̄ =

w

wmax
, w̄ = εw̃,

t2c =
L4ρs
Ed2

, ϕc =
wmaxdε

tc
.

With this normalisation the domain of the model is −∞ ≤ x̄ ≤ ∞, −1 ≤ ξ ≤ 0 and −1 ≤ w̄ ≤ 1.
The equation for water velocity potential:

ϕ̄x̄x̄ + 2ϕ̄x̄ξ

( −εw̃x̄
wmax

h

(1 + εw̃wmax

h )
−

(z̄ − εw̃wmax

h )εw̃x̄
wmax

h

(1 + εw̃wmax

h )2

)
+ ϕ̄ξξ

( −εw̃x̄
wmax

h

(1 + εw̃wmax

h )
−

(z̄ − εw̃wmax

h )εw̃x̄
wmax

h

(1 + εw̃wmax

h )2

)2

+ϕ̄ξ(
−εw̃x̄x̄

wmax

h

1 + εw̃wmax

h

+
2(εw̃x̄

wmax

h )2

(1 + εw̃wmax

h )2
+

2(z̄ − εw̃wmax

h )ε2w̃2
x̄(

wmax

h )2

(1 + εw̃wmax

h )3
−

(z̄ − εw̃wmax

h )εw̃x̄x̄
wmax

h

(1 + εw̃wmax

h )2
) +

L2

h2
ϕ̄ξξ

1(
1 + εw̃wmax

h

)2 = 0.

The boundary condition at the bottom of the ocean:

ϕ̄ = 0, ξ = −1.
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The FSI equations are:

w̃t̄t̄ +
1

12(1− ν2)
w̃x̄x̄x̄x̄ − ε2

3w2
max

2d2
(w̃x̄)

2w̃x̄x̄ +
ρwgL

4

ρsEd2
w̃ +

ρw
ρs

[
ϕ̄t̄ + ϕ̄ξ

−εw̃t̄
wmax

h

(1 + εw̃wmax

h )

]
+

c1L
2

d2
√
Eρs

w̃t̄ +
c2

d2L2
√
Eρs

w̃t̄x̄x̄x̄x̄ = 0, ξ = 0.

The boundary condition at the surface is:

w̃t̄ =
L

h
ϕ̄ξ

1

1 + εw̃wmax

h

, ξ = 0, =⇒

(1 + εw̃
wmax

h
)w̃t̄ =

d

h
ϕ̄ξ ξ = 0.

E.1.2. Finding the First Order Problem
Let ε = wmax

h , since the depth of the ocean is great compared to the maximum amplitude of the waves.
We also split both ϕ̄ and w̃ in a O(ε0)- and a O(ε2)-order component:

w̃ = w0 + ε2w1, ϕ̄ = ϕ0 + ε2ϕ1.

The constants c1 and c2 are of order O(ε2):

c1 = ε2c̃1, c2 = ε2c̃2.

After substituting the values for w̃, ϕ̄, c1 and c2 we collect the O(ε0)-terms of the equations. The
following Partial Differential Equations can be obtained:

ϕ0x̄x̄ = −L2

h2
ϕ0ξξ, −1 < ξ < 0 −∞ < x̄ < ∞, (E.1)

w0,t̄ =
d

h
ϕ̄ξ, ξ = 0, (E.2)

ϕ0ξ = 0, ξ = −1, (E.3)

w0t̄t̄ +
1

12(1− ν2)
w0x̄x̄x̄x̄ +

ρwgL
4

ρsEd2
w0 +

ρw
ρs

[ϕ0t̄] = 0, ξ = 0. (E.4)

For ϕ0 the following equation can be found:

ϕ0ξt̄t̄ +
1

12(1− ν2)
ϕ0x̄x̄x̄x̄ξ +

ρwgL
4

ρsEd2
ϕ0ξ +

ρwh

ρsd
ϕ0t̄t̄ = 0, ξ = 0. (E.5)

E.1.3. Solving the First Order Problem
Separation Of Variables
First we apply separation of variables: ϕ0(x̄, ξ, t̄) = ϕ̂(x̄, t̄)h(ξ). Substituting ϕ0 in (E.1-E.4) yields:

ϕ̂x̄x̄(x̄, t̄)h(ξ) =
−d2

h2
ϕ̂(x̄, t̄)h′′(ξ) (E.6)

h′(−1) = 0, (E.7)

ϕ̂t̄t̄h
′(0) +

1

12(1− ν2)
ϕ̂x̄x̄x̄x̄h

′(0) +
ρwgL

4

ρsEd2
ϕ̂h′(0) +

ρwh

ρsd
ϕ̂t̄t̄h(0) = 0. (E.8)

Fourier & Laplace transforms
A Fourier transform is applied to the previous equations in the x̄-direction. Let U(ω, t) be the Fourier
transform of ϕ̂(x̄, t̄):

F(ϕ̂x̄x̄(x̄, t̄)h(ξ)) = F(
−L2

h2
ϕ̂(x̄, t̄)h′′(ξ)),⇒

(iω)2Uh(ξ) =
−L2

h2
Uh′′(ξ),⇒ h′′(ξ)

h(ξ)
=

−(iω)2h2

L2
=

ω2h2

L2
.
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To the boundary condition at ξ = 0 a Fourier transformation is applied:

Ut̄t̄ +
ω4

12(1− ν2)
U +

ρwgL
4

Ed3
U +

ρwh

ρsd
Ut̄t̄

h(0)

h′(0)
= 0.

In the t̄ variable we apply a Laplace transformation to the equation. Let W (ω, s) be the Laplace
transformation of U(ω, t̄).

[s2W − sU(ω, 0)− Ut̄(ω, 0)] +
ω4

12(1− ν2)
W +

ρwgL
4

Ed3
W +

ρwh

ρsd
[s2W − sU(ω, 0)− Ut̄(ω, 0)]

h(0)

h′(0)
= 0, =⇒

W (ω, s) =
sU(ω, 0) + Ut̄(ω, 0)

s2 +
ω4

12(1−ν2)
+ ρwgL4

Ed3

1+
ρwhh(0)

ρsdh′(0)

=
sU(ω, 0)− Ut̄(ω, 0)

s2 + q(ω4)
.

From Haberman (2014, p.612), the inverse Laplace transformation of W (ω, s) can be obtained
( Haberman, 2014) :

U(ω, t) = U(ω, 0) cos(
√

q(ω4)t̄) + Ut(ω, 0)
1√
q(ω4)

sin(
√

q(ω4)t̄). (E.9)

For both the functions cos(
√

q(ω2)t̄) and 1√
q(ω4)

sin(
√

q(ω4)t̄) we could not find a Fourier inverse.

For a beam equation without the dispersion term: ρwgL4

ρsEd2 ϕ̂h
′(0) one could solve the problem by comput-

ing the Fourier Inverse of cos(ω2ct̄)and 1
w2c sin(ω

2ct̄). Where c2 =
ω4

12(1−ν2)

1+
ρwhh(0)

ρsdh′(0)
. The dispersion term can

not be removed with a perturbation method, because the dispersion term is quite large:

ρwgL
4

ρsEd2
≈ 108 − 1013

. Therefore in chapter 3 we nondimensionalize the equations differently and apply the perturbation
method to deal the dispersion-term from the first order equation.

E.1.4. Separation of Variables & Fourier Transform
Separation of Variables
First we apply separation of variables: ϕ0(x̄, ξ, t̄) = ϕ̂(x̄, t̄)h(ξ). Substituting ϕ0 in (E.1-E.4) yields:

ϕ̂x̄x̄(x̄, t̄)h(ξ) =
−d2

h2
ϕ̂(x̄, t̄)h′′(ξ),⇒

ϕ̂x̄x̄

ϕ̂
= −d2

h2

h′′(ξ)

h(ξ)
= −λ,⇒

ϕ̂x̄x̄ = −λϕ̂,
d2

h2
h′′ = λh

h′(−1) = 0,

ϕ̂t̄t̄h
′(0) +

1

12(1− ν2)
ϕ̂x̄x̄x̄x̄h

′(0) +
ρwgL

4

ρsEd2
ϕ̂h′(0) +

ρwh

ρsd
ϕ̂t̄t̄h(0) = 0.

Because ϕ̂x̄x̄ = −λϕ̂, we know that ϕ̂x̄x̄x̄x̄ = −λϕ̂x̄x̄ = λ2ϕ̂. Therefore we replace ϕ̂x̄x̄x̄x̄ with λ2ϕ̂ in
our equations:

ϕ̂t̄t̄h
′(0) +

λ2

12(1− ν2)
ϕ̂h′(0) +

ρwgL
4

Ed3
ϕ̂h′(0) +

ρwh

ρsd
ϕ̂t̄t̄h(0) = 0, =⇒ (E.10)

ϕ̂t̄t̄

ϕ̂
= −

ρwgL4

Ed3 + λ2

12(1−ν2)

1 + ρwh
ρsd

h(0)
h′(0)

= −
ρwgL4h′(0)

Ed3 + λ2h′(0)
12(1−ν2)

h′(0) + ρwh
ρsd

h(0)
= −µ(λ). (E.11)
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For different values of λ there exist different solutions: If λ = 0, the solution has the form: ϕ̂ =
a(t̄) + b(t̄)x̄. If x̄ → ∞ or x̄ → −∞ then ϕ̂ converges to zero. Therefore we can set the values of b to
zero: b(t̄) = 0.

Moreover if λ > 0 is positive, then the solution is equal to ϕ̂ = c1(t̄) cos(
√
λx̄) + c2(t̄) sin(

√
λx̄).

Furthermore if λ < 0, we set λ = −s. The solution is equal to ϕ̂ = c3(t̄)e
√
sx + c4(t̄)e

−
√
sx. If x̄ → ∞

or x̄ → −∞, the function of ϕ̂ converges to zero. Thus c3(t̄) = 0 if x̄ > 0 and c4(t̄) = 0 if x̄ < 0.
Therefore the velocity potential is: ϕ̂(x̄, t̄) = c̃(t̄)e−

√
s|x̄| = c̃(t̄)e−

√
−λ|x̄|.

If one assumes h′(0) + ρwhh(0)
ρsd

> 0, then µ > 0. Therefore the solution of ϕ̂ has the form ϕ̂ =

a(x̄) cos(√µt̄) + b(x̄) sin(√µt̄).
If one assumes h′(0) = −ρwhh(0)

ρsd
, the solution ϕ̂ becomes equal to zero and is trivial. Hence h′(0)

is not equal to −ρwhh(0)
ρsd

.
The following wave-equation can be obtained for λ > 0:

ϕ̂t̄t̄ −
µ(λ)

λ
ϕ̂x̄x̄ = 0, c2 =

µ(λ)

λ
. (E.12)

Whenever λ is zero:

ϕ̂x̄x̄ = 0. (E.13)

If λ < 0 one substitutes a variable s such that: s = −λ.

ϕ̂t̄t̄ +
µ(s)

s
ϕ̂x̄x̄ = 0, c2 =

µ(s)

s
. (E.14)

Substituting ϕ̂x̄x̄ = −µ(λ)ϕ̂ into equation E.11 and dividing by ϕ̂ yields:

−

 ρwgL4h′(0)
Ed3 + λ2h′(0)

12(1−ν2)

h′(0) + ρwh
ρsd

h(0)

h′(0) +
λ2h′(0)

12(1− ν2)
+

ρwgL
4h′(0)

Ed3
− ρwh

ρsd

 ρwgL4h′(0)
Ed3 + λ2h′(0)

12(1−ν2)

h′(0) + ρwh
ρsd

h(0)

h(0) = 0,⇒

−

(
1

h′(0) + ρwh
ρsd

h(0)

)
h′(0) + 1− ρwh

ρsd

(
1

h′(0) + ρwh
ρsd

h(0)

)
h(0) = 0,⇒

−h′(0) + h′(0) +
ρwh

ρsd
h(0)− ρwh

ρsd
h(0) = 0,⇒

0 = 0.

Therefore h(0) or h′(0) can have any value in order to satisfy the boundary conditions.
The ODE one needs to solve:

h′′(ξ) =
h2λ

L2
h(ξ) (E.15)

Whenever λ = 0, the solution is h(ξ) = c1.
In case that λ > 0:

h(ξ) = c1 cosh(
√
λ
h

L
(ξ + 1)) + c2 sinh(

√
λ
h

L
(ξ + 1)).

h′(−1) = c1
√
λ
h

L
sinh(

√
λ
h

L
(0)) + c2

√
λ
h

L
cosh(

√
λ
h

L
(0)) = 0 =⇒ c2 = 0

h(0) = c1 cosh(
√
λ
h

L
) = 0, =⇒

e
√
λ h

L = −e−
√
λ h

L , =⇒ e2
√
λ h

L = −1, =⇒ λ < 0

h′(0) = 0 =⇒ λ < 0.
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Also supposing that λ < 0, the following solution can be found:

h(ξ) = c1 cos(
√
−λ

h

L
(ξ + 1)) + c2 sin(

√
−λ

h

L
(ξ + 1))

h′(−1) = −c1
√
−λ

h

L
sin(0) + c2

√
−λ

h

L
cos(0) = 0, =⇒ c2 = 0.

h(ξ) = c1 cos(
√
−λ

h

L
(ξ + 1)).

The value of λ has to be a real number. The following proof is given:

L(h) =
L2

h2
h′′ = λh =⇒ L2

h2
h′′ = λh. (E.16)

(E.17)

Let h1 = h and h2 = h be the eigenfunctions to the corresponding eigenvalues λ1 = λ and λ2 = λ.
Therefore one can obtain the following equality:

(λ1 − λ2)

∫ 0

−1

h1h2 dξ = 0

if [h1(0)h
′
2(0)− h′

1(0)h2(0)]− [h1(−1)h′
2(−1) + h′

1(−1)h2(−1)] =

[h1(0)h
′
2(0)− h′

1(0)h2(0)] = 0,⇒

h′(0)

h(0)
=

h′(0)

h(0)

.

This implies that λ = λ, since both h(0) and h′(0) are real numbers. Therefore λ is a real number.

Fourier Transform
Let two Initial conditions exist:

ϕ̂(x̄, 0) = f(x̄), ϕ̂t̄(x̄, 0) = g(x̄)

For λ > 0 we solve the wave equation in (E.12) Let U(ω, t̄) be the Fourier transform of ϕ̂. Apply a
Fourier transform to the equation (E.12). Taking the Fourier transform of the wave equation yields:

Ut̄t̄ = −c2ω2U.

The Fourier transforms of the initial conditions are:

U(ω, 0) =
1

2π

∫ ∞

−∞
f(x̄)eiωx̄ dx

Ut̄(ω, 0) =
1

2π

∫ ∞

−∞
g(x̄)eiωx̄ dx.

The solution is:

U(ω, t̄) = A(ω) cos(cωt̄) +B(ω) sin(cωt̄)

, A(w) =
1

2π

∫ ∞

−∞
f(x̄)eiωx̄ dx̄

B(w) =
1

2πcω

∫ ∞

−∞
g(x̄)eiωx̄ dx̄.



E.2. Separation of Variables 41

After using the inverse Fourier transform:

ϕ̂(x̄, t̄) =

∫ ∞

−∞

1

2π

∫ ∞

−∞
f(x̄)eiωx̄ dx̄ cos(cωt̄)e−iωx̄ dω +

∫ ∞

−∞

1

2πcω

∫ ∞

−∞
g(x̄)eiωx̄ dx̄ sin(cωt)e−iωx dω

=
1

2π

∫ ∞

−∞
f(x− y)π(δ(y − ct) + δ(y + ct)) dy +

1

2π

∫ ∞

−∞
g(x− y)h(x)

h(x) = 1 if |x| < ct

ϕ̂(x̄, t̄) =
f(x− ct) + f(x+ ct)

2
+

1

2c

∫ x+ct

x−ct

g(y) dy.

For λ = 0 the solution of equation (E.13) is :

ϕ̂(x̄, t̄) = a(t).

Let U(ω, t̄) be the Fourier transform of ϕ̂. Apply a Fourier transform to the equation (E.14). Taking
the Fourier transform of the wave equation in x̄ yields:

Ut̄t̄ = c2ω2U.

The solution is:

U(ω, t̄) = C1(ω)e
−cωt̄ + C2(ω)e

cωt̄,

U(ω, t̄) = D1(ω)e
−c|ω|t̄, D1(ω) = U(ω, 0).

The Fourier inverse of e−c|w|t is 2ct
x2+c2t2 . The solution for equation (E.14) is: ϕ̂ =

∫∞
−∞( 2ct

y2+c2t2 )f(x−
y) dy.

The final solution is equal to :

ϕ0(x̄, ξ, t̄) =

∫ ∞

0+
c(λ)

f(x−
√

µ(λ)
λ t) + f(x+

√
µ(λ)
λ t)

2
+

1

2
√

µ(λ)
λ

∫ x+

√
µ(λ)
λ t

x−
√

µ(λ)
λ t

g(y) dy

 cosh(
√
λ
h

L
(ξ + 1)) dλ

(E.18)

+

∫ ∞

0+
d(s)

∫ ∞

−∞

 2
√

µ(s)
s t

y2 + µ(s)
s t2

 f(x− y) dy

 cos(
√
s
h

L
(ξ + 1)) ds.

(E.19)

Finding the functions c(λ) and d(s) is quite complicated.

E.2. Separation of Variables
From chapter 3 we obtain the first order problem. In this section we attempt to solve this first order
problem with separation of variables.

The first order PDE is:

ϕ0x̄x̄(x̄, ξ, t̄) = −d2

h2
ϕ0ξξ(x̄, ξ, t̄), −1 < ξ < 0 −∞ < x̄ < ∞,

ϕ0ξ(x̄, ξ, t̄) = 0, ξ = −1,

ϕ0ξt̄t̄ +
1

12(1− ν2)
ϕ0x̄x̄x̄x̄ξ +

ρwh

ρsd
ϕ0t̄t̄ = 0, ξ = 0.

First we apply separation of variables: ϕ0(x̄, ξ, t̄) = T (t̄)Φ(x̄, ξ).



E.2. Separation of Variables 42

The boundary-value problem can now be restated as:

Φx̄x̄ =
−d2

h2
Φξξ, −1 < ξ < 0, −∞ < x̄ < ∞, (E.20)

Φ(x̄,−1) = 0, (E.21)
T ′′(t̄)

T (t̄)

Φξ

Φ
+

1

12(1− ν2)

Φx̄x̄x̄x̄ξ

Φ
+

ρwh

ρsd

T ′′

T
= 0, =⇒ (E.22)

T ′′

T
=

−Φx̄x̄x̄x̄ξ

12(1− ν2)Φ
(

Φξ

Φ + ρwh
ρsd

) = −λ. (E.23)

We apply separation of variables again: Φ(x̄, ξ) = H(x̄)G(ξ). Substituting H and G in (E.20 - E.23)
yields:

H ′′(x̄)

H(x̄)
= −d2

h2

G′′(ξ)

G(ξ)
= −µ,⇒ H ′′′′ = −µH ′′ = µ2H, (E.24)

G(−1) = 0, (E.25)

λ = − −µ2HG′(0)

12(1− ν2)HG(0)
(

HG′(0)
HG(0) + ρwh

ρsd

) = − −µ2G′(0)

12(1− ν2)G(0)
(

G′(0)
G(0) + ρwh

ρsd

) . (E.26)

(E.27)

The function of G has the form: G(ξ) = c1 cosh(
h
√
µ

d (ξ + 1)) for µ > 0. Substituting G(ξ) in the
boundary value problem yields:

G(0) =
1

2
c1(e

h
√

µ

d + e−
h
√

µ

d ), G′(0) =
1

2

h
√
µ

d
c1(e

h
√

µ

d − e−
h
√

µ

d ), (E.28)

G′(0)

G(0)
=

h
√
µ

d

e2
h
√

µ

d + 1

e2
h
√

µ

d − 1
, (E.29)

λ =
µ2

12(1− ν2)

(
h
√
µ

d
e2

h
√

µ
d +1

e2
h
√

µ
d −1

+ ρwh
ρsd

) h
√
µ

d

e2
h
√

µ

d + 1

e2
h
√

µ

d − 1
. (E.30)

The function H has the shape H(x̄) = c2 sin(
√
µx̄) + c3 cos(

√
µx̄) for µ > 0. The function T (x̄) =

c4 sin(
√
λt̄) + c5 cos(

√
λt̄).

When one applies superposition to the solution for positive values of µ:

ϕ0 =

∫ ∞

0

cosh
(
h
√
µ

d
(ξ + 1)

)
(c2(µ) sin(

√
µx̄) + c3(µ) cos(

√
µx̄) (E.31)

(c4(µ) sin


√√√√√√√
 µ2

12(1− ν2)

(
h
√
µ

d
e2

h
√

µ
d +1

e2
h
√

µ
d −1

+ ρwh
ρsd

) h
√
µ

d

e2
h
√

µ

d + 1

e2
h
√

µ

d − 1

t̄

+ (E.32)

c5(µ) cos


√√√√√√√
 µ2

12(1− ν2)

(
h
√
µ

d
e2

h
√

µ
d +1

e2
h
√

µ
d −1

+ ρwh
ρsd

) h
√
µ

d

e2
h
√

µ

d + 1

e2
h
√

µ

d − 1

t̄

) dµ. (E.33)

Here the c2,c3, c4 and c5 are unknown functions of µ. Because λ depends on µ as a function with
an exponential component, we cannot solve the superposition integral.
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